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ABSTRACT
Mixed Boolean-Arithmetic expressions are presented as a
strong protection in the context of data flow obfuscation. As
there is very little literature on the analysis of such obfus-
cated expressions, two important subjects of interest are: to
define what simplifying those expressions means, and how to
design a simplification solution. We focus on evaluating the
resilience of this technique, by giving theoretical elements to
justify its efficiency and proposing a simplification algorithm
using a pattern matching approach. The implementation of
this solution is capable of simplifying the public examples of
MBA-obfuscated expressions, demonstrating that at least a
subset of MBA obfuscation lacks resilience against pattern
matching analysis.
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1. INTRODUCTION
Both at the source and binary levels, various software ob-

fuscation techniques exist to make a program difficult to
understand while preserving its functionalities. Many ad
hoc techniques have been proposed and discussed to achieve
“scrambling up” the program structure, like the insertion
of dead or irrelevant assembly code, procedure slicing that
makes use of opaque constructs to jump back and forth
above junk code, the use of function pointers, procedure
merging, redundant and false return statements (see [6, 7]
for details on standard obfuscation techniques).

During the last decades, the practical reverse engineering
of binary programs was essentially performed by first man-
ually identifying and understanding the way the observed
code was obfuscated, and one common technique used is
to perform “pattern matching” to identify similar obfusca-
tions [19, 10].

The situation can be compared to what historically hap-
pened for cryptology, with new algorithms being designed on
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a regular basis, and new cryptanalytic techniques also being
invented. As concerns symmetric cryptography, it is gen-
erally considered that this to-and-fro process between cryp-
tography and cryptanalysis has converged towards a rather
stable state, whereas asymmetric cryptography often has
the additional advantage of providing security proofs relat-
ing the security of public key algorithms to the difficulty of
well-known mathematical problems.

The present paper focuses on techniques based on the use
of Mixed Boolean-Arithmetic (MBA) expressions. These are
expressions that mix classical arithmetic expressions (addi-
tion, multiplication, ...) and boolean expressions (exclusive-
or, and, or, ...). Interestingly, an MBA expression can be
written in many equivalent ways. Each MBA corresponds
to a family of (more and more complex) equivalent forms,
and choosing among this family enables to complexify the
MBA parts of any program. This method has already been
described and used, but to the best of our knowledge, no
techniques have been published to reverse the process of ob-
fuscating a general expression, meaning going back to the
initial form of the MBA.

Our work aims at filling this gap, and initiating a new
line of research for what concerns the reverse engineering of
such Mixed Boolean-Arithmetic expressions. As a first step,
it is an important issue to define what simplifying an MBA
expression means. A second challenge consists in estimating
the complexity of such a simplification and the conditions
that make it possible or not. The third goal is to provide
new strategies to simplify MBA expressions.

Our contributions thus comprise both theoretical expla-
nations about the difficulty of reverse engineering MBA ex-
pressions, and a practical methodology that is illustrated
on concrete examples. Metrics about this notion of sim-
plification are also introduced, and can be seen as a tool
to guide the aforementioned strategies. As a result of our
new methodology, we show that we are able to simplify al-
ready published examples that were thought to be very dif-
ficult to reverse. The code for our simplification tool, called
SSPAM (for Symbolic Simplification with PAttern Match-
ing), is available at https://github.com/quarkslab/sspam.
Moreover, the beginning of an empirical characterization of
weak MBA expressions can be obtained.

The Problem of Simplification.
Rewriting methods employing MBA expressions are used

to obfuscate expressions or formulas, meaning that attacking
this obfuscation is equivalent to simplifying the obfuscated
formula in order to understand what it computes. Here,



understand can have different meanings depending on the
context of the attack, for example:

• identify distinctive constants or operations of a stan-
dard algorithm,

• associate a high level semantics to different parts of
the formula,

• extract the formula or part of it and use it in another
context, with different parameters,

• invert the function containing the formula.

On the other hand, the notion of simplicity is highly depen-
dent on the context and on the representation of the expres-
sion: simpler can mean easier to compute, cheaper to store,
and many other things. Since obfuscation intends to resist
reverse-engineering, it is facing both automatic and human
analysis, which means we are not looking for a perfect defini-
tion of what a simple expression is. Though, we may assess
that simplifying an MBA-obfuscated expression is somehow
close (if not equivalent) to finding the original expression of
the non-obfuscated program in our case. Indeed, since the
MBA obfuscation we consider is mostly conducted through
rewriting, we aim at returning to a former state. We do
not consider exceptional situations: for example, it is very
unlikely that by simplifying, we produce a program simpler
than the original. The idea of finding the original expres-
sion (or at least get close enough to it) is also present in
the problematics of decompilation, with which we share this
interest.

2. BACKGROUND
We introduce in this section the existing work regarding

MBA expressions and expression simplification.

2.1 Polynomial MBA
In full generality, expressions mixing arithmetic and bit-

wise operators are already in use in broad contexts without
being given a name. Any expression mixing arithmetic op-
erators and bitwise ones, for example applying a boolean
mask on an integer before an addition, fulfills the minimal
requirements to be called an MBA. Moreover, any bitwise or
arithmetic operator available in a processor might be used
to construct an MBA expression.

However, if for a general characterization we do not ex-
clude any existing arithmetic or bitwise operator, in this
paper we will consider polynomial MBA expressions as de-
fined by Zhou et al. in [31], since all the MBA expressions
we have encountered up to now in the context of obfuscation
are of this form. The definition also includes pure arithmetic
or bitwise operators alone.

The list of available operators can vary between use cases.
For example in [31], besides the usual operators {+,−,×}
and {∧,∨,⊕,¬}, signed and unsigned inequalities alongside
signed and unsigned shifts are also considered. Other oper-
ators as shuffle or convolution are not taken into account,
even if they are relevant in other contexts [27].

Definition 1. [31] An expression E of the form

E =
∑
i∈I

ai

∏
j∈Ji

ei,j(x1, . . . , xt)

 (1)

where the arithmetic sum and product are modulo 2n, ai are
constants in Z/2nZ, ei,j are bitwise expressions of variables
x1, . . . , xt in {0, 1}n, I ⊂ Z and for all i ∈ I, Ji ⊂ Z are
finite index sets, is a polynomial Mixed Boolean-Arithmetic
(MBA) expression.

For example, the expression E written as

E = (x⊕ y) + 2× (x ∧ y) (2)

is an MBA expression, which simplifies to E = x + y.
Since the MBA-obfuscated expressions we have studied so

far rely on composing layers of MBA rewrites, the following
statement exposed in [31] is essential to us : the composition
of polynomial MBA expressions is still a polynomial MBA
expression. This guarantees that we are only working with
polynomial MBA expressions.

In the following, for conciseness when referring to an ”MBA
expression”, it will stand for a polynomial MBA expression.
Moreover, our study is limited to the most frequent opera-
tors: {+,−,×} and {∧,∨,⊕,¬}. We deliberately chose not
to address the subject of MBA inequalities, since it partially
changes the issue to handle. Indeed, an MBA inequality is
an assertion, and its value is either true of false. While
this value can also be interpreted as a number, the situa-
tion is slightly different from an expression that can take
a great range of values. Depending on the context, an at-
tacker might just want to check if the inequality is satisfiable
or not, instead of recovering a simpler form of the expres-
sion. This problem is related to the one addressed by Biondi
et al. in [2], which we discuss further in Section 2.2.3.

The technique to obfuscate one or several operators using
MBA expressions was first presented in [30, 31] and in var-
ious patents [12, 13, 11] with intersecting lists of authors.
The process relies on two components:

• MBA rewrites: a chosen operator can be rewritten
with an equivalent MBA expression, as can be seen
in Expression (2).

• Insertions of identities: let us call e any part of the
expression being obfuscated, then we can write e as
f(f−1(e)) with f any invertible function on Z/2nZ. In
the work of Zhou et al., f is an affine function.

Those two principles can be observed in the process of
getting Expression (3), an example of an obfuscated MBA
expression on two variables x, y ∈ {0, 1}8:

e1 = (x⊕ y) + 2× (x ∧ y)

e2 = e1 × 39 + 23

E = (e2 × 151 + 111). (3)

Then, the overall expression

(((x⊕ y) + 2× (x ∧ y))× 39 + 23)× 151 + 111

stands for x + y.
This technique has proved to be quite popular in obfusca-

tion, in real life settings ([22, 4, 12]).

2.2 Expression Simplification
Considering the general literature on expression simplifi-

cation, we can retain two types of simplifications:

1. computing a unique representation for equivalent ob-
jects (canonical representation),



2. finding an equivalent, but simpler form (”simpler” be-
ing context-dependent).

The first type of simplification is the most studied in lit-
erature since it can prove equivalence of expressions and
check for equality to zero. Nevertheless, it has already been
noted [5, 3] that a canonical form may not always be con-
sidered as the simplest form, depending on the definition
of simplicity (whether it is cheaper to store, easier to read,
more efficient to compute, related to some high level seman-
tics. . . ). This implies that if both problems are related (as a
solution for one could solve the other), they can be different
because of the context. In our case, this context could be
supplied by the attacker performing the reverse engineering.

2.2.1 Simplification of Arithmetic Expressions
We can easily illustrate these two types of simplification

with examples from the computer algebra field concerning
pure arithmetic expressions (namely polynomials), where
there exist efforts in both canonical form and other sim-
plifications related to the context. The canonical form of
polynomials is the expanded form. Depending on polyno-
mials, this form is not necessarily the most readable: for
example, the expanded form on the right of Expression (4)
can be easily considered as simpler than the original form
on the left, whereas the factorized form on the left of Ex-
pression (5) is more readable than its expanded form.

(x− 3)2 − x2 + 7x− 7 = x + 2 (4)

(1 + x)100 = 1 + 100x + · · ·+ 100x99 + x100 (5)

Those examples show the difficulty of defining in full gen-
erality the notion of simplicity, even when a canonical form is
available. In computer algebra software such as Maple [20],
several strategies are often offered to the user, who has to
choose the one adapted to the objective. Nevertheless, there
are standard simplification steps suitable to all strategies
that can be constantly applied (e.g. x× 0 = 0).

2.2.2 Simplification of Boolean Expressions
The same issues arise in the field of minimization of boolean

functions and simplification of logic circuits [29]. While
there exist several normal forms for boolean functions (CNF,
DNF, ANF), those are not always relevant in the case of cir-
cuit simplification. Indeed, the goals of circuit simplification
can be various: reducing the number of gates, the depth of
the circuit, the fan-out of the gates, etc. We provide with
Figure 1 an example of such a circuit simplification.

A
B

C

Q
A
C

B
Q

reduction

OR (∨) AND (∧)

Figure 1: Example of circuit reduction from [17].

The formula corresponding to the circuit before reduc-
tion is Q = (A ∧ B) ∨ (B ∧ C ∧ (B ∨ C)). The reduced

circuit coincides with a Conjunctive Normal Form (CNF),
namely (B ∧ (A ∨ C)), and as we can see, another nor-
mal form such as Disjunctive Normal Form (DNF), meaning
((A∧B)∨ (B ∧C)), would not have reduced the number of
gates as much as the CNF. In some examples, CNF or DNF
would probably not give the most simple circuit, depending
on the considered characteristics. In fact, such variations
and equivalences in circuit composition are indeed used to
provide obfuscation at the circuit level [21].

2.2.3 Simplification of Mixed Expressions
To our knowledge, there exists only one article on sim-

plifying MBA obfuscation, focusing on the obfuscation of
a constant [2], for example to conceal a key or an opaque
predicate. The authors use three techniques to recover the
hidden constant: a SMT-based approach, an algebraic sim-
plification technique and a drill-and-join synthesis method.
While their focus is complementary to ours, their solutions
do not scale well with our problem. For example, using a
SMT solver in our case, would require to know the simplified
expression and querying the solver would only validate the
equivalence of both obfuscated and simplified expressions.
Their algebraic simplification is too related to the form of
the obfuscated constant, which is different from general ob-
fuscated expressions, and the program synthesis approach
seems too expensive for the general obfuscation case and at
least requires further investigation as stated by the authors.

Regarding tools that could be used for MBA expressions
simplification, existing tools often do not support both bit-
wise and arithmetic operators. Those implementing bit-
vector logic [16] allow at least the creation and manipulation
of MBA expressions, but those tools are SMT solvers (e.g.
Z3 [8] or Boolector [23]) and focus primarily on satisfiabil-
ity, not necessarily on simplification. The function simplify

of Z3 is rather sharing the same goal we have, but is very
limited in the case of MBA (for example, it cannot simplify
Expression (2)).

3. UTILITY OF MBA IN OBFUSCATION
We try to explore in this part different explanations for the

resilience of MBA expressions as an obfuscation technique.

3.1 MBA in Cryptography vs in Obfuscation
Before being given the name of MBA in the context of

obfuscation, such a mixing of bitwise and arithmetic oper-
ators was already used in the context of cryptography to
design symmetric primitives with the stated goal of getting
efficient, non-linear and complex interactions between oper-
ations. Building blocks such as ARX designs (e.g. [14]) and
some generalizations can be found in major algorithms like
hash functions (e.g. the SHA family), stream ciphers (e.g.
Salsa family) or block ciphers (XTEA).

The notion of T-functions [15] appears both in the con-
text of cryptography and obfuscation, as integer arithmetic
operators, such as (+,−,×) are triangular T-functions and
provide efficient non-linear invertible functions.

However, there is a key difference between what is looked
for in cryptography and in obfuscation regarding MBA. In
cryptography the MBA expression is the direct result of the
algorithm description and the resulting cryptosystem has to
verify a set of properties (e.g. non-linearity, high algebraic
degree) from a black box point of view. The complex form
of writing is directly related to some kind of hopefully in-



trinsic computational complexity for the resulting function:
one wants the inverse computation without knowing the key
to be intractable. In obfuscation, an MBA is the result of
rewrite iterations from a simpler expression which can have
very simple black box characteristics. There is no direct re-
lation between the complex form of writing and any intrin-
sic computational complexity of the resulting function: on
the contrary, when obfuscating simple functions, one knows
that the complex writing is related to a simpler computa-
tional function. Nevertheless, getting the result of the com-
putation for the obfuscated expression requires indeed to get
through all the operators in the considered expression which
implies somehow a computational complexity.

Therefore cryptography can provide us with an example
study of what means incompatibility between operators and
how it can prevent an easy study of MBA expressions in
a unified domain. Indeed, we work on n-bit words consid-
ered at the same time as elements of different mathematical
structures. For example, standard arithmetic operations are
considered in (Z/2nZ,+,×) while bitwise operations belong
to ({0, 1}n ,∧,∨,¬) or ({0, 1}n ,∧,⊕).

3.2 An Example Study of Incompatibility be-
tween Operators

IDEA [18] is a well known block cipher of the 90s, famous
for its combined use of integer arithmetic and bitwise oper-
ators. One of the major characteristics of IDEA at the time
of its proposal was its lack of S-boxes. Instead it relied on a
construction which uses as key components:

• the multiplication � in Z∗216+1,

• the addition � in Z216 ,

• the bitwise XOR ⊕ in GF(2)16,

carefully interleaved so as to prevent any easy manipulation
of the resulting expressions.

Even though the multiplication in Z∗216+1 is not part of the
operators we consider in an MBA expression, IDEA provides
us with a detailed example of incompatibility between op-
erators which hopefully helps one understand the usefulness
of MBA for obfuscation. The incompatibility study of the
operators in IDEA was at the basis of the argument on the
confusion property a block cipher must fulfill.

There are four main reasons why the three operations are
incompatible [18]:

• No pair of the three operations satisfies a distributive
law.

• No pair of the three operations satisfies a generalized
associative law.

• When considering the quasi-groups, (Z∗216+1,�) and

(GF(2)16,⊕) are not isotopic, neither are (Z216 ,�) and
(GF(2)16,⊕). The isotopism between (Z∗216+1,�) and
(Z216 ,�) is essentially the discrete logarithm, which is
not a simple and straightforward bijection.

• It is possible to analyze � and � as acting on the same
set. However it means either analyzing a non polyno-
mial function on Z216 to represent � or analyzing a
high degree polynomial on Z∗216+1 to represent �.

The idea behind the notion of confusion is to make any
description of the relation between the ciphertext, the plain-
text and the key so involved and complex that it is useless
for the attacker. It is a clear link with obfuscation con-
cerns, although the starting point for each context is differ-
ent: hopefully intrinsic computational complexity in cryp-
tography and on the other hand, rewrite complexity in ob-
fuscation preventing simplification.

3.3 Analysis Difficulties
As explained in previous sections, bitwise and arithmetic

operators do not naturally interact very well, as there are
no general rules (e.g. distributivity, associativity. . . ) to
cope with this mixing of operators. Though there are some
cases where rules analogous to distribution can be used (e.g.
Expression (6)), the impossibility of generalizing such rules
(see Expression (7)) supplies additional diversity during the
obfuscation process.

∀x, y ∈ Z/2nZ : 2× (x ∧ y) = (2x ∧ 2y) (6)

∃x, y ∈ Z/2nZ : 3× (x ∧ y) 6= (3x ∧ 3y) (7)

Moreover, as we presented in Section 2.2.3, there are very
few public tools offering the possibility of MBA manipula-
tion, and those tools being SMT-Solvers, they do not aim at
simplifying an expression. While the function simplify of
Z3 might give results going in our direction, as it can trans-
form for example (x ∨ y) + (x ∨ y) in 2 × (x ∨ y), it shows
little efficiency in the simplification of MBA expressions, as
for example on Expression (2).

Finally, the simplification of MBA expressions arises in the
process of reverse engineering an obfuscated program. This
means that, after the obfuscation of the program in itself,
the analyst faces two more phases affecting the expression
to simplify:

• Compilation: it is very likely that the MBA obfusca-
tion occurred before or during the compilation of the
program, and more importantly before the optimiza-
tion passes of the compiler. Optimization passes are
very numerous and may often change the MBA ex-
pressions in ways that are difficult to anticipate. This
means that knowing only the obfuscation steps might
not be enough to understand completely how the re-
sulting expression was obtained, if the analyst needs
such comprehension.

• Extraction of expressions: as the analyst works on a
binary program, some tool is needed to obtain expres-
sions from the assembly language. The most common
way to do this is to use symbolic execution, provided by
reversing frameworks such as Miasm [9] or Triton [26].
But this tool also influences the resulting expression by
its choice of semantics, representation and eventually
its own simplification passes.

Both of those reversing steps add complexity to the sim-
plification of obfuscated MBA. In this paper, we use either
a ”clean” mathematical context where we do not consider
compilation and extraction, or a reversing context on an ex-
pression extracted from a compiled program.



4. A NEW PROPOSAL FOR MBA SIMPLI-
FICATION

There are several leads for MBA expressions simplifica-
tion. One technique exploits the bit-vector representation
of MBA expressions, called bit-blasting. It consists in com-
puting the boolean expression corresponding to each bit of
the obfuscated formula. This approach has the advantage
of moving the simplification problem from mixed algebra
into boolean algebra, with known canonical forms. But it
presents two major drawbacks: the cost of the reduction
increases with the number of bits, and to our knowledge,
there is no easy algorithm to identify the word-level formula
corresponding to the n boolean expressions (especially for
arithmetic operators).

We chose to stay on the word-level while designing our
simplification algorithm to avoid such problems. In this
section, we propose our own metrics to help define what
a simplification algorithm should reduce when simplifying
an obfuscated expression, then we detail our simplification
algorithm as well as its implementation.

4.1 Simplicity Metrics
To represent MBA expressions, we use the term graph

representation as defined in [24]. We use the compact repre-
sentation for more clarity, which can informally be defined
as an acyclic graph G where:

• all leaves represent constant numbers or variables, other
nodes represent arithmetic or bitwise operators;

• an edge from a node o to a node e means e is an
operand of operator o;

• there is only one root node;

• common expressions are shared, which means they only
appear once in the graph.

We present an example of the term graph of an MBA
expression in Figure 2.

x y 2

∧

+

×

Figure 2: Term graph for the expression 2× (x∧y)+(x∧y).

We use two metrics based on this graph representation, ar-
guing that decreasing these metrics improves the simplicity
of the expression in a general way, both for human under-
standing and automatic analysis.

4.1.1 Number of Nodes
Reducing the number of nodes of the graph contributes

to reducing the expression size, meaning it will be easier to
apprehend and manipulate. Reducing the number of vari-
ables can also be interesting for any brute force approach,
by reducing the size of the input set.

4.1.2 MBA Alternance
This metric is intended to help quantify the MBA aspect

of an expression. For example, a purely arithmetic or a
purely boolean expression has a null MBA alternance. Like-
wise, a computer algebra software applying only arithmetic
simplifications (like expansion) on an MBA-obfuscated for-
mula should not greatly decrease the MBA alternance metric
of a robust obfuscation.

To define the MBA alternance of an expression, we first
need to define the type of an operator op. The type is arith-
metic if op ∈ {+,−,×}, and the type is boolean (or bitwise)
if op ∈ {∧,∨,⊕,¬}. The MBA alternance is simply the
number of edges linking two nodes that represent operators
of different types (variables and constant nodes do not have
a type, and thus do not affect this metric).

Definition 2. For a graph G = (V,E) with V the set
of vertices and E the set of edges, the MBA alternance
altMBA(G) is:

altMBA(G) = |{(v1, v2) such that type(v1) 6= type(v2)}|,

where (v1, v2) ∈ E represents the edge linking the two ver-
tices v1, v2 ∈ V .

For example, Expression (3) has 15 nodes and an MBA
alternance of 2.

One may note that some bitwise operators (e.g. bitwise
not ¬, left shift �) can be rewritten as arithmetic expres-
sions quite easily: for example, ¬x = −x− 1 and x � n =
x × 2n, while there exists no simple equivalence for other
bitwise operators (⊕,∧ . . . ). One may use such rewritings
in the simplification process.

At the moment, we use those two metrics mainly to eval-
uate the relevance of our simplification algorithm (see Sec-
tion 5), but we would like to use them more in the algorithm
itself to guide the simplification (e.g. choose between several
applicable rewriting rules).

4.2 Algorithm
As we discussed in Section 2.2, there exist both theoretical

ground and tools to manipulate and simplify arithmetic ex-
pressions (e.g. polynomial expansion, factorization) or bit-
wise expressions (e.g. CND, DNF). While there is no such
thing for MBA expressions yet, it is still possible to use ex-
isting simplification techniques on parts of the MBA that
may contain only one type of operator. To create the miss-
ing link between alternating sub-expressions, one may use
term rewriting. From [30, 13], we gather that the obfus-
cation technique mainly consists of rewriting operators with
known equivalent MBA expressions. Knowing that, it comes
naturally to use the same process of rewriting as a deobfus-
cation technique, by inverting rules used for obfuscation.

Term rewriting [1] is a process that needs rewrite rules,
rules we can infer by orienting equalities (in our case, the
orientation shows whether we consider obfuscation or de-
obfuscation). We represent that process with a binary re-
lation →. For example, we stated with Expression (2) that



x + y = (x⊕ y) + 2× (x ∧ y); from that equality, we can de-
duce two rewrite rules:

x + y → (x⊕ y) + 2× (x ∧ y) (8)

(x⊕ y) + 2× (x ∧ y)→ x + y (9)

The relation (8) would very likely be used for obfuscating
purposes, since it increases both the number of nodes and
the MBA alternance of the expression. Knowing this, it is
conceivable to use rewrite rule (9) to invert the obfuscation
process. All the rewrite rules we have encountered are in-
vertible as they derive from an equality expression verified
for all values of the input variables. If we restrict ourselves
to the case where we want to find strictly equivalent ex-
pressions, valid for all values of the variables on some input
range (which can be a fixed subset of values as long as it
is known), we can safely consider that the rules used in the
obfuscation process are all invertible.

If we keep analyzing the obfuscation technique, we can see
in [30, 13] that it contains this type of rewriting as well as
insertion of affine functions whose composition is equivalent
to identity—to see an example of this obfuscation process,
one can refer to Expression (3). In order to deobfuscate such
expressions, one can first use a computer algebra software to
compute the composition of affine functions and then use a
list of rewrite rules to transform the resulting MBA expres-
sion into another simpler and equivalent expression. Note
that regarding this obfuscation technique, we do not need
a bitwise simplification step, since rewriting and arithmetic
expansions are enough.

We provide with Figure 3 and Figure 4 a step-by-step
example of the deobfuscation process on Expression (3).

Step one: MBA Rewriting.
The first step consists in using known rewrite rules to

transform an MBA expression into a simpler expression (by
reducing the number of nodes and the MBA alternance). In
our example, the rewriting reduces the number of node from
17 to 11. This step also decreases the MBA alternance, from
2 to 0 here.

All the rewriting rules we encountered in the literature
(e.g. [28, 31]) can be applied regardless of the number of
bits of the expression.

e1 = (x⊕ y) + 2× (x ∧ y)

= x + y

E = (e1 × 39 + 23)× 151 + 111

= ((x + y)× 39 + 23)× 151 + 111

Figure 3: Rewriting MBA expressions.

Step two: Arithmetic Simplification.
The second step is to compute the composition of affine

functions. This is in theory possible with any computer al-
gebra software, given that it supports declaration of MBA
expressions (more on this in Section 4.3). The composi-
tion of affine functions being equivalent to identity, this step
drastically decreases the number of nodes: in this example
it gets from 11 nodes to 3 nodes.

E = ((x + y)× 39 + 23)× 151 + 111

= (x + y)× 1 + 0

= (x + y) with x, y of 8 bits

Figure 4: Computing composition of affine functions.

Since the obfuscation phases can be applied iteratively,
those simplification steps can also be applied repeatedly un-
til a fixed point is attained. It is relatively safe to assume
that such a fixpoint will be reached if all the rewriting rules
reduce the size of the expression (the arithmetic simplifica-
tion step is sure to finish since it expands the expression).

The main drawback of this approach is that it is highly
dependent on the chosen set of rewrite rules. Indeed, if
only one obfuscation rule is unknown, the simplification al-
gorithm is not able to reduce the expression as much as it
would with knowledge of that rule. As the obfuscation pro-
cess usually has a constraint of not deteriorating greatly the
performances of the program being obfuscated, we can as-
sume that the set of MBA rewrites will be of ”reasonable”
size. Furthermore, for a given expression size there is a lim-
ited amount of MBA rewrites, and eventually all these rules
will be recovered by analysts.

4.3 Implementation
In this part, we detail the implementation aspects of SS-

PAM, mostly on the term rewriting (often called pattern
matching): we expose in this section our choices of design.
As we mentioned previously, most computer algebra soft-
ware do not even support symbolic MBA expressions. Re-
garding reverse engineering software, there exist frameworks
with expression manipulation that could handle MBA ex-
pressions (e.g. Miasm [9]), but the cost to enter such a com-
plex framework was too high for us, since we mostly wanted
to assess the feasibility of this kind of pattern matching.

To implement this proof of concept, we have made the
choice to work on the Abstract Syntax Tree (AST) of the
expression, using the Python module ast. This way, we can
support any kind of expressions and rely on a stable and
simple module. Even if this implies less features than in
a big framework, it also implies we control all the process
of pattern matching. The simplification algorithm consists
of two main components, related to the simplification steps
proposed in Section 4.2: pattern matching and arithmetic
simplification.

4.3.1 Pattern Matching
This part concerns the implementation of the term rewrit-

ing presented in Section 4.2; by pattern matching, we include
pattern detection and rewriting. As we wanted our pattern
matcher to be as general as achievable while controlling as
much as possible its behavior, we implemented the whole
process.

The pattern matching step is applied before the arithmetic
simplification for two reasons: firstly, affine functions help
delimitate the expression potentially subjected to a rewrite,
since in the obfuscation process they are often applied af-
ter the rewrite part. Secondly, the rewriting step might
bring expressions obfuscated with arithmetic operators (for
example, a classical way to greatly increase the size of an



expression is to repeat the same term, e.g. x→ x + x− x).
The arithmetic simplification step helps simplify such ex-
pressions.

We also implemented what we call flexible matching, which
allows to match a pattern when the expressions appear dif-
ferent but are equivalent. For example, let us consider the
rewrite rules (10) provided in [30] (slightly modified for read-
ability purposes). The pattern matching will search for a for-
mula matching the left hand side (LHS) term of the rewrite
rules, with x and y any kind of expression.

pattern︷ ︸︸ ︷
(x⊕ (¬y)) + 2× (x ∨ y)→ x + y − 1 (10)

Considering the two examples (on 8 bits) of (11) and (12),
we can see that matching the LHS of rule (10) with exam-
ple (11) is straightforward, by substituting x with (a + 9)
and y with (b ⊕ 23). On the other hand, it is not trivial
to detect the same pattern in example (12) (with the same
substitution for x and y). Indeed, we have ¬(b ⊕ 23) =
(b⊕¬23) = (b⊕ 232) on 8 bits, which means that both Ex-
pressions (11) and (12) are computationally equivalent and
can both be rewritten according to rule (10). Nevertheless,
one matching is trivial and the other requires to prove the
equivalence of ¬(b⊕ 23) and (b⊕ 232).

((a + 9)⊕ (¬(b⊕ 23))) + 2× ((a + 9) ∨ (b⊕ 23)) (11)

((a + 9)⊕ (b⊕ 232)) + 2× ((a + 9) ∨ (b⊕ 23)) (12)

To deal with this type of situation, we use a SMT solver
(Z3 for example) to prove that both instances are equiv-
alent and match the pattern. This problem occurs espe-
cially because of the optimization phase (as mentioned in
Section 3.3), mainly due to the optimization pass called
constant folding. Consulting the SMT solver at each step
of the pattern matching would be very costly, and thus the
pattern matcher only does it when encountering certain pat-
terns that we know to be subject to constant folding (e.g.
(¬x), 2× x . . . ).

The patterns currently present in SSPAM are those of
public knowledge [30, 31, 28] and some found from our own
analysis. The tool also offers the possibility to the user to
add his or her own patterns.

4.3.2 Arithmetic Simplification
The arithmetic simplification component is used to com-

pute the composition of affine functions and apply classical
arithmetic simplifications on MBA expressions (as explained
in the previous paragraph). This step represents what com-
puter algebra software can handle at the arithmetic level,
therefore we decided to use an existing solution for this com-
ponent, instead of implementing our own module. We use
the Python module sympy that offers symbolic computations
using the Python language. It does not support MBA ex-
pressions, but by defining every bitwise operator as an un-
known function, we were able to use the arithmetic simpli-
fication engine of sympy.

5. EVALUATION
In this section, we try to estimate the efficiency of our

simplification approach.

5.1 Methodology
We first tested SSPAM on public MBA-obfuscated exam-

ples [30, 22]. Then, to try to categorize the strengths and
weaknesses of the obfuscation, we generated our own sam-
ples (thanks to a Python obfuscator we implemented follow-
ing the process of [31, 12]), by considering either rewrites
only or full process of rewrites and identities insertion.

Also, as explained in Section 3.3, the expression usually
analyzed comes from a context of reverse engineering, mean-
ing compilation and symbolic execution have probably mod-
ified it after obfuscation. In order to assess the resilience of
the MBA obfuscation technique both in itself, and in a re-
verse engineering context, we conducted the evaluation of
our simplification tool on two types of inputs:

• Mathematical context: expressions in Python language
directly obfuscated with our Python obfuscator.

• Reverse engineering context: expressions in C language
generated from the Python obfuscator, compiled with
GCC [25] with the optimization option -O3. To extract
an exploitable expression from the compiled program,
we used the framework Miasm.

Here, we consider that the output of the simplification
tool is fully simplified when it returns the original expres-
sion (which we know to be only one operator for the public
examples, and is of course known for our generated expres-
sions).

In the following experiments, we only try to determine
the resilience of the MBA obfuscation as defined in [31], and
used alone without other control flow or data flow obfus-
cation techniques. If several layers of obfuscation were to
be used, the difficulty of simplifying the expression would
greatly increase, and the analyst would very probably need
to deobfuscate each layer separately.

5.2 Results

5.2.1 Simplifying the State of the Art
We applied SSPAM on the few public obfuscated expres-

sions available in the literature:

• All examples of obfuscated operators of Zhou et al.’s
work [30] were fully simplified by our tool. A compari-
son of obfuscated inputs and simplified outputs can be
found in Figure 5. Simplifying those examples takes
between one and three seconds with our tool.

• A larger example of an MBA-obfuscated expression
found in a real-life obfuscated DRM was given in [22]
and reproduced here in Figure 6. We were able to re-
trieve the original expression (x⊕ 92) with our tool in
about 12 seconds.

5.2.2 Obfuscation with Rewriting only
To further validate the strategy of simplification with rewrit-

ing, we obfuscated short expressions ((x+y) and (x⊕y)) by
choosing a random node and rewriting it with an equivalent
MBA expression (there were four rules possible, one for each
operator +,⊕,∧,∨), going up to 100 rewriting steps.

In the mathematical context, the pattern matching pro-
cess (without the flexible part) was enough to simplify these
expressions. Obfuscating expressions containing constants



t1 = (4211719010⊕ 2937410391 ∗ x) + 2 ∗ (2937410391 ∗ x ∨ 83248285) + 4064867995

t2 = (2937410391 ∗ x ∨ 3393925841)− ((2937410391 ∗ x) ∧ 901041454) + 638264265 ∗ y
z = 519915623 ∗ t1− ((3383387769 ∗ t2 + 129219187)⊕ 2756971371)

− 2 ∗ ((911579527 ∗ t2 + 4165748108) ∨ 2756971371) + 4137204492

(a) Obfuscated expressions [30].

t1 = ((2937410391 ∗ x) + 4148116279)

t2 = ((638264265 ∗ y) + 3393925841)

z = (x + y)

(b) Outputs of SSPAM.

Figure 5: Simplification of some state of the art examples.

a = 229x + 247

b = 237a + 214 + ((38a + 85) ∧ 254)

c = (b + ((−2b + 255) ∧ 254))× 3 + 77

d = ((86c + 36) ∧ 70)× 75 + 231c + 118

e = ((58d + 175) ∧ 244) + 99d + 46

f = (e ∧ 148)

g = (f − (e ∧ 255) + f)× 103 + 13

result = (237× (45g + (174g ∨ 34)× 229 + 194− 247) ∧ 255)

Figure 6: MBA-based obfuscation of (x⊕ 92).

(either in the original expression or introduced by the rewrit-
ing rules) did not add any further difficulty for the pattern
matching process. In the reverse process however, while
the pattern matching is sufficient for expressions containing
only variables, arithmetic simplification and flexible match-
ing must be activated as soon as constants are involved, a
plausible explanation being that constants enable more op-
timization possibilities during the compilation process.

5.2.3 Obfuscation with Rewriting and Identities
We have generated obfuscated expressions with the full

process: MBA rewrites and insertion of affine functions whose
composition is equivalent to identity. What we observed is
that even in the mathematical context, insertion of affine
functions implies the need of arithmetic simplification, which
has a lot of side effects on the expression being simplified and
thus requires the use of flexible matching.

The obfuscation process as we implemented it is described
in Algorithm 1.

Using this function for MBA obfuscation, we chose four
expressions to obfuscate, (x+y), (x⊕y), (x∧78) and (x∨12))
on 8 bits, four rewriting rules from [28] (given in Figure 7),
one for each operator +,⊕,∧,∨, and for each degree from 1
to 10, generated 50 obfuscated expressions to be used as in-
put for SSPAM. We then computed the number of fully sim-
plified expressions and the average number of node reduc-
tion (from obfuscated expression to simplified expressions)
as well as the average MBA alternance reduction.

The average number of node reduction can be seen in Fig-
ure 8. The 100% ratio in degree one means that those obfus-
cated expressions were fully simplified (in the other degrees,
fully simplified expressions are not accounted for in the av-
erage computation to get a better idea of the behavior of not
completely simplified expressions). The results for average
MBA alternance reduction were very similar, we thus chose
not to add them into this paper.

The number of fully simplified expressions (on 50 tests)
depending on the degree of obfuscation is detailed in Fig-

Algorithm 1 MBA-Obfuscation Algorithm.

Require: expression e, degree of obfuscation d, number of
bits n, a list of rewrites rules R

Ensure: obfuscated expression e′

1: function MBA-Obf(e, d, n,R)
2: loop d times
3: Choose a random operator of e
4: Choose a random rule r ∈ R for this operator
5: Rewrite this operator with r
6: Choose two random coefficients a, b on n bits for

the affine
7: while a non-invertible modulo 2n do
8: Choose randomly another a
9: end while

10: Compute a−1 and −ba−1 coefficients of the in-
verse affine

11: Insert affines composition around the rewritten
operator

12: end loop
13: end function

x + y → (x ∧ y) + (x ∨ y)

x⊕ y → (x ∨ y)− (x ∧ y)

x ∧ y → (¬x ∨ y)− (¬x)

x ∨ y → (x ∧ ¬y) + y

Figure 7: Rewriting rules used to obfuscate our sample ex-
pressions.

ure 9. We did not include the results for degree 1, since for
most of the input expressions, all 50 obfuscated expressions
were fully simplified.

From the results of Figures 8 and 9, one can see that if
the degree seems to determine largely the number of fully
simplified expressions, it does not influence greatly the aver-
age number of node reduction, being around 50% for all four
input expressions. The average MBA alternance reduction
follows the same pattern, which can be linked to the fact
that all the rewriting rules we used reduce both of those
metrics. One can also notice the particular case of the ob-
fuscation of (x ∧ 78), that could not be fully simplified in
degree one. This is due to some case of associativity in the
flexible pattern matching that is not yet implemented in our
tool, and shows that even with simple cases, it can be hard
to consider every form of the pattern.

When analyzing the obfuscated expressions not fully sim-
plified by SSPAM, we determined that a strategy using fac-
torized form (instead of the expanded one) during the arith-
metic simplification should provide an expression manage-
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able by the pattern matcher. The implementation of this
strategy should help increase the number of fully simplified
expressions for high degree.

5.3 Discussion
The results regarding obfuscation with MBA rewrites only,

presented in Section 5.2.2, allow us to conclude that an
obfuscation technique using only MBA rewriting would be
quite weak, as a simple pattern matching process appears to
be very efficient to fully simplify such obfuscated expressions
(considering that the rewriting rules are all invertible).

The insertion of compositions of affine functions contributes
to the resilience of the obfuscation by forcing the use of an
arithmetic simplifier in addition to the pattern matching
process, which leads to side effects that may be difficult to
anticipate. The flexible pattern matching proves all its effi-
ciency when the arithmetic simplification is used, by dealing
with most of these side effects.

Regarding the MBA-obfuscated expressions that we gen-
erated and gave as input to SSPAM, the average number of
nodes reduction of 50% and the number of fully simplified
expressions for small degrees shows that our approach can
prove itself efficient to deobfuscate such expressions. The
implementation of more strategy (e.g. factorization) would
help to improve those results.

It is clear that this simplification algorithm relies a lot
on the found patterns, but we can assume that for practical

reasons, the list of obfuscation rewrite rules is not likely to
be huge.

Furthermore, our simplification tool is designed to help
the analyst in his or her simplification process by automating
steps, and offers the possibility to add custom rules detected
by the analyst.

As we were able to fully simplify all examples publicly
available, we can conclude that our simplification algorithm
proves to be efficient in breaking existing MBA-based obfus-
cation, and that the MBA obfuscation technique, at least as
it is basically presented in practice, does not offer a great
resilience. Several ideas can be explored to increase the dif-
ficulty of simplification.

• The use of obfuscation rewrite rules where the right-
hand side generates several simplification rewrite rules
when put on the left-hand side: consider for example
2×(7∧x)→ 14∧2×x. The simplification rules could be
either 14∧2×x→ 2×(7∧x) or 14∧2×x→ 2×(135∧x).
More generally, rewrite rules relying on the very precise
structure of constant values may be more numerous
and difficult to simplify by a general strategy as it can
be the case with rules implying variables only.

• The use of different types of identity expressions: in-
vertible polynomials as defined in [31] (instead of affine
functions) would make it more difficult to use arith-
metic simplification to compute the compositions.

6. FUTURE WORK
Several issues remain to be addressed to refine our results.

6.1 Definition of Simplicity
There is no good general definition for MBA simplicity,

only a set of metrics. The complexity of this subject lies in
the fact that simplicity is related to the context where the
expression is considered. For example, a factorized poly-
nomial is more convenient to search for roots, while an ex-
panded form might be shorter, or allow for the recognition
of patterns. But on the other hand, factorized form may
enable to detect patterns for further factorization, while the
expanded form is the most appropriate to check for equal-
ity to zero. The notion of readability is close to the one
of pattern recognition. Indeed, Expression (13), while less
compact than Expression (14), might be considered as sim-
pler because it can be described in a more concise way, i.e.∑10

i=0(i + 1)xi.

1 + 2x + 3x2 + 4x3 + · · ·+ 11x10 (13)

1 + 3x + 4x2 + x3 − 9x4 + 5x5 + x6 + 2x7 (14)

This example shows how numerous are the aspects that
influence the definition of the simplicity of an expression.

We do not aim at giving an absolute definition of simplic-
ity. A characterization depending on the context in which
the expression is manipulated could shed some light on our
problematics. In the deobfuscation use case, the context
might be the purpose of the attack: for example, either
identifying a distinctive feature of a standard algorithm or
extracting a formula.



6.2 Properties of Rewrite Rules
Considering the theory of term rewriting, there are two

standard properties interesting to prove for a set of rewrite
rules: termination and confluence.

Termination guarantees that after finitely many rules ap-
plications, we always reach an expression to which no more
rules apply. Regarding the simplification with MBA rewrites,
we can suppose that each rule decreases the number of nodes
of the expression (we failed to find an obfuscation rule that
would decrease the size of the expression, implying a sim-
plification rule that would increase it). This is enough to
guarantee the termination of the single rewriting part of the
algorithm. But it would be interesting to study how this
interfaces with the arithmetic simplification part of the al-
gorithm, which is also guaranteed to terminate because it
computes an expanded form. For now, we are rather con-
fident that the termination of each component implies the
termination of the whole simplification algorithm, but they
may be some corner cases refuting this assertion.

Confluence ensures that if there are different rules to apply
to a term t leading to two different terms t1 and t2, we can
always find a common term s that can be reached from both
t1 and t2 by application of rewrite rules. We did not look into
confluence too much, but it would probably be much harder
to prove for a class of rewrite rules instead of a specific set.

A set of rules having both termination and confluence is
sure to produce a canonical form, which would greatly help
in the simplification process. Managing to prove those prop-
erties even for a subset of rewrite rules would probably allow
us to validate our empirical results.

6.3 Improving SSPAM
Our simplification tool is constantly improved thanks to

the different obfuscated examples we encounter or generate.
The two main features that we plan to implement are:

• Strategy using factorization instead of expansion: the
arithmetic simplification step could factor the expres-
sion to see if any pattern can be matched in this form.

• Bitwise simplification: in the model of the arithmetic
simplificator, implement a bitwise/boolean simplifica-
tor that would conduct basic simplifications such as
x ∨ 0 = x, x ∧ x = x, as well as compute constant
bitwise parts (e.g. (x ∧ 115 ∧ 78 = x ∧ 66 on 8 bits).
Future obfuscation might combine boolean obfuscation
with MBA rewrites, making this bitwise simplificator
useful.

7. CONCLUSION
The obfuscation technique using MBA expressions was

thought to be resilient, mostly because of the absence of
theoretical ground or tool to manipulate and simplify it,
as boolean and arithmetic operators do not interact well.
We have shown that the definition of simplification itself is
not trivial and highly depends on the context of the anal-
ysis. In this paper, we tried to assess the resilience of the
technique from a theoretical point of view in Section 3 and
we presented a simplification solution to reduce obfuscated
expressions (ideally retrieve the original expressions) in Sec-
tion 4. As a result, we were able to fully simplify all exam-
ples provided in the literature [30] and encountered in real
life settings, while also trying to categorize the obfuscation

steps adding resilience by generating our own obfuscated
expressions with different techniques (see Section 5.2). Our
conclusion is that practical MBA-based obfuscation that are
available today as presented in the work of Zhou et al. does
not offer a great resilience. However there is still further
work to be done to determine which MBA obfuscations are
practical and resilient, and construct more theoretical and
practical tools to analyze them.

8. REFERENCES
[1] F. Baader and T. Nipkow. Term Rewriting and All

That. Cambridge University Press, Aug. 1999.

[2] F. Biondi, S. Josse, A. Legay, and T. Sirvent.
Effectiveness of Synthesis in Concolic Deobfuscation.
Preprint, Dec. 2015.

[3] B. Buchberger and R. Loos. Algebraic Simplification.
In B. Buchberger, G. E. Collins, and R. Loos, editors,
Computer Algebra, volume 4 of Computing
Supplementa, pages 11–43. Springer, 1982.

[4] V. Bukasof and D. Schelkunov. Deobfuscation and
beyond. ZeroNights conference, 2014. http://www.
slideshare.net/ReCrypt/deobfuscation-and-beyond.

[5] J. Carette. Understanding Expression Simplification.
In Proceedings of the 2004 International Symposium
on Symbolic and Algebraic Computation, ISSAC ’04,
pages 72–79, New York, NY, USA, 2004. ACM.

[6] C. Collberg and C. Thomborson. Watermarking,
tamper-proofing, and obfuscation – tools for software
protection. IEEE Transactions on Software
Engineering, 28(8):735–746, Aug. 2002.

[7] B. Dang, A. Gazet, E. Bachaalany, and S. Josse.
Practical Reverse Engineering: x86, x64, ARM,
Windows Kernel, Reversing Tools, and Obfuscation,
chapter 5: Obfuscation. Wiley Publishing, 2014.

[8] L. de Moura and N. Bjørner. Z3: An Efficient SMT
Solver. In Proceedings of the Theory and Practice of
Software, 14th International Conference on Tools and
Algorithms for the Construction and Analysis of
Systems, TACAS’08/ETAPS’08, pages 337–340.
Springer, 2008. https://github.com/Z3Prover/z3.

[9] F. Desclaux. Miasm: Framework de reverse
engineering. In Actes du SSTIC. SSTIC, 2012.
https://github.com/cea-sec/miasm.

[10] Francis Gabriel. Deobfuscation: recovering an
OLLVM-protected program. Quarkslab’s blog, 2014.
http://blog.quarkslab.com/
deobfuscation-recovering-an-ollvm-protected-program.
html.

[11] Y. X. Gu, C. Liem, and Y. Zhou. System and method
providing dependency networks throughout
applications for attack resistance. App.
PCT/CA2011/050157, Publication Number
WO2012126083 A1, Sept. 2012. Irdeto Canada
Corporation.

[12] H. J. Johnson, Y. X. Gu, and Y. Zhou. System and
method of interlocking to protect software-mediated
program and device behaviors. US Patent App.
11/980,392, Publication Number US20080208560 A1,
Aug. 2008.

[13] A. Kandanchatha and Y. Zhou. System and method
for obscuring bit-wise and two’s complement integer
computations in software. US Patent App. 11/039,817,



Publication Number US20050166191 A1, Jul. 2005.
Cloakware Corporation.

[14] D. Khovratovich and I. Nikolić. Rotational
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