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ABSTRACT

This paper investigates the use of meta-models for optimiz-
ing sails trimming. A Gaussian process is used to robustly
approximate the dependence of the performance with the
trimming parameters to be optimized. The Gaussian pro-
cess construction uses a limited number of performance ob-
servations at carefully selected trimming points, potentially
enabling the optimization of complex sail systems with mul-
tiple trimming parameters. We test the optimization proce-
dure on the (two parameters) trimming of a scaled IMOCA
mainsail in upwind conditions. To assess the robustness of
the Gaussian process approach, in particular its sensitivity to
error and noise in the performance estimation, we contrast
the direct optimization of the physical system with the op-
timization of its numerical model. For the physical system,
the optimization procedure was fed with wind tunnel mea-
surements, while the numerical modeling relied on a fully
non-linear Fluid-Structure Interaction solver. The results
show a correct agreement of the optimized trimming param-
eters for the physical and numerical models, despite the in-
herent errors in the numerical model and the measurement
uncertainties. In addition, the number of performance esti-
mations was found to be affordable and comparable in the
two cases, demonstrating the effectiveness of the approach.

INTRODUCTION

Researches on sailing yachts have fostered the development
of advanced methods dedicated to the prediction and im-
provement of racing yacht performance. The performance
is usually analyzed using so-called Velocity Prediction Pro-
grams (VPPs) (Oossanen, 1993), which solve equilibrium
equations (balancing hull, appendages and sails loads) to de-
termine several performance indicators, such as Boat Speed
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(BS) or Velocity Made Good (VMG). The different loads
accounted by the VPPs can be based on empirical formu-
las, experimental data or numerical simulations (Hansen
et al., 2003, Korpus, 2007). However, due to the complex-
ity and multi-physic characters of the yachts dynamics, per-
formance studies often consider the hydrodynamic (Huetz
and Guillerm, 2014) and aerodynamic (Augier et al., 2012,
Menotti et al., 2013, Trimarchi, 2012) aspects separately.

Here, we focus on the aerodynamics, optimizing the per-
formance of a sail system, but the numerical procedure de-
veloped below can be used to perform hydrodynamic opti-
mization or even fully coupled yacht performance optimiza-
tion. Sail systems are subjected to very complex phenom-
ena, such as nonlinear Fluid-Structure Interaction (FSI) ef-
fects and instabilities. Moreover, the modeling of real sail-
ing conditions is still an open research problem due to the
large uncertainties in wind and sea states. To our knowledge,
the optimization of sails has thus been limited so far to ideal-
ized situations. For instance, sail shape optimizations (with-
out accounting for the FSI problem) are performed in (Rous-
selon, 2008), while the trimming of two-dimensional sails
is numerically considered in (Chapin et al., 2008). Regard-
ing FSI in three spatial dimensions, the authors in (Ranzen-
bach et al., 2013) mention an optimization of the trimming
of sails, but within an inviscid flow approximation and not
much details are provided on the optimization procedure
used.

The present work aims at pursuing these efforts toward
the development of efficient numerical optimization proce-
dures capable of dealing with complex sail systems, with
realistic physical models (e.g. nonlinear FSI and turbulent
flows) and a large number of optimization variables (i.e.
trimming parameters). Denoting x 2 ⌦ the optimization
variables, the optimization problem can be written as

x

opt

= argmin
x2⌦

�P(x),

where x

opt

2 ⌦ are the sought optimal parameters and
P : ⌦ 7! R is a measure of performance. The main dif-



ficulty preventing the straightforward application of stan-
dard optimization procedures to sail systems is related to
the cost of estimating of the performance P at tentative val-
ues x of the parameters. Indeed, the estimation of P(x) in-
volves the resolution of a nonlinear FSI problem, which re-
quires several convergence iterations between the nonlinear
elastic and flow solvers. Also, adjoint based techniques are
hardly amenable to FSI problems involving coupled nonlin-
ear solvers; this fact precludes the use of efficient gradient-
based iterative methods in favor of optimization algorithms
such as the simplex based (Nelder and Mead, 1965) or evo-
lutionary (Bäck and Schwefel, 1993, Hansen, 2006) meth-
ods. However, depending on the considered problem, these
so called gradient-free algorithms are known to require a
large number of evaluations of P(x), making applications to
sail systems very costly as a single evaluation may routinely
require several hours of CPU on modern parallel computers.

Based on these observations, we advocate the use of
meta-model approaches to mitigate the large computational
cost of optimizing the trimming parameters of sail systems.
Specifically we rely below on Gaussian Process (GP) ap-
proximations for the mapping P : ⌦ 7! R. This statisti-
cal approach uses a coarse set of performance evaluations at
some parameters values x 2 ⌦ to infer a GP G(x) ⇡ P(x).
One can then apply its favorite optimization procedure to
G(x) to obtain the corresponding approximation of x

opt

.
The surrogate-based optimization procedure is embedded in
an iterative scheme, where new evaluations of the perfor-
mance at carefully selected new points x are introduced in
order to refine the GP approximation in regions of ⌦ suscep-
tible to include the optimum. The GP approach is then ex-
pected to improve the optimization by a) requiring an over-
all lower number of performance evaluations, compared to
direct gradient-free approaches, and b) enabling the use of
efficient global optimization tools. In addition, the GP con-
struction provides a natural way to estimate convergence on
the approximation of P and then to characterize the accu-
racy on the retrieved optimum.

Another interest in considering an optimization based on
GP meta-model is that it naturally accommodates for errors
and noise in the performance evaluation. This specificity
is exploited in the present work to perform the optimiza-
tion of an actual physical sail system, consisting in a scaled
IMOCA mainsail in upwind conditions. The objective is
to find the optimal trimming of the sail, for a performance
criterion combining the drive and side aerodynamic force
coefficients. Here, the GP-based optimizer used values of
P(x) measured in the wind tunnel of the Yacht Research
Unit (Auckland), for the sequence of trimming points re-
quested by the iterative optimization procedure. Because
of the imperfections in the experimental apparatus and in-
herent noise in the measurements, the estimates of P(x)
were subjected to significant errors, that would have com-
promised the convergence of descent methods (Saul’ev and
Samoilova, 1975) without using a GP reconstruction.

In addition to evidence the robustness of GP based op-

timization, this experiment is used as a reference to assess
the relevance of an optimization relying on numerical res-
olutions of the FSI problem to compute the performance.
To this end, the experimental sail system was measured
(dimensions, mechanical characteristics of mast and boom,
. . . ), and wind tunnel inflow conditions recorded, to create
a numerical model of the experiment. State of the art FSI
solvers is then used for the resolution of the resulting numer-
ical model at the sequence of trimming points requested by
the GP-based optimizer. The numerical resolution involves
a nonlinear structural solver with a mesh deformation util-
ity (K-FSI tools) developed by K-EPSILON, coupled with
the finite volume turbulent flow solver FINETM/Marine
from Numeca Software. The Unsteady Reynolds-Average
Navier-Stokes Equations (URANS) turbulence model is
used in these numerical experiments.

The paper is organized as follows. The first Section
briefly reviews the construction of the Gaussian Process ap-
proximation and the selection of the new parameters in the
iterative optimization procedure. We then detail the experi-
mental set-up and the results of the corresponding optimiza-
tion procedure in the second Section. The numerical model-
ing of the experiment and optimization results are reported
in third Section. Finally, conclusions of this work and di-
rection for future developments are provided in the fourth
Section.

GP MODEL BASED OPTIMIZATION

In this Section we start by briefly summarizing the construc-
tion of a Gaussian Process to model a function from noisy
measurements. More details on GP models can be found for
instance in (Gibbs, 1997, Rasmussen and Williams, 2006).
We then describe the GP model optimization procedure (Du-
vigneau and Chandrashekar, 2012), detailing the selection
of successive optimal candidates.

Gaussian Process Model

Consider a dataset Xn = (x1 · · ·xn)
T of n training inputs

vectors xi 2 ⌦ ⇢ Rd. Each element xi 2 Xn is associ-
ated to an observation (or measurement) yi 2 R which is
assumed to be dependent on a latent function f(x) through

yi = f(xi) + "i, i = 1, . . . , n, (1)

where "i is a random measurement error (i.e. the measure-
ment noise). In this work, the "i are assumed independent
and to follow the same (centered) Gaussian distribution:

"i ⇠ N
�
0,�✏

2
�
, (2)

where N
�
µ,⌃2

�
denotes the Gaussian distribution with

mean µ and variance ⌃2. Thus, �✏
2 is referred to as noise

variance. The objective is therefore to model the latent func-
tion f(x) on the basis on the noisy observations yi.



The latent function is considered as a realization of a zero-
mean multivariate Gaussian process F , with unknown co-
variance function CF , that is F ⇠ N (0, CF ), with

CF (x,x
0)

.

= E {F (x), F (x0)}, (3)

where E {·} denotes the expectation operator.
The covariance function of F must be specified. In this

work, we consider the Matérn class (Stein, 2012) of station-
ary covariance functions having for one-dimensional gener-
ator

M⌫(r, l) =
21�⌫

�(⌫)

 p
2⌫r

l

!⌫

K⌫

 p
2⌫r

l

!
. (4)

Here r = |x� x

0|, ⌫ and l are two positive parameters, and
K⌫ is the modified Bessel function of the second kind. We
shall further restrict ourselves to covariances with ⌫ ! 1,
leading to the squared exponential covariance family with
generator

M1(r, l) = exp

✓
�r

2

2l2

◆
. (5)

The multidimensional counterpart is obtained by tensor
product of the one-dimensional generator. The final expres-
sion of the covariance function for the GP approximation
is

c(x,x0;⇥) = ✓1

dY

i=1

exp

✓
�(xi � x

0
i)

2

2l2i

◆
+ ✓2. (6)

In the expression (6) of c, ⇥ = {✓1, ✓2, l1, l2, . . . , ld} is
a vector of hyper-parameters. The first hyper-parameter, ✓1,
scales the distance-dependent correlation, while ✓2 is an off-
set from zero. The other parameters li are the anisotropic
correlation lengths associated to the d directions of ⌦. From
the parametrized covariance function c(x,x0;⇥) we derive
the covariance matrix C(⇥) 2 Rn⇥n of the observation
points in Xn. The covariance matrix C(⇥) has for entries

Ci,j(⇥)
.

= c(xi,xj ;⇥), 1  i, j, n. (7)

Given the n noisy observations yi, collected into the vec-
tor Yn = (y1 · · · yn)T, the predicted observation y(x) at a
new point x 2 ⌦ is given by the joint Gaussian distribution
✓
Yn

y(x)

◆����Xn,⇥ ⇠ N
✓
0,


C+ �✏

2
I k(x)

k

T(x) (x) + �✏
2

�◆
.

(8)

In (8), the dependence of C on the hyper-parameters has
been removed to simplify the notation, and

(x)
.

= c(x,x;⇥), k

.

= (c(x,x1;⇥) · · · c(x,xn;⇥))
T
,

while I is the identity of Rn. Using the conditional rules of a
joint Gaussian distribution (Rasmussen and Williams, 2006,
Von Mises, 1964), it comes

y(x)|Yn,Xn,⇥,�✏
2 ⇠ N

�
ŷ(x), �̂2

y(x)
�
. (9)

The best prediction of y(x) is the mean ŷ(x) of the distri-
bution; the prediction variance �̂

2
y(x) quantifies the uncer-

tainty in the prediction. The second order properties of the
prediction y(x) can be explicitly expressed as

ŷ(x) = k

T(x)
�
C(⇥) + �✏

2
I

��1
Yn, (10)

�̂

2
y(x) = (x) + �✏

2 � k

T(x)
�
C(⇥) + �✏

2
I

��1
k(x).

(11)

The hyper-parameters ⇥ and noise variance �✏
2 are un-

known a priori and need to be learned from the data. They
can be determined by maximizing the log-marginal likeli-
hood (Rasmussen and Williams, 2006) given by

L(⇥,�✏
2) =� n

2
log (2⇡)� 1

2
log
��
C(⇥) + �✏

2
I

��

� 1

2
Y

T
n

�
C(⇥) + �✏

2
I

��1
Yn. (12)

The optimal hyper-parameters and noise variance are then
found by minimizing L with respect to its arguments. An
evolution strategy algorithm (Hansen, 2006) is used for this
purpose.

Once the optimal hyper-parameters are determined, the
GP model can be used to predict values at new points us-
ing (10) and (11). The most computationally consuming
part of the GP construction is the assembly of the (full) ma-
trix

�
C+ �✏

2
I

�
, and the evaluation of its determinant and

inverse required in the definition of the log-marginal likeli-
hood and for new predictions. This can be done efficiently
by LU decompositions.

Figure 1 illustrates for a one-dimensional function the
effect of the observation noise �✏ on the constructed GP
model. The constructions use 6 observations points de-
picted with circles in the plots and the covariance hyper-
parameters are determined by maximizing the log-marginal
likelihood. However, in the first case, shown in Figure 1(a)
a value �✏ = 0 is imposed, while in the second case in Fig-
ure 1(b) the noise level is also optimized. In addition to the
observations, the two plots report the mean of the GP mod-
els with classical ±3�̂ uncertainty range. It is seen from
Figure 1(a) that when the measurements are assumed to be
noise-free (�✏ = 0), the resulting GP model is interpolating
the data, i.e. the variance of the prediction is zero at the data
points. However, the mean of the GP model exhibits signifi-
cant oscillations such that over-fitting can be suspected. On
the contrary, optimizing the noise level �✏ results in a mean
process free of spurious oscillations but that is no more in-
terpolating, as it can be appreciated from Figure 1(b). The
averaged distance of the best prediction to the observations
is ⇠ �✏.

Optimization strategy using Gaussian Process models

The GP model (build, previously) can be used to determine
the next control parameters x⇤ to be included in the data
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Figure 1: Effect of �✏ on the GP model.

base. Deterministic optimization approaches would classi-
cally choose x⇤ as the best control parameters, that is the
minimizer of the meta-model over ⌦. However, GP mod-
els are random and not even bounded, so the definition of
the best control parameters needs to be clarified in this con-
text. This is classically achieved by introducing an appro-
priate (deterministic) merit function, and combining the ex-
pected prediction ŷ and its variance �̂

2
y , requiring x⇤ to be

the maximizer of this merit function. In fact, the merit func-
tion should balance a selection of x⇤ yielding the minimal
expected prediction ŷ (optimality) with a selection of x⇤ in
areas of large variance �̂

2
y to reduce the GP model uncer-

tainty. A complete summary of various merit functions pro-
posed in the literature is provided in (Jones, 2001). In this
work, we use the Augmented Expected Improvement (AEI)
merit function (Huang et al., 2006) which is an extension of
the popular Expected Improvement (EI) (Jones et al., 1998)
in the case of noisy estimations. The AEI merit function
AEI(x) estimates the expected increase in the performance,
taking into account the noise in the observed values and pe-

nalizing areas where the variance �̂

2
y is small. It writes as

AEI(x) = EI(x)

0

@1� �✏q
�̂

2
y(x) + �✏

2

1

A
, (13)

with the Expected Improvement defined by

EI(x) = �̂

2
y(x) [u(x)� (u(x)) + � (u(x))] ,

u(x) =
ŷ(x⇤⇤)� ŷ(x)

�̂

2
y(x)

, (14)

where � and � = �0 denote respectively the cumulative dis-
tributions (Erf-function) and density of the standard Gaus-
sian distribution, and x⇤⇤ is the effective best solution:

x⇤⇤
.

= argmin
x2⌦

[ŷ(x) + �̂(x)] . (15)

When the optimum x⇤ of the AEI is determined, the cor-
responding performance P(x⇤) is evaluated and is included
in the database. A new GP model can then be reconstructed
using the extended data base, leading to a new maximizer
x⇤ of the updated AEI, and so on. The iterations carry on
until some convergence criterion is satisfied or the resources
allocated to the optimization procedure have been exhausted
(e.g. reaching a prescribed number of performance evalua-
tions). Classical convergence criteria compare the distance
between two successive iterates, in terms of optimal param-
eters x⇤ or/and performance prediction P(x⇤). Overall, we
remark that each iteration requires the resolution of two op-
timization problems (one for the covariance parameters and
one for the AEI) and one evaluation of the performance. In
practice, all results reported in this work were obtained us-
ing the nonlinear non-convex black-box optimization library
based on the Covariance Matrix Adaptation Evolution Strat-
egy (Hansen, 2006, Hansen and Ostermeier, 2001).

EXPERIMENTAL OPTIMIZATION

This Section concerns the sail trimming optimization per-
formed in the wind tunnel of the Yacht Research Unit
(YRU) (Flay, 1996) at the University of Auckland.

Experimental setup

The sail model is inspired by an IMOCA 60-foot design
mainsail at 1:13 scale. It was designed and produced by
the sail-makers of INCIDENCES SAILS company. The sail
has a surface area of 1 m2, for an height of h = 2 m, and
is supported by a rig consisting of a flexible circular section
carbon mast (constant diameter 14 mm), clamped at its base
and without spreader, backstay or forestay. The sail and rig
are set in the open jet test section of the YRU wind tunnel,
see Figure 2(a). The test section is 7.2 wide and 3.5 m high.

Three stepper motors and a control card control remotely
the main sheet length (Lsheet) and main car position (Lcar)



as shown in Figure 2(b). In the following, Lsheet and Lcar

are the only trimming parameters to be optimized. Note
that the remote system allows for changing these trimming
parameters without switching off the wind tunnel flow and
making a new tare of the measurement instruments. A pre-
cision of ±2 mm on the imposed trimming parameters was
estimated through repeated measurements.

(a) Mainsail in the YRU wind tunnel.

(b) Close view on the trimming system.

Figure 2: Experimental setup.

A six-components force balance, located under the floor
of the wind tunnel, was used to measure the aerodynamic
forces. The X-direction corresponds to the model longitu-
dinal forward direction (i.e. thrust force direction), while
the Y -direction is defined as the positive port-side (i.e. side
force direction) and the Z-direction is the vertical. Af-
ter careful calibration and testing, the balance precisions in
the X , Y and Z directions were estimated to be ±0.09 N,
±0.11 N and ±0.27 N respectively. An additional load sen-
sor, with 5 daN range, was used to record the load in the
sheet with a precision of ±0.02 N. Flying shapes were also
recorded with a V-SPARS acquisition system (Le Pelley and
Modral, 2008), tracking the position of five dark red stripes
across the sail (see Figure 2(a)).

The wind tunnel inflow velocity was measured and found
to have an apparent wind speed (AWS) of 3.5 ± 0.15 m/s
for an apparent wind angle (AWA) of 40 ± 2 deg. The cor-

responding Reynolds number, based on the reference chord
length c = S/h = 0.5 m, is Re = 1.2 ⇥ 105. A multi-hole
pressure probe (Cobra Probe) was used to measure profiles
of the flow velocity at several locations inside the wind tun-
nel. These measurements were repeated with and without
the sail model in the test section to verify its effect on the
flow field. Typical profiles are shown in Figure 3; it can be
seen that the inflow has no twist.

Figure 3: Velocity profiles with sail model.

The optimization problem is finally defined as the max-
imization with respect to x = (Lsheet, Lcar) of the perfor-
mance P(x) taken as a composite function of the thrust CX

and side CY aerodynamic coefficients:

P(x) = CX + 0.1CY . (16)

The aerodynamic coefficients are deduced from the aerody-
namic forces through normalization by the reference force
being q1S, where q1 is the reference dynamic pressure
measured in the wind tunnel (precision ±1 Pa). In (16), the
coefficient 0.1 penalizes the side force to account for the re-
sulting hydrodynamic drag and leeway that would be detri-
mental to the performance. The optimization of the trim-
ming parameters then follows the procedure illustrated in
Figure 4. The primary loop, “Sampling loop”, generates an
initial Latin Hypercube Sample (LHS) set of 10 trimming
parameters (McKay et al., 2000). For each initial sample,
the experimental model is remotely set to the corresponding
trimming values of Lsheet and Lcar. After the transient flow
is over, the aerodynamic loads reported by the balance are
averaged over an acquisition time of 30 s to smooth-out the
remaining noisy fluctuations in the signals. When the (time-
averaged) loads are collected for all the initial samples (blue
loop in Figure 4), the GP based optimization is carried out
on the initial data set (red block “Trimming optimization”).
The optimization provides a new trimming point, x⇤, maxi-
mizing the AEI merit function.



In the “Optimization loop”, the experimental apparatus
is remotely tuned to the new trimming point x⇤. The aero-
dynamic loads are then averaged over 30 s and the new es-
timate of P(x⇤) is included in the database. The Gaussian
Process model is updated consequently, generating a new
trimming points x⇤. These steps (red loop in Figure 4) are
repeated until the convergence of the trimming parameters,
which is considered achieved when the algorithm proposes
two successive trimming points within a distance less than
1 mm (i.e the precision on the enforcement of the trimming
parameters in the experimental apparatus).

Sampling Loop

Optimization Loop

Start

Dataset sampling

(10 points)

Wind tunnel measurements

- Set trimming

- Run and save 30 s

Trimming optimization

- Build metamodel

- Optimize AEI

Wind tunnel measurements

- Set trimming

- Run and save 30 s

Trimming optimization

- Build metamodel

- Optimize AEI

Conv ?

End

New trim

No

Yes

New trim

New trim

Figure 4: Trimming optimization procedure.

Below, we present the results of the trimming optimiza-

tion, contrasting two cases. In the first case, the measure-
ment noise is set to �✏ = 0 (noise-free situation) so the con-
structed GP models are interpolating the experimental data.
In the second case, the actual measurement noise is deter-
mined experimentally and it is subsequently used in the GP
model construction.

Experimental optimization with �✏ = 0

The results of the experimental trimming optimization in the
case where �✏ is set to zero is now presented.

The GP model for the experimental P(x) function, af-
ter 36 iterations of the optimization algorithm, is reported
in Figure 5. Specifically, Figure 5(a) depicts the color con-
tours of the GP model mean as a function of the trimming
parameters Lcar and Lsheet, while Figure 5(b) shows the
standard deviation of the GP model. The black dots are the
data points where the performance was experimentally es-
timated. Regarding the location of the observation points,
we notice a large dispersion, highlighting the lack of con-
vergence in the successive tentative optimal trimming can-
didates x⇤. In fact, the algorithm has explored the param-
eter domain ⌦ without discovering a particular sub-domain
of ⌦ likely to contain the global optimum. This can also be
appreciated from the mean field of the GP model, in Fig-
ure 5(a), which, although smooth, presents at least 2 local
minima. The presence of multiple local minima is in fact
spurious and induced by the interpolating nature of the GP
model for �✏ = 0: the model is fitting the experimental
noise. This can also be appreciated from the standard devia-
tion field reported in Figure 5(b), which is zero at the obser-
vation points, denoting an inappropriate level of confidence
in the GP model approximation of P(x) at these locations.
Further, departing from the observation points, the variance
of the GP model prediction quickly increases (observe, in
particular, the standard deviation field in the neighborhood
of isolated data points) and becomes large. As a result of the
over-confidence in the model at measured points and high
variance (low confidence) in unexplored areas, the optimiza-
tion process is led by the AEI merit function to propose new
candidates in relatively less populated areas.

Figure 6 depicts the measured values of P(x⇤) at the suc-
cessive tentative optima as selected along the iterations of
the algorithm (the first 10 iterations correspond to the initial
Latin Hypercube Sampling of ⌦, and are not actual itera-
tions of the algorithm). The plot shows that the measured
performance is not converging and it sustains large fluctu-
ations having the same magnitude as for the initial random
sample: the complete absence of an improvement trend in
the successive measurement of P(x⇤) is characteristic of the
failure of the present approach. This unsuccessful test high-
lights the negative effect of not accounting for the noise in
the estimates of P(x): it prevents the GP model to discover
trends in the actual performance function from the noisy ob-
servations.



(a) GP model expectation.

(b) GP model standard deviation.

Figure 5: GP model of the experimental performance P(x)
(�✏ = 0).
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Figure 6: Experimental measurements of the performance
for the sequence of proposed optima. Case of �✏ = 0.

Experimental optimization with noise

In a second experiment we set �✏
2 = 0.0272. This value

is not determined as part of the optimization of the log-

marginal likelihood in (12). Instead, �✏ is directly estimated
from the experimental apparatus, using repeated measure-
ments at the same trimmings. The same 10 previous initial
LHS points are used to determined the first GP model, with
the prescribed value of �✏. Then the optimization proceeds
and a different sequence of proposed optima is generated as
the GP models differ from the previous experiment.

In particular, the optimization now converges in 33 iter-
ations, the last two proposed optima being in sufficiently
close distance (less than 1 mm). The convergence of the se-
quence of proposed optima can be seens in Figure 7, where
the mean and standard deviation of the GP model of P(x) at
convergence are plotted. In contrast to the case with �✏ = 0,
the clustering of the successive proposed optima is clearly
visible. Also, the mean of the GP model in Figure 7(a) re-
mains smooth and now exhibits a single well-defined global
maximum. The converged optimal trimming is found for
Lsheet = 133 mm and Lcar = 138 mm corresponding to
a predicted performance P(x

opt

) = 0.397. The standard
deviation of the GP model, depicted in Figure 7(b), is seen
to be minimal in the neighborhood of the optimum, though
assuming values & �✏. Other regions of ⌦ far from the opti-
mum are not explored by the optimization process, although
the variance can be large.

The convergence of the optimization procedure can also
be appreciated from the plot of Figure 8 which should be
contrasted with the results shown Figure 6. It shows a clear
improvement of the measured performance (after the first
10 random points). In fact after iteration 25, the remain-
ing fluctuations in the measured performances can be essen-
tially attributed to the measurement noise. These remaining
fluctuations, with amplitude ⇠ �✏, are much less significant
compared to the previous case.

In summary, the global optimal trimming parameters are
determined despite the noise in the measurements, thanks to
the non-interpolating nature of the GP approximation which
smooths out the noise. Further, the optimum is found in
few iterations only, owing to the AEI merit function which
is able to disregard non-interesting areas of ⌦, even if they
carry large prediction variance.

NUMERICAL OPTIMIZATION

A numerical model of the wind tunnel and sail model has
been created to reproduce the previous experimental opti-
mization problem. The objective is to assess the capabilities
of the optimization method, when applied to a coupled FSI
software, and compare the resulting optimum with the ex-
perimental one.

Numerical model

We briefly present the structural and fluid solvers used for
the resolution of the FSI problem. Steady solution of the FSI
problem are sought by means of a quasi-steady approach.



(a) GP model expectation.

(b) GP model standard deviation.

Figure 7: GP model of the experimental performance P(x)
(�✏ = 0.027).
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Figure 8: Experimental measurements of the performance
for the sequence of proposed optima. Case of �✏ = 0.027.

For the structural model of the sail we rely on the ARA
software developed by K-EPSILON. The code ARA consid-
ers different structural elements (e.g. Timoshenko beams,

cables and Constant Strain Triangles (CST) membrane el-
ements of various types) for the static or dynamic simula-
tion of sail boat rigs in large displacement regime (Augier,
2012). The structural model for the simulations presented
hereafter is illustrated in Figure 9; it uses dimensions and
mechanical characteristics (for the mast, boom, and sail fab-
rics) measured on the experimental model.

(a) Structural mesh. (b) Mainsail stiffness.

Figure 9: Numerical model of the sail.

The solver ARA is coupled to the ISIS-CFD software
(from FINETM/Marine) which solves the Navier-Stokes
equations in the flow domain. ISIS-CFD is based on finite
volume methods accommodating both structured and un-
structured meshes; it also proposes several turbulence mod-
els and boundary condition. For the present computations,
we consider a parallelepiped computational domain, with
spatial extension 7.5h, 12h and 1.8h in the X,Y and Z di-
rections respectively. These dimensions were selected on
the basis of previous numerical experiments (Viola et al.,
2013). The boundary conditions, applied on the different
faces of the computational domain, are schematically illus-
trated in Figure 10.

Figure 10: Boundary conditions for the flow solver.

The fluid domain is meshed using HEXPRESSTM, a
semi-automated mesh generator. Note that the mast is not
meshed in the fluid solver. Regarding the turbulence model,



the SST k�! model (Menter et al., 2003) was selected with
wall function boundary conditions (Kalitzin et al., 2005).
This choice requires a sufficiently fine mesh over the sail
surface and at the bottom of domain (sea level) to correctly
capture the vertical profile of the inflow velocity. The later
is estimated from the experimental profiles previously re-
ported in Figure 3, and its shown in Figure 11.
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Figure 11: Inflow velocity profile.

For the FSI simulations, the mesh of the fluid domain
has to be deformed to adapt to the changes in the bound-
ary geometries. A mesh deformation propagation method,
proceeding from the deformable boundaries toward the in-
side of the fluid domain, was developed at K-EPSILON for
this purpose (Durand et al., 2014). The FSI problem is then
solved coupling ARA and ISIS-CFD solvers with a quasi-
monolithic algorithm (Durand, 2012), which is an implicit
coupling procedure adapted to a partitioned solver. Briefly,
the resolution of the structural problem is nested inside the
iterations on the nonlinear steady flow solution. This ap-
proach preserves the convergence and stability properties of
the monolithic approach. More details on the solvers and the
coupling algorithms can be found in (Durand, 2012, Roux
et al., 2002, 2008).

A convergence analysis was conducted in order to select
spatial discretization capturing correctly the physics of the
FSI problem, while maintaining a reasonable computational
cost permitting the optimization of the trimming parameters.
In particular, different fluid meshes with up to 4.3 million fi-
nite volumes were considered. Eventually, a discretization
of the fluid domain with roughly 1.5 million finite volumes
and a sail discretization with 2 700 membrane elements was
selected for the computations presented below. The com-
putations were carried out on a 64 CPUs cluster; an aver-
aged computational time of 5 h was reported for solving
individual FSI problems. From the FSI solution, the asso-
ciated aerodynamic forces acting on the sail are computed
in the same reference frame as in the experimental setup,
and the performance in (16) is finally returned to the opti-
mizer. Except for the determination of P(x), the flowchart

of the numerical optimization procedure is identical to that
of the experiment in Figure 4. However, for the numeri-
cal optimization, �✏ is directly inferred from the data when
minimizing (12). In addition, the parameter domain for the
numerical case has been increased to encompass higher val-
ues of Lcar.

Numerical optimization results

Figure 12 depicts the mean value of the GP model based on
the numerical evaluation of the performance. The GP model
is reported at the end of the optimization procedure, which
has converged in 34 iterations. The black dots correspond
again to the sequence of optimization points x⇤ in the data
set. We first remark the smoothness of the mean GP model
which exhibits a single global optimum, as for the experi-
mental case (considering measurement noise). In fact, the
inferred �✏ = 0.022 has a value close to the experimental
one. Further, in the range Lcar 2 [�210, 150] mm, the ter-
minal GP model is seen to be in good agreement with its
experimental counterpart shown in Figure 7(a). However,
the valley containing the numerical minimum is larger and
flatter, compared to the experimental one, and the numerical
optimum appears at a value of a Lcar value larger than for
the experimental case. The variance of the GP model predic-
tion, �2

y , exhibits a structure similar in shape and magnitude
to the experimental case in Figure 7(b) (not shown).

Figure 12: Mean GP model of the numerical performance
(inferred �✏ = 0.022).

To understand the differences between the numerical and
experimental optima, we first compare in Figure 13 and
Figure 14 the flyings shapes for two trimming parameters
(Lsheet, Lcar) equal to (160, 0) and (133, 138) respectively
(lengths in mm). For the case with centered car, Lcar = 0,
a small wrinkle is visible in the experimental flying shape
(see Figure 13(a)). At the optimal experimental trimming
point (Lsheet, Lcar) = (133, 138), shown in Figure 14(a),
the wrinkle in the experimental flying shape is even more
pronounced. This is in contrast with the corresponding nu-
merical flying shapes, shown in Figures 13(b) and 14(b)



respectively, which present no such wrinkle. Modeling er-
rors and experimental uncertainties are deemed responsible
for this difference. In particular, the absence of wrinkle in
the numerical solution could be mostly due to an incorrect
prescription of the tensions in the two full battens of the
sail. Another important source of discrepancy between the
flying shapes are the boundary conditions of the numerical
wind tunnel and effects of confinement, which were shown
to have a significant impact on the computed aerodynamic
forces (Viola et al., 2013).

(a) Experimental.

(b) Numerical.

Figure 13: Comparison of experimental and numerical fly-
ing shapes for trimming parameters Lsheet = 160 and
Lcar = 0.

To complete the comparison of the experimental and nu-
merical optimizations, we report in Table 1 the computed lo-
cation of the two optima and the corresponding best predic-
tion of the performance. We observe that the experimental
and numerical optimal trimming are significantly different
for the optimal Lcar. This difference can be explained by
the numerical performance function that is particularly flat
along the Lcar direction around the optimal point: variation
of Lcar around the optimum weakly affects the predicted
performance. This is consistent with the predicted perfor-
mances reported in the last column of Table 1, that are in
close agreement despite the differing trimming parameters.

A more detailed investigation of the measured and com-
puted fluid forces at the optima, reported in Table 2, reveals

(a) Experimental.

(b) Numerical.

Figure 14: Comparison of experimental and numerical fly-
ing shapes for trimming parameters Lsheet = 133 and
Lcar = 138.

Lsheet [mm] Lcar [mm] Pred. P(x
opt

)

Exp. 133 138 0.397± 0.027
Num. 122 226 0.413± 0.024

Table 1: Comparison of the experimental and numerical op-
tima.

that the thrust coefficients are in fact equal up to the third
significant digit. On the contrary, the side force coefficients
and the sheet tensions exhibit larger discrepancies. The dif-
ferences in the sheet tensions can be directly attributed to
the different optimal Lcar. The higher disagreement in the
side force coefficients is not surprising. In our experience
the side forces are very sensitive to model errors.

CX CY T [N]

Exp. 0.497± 0.012 �1.026± 0.015 14.9± 0.02
Num. 0.497 �0.803 20.1

Table 2: Comparison of aerodynamic coefficients and sheet
tension at the experimental and numerical optima.



CONCLUSION AND DISCUSSION

We have proposed to use a Gaussian Process model to en-
able the optimization of the trimming parameters of a com-
plex nonlinear sail systems. The approach has been first
tested on the trimming of an experimental model sail in
the Yacht Research Unit wind tunnel. The experiments
have validated the approach and have shown its robustness
against noisy estimates of the performance. For this two pa-
rameters problem, the experimental optimal point was found
within few iterations of the algorithm. These tests have val-
idated the proposed optimization method and have demon-
strated its robustness against experimental variabilities, as
well as the key role of the noise parameter.

A detailed numerical model of the wind tunnel exper-
iment has been established, considering the full Fluid-
Structure Interactions problems. The numerical model is
based on a turbulent flow solver coupled with a nonlinear
elastic solver, using a mesh deformation method. The nu-
merical and experimental optima were found to be consis-
tent, given all the modeling and measurement errors. In par-
ticular, it is found that the predicted performances and fluid
forces are in much better agreement than the optimal param-
eters. In fact, it can be reasonably claimed that the differ-
ences are consistent with the current predictive capabilities
of state of the art FSI solvers, and that the GP approximation
does not introduce noticeable errors in the optimization pro-
cedure. Specifically, we have shown that, from a limited set
of computations, the GP model is able to reconstruct accu-
rately the numerical estimate of the performance. Therefore,
for the present tests, only a better numerical modeling of the
experimental set-up would help reducing the observed dis-
crepancies. Possible avenues in this direction are: improved
battens modeling, better boundary conditions for the flow,
accounting for mast/flow interaction, more advanced turbu-
lence model, . . . At a more fundamental level, the question
of the treatment of experimental uncertainties remains criti-
cal. On this aspect, we are considering sensitivity and uncer-
tainty quantification (Le Maı̂tre and Knio, 2010) studies to
account for the experimental uncertainties. In particular, the
results presented in this work point to the need for an appro-
priate characterization of the optima and the assessment of
their robustness to uncertainties and modeling errors. Future
works will develop these aspects along with the deployment
of the GP-based optimization method to problems involving
large numbers of trimming parameters (full yacht rig).
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