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Résumé en Français

Contexte

Une Ligne de Produits (PL) est dé�nie comme une collection de systèmes partageant
un ensemble de propriétés communes et satisfaisant des besoins spéci�ques pour un do-
maine particulier. L'analyse du domaine vise à identi�er et organiser les caractéristiques
communes et variables dans un domaine. La notion de Feature est dé�nie comme étant
tout concept, caractéristique ou propriété proéminente du système qui est visible pour
tous les acteurs. L'analyse du domaine est généralement e�ectuée par des experts à par-
tir de documents informels (�ches techniques, cahier des charges, résumés d'entretiens,
descriptions) qui sont écrits en langue naturelle, sans formalisme particulier. Dans la
pratique, le coût initial et le niveau d'e�ort manuel associés à cette analyse constituent
un obstacle important pour son adoption par de nombreuses organisations qui ne peu-
vent en béné�cier.

Plusieurs travaux se sont intéressés à l'identi�cation et la spéci�cation de la vari-
abilité des systèmes [ACP+12a, YZZ+12, DDH+13a, LHLG+14, BABN15]. Cependant,
peu d'entre eux sont attachés à proposer des techniques automatisées pour la construc-
tion de modèles de variabilité à partir des documents non structurés et ambigus. Les
techniques de traitement automatique du langage naturel et d'exploration de données
ont été utilisées par les chercheurs pour la recherche d'information, l'extraction ter-
minologique, le partitionnement de données, l'apprentissage des règles d'association,
etc., [T+99, RS10, KU96, PY13, AIS93].

Le but de cette thèse est d'adopter et exploiter ces techniques pour automatiquement
extraire et modéliser les connaissances relatives à la variabilité à partir de documents
informels dans di�érents contextes. En particulier, l'objectif est d'identi�er les features,
les points communs, les di�érences et les dépendances entre features d'une ligne de pro-
duits. En e�et, les techniques de traitement automatique du langage naturel employées
lors de l'extraction de la variabilité dépendent de la nature du texte et du formalisme
considéré. L'enjeu est de réduire le coût opérationnel de l'analyse du domaine, en parti-
culier des opérations manuelles e�ectuées par les experts de ce domaine en y apportant
un support automatisé pour faciliter l'identi�cation et la spéci�cation de la variabilité
des systèmes.

Nous étudions l'applicabilité de notre idée à travers deux études de cas pris dans
deux contextes di�érents: (1) la rétro-ingénierie des Modèles de Features (FMs) à partir
des exigences réglementaires de sûreté dans le domaine de l'industrie nucléaire civil et (2)
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iv Résumé en Français

l'extraction de Matrices de Comparaison de Produits (PCMs) à partir de descriptions
informelles de produits. FMs et PCMs sont des formalismes fondamentaux pour la
spéci�cation des caractéristiques communes et variables des produits de la même famille.

La première étude de cas traite des exigences réglementaires de sûreté pour la certi�-
cation des systèmes de contrôle-commande importants pour la sûreté de fonctionnement
d'une centrale nucléaire de production d'électricité et a eu lieu dans le cadre du projet
industriel CONNEXION. Les exigences réglementaires sont édictées par les autorités
nationales et complétées par des recommandations pratiques et des textes normatifs.

Ces exigences, bien que rédigées en langue naturelle non contraintes, présentent un
haut niveau de structure et de rigueur d'écriture. Cependant, elles n'expriment aucune
propriété fonctionnelle ou non fonctionnelle sur les systèmes mais précisent des objectifs
à atteindre ou des moyens à mettre en ÷uvre. Or, dans la pratique, ces exigences de
sûreté sont de haut niveau et sont ambigus. De plus, les textes supportant ces exigences
(réglementations nationales, et internationales, normes internationales) varient d'un
pays à un autre. Des pays, tels que la France et les autres pays d'Europe de l'ouest
suivent le courant CEI/AIEA de la réglementation. D'autre part, un courant ISO/IEEE
est suivi aux Etats-Unis ou en Asie. Ces deux référentiels évoluent indépendamment
l'un de l'autre. Il y a donc un enjeu industriel important pour la prise en compte de
la variabilité dans les exigences réglementaires et l'adoption d'une approche de ligne de
produits pour le développement et la certi�cation de tels systèmes.

La deuxième étude de cas concerne les descriptions informelles de produits publiées
sur des sites Web à vocation commerciale. Les sites commerciaux ou d'information sur
les produits proposent des descriptions de leur produits, en décrivent les avantages et
les caractéristiques techniques. Si la gamme de produits décrits est étonnamment large,
la description de ces produits manque d'une structure cohérente et systématique, ainsi
que de contraintes de rédaction en langage naturel qui permettrait une description à
la fois précise et homogène sur tout un ensemble de produits d'une même famille. Par
conséquent, la description des produits peut comprendre des omissions ou des ambiguités
sur les features, et l'enjeu est de pouvoir réconcilier toutes les informations issues de
produits d'une même famille en un modèle cohérent, plus propice à l'analyse par un
expert.

Problématique

L'une des étapes les plus critiques dans l'analyse du domaine est l'identi�cation des
éléments variables et communs d'une ligne de produits. La construction du modèle
de variabilité à partir de documents informels est une activité di�cile et complexe qui
dépend principalement de l'expérience et l'expertise des ingénieurs du domaine. Le but
de cette thèse consiste à:

- proposer une formalisation de la variabilité a�n d'avoir une vue globale, homogène
et complète de cette connaissance;

- adopter des techniques de traitement automatique du langage naturel permettant
d'extraire et modéliser la variabilité à partir des documents informels, ambigus et
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hétérogènes;

- assurer une traçabilité de la variabilité pour une meilleure compréhension et main-
tenance.

Dans la première étude de cas, l'hétérogénéité dans les exigences de sûreté est la cause
directe des di�cultés rencontrées par EDF et Areva dans la certi�cation du projet EPR
(Evolutionary Pressurized Reactor) dans les di�érents pays où ce dernier a été proposé
(construction en Finlande, France et Chine, certi�cation en cours aux Etats-Unis et
en Grande-Bretagne). Ainsi, depuis 2008, sur les cinq projets d'EPR les plus avancés
EDF et Areva en sont désormais à quatre architectures di�érentes pour le contrôle-
commande et à cinq processus de certi�cation propres à chaque pays [SB12a, dlVPW13].
Proposer un système de contrôle commande dans di�èrent pays pose un grand problème
de variabilité qui concerne non seulement les règlementations mais aussi l'architecture
elle-même. Dans cette étude de cas, l'objectif consiste à (1) extraire et formaliser la
variabilité dans les exigences réglementaires, (2) automatiser la construction de modèles
de features à partir des exigences réglementaires, (3) tracer la variabilité à di�érents
niveaux d'abstraction a�n d'étudier la conformité de l'architecture par rapport aux
exigences.

Dans la deuxième étude de cas, les descriptions de produits contiennent une grande
quantité d'information informelles à rassembler, analyser, comparer, et structurer. Cepen-
dant, une revue cas par cas de chaque description de produit demande un travail intense,
beaucoup de temps et il devient impossible quand le nombre de produits à comparer
augmente du fait de l'explosion combinatoire que cette augmentation engendre. Le
plus grand dé� est lié au nombre de produits et au nombre de features à rassembler et
organiser. Plus il y a d'actifs et de produits, plus l'analyse sera di�cile.

Etant donnée un ensemble de descriptions textuelles de produits, le but est de syn-
thétiser automatiquement une matrice de comparaison de produits (PCM). Le principal
dé� est de pouvoir automatiser l'extraction de la variabilité à partir du texte informel et
non structuré. Dans ce contexte, on s'intéresse à (1) automatiser l'extraction de PCM
à partir des descriptions informelles de produits, (2) étudier la complémentarité entre
les descriptions de produits et des spéci�cations techniques, et (3) assurer la traçabilité
des PCMs avec les descriptions originales et les spéci�cations techniques pour plus de
ra�nement et maintenance par l'utilisateur.

Contributions

La contribution générale de cette thèse consiste à appliquer des techniques automa-
tiques pour extraire des connaissances relatives à la variabilité à partir du
texte. Pour se faire, il est nécessaire d'identi�er les features, les points communs, les
di�érences et les dépendances entre features. Nous étudions l'applicabilité de cette idée
par l'instancier dans deux contextes di�érents qui présentent di�érentes caractéristiques
à la fois en termes du degré de formalisme du langage et d'homogénéité de contenus.
La section suivante introduit les principales contributions dans chaque contexte.
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Etude de Cas 1: la rétro-ingénierie des modèles de features à partir
des exigences réglementaires dans le domaine nucléaire.

Nous proposons une approche pour extraire la variabilité à partir des exigences régle-
mentaires et maintenir la traçabilité de la variabilité à di�érents niveaux d'abstraction
a�n de dériver une architecture conforme aux exigences.

Dans cette étude de cas, la contribution principale est une approche (semi) au-
tomatique pour la rétro-ingénierie des modèles de features à partir des exi-
gences réglementaires. Pour cette raison, nous exploitons des techniques du traite-
ment automatique du langage naturel et d'exploration de données pour (1) extraire les
features en se basant sur l'analyse sémantique et le regroupement (clustering) des exi-
gences, (2) identi�er les dépendances entre features en utilisant les règles d'association.
Ces dépendances incluent les dépendances structurelles pour construire la hiérarchie
(les relations parent-enfant, les relations obligatoires et optionnelles) et les dépendances
transversales (les relations d'implication et d'exclusion). Cette méthode vise à assister
les experts du domaine lors de la construction des modèles de features à partir des ex-
igences. L'évaluation de cette approche montre que 69% de clusters sont corrects sans
aucune intervention de l'utilisateur. Les dépendances structurelles montrent une capac-
ité prédictive élevée: 95% des relations obligatoires et 60% des relations optionnelles
sont identi�ées. Egalement, la totalité des relations d'implication et d'exclusion sont
extraites.

Pour résoudre le problème de variabilité dans l'industrie nucléaire, nous proposons
d'abord une formalisation de la variabilité dans les réglementations. Nous choi-
sissons pour cela d'utiliser le langage CVL (Common Variability Language) [Com], car il
s'agit d'un langage indépendant du domaine. CVL ne demande aucun changement des
artéfacts de développement, il n'introduit pas de complexité supplémentaire au niveau
des artéfacts originaux, et peut être utilisé en conjonction avec di�érents artéfacts. En
e�et, CVL spéci�e la variabilité dans des modèles séparés (modèles de features) qui sont
liés à des artefacts de développement.

Les domaines et sujets couverts par les exigences de sûreté sont nombreux et larges.
Pour réduire l'espace de recherche, nous utilisons la notion de topic (ou thème). L'idée
est de modéliser la variabilité dans les règlementations par topic, dans di�érents corpus
(dans di�érents pays), et considérant un même niveau d'abstraction (standard, docu-
ment règlementaires, guides, pratique, etc.). D'autre part, notre approche fournit un
moyen pratique pour maintenir la traçabilité de la variabilité entre l'espace des
problèmes (exigences appartenant aux thèmes inhérents à la sûreté de fonctionnement
tels que les défaillances de causes communes, la séparation et l'isolation des systèmes, la
communication entre systèmes classés) et l'espace solution (l'architecture du système
de contrôle-commande) pour étudier la robustesse de l'architecture dérivée par rapport
à la variabilité dans les exigences.
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Etude de Cas 2: L'extraction des matrices de comparaison de produits
à partir des descriptions informelles.

Dans cette étude de cas, notre principale contribution est une approche automatique
pour synthétiser des matrices de comparaison de produits (PCMs) à partir
de descriptions textuelles non structurées. Nous exploitons des techniques au-
tomatiques pour extraire des PCMs en dépit de l'informalité et de l'absence de structure
dans les descriptions de produits. Au lieu d'une revue au cas par cas de chaque descrip-
tion de produit, notre but est de fournir à l'utilisateur une vue compacte, synthétique
et structurée d'une ligne de produits à travers une matrice (produit x feature).

Notre approche repose sur (1) la technologie d'analyse contrastive pour identi�er les
termes spéci�ques au domaine à partir du texte, (2) l'extraction des informations pour
chaque produit, (3) le regroupement des termes et le regroupement des informations.
Notre étude empirique montre que les PCMs obtenus contiennent de nombreuses infor-
mations quantitatives qui permettent leur comparaison : 12.5% de features quanti�ées et
15.6% des features descriptives avec seulement 13% de cellules vides. L'expérience util-
isateur montre des résultats prometteurs et que notre méthode automatique est capable
d'identi�er 43% de features correctes et 68% de valeurs correctes dans des descriptions
totalement informelles et ce, sans aucune intervention de l'utilisateur.

D'autre part, nous étudions l'aspect complémentaire entre les descriptions des pro-
duits et leur spéci�cation technique. Le but est d'analyser les relations qui peuvent
exister entre ces deux artéfacts. En e�et, nous générons automatiquement des PCMs à
partir des descriptions de produits (à l'aide de notre outil) puis calculons des PCMs à
partir des spéci�cations techniques a�n de trouver le chevauchement entre ces deux types
de PCM. Notre étude utilisateur montre que concernant une grande partie des features
(56%) et des valeurs (71%), nous avons autant ou plus d'informations dans la première
catégorie des PCMs générées automatiquement avec notre outil. Nous montrons qu'il
existe un potentiel pour compléter ou même ra�ner les caractéristiques techniques des
produits.

Nous avons implémenté notre approche dans un outil, MatrixMiner, qui est un
environnement Web avec un support interactif non seulement pour synthétiser automa-
tiquement des PCMs à partir des descriptions textuelles des produits, mais il est aussi
dédié à la visualisation et l'édition des PCMs. Les résultats de l'évaluation suggèrent
en e�et que l'automatisation présente un grand potentiel, mais aussi certaines limites.
L'intervention humaine est béné�que et reste nécessaire pour (1) ra�ner/corriger cer-
taines valeurs (2) réorganiser la matrice pour améliorer la lisibilité du PCM. Pour cette
raison, MatrixMiner o�re également la possibilité de tracer les produits, les features et
les valeurs d'un PCM avec les descriptions de produits originaux et les spéci�cations
techniques. Les utilisateurs peuvent ainsi comprendre, contrôler et ra�ner les infor-
mations dans les PCMs synthétisés en se référant aux descriptions et spéci�cations de
produits.

La principale leçon à tirer de ces deux études de cas, est que l'extraction et l'exploitation
de la connaissance relative à la variabilité dépendent du contexte, de la nature de la
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variabilité et de la nature du texte. En particulier, le formalisme pour exprimer la
variabilité dépend du contexte. Les modèles de features, pour extraire la variabilité à
partir d'exigences réglementaires, facilitent la traçabilité de la variabilité à di�érents
niveaux d'abstraction (les exigences et l'architecture). Pour la comparaison de produits
divers, le PCM o�re une vue claire et plus facile des produits d'une même famille. Il
permet à l'utilisateur d'identi�er immédiatement les features récurrentes et comprendre
les di�érences entre les produits.

De même, les techniques du traitement automatique du langage naturel et d'exploration
de données employées lors de l'extraction de la variabilité dépendent de la nature du
texte et du formalisme qui a été considéré. En e�et, lors de la construction d'un mod-
èle de features, nous devons adopter des techniques capables de capturer les features
et leurs dépendances: les dépendances structurelles (les relations parent-enfant, les re-
lations obligatoires et optionnelles) pour construire la hiérarchie et les dépendances
transversales (les relations d'implication et d'exclusion). Cependant, lors de la con-
struction d'un PCM, nous avons besoin d'appliquer des techniques capables d'identi�er
les features pertinentes et leurs valeurs (booléennes, numériques ou descriptives) à partir
du texte.
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Introduction

Context

A Product Line (PL) is a group of closely related products that together address a
particular market segment or ful�l a particular mission. In product line engineering,
domain analysis aims to identify and organize features that are common or vary within
a domain [PBvdL05a]. A feature can be roughly de�ned as a prominent and distinctive
user visible characteristic of a product. Domain analysis is generally carried out by
experts on the basis of existing informal documentation. Yet, the construction process
of variability models may prove very arduous for stakeholders, especially when they
take unstructured artifacts as inputs. Indeed, they have to deal with a huge amount
of scattered and informal data to collect, review, compare and formalize. This can be
an arduous task when performed manually, and can be error-prone in the presence of a
change in requirements.

Numerous approaches have been proposed to mine variability and support domain
analysis [ACP+12a, YZZ+12, DDH+13a, LHLG+14, BABN15]. However, few of them
pay attention to adopt automated techniques for the construction of variability models
from unstructured and ambiguous documents. Natural Language Processing (NLP)
and data mining techniques have been used by researchers to support a number of
activities such as information retrieval, terminology extraction, clustering, association
rule learning, etc., [T+99, RS10, KU96, PY13, AIS93]. In this thesis, our main challenge
is to adopt and exploit these techniques to address mining and modeling variability from
informal documentation in di�erent contexts. In particular, we aim to identify features,
commonalities, di�erences and features dependencies among related products. Indeed,
the NLP techniques employed when mining variability depend on the nature of text and
the formalism which has been considered.

We investigate the applicability of this idea by instantiating it in two di�erent con-
texts: (1) reverse engineering Feature Models (FMs) from regulatory requirements in
nuclear domain and (2) synthesizing Product Comparison Matrices (PCMs) from infor-
mal product descriptions. FMs and PCMs are fundamental formalisms for specifying
and reasoning about commonality (i.e., the common characteristics of products) and
variability (i.e., the di�erences between products) of a set of related products.

The �rst case study handles regulatory requirements for safety systems certi�cation
in nuclear domain. The regulatory requirements are provided in large and heterogeneous
documents: regulatory documents, guides, standards and even tacit knowledge acquired
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from anterior projects in the past. These regulations are most often disconnected from
the technical system requirements, which capture the expected system behavior. In
many cases, regulatory documents provide very high level and ambiguous requirements
that leave a large margin for interpretation. Worse, regulation changes over time and
from one country to another. In Europe, nuclear actors mainly follow the IEC/IAEA
corpus whereas in the US, IEEE/ISO standards are applied. These two corpora have
been written independently from each other.

The second case study deals with publicly available product descriptions found in
online product repositories and marketing websites. Informal product descriptions de-
scribe features including technical characteristics and bene�ts of products. Product
descriptions lack of consistent and systematic structure to describe products, and con-
straints in writing these descriptions expressed in natural language.

Motivation and Challenges

One of the most critical steps in domain analysis is the identi�cation of variable and
common elements in the products that are to be supported. Deriving an accurate
variability model from textual documents remains a hard and complex activity and still
mostly relies on the experience and expertise of domain engineers. Our global challenges
consist in:

- formalizing variability to keep a homogeneous, complete and global view of this
knowledge;

- adopting e�ective automated NLP techniques capable of mining and modeling
variability from informal, ambiguous and heterogeneous documentation;

- tracing variability to improve the understanding of system variability, as well as
support its maintenance and evolution.

In the speci�c context of regulatory requirements, one applicant has to deal with very
heterogeneous regulations and practices, varying from one country to another. This
heterogeneity has a huge impact in the certi�cation process as the regulators safety
expectations, evidences and justi�cation to provide can vary [SB12a, dlVPW13]. At
this level, the main concern comes from the di�erence between national practices and
the set of documents (regulatory texts and standards) to comply with. The nuclear
industry has an unstable and growing set of safety standards. Worse, the set of safety
standards is increasing within two main standards areas.

Performing the same safety function in di�erent countries then leads to a huge
problem of variability that concerns, not only the set of requirements to comply with and
the certi�cation process, but also the system's architecture itself. The major challenge is
the conformance of safety systems to multiple di�erent regulations. In this case study,
we aim to (1) extract and formalize the variability in regulatory requirements, (2)
automate the construction of feature models from regulatory requirements, (3) address
tracing variability between artifacts across problem and solution space to investigate
the robustness of the derived architecture against regulations variability.
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In the second case study, product descriptions contain a huge amount of scattered
and informal data to collect, review, compare, and structure. Numerous organiza-
tions or individuals rely on these textual descriptions for analyzing a domain and a
set of related products. Analyzing manually a group of related products is notoriously
hard [HCHM+13a, DDH+13a]. A case-by-case review of each product description is
labor-intensive, time-consuming, and quickly becomes impractical as the number of
considered products grows. The biggest challenge is related to the number of products
and the number of features an analyst has to gather and organize. The more assets and
products, the harder the analysis.

Our goal is to automate the manual task of analyzing each product with respect to
its textual description and clustering information over several products, and provides a
reader with an accurate and synthetic PCM � i.e., tabular data that describe products
along di�erent features [BSA+14]. In this case study, our goal is to (1) automate the
extraction of PCMs from informal descriptions of products, (2) investigate the comple-
mentarity between products descriptions and technical speci�cations, and (3) maintain
traceability of PCMs with the original descriptions and the technical speci�cations for
further re�nement or maintenance by users.

Contributions

In this thesis, our general contribution is to address mining and modeling
variability from informal documentation using NLP and data mining tech-
niques. To do so, it is necessary to identify features, commonalities, di�erences and
features dependencies among the related products. We investigate the applicability
of this idea by instantiating it in the two di�erent case studies. In this section, we
summarize our main contributions in each context.

Case Study 1: Reverse Engineering Feature Models from Regulatory
Requirements in Nuclear Domain

We propose an approach to extract variability from safety requirements as well as map-
ping variable requirements and variable architecture elements to derive a complying
architecture. This complex task requires a comprehensive and in-depth analysis of reg-
ulations and the architecture for safety systems in nuclear power plants.

In this case study, our core contribution is a (semi)automated approach to re-
verse engineering feature models from regulatory requirements. We adopt
NLP and data mining techniques to (1) extract features based on semantic analysis and
requirements clustering and (2) identify features dependencies using association rules.
These dependencies include structural dependencies to build the hierarchy (parent-child
relationships, mandatory and optional relationships) and transversal dependencies (re-
quires and exclude relationships). This automated method assists experts when con-
structing feature models from these regulations. The evaluation shows that our approach
is able to retrieve 69% of correct clusters without any user intervention. We notice that
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structural dependencies show a high predictive capacity: 95% of the mandatory rela-
tionships and 60% of optional relationships are found. We also observe that the totality
of requires and exclude relationships are extracted.

To tackle the variability issue in unaware nuclear industry, we propose before a
formalization of variability in regulations. We choose to rely on the Common
Variability Language (CVL) [Com] since it is a domain independent language for spec-
ifying and resolving variability. CVL does not require changing the complexity of the
development artifacts and can be used in conjunction with di�erent development arti-
facts. Indeed, CVL promotes specifying variability in separate models (feature models)
which are linked to the development artifacts. To narrow the problem space, the idea
is to analyze variability in regulatory documents by topic on di�erent corpora (i.e. in
di�erent countries) and on the same abstraction level. On the other hand, our approach
provides tracing variability across problem and solution space to investigate the
robustness of the derived architecture against regulations variability.

Case Study 2: Synthesizing Product Comparison Matrices from Infor-
mal Product Descriptions

In this case study, our main contribution is an approach to automate the extrac-
tion of product comparison matrices from informal descriptions of products.
We investigate the use of automated techniques for synthesizing a PCM despite the
informality and absence of structure in the textual descriptions. Instead of reading
and confronting the information of products case-by-case, our purpose is to deliver a
compact, synthetic, and structured view of a product line - a PCM.

Our proposed approach relies on contrastive analysis technology to mine domain
speci�c terms from text, information extraction, terms clustering and information clus-
tering. Overall, our empirical study shows that the resulting PCMs exhibit numerous
quantitative and comparable information: 12.5% of quanti�ed features, 15.6% of de-
scriptive features and only 13% of empty cells. The user study shows that our automatic
approach retrieves 43% of correct features and 68% of correct values in one step and
without any user intervention.

On the other hand, we investigate the complementarity aspect between products
descriptions and technical speci�cations. The purpose here is to analyze the nature of
relationship that may exist between these two artifacts. Indeed, we need to synthesize
PCMs from product descriptions and compute PCMs from technical speci�cations in
order to calculate the overlap between these two kinds of PCMs. Our user study shows
that regarding a signi�cant portion of features (56%) and values (71%), we have as
much or more information in the generated PCMs than in the speci�cations. We show
that there is a potential to complement or even re�ne technical information of products.

The evaluation insights drive the design of the MatrixMiner which is a web environ-
ment with an interactive support not only for automatically synthesizing PCMs from
textual descriptions of products, but also is dedicated to the visualization and edition
of PCMs. The results indeed suggest that automation has a great potential but also
some limitations. Human intervention is bene�cial to (1) re�ne/correct some values
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(2) reorganize the matrix for improving readability of the PCM. For this reason, Ma-
trixMiner also provides the ability to tracing products, features and values of a PCM to
the original product descriptions and technical speci�cations. Likewise users can under-
stand, control and re�ne the information of the synthesized PCMs within the context
of product descriptions and speci�cations.

The main lesson learnt from the two case studies is that the exploitability and the
extraction of variability knowledge depend on the context, the nature of variability and
the nature of text. In particular, the formalism to express variability depends on the
context: feature models to capture variability in regulatory requirements, it is easier
to address variability-aware bridging of the two levels of abstraction (requirements and
architecture); Meanwhile, when comparing products on the web, PCMs o�er a clear
product line view to practitioners. It is then immediate to identify recurrent features
and understand the di�erences between products.

Similarly, the NLP and data mining techniques employed when mining variability de-
pend on the nature of text and the formalism which has been considered. Indeed, when
building a feature model, we need to adopt techniques capable of extracting features
and their dependencies: structural dependencies (parent-child relationships, mandatory
and optional relationships) to build the hierarchy and transversal dependencies (requires
and exclude relationships). But when constructing a PCM, we need to apply techniques
able to mine relevant features and their values (boolean, numerical or descriptive) from
the text.

Plan

The remainder of this thesis is organized as follows.
Chapter 1 gives a background about product line engineering, variability modeling

and requirements engineering. The variability models are presented brie�y through a
classi�cation based on the main variability concepts.

Chapter 2 presents the state of the art regarding our approach. This chapter
provides a survey of the most used statistical techniques to perform the construction
of variability models, and NLP techniques for terminology and information extraction.
We also explain and compare methods to extract features and synthesize feature models
from di�erent artifacts.

Chapter 3 instantiates our global contribution in the �rst case study to reverse
engineering feature models from regulatory requirements in the nuclear domain. In this
chapter, we formalize the variability in safety requirements, propose an approach to
automatically synthesize feature models from these regulations and establish tracing
variability with the architecture.

Chapter 4 instantiates our general contribution in the second case study to synthe-
size product comparison matrices from informal product descriptions. In this chapter
we propose an approach to automate the extraction of PCMs from unstructured de-
scriptions written in natural language, investigate the complementarity aspect between
products descriptions and technical speci�cations and implement our approach in a tool,
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MatrixMiner.
Chapter 5 provides a comparison, lessons learned and discussion regarding these

two case studies. We characterize in each context the nature of input text, the variability
model including the used formalism and its exploitation, the adopted techniques and
�nally how variability tracing could be applied in practice.

Chapter 6 draws conclusions and identi�es future work and perspectives for variability
management.
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Chapter 1

Background

In this chapter, we discuss di�erent domains and concepts applied in our proposal,
including Product Line Engineering, Variability Modeling and Requirements Engineer-
ing. The objective of this chapter is to give a brief introduction to these concerns, used
throughout the thesis. This introduction aims at providing a better understanding of
the background and context in which our work takes place, as well as the terminology
and concepts presented in the next chapters.

The chapter is structured as follows. In Section 1.1, we present the main concepts
of product line engineering. Section 1.2 describes brie�y some approaches dealing with
variability modeling. Section 1.3 describes the essential principles and semantic founda-
tion of feature models. Section 1.4 introduces product comparison matrices. Section 1.5
explains the basics of requirements engineering and deals with two aspects of particular
interest: regulatory requirements and compliance with these latters.

1.1 Product Line Engineering

Product line engineering is a viable and important reuse based development paradigm
that allows companies to realize improvements in time to market, cost, productivity,
quality, and �exibility [CN02]. According to Clements & Northrop [CN02] product
line engineering is di�erent from single-system development with reuse in two aspects.
First, developing a family of products requires "choices and options that are optimized
from the beginning and not just one that evolves over time". Second, product lines
imply a preplanned reuse strategy that applies across the entire set of products rather
than ad-hoc or opportunistic reuse. The product line strategy has been successfully
used in many di�erent industry sectors, and in particular, in software development
companies [PBvdL05b] [KCH+90] [W+99].

Software Product Lines (SPL) engineering is a rapidly emerging software engineer-
ing paradigm to develop software applications (software-intensive systems and software
products) using platforms and mass customization [PBvdL05b].
The traditional focus of software engineering is to develop single software, i.e., one
software system at a time. A typical development process begins with the analysis of
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customers' requirements and then several development steps are performed (speci�ca-
tion, design, implementation, testing). The result obtained is a single software product.
In contrast, SPL engineering focuses on the development of multiple similar software
systems from common core assets [CN02] [PBvdL05b].

Software product line engineering relies on the concept of mass customization, which
is a large-scale production of goods tailored to individual customer's need [Dav97].
SPL engineering aims at developing related variants in a systematic way and providing
appropriate solutions for di�erent customers [CN02]. Instead of individually developing
each variant from scratch, commonalities are considered only once.

De�nition 1.1 (Software Product Line) "A software product line is a set of software-
intensive systems sharing a common, managed set of features that satisfy the speci�c
needs of a particular market segment or mission and that are developed from a common
set of core assets in a prescribed way" [CN02].

Software product line engineering thus focuses on the production and maintenance of
multiple similar software products by reusing common software artifacts, or assets in
the context of software product lines.

Figure 1.1: The product line engineering framework [PBvdL05b]

Product line engineering is separated in two complementary phases: domain engi-
neering and application engineering. Domain engineering is concerned with development
for reuse while application engineering is the development with reuse [W+99] [PBvdL05b].
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In other words, the domain engineering process is responsible for creating reusable as-
sets, while application engineering is the process of reusing those assets to build indi-
vidual but similar products. Both the domain engineering as well as the application
engineering are complementary processes and do not follow a speci�c order. For in-
stance, it is possible to create assets from already developed products, in which case,
assets are built from the artifacts that constitute the products. Otherwise, artifacts
are built from scratch in order to be reused in several products. The idea behind this
approach to product line engineering is that the investments required to develop the
reusable artifacts during domain engineering, are outweighed by the bene�ts of deriving
the individual products during application engineering [DSB04] [DSB05].

Domain engineering. The process to develop a set of related products instead of a
single product is called domain engineering. It is the process to identify what di�ers
between products as well as reusable artifacts, to plan their development. It thus de�nes
the scope of the product line. In particular, the domain analysis phase is responsible
for identifying and describing the common artifacts and those that are speci�c for par-
ticular products. This is the development for reuse process, made easier by traceability
links between those artifacts [PBvdL05b]. In the domain realization phase, each artifact
is modeled, planned, implemented and tested as reusable components.

Application engineering. Application engineering is the development process with
reuse. It is the process of combining common and reusable assets obtained during the
domain engineering process. Applications are thus built by reusing those artifacts and
exploiting the product line. During the application requirements phase, a product con-
�guration is de�ned, that �ts those requirements. Then, the �nal product is built during
a product derivation process, which is part of the application realization phase.

Product con�guration: this process refers to the selection or deselection of a set of
reusable artifacts identi�ed in the domain engineering process. This selection is usually
done relying on a variability model, which describes the commonalities and di�erences
between potential products at an higher abstraction level.

Product derivation: once a con�guration is de�ned through the variability model, the
related artifacts are given as input to the product derivation process, which in return
yields the �nal product. This process can be manual or automated, and di�ers among
product lines.

1.2 Variability Management

Central and unique to product line engineering is the management of variability, i.e.,
the process of factoring out common and variable artifacts of the product line. Man-
aging variability is the key, cross-cutting concern in product line engineering [CN02,
PBvdL05b, CBK13, MP14]. It is also considered as one of the key feature that dis-
tinguishes SPL engineering from other software development approaches or traditional
software reuse approaches [BFG+02]. Product line variability describes the variation
among the products of a product line in terms of properties, such as features. Many
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de�nitions of feature have been proposed in the product line literature.

De�nition 1.2 (Feature) "a prominent or distinctive user-visible aspect, quality or
characteristic of a software system or systems" [KCH+90], "a product characteristic
from user or customer views, which essentially consists of a cohesive set of individual
requirements" [CZZM05] or "end-user visible functionality of the system" [CE00]

1.2.1 Variability

Several de�nitions of variability have been given in the literature.

Variability in Time vs. Variability in Space. Existing work on software variation
management can be generally split into two categories. The variability in time and the
variability in space are usually considered as fundamentally distinct dimensions in SPL
engineering. Pohl et al. de�ne the variability in time as "the existence of di�erent ver-
sions of an artifact that are valid at di�erent times" and the variability in space as "the
existence of an artifact in di�erent shapes at the same time" [PBvdL05b]. Variability
in time is primarily concerned with managing program variation over time and includes
revision control system and the larger �eld of software con�guration management. The
goal of SPL engineering is mainly to deal with variability in space [Erw10, EW11].

Commonality and Variability. Weiss and Lai de�ne variability in SPL as "an as-
sumption about how members of a family may di�er from each other" [W+99]. Hence
variability speci�es the particularities of a system corresponding to the speci�c expec-
tations of a customer while commonality speci�es assumptions that are true for each
member of the SPL. [SVGB05] adopt a software perspective and de�ne variability
as the "the ability of a software system or artifact to be e�ciently extended, changed,
customized or con�gured for use in a particular context". At present, these two de�-
nitions are su�cient to capture the notion of variability: the former de�nition is more
related to the notions of domain and commonality while the later focuses more on
the idea of customization. Nevertheless, there is no one unique perception or de�ni-
tion of variability: [BB01] propose di�erent categories of variabilities, [SVGB05] have
de�ned �ve levels of variability while some authors distinguish essential and techni-
cal variability [HP03], external and internal variability [PBvdL05b], product line and
software variability [MPH+07].

1.2.2 Variability Modeling

As managing variability is a key factor, it must be expressed using a dedicated sup-
port. Product line variability is thus documented in so-called variability models. Chen
et al. [CABA09] provide an overview of various approaches dealing with variability
modeling.

Feature modeling is by far the most widespread notation in software product line en-
gineering, o�ering a simple and e�ective way to represent variabilities and commonalities
in a product family. A feature is de�ned as a "prominent or distinctive user-visible as-
pect, quality, or characteristic of a software system or system" [KCH+90]. The modeling
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approach enables the representation of variability and commonality early in the product
life cycle, as a support for the domain analysis process.

Using feature models for variability modeling was �rst introduced back in 1990 by
Kang et al., as part of the Feature Oriented Domain Analysis (FODA) [KCH+90].
Many extensions and dialects of feature models have been proposed in literature (e.g.,
FORM [KKL+98], FeatureRSEB [GFA98], [Rie03]; [BPSP04], [CHE05]; [SHTB07],
[AMS06, AMS07]). Thus, feature models are nowadays considered as the de-facto stan-
dard for representing variability. Djebbi and Salinesi [DS06] provided a comparative
survey on four feature diagram languages for requirements variability modeling. The
languages are compared according to a list of criteria that includes readability, sim-
plicity and expressiveness, type distinction, documentation, dependencies, evolution,
adaptability, scalability, support, uni�cation, and standardizeability.

Decision modeling is one mean for variability modeling. A decision model is de�ned
as "a set of decisions that are adequate to distinguish among the members of an applica-
tion engineering product family and to guide adaptation of application engineering work
products" [SRG11]. Decision-oriented approaches treat decisions as �rst-class citizens
for modelling variability. DOPLER (Decision�Oriented Product Line Engineering for
e�ective Reuse), introduced by Dhungana et al. [DGR11], is one of the most represen-
tative decision-oriented approaches. Schmid and John [SJ04], Forster et al. [FMP08],
Dhungana et al. [DRGN07], amongst others, use decision models as variability modeling
language.

Variability can be speci�ed either as an integral part of the development artifacts
or in a separate orthogonal variability model [PBvdL05b]. The former way commonly
yield annotation-based approaches, in which the development artifacts are marked (an-
notated) introducing variability-related aspects. Examples of such methods are pre-
sented in [Gom06, ZJ06]. Another way of variability modeling is by mean of orthogonal
variability models (OVM) [PBvdL05b]. In those models, the main concept is the one of
variation points, which are an abstraction of software artifacts that represent variability.
In the OVM only the variability of the product line is documented (independent of its
realization in the various product line artifacts). The variability elements in an OVM
are, in addition, related to the elements in the traditional conceptual models which
"realize" the variability de�ned by the OVM. Another approach proposed to make
variability models orthogonal to the product line models is the Common Variability
Language (CVL).
As learned from Chen's survey, most of existing approaches in variability management
can be classi�ed (and classify themselves) as feature modeling ones [SRG11].

1.3 Feature Models

Feature Models (FMs) aim at characterizing the valid combinations of features (a.k.a.
con�gurations) of a system under study. A feature hierarchy, typically a tree, is used to
facilitate the organization and understanding of a potentially large number of concepts
(features). Figure 1.2 gives a �rst visual representation of a feature model. Features
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are graphically represented as rectangles while some graphical elements (e.g., un�lled
circle) are used to describe the variability (e.g., a feature may be optional). Figure 1.2
depicts a simpli�ed feature model inspired by the mobile phone industry. The model
illustrates how features are used to specify and build software for mobile phones. The
software loaded in the phone is determined by the features that it supports.

Figure 1.2: A family of mobile phones described with a feature model [BSRC10]

Syntax of Feature Models. Di�erent syntactic constructions are o�ered to attach
variability information to features organized in the hierarchy (see De�nition 1.3). When
decomposing a feature into subfeatures, the subfeatures may be optional or mandatory.
According to the model, all phones must include support for calls. The feature Calls is
mandatory. However, the software for mobile phones may optionally include support
for GPS and multimedia devices. The features GPS and Media are optional. Note that
a feature is mandatory or optional in regards to its parent feature (e.g., a feature may
be modeled as a mandatory feature and not be necessary included in a con�guration in
the case its parent is not included in the con�guration).

Features may also form Or�, or Xor�groups. Camera and MP3 form Or�group. In
Figure 1.2, whenever Media is selected, Camera, MP3 or both can be selected. Features
Basic, Colour and High resolution form an Xor�group, they are mutually exclusive. In
the example, mobile phones may include support for a basic, colour or high resolution
screen but only one of them.

Cross-tree constraints over features can be speci�ed to restrict their valid combina-
tions. Any kinds of constraints expressed in Boolean logic, including prede�ned forms
of Boolean constraints (equals, requires, excludes), can be used. Mobile phones includ-
ing a camera must include support for a high resolution screen: Camera requires High

resolution. GPS and basic screen are incompatible features: GPS excludes Basic. We
consider that a feature model is composed of a feature diagram plus a set of constraints
expressed in propositional logic (see De�nition 1.3).
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De�nition 1.3 (Feature Model) A feature diagram is a 8-tuple
〈G,EM , GMTX , GXOR, GOR, EQ,RE,EX〉: G = (F , E) is a rooted tree where F is a
�nite set of features, E ⊆ F×F is a set of directed child�parent edges ; EM ⊆ E is a set
of edges that de�ne mandatory features with their parents ; GMTX , GXOR, GOR ⊆ 2F

are non-overlapping sets of edges participating in feature groups. EQ (resp. RE, EX)
is a set of equals (resp. requires, excludes) constraints whose form is A ⇔ B (resp.
A ⇒ B, A ⇒ ¬B) with A ∈ F and B ∈ F . The following well-formedness rule holds:
a feature can have only one parent and can belong to only one feature group. A feature
model is a pair 〈FD,ψ〉 where FD is a feature diagram, and ψ is a Boolean formula
over F .

Semantics of Feature Model. The essence of an FM is its con�guration semantics
(see De�nition 1.4). The syntactical constructs are used to restrict the combinations
of features authorized by an FM. For example, at most one feature can be selected
in a Mutex-group. As such Mutex-groups semantically di�er from optional relations.
Mutex-groups also semantically di�er from Xor-groups. These latters require that at
least one feature of the group is selected when the parent feature is selected. Formally,
the cardinality of a feature group is a pair (i, j) (with i ≤ j) and denotes that at least
i and at most j of its k arguments are true. GMTX (resp. GXOR, GOR) are sets of
Mutex-groups (resp. Xor-groups, Or-groups) whose cardinality is (0, 1) (resp. (1, 1),
(1,m): m being the number of features in the Or-group). The con�guration semantics
can be speci�ed via translation to Boolean logic [CW07a]. Table 1.1 shows the valid
product con�gurations de�ned by the FM in Figure 1.2. In particular, the con�guration
semantics states that a feature cannot be selected without its parent, i.e., all features,
except the root, logically imply their parent. As a consequence, the feature hierarchy
also contributes to the de�nition of the con�guration semantics.

De�nition 1.4 (Con�guration Semantics) A con�guration of a feature model g is
de�ned as a set of selected features. JgK denotes the set of valid con�gurations of g.

Another crucial and dual aspect of an FM is its ontological semantics (see De�ni-
tion 1.5). Intuitively the ontological semantics of an FM de�nes the way features are
conceptually related. Obviously, the feature hierarchy is part of the ontological de�-
nition. The parent�child relationships are typically used to decompose a concept into
sub-concepts or to specialize a concept. There are also other kinds of implicit seman-
tics of the parent-child relationships, e.g., to denote that a feature is "implemented by"
another feature [KLD02]. Looking at Figure 1.2, the concept of Mobile Phone is com-
posed of di�erent properties like Calls, Screens, or Media; Media can be either specialized
as a Camera or an MP3, etc. Feature groups are part of the ontological semantics (see
De�nition 1.5) since there exists FMs with the same con�guration semantics, the same
hierarchy but having di�erent groups [SLB+11a, ABH+13a].

De�nition 1.5 (Ontological Semantics) The hierarchy G = (F , E) and feature groups
(GMTX , GXOR, GOR) of a feature model de�ne the semantics of features' relationships
including their structural relationships and conceptual proximity.
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Table 1.1: Valid product con�gurations of mobile phone SPL

Products
Mobile Calls Screen Media GPS Basic Colour High Camera MP3

Phone Resolution
P1 3 3 3 3

P2 3 3 3 3

P3 3 3 3 3

P4 3 3 3 3 3

P5 3 3 3 3 3

P6 3 3 3 3 3

P7 3 3 3 3 3 3

P8 3 3 3 3 3

P9 3 3 3 3 3 3

P10 3 3 3 3 3

P11 3 3 3 3 3 3

P12 3 3 3 3 3 3

P13 3 3 3 3 3 3

P14 3 3 3 3 3 3 3

P15 3 3 3 3 3 3

P16 3 3 3 3 3 3 3

P17 3 3 3 3 3 3 3

P18 3 3 3 3 3 3 3

P19 3 3 3 3 3 3 3 3

Some extensions of feature models have been proposed e.g., feature attributes [BTRC05],
cardinality�based feature models [CHE05, CK05]. Kang et al. use an example of at-
tribute in [KCH+90] while Czarnecki et al. coin the term "feature attribute" in [CBUE02].
However, as reported in [BSRC10], the vast majority of research in feature modeling
has focused on "basic" [CHKK06, CW07b], propositional feature models.

1.4 Product Comparison Matrices

Considerable research e�ort has been devoted to the study of spreadsheets [HG94,
Pan08]. All studies have the same observation: errors in spreadsheet are common
but non trivial [AE07, CVAS11, HPD12, HPvD12]. Automated techniques have been
developed for locating errors; guidelines on how to create well-structured and maintain-
able spreadsheets have been established, etc. Herman et al. reported that the current
state of spreadsheet use still leads to numerous problems [HPVD11]. Product Com-
parison Matrices (PCMs) can be seen as a special form of spreadsheets with speci�c
characteristics and objectives (see Figure 1.3 for an example). A shared goal of this
line of research is to improve the quality of spreadsheets (i.e., PCMs). Some works aim
at tackling programming errors or code smells in spreadsheets [CFRS12]. General rules
exposed in [CFRS12] can be implemented. Speci�c rules that apply to speci�c concepts
of PCMs can also be considered. In both cases, the formalization of PCMs eases the
realization.

As spreadsheets are subject to errors and ambiguity, some works propose to syn-
thesize high-level abstractions or to infer some information [AE06, CE09, CES10]. For
instance, Chambers and Erwig [CE09] describe a mechanism to infer dimensions (i.e.,
units of measures). These works typically operate over formulas of spreadsheets - a
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Figure 1.3: PCM of Wikipedia about Portable Media Players

concept not apparent in PCM - or target general problems that are not necessarily rel-
evant for PCMs. Some of the techniques could be reused or adapted. Another research
direction is to elicitate the domain information stored in spreadsheets. For instance,
Hermans et al. proposed to synthesize class diagrams based on the analysis of a spread-
sheet [HPvD10].

Constructive approaches for ensuring that spreadsheets are correct by construction
have been developed in order to prevent typical errors associated with spreadsheets.
ClassSheet [EE05] introduces a formal object-oriented model which can be used to au-
tomatically synthesize spreadsheets. MDSheet is based on ClassSheet and relies on a
bi-directional transformation framework in order to maintain spreadsheet models and
their instances synchronized [CFMS12]. Francis et al. [FKMP13] develop tools to con-
sider spreadsheets as �rst-class models and thus enable the reuse of state of the art
model management support (e.g., for querying a model).

PCMs form a rich source of data for comparing a set of related and competing
products over numerous features. A PCM can also be considered as a declarative rep-
resentation of a feature model. Despite their apparent simplicity, PCMs contain het-
erogeneous, ambiguous, uncontrolled and partial information that hinders their e�cient
exploitations. Bécan et al. [BSA+14] proposed a metamodel that o�ers a more formal
canvas for PCM edition and analysis. Figure 1.4 presents the PCM metamodel de�ned
as an unifying canvas.

This metamodel describes both the structure and the semantic of the PCM domains.
In this metamodel, PCMs are not individual matrices but a set of di�erent matrices
that contain cells. This happens when comparing a large set of products or features.
In order to preserve readability, PCM writers can split the PCM content into several
matrices. Cells can be of 3 types: Header, ValuedCell, and Extra. Header cells identify
products or features.

In the metamodel, the structure of the PCM is not led by rows or columns but with
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Figure 1.4: The PCM Metamodel [BSA+14]

explicit concepts of products and features. These products (resp. features) can have a
composite structure that is used when describing several level of granularity for these
products (resp. features) and which are usually represented as product (resp. features)
row or column spans. In Excel or Wikipedia, cell values are associated to products and
features because of their relative and fortunate positions. Bécan et al. [BSA+14] have
explicit associations between a cell and its related product and feature. In addition,
they keep the syntactic layout with the row and column attributes in the Cell class.

On the semantic side, a PCM expresses commonalities and di�erences between prod-
ucts. As a consequence, formalizing such domains necessarily requires to introduce
some concepts from the variability and product line engineering community but also to
introduce new ones. Two main concepts were introduced: the Constraint class that rep-
resents the interpretation of the information contained in a valued cell and the Domain
class that de�ne the possible values for a feature. The interpretation of a valued cell is
given according to di�erent patterns and information types de�ned as sub-concepts of
Constraint in the metamodel:

- Boolean: states that the feature is present or not,

- Integer: integer number

- VariabilityConceptRef: references a product or a feature,
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- Partial: states that the feature is partially or conditionally present,

- Multiple (And, Or, Xor): composition of values constrained by a cardinality,

- Unknown: states that the presence or absence of the feature is uncertain,

- Empty: the cell is empty,

- Inconsistent: the cell is inconsistent with the other cells bound to the same feature

The domain of a feature is represented as a set of Simple elements (Boolean, Integer,
Double or VariabilityConceptRef ) which de�nes the valid values for the cells that are
related to this feature. The concept of domain allows to detect invalid values and reason
on discrete values such as features but also use the properties of boolean, integers and
real values for ranking or sorting operations.

A �rst advantage of this metamodel over spreadsheet applications (e.g. Excel),
database or websites is that it contains explicit notions of products and features. With
this metamodel, a comparator can directly reason in terms of these variability con-
cepts. It does not have to care about the structural information (rows and columns)
and the representation of the cell content. This eases the development and quality of
comparators.

A second advantage is that the clear semantics of the cells enables the development
of advanced reasoning facilities. The constraints de�ned by the cells can be easily en-
coded into state-of-the-art reasoners input format (e.g. CSP or SMT solvers). Such
reasoners expect formatted and consistent data that cannot be provided without for-
malization. Based on these two previous advantages, comparators can build advanced
�ltering capabilities working on multiple criteria. The absence of structural constraints
in the metamodel allows to reorganize products and features in order to visualize only
the most important ones according to a user. This can reduce the cognitive e�ort
required by a user to analyze a PCM. The reasoning facilities also allows to �lter the
products based on user-de�ned constraints or empirical data (e.g. best-selling product).

1.5 Requirements Engineering and Regulations

1.5.1 Requirements Engineering

Requirements engineering (RE), is an early stage in the software development life cycle,
and plays an important role in successful information systems development. RE consists
in a set of activities used by systems analysts to identify needs of a customer and assesses
the functionality required in a proposed system [Poh94, BR02].

De�nition 1.6 (Requirement) "a condition or capability needed by a user to solve a
problem or achieve an objective." Alternatively, it is de�ned as "a condition or capability
that must be met or possessed by a system or system component to satisfy a contract,
standard, speci�cation, or other formally imposed documents." [IEE90]

De�nition 1.7 (Requirements Engineering) "The systematic process of develop-
ing requirements through an iterative co-operative process of analyzing the problem, doc-
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umenting the resulting observations in a variety of representations formats and checking
the accuracy of the understanding gained" [LK95]

"Requirements engineering is the branch of software engineering concerned with the
real-world goals for, functions of, and constraints of software systems. It is also con-
cerned with the relationship of these factors to precise speci�cations of software behavior,
and to their evolution over time and across software families." [ZJ97]

Despite the evident and simple nature of these de�nitions, RE is a critical process
where all the possible failures of a system should be identi�ed to prevent them in the
future and formalise what the future system must be. For that a wide variety of methods
have been developed and in some software developments those ones must get involved
at all stages of the life cycle.

Requirements Classi�cation.

Software requirements are classi�ed into two categories: user requirements and sys-
tem requirements. User requirements, which are the high level abstract requirements,
describe, either in plain language or graphically, the services and constraints of the sys-
tem. Whereas, system requirements, which are the detailed description of the system,
precisely describe the functions, services and operational constraints of the system in
details, and acts as an agreement between users and developers. Following is the brief
classi�cation of the di�erent software system requirements:

- Functional requirements. A functional requirement is a software requirement that
speci�es the function of a system or of on of its component. The primary objective of
functional requirements is to de�ne the behavior of the system, i.e., the fundamental
processes or transformations that software and hardware components of the system
perform on input to produce output.

- Non-functional requirements. A non-functional requirement is a software requirement
that speci�es the criterion to judge the behavior of a system, i.e., it describes how
the software should perform rather than what it performs.

Requirements Engineering Process.

Di�erent authors include heterogeneous sub-processes as part of requirements engi-
neering but the common primary activities during di�erent requirements engineering
processes are elicitation, analysis and negotiation, veri�cation and validation, change
management, and requirements tracing.

Typically, a requirement is �rst elicited. In a second step the various stakeholders
negotiate about the requirement, agree on it or change it accordingly. The requirement
is then in the speci�cation/documentation task integrated with the existing documen-
tations and �nally in the validation/veri�cation task checked if it corresponds to the
original user/customer needs (adapted to the limitations opposed on the requirements
process by constraints) or con�icts with other documented requirements. Even when
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the software is installed, new requirements may emerge. Thus, requirements manage-
ment and tracing must be achieved. In following we describe the main goals of these
tasks and their relations.

Requirements Elicitation. Every RE process somehow starts with the elicitation of
the requirements, the needs, and the constraints about the system to be developed.
The common methods used to gather requirements from stakeholders are interviews,
questionnaires, observations, workshops, brainstorming, use cases, prototyping, ethnog-
raphy, etc [GW89, BFJZ14, RP92, DJ85, SRS+93]. Di�erent methods and tools, in-
cluding rules of writing quality requirements are available in literature [Lam05, Hoo93,
Fir03, Wie99].

Requirements Analysis & Negotiation. Requirements analysis is a process of cat-
egorization and organization of requirements into related subsets, exploration of rela-
tionships among requirements, examination of requirements for consistency, omissions
and ambiguity, and ranking requirements based on the needs of customers [Pre05].
The structured analysis of the requirements can be achieved by analysis techniques,
such as requirements animation, automated reasoning, knowledge-based critical analy-
sis, consistency checking, analogical and case-based reasoning. It is common during the
requirements analysis phase that di�erent customers propose con�icting requirements,
which from their point of view are essential for the system. The goal of the negotiation
task is to establish an agreement on the requirements of the system among the various
stakeholders involved in the process.

Requirements Speci�cation & Documentation. Requirements speci�cation is the ac-
tivity of translating the information gathered during the analysis activity into a docu-
ment that de�nes a set of requirements. Software Requirements Speci�cations is de�ned
by the IEEE Computer Society [CB98, AB04] as "a process result of which are unam-
biguous and complete speci�cation documents". The three most common classes of lan-
guages for requirement speci�cations are informal, semi-formal [Che76, YC79, Boo67]
and formal languages [AAH05, SA92, Jon86]. The desirable characteristics for require-
ment speci�cations [CB98] are: complete, correct, ranked, unambiguous, consistent,
modi�able, traceable veri�able, valid and testable.

Requirements Veri�cation & Validation. The main goal is to analyze and ensure that
the derived speci�cation corresponds to the original stakeholder needs and conforms to
the internal and/or external constraints set by the enterprise and its environments. V&V
activities examine the speci�cation to ensure that all system requirements have been
stated unambiguously, consistently, completely, and correctly. Its task is to show that
requirements model in some easily comprehensible form to customers. IEEE proposes a
comprehensive veri�cation and validation plan for the software development life-cycle.

Requirements Management. Requirements management is a set of activities during
which we identify, control, and track any possible changes to requirements at any time
during the life of the project. A track list must be kept for new requirements and
also between dependent requirements because if one requirement changes, it may have
e�ect on several other related requirements. Use of traceability policy to de�ne and
maintain the relationships among requirements is often advised along with Computer
Aided Software Engineering (CASE) tool support for requirements management.



22 Background

1.5.2 Requirements Engineering and Compliance with Regulations

Nature of Regulatory Requirements.

Software systems designed to perform safety functions must conform to an increasing
set of regulatory requirements. In the nuclear energy domain, a licensee must therefore
demonstrate that his system meets all regulatory requirements of a regulator. These
requirements can be contained in regulatory documents, in guides, standards and even
in tacit knowledge [SGN11] acquired from anterior projects in the past. This lays
applicants with a huge and increasing amount of documents and information.

Regulatory requirements are complete in the sense that there are no others (even
if you should consider them as incomplete). They are ambiguous [Kam05a], not clear
and unveri�able. Finally, there is no way (within the scope of quali�cation) to change
and improve them. Thus, these requirements are far from the usual separation between
functional/non functional requirements and they are not concerned with requirements
quality where the objectives are more to produce complete, veri�able, precise require-
ments or to try to reach this �nal state.

For example, the requirements related to the diversity or the independence between
the lines of defense are relatively generic requirements, as they apply to systems that
need to verify these properties, and have a major impact on the system architecture
without having a particular in�uence from a functional point of view.

Similarly, the processes for quality assurance or validation and veri�cation or docu-
mentation are important for safety while they have no impact on the system behavior in
terms of function performed, performance, maintainability, and availability. However,
they provide a certain level of reliability in the system design and validation process.

Compliance with Regulatory Requirements.

Software developers must ensure that the software they develop complies with relevant
laws and regulations. Compliance with regulations, lost reputation, and brand damage
resulting from privacy and security breaches are increasingly driving information secu-
rity and privacy policy decisions [MAS+11]. The costs of noncompliance are signi�cant.

Despite the high cost of noncompliance, developing legally compliant software is
challenging. Legal texts contain ambiguities [BA+08, OA+07]. Requirements engineers
need to understand domain-speci�c de�nitions and vocabulary before they can inter-
pret and extract compliance requirements [OA+07]. Cross-references between di�erent
portions of a legal text can be ambiguous and force engineers to analyze the law in
a non-sequential manner [Bre09, BA+08], and cross-references to external legal texts
increase the number of documents engineers must analyze in order to obtain compliance
requirements [OA+07].

Researchers are providing engineers with techniques and tools for specifying and
managing software requirements for legally compliant systems [Bre09, CHCGE10, GAP09,
MOA+09, MA10, MGL+06, SMPS09, You11]. Massey et al. use cross-references, along
with other factors, to prioritize compliance requirements, but do not analyze the cross-
referenced texts [MOA+09]. Requirements engineering research has focused on internal
cross-references [Bre09, MA+09, MGL+06] rather than external cross-references.
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The cross-references to external texts are important to analyze, because they may
introduce con�icts or re�ne existing requirements. C. Maxwell et al. analyze each ex-
ternal cross-reference within the U.S. Health Insurance Portability and Accountability
Act (HIPAA) Privacy Rule to determine whether a cross-reference either: introduces
a con�icting requirement, a con�icting de�nition, and/or re�nes an existing require-
ment [MAS+11]. Van Engers and Boekenoogen use scenarios and the Uni�ed Modeling
Language (UML) to detect errors in the law and improve legal text quality [vEB03].
Hamdaqa and Hamou-Lhadj present a classi�cation scheme for legal cross-references
outline a tool-supported, automated process for extracting cross-references and gener-
ating cross-reference graphs [HHL09].

Adedjouma et al. developed a framework for automated detection and resolution
of cross references in legal texts [ASB14]. They ground their work on Luxembourg's
legislative texts, both for studying the natural language patterns in cross reference ex-
pressions and for evaluating their solution. The approach is parameterized by a text
schema, making it possible to tailor the approach to di�erent legal texts and juris-
dictions. Through a study of legislative texts in Luxembourg, they extended existing
natural language patterns for cross reference expressions and provided a systematic way
to interpret these expressions. Several other approaches are also dealing with automated
supports for cross reference detection and resolution [PBM03, DWVE06, KZB+08].

Ghanavati et al. use compliance links to trace goals, softgoals, tasks and actors to
the law [GAP09]. They use traceability links to connect portions of a Goal Require-
ments Language (GRL) business model with a GRL model of the law. Berenbach et
al. use just in time tracing (JIT) to identify: (1) regulatory requirements; (2) system
requirements that satisfy said requirements; and (3) sections of the law that require
further analysis [BGCH10]. Zhang and Koppaka create legal citation networks based
on the citations found in case law [ZK07].

Requirements researchers have examined con�icts in software requirements [BI96,
EN95, RF94, TB07, VLDL98]. Robinson and Fickas describe how to detect and resolve
requirements con�icts using a tool-supported approach [RF94]. Boehm and In use the
WinWin model for negotiating resolutions to con�icts among quality attributes [BI96].
Van Lamsweerde et al. use KAOS to identify and resolve con�icts among software
goals [VLDL98]. Easterbrook and Nuseibeh use the ViewPoints Framework to handle
inconsistencies as a requirements speci�cation evolves [EN95]. Emmerich et al. examine
standards such as ISO and built a prototype policy checker engine in DOORS [EFM+99].
Thurimella and Bruegge examine con�icts among the requirements of various product
lines [TB07].

Panesar-Walawege et al. [PWSBC10] developed an extensible conceptual model,
based on the IEC 61508 standard, to characterize the chain of safety evidence that un-
derlies safety arguments about software. The conceptual model captures both the infor-
mation requirements for demonstrating compliance with IEC 61508 and the traceability
links necessary to create a seamless chain of evidence. The model can be specialized
according to the needs of a particular context and can facilitate software certi�cation.
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1.6 Conclusion

In this chapter, we have brie�y introduced some principles and basic concepts we will
use throughout the thesis including Product Line Engineering, Variability Modeling
and Requirements Engineering. We have described in particular existing approaches
for variability modeling and compliance with regulations. In the next chapter, we
review existing NLP and data mining techniques, present some approaches to deal with
synthesizing feature models and discuss their advantages and drawbacks.



Chapter 2

State of the Art

In this chapter, we study existing natural language processing and data mining tech-
niques, as well as existing approaches for synthesizing feature models from di�erent ar-
tifacts. Section 2.1 provides a survey of the most used statistical techniques to perform
the construction of variability models. In Section 2.2, we review existing techniques for
terminology and information extraction. Section 2.3 and Section 2.4 study and com-
pare existing methods to respectively extract features and synthesize feature models
from di�erent artifacts. Section 2.5 discusses the limitations of the state of the art.

2.1 Statistical Techniques to Construct Variability Models

2.1.1 Text Mining

Text mining is de�ned by [UMN+04] as an extension of data mining or knowledge dis-
covery, is a burgeoning new technology that refers generally to the process of extracting
interesting and non-trivial patterns or knowledge from unstructured text documents.
It is a multidisciplinary �eld, involving information retrieval, text analysis, information
extraction, clustering, categorization, visualization, database technology, and machine
learning.

Text mining can be visualized as consisting of two phases [T+99]: Text re�ning that
transforms free-form text documents into a chosen intermediate form, and knowledge
distillation that deduces patterns or knowledge from the intermediate form. Interme-
diate form (IF) can be semi-structured such as the conceptual graph representation,
or structured such as the relational data representation. Intermediate form can be
document-based wherein each entity represents a document, or concept-based wherein
each entity represents an object or concept of interests in a speci�c domain.

Mining a document-based IF deduces patterns and relationship across documents.
Document clustering/visualization and categorization are examples of mining from a
document-based IF. Mining a concept-based IF derives pattern and relationship across
objects or concepts. Data mining operations, such as predictive modeling and associa-
tive discovery, fall into this category. A document-based IF can be transformed into a
concept-based IF by realigning or extracting the relevant information according to the
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objects of interests in a speci�c domain. It follows that document-based IF is usually
domain-independent and concept-based IF is domain-dependent.

Figure 2.1: Text Mining Framework [T+99]

There are two main categories of text mining products: Document visualization and
Text analysis/understanding. The �rst one consists in organizing documents based on
their similarities and graphically represents the groups or clusters of the documents.
The second group is mainly based on natural language processing techniques, including
text analysis, text categorization, information extraction, and summarization.

Today, text mining plays an important role on document analysis. Subjects as
semantic analysis, multilingual text processes and domain knowledge have been ex-
plored and studied to derive a su�ciently rich representation and capture the relation-
ship between the objects or concepts described in the documents, produce language-
independent intermediate forms and to improve parsing e�ciency and derive a more
compact intermediate form. There have been some e�orts in developing systems that
interpret natural language queries and automatically perform the appropriate mining
operations.

Text mining techniques have been often implemented successfully in the requirement
elicitation �eld, reinforcing human-intensive task in which analyst proactively identify
stakeholders' needs, wants, and desires using a broad array of elicitation tools such as
interviews, surveys, brainstorming sessions, joint application design and ethnographic
studies. All of this tools are frequently based on human interpretation, natural language
and unstructured data. They are "expensive" especially when we talk about acquiring
requirements on large scale projects. Castro et al. [CHDCHM08] use text mining to
elicit needs in their approach, while using TF-IDF (term frequency, inverse document
frequency) and remove common (stop) words (e.g. "be" and "have"). TF-IDF weight
terms more highly if they occur less frequently and are therefore become more useful in
expressing unique concepts in the domain. Niu et al. [NE08a] were not only interested
in the relevance, but also the quantity of information of a word within a corpus. This
measure is de�ned by it information content as:

INFO(w) = − log2(P{w}) (2.1)
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where P{w} is the observed probability of occurrence of w in a corpus. They also
adopted verb direct object correlations to determine lexical a�nities between two units
of language in a document. Noppen et al. [NvdBWR09] use the latent semantic analysis
(LSA) on his approach to identify similarity between needs to further clustered them.
LSA [SS06b] considers texts to be similar if they share a signi�cant amount of concepts.
These concepts are determined according to the terms they include with respect to the
terms in the total document space.

As we have notice on requirement engineering applications; once the concept were
mined via text mining tools those were then classi�ed or grouped in clusters. Thus
clustering is a wide technique used in software engineering as we will see in next section.

2.1.2 Clustering

Clustering is a division of data into groups of similar objects. Each group, called cluster,
consists of objects that are similar between themselves and dissimilar to objects of other
groups. Representing data by fewer clusters necessarily loses certain �ne details (akin
to lossy data compression), but achieves simpli�cation. It represents many data objects
by few clusters, and hence, it models data by its clusters [RS10].

Data modeling puts clustering in a historical perspective rooted in mathematics,
statistics, and numerical analysis. From a machine learning perspective clusters cor-
respond to hidden patterns, the search for clusters is unsupervised learning, and the
resulting system represents a data concept. Therefore, clustering is unsupervised learn-
ing of a hidden data concept. Data mining deals with large databases that impose on
clustering analysis additional severe computational requirements. These challenges led
to the emergence of powerful broadly applicable data mining clustering methods. The
output clustering (or clusterings) can be hard (a partition of the data into groups) or
fuzzy (where each pattern has a variable degree of membership in each of the output clus-
ters) [JMF99]. Hierarchical clustering algorithms produce a nested series of partitions
based on a criterion for merging or splitting clusters based on similarity. Partitional
clustering algorithms identify the partition that optimizes (usually locally) a clustering
criterion. Additional techniques for the grouping operation include probabilistic [Bra91]
and graph-theoretic [Zah71] clustering methods.

Clustering techniques have been used by researchers to support a number of activi-
ties such as information retrieval performance improvement [Kow98], document brows-
ing [CKPT92], topics discovery [ESK04], organization of search results [ZEMK97], and
concept decomposition [DM01]. For document clustering the hierarchical approach is
generally preferred because of it natural �t with the hierarchy found in many doc-
uments [ZK02]. Hsia et al. [HHKH96] and Yaung [Yau92] have used agglomerative
hierarchical algorithms for clustering requirements in order to facilitate incremental
delivery by constructing proximities based on the references requirements to a set of
systems components. Al-Otaiby et al. [AOAB05] used traditional hierarchical clustering
algorithm to enhance design modularity by computing proximities as a function of con-
cepts shared between pairs of requirements. Chen [CZZM05] computed proximities by
manually evaluated requirements to identify resource accesses such as reading or writing
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to �le, and from this used iterative graph based clustering to automatically construct
a feature model. Goldin et al. [GB97] implemented an approach based on signal pro-
cessing to discover abstractions from a large quantity of natural language requirement
texts. Laurent et al. [LCHD07] apply a multiple orthogonal clustering algorithms to
capture the complex and diverse roles played by individual requirements. This knowl-
edge is the used to automatically generate a list of prioritized requirements. Castro
et al. [CHDCHM08] used the bisecting clustering algorithm to dynamically build the
discussion forum by means of requirements. They also used clustering to identify user
pro�le and predictive level of interest of forum participants.

2.1.3 Association Rules

Association rules are an important class of regularities in data. Mining of associa-
tion rules is a fundamental data mining task. It is perhaps the most important model
invented and extensively studied by the database and data mining community. Its
objective is to �nd all co-occurrence relationships, called associations, among data
items [Liu07]. Since it was �rst introduced in 1993 by Agrawal et al. [AIS93], it has at-
tracted a great deal of attention. Initial research was largely motivated by the analysis
of market basket data, the results of which allowed companies to more fully understand
purchasing behavior and, as a result, better target market audiences. One common
example is that diapers and beer often are sold together. Such information is valuable
for cross-selling, thus increasing the total sales of a company. For instance, a super-
market can place beer next to diapers hinting to parents that they should buy not only
necessities for their baby but also luxury for themselves.

Association mining is user-centric as the objective is the elicitation of useful (or
interesting) rules from which new knowledge may be derived. The key characteristics
of usefulness suggested in the literature are that the rules are novel, externally signi�-
cant, unexpected, non-trivial and actionable [BJA99, DL98, Fre99, HH99, HH01, RR01,
Sah99, ST95]. The association mining system's role in this process is to facilitate the
discovery, heuristically �lter and enable the presentation of these inferences or rules for
subsequent interpretation by the user to determine their usefulness.

Maedche et al. [Mae02] used a modi�cation of the generalized association rule learn-
ing algorithm for discovering properties between classes. The algorithm generates asso-
ciation rules comparing the relevance of di�erent rules while climbing up and/or down
the taxonomy. The apparently most relevant binary rules are proposed to the ontology
engineer for modeling relations into the ontology, thus extending. To restrict the high
number of suggested relations they de�ned so-called restriction classes that have to par-
ticipate in the relations that are extracted. Li et al. [LZ05] proposed a method called
PR Miner that uses frequent item-set mining to e�ciently extract implicit programming
rules from large software code written in an industrial programming language such as
C, requiring little e�ort from programmers and no prior knowledge of the software. PR-
Miner can extract programming rules in general forms (without being constrained by
any �xed rule templates) that can contain multiple program elements of various types
such as functions, variables and data types. In addition, they proposed an e�cient
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algorithm to automatically detect violations to the extracted programming rules, which
are strong indications of bugs. Jiao et al. [JZ05] in their approach to associate customer
needs to functional requirements, used association rules mining technique. By means of
this technique they explain the meaning of each functional requirement cluster as well
as the mapping of customer needs to each cluster.

2.2 Mining Knowledge using Terminology and Information
Extraction

2.2.1 Terminology Extraction

The studies on the de�nition and implementation of methodologies for extracting terms
from texts assumed since the beginning a central role in the organization and har-
monization of the knowledge enclosed in domain corpora, through the use of speci�c
dictionaries and glossaries[PPZ05]. Recently, the development of robust computational
NLP approaches to terminology extraction, able to support and speed up the extrac-
tion process, lead to an increasing interest in using terminology also to build knowledge
bases systems by considering information enclosed in textual documents. In fact, both
Ontology Learning and Semantic Web technologies often rely on domain knowledge au-
tomatically extracted from corpus through the use of tools able to recognize important
concepts, and relations among them, in form of terms and terms relations.

De�nition 2.1 (Terminology Extraction) "the task of identifying domain speci�c
terms from technical corpora."[KKM08]

"the task of automatically extracting terms or keywords from text."[KU96, HB08,
CCCB+08]

Starting from the assumption that terms unambiguously refer to domain-speci�c
concepts, a number of di�erent methodologies has been proposed so far to automati-
cally extract domain terminology from texts. Generally speaking, the term extraction
process consists of two fundamental steps: 1) identifying term candidates (either single
or multi-word terms) from text, and 2) �ltering through the candidates to separate
terms from non-terms. To perform these two steps, term extraction systems make
use of various degrees of linguistic �ltering and, then, of statistical measures ranging
from raw frequency to Information Retrieval measures such as Term Frequency/Inverse
Document Frequency (TF/IDF) [SB88], up to more sophisticated methods such as the
C-NC Value method [FA99], or lexical association measures like log likelihood [Dun93]
or mutual information. Others make use of extensive semantic resources [MA99], but
as underlined in Basili et al. [BPZ01], such methods face the hurdle of portability to
other domains.

Another interesting line of research is based on the comparison of the distribution of
terms across corpora of di�erent domains. Under this approach, identi�cation of relevant
term candidates is carried out through inter-domain contrastive analysis [PVG+01,
CN04, BMPZ01]. Interestingly enough, this contrastive approach has so far been applied
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only to the extraction of single terms, while, multi-word terms' selection is based upon
contrastive weights associated to the term syntactic head. This choice is justi�ed by
the assumption that multiword terms typically show low frequencies making contrastive
estimation di�cult [BMPZ01]. On the contrary, Bonin et al. [BDVM10] focused their
attention on the extraction of multi-word terms, which have been demonstrated to cover
the vast majority of domain terminology (85% according to Nakagawa et al. [NM03]);
for this reason, they have to be considered independently from the head.

2.2.2 Information Extraction

Information extraction (IE) is the task of �nding structured information from unstruc-
tured text. It is an important task in text mining and has been extensively studied
in various research communities including natural language processing, information re-
trieval and Web mining. It has a wide range of applications in domains such as biomed-
ical literature mining and business intelligence.

De�nition 2.2 (Information Extraction) "to identify a prede�ned set of concepts
in a speci�c domain, ignoring other irrelevant information, where a domain consists of
a corpus of texts together with a clearly speci�ed information need. In other words, IE
is about deriving structured factual information from unstructured text." [PY13]

"to identify instances of a particular prespeci�ed class of entities, relationships and
events in natural language texts, and the extraction of the relevant properties (argu-
ments) of the identi�ed entities, relationships or events." [PY13]

Template Filling. Many texts describe recurring stereotypical situations. The task
of template �lling is to �nd such situations in documents and �ll the template slots
with appropriate material. These slot-�llers may consist of text segments extracted
directly from the text, or concepts like times, amounts, or ontology entities that have
been inferred from text elements through additional processing.

Standard algorithms for template-based information extraction require full knowl-
edge of the templates and labeled corpora, such as in rule-based systems [CLH93,
RKJ+92] and modern supervised classi�ers [Fre98, CNL03, BM04, PR09]. Classi�ers
rely on the labeled examples surrounding context for features such as nearby tokens,
document position, named entities, semantic classes, syntax, and discourse relations
[MC07]. Ji and Grishman [JG08] also supplemented labeled with unlabeled data.

Weakly supervised approaches remove some of the need for fully labeled data. Most
still require the templates and their slots. One common approach is to begin with
unlabeled, but clustered event-speci�c documents, and extract common word patterns
as extractors [RS98, SSG03, RWP05, PR07]. In particular, Rilo� and Schmelzenbach
[RS98] have developed a corpus-based algorithm for acquiring conceptual case frames
empirically from unannotated text. Sudo et al. [SSG03] introduce an extraction pattern
representation model based on subtrees of dependency trees, so as to extract entities
beyond direct predicate-argument relations. Rilo� et al. [RWP05] explore the idea of
using subjectivity analysis to improve the precision of information extraction systems
by automatically �ltering extractions that appear in subjective sentences.
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Filatova et al. [FHM06] integrate named entities into pattern learning to approxi-
mate unknown semantic roles. Bootstrapping with seed examples of known slot �llers
has been shown to be e�ective [STA06, YGTH00].

Marx et al. proposed a cross-component clustering algorithm for unsupervised in-
formation extraction [MDS02]. The algorithm assigns a candidate from a document to
a cluster based on the candidate's feature similarity with candidates from other docu-
ments only. In other words, the algorithm prefers to separate candidates from the same
document into di�erent clusters. Leung et al. proposed a generative model to capture
the same intuition [LJC+11]. Speci�cally, they assume a prior distribution over the
cluster labels of candidates in the same document where the prior prefers a diversi�ed
label assignment. Their experiments show that clustering results are better with this
prior than without using the prior.

Shinyama and Sekine [SS06a] describe an approach to template learning without
labeled data. They present unrestricted relation discovery as a means of discovering
relations in unlabeled documents, and extract their �llers. Central to the algorithm is
collecting multiple documents describing the same exact event, and observing repeated
word patterns across documents connecting the same proper nouns. Learned patterns
represent binary relations, and they show how to construct tables of extracted entities
for these relations. The limitations to their approach are that (1) redundant documents
about speci�c events are required, (2) relations are binary, and (3) only slots with named
entities are learned. Large-scale learning of scripts and narrative schemas also captures
template-like knowledge from unlabeled text [CJ08, KO10]. Scripts are sets of related
event words and semantic roles learned by linking syntactic functions with coreferring
arguments. While they learn interesting event structure, the structures are limited to
frequent topics in a large corpus.

Chambers and Jurafsky presented a complete method that is able to discover mul-
tiple templates from a corpus and give meaningful labels to discovered slots [CJ11].
Speci�cally, their method performs two steps of clustering where the �rst clustering
step groups lexical patterns that are likely to describe the same type of events and the
second clustering step groups candidate role �llers into slots for each type of events. A
slot can be labeled using the syntactic patterns of the corresponding slot �llers. For
example, one of the slots discovered by their method for the bombing template is auto-
matically labeled as "Person/Organization who raids, questions, discovers, investigates,
di�uses, arrests." A human can probably infer from the description that this refers to
the police slot.

Extraction of Product Attributes. In the �eld of information extraction from
product reviews, most of the work has focused on �nding the values for a set of prede-
�ned attributes. Recently, there has been growing interest in the automated learning
of the attributes themselves, and then �nding the associated values. One of the initial
papers in the �eld of "attribute" extraction by Hu et al. [HL04] talks about using a
frequency based approach to identifying the features in product reviews. They order the
noun phrases by frequency and then have di�erent manually de�ned settings to �nd the
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features (like lower cuto�, upper cuto�, etc). Though they are able to achieve a good
workable system with these methods, their assumption that a feature would always be
a noun is not always true. There can be multi word features like "optical zoom", "hot
shoe �ash" where one of the words is an adjective. They take a more holistic approach
to the problem and use the opinion (sentiment) words to �nd infrequent features.

In [GPL+06], Ghani et al. have shown success in attribute-value pair extraction
using co-EM and Naive Bayes classi�ers. However, their work focused on o�cial product
description from merchant sites, rather than on reviews. Popescu et al.'s OPINE system
[PE07] also uses the dataset provided in [HL04]. They explicitly extract noun phrases
from the reviews (with a frequency based cuto�) after parts of speech (POS) tagging and
then compute Pointwise Mutual Information scores between the phrase and meronymy
discriminators associated with the product class. This again assumes that features are
always nouns and misses out on features which are not nouns or are combination of
di�erent POS tags.

Gupta et al. [GKG09] provide a method for �nding the key features of products by
looking at a number of reviews of the same product. The goal is to use the language
structure of a sentence to determine if a word is a feature in the sentence. For this they
propose an approach in which we �rst run a POS tagger on the reviews data, and then
generate input vectors using these POS tagged reviews. They formulate the problem
of extracting features as a classi�cation problem, where given a word, the goal is to
classify it as a feature or not-feature.

Bing et al. [BWL12] developped an unsupervised learning framework for extracting
popular product attributes from di�erent Web product description pages. Unlike ex-
isting systems which do not di�erentiate the popularity of the attributes, they propose
a framework which is able not only to detect concerned popular features of a product
from a collection of customer reviews, but also to map these popular features to the
related product attributes, and at the same time to extract these attributes from de-
scription pages. They developped a discriminative graphical model based on hidden
Conditional Random Fields. The goal of extracting popular product attributes from
product description Web pages is di�erent from opinion mining or sentiment detection
research as exempli�ed in [DLZ09, KIM+04, LHC05, PE07, TTC09, Tur02, ZLLOS10].
These methods typically discover and extract all product attributes as well as opinions
directly appeared in customer reviews. In contrast, the goal here is to discover popular
product attributes from description Web pages.

Some information extraction approaches for Web pages rely on wrappers which can
be automatically constructed via wrapper induction. For example, Zhu et al. developed
a model known as Dynamic Hierarchical Markov Random Fields which is derived from
Hierarchical CRFs (HCRF) [ZNZW08]. Zheng et al. proposed a method for extracting
records and identifying the internal semantics at the same time [ZSWG09]. Yang et
al. developed a model combing HCRF and Semi-CRF that can leverage the Web page
structure and handle free texts for information extraction [YCN+10].

Luo et al. studied the mutual dependencies betweenWeb page classi�cation and data
extraction, and proposed a CRF-based method to tackle the problem [LLX+09]. Some
common disadvantages of the above supervised methods are that human e�ort is needed
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to prepare training examples and the attributes to be extracted are pre-de�ned. Some
existing methods have been developed for information extraction of product attributes
based on text mining. Probst et al. proposed a semi-supervised algorithm to extract
attribute value pairs from text description [PGK+07]. Their approach aims at handling
free text descriptions by making use of natural language processing techniques.

2.3 Approaches for Mining Features and Constraints

Most of the works focus on the extraction of features from natural language requirements
and legacy documentation [Fox95, CZZM05, ASB+08a, NE08a, NE08b, WCR09]. The
DARE tool [Fox95] is one of the earliest contribution in this sense. A semi-automated
approach is employed to identify features according to lexical analysis based on term
frequency (i.e., frequently used terms are considered more relevant for the domain).
Chen et al. [CZZM05] suggest the usage of the clustering technology to identify features:
requirements are grouped together according to their similarity, and each group of
requirements represents a feature.

Clustering is also employed in the subsequent works [ASB+08a, NE08a, NE08b,
WCR09], but while in [CZZM05] the computation of the similarity among require-
ments is manual, in the other works automated approaches are employed. In particular,
[ASB+08a] use IR-based methods, namely the Vector Similarity Metric (VSM) and La-
tent Semantic Analysis (LSA). With VSM, requirements are represented as vectors of
terms, and compared by computing the cosine among the vectors. With LSA, require-
ments are similar if they contain semantically similar terms. Two terms are considered
semantically similar if they normally occur together in the requirements document.

LSA is also employed by Weston et al. [WCR09], aided with syntactic and semantic
analysis, to extract the so-called Early Aspects. These are cross-cutting concerns that
are useful to derive features. Finally, Niu et al. [NE08a, NE08b] use Lexical A�nities
(LA) � roughly, term co-occurrences � as the basis to �nd representative expressions
(named Functional Requirements Pro�les) in functional requirements.

All the previously cited works use requirements as the main source for feature min-
ing. Other works [Joh06, DGH+11, ACP+12b] present approaches where public product
descriptions are employed. While in [Joh06] the feature extraction process is manual,
the other papers suggest automated approaches. The feature mining methodology pre-
sented in [DGH+11] is based on clustering, and the authors provide also automated
approaches for recommending useful features for new products. Instead, the approach
presented in [ACP+12b] is based on searching for variability patterns within tables
where the description of the products are stored in a semi-structured manner. The
approach includes also a relevant part of feature model synthesis. Ferrari et al. [FSd13]
apply natural language processing techniques to mine commonalities and variabilities
from brochures. They conducted a pilot study in the metro systems domain showing
the applicability and the bene�ts in terms of user e�ort.

Regardless of the technology, the main di�erence between [DGH+11], [ACP+12b]
and [FSd13] is that the former two rely on feature descriptions that are rather struc-
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tured. Indeed, in [DGH+11] the features of a product are expressed with short sentences
in a bullet-list form, while in [ACP+12b] features are stored in a tabular format. In-
stead, Ferrari et al. [FSd13] deal with brochures with less structured text, where the
features have to be discovered within the sentences.

Nadi et al. [NBKC14] developed a comprehensive infrastructure to automatically
extract con�guration constraints from C code. Ryssel et al. developed methods based
on Formal Concept Analysis and analyzed incidence matrices containing matching re-
lations [RPK11]. Bagheri et al. [BEG12] proposed a collaborative process to mine and
organize features using a combination of natural language processing techniques and
Wordnet.

2.4 Approaches for Feature Models Synthesis

2.4.1 Synthesis of FMs from con�gurations/dependencies

Techniques for synthesizing an FM from a set of dependencies (e.g., encoded as a propo-
sitional formula) or from a set of con�gurations (e.g., encoded in a product comparison
matrix) have been proposed [ABH+13b, ACSW12, CSW08, CW07b, HLHE11, HLHE13,
JKW08, LHGB+12, LHLG+15, SLB+11b].

In [ACSW12, CW07b], the authors calculate a diagrammatic representation of all
possible FMs, leaving open the selection of the hierarchy and feature groups.
Andersen et al. [ACSW12] address the problem of automatic synthesis of feature models
from propositional constraints. They propose techniques for synthesis of models from
respectively conjunctive normal form (CNF) and disjunctive normal form (DNF) for-
mulas. The authors construct diagrams that contain a hierarchy of groups of binary
features enriched by cross-hierarchy inclusion/exclusion constraints. The algorithms as-
sume a constraint system expressed in propositional logics as input. In practice, these
constraints can be either speci�ed by engineers, or automatically mined from the source
code using static analysis [BSL+10]. Technically, they synthesize not a feature model
(FM), but a feature graph (FG), which is a symbolic representation of all possible fea-
ture models that could be sound results of the synthesis. Then, any of these models
can be e�ciently derived from the feature graph.

Janota et al. [JKW08] o�er an interactive editor, based on logical techniques, to
guide users in synthesizing an FM. The algorithms proposed in [HLHE11, HLHE13,
LHGB+12] do not control the way the feature hierarchy is synthesized either. In ad-
dition no user support is provided to interactively synthesize or refactor the resulting
FM. In [ABH+13b], authors present a synthesis procedure that processes user-speci�ed
knowledge for organizing the hierarchy of features. The e�ort may be substantial since
users have to review numerous potential parent features.

She et al. [SLB+11b] propose an heuristic to rank the correct parent features in
order to reduce the task of a user. Though the synthesis procedure is generic, they
assume the existence of feature descriptions in the software projects Linux, eCos, and
FreeBSD. The authors showed that their attempts to fully synthesize an FM do not lead
to a desirable hierarchy � such as the one from reference FMs used in their evaluation
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� coming to the conclusion that an additional expert input is needed.
Yi et al. [YZZ+12] applied support vector machine and genetic techniques to mine

binary constraints (requires and excludes) from Wikipedia. They evaluated their ap-
proach on two feature models of SPLOT. Lora et al. [LMSM] propose an approach that
integrates statistical techniques to identify commonality and variability in a collection
of a non prede�ned number of product models. This approach constructs a product
line model from structured data: bill of materials (BOM) and does not pay attention
to supporting imperfect information.

An important limitation of prior works is the identi�cation of the feature hierar-
chy when synthesizing the FM, that is, the user support is either absent or limited.
In [BABN15], we de�ned a generic, ontologic�aware synthesis procedure that computes
the likely siblings or parent candidates for a given feature. We developed six heuris-
tics for clustering and weighting the logical, syntactical and semantical relationships
between feature names. A ranking list of parent candidates for each feature can be
extracted from the weighted Binary Implication Graph which represents all possible
hierarchies of an FM. In addition, we performed hierarchical clustering based on the
similarity of the features to compute groups of features.

The heuristics rely on general ontologies, e.g. from Wordnet or Wikipedia. We
also proposed an hybrid solution combining both ontological and logical techniques.
We conducted an empirical evaluation on hundreds of FMs, coming from the SPLOT
repository and Wikipedia. We provided evidence that a fully automated synthesis (i.e.,
without any user intervention) is likely to produce FMs far from the ground truths.

All methods presented above constructs variability models from structured data and
not from informal documentation.

2.4.2 Synthesis of FMs from product descriptions

Acher et al. [ACP+12a] propose a semi-automated procedure to support the transition
from structured product descriptions (expressed in a PCM) to FMs. They provide a
dedicated language that can be used by a practitioner to parameterize the extraction
process. The language supports scoping activities allowing to ignore some features or
some products. It also enables practitioners to specify the interpretation of data in
terms of variability and to set a feature hierarchy if needs be.
The second step of their approach is to synthesize an FM characterizing the valid com-
binations of features (con�gurations) supported by the set of products. Several FMs,
representing the same set of con�gurations but according to di�erent feature hierar-
chies, can be derived. They de�ne a speci�c merging algorithm that �rst compute the
feature hierarchy and then synthesize the variability information (mandatory and op-
tional features, Mutex-, Xor and Or-groups, (bi-)implies and excludes constraints) using
propositional logic techniques.
The authors showed that, although many feature groups, implies and excludes con-
straints are recovered, a large amount of constraints is still needed to correctly repre-
sent the valid combinations of features supported by the products. Their initial study
was rather informal and conducted on a synthetic and limited data sample. Moreover,
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this approach does not handle variability in informal documents since it takes as input
product descriptions expressed in a tabular format.

Dumitru et al. [DGH+11] developed a recommender system that models and recom-
mends product features for a given domain. Their approach mines product descriptions
from publicly available online speci�cations, utilizes text mining and a novel incre-
mental di�usive clustering algorithm to discover domain-speci�c features, generates a
probabilistic feature model that represents commonalities, variants, and cross-category
features, and then uses association rule mining and the k-Nearest-Neighbor machine
learning strategy to generate product speci�c feature recommendations.

Davril et al. [DDH+13b] present a fully automated approach, based on prior work
[HCHM+13b], for constructing FMs from publicly available product descriptions found
in online product repositories and marketing websites such as SoftPedia and CNET.
The proposal is evaluated in the anti-virus domain. The task of extracting FMs in-
volves mining feature descriptions from sets of informal product descriptions, naming
the features, and then discovering relationships between features in order to organize
them hierarchically into a comprehensive model.

Indeed, product speci�cations are �rst processed in order to identify a set of features
and to generate a product-by-feature matrix. Then, meaningful feature names are
assigned and a set of association rules are mined for these features. These association
rules are used to generate an implication graph (IG) which captures binary con�guration
constraints between features. The tree hierarchy and then the feature diagram are
generated given the IG and the content of the features. Finally, cross-tree constraints
and OR-groups of features are identi�ed.

To evaluate the quality of FMs, the authors �rst explored the possibility of creating
a "golden answer set" and then comparing the mined FM against this standard. The
results showed that the generated FMs do not reach the same level of quality achieved
in manually constructed FMs. The evaluation involved manually creating one or more
FMs for the domain, and then asking users to evaluate the quality of the product lines
in a blind study.

2.4.3 Synthesis of FMs from requirements

Chen et al. [CZZM05], Alves et al. [ASB+08b], Niu et al. [NE09], and Weston et
al. [WCR09] use information retrieval (IR) techniques to abstract requirements from
existing speci�cations, typically expressed in natural language.

Niu et al. [NE08a] provide a semi-automated approach for extracting an SPL's func-
tional requirements pro�les (FRPs) from natural language documents. They adopt the
Orthogonal Variability Model (OVM) [PBvdL05b] to represent the extraction result
and therefore manage the variability across, requirements, design, realization and test-
ing artifacts. FRPs, which capture the domain's action themes at a primitive level, are
identi�ed on the basis of lexical a�nities that bear a verb-DO (direct object) relation.
They also analyze the essential semantic cases associated with each FRP in order to
model SPL variabilities [NE08a] and uncover early aspects [NE08b].

However, identifying aspects is achieved by organizing FRPs into overlapping clus-
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ters [NE08b] without explicitly considering quality requirements. Moreover, we can
point out that this approach experiments failures related to lack of semantics, and then
an analyst should pass over the heuristics to verify and validate them. We can also
notice that there is no heuristics that exclude relationships. For all these reasons, this
approach cannot be considered to be totally automated and depends on the domain
analyst personal understanding.

Chen et al. [CZZM05] propose a requirements clustering based approach to con-
struct feature models from functional requirements of sample applications. For each
application, tight�related requirements are clustered into features, and then functional
features are organized into an application feature model. All the application feature
models are merged into a domain feature model, and the variable features are also
labeled. Nevertheless, requirements similarity is performed manually based on the ex-
pertise of the domain analyst. They use the concept of resource to de�ne similarity:
requirements are similar whenever they share resources. Thus, this approach requires
the frequent intervention of an analyst. It will be then di�cult to handle in large size
projects. Moreover, this approach does not address transversal dependencies between
features (requires and exclude constraints). The analyst should manipulate the product
line model by including these relationships.

Alves et al. [ASB+08b] also propose an approach which, based on a clustering al-
gorithm, generates features models. They instead employ automatic IR techniques,
Vector Space Model (VSM) and Latent Semantic Analysis (LSA), to compute require-
ments similarity. Clusters of requirements are then identi�ed and these are abstracted
further into a con�guration. The con�gurations corresponding to all requirement docu-
ments are merged into a fully-�edged feature model. However, features closer to the root
comprise an increasingly high number of requirements. Therefore, the authors need to
identify scalable and systematic naming of features in con�gurations and propose some
heuristics.

Weston et al. [WCR09] introduce a tool suite that automatically processes natural�
language requirements documents into a candidate feature model, which can be re�ned
by the requirements engineer. The framework also guides the process of identifying
variant concerns and their composition with other features. The authors also provide
language support for specifying semantic variant feature compositions which are resilient
to change.

Niu et al. [NE09] investigate both functional and quality requirements via concept
analysis [GW12]. The goal is to e�ciently capture and evolve a SPL's assets so as to
gain insights into requirements modularity. To that end, they set the context by leverag-
ing functional requirements pro�les and the SEI's quality attribute scenarios [BCK03].
By analyzing the relation in context, the interplay among requirements are identi�ed
and arranged in a so�called concept lattice. The authors then formulate a number
of problems that aspect�oriented SPL RE should address, and present their solutions
according to the concept lattice. In particular, they locate quality�speci�c functional
units, detect interferences, update the concept hierarchy incrementally, and analyze the
change impact.

To deal with large-scale projects Castro et al. [CHDCHM08] propose an hybrid
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recommender system that recommends forums to stakeholders and infers on knowledge
of the user by examining the distribution of topics across the stakeholders' needs. The
�rst step consists on gathering needs using a web enabled elicitation tool. The needs are
then processed using unsupervised clustering techniques in order to identify dominant
and cross cutting themes around which a set of discussion forums is created. To help
keep stakeholders informed of relevant forums and requirements, they use a collabora-
tive recommender system which recommends forums based on the interests of similar
stakeholders. These additional recommendations increase the likelihood that critical
stakeholders will be placed into relevant forums in a timely manner. Their approach
is centered on the requirement elicitation process but can be used to obtain the basis
for constructing product line models when we are faced with extremely high number of
requirements.

Also Laurent et al. [LCHD07] propose a method to not only face that kind of situa-
tions but also allowing budgetary and short time to market deadlines restrictions. The
goal is then to prioritize requirements and decide, given the available personnel, time
and other resources, which one to include in a product release. They therefore pro-
pose an approach for automating a signi�cant part of the prioritization process. The
proposed method utilizes a probabilistic traceability model combined with a standard
hierarchical clustering algorithm to cluster incoming stakeholder requests into hierarchi-
cal feature sets. Additional cross-cutting clusters are then generated to represent factors
such as architecturally signi�cant requirements or impacted business goals. Prioritiza-
tion decisions are initially made at the feature level and then more critical requirements
are promoted according to their relationships with the identi�ed cross-cutting concerns.
The approach is illustrated and evaluated through a case study applied to the require-
ments of the ice breaker system.

Di�erent prioritization techniques are used [KR97, Mea06, Moi00, BR89, ASC07].
Often stakeholders simply place requirements into distinct categories such as manda-
tory, desirable, or inessential [Bra90]. They can also quantitatively rank the require-
ments [Kar95]. Analytical Hierarchy Process AHP [KR97] uses a pair wise comparison
matrix to compute the relative value and costs of individual requirements in respect to
one another. Theory WW, also known as Win Win [BR89], requires each stakeholder
to categorize requirements in order of importance and perceived risk. Stakeholders then
work collaboratively to forge an agreement by identifying con�icts and negotiating a
solution. The Requirement Prioritization Framework supports collaborative require-
ments elicitation and prioritization and includes stakeholders pro�ling as well as both
quantitative and qualitative requirements rating [Moi00]. Value oriented prioritization
VOP incorporate the concept of perceived value, relative penalty, anticipated cost and
technical risks to help select core requirements[ASC07]. These techniques described
above were developed to treat only requirement elicitation process. They are centered
based on stakeholder participation and negotiation.

Vague, con�icting, imperfect and inaccurate information can severely limit the e�ec-
tiveness of approaches that derive features product line models from textual requirement
speci�cations. The in�uence of imperfect information on feature diagrams is well rec-
ognized [PRWB04, RP04]. Kamsties [Kam05a] identi�es that ambiguity in requirement
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speci�cations needs to be understood before any subsequent design can be undertaken.
Noppen et al.'s approach [NvdBWR09] de�nes a �rst step by proposing the use of fuzzy
feature diagrams and design steps to support these models, but it does not provide an
automatic method to construct them.

2.5 Discussion and Synthesis

The analysis of the state-of-the-art reveals these limitations:

� Lack of variability formalization for safety requirements. Safety require-
ments are provided in large and heterogeneous documents such as laws, standards
or regulatory texts. Regulatory requirements are most often disconnected from
the technical system requirements, which capture the expected system behavior.
These requirements are ambiguous, not clear and unveri�able, leaving a large
margin for interpretation. They express high level objectives and requirements on
the system. Furthermore, regulation changes over time and from one country to
another. Several existing methods handle managing variability in requirements
speci�cations. Yet, few of them address modeling variability in regulatory re-
quirements. Formalizing requirements variability is crucial to easily perform the
certi�cation of safety systems in di�erent countries.

� Few automated approaches are addressing variability extraction from
informal documentation. Constructing variability models is a very arduous
and time-consuming task for domain engineers, especially if they are presented
with heterogeneous and unstructured documentation (such as interview tran-
scripts, business models, technical speci�cations, marketing studies and user man-
uals) from which to derive the variability model. And as natural language is
inherently inaccurate, even standardized documentation will contain ambiguity,
vagueness and con�icts. Thus, deriving an accurate variability model from infor-
mal documentation remains a hard and complex activity and still mostly relies on
the experience and expertise of domain engineers. Several approaches have been
proposed to mine variability and support domain analysis [ACP+12a, YZZ+12,
DDH+13a, LHLG+14, BABN15]. However, few of them pay attention to adopt
automated techniques for the construction of variability models from unstructured
and ambiguous documents.

� Limits of existing works when reverse engineering feature models from
requirements. Data mining techniques, such as clustering, have been con-
sidered by many authors to elicit (text mining) and obtain a feature diagram
[CZZM05, NE09, NvdBWR09, ASB+08b, WCR09]. Heuristics and algorithms
have been developed forgetting in most cases the study of transversal relationships.
These methods currently proposed are not a�ordable for large scale projects. How-
ever, several techniques have been developed to help the analyst in the decision
maker process by prioritizing and triage requirements. They are centered based on



40 State of the Art

stakeholder participation and negotiation and still remain quite manual. It will be
useful to develop a method that could handle a large number of requirements and
assist domain experts when building feature model using automated techniques.

� Limits of existing approaches when extracting PCMs from informal
product descriptions. Many existing techniques that have been implemented to
extract variability from informal product descriptions rely on PCMs, but with only
boolean features. However, as showed earlier, PCMs contain more than simple
boolean values and products themselves have variability, calling for investigating
(a) the development of novel synthesis techniques capable of handling such values
and deliver a compact, synthetic, and structured view of related products, and
(b) the use of tools supporting to visualize, control, review and re�nement of
information in the PCM.

� Lack of tracing variability. Variability modeling approaches often do not ad-
dress traceability between artifacts across problem and solution space. Traceabil-
ity will improve the understanding of system variability, as well as support its
maintenance and evolution. With large systems the necessity to trace variability
from the problem space to the solution space is evident. Approaches for dealing
with this complexity of variability need to be clearly established.

2.6 Conclusion

In this chapter we have surveyed several approaches in literature that are close related
to the main contributions of this thesis. In particular, we reviewed several statistical
techniques for mining knowledge from text and building variability models. We also
presented the state of the art of synthesizing feature models from di�erent artifacts and
discussed their limitations.

In the next part, we present the contributions of this thesis in our two case studies
and provide a comparison of these latters. In Chapter 3, we propose an approach to
reverse engineering feature models from regulatory requirements in the nuclear domain.
Chapter 4 describes our approach for synthesizing product comparison matrices from
informal product descriptions. Finally, Chapter 5 provides a comparison, lessons learned
and discussion regarding these two case studies.



Part II

Contributions

41





Chapter 3

Moving Toward Product Line

Engineering in a Nuclear Industry

Consortium

In this chapter, we instantiate our global contribution in the �rst case study to reverse
engineering feature models from regulatory requirements in order to improve safety sys-
tems certi�cation in the nuclear domain. Basically, the chapter contains two parts. In
the �rst part, we formalize manually the variability in safety requirements and estab-
lish tracing variability with the architecture. This manual work is also a contribution
that provides great value to industry partners and that introduces formal variability
modeling in their engineering processes. Based on this experience, we have acquired
solid knowledge about the domain of regulatory requirements, which is the basis to
propose a meaningful automatic process for synthesizing feature models from these reg-
ulations. This constitutes the second part of this chapter. The general objective of the
chapter is to adopt natural language processing and data mining techniques capable of
extracting features, commonalities, di�erences and features dependencies from regula-
tory requirements among di�erent countries. We proposed an automated methodology
based on semantic analysis, requirements clustering and association rules to assist ex-
perts when constructing feature models from these regulations.

The chapter is organized as follows. Sections 3.1 and 3.2 present the context and
discuss the lack of variability awareness of the nuclear industry. Sections 3.3 and 3.4
provide additional background. Section 3.5 gives an overview of the general approach.
In Section 3.6, we formalize manually the variability in safety requirements and we
motivate Section 3.7 which investigates the use of automated techniques to mine and
model variability from these requirements. In Section 3.8, we address tracing variability
between artifacts across problem and solution space. Section 3.9 describes the di�erent
techniques used to implement our method. Sections 3.10 and 3.11 successively present
our case study and evaluate our proposed approach. Section 3.12 provides lessons
learned and discussion. In Section 3.13, we discuss threats to validity.
The contributions of this chapter are published in [NSAB14].
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3.1 Context

3.1.1 The CONNEXION Project

Since 2011, the CONNEXION1 project is a national work program to prepare the de-
sign and implementation of the next generation of digital Instrumentation and Control
(I&C) systems for nuclear power plants, with an international compliance dimension.
The CONNEXION project is built around a set of academic partners (CEA, INRIA,
CNRS / CRAN, ENS Cachan, LIG, Telecom ParisTech) and on collaborations between
large integrators such as AREVA and ALSTOM, EDF and "technology providers" of
embedded software (Atos Worldgrid, Rolls-Royce Civil Nuclear, Corys TESS, Esterel
Technologies, All4Tec, Predict). For the speci�c concern of having a high level and
global perspective on requirements and architecture variability modeling, the working
group started on November 2013 and was constituted of CEA, Inria, AREVA, EDF,
Atos Worldgrid, Rolls-Royce Civil Nuclear, and All4Tec engineers and researchers. In
the group, Inria, CEA and All4Tec are considered as variability experts.

EDF Context. EDF (Electricité de France) is the national electricity provider in
France and owns and operates a �eet of 58 nuclear power units. Besides the continuous
maintenance and surveillance during operation, the systems of a unit may be replaced
or upgraded during the periodic outages that are necessary for refueling and inspec-
tion. Such changes are under close regulatory scrutiny and subject to approval from
the concerned safety authorities. Experience from the �eld, technological progress or
societal evolutions may lead authorities to modify their expectations regarding the dif-
ferent systems. Consequently, they ask the licensee to justify the system's safety based
on new or modi�ed criteria. Safety justi�cations are grounded on technical arguments
justifying technological choices, design decisions but also rely on practices that have
been accepted in previous projects.

In France, EDF nuclear power units are built in series. The units of a series have the
same general design, with relatively minor di�erences to take account of the speci�c site
constraints. For example, the cooling systems need to take consideration of whether the
unit is on the seashore, along a big river, or along a small river. There are currently four
main series: the "900MW" series has 34 units, the "1300MW" series has 20 units, the
"N4" series (1450MW) has 4 units, and the Evolutionary Pressurized Reactor (EPR)
series has one unit still under construction. A large number of functions are necessary
to operate a nuclear power unit, and guarantee its safety. Functions are categorized
(A, B, C or Not Classi�ed) based on their importance to safety, category A functions
being the most important to safety, and Not Classi�ed functions being those that are
not important to safety. In parallel to functions categorization, the I&C systems are
classi�ed based on the categories of the functions they implement. As mentioned earlier,
each system important to safety (i.e., implementing at least one category A, B or C
function) goes through a safety justi�cation process. In general, the safety authority
lets EDF propose and present its solution and then decides whether the solution is
acceptable or needs to be improved.

1http://www.cluster-connexion.fr/

http://www.cluster-connexion.fr/
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3.1.2 Quali�cation of Safety Systems and National Practices regard-
ing I&C Systems

Software systems designed to perform safety functions must conform to an increasing
set of regulatory requirements. In the nuclear energy domain, a licensee must therefore
demonstrate that his system meets all regulatory requirements of a regulator. These
requirements can be contained in regulatory documents, in guides, standards and even
in tacit knowledge [SGN11] acquired from anterior projects in the past. This lays
applicants with a huge and increasing amount of documents and information.

This work takes its root on I&C systems in nuclear power plants. I&C systems
include instrumentation to monitor physical conditions in the plant (e.g., temperature,
pressure, or radiation), redundant systems to deal with accidental conditions (safety
systems) and all the equipment for human operators to control the behavior of the
plant. While digital components are replacing most of the older conventional devices in
I&C systems, con�dence in digital technologies remains low. Consequently, regulatory
practice evolves and new standards appear regularly while domain expertise is heavily
involved for certi�cation.

In a quite recent history, answering to a nuclear industry motto: "to cope with
complex safety problems, the simpler the solution is, the better the solution is", nuclear
industry was used to utilize relays and conventional (not digital) technologies, which
were simple enough to be used and quali�ed for complex and critical safety functions.

Digital systems have now become essential in all industries and these conventional
components are not available anymore in the market and less and less speci�ed for
nuclear industry sole usage like COTS (Commercial O�-The-Shelf). Unfortunately, it
represents a monumental e�ort to try to demonstrate, if feasible, the complete absence
of error into these digital systems. The situation becomes worse while relating to some
famous failures due to software during the last decades.

Based on their experience acquired from past or recent projects, regulators of each
country have built a unique and speci�c practice related to nuclear energy and safety
concerns. This section provides an overview of the regulatory requirements corpus
related to safety in nuclear I&C systems. We focus on all the links that must be
established in order to certify a system.

3.1.2.1 Operators and Regulations

Figure 3.1 gives an overview of the di�erent kind of documents and actors involved in
the safety assessment process for a candidate plant project. We detail this �gure and
illustrate it within the scope of digital I&C systems.

When licensees, like EDF, plan a project (realization of a new power plant, substitu-
tion of obsolete technologies in existing plants, renewal of an exploitation license), they
rely on their experience acquired on past projects or take into account other existing
projects. They may have issued technical codes to ease reusability along their di�erent
projects. They also rely on their engineering expertise to cope with complex emerging
technical issues when innovation is required.
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The proposed solution must comply with regulatory requirements. These require-
ments or recommendations are expressed in multiple documents: legal documents issued
by national authorities; standards, issued by international organizations; regulatory
practices, which arise from speci�c questions from regulators and following discussions.
These di�erent types of requirements, shown at the left and top of Figure 3.1, are
detailed in the following.

Figure 3.1: Overview of the nuclear regulatory landscape [SB12a]

3.1.2.2 Di�erent Kind of Regulatory Texts

Regulatory Texts with Regulatory Requirements. Regulatory texts issued by
public authority, express very high level requirements, principles or objectives related
to people's life and environment protection, applicants responsibilities and duties. These
texts do not provide guidance to achieve these requirements [SB12a]. In France, such
documents and requirements are collected in the "Basic safety rules" documents (RFS
II.4.1.a related to software). In the USA, they are expressed through the Code of Federal
Regulations 10CFR50 and its appendices. In the UK, the requirements are collected in
the "Safety Assessment Principles" (SAPs).
Regulatory Guidance. Regulatory guides describe the regulator's position and what
he considers as an acceptable approach. These guides, endorse (or not) parts of stan-
dards and may provide interpretations of some speci�c parts. In France, there is no such
document available. In the USA, the Nuclear Regulatory Commission (NRC) publishes
regulatory guides such as the Regulatory Guide 1.168 for "Veri�cation validation, re-
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lease and audit for digital computer software used in safety systems". In the UK, one
can �nd the Technical Assessment Guides (TAGs), for example the TAG 003 titled
"safety systems" and 046 titled "Computer-based safety systems".
Regulatory Positions and Practice. During projects submissions, realizations, op-
erations, maintenance, licensees still have to deal with regulators and issue documen-
tations related to a speci�c project or installation. It can be the case for example for
the renewal of an obsolete I&C system which raises a problem of quali�cation of a new
device. This leads to regulatory positions while accepting or refusing propositions (for
instance, the authorization of operation for ten more years for one reactor in France)
or requiring improvements on speci�c topics. This is the most explicit highlight of the
regulatory practice.

3.1.2.3 International Standards and Practice

International standards are state of the art propositions covering speci�c domains. It
is important to notice that the requirements and recommendations in these standards
are meant to be applied in a voluntary way, except when a regulator imposes or rec-
ommends its application. At this moment, standards requirements are considered as
regulatory requirements. One other important aspect to consider is that di�erent stan-
dards may exist to deal with the same subject. In Europe, nuclear actors mainly follow
the IEC/IAEA corpus whereas in the US, IEEE/ISO standards are applied. These two
corpora have been written independently from each other.

Information Sample from an IEC Standard.
6.2 Self-supervision
6.2.A The software of the computer-based system shall supervise the hardware
during operation within speci�ed time intervals and the software behavior (A.2.2).
This is considered to be a primary factor in achieving high overall system reliability.
6.2.B Those parts of the memory that contain code or invariable data shall be
monitored to detect unintended changes.
6.2.C The self-supervision should be able to detect to the extent practicable:

� Random failure of hardware components;

� Erroneous behavior of software (e.g. deviations from speci�ed software pro-
cessing and operating conditions or data corruption);

� Erroneous data transmission between di�erent processing units.

6.2.D If a failure is detected by the software during plant operation, the software
shall take appropriate and timely response. Those shall be implemented according
to the system reactions required by the speci�cation and to IEC 61513 system design
rules. This may require giving due consideration to avoiding spurious actuation.
6.2.E Self-supervision shall not adversely a�ect the intended system functions.
6.2.F It should be possible to automatically collect all useful diagnostic information
arising from software self-supervision.
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3.1.3 (Meta)modeling Domain Knowledge and Requirements

The previous text box proposes a sample from the standard IEC60880. It illustrates
the abstraction level of textual information we have to handle as well as the di�erent
characteristics highlighted in the previous section. Chapter 6 of the IEC60880 deals
with software requirements and its section 6.2 deals with software self-supervision. It
contains 6 main text fragments (listed from 6.2.A to 6.2.F). Fragment 6.2.A is considered
as a requirement due to the presence of the word shall. It also makes a reference to annex
A.2.2 section. The following sentence ("this is considered to be. . . software behavior"),
as it is not in the same paragraph, as no shall/should keyword, is then considered as
an information note relating to this requirement. Fragment 6.2.C is considered as a
recommendation (missing shall and presence of should). Fragment 6.2.D is a multiple
sentences requirement due to the double presence of shall. It references IEC61513
standard.

Figure 3.2: A Metamodel for Structuring Requirements Collections [SB12b]

Sannier et al. [SB12b] proposed a metamodel for a textual requirements collection
which can o�er the necessary canvas to understand the text-based business domain. In
order to take into account traceability purposes, this initial structure is enriched with
the necessary concepts to allow the representation of some traceability information such
as rationales for a requirement or re�nement information.
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For instance, Sannier et al. manipulated here, at a coarse grain level, the di�erent
concepts of standard (the document itself), section (part of the document), requirement,
and recommendation (leaves of part of a document), which are strong typing properties
of di�erent text fragments. They added an additional concept which is related to
speci�c concerns clustering (such as "self-supervision") and that is encapsulated in the
metamodel under the name "Theme". In the standard, requirement 6.2.D mentions
another standard IEC61513, illustrates one explicit traceability link that is available
within the text fragments and that has to be represented.

Figure 3.2 presents an excerpt of a metamodel that contains the minimal subset to
formalize requirements in a multiple documents organization. Yet, it is worth noticing
that instead of representing only requirements within a linear organization, the authors
here represented a corpus of di�erent kinds of documents, which contains di�erent kinds
of fragments such as structural groups (Section) or typed units (TypedFragment). This
allows us not only to represent requirements, but to do so in a multi-level environment.
For instance, the entire standard, or a section or requirements become a searchable
artifact and can be handled at each of the three levels described.

3.2 Motivation and Challenges

3.2.1 On the Regulation Heterogeneity and Variability

Safety critical systems must comply with their requirements, where regulatory require-
ments are �rst class citizens. These requirements are from various natures, from regu-
lations expressed by national and international bodies, to national explicit or implicit
guidance or national practices. They also come from national and international stan-
dards when they are imposed by a speci�c regulator [SB14a].

In the speci�c context of nuclear energy, one applicant has to deal with very heteroge-
neous regulations and practices, varying from one country to another. This heterogene-
ity has a huge impact in the certi�cation process as the regulators safety expectations,
evidences and justi�cation to provide can vary [SB12a, dlVPW13].

At this level, the main concern comes from the di�erence between national practices
and the set of documents (regulatory texts and standards) to comply with. The nuclear
industry has an unstable and growing set of safety standards. Worse, the set of safety
standards is increasing within two main standards areas. On the one hand, there are
the IEEE/ISO standards that are mainly applied in the US and eastern Asia. On the
other hand, the IAEA/IEC standards and recommendations followed in Europe [SB12a].
This heterogeneity and lack of harmonization of the di�erent nuclear safety practices
has been highlighted by the Western Europe Nuclear Regulators Association (WENRA)
in 2006 [RHW06].

Proposing one system, when having to perform a safety function, in di�erent coun-
tries then leads to a huge problem of variability that concerns, not only the set of
requirements to comply with and the certi�cation process, but also the system's archi-
tecture itself.
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3.2.2 Lack of Product Line Culture

Rise and Fall of the EPR Reactor Out of France. In France, EDF owns and
operates 58 nuclear power units, following four di�erent designs or series (same design
but speci�c projects). Born from a European program, the EPR design represents the
new power plant generation and has been expected to be built in several countries:
France, Finland, the United-Kingdom, China, and later, in the USA.

The British safety authorities reference the same set of IEC standards as in France.
However, their acceptable practices di�er on some signi�cant points and lead to di�er-
ences in I&C architectures. In particular, safety approaches in the UK rely in large part
on probabilistic approaches, whereas in France probabilistic analyses are considered as
complementary sources for safety demonstration. Consequently, the safety justi�cation
for the same item has to be done twice, in two di�erent ways. This example clearly
highlights the gaps between di�erent practices and the gaps between the possible inter-
pretations of the same documents.

Now, EDF wishes to build EPR units in the USA. US authorities provide detailed
written regulatory requirements and guidance (contrary to France were only very high
level Basic Safety Rules are issued). Also, the standards endorsed by the US authorities
are not the IEC standards cited earlier, but IEEE documents. In this case, this is not
only a subset of requirements interpretation that will di�er but the full content of the
provided documents to support the di�erent developments.

As a consequence, the concept of series that enabled to design and maintain the
nuclear power plants in France can no longer be applied as such for export. Thus, since
2008, in the �ve most advanced EPR projects (construction in Finland, France and
China, certi�cation in progress in the USA and UK), EDF and Areva have been with
four di�erent I&C architectures and �ve di�erent and ad hoc certi�cation processes,
speci�c to each country.

Conforming to Di�erent Regulations. Comparing each IEC standard (and their
interpretations) with its approximately relevant IEEE corresponding standard is dif-
�cult, time consuming and does not ensure to have the correct interpretation of the
di�erent standards. Though the domain owns a very precise and established vocabu-
lary, ambiguities [Poh10] and interpretations are legions. Vocabulary: terms are not the
same. IEC60880 speaks about activities and IEEE1012 considers tasks. Semantics: In
the end, are we talking about the same thing when using "task" and "activity"?

Legal documents and standards contain intended and unintended ambiguity [BA07,
Kam05b], causing interpretations, misunderstandings and negotiations between stake-
holders to agree on a common de�nition. Scope of regulations may also di�er as there
is no direct mapping from one standard to another but many overlaps and di�erences.
IEC60880 standard covers all the software lifecycle, whereas the IEEEstd1012 focuses
only on software validation and veri�cation and needs to be completed with other ref-
erences. Though the task is very di�cult, formalizing the requirements variability and
�nding the common core that will enable the next I&C architecture generation is more
than necessary from the industrial perspective. In the context of the CONNEXION
Project, a product line approach consists to de�ne a generic foundation that is re�ned
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for a given project by taking into account the speci�c requirements. This is an im-
portant challenge for building I&C systems on EPR units or other types of reactors in
several countries in order to avoid the questioning of the initial design principles.

3.3 Common Variability Language (CVL)

The Common Variability Language (CVL) [Com] is a domain-independent language to
specify and resolve variability over any instance of any language de�ned based on MOF
(Meta-Object Facility2). We present here the three pillars of CVL and introduce some
terminology that will be used in our approach: a variability abstraction model (VAM)
expressing the features and their relationships; a variability realization model (VRM),
containing the mapping relations between the VAM and the artifacts; the resolutions
(i.e, con�gurations) for the VAM; and the base models conforming to a Domain-Speci�c
Language (DSL).

Variability Abstraction Model (VAM) expresses the variability in terms of a tree-
based structure. VAM retains the concrete syntax of feature model and supports dif-
ferent types such as choice (Boolean feature), classi�er (feature with cardinality) and
a constraint language for expressing dependencies over these types [CGR+12]. In the
reminder of this chapter, we want to use only one terminology for the sake of un-
derstandability. Therefore, we adopt the feature model (FM) terminology and the
well-known SPL engineering vocabulary while keeping the graphical notation of CVL.

Base Models (BMs) is a set of models, each conforming to a domain-speci�c modeling
language (DSML). The conformance of a model to a modeling language depends both
on well-formedness rules (syntactic rules) and business, domain-speci�c rules (semantic
rules). The Object Constraint Language (OCL) is typically used for specifying the
static semantics. In CVL, a base model plays the role of an asset in the classical sense
of SPL engineering. These models are then customized to derive a complete product.

Variability Realization Model (VRM) contains a set of Variation Points (V P ).
They specify how features are realized in the base model(s). An SPL designer de�nes in
the VRM what elements of the base models are removed, added, substituted, modi�ed
(or a combination of these operations) given a selection or a deselection of a feature in
the VAM.

Having separate models for each concern favors modularization and reusability; this is
a step towards externalizing variability from the domain language and standardizing it
for any DSL.

3.4 Information Retrieval and Data Mining Techniques

Latent Semantic Analysis. Information Retrieval (IR) refers to techniques that
compute textual similarity between di�erent documents, relying on an indexing phase

2
http://www.omg.org/mof/

http://www.omg.org/mof/
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that produces a term-based representation of the documents. If two documents share a
large number of terms, those documents are considered to be similar [GF12].

Latent semantic analysis (LSA) is a technique in natural language processing, in
particular in vectorial semantics, for analyzing relationships between a set of documents
and the terms they contain by producing a set of concepts related to the documents and
terms. A matrix containing term counts per document (rows represent unique terms
and columns represent each document) is constructed. This matrix is then factorised by
singular value decomposition (SVD). The reason SVD is useful, is that it �nds a reduced
dimensional representation of our matrix that emphasizes the strongest relationships
and throws away the noise. In other words, it makes the best possible reconstruction of
the matrix with the least possible information. To do this, it throws out noise, which
does not help, and emphasizes strong patterns and trends, which do help. Documents
are then compared by taking the cosine of the angle between the two vectors formed by
any two columns. Values close to 1 represent very similar documents while values close
to 0 represent very dissimilar documents.
Latent Semantic Analysis has many advantages:

1. First, the documents and terms end up being mapped to the same concept space;
in this space we can cluster documents.

2. Second, the concept space has vastly fewer dimensions compared to the original
matrix. Not only that, but these dimensions have been chosen speci�cally because
they contain the most information and least noise. This makes the new concept
space ideal for running further algorithms such as testing clustering algorithms.

3. Third, LSA can handle two fundamental problems: synonymy and polysemy.
Synonymy is often the cause of mismatches in the vocabulary used by the authors
of documents and the users of information retrieval systems.

4. Last, LSA is an inherently global algorithm that looks at trends and patterns from
all documents and all terms so it can �nd things that may not be apparent to a
more locally based algorithm.

Association Rules. The objective of association rule mining [CR06] is the elicitation
of interesting rules from which knowledge can be derived. Those rules describe novel,
signi�cant, unexpected, nontrivial and even actionable relationships between di�erent
features or attributes [AK04], [JZ05].

Association rule mining is commonly stated as follows [AIS93]: Let {i1,i2,...,in} be
a set of items, and D be a set of transactions. Each transaction consists of a subset of
items in I. An association rule, is de�ned as an implication of the form X → Y where
X,Y ⊆ I and X ∩ Y = ∅. X and Y are called antecedent (left-hand-side or LHS) and
consequent (right-hand-side or RHS) of the rule.

Support, con�dence, Chi square statistic and the minimum improvement constraint
among others might be considered as measures to assess the quality of the extracted
rules [TSK06]. Support determines how often a rule is applicable to a given data set of
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an attribute and it represents the probability that a transaction contains the rule. The
con�dence of a rule X → Y represents the probability that Y occurs if X have already
occurred P (Y/X); then it estimates how frequently items Y appear in transactions that
contain X.

Chi square statistics combined with its test (see next section) might be used as a
measure to estimate the importance or strength of a rule from a given set of transac-
tions and by this way to reduce the number of rules [LHM99]. Finally the minimum
improvement constraint measure not only indicates the strength of a rule but it prunes
any rule that does not o�er a signi�cant predictive advantage over its proper sub-rules
[BJAG99]. In this work for the process for obtaining rules, we consider the Apriori
Algorithm [AIS93] that is supported on frequent itemsets and is based on the following
principle:

"If an itemset is frequent, then all of it subsets must also be frequent" Conversely "If
an itemset is infrequent, then all of it supersets must be infrequent to".

Chi Square and Independence Test. This test is based on Chi square value measure
[LHM99], [MR10]. The measure is obtained by comparing the observed and expected
frequencies, and using the following formula:

X2 =
∑ (Oi − Ei)

2

Ei

where Oi stands for observed frequencies, Ei stands for expected frequencies, and i runs
from 1, 2, ..., n, where n is the number of cells in the contingency table.

The value obtained in this equation is then compared with an appropriated critical
value of Chi square. This critical value chi-square X2

0 depends of the degrees of freedom
and level of signi�cance. The critical value chi-square X2

0 will be calculated with n− 1
degrees of freedom and α signi�cance level. In other words, when the marginal totals
of a 2 x 2 contingency table is given, only one cell in the body of the table can be �lled
arbitrarily. This fact is expressed by saying that a 2 x 2 contingency table has only one
degree of freedom. The level of signi�cance α means that when we draw a conclusion,
we may be (1 − α)% con�dent that we have drawn the correct conclusion (Normally
the α value is equal to 0.05). For 1 degree of freedom and a signi�cance level of 0.05
critical value chi-square X2

0 = 3.84.
The most common use of the test is to assess the probability of association or

independence of facts [MR10]. It consists on testing the following hypothesis:
Hypothesis null H0: The variables are independent.
Alternative hypothesis H1: The variables are NOT independent.

In every chi-square test the calculated X2 value will either be (i) less than or equal to
the critical X2

0 value OR (ii) greater than the critical X2
0 value. If calculated X2 ≤ X2

0

we conclude that there is su�cient evidence to say that cross categories are independent.
If calculated X2 > X2

0 , then we conclude that there is no su�cient evidence to say
that cross categories are independent and we can think on dependency.
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Cross Table Analysis. The cross table analysis [MR10] consists in a paired based
comparison among the di�erent features. Normally, it is represented as a n x n matrix
that provides the number of co-occurrence between features. It is obvious that a con-
ditional probability could be established by dividing the co-occurrence by the number
of occurrence of a single feature.

3.5 Overview of the General Approach

Figure 3.3: Overview of the General Approach

Figure. 3.3 depicts the approach we developed to tackle the variability issues [NSAB14].
The long term goal is to con�gure a robust I&C architecture from features related to
regulatory requirements. The gap between textual regulatory requirements and the
architecture is obviously important and variability cross-cuts both parts. Therefore
the key idea is to exploit architectural design rules as an intermediate between the
regulatory requirements and the architecture.

Intensive interactions between all the involving partners and numerous workshops
and meetings lead to the adoption of the approach (see also Section 3.12 for more
details). Two separate areas of variabilities are part of the approach (1) variability
among regulatory requirements which represents our contribution, (2) variability among
the architecture led by another partner. Regarding the requirements variability, it can
take place at two levels: the variability of one particular requirement and the variability
of a set of requirements within a product line. A �rst key task is to determine the
variabilities within the set of requirements we want to satisfy. At the same time, the
other key task is related to the adaptation of these variable elements by orchestrating
the possible con�gurations from the architecture perspective.

The �rst stage aims at handling the multiple interpretations of ambiguous regula-
tions using mining techniques. The second stage addresses the impact of requirements
variability on the architecture and its certi�cation through the variability in design
rules. In Section 3.6, we formalize manually the variability in safety requirements. In
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Section 3.7, we propose an approach to automatically synthesize feature models from
these regulations. In Section 3.8, we establish traceability between variable requirements
and variable architecture elements.

3.6 Handling Variability in Regulatory Requirements

In this section, we present how we manage variability with nuclear regulatory require-
ments and its modeling with the OMG Common Variability Language (CVL) [Com].
This domain is complex because of the variety of documents one has to handle; the
number of requirements they contain; their high level of abstraction and ambiguity, etc.
We proposed to analyze variability in regulatory documents with the smaller scope of
topics (A topic is a concern within a corpus (e.g., "independence", "safety Classi�ca-
tion", etc.)), on di�erent corpora and on the same abstraction level: regulatory text,
regulatory guidance or standards (see Section 3.6.3). Our industrial partners proposed
to model variability in IEC and IEEE standards for each of these two topics: indepen-
dence (see Table 3.1) and safety classi�cation (see Table 3.2).
I&C Architecture Concepts. In order to ease the understanding of the following
sections, we brie�y describe the main concepts of a classic I&C architecture. An I&C
architecture can be decomposed into systems that perform functions. Systems and func-
tions are classi�ed with respect to their safety importance. These systems and functions
are organized within lines of defense (LDs) and many constraints drive the organiza-
tion of the architecture in order to prevent common cause failures. These constraints
mainly deal with communication or independence (physical separation and/or electrical
isolation) between lines of defense or systems with respect to their safety classi�cation.

3.6.1 Requirements Similarity Identi�cation

The �rst step of Figure 3.3 is based on the intuition that features are made of clusters
of related requirements. In order to form these clusters, requirements are considered
related if they concern similar matters. Thus, the subject matter of the requirements
has to be compared, and requirements with similar subject matter will be grouped. For
example, in Table 3.1, the following safety requirements IEC 60709.1, IEC 60709.11, IEC
60709.12, IEEE 384.1 and IEEE 384.5 are similar because all of them are addressing
the independence between systems. In particular, IEC 60709.1, IEC 60709.11 and IEC
60709.12 are dealing with preventing system degradation, while IEEE 384.1 and IEEE
384.5 specify how this must be achieved.

3.6.2 Requirements Clustering

The requirements clustering step creates a feature tree based on the similarity measures
from the previous stage. Requirements which are semantically similar, i.e., have the
most in common, are "clustered" to form a feature. These smaller features are then
clustered with other features and requirements to form a parent feature. To return
to our previous examples of Section 3.6.1, in standards, IEC 60709.1, IEC 60709.11,
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Figure 3.4: Mapping between standards BM and standards FM
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Table 3.1: Mining variability in Independence topic

Information sample from IEC and IEEE standard Design Rules
Countries

Index Verbatim Index Rule
IEC 60709.1 Systems performing category A functions shall be pro-

tected from consequential physical e�ects caused by faults
and normal actions within a) redundant parts of those sys-
tems, and b) systems of a lower category.

SA10
A lower classi�ed system can not
send information to a higher
classi�ed system or at least it
should not disturb any of these
features.

France
and UK

IEC 60709.11 Failures and mal-operations in the non-category A systems
shall cause no change in response, drift, accuracy, sensi-
tivity to noise, or other characteristics of the category A
system which might impair the ability of the system to
perform its safety functions.

IEC 60709.12 Where signals are extracted from category B or C systems
for use in lower category systems, isolation devices may not
be required; however, good engineering practices should be
followed to prevent the propagation of faults.

SA12 A higher classi�ed system can not
directly send information to a lower
classi�ed system.

France
and UK

IEEE 384.1 Physical separation and electrical isolation shall be pro-
vided to maintain the independence of Class 1E circuits
and equipment so that the safety functions required during
and following any design basis event can be accomplished.

SA54
No communication between
systems with di�erent classes.

US

IEEE 384.5 1) Non-Class 1E circuits shall be physically separated from
Class 1E circuits and associated circuits by the minimum
separation requirements speci�ed in 6.1.3, 6.1.4, . . . 2) Non-
Class 1E circuits shall be electrically isolated from Class
1E circuits and associated circuits by the use of isolation
devices, shielding, and wiring techniques or separation dis-
tance.

Table 3.2: Mining variability in Safety Classi�cation topic

Information sample from IEC and IEEE standard Design Rules
Countries

Index Verbatim Index Rule
IEC 60964.11 The design basis for information systems, including their

measurement devices, shall take into account their impor-
tance to safety. The intended safety function of each sys-
tem and its importance in enabling the operators to take
proper pertinent actions . . .

SA5 Every system and sensor is associ-
ated with safety class.

US,
France
and UK

IEC 61513 .3 d) Each IC system shall be classi�ed according to its suit-
ability to implement IC functions up to a de�ned category.

SA8 Function with safety category n can
be allocated only on systems of
safety classes n or >n.

US,
France
and UK

IEC 61226.18 There shall be adequate separation between the functions
of di�erent categories.

FA11 A lower classi�ed function can not
send information to a higher classi-
�ed function.

US,
France
and UK

IEC 61226.3a An IC function shall be assigned to category C if it meets
any of the following criteria and is not otherwise assigned
to category A or category B: a) plant process control func-
tions operating so that the main process variables are main-
tained within the limits assumed in the safety analysis not
covered by 5.4.3 e).

SA57
SA58

The FA6 function associated cate-
gory B. The FA5 function associated
category A.

France
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IEC 60709.12, IEEE 384.1 and IEEE 384.5 are clustered to form Independence between
Systems. IEC 60709.1, IEC 60709.11 and IEC 60709.12 are clustered to create Prevent
System Degradation feature, while IEEE 384.1 and IEEE 384.5 are clustered to give
Electrical Isolation feature. Table 3.3 reports the global traceability between identi�ed
features and standards requirements.

3.6.3 Modeling Regulatory Requirements Variability

We propose to illustrate the complexity of safety requirements corpus through the man-
ual search of similar requirements dealing with similar matter. As a reminder, this
requirements analysis will be made on three di�erent corpora, France, UK and US
and on two standards: IEC and IEEE for each of these two topics: independence
(see Table 3.1) and safety classi�cation (see Table 3.2). Figure 3.4 shows an extract
from the requirements model and its related feature model. Standards and regulatory
texts concerns can be organized as variably concepts and properties like ICFunction,
Independence between Systems (see Figure 3.4), Independence between Functions and
Communication Separation (see Figure 3.6) which correspond to mandatory features.

In Figure 3.4, ICSystem and ICFunction are two classi�ers having an instance mul-
tiplicity [1..*] (i.e., at least one instance of ICSystem and ICFunction must be created).
Each ICSystem is associated with a Safety Class (See IEC 60964.11 in Table 3.2) and
each ICFunction is associated with a Safety Category. Each ICFunction is allocated to
at least one ICSystem while Safety Category must be lower or equal to Safety Class.
See the OCL constraint attached to ICFunction and IEC 61513.3 in Table 3.2.

There are two alternatives for Safety Class: IEC Class and IEEE Class form an Xor-
group (i.e., at least and at most one feature must be selected). Similarly, IEC Category
and IEEE Category form two alternatives of Safety Category. Independence between
Redundant Parts, Independence between Systems of Di�erent Classes and Prevent Sys-
tem Degradation are mandatory child features of Independence between Systems. On
the other hand, in Figure 3.6, Independence between Functions of Di�erent Categories
(See IEC 61226.18 in Table 3.2) and Independence between Functions of Di�erent Lines
of Defense are two mandatory child features of Independence between Functions.

As mentioned earlier in Section 3.1.3, Sannier and Baudry [SB14a] proposed a for-
malization of nuclear regulatory requirements into a requirements model using Domain
speci�c languages (DSLs). We rely on this DSL in our work. Yet, it is worth notic-
ing that instead of representing only requirements within a linear organization, they
represent a corpus of di�erent kinds of documents, which contains di�erent kinds of
fragments with di�erent semantics.

Figure 3.4 depicts an excerpt of a standards BM that contains the minimal subset
to formalize IEC 60709.1 requirement. From IEC 60709 standard, we present some
transformation elements into text fragments and the traceability to requirements that
are created and will be the analyzed elements. Moreover, this �gure illustrates bindings
between standards BM and the standards FM. For instance, the "object existence"
variation points against the IEC 60709.1 Section refer to Independence between Systems,
IEC Class and IEC Category meaning it will exist only when these features are selected.
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The "object existence" variation point against the IEC 60709.1.b Standard Requirement
is bound to Independence between Systems of Di�erent Classes.

3.7 Automating the Construction of Feature Model from
Regulations

In section 3.6, we performed a manual formalization of variability from a subset of
142 safety requirements. The input dataset was provided by the industrial partners to
implement our proposed method (see more details in section 3.10). Yet, this activity
becomes impossible and impractical as the number of considered requirements grows
especially as we are dealing with large regulatory documents. To resolve the variability
issue, an automatic support is essential to assist the domain expert during the construc-
tion of a feature model. Manually handling variability in safety requirements allowed
us to develop solid knowledge about the domain of regulatory requirements. Based on
this experience, given a set of regulatory documents in di�erent countries, we propose
a meaningful automatic process for synthesizing a feature model.

In this approach, regulations are �rst analyzed in each country, and a set of cor-
responding product models are built. Then, the process guides the construction of
the feature model by detecting structural dependencies (candidate parent-child rela-
tionships, mandatory and optional relationships) and transversal dependencies such as
requires and excludes. The domain of statistics provides several mining techniques
that could be used to support this process [CZZM05, MKS06, AOAB05]. The research
challenge was thus to identify which techniques could be used to e�ciently detect the
target items at each step of the method. Our research strategy was to experiment the
available techniques on a real case. Once a technique was detected, further work was
needed to identify with which parameter it should be used (e.g. thresholds). Last the
overall method have been tested in a case study carried out in nuclear power plants.
Sections 3.10 and 3.11 successively present our case study and evaluate our proposed
approach. The �ndings are: (1) cross table analysis can be used to determine exclude
relationships; (2) association rules analysis allows the retrieval of mandatory and op-
tional relationships; (3) chi-square independence test combined with association rules
are an e�ective way to identify require relationships;

3.7.1 Overview of Feature Model Synthesis

The approach combines semantic analysis, requirements clustering and mining tech-
niques to assist experts when constructing feature models from a set of regulations.
The overall process of this approach is depicted in Figure 3.5. The process starts with a
collection of regulatory requirements (R1, R2, ..., Rn) applied in di�erent countries. The
output is a single product line model speci�ed with feature notation.

There are two main stages in this process: the construction of product models (PMs)
(steps Ê to Î) and the construction of the feature model (steps Ï to Ñ). In the �rst
stage, regulatory documents in each country are analyzed individually. For each of them
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Figure 3.5: Feature Model Synthesis

there are �ve steps.
Step Ê is to elicit individual requirements. In step Ë, we compute requirements

similarity using Latent Semantic Analysis (LSA). Step Ì is to model individual require-
ments and the relationships between them in an undirected graph, called Requirements
Relationship Graph (RRG). In step Í, we identify and organize features by applying
the clustering algorithm in RRG which has previously been shown to perform well for
requirements clustering [CZZM05]. The underlying idea is that a feature is a cluster
of tight-related requirements, and features with di�erent granularities can be generated
by changing the clustering threshold value. In step Î, we build the product model
hierarchy.

The second stage takes the resulting product models and builds the feature model.
The method starts by transforming the product models into a feature binary matrix
(step Ï). This step consists in identifying all the possible features and highlighting their
presence in product models. Then, the process guides the construction of the general
tree architecture by detecting candidate parent-child dependencies (step Ð) and guides
the identi�cation of transversal dependencies such as requires and excludes (step Ñ).

3.7.2 Requirements Relationship Graph

To perform regulatory requirements extraction (step Ê), we have adopted a con�gurable
parser proposed by [SB14b] that uses, for each requirement document, a set of regular
expressions that de�nes the parsing rules to determine the di�erent fragments types
such as requirements and recommendations while reading the input �le. After individual
safety requirements are elicited for a given country, the requirements relationship graph
is built (step Ì).

Assume there are n requirements, they and their relationships are modeled as an
undirected graph G = (V,E), in which V = {Ri | Ri is an individual requirement, 1 ≤
i ≤ n}, and E = {Eij | Eij is the relationship between requirements Ri and Rj , 1 ≤
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i, j ≤ n}. The key point is to determine the weight of each edge Eij to express the
strength of the relationship between requirementsRi andRj . We adopt as quanti�cation
strategy the semantic similarity between requirements using LSA (step Ë). Among
many such schemes of term indexing, LSA has been shown to be able to �lter noisy
data and absorb synonymy i.e. the use of two di�erent terms that share the same
meaning, and polysemy i.e. the use of a single term to mean to distinct things, in large
corpus [DDF+90, Dum93, Dum95, BB05]. LSA was widely used in document-based
mining. In our case, documents are regulatory requirements. A matrix containing
term counts per requirement is constructed. Rows represent unique terms and columns
represent each requirement. The basic derivation of LSA is as follows. Let X be the
term by requirement matrix:

X =


x1,1 · · · x1,n
...

. . .
...

xm,1 · · · xm,n


tTi =

[
xi,1 · · · xi,n

]
is the occurrence vector of term i, and dj =

[
x1,j · · · xm,j

]
is

the vector of requirement j. The dotproduct tTi tp then gives the correlation between

terms, and matrix XXT contains all of the correlations. Likewise, dTj dq represents

the correlation between requirements, and matrix XTX stores all such correlations.

Singular Value Decomposition (SVD) is applied to X to produce three components:

X = UΣV T

where U and V are orthonormal matrices and Σ is a diagonal square. Requirements

are similar if they contain semantically similar terms. Requirements are then compared

by taking the cosine of the angle between the two requirements vectors. Values close to

1 represent very similar requirements while values close to 0 represent very dissimilar

requirements.

3.7.3 Requirements Clustering

After building the requirements relationship graph, we apply requirements clustering

(step Í) in this graph to identify and organize features. The underlying idea is that a

feature is a cluster of tight-related requirements, and features with di�erent granularities

can be generated by changing the clustering threshold value t. If there is an edge between

two requirements and its weight is greater than or equal to t, they will be put in the

same cluster. So the edges whose weights are above or equal to the threshold value

are set to be valid; otherwise, the edges are invalid. Then connected components are
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computed by the valid edges. Each connected component is a cluster of tight-related

requirements sharing the same concern which represents the feature. As we decrease

the threshold value, more edges are set to be valid, and we get clusters with coarser

granularity. In our context, we choose empirically two sorted and distinct edge weight

as clustering thresholds t1 and t2 between 0 and 1, since our industrial partners aim to

construct simple and readable hierarchy (see more details in the next section).

3.7.4 Build the Product Model Hierarchy

All the individual requirements are placed in the lowest level of the tree, and they are

the features with the �nest granularity. For each clustering threshold, the generated

features are put at the corresponding level: the lower is the threshold value, the higher is

the level of the tree that contains the corresponding clusters. The features (clusters) in

successive levels of the tree are explored. If a lower-level feature is a subset of another

higher-level feature, we build the re�nement relationship between them; if they are

identical, we only reserve one of them (step Î).

After all the levels are examined, all the re�nement relationships are built. The

resultant hierarchy structure may need to be adjusted according to domain knowledge.

We may add features or remove features. After the adjustment, we should examine

whether there are two or more trees. If so, we add an arti�cial root node as the parent

node of their root nodes. Thus, we get a product feature tree (a product model) for a

speci�c country. In the tree, each node is a feature, and all the features are organized by

re�nement relationships. But the tree contains no information about variability; how

to model variability is the topic of the next section.

3.7.5 Variability Modeling

Running Apriori Algorithm. To obtain rules, we use in this work the Apriori

Algorithm [AIS93] that is supported on frequent itemsets. For the purpose of this work

items will be considered as features and transactions as product models, and the result

of this pair wise is what we call the feature binary matrix (step Ï). The feature takes

the value 1 if it is present in a product model and zero otherwise.

Once the binary feature matrix is built, we have the input to apply the association

rule data mining tool. In fact the most complex task of the whole association rule mining

process is the generation of frequent itemsets (in this part an itemset is considered

as feature set) [LMSM10]. Many di�erent combinations of features and rules have

to be explored which can be a very computation-intensive task, especially in large

databases. By setting the parameter association rule length equals to 1 for the Apriori
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algorithm [AIS93], we can study only singles relations between features to avoid those

computation complexities. Often, a compromise has to be made between discovering

more complex rules and computation time. To �lter those rules that might be not

valuable, it is important to calculate its support. As we have already seen, the support

determines how frequent the rule is applicable to the product P. This value compared

with the minimum support accepted by a user (min Support threshold), prunes the

uninteresting rules; those that may be not aggregate some value to knowledge.

To evaluate the relevance of the inference performed by a rule, we compute a con�-

dence metric. The task is now to generate all possible rules in the frequent feature set

and then compare their con�dence value with the minimum con�dence (which is again

de�ned by the user). All rules that meet this requirement are regarded as interesting.

Furthermore the calculation of other measures is relevant to re�ne the process of select-

ing the appropriate association rule. For that we propose to calculate the Improvement

and chi-square measures. Those measures indicate the strength of a rule. In previ-

ous section we have already discuss about Chi-square statistic. Now we will consider

the minimum improvement constraint because it prunes any rule that does not o�er a

signi�cant predictive advantage over its proper sub-rules.

Mandatory and Optional Relationships. This section illustrates how we identify

structural dependencies between features (step Ð). Removing all association rules that

do not satisfy the minimum improvement constraint, o�er us the most relevant rules

available for the study; those ones with a signi�cant predictive value. It is obvious that

those relationships that are always present in all the product models may be considered

as mandatory. Now, if some ambiguous information is present in the database and this

one is not reliable at λ%, in order to obtain mandatory relationships, the analyst may

establish as a minimum con�dence threshold the value (100− λ)%. Those rules whose

support is greater than the (100− λ)% may be considered as mandatory relationships.

In another hand bidirectional rules such as F1 → F2 and F2 → F1 may be also con-

sidered as mandatory relationships [BT06]. The relationship is classi�ed as mandatory

if at least one of the two properties mentioned before (high frequent features and bidi-

rectional rules) occurs and, of course, the relationships belong to a parent child. Once

parent child and as well mandatory relationships are identi�ed the remaining parent

child relationship may be classi�ed as optional.

In the following we describe how we identify transversal dependencies (excludes and

requires relationships) between features (step Ñ).

Exclude Relationships. Feature cross table display relationships between features.
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Let F = {F1, F2, ..., Fn} be a set of n features. F x F can be represented as a n x

n cross table describing the joint occurrence between the feature i and j. When the

joint distribution of (Fi, Fj) for all i 6= j is equal to zero, that can be interpreted that

there is no probability that Fi and Fj may occur at the same time. Thus, they are

mutually exclusive and the relationship between Fi and Fj is considered as an exclude

relationship.

Requires Relationships. To identify requires relationships it is necessary to apply a

chi-square independence test. The test is performed for each single rule with 1 degree

of freedom in order to prove with a signi�cance level α = 0.05 that the relationships

between non parent-child features Fi, Fj for all i 6= j are independent or not. Thus,

the association between Fi, Fj for all i 6= j is considered as dependent if the X2 value

for the rule with respect to the whole data exceeds the critical X2 = 3.84 (X2 critical

value with one degree of freedom and a signi�cance level α = 0.05). In another hand

the association between Fi and Fj for all i 6= j is considered as independent if the X2

value for the rule with respect to the whole data does not exceed the critical X2 = 3.84.

3.8 Traceability between Requirements and Architecture

In this section, we address tracing variability between artifacts across problem and

solution space to investigate the robustness of the derived architecture against regu-

lations variability. Indeed, we provide a variability-aware bridging of these two levels

of abstraction through modeling variability in design rules [NSAB14]. Section 3.8.1

handles modeling variability in design rules using CVL, Section 3.8.2 addresses trac-

ing variability between requirements and design rules and Section 3.8.3 illustrates the

mapping between variable design rules and variable architecture elements to derive a

complying architecture.

3.8.1 Modeling Variability in Design Rules

Design Rules to Bridge Requirements and Architecture Elements. Modeling

requirements variability is useful, however there is no direct mapping from requirements

to the architecture. To brige the gap between textual regulatory requirements and the

architecture, we move towards variability in design rules.

Design rules, edited by EDF and endorsed by the French safety authority, are in-

termediate elements to bridge the gap between an architecture and the regulatory or

normative requirements. Our industrial partners rely on these rules to validate the ar-

chitecture against regulations. A design rule can satisfy fully or partially one or more
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requirements: in Table 3.1 SA10 (resp. SA54) completely satis�es IEC 60709.1 and IEC

60709.11 (resp. IEEE 384.1 and IEEE 384.5).

Identifying and Modeling Variability in Design Rules. Similarly to require-

ments, the identi�cation of features in design rules consists in comparing the subject

matter of rules followed by a clustering step. For instance, SA10, SA12 and SA54 are

similar because they are dealing with the separation of systems of di�erent classes. In

particular, SA10 and SA12 deal with communication without perturbation between sys-

tems of di�erent classes whereas SA54 forbids the communication between them (see

Table 3.1). Table 3.3 reports the traceability between identi�ed features and design

rules.

Comparing design rules interpretations in the three countries leads to the variability

speci�cation in Figure 3.7. The concept of design rules are decomposed into the fol-

lowing mandatory features: ICFunction, Communication Separation in Figure 3.6 and

the two kinds of communication: Functions Communication (communication between

functions) and Systems Communication (Communication between Systems). Similarly

in standards FM, each ICFunction is allocated to at least one ICSystem and only one

Line of Defense.

France and UK allow the communication between systems of di�erent classes only if

it will not cause systems perturbation using isolation devices (see SA10 and SA12 in Ta-

ble 3.1), however USA forbids it (see SA54 in Table 3.1). In Figure 3.7, Communication

without Perturbation and No Communication between Systems of Di�erent Classes are

two alternatives for Separation between Systems of Di�erent Classes. Moreover, decou-

plingType is an optional classi�er of Systems Communication. The latter has an OCL

constraint written in its context comparing the Sender Class and the Receiver Class.

If the Sender Class is lower than the Receiver Class, it requires isolation: the function

non Empty() is used to state that there is at least one instance of the decouplingType

classi�er.

The three countries forbid the communication from lower to higher classi�ed func-

tions (see FA11 in Table 3.2). An OCL constraint is attached to Functions Commu-

nication, requiring that the Sender Category must be higher or equal than Receiver

Category. Furthermore, a function allocated to a line of defense shall not communi-

cate with a function allocated to another line of defense. Consequently, a second OCL

constraint, attached to Functions Communication is added.
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3.8.2 Mapping Between the Standards FM and the Design Rules FM

Since design rules represent intermediate elements between the requirements and the

architecture, the design rules FM acts like a pivot between the standards FM and the

architecture variability model. Figure 3.6 depicts two extracts from both standards FM

and design rules FM; and also the mapping between them. For instance, Separation

between Systems of Di�erent Classes in design rules FM is related to Independence

between Systems of Di�erent Classes in standards FM. This mapping is due to the fact

that SA10 satis�es IEC 60709.1 and IEC 60709.11 and SA54 sati�es IEEE 384.1 and

IEEE 384.5, at the same time, SA10 and SA54 are related to Separation between Systems

of Di�erent Classes (see Table 3.3 right-hand side) while IEC 60709.1, IEC 60709.11,

IEEE 384.1 and IEEE 384.5 refer to Independence between Systems of Di�erent Classes

(see Table 3.3 left-hand side).

Figure 3.6: Mapping between the standards FM and the design rules FM

3.8.3 Mapping Between the Design Rules FM and the I&C Architec-

ture

An architecture metamodel is de�ned by one partner: the CEA, based on the di�erent

elements that characterize an I&C system of a nuclear power plant through a SysML

pro�le. CEA uses the SysML modeler Papyrus with the Sequoia add-on for managing
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I&C architecture product line (see Figure 3.8). As mentioned earlier, industrial partners

rely on design rules to validate the architecture against regulations. However, they do it

for each derived architecture. Thus, we propose to consider both of the design rules FM

and the architecture variability model during the derivation of a particular architecture.

Figure 3.8 shows the binding between the architecture product line model and the

corresponding feature model and Figure 3.7 illustrates the impact of the design rules

FM on the derived architecture. For instance, if we select Communication Without Per-

turbation in Figure 3.7b, then we allow the communication between systems of di�erent

safety classes. Yet, the communication from a lower classi�ed system to a higher classi-

�ed system requires isolation: decouplingType (see OCL constraint). As shown in this

�gure, System communication architecture block in the derived architecture contains

the following links: 1. from higher to lower classi�ed system :from SICS (Class 1) to

DSS (Class 2). 2. from lower to higher classi�ed system: from PICS (Class 3) to RCSL

(Class 2) by isolation means. 3. between equal classi�ed systems: from PS_A (Class 1)

to SICS.

Considering the two OCL constraints in Figure 3.7a left-hand side, we forbid the

communication between functions of di�erent lines of defense or from lower to higher

classi�ed function. As a result, Functional communication architecture block in the

derived architecture contains a link from Monitoring LCO(Category: C_NCAQ and

Line of Defense: L1) to Elaboration signal control C2 (Category: NC and Line of Defense:

L1).

3.9 Implementation

In this section, we describe the di�erent techniques used to implement our methodol-

ogy including the automatic process to synthesize the feature model; and the manual

formalization of variability in regulations and its traceability with the architecture.

Automatic construction of feature model from requirements. To compute sim-

ilarity using Latent semantic analysis (LSA), we use the S-Space Package, an open

source framework for developing and evaluating word space algorithms [JS10]. The

S-Space Package is a collection of algorithms for building Semantic Spaces as well as

a highly-scalable library for designing new distributional semantics algorithms. Dis-

tributional algorithms process text corpora and represent the semantic for words as

high dimensional feature vectors. These approaches are known by many names, such as

word spaces, semantic spaces, or distributed semantics and rest upon the Distributional

Hypothesis: words that appear in similar contexts have similar meanings. Mining as-
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(a) Mapping of Design Rules FM with Functions Communication and Functions Decomposition

(b) Mapping Design Rules FM with Systems Communication

Figure 3.7: Mapping between Design Rules FM and I&C Architecture
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Figure 3.8: I&C Architecture PL (Sequoia)

sociation rules and computing the statistical metrics (Support, Con�dence, Chi square,

Improvement) are implemented using R scripts.

Manual formalization of variability in requirements and its traceability with

the architecture. As mentioned earlier, we use CVL language and tool support for

modeling variability in requirements and design rules, while CEA addresses modeling

variability in the architecture using Sequoia tool. The goal of the Sequoia approach,

developed by the CEA LIST, is to help designers to build product lines based on UML

/SysML models [DSB05]. Variability in Sequoia is de�ned through a UML pro�le

[TGTG05]. To specify an optional element, the designer simply adds the stereotype

VariableElement to the item. The stereotype ElementGroup introduces additional in-

formation through its properties, such as constraints between variable elements. In

Sequoia, the decision model is used as a guide enabling to analyze all available vari-

ants and paths leading to a completely de�ned product. Once the derivation activity

is launched, the choices described by the decision model are proposed to the user as

a series of questions. The output of this process is a completely de�ned product and

the user is not able to make any kind of modi�cation to the initial model until the

derivation step is over.
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3.10 Case Study and Evaluation Settings

The methodology described above, including manually modeling variability in safety

requirements, the automatic retrieval of feature model and the variability-aware bridging

of requirements and architecture, has been tested in a case study carried out in nuclear

power plants. In this section, we describe the dataset considered in the evaluation.

Table 3.4: Case Study Data Description

Data Common Elements
Variable Elements
France UK US

# Requirements 21 27 34 18
# Design rules 3 4 4 4
# Functions 11 2 2 5
# Functions Communications 9 2 2 4
# Systems 19 0 0 1
# Systems Communications 33 15 15 27

Table 3.4 summarizes the input data in the illustrative example provided by the

industrial partners to implement our proposed methods. The case study contains one

generic project which includes all common elements in the product line and three other

projects containing the variable elements, speci�c for these three countries (products):

France, UK and USA. In particular, it describes the following information for each

country:

� Safety Requirements: excerpts from national regulations and international standards.

� Design rules with their corresponding OCL constraints implemented in the architec-

ture

� I&C Functions with their various properties (safety category, line of defense, number

of redundancies, etc.).

� Functions communications: describes the di�erent communications between functions

(unidirectional and bidirectional)

� I&C Systems and their di�erent characteristics (safety class, I&C level, line of defense,

number of redundancies)

� Systems communications: a derivation of functional communications on the system

architecture.

To complete the case study, our industry partners provided us an association matrix

that maps requirements and design rules.

Threshold Settings. To compute requirements clusters, we choose empirically two

sorted and distinct edge weights as clustering thresholds t1 and t2 between 0 and 1

since we compute cosine similarity. The thresholds values t1 and t2 have been set
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empirically after several experiments at 0.45 and 0.7. We have found that the majority

of well-formed clusters actually occur when the clustering thresholds are set at these

two values: most of lower-level features are found when t2 = 0.7 and most of higher-

level features are extracted when t1 = 0.45. To select interesting association rules

when mining structural and transversal dependencies, we set empirically the minimum

thresholds on support and con�dence respectively at 0.7 and 0.8.

3.11 Evaluation

Figure 3.9: Evaluation Overview

So far, we have presented a sound procedure and automated techniques for mining

and modeling variability in regulatory requirements. We also provided a methodology

to investigate the compliance of the architecture with these regulations. Several more

speci�c research questions were raised under this heading, but one in particular is worth

noting: "How e�ective are our techniques to automatically reverse engineer-

ing a feature model from regulations?". Before we address this research question,

we will �rst describe the properties of the ground truth feature models. These latters

correspond to the requirements and design rules feature models which are constructed

manually based respectively on requirements clustering and design rules clustering (see

sections 3.6 and 3.8.1). We computed the following metrics over our dataset:

� Number of features: the fewer features are, the more readable is the feature

model.

� % Mandatory features: the more there are mandatory features, the more

reusable the feature model is.
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� % Optional features: the more exist optional features, the more customized

products are.

� % Requires and exclude constraints: the higher is the number of requires

and exclude constraints, the lower is the number of possible con�gurations.

� % OCL constraints: the greater is the number of OCL constraints, the lower

is the number of possible con�gurations.

Figure 3.10: Properties of Requirements FM and Design rules FM

The results show that most of the features in the resulting requirements FM are manda-

tory. Indeed, from a set of 142 individual requirements, we report 64 features out of

which 39 features (60.93%) are mandatory and 25 features (39.06%) are optional (see

Figure 3.10). This re�ects that regulations in the three countries (France, UK and USA)

are sharing a signi�cant portion of common concepts related to safety despite the big

number of variable requirements (55.6%). Indeed, our goal is not a customization of

products, but, to maximize the common core to gain in terms of money and time during

I&C systems certi�cation. This requirements feature model which was built manually

represents the ground truth for our research question.

Regarding design rules, we obtain a total of 49 features: 27 features (55.1%) are

mandatory and 22 features (44.9%) are optional. Despite the limited amount of design

rules (21 elements) we get a good number of features. This is explained by the fact

that a design rule can deal with one or more preoccupation. Thus, a same design rule

can belong to di�erent clusters. Both requirements and design rules FMs contain 13

requires and exclude constraints and only �ve OCL constraints. Having such number

of constraints restricts the number of possible con�gurations which is reasonable since
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we have only three con�gurations (the three countries). Both feature models have

a good level of granularity which is bene�cial to nuclear expert to understand and

maintain. Furthermore, having non complex feature models facilitates their traceability

with development artifacts as well as tracing variability across the di�erent levels of

abstraction.

How e�ective are our techniques to automatically reverse engineering

a feature model from regulations?

Objects of Study. Our goal is to evaluate the e�ectiveness of an automated synthesis

technique to produce meaningful clusters and identify correct dependencies between

features (structural and transversal).

Experimental Setup. The �rst issue that we want to verify is whether our techniques

are in fact able to generate meaningful clusters of similar requirements. For this, we

compute the number of correct clusters with respect to the ground truth feature model.

Indeed, we evaluate the results of the method in terms of precision. The ground truth

FM corresponds to the requirements feature model which was constructed manually

where each feature forms a cluster of similar requirements.

Experimental Results. The results show that 69% of retrieved clusters are correct in

one step and without any user intervention. As a result, these techniques are in some

way able to identify relevant clusters in the data. On the other hand, 31% of faulty

requirements clusters need to be reviewed and corrected. Therefore the role of the

domain analyst remains crucial.

A possible explanation for the proportion of the faulty clusters is that the dimension-

ality reduction can result in a loss of signi�cant information for the similarity measure.

As a reminder, LSA uses the mathematical technique SVD to reduce dimensional rep-

resentation of the matrix that emphasizes the strongest relationships and throws away

the noise. In our case study, for a regulatory document of 47 requirements, we obtain a

term-requirement matrix of 420 terms in average. However, in the reality, a regulatory

document contains a huge number of requirements. Yet, the term-requirement matrix

is likely to have several hundreds of thousands of terms and requirements, where a

reduced dimensional representation is crucial. A possible solution to improve the qual-

ity of clusters is taking into account the proximity of requirements in the document.

More speci�cally, similar requirements tend to be physically close in the requirement

document. The intuition behind this is that, as requirement documents are written by

humans in natural language, these latters tend to put together related requirements in
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order to improve the document �ow.

Figure 3.11: Quality of Clusters

In the second step, the resultant hierarchy structures (product models) are adjusted

according to domain knowledge by removing incorrect clusters, adding missing features

and then renaming the �nal features. Now that we obtain complete product models, we

evaluate the e�ectiveness of our approach to automatically identify structural depen-

dencies (mandatory and optional relationships) and transversal dependencies (requires

and excludes relationships). We notice that structural dependencies show a high pre-

dictive capacity: 95% of the mandatory relationships and 60% of optional relationships

are found. We also observe that the totality of requires and exclude relationships are

extracted. Structural relationships mainly depend on the composition of the products.

Thus, they depend on the parent-child relationships or the product models obtained in

the �rst stage of the approach. On the other hand, transversal dependencies are related

to relationships attributes.

We observe that our approach is really e�cient but it presents some limitations. Our

experience shows that there is a need for techniques capable of identifying group cardi-

nalities and also a method that is able to deal with more complex than Boolean-type

features, as for instance, features with multiple instantiations.

3.12 Lessons Learned and Discussion

What is the best variability modeling paradigm accordingly to the

domain practices?

Though the concepts of similarities and variabilities were roughly understood by our

partners, we �rst had to introduce them to variability and, more speci�cally variability
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modeling. The aim of this introduction is to lay the foundation of the concepts but also

identify the boundaries of the discipline. We set up several half to full-day workshops

to allow our industrial partners to localize where there will be valuable variability to

model, and elicit what they expect from the variability modeling.

We presented several di�erent modeling paradigms, analysis capabilities, current

limitations, etc. We discussed the choice of the modeling paradigm and the format of

data that we will have to handle. From the numerous approach, we chose to present

CVL as our working variability language. CVL attracts a lot of attention due to the

fact that it does not require changing the complexity of the development artifacts and

can be used in conjunction with di�erent development artifacts.

Interestingly, CVL is domain independent thus it supports a broad range of types

including multiple instances and a constraint language for expressing dependencies over

these types. This terminology avoids the confusion caused by the ambiguous meaning

of the term feature. Having separate models for each concern favors modularization and

reusability; this is a step towards externalizing variability from the domain language and

standardizing it for any DSL. Moreover, when specifying variability in separate models,

it is easier to address variability-aware bridging of di�erent levels of abstraction.

How to deal with the search space in regulatory corpora and what is

the right granularity level for modeling requirements variability?

As mentioned earlier, nuclear domain is complex because of the variety of documents

one has to handle, the number of requirements they contain, their high level of abstrac-

tion and ambiguity, etc. Following a naive method leads to feature models with �ne

granularity, verbose, and as a result, hard to understand and maintain. To narrow this

problem space, the key idea was to analyze variability in regulatory documents by topic

on di�erent corpora and on the same abstraction level. Thus, our industrial partners

proposed to apply this approach on two standards and for di�erent topics. Further-

more, using traceability matrix improves the understandability and the maintainability

of feature models.

How to handle the traceability of the original requirements and the

requirements feature model?

When building requirements feature model, we keep the traceability between the iden-

ti�ed features and the original regulatory requirements. Indeed, features provide an

abstraction of requirements. Every feature covers a particular set of requirements which

re�ne that feature. Feature models are domain models which structure requirements by
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mapping them to a feature and by forming relations between them. In this way, domain

experts can validate the �nal feature model against regulations.

How to address the requirements variability on the architecture?

Modeling requirements variability is useful, however there is no direct mapping from

requirements to the architecture. Therefore, we proposed heading toward modeling

variability in design rules since they act as a pivot between requirements and the archi-

tecture. The industrial partners rely on these rules to validate the architecture against

safety requirements because they claim to satisfy one or several requirements. This idea

provides a mapping between variable requirements and variable architecture elements

to investigate the robustness of the derived architecture against regulations variability.

Interestingly, we have a limited number of design rules, contrary to requirements, which

leads to fewer features to map with the architecture. This is very bene�cial, since it

facilitates the traceability between variable requirements and variable architecture el-

ements. As a result, we could reduce the complexity of tracing variability from the

problem space to the solution space by separating the concepts. This is the reason

behind modeling variability in design rules.

3.13 Threats to Validity

As a primary external threat, we have not evaluated the consistency and the adoption

of the tool at a larger scale. The size of individual requirements is not big enough

(142 requirements for three countries) although the latter is already signi�cant for a

manual analysis when mining variability knowledge from text in order to construct the

ground truth FM. We plan to extend this evaluation with more formal and quantitative

measures in a more advanced dissemination phase.

A �rst internal threat is that the extraction of a feature model from requirement

documents is a mix between automated techniques and manual directives. Indeed,

the resulting product models are adjusted by a domain expert according to domain

knowledge. The manual intervention essentially consists in removing incorrect clusters,

adding missing features and renaming the �nal features. Domain experts can have

di�erent interpretation within a same product model which can lead to a di�erent

hierarchy and thus a di�erent set of dependencies between features in the resulting FM.

Another internal threat comes from the manual optimization of the clustering thresh-

olds for the evaluation of the heuristic. Another set of thresholds could generate less

favorable results. It is unclear whether this di�erence would be signi�cant. Similarly,
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a manual optimization of minimum thresholds of support and con�dence could impact

the quality of the obtained rules and in consequence the quality of dependencies among

features.

3.14 Conclusion

With the renewal of the nuclear industry, the French nuclear energy industrials are

aimed to sell and develop products outside France. A major challenge is the confor-

mance of products to multiple di�erent and heterogeneous regulations, which introduce

a necessary product line perspective.

In this chapter, we proposed a formalization of the variability in safety requirements

using CVL and provided a variability-aware bridging of di�erent levels of abstraction.

We proposed an automated approach to synthesize feature models from these regula-

tions. The approach relied on information retrieval and data mining techniques capable

of extracting features and their dependencies: structural dependencies to build the hi-

erarchy and transversal dependencies. The evaluation shows that our approach is able

to retrieve automatically 69% of correct clusters. We noticed that structural depen-

dencies show a high predictive capacity: 95% of the mandatory relationships and 60%

of optional relationships are found. We also observed that the totality of requires and

exclude relationships are extracted.



Chapter 4

Automated Extraction of Product

Comparison Matrices From

Informal Product Descriptions

This chapter instantiates our general contribution in the second case study to synthe-

size product comparison matrices from informal product descriptions. In this chapter

we propose an approach to automate the extraction of PCMs from unstructured de-

scriptions written in natural language, investigate the complementarity aspect between

products descriptions and technical speci�cations and implement our approach in a tool,

MatrixMiner. The chapter is structured as follows. Section 4.1 provides additional back-

ground on PCMs and elaborates on the PCM synthesis challenge. Section 4.2 gives a

general overview of our approach. Sections 4.3 and 4.4 describe the main steps of our

approach, namely terms and information extraction, and subsequent construction of the

PCM. In Section 4.5, we describe and illustrate the integration of the synthesis tech-

niques into the MatrixMiner environment which is published in [BNBA+15]. Section

4.6 presents our case study. Sections 4.7 and 4.8 analyse successively the results of an

empirical evaluation and a user study. In Section 4.9, we discuss threats to validity.

4.1 Context

Sellers describe the products they sell on their website using di�erent categories of

text forms. It goes from plain text in a single paragraph, formatted text with bullets,

to matrices with product speci�cations. There is a spectrum of product descriptions

ranging from structured data (matrices) to informal descriptions written in natural

79
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Figure 4.1: Automatic Extraction of PCM from Textual Product Descriptions
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Figure 4.2: Computing Technical Speci�cations PCM
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languages. Both have strengths, weaknesses, and have the potential to comprehensively

describe a set of products. BestBuy provides descriptions for hundreds of thousands

of products, including: (1) products overviews, texts describing features of products

using natural language (see Figure 4.1); (2) technical speci�cations, which describe the

technical characteristics of products through feature lists (see Figure 4.2).

Figure 4.1 illustrates the common scenario in which a customer needs to buy a laptop

on BestBuy website and has to decide among a diversity of products. He/she has to go

through many textual descriptions (product overviews) and reasons over the di�erent

features of the product. A typical question is to �gure out if a particular feature is

supported by existing products (if any) and what are the alternatives. In domain

analysis, the biggest challenge is related to the number of products and the number

of features an analyst has to gather and organize. The more assets and products, the

harder the analysis. Our goal is to automate the manual task of analyzing each product

with respect to its textual description and clustering information over several products,

and provide a reader with an accurate and synthetic product comparison matrix (PCM),

as shown in Figure 4.1.

The manual elaboration of a PCM from textual overviews can be done as follows.

First, it requires the ability to detect from the text the potentially relevant domain con-

cepts expressed as single or multi words including domain speci�c terms and numerical

information, such as those that are highlighted in the text of Figure 4.1. Once detected,

multiwords have to be split between the feature name and its value. We observed dif-

ferent value types for features in a previous work [SAB13]. Each of these value types

imply a di�erent interpretation for the feature. For instance, the feature "Touch Screen"

means the availability of the feature, which has to be interpreted as a YES/NO value

(see the PCM of Figure 4.1). Feature values can also mix letters and numbers, for in-

stance the following snippet: "5th Gen Intel Core i7-5500U". Consequently, determining

features and their related values is not a trivial problem.

4.1.1 Toward Automatic Extraction of PCMs

Our objective is to automate the identi�cation of features, their values, and collect

information from each product to create a complete PCM. This comes with a set of

challenges, mostly due to the informal and unstructured nature of textual overviews.

First, the representation aims to provide a structured view of all available products

and all available features. From a parsing and natural language processing perspective,

plain text and PCMs have di�erent organizations schemes. On the one hand, text is

grammatically organized but may not been organized in terms of feature de�nitions nor
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description. As being part of open initiatives such as consumer associations, mainstream

initiatives like Wikipedia, or e-commerce websites, one cannot rely on the quality of the

textual descriptions, in terms of both wording and organization. For instance, textual

descriptions may present features in di�erent orders as to put emphasis on a particular

one, or may have di�erent authors that do not share the same writing patterns. On the

other hand, a PCM is clearly organized as a set of products, features, and associated

values. If a product description provides for free the product's name, it is not trivial to

determine its features and their values, which have to be mined from the description,

as stated previously.

Second, it is not only a matter of parsing products features and their respective

values. It is also a matter of making the most synthetic and relevant PCM to enable

comparison. The number of features depends on both (1) the textual description length,

precision, and quality, and (2) the capability to cluster features as they share the same

meaning but di�erent names. Finding the right name for a feature can have an impact on

the number of features. Being generic (for instance, "processor") increases the possibility

to have di�erent values for this feature whereas a series of too speci�c features ("5th Gen

Intel... processor") will only have a YES/NO value with a high risk of features explosion.

Ideally we would rather like to extract a feature (e.g. processor) together with a value

(e.g. 5th Gen Intel...) out of an informal text.

4.1.2 The Complementarity Aspect of Product Overviews and Tech-

nical Speci�cations

Another interesting observation is the nature of relationship that can exist between

product overviews and product speci�cations. Again, with the same example, but now

considering technical speci�cations, we automatically compute the output PCM (see

Figure 4.2).

With our automated extraction from overviews, there is also a potential to comple-

ment or even re�ne technical speci�cations of products (see the two PCMs in Figure 4.1

and Figure 4.2). Considering the verbosity aspect of natural language, the overview

can contain information that re�ne the information of the speci�cation. If we compare

the cell values of the same feature or two equivalent features in the overview and the

speci�cation, we observed that the cell value in the overview PCM can re�ne the cell

value in the speci�cation PCM.

For example, "Media Reader" exists in both overview PCM and speci�cation PCM

of laptops. In the �rst case, it has "Digital", "Multiformat", "5�in�1" as possible values,

while in the second case, it is simply a boolean feature. "Webcam" is also boolean
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Figure 4.3: Complementarity Aspect of Product Overviews and Technical Speci�cations

in speci�cation PCM and non boolean in overview PCM ("Front�facing TrueVision..."

and "Built�in high�de�nition"). In the speci�cation PCM, "Memory" has "12 GB" as a

possible value, while in the overview PCM, the value contains also the type of memory:

"12GB DDR3L SDRAM". At the same time, "Operating System" has "Windows 8.1" as

a possible value in the speci�cation PCM, however it includes also the architecture in

the overview PCM ("Microsoft Windows 8.1 64-bit").

Furthermore, in an overview PCM, we can obtain additional features that could

re�ne features existing in speci�cation PCM. For instance, "High�quality images" and

"Voice Recognition Software" are two features in the overview PCM. However, they do

not exist in the speci�cation PCM. Hence, overviews can also complement the informa-

tion of technical speci�cations.

4.2 Overview of the Automatic Extraction

Figure 4.4: Approach Overview
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Our approach is summarized in Figure 4.4 and consists of two primary phases. In

the �rst phase, domain speci�c terms and numerical information are extracted from a

set of informal product descriptions (steps Ê to Í), while in the second phase the PCM

is constructed (steps Î to Ð). For step Ê, the raw product descriptions are extracted

along di�erent categories of products. We provide means to either (1) manually select

the products to be included in the comparison; or (2) group together closest products

within a category. We outline in the following the rest of the procedure.

Mining Domain Speci�c Terms. Steps Ë and Ì are based on a novel natural lan-

guage processing approach, named contrastive analysis [BDVM10], for the extraction

of domain speci�c terms from natural language documents. In this context, a term is

a conceptually independent linguistic unit, which can be composed by a single word or

by multiple words. A multi-word is conceptually independent if it occurs in di�erent

context (i.e. it is normally accompanied with di�erent words). For instance, "Multifor-

mat Media Reader" is a term, while "Reader" is not a term, since in the textual product

descriptions considered in our study it often appears coupled with the same word (i.e.

"Media"). Combining single and compound words is essential to detect features and

their values.

The contrastive analysis technology aims at detecting those terms in a document

that are speci�c for the domain of the document under consideration[BDVM10, Del09].

Roughly, contrastive analysis considers the terms extracted from domain�generic docu-

ments (e.g., newspapers), and the terms extracted from the domain-speci�c document

to be analyzed. If a term in the domain�speci�c document highly occurs also in the

domain�generic documents, such a term is considered as domain-generic. On the other

hand, if the term is not frequent in the domain�generic documents, the term is consid-

ered as domain-speci�c.

Information Extraction. Step Í aims at mining numerical information since they

are capable to describe precisely the technical characteristics of a product. These in-

formation are domain relevant multi-word phrases which contain measures (e.g."1920 x

1080 Resolution") including intervals (e.g."Turbo Boost up to 3.1 GHz").

Inspired by the "termhood" concept used earlier, the extracted multi-words should

be conceptually independent from the context in which they appear. For instance,

suppose we have in the text this phrase "the processor has 3 MB cache and 2.0 GHz

processor speed". Here, "2.0 GHz Processor Speed" is conceptually independent whereas

"2.0 GHz Processor" is not. We use statistical �lters inspired by the "termhood" metric

applied in step Ë, to extract these numerical domain relevant multi-words from text.
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Building the PCM. Once the top list for the terms1 and respectively for numeri-

cal information are identi�ed for each product, we start the construction of the PCM.

This process requires creating some intermediate structures. The key idea is to per-

form separately terms clustering from information clustering. A terms cluster gives the

possible descriptor values (e.g."Multiformat") while an information cluster provides the

potential quanti�er values (e.g."1920 x 1080") for the retrieved feature. In step Î we

compute similarity between terms and correspondingly between information to gener-

ate two weighted similarity relationship graphs: a Terms Relationship Graph (TRG)

and an Information Relationship Graph (IRG). To identify coherent clusters, we �rst

determine the similarity of each pair of elements by using syntactical heuristics. In step

Ï we apply clustering in each graph to identify terms clusters and information clusters.

Finally, step Ð extracts features and cell values to build the PCM. Elements which

are not clustered will be considered as boolean features. We distinguish di�erent types

of features (see Figure 4.1): boolean which have Yes/No values, quanti�ed when their

values contain measures (e.g."Resolution", "Hard Drive", etc.), descriptive if their values

contain only noun and adjectival phrases (e.g."Media Reader"). The resulting PCM can

be visualized and re�ned afterwards.

In the following sections, we elaborate these three main tasks. We address mining

terms and information in Section 4.3 and the construction of the PCM in Section 4.4.

4.3 Terms & Information Extraction

In this section, we describe the �rst half of our approach which handle the terms and

information extraction from textual descriptions. Several successful tools have been

developed to automatically extract (simple or complex) terms [Dro03, BDVM10]. The

reason why we develop our own terms extractor is that we propose later an extraction

of numerical information inspired by the termhood concept. This section includes min-

ing domain speci�c terms (steps Ê to Ì) in Sections 4.3.1 and 4.3.2, and information

extraction (step Í) in Section 4.3.3.

4.3.1 Terms Mining

Terms mining consists in the �rst two steps of Figure 4.4. Firstly, raw feature descriptors

are mined from each product overview via the BestBuy API. The product overview

tend to include a general product description followed by a list of feature descriptors.

Therefore, given n products of the same category, we have D1...Dn documents (products

1Domain speci�c terms are generally known as terms.
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overviews). From each one of these documents we identify a ranked list of terms. In

this section, we discuss the candidate extraction process, that makes use of: i) linguistic

�lters; ii) stoplist; iii) statistical �lters (C-NC Value).

4.3.1.1 Linguistic �lters.

The linguistic �lters operate on the automatic Part�of�speech (POS) tagged and lem-

matized text, making use of di�erent kinds of linguistic feature. POS tagging is the

assignment of a grammatical tag (e.g. noun, adjective, verb, preposition, determiner,

etc.) to each word in the corpus. It is needed by the linguistic �lter which will only

permit speci�c strings for extraction. After POS tagging, we select all those words or

groups of words (referred in the following as multi�words) that follow a set of speci�c

POS patterns (i.e., sequences of POS), that we consider relevant in our context. With-

out any linguistic information, undesirable strings such as of the, is a, etc., would also

be extracted.

Since most terms consist of nouns and adjectives, [Sag90], and sometimes preposi-

tions, [JK95], we use linguistic �lters that accepts these types of terms (see F1, F2

and F3). It extracts terms like operating system, digital media reader, wide array of

streaming media, etc.

The choice of linguistic �lters a�ects the precision and the recall of the output list,

e.g. a restrictive �lter will have a positive e�ect on precision and a negative e�ect on

recall [BMPZ01]. We are not strict about the choice of a speci�c linguistic �lter, since

di�erent applications require di�erent �lters. We will present our method combined

with each of these three �lters:

F1: Noun+ Noun

F2: (Adj|Noun)+ Noun

F3: (Noun Prep | Adj)* Noun+

In our method, we use a �lter which also constrains the maximum number of words of

which a complex term can be made. In fact, we operate on the candidate terms length

(l) as one of the main linguistic constraints to be ruled. We believe that such a measure

is to be considered as domain�dependent, being related to the linguistic peculiarities

of the specialized language we are dealing with. In arts for example, terms tend to be

shorter than in science and technology. The length also depends on the type of terms

we accept. Terms that only consist of nouns for example, very rarely contain more than

5 or 6 words.

The process of �nding this maximum length is as follows: we attempt to extract strings

of a speci�c length. If we do not �nd any strings of this length, we decrease the number
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by 1 and make a new attempt. We continue in this way until we �nd a length for which

strings exist. At this point, extraction of the candidate strings can take place.

4.3.1.2 Stoplist.

A stop-list is a list of words which are very common words. These words are not

included in standard representations of documents because they are common to all the

documents and cannot be good discriminators. Removing the stop words allows us to

focus on the sole important words in the representations.

4.3.1.3 Statistical �lters based on C-NC Value.

Terms are �nally identi�ed and ranked by computing a �termhood" metric, called C-NC

value [BDVM10]. This metric establishes how much a word or a multi-word is likely to

be conceptually independent from the context in which it appears. Here we give an idea

of the spirit of the metric. Roughly, a word/multi-word is conceptually dependent if it

often occurs with the same words (i.e., it is nested). Instead a word/multi-word is con-

ceptually independent if it occurs in di�erent context (i.e., it is normally accompanied

with di�erent words). Hence, a higher C-NC rank is assigned to those words/multi-word

that are conceptually independent, while lower values are assigned to words/multi-words

that require additional words to be meaningful in the context in which they are uttered.

C Value. The C-Value calculates the frequency of a term and its subterms. If a

candidate term is found as nested, the C-Value is calculated from the total frequency

of the term itself, its length and its frequency as a nested term; while, if it is not found

as nested, the C-Value, is calculated from its length and its total frequency. Given the

candidate term t, and being |t| its length, the C-Value of t is given as:

C − value(t) =


log2 |t| · f(t)

if t is not nested,

log2 |t| · (f(t)− 1
P (Tt)

∗
∑

b∈Tt
f(b))

otherwise.

where f(t) is the frequency of t in the corpus, Tt is the set of terms that contains t,

P (Tt) is the number of candidate terms in Tt, and
∑

b∈Tt
f(b) is the sum of frequencies

of all terms in Tt.

NC Value. The NC-Value measure [FA99] aims at combining the C-Value score with

the context information. A word is considered a context word if it appears with the

extracted candidate terms. The algorithm extracts the context words of the top list
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of candidates, and then calculates the N-Value on the entire list of candidate terms.

The higher the number of candidate terms with which a word appears, the higher the

likelihood that the word is a context word and that it will occur with other candidates.

If a context word does not appear in the extracted context list, its weight for such term

is zero.

Formally, given w as a context word, its weight will be: weight(b) = t(w)
n where t(w) is

the number of candidate terms w appears with, and n is the total number of considered

candidate terms; hence, the N-Value of the term t will be
∑

w∈Ct
ft(w) ∗ weight(w),

where ft(w) is the frequency of w as a context word of t, and Ct is the set of distinct

context words of the term t. Finally, the general score, NC-Value, will be:

NCV alue = α ∗ CV alue(t) + β ∗NV alue(t) (4.1)

where, in our model, α and β are set empirically (α = 0.8 and β = 0.2).

After this analysis, for each Di, we have a ranked list of words/multi-words that can be

considered terms, together with their ranking according to the C-NC metric, and their

frequency (i.e., number of occurrences) in Di. The more a word/multi-word is likely to

be a term, the higher the ranking. From the list we select the k terms that received the

higher ranking. The value of k shall be empirically selected. A higher value guarantees

that more domain-speci�c terms are included in the list. On the other hand, higher

values for k might also introduce noisy items, since also words/multi- words with low

rank might be included.

4.3.2 Contrastive Analysis

The previous step leads to a ranked list of k terms where all the terms might be domain-

generic or domain-speci�c. With the contrastive analysis step, terms are re-ranked

according to their domain-speci�city. To this end, the proposed approach takes as input:

1) the ranked list of terms extracted from the document Di; 2) a second list of terms

extracted with the same method described in Section 4.3.1 from a set of documents that

we will name the contrastive corpora. The contrastive corpora is a set of documents

containing domain-generic terminology. In particular, we have considered the Penn

Treebank corpus, which collects articles from the Wall Street Journal. The new rank

Ri(t) for a term t extracted from a document Di is computed according to the function:

Ri(t) = arctan(log(fi(t)) · (
fi(t)

Fc(t)
Nc

) (4.2)
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where fi(t) is the frequency of the term t extracted from Di, Fc(t) is the sum of

the frequencies of t in the contrastive corpora, and Nc is the sum of the frequencies of

all the terms extracted from Di in the contrastive corpora. Roughly, if a term is less

frequent in the contrastive corpora, it is considered as a domain-speci�c term, and it is

ranked higher. If two terms are equally frequent in the contrastive corpora, but one of

them is more frequent in Di, it is considered as a term that characterizes the domain

more than the other, and, again, it is ranked higher.

After this analysis, for each Di, we have a list of terms, together with their ranking

according the function R, and their frequency in Di. The more a term is likely to

be domain-speci�c, the higher the ranking. From each list, we select the l terms that

received the higher ranking. The choice of l shall be performed empirically: higher

values of l tend to include terms that are not domain-speci�c, while lower values tend

to exclude terms that might be relevant in the subsequent phases.

4.3.3 Information Extraction

Besides domain-speci�c terms, we also consider numerical information de�ned as do-

main relevant multi-word phrases containing numerical values, since they are capable

to describe precisely the technical characteristics of a product.

We use �lters that extract multi-words including numbers (Integer, Double, percent-

age, degree, etc.): 3.0 GHz Processor Speed, Microsoft Windows 8.1 64-bit Operating

System; multiplication of numbers: 1920 x 1080 Resolution; and intervals: Turbo Boost

up to 3.6GHz, Memory expandable to 16GB. Our method is combined with each of these

three �lters:

F4: Nb-Exp (Adj|Noun)* Noun

F5: (Adj|Noun)* Noun Nb-Exp

F6: (Adj|Noun)* Noun Nb-Exp (Adj|Noun)* Noun

where, Nb-Exp is a measure following these patterns:

- Number (Integer, Double, percentage, degree, etc.): Nb, Nb%, Nb◦.

- Multiplication of numbers: Nb×Nb.
- Interval: Nb−Nb, up to Nb, down to Nb, expandable to Nb, ≤ Nb, ≥ Nb, etc.

Inspired by the "termhood" concept used earlier, the extracted multi-words should

be conceptually independent from the context in which they appears. For instance,

"3.0 GHz Processor Speed" is conceptually independent whereas "3.0 GHz Processor"

is not. Similarly, we identify a ranked list of domain relevant multi-words from each
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document Di by applying �rst linguistic �lters (F4, F5, F6) using POS tagging and

second statistical �lters inspired by C-NC Value.

When combining the C-Value score with the context information, the algorithm

extracts the context words (obviously not numbers) of the top list of candidates and

then calculates the N-Value on the entire list of candidate multi-words. When computing

the weight of a context word w, t(w) is not only the number of candidate multi-words

w appears with but also the number of domain-speci�c terms containing w and n is the

total number of considered candidate multi-words and domain-speci�c terms.

Hence, for each Di, we have a ranked list of multi-words that can be considered

domain relevant, together with their ranking according to the C-NC metric. The more

a multi-word is likely to be a domain relevant, the higher the ranking. From the list

we select the k multi-word that received the higher ranking. The value of k shall be

empirically selected.

4.4 Building the PCM

Now that we have for each product a list of domain speci�c terms ranked according

to the C-NC metric and their frequency in the corresponding product descriptions and

also a list of numerical information ranked according to the C-NC Value, the whole

challenge consists in building a sound and meaningful PCM. This process requires to

�nd out the �nal features and compute the cell value for each couple product-feature.

To extract features and cell values, a �rst natural strategy is to perform clustering

based on the similarity of the elements (terms or information) to compute groups of

elements. The intuitive idea is that clusters of syntactically similar elements can be

exploited to identify the common concern, which can be organized as variability concept,

and its possible values, since elements in a cluster are likely to share a common feature

but with di�erent quanti�cations (in the case of information clusters) or descriptions

(in the case of terms clusters). Cell values can be (see the PCM of Figure 4.1):

� Boolean: can take a value of True or False, to represent whether the feature is

present or not.

� Descriptors: noun phrases and adjectival phrases given according to this pat-

tern: (Adj | Noun)+: "Digital" and "Multiformat" are two descriptor values

of "Media Reader"; and "Front-facing TrueVision high-de�nition" and "Built-in

high-de�nition" represent two potential values of "Webcam".

� Quanti�ers: measures that can be Integer, Double, Partial, etc; in compliance

with Nb-Exp ((Adj | Noun)* Noun)* pattern. For instance, "1366 x 768" as
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"Resolution", "12GB DDR3L SDRAM" as "Memory"; "up to 3.1 GHz" as "Turbo

Boost"; and "Microsoft Windows 8.1 64-bit" as "Operating System".

4.4.1 Terms and Information Similarity

The goal here (step Î in Figure 4.4) is to determine a weighted similarity relationship

graph among terms and respectively among numerical information. Two graphs were

constructed: Terms Relationship Graph (TRG) and Information Relationship Graph

(IRG) in which nodes represent respectively terms and information. To identify coherent

clusters, we �rst determined the similarity of each pair of elements through computing

syntactical heuristics.

Syntactical heuristics use edit distance and other metrics based on words' morphol-

ogy to determine the similarity of two elements. We used the so-called Levenshtein

edit distance [WF74] that computes the minimal edit operations (renaming, deleting

or inserting a symbol) required to transform the �rst string into the second one.

4.4.2 Terms and Information Clustering

After building the two relationship graphs, we apply terms clustering in TRG and

information clustering in IRG to identify respectively terms clusters and information

clusters (step Ï in Figure 4.4). The underlying idea [CZZM05] is that a cluster of

tight-related elements with di�erent granularities can be generated by changing the

clustering threshold value t. If there is an edge between two elements and its weight is

greater than or equal to t, they will be put into the same cluster. So the edges whose

weights are above or equal to the threshold value are set to be valid; otherwise, the

edges are invalid. Then connected components are computed by the valid edges. Each

connected component is a cluster of tight-related elements sharing the same concern

which represents the feature. As we decrease the threshold value, more edges are set to

be valid, and we get clusters with coarser granularity.

4.4.3 Extracting features and Cell Values

Finally to construct the PCM, we need to extract the features and the cell values

from terms clusters and information clusters (step Ð in Figure 4.4). To retrieve the

feature name from a cluster, we developed a process that involved selecting the most

frequently occurring phrase from among all elements (terms or information) in the

cluster. This approach is similar to the method presented in [HL04] for summarizing

customer reviews. To identify the most frequently occurring phrase we reuse the POS
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tags identi�ed earlier (see Section 4.1). The elements are then pruned to retain only

Noun+ for terms clusters and (Adj|Noun)* Noun for information clusters, as the other

expressions were found not to add useful information for describing a feature.

Frequent itemsets are then discovered for each of the clusters. In this context, fre-

quent itemsets are sets of expressions that frequently co-occur together in the elements

assigned to the same cluster. More formally, the support of an itemset I is the number

of elements in the cluster that contain all the expressions in I. Given a pre-determined

itemset support threshold, s, I is considered frequent if its support is equal or larger than

s2. Various algorithms exist for mining frequent itemsets including the Apriori [AS+94]

and Eclat algorithms. We chose to use Apriori as it is shown to be memory-e�cient and

hence suitable for the size of our data set. To select a feature name, the frequent item-

set of maximum size, FISmax is selected. Finally, to extract cell values, we substitute

FISmax from each element within the cluster. For example, "Digital Media Reader"

and "Multiformat Media Reader" form a terms cluster. "Media Reader" is the feature

name, while "Digital" and "Multiformat" are two possible values. At the same time,

"1920 x 1080 Resolution" and "1366 x 768 Resolution" represent information cluster

that gives "Resolution" as a feature name and two potential values: "1920 x 1080" and

"1366 x 768". Elements which are not clustered will be considered as boolean features.

Each cluster adds one column in the PCM containing the feature and the corresponding

cell value for each product in the family.

4.5 Tool Support

MatrixMiner o�ers an interactive mode where the user can import a set of product

descriptions, synthesize a complete PCM, and exploit the result. We also have pre-

computed a series of PCMs coming from di�erent categories of BestBuy (Printers,

Cell phones, Digital SLR Cameras, Dishwashers, Laptops, Ranges, Refrigerators, TVs,

Washing Machines). Our tool also provides the ability to visualize the resulting PCM

in the context of the original textual product descriptions and also the technical speci-

�cation typically to control or re�ne the synthesized information [BNBA+15].

4.5.1 Implementation and Used Technologies

Stanford CoreNLP3 provides a set of natural language analysis tools which can take

raw text input and give the base forms of words, their parts of speech, etc. Stanford

2We set this threshold to 1 since we want to �nd out itemsets that occur in all elements in the
cluster.

3http://nlp.stanford.edu

http://nlp.stanford.edu
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CoreNLP integrates many of NLP tools, including the Part-Of-Speech (POS) tagger

that reads text in some language and assigns parts of speech to each word (and other

token), such as noun, verb, adjective, etc. To tokenize and remove stop words from text

we use Lucene4 which is a high-performance, scalable Information Retrieval (IR) library

for text indexing and searching. Levenshtein computes syntactical similarity based on

words' morphology. It comes from the Simmetrics5 library. Mining frequent itemsets

is implemented using R script. The speci�c source code of the extraction procedure is

available online6. Our Web environment reuses the editor of OpenCompare7.

4.5.2 Importing, Visualizing, and Editing

The MatrixMiner environment is dedicated to the visualization and edition of PCMs.

Human intervention is bene�cial to (1) re�ne/correct some values (2) re-organize the

matrix for improving readability of the PCM.

As a result we developed an environment for supporting users in these activities.

Our tool provides the capability for tracing products and features of the extracted

PCM to the original product overviews and the technical speci�cations. Hence the

PCM can be interactively controlled, complemented or re�ned by a user. Moreover

users can restructure the matrix through the grouping or ordering of features. Overall,

the features available are the following:

� select a set of comparable products. Users can rely on a number of �lters (e.g.

category, brand, sub categories, etc. See Figure 4.5, A );

� ways to visualize the PCM with a traceability with original product descriptions. For

each cell value, the corresponding product description is depicted with the highlight

of the feature name and value in the text. For instance, "500GB Hard Drive" is

highlighted in the text when a user clicks on "500GB" (see Figure 4.5, B and C );

� ways to visualize the PCM with a traceability with the technical speci�cation (see

Figure 4.5, D ). For each cell value, the corresponding speci�cation is displayed

including the feature name, the feature value and even other related features. Re-

garding our running example, "Hard Drive Capacity" and two related features ("Hard

Drive Type" and "Hard Drive RPM") are depicted together with their corresponding

values;

4https://lucene.apache.org
5http://sourceforge.net/projects/simmetrics
6https://github.com/sbennasr/matrix-miner-engine
7https://github.com/gbecan/OpenCompare

https://lucene.apache.org
http://sourceforge.net/projects/simmetrics
https://github.com/sbennasr/matrix-miner-engine
https://github.com/gbecan/OpenCompare
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� basic features of a PCM editor. Users can remove the insigni�cant features, complete

missing values, re�ne incomplete values or revise suspect values if any � typically based

on information contained in the textual description and the technical speci�cation;

� advanced features of a PCM editor: means to �lter and sort values (see Figure 4.5, E

and F ); ways to distinguish Yes, No and empty cells using di�erent colors to improve

the readability of the PCM; prioritize features by changing the columns order, etc.

4.6 Case Study and Evaluation Settings

The PCM extraction methodology described above has been tested in a case study

carried out in BestBuy website. In this section, we describe the dataset considered in

the evaluation of our approach, we present the evaluation settings and introduce our

research questions for both empirical and user studies.

4.6.1 Data

We selected 9 products categories that cover a very large spectrum of domains (Printers,

Cell phones, Digital SLR Cameras, Dishwashers, Laptops, Ranges, Refrigerators, TVs,

Washing Machines) from Bestbuy. Currently, we have implemented a mining procedure

on top of BestBuy API8 for retrieving numerous product pages along di�erent categories.

We mined 2692 raw product overviews using Bestbuy API. The characteristics of the

dataset are summarized in Table 4.1.

Table 4.1: Overview dataset

Products Category #Products Overviews #Words per Overview (Avg)

Laptops 425 350
Cell Phones 99 225
Cameras 141 279
Printers 183 277
TVs 253 283
Refrigerators 708 187
Ranges 538 275
Washing Machines 107 255
Dishwashers 238 263
Total 2692 897,020

4.6.2 Threshold Settings

Among the automatically extracted terms, for each Di we have selected the k = 30

items that received the higher ranking according to the C-NC Value. The value for
8https://developer.bestbuy.com
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k has been empirically chosen: we have seen that the majority of the domain-speci�c

terms � to be re-ranked in the contrastive analysis phase � were actually included in

the �rst 30 terms. We have seen that higher values of k were introducing noisy items,

while lower values were excluding relevant domain-speci�c items.

The �nal term list is represented by the top list of 25 terms ranked according to

the contrastive score: such a list includes domain�speci�c terms only, without noisy

common words. It should be noted that the two thresholds for top lists cutting as well

as the maximum term length can be customized for domain�speci�c purposes through

the con�guration �le. As it was discussed in Section 4.3.1.1, the length of multi�word

terms is dramatically in�uenced by the linguistic peculiarities of the domain document

collection. We empirically tested that for the electronics domain, multi�word terms

longer than 7 tokens introduce noise in the acquired term list.

Now regarding automatically retrieved numerical information, for each Di we have

selected the k = 15 items that received the higher ranking according to the C-NC Value.

To calculate clusters of similar terms (resp. information), the threshold of similarity t

has been set empirically after several experiments at 0.6 (resp. 0.4): we have seen that

the majority of well-formed clusters actually occur when the similarity thresholds are

set at these values.

4.6.3 Research Questions

So far, we have presented a sound procedure and automated techniques, integrated into

the MatrixMiner environment, for synthesizing PCMs. Our evaluation is made of two

major studies:

Empirical Study. It aims to evaluate the extraction procedure (when considering

product overviews) and also investigate the relationships between overviews and tech-

nical speci�cations. We address three research questions:

� RQ1.1: What are the properties of the resulting PCMs extracted from textual

overviews?

� RQ1.2: What is the impact of selected products on the synthesized PCMs (being

from overviews or technical speci�cations)?

� RQ1.3: What complementarity exists between an "overview PCM" and a "tech-

nical speci�cation PCM"?

User Study. The purpose here is to evaluate the quality of the generated PCMs and

also the overlap between overview PCMs and speci�cation PCMs from a user point of
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view. Two main research questions emerge:

� RQ2.1: How e�ective are the techniques to fully extract a PCM ?

� RQ2.2: How e�ective is the overlap between overview PCMs and speci�cation

PCMs?

The research questions RQ1.1 to RQ1.3 are addressed in Section 4.7, RQ2.1 and RQ2.2

are addressed in Section 4.8.

4.7 Empirical Study

4.7.1 Dataset

We create two main datasets: overviews dataset and speci�cations dataset. Each of

them comprises two sub-datasets (random and supervised) which contain respectively

a random and supervised selection of groups of 10 products belonging to the same

category (e.g. laptops).

Overviews Dataset (D1).

SD1.1: Overviews Dataset (random). We randomly select a set of products (also called

clusters hereafter) in a given category (e.g. laptops) and we gather the corresponding

products overviews. To reduce �uctuations caused by random generation [AB11], we

run 40 iterations for each category. Results are reported as the mean value over 40

iterations.

SD1.2: Overviews Dataset (supervised clustering). A domain expert manually selected

169 clusters of comparable products against product overviews. To this end, he relies

on a number of �lters proposed by Bestbuy (brand, sub categories, etc.). The key idea

is to scope the set of products so that they become comparable.

Speci�cations Dataset (D2).

SD2.1: Speci�cations Dataset (random). We keep the same set of products as SD1.1

(that is based on a random strategy). This time we consider technical speci�cations.

SD2.2: Speci�cations Dataset (supervised). We keep the same set of products as SD1.2.

(that is based on a supervised clustering). We consider technical speci�cations.
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4.7.2 RQ1.1. Properties of the resulting PCMs extracted from tex-

tual overviews

Objects of Study. When extracting PCMs, an intuitive feeling is to group together

comparable products within a given category (SD1.2). Regarding this research question,

we aim to describe the properties of the synthesized overview PCMs and comparing them

to the speci�cation PCMs adopting a supervised scoping (SD2.2).

Experimental Setup. To answer our research question, we compute the following metrics

over these two datasets: SD1.2 and SD2.2.

� PCM size: the smaller is the size of the PCM, the more exploitable is the matrix.

� % Boolean features: the fewer boolean features there are, the more readable is

the PCM.

� % Descriptive and quanti�ed features: the more quanti�ed and descriptive

features there are, the more usable and exploitable is the PCM.

� % Empty cells (N/A): the fewer empty cells there are, the more compact and

homogeneous is the PCM.

� % Empty cells per features category: in particular, we measured the per-

centage of boolean empty cells, the percentage of quanti�ed empty cells and the

percentage of descriptive empty cells.

� Number of empty cells per features category (Avg): speci�cally, we mea-

sured the average of empty cells per boolean feature, the average of empty cells

per quanti�ed feature and the average of empty cells per descriptive feature.

Experimental Results. The results show that the synthesized PCMs exhibit numerous

quantitative and comparable information (see Table 4.2). Indeed, the resulting overview

PCMs contain in average 107.9 of features including 12.5% of quanti�ed features and

15.6% of descriptive features. Only 13% of cell values are empty which demonstrate

that our approach is able to generate compact PCMs.

When applying a supervised scoping, we notice that speci�cation PCMs have 35.8%

less features in average than overview PCMs. The nature of product overviews (and the

verbosity of natural languages) partly explains the phenomenon. Interestingly, overview

PCMs reduce the percentage of empty cells by 27.8 percentage points.
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Figure 4.6: Features: Random vs Supervised Scoping
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Figure 4.7: Cell Values: Random vs Supervised Scoping
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Table 4.2: Properties of Synthesized PCMs: Random vs Supervised Scoping

(a) Features Properties

Metrics
Overviews (random) Overviews (supervised) Speci�cations (random) Speci�cations (supervised)
Average Median Average Median Average Median Average Median

Size of PCM 1552.7 1445 1079.7 1070 797.6 765 692.4 700
#Features 155.2 144.5 107.9 107 79.7 76.5 69.2 70
%Boolean Features 74.7 75 71.8 72.2 38.5 37.2 35.9 35.2
%Quanti�ed Features 9.6 8.8 12.5 11.2 38.5 36.8 40.5 40.6
%Descriptive Features 15.5 15.6 15.6 15.5 22.6 24 23.5 23.9

(b) Cell Values Properties

Metrics
Overviews (random) Overviews (supervised) Speci�cations (random) Speci�cations (supervised)
Average Median Average Median Average Median Average Median

%N/A 16.4 16.7 13.0 13.1 51.9 54.0 40.8 46.2
%N/A Boolean 0 0 0 0 51.2 52.6 39.7 42.7
Cells
Avg #N/A Boolean 0 0 0 0 5.1 5.2 3.9 4.2
Cells per Feature
%N/A Quanti�ed 62.8 62.3 40.1 40.7 54.2 55.2 42.8 48.6
Cells
Avg #N/A Quanti�ed 6.2 6.2 4.0 4.0 5.4 5.5 4.2 4.8
Cells per Feature
%N/A Descriptive 67.4 68.1 51.5 52.5 48.6 51.4 38.5 43
Cells
Avg #N/A Descriptive 6.7 6.8 5.1 5.2 4.8 5.1 3.8 4.3
Cells per Feature

4.7.3 RQ1.2. Impact of Selected Products on the Synthesized PCMs

Objects of Study. The purpose of this experiment is to investigate the impact of selected

products on the quality of the PCMs synthesized from textual overviews (overview

PCMs) or obtained from technical speci�cations (speci�cation PCMs). Does the set of

considered products in�uence the properties of the PCM (e.g., number of empty cell

values)? The hypothesis is that a naive selection of input products may lead to a non-

compact and non-exploitable PCM. This question aims at quantifying this potential

e�ect.

Experimental Setup. To answer our research question, we compare random and su-

pervised techniques for products selection according to the metrics that we had used

previously. Thus, we need to compute as well these metrics over random datasets: SD1.1

and SD2.1. Table 4.2, Figures 4.6 and 4.7 describe the properties of the synthesized

PCMs when applying random and supervised scoping.

Experimental Results.

Complexity of PCMs. We compare the properties of overview PCMs generated using

a random scoping and those engendered from a supervised scoping. We �rst notice that
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a supervised manner reduces signi�cantly the complexity of the derived PCMs with

30.4% less cells and as much less features than a random selection of products. These

results also show that our extraction is capable of exploiting the fact that products are

closer and more subject to comparison. Similarly, when we compare speci�cation PCMs

obtained respectively from a naive and supervised selection of products, we observe that

a supervised scoping gives better results. Indeed, supervised PCMs contain 13.1% less

cells and likely less features than random PCMs.

Homogeneity of PCMs. Following a naive scoping, we extracted overview PCMs

with 16.4% of empty cells in average, whereas a manual clustering of products leads

to a lower percentage of empty cells (13% in average). In particular, we observe that

supervised matrices decrease by 22.7 (resp. 15.9) percentage points the percentage

of quanti�ed (resp. descriptive) empty cells. For both naive and manual selection,

we obtained no boolean empty cells. Considering a supervised manner, our approach

increases by around 3 percentage points the percentage of quanti�ed features, with

2.2 less empty cells per feature in average. Supervised matrices have almost the same

percentage of descriptive features as random matrices (15.6% in average) but with 1.6

less empty cells per feature in average.

Similarly, supervised scoping enhances the homogeneity of the speci�cation PCMs.

The percentage of empty cells declines by 11.1 percentage points. Speci�cally, super-

vised PCMs reduce the percentage of quanti�ed (resp. descriptive) empty cells by 11.4

(resp. 10.1) percentage points. In the same time, the supervised selection increases by

2 percentage points the percentage of quanti�ed features and around one percentage

point the percentage of descriptive features.

Key �ndings for RQ1.1 and R1.2.

- Our approach is capable of extracting numerous quantitative and comparable

information (12.5% of quanti�ed features and 15.6% of descriptive features).

- A supervised scoping of the input products reduces the complexity (in average

107.9 of features and 1079.7 of cells) and increases the homogeneity and the com-

pactness of the synthesized PCMs (only 13% of empty cells).

- An open problem, due to the nature of product overviews and speci�cations, is that

the size of PCMs can be important. It motivates the next research question: we

can perhaps rely on "overlapping" features between speci�cations and overviews

in order to reduce the size.
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4.7.4 RQ1.3. Complementarity of Overview PCM and Speci�cation

PCM

Objects of Study. The purpose of RQ1.3 is to analyze the relationship between overview

PCMs and speci�cation PCMs. Is there any overlap? Which proportions? Can the

overview complement or re�ne the speci�cation? Is the extraction reliable on the over-

lapping part? Our goal is to calculate the overlap between overviews matrices and

speci�cations matrices extracted using a supervised clustering.

Experimental Setup. To address RQ1.3, we compared the features and the cell values for

the same set of products in both overview and speci�cation PCMs using the following

metrics:

� % Correct features in the overview matrices comparing to the speci�cation matrices

(Features Over in Spec): we consider that a feature in an overview PCM is correct,

if it is similar to another feature in the speci�cation PCM.

� % Correct features in the speci�cation matrices comparing to the overview matrices

(Features Spec in Over): we follow the same principle described above.

� % Correct cell values in the overview matrices comparing to the speci�cation matrices

(Cells Over in Spec): for a given product and two similar features in the overview

PCM and the speci�cation PCM, we consider that the cell value in the overview PCM

is correct if it is similar to the cell value in the the speci�cation PCM.

� % Correct cell values in the speci�cation matrices comparing to the overview matrices

(Cells Spec in Over): we apply the same principle as Cells Over in Spec.

Two features are similar if at least one of them occurs in the other. Now, for two similar

features and a given product, two cell values are similar if at least one of them contains

the other. Figure 4.8 illustrates the overlap between overview PCMs and speci�cation

PCMs.
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Experimental Results.

Features Overlap. Overview matrices cover approximately half of the features in the

speci�cation matrices (49.7% in average, 51.0% for median). However, these latters

cover only 20.4% of features in the overview matrices (20.6% for median).

Cells Overlap. Overview matrices cover 26.2% of cell values in the speci�cation PCMs

(in average, 26.3% for median), while these latters cover only 8.6% of cell values in the

overview PCMs (8.5% for median).

The results provide evidence that, with our automated extraction from overviews,

there is also a potential to complement technical speci�cations of products. Another

interesting point is that the user can rely on the overlapping features between speci�-

cations and overviews to prioritize features and then keep the most relevant ones, in

order to reduce the complexity of the overview PCM.

Figure 4.8: Complementarity of Overview PCMs and Speci�cation PCMs (RQ1.3)
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Key �ndings for RQ1.3.

� A signi�cant portion of features (49.7%) and cell values (26.2%) is recovered in

the technical speci�cations.

� The proportion of overlap of overview PCMs regarding speci�cation PCMs is

signi�cantly greater than the overlap of the latter regarding overview matrices.

This is explained by the fact that the natural language is richer, more re�ned

and more descriptive compared to a list of technical speci�cations.

� In this context, the user can bene�t from this overlap to prioritize features in

the overview matrices to reduce the number of features and, consequently reduce

the complexity of the matrix (see RQ1.2).

4.8 User Study

4.8.1 Experiment Settings

Dataset: We consider the same set of supervised overview PCMs used earlier

in the empirical study: the dataset SD1.2 (167 PCMs in the total). These PCMs

cover a very large spectrum of domains (Printers, Cell phones, Digital SLR Cameras,

Dishwashers, Laptops, Ranges, Refrigerators, TVs, Washing Machines, etc.). These

PCMs are made from various sizes, going from 47 to 214 columns (features), and 10

rows (products).

Participants: The PCMs are evaluated separately by 20 persons (mainly re-

searchers and engineers) that were not aware of our work.

Evaluation Sessions: We organize one evaluation session in which we explain the

goal of the experiment to the evaluators. We provide a tutorial describing the tool

they would have to use, as well as the concepts they were about to evaluate and

some illustrative examples. We display randomly one column at a time (from any

PCM) and the evaluator has to attribute scores for the feature and cell values. The

evaluation session took one hour.

The evaluators have to validate or not features and cell values in the PCM against

the information contained in the original text. To this end, the tool provides ways

to visualize the PCM with a traceability with original product descriptions. For each

cell value, the corresponding product overview is depicted with the highlight of the

feature name and the value in the text.



User Study 107

Figure 4.9: Overview of the environment during PCMs evaluation (by column)
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For each displayed column, the checking process consists of:

1. Looking at the feature, the evaluators have to state whether the feature is correct,

incorrect, incomplete or irrelevant.

2. Looking at each cell value, the evaluators have to state whether the expected

cell value is correct, incorrect, incomplete or missing.

The evaluators can propose a correction of incorrect, incomplete or missing informa-

tion. On the other hand, the evaluators have to specify for each column whether the

PCM contains more/less re�ned information (features and cell values) than in the

speci�cation:

� PCM = Spec: the PCM and the speci�cation contain the same information.

� PCM > Spec: the PCM contains more information comparing to the speci�ca-

tion.

� PCM < Spec: the PCM contains less information comparing to the speci�cation.

� incomparable: the information in the PCM and the speci�cation do not match.

The tool o�ers ways to visualize the PCM with a traceability with the speci�cation.

For each cell value, the corresponding speci�cation is depicted including the feature

name and the cell value. The evaluators can add a comment at the end of the

evaluation of each column.

Evaluation Scenario: We perform the evaluation by column. We display one

column at a time and the evaluators have to validate or not the feature and cell

values. Thus, they refer to the original text. At the same time, the evaluators

have to state if the feature and cell values are more re�ned in the overview or the

speci�cation. This requires to refer to the corresponding speci�cation depicted by the

tool. Once the evaluation of one column is �nished, the evaluator submits his/her

evaluation to a database and starts again a new evaluation for a new column.

Evaluation Outputs: We obtained 118 evaluated features and 1203 evaluated cell

values during an evaluation session of one hour. Overall, 50% of evaluated features

belong to ranges, 24.57% come from laptops, 16.10% are related to printers, and

9.32% correspond to features of refrigerators, TV and washing machines. On the

other hand, 45.95% of evaluated cell values are about ranges, 22.61% are contained

in laptops PCMs, 16.90% of values belong to printers and 14.52% are related to

refrigerators, TV and washing machines.
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Figure 4.10: Quality of Features and Cell Values
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4.8.2 RQ2.1. How e�ective are the techniques to fully extract a PCM

from a user point of view?

Objects of Study. Our goal is to evaluate the e�ectiveness of a fully automated synthesis

technique. The e�ectiveness corresponds to the percentage of correct and relevant

features; and also the percentage of cell values that are correctly synthesized with respect

to the original product overviews. When the whole extraction process is performed in

a single step, without any user intervention, the resulting PCM may be far from the

ground truth. This question aims at quantifying this potential e�ect.

Experimental Results. Results are reported in Figure 4.10 and show that our automatic

approach retrieves 43% of correct features and 68% of correct cell values in one step and

without any user intervention, showing the usefulness of our approach. We also note

that 10% of features and 9% of cell values are incomplete which means that are correct

but are not enough precise. This means that we are very close to the right values. Using

the traceability with the original text, the user can easily retrieve the full information

and complete the PCM.

Only 20% of features and 21% of cell values are incorrect with 2% of these latters

are missing. In the same time, we observe that 27% of features extracted automatically

are irrelevant (one cannot objectively know the preferred features for a user). Again,

the results provide evidence that the role of the user remains crucial. Indeed, the user

is able to correct or complete the information in the PCM thanks to the traceability

with the original product descriptions and the speci�cations. Also, he/she can remove

the features which he/she consider irrelevant.

4.8.3 RQ2.2. How e�ective is the overlap between overview PCMs

and speci�cation PCMs?

Objects of Study. We aim to evaluate the quality of the overlap between overview PCMs

and speci�cation PCMs. The e�ectiveness here is given by the percentage of overlap

where information (features and cell values) in the synthesized PCM (overview PCM)

are more re�ned than those in the speci�cation (speci�cation PCM).

Experimental Results. We compared the features and the cell values for the same set

of products in both synthesized PCMs and the speci�cations. Figure 4.11 shows that

regarding 56% (resp. 71%) of the total features (resp. cell values), we have as much or

more information in the PCMs than in the speci�cations.

In particular, the PCMs outperform the speci�cations with 39% more re�ned fea-

tures, while these latters contain only 24% more re�ned features than the PCMs. We
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Figure 4.11: Overlap between PCMs and the Speci�cations
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reported that 17% of features are equal in both PCMs and the speci�cations. Concern-

ing cell values, PCMs are more accurate than the speci�cations in 50% of cases and

equal to the speci�cations in 21% of cases. Only 18% of cell values are more detailed

in the speci�cations.

Furthermore, we report that 20% of features and 11% of cell values are incomparable

which means that the information are di�erent in the PCMs and the speci�cations.

These results are of great interest for the user since he/she can get a complete view

when merging these incomparable information, and thus can maintain or re�ne the

information in the resulting PCMs. This shows the importance of exploiting the text.

Key �ndings for RQ2.1 and RQ2.2

� Our automatic approach retrieves 43% of correct features and 68% of correct

cell values in one step and without any user intervention.

� Regarding a signi�cant portion of features (56%) and cell values (71%), we have

as much or more information in the generated PCMs from product descriptions

using our tool, than in the speci�cations.

4.9 Threats to Validity

An external threat to validity is that we have only applied our procedure to the Best-

buy dataset. We considered numerous categories and products to diversify the textual

corpus. Yet we cannot generalize and claim that our approach is applicable to any Web

sites exhibiting informal product descriptions. In fact an interesting research direction

is to characterize the usefulness of our techniques w.r.t. the nature of textual artefacts

and sets of product descriptions. We plan to consider other publicly available prod-

uct descriptions. Our approach is independent from Bestbuy and can be technically

con�gured for other Websites.

There are internal threats to validity. A �rst internal threat comes from the manual

optimization of the clustering thresholds (regarding terms and information) for the

evaluation of the heuristic. Another set of thresholds could generate less favorable

results. Similarly, a manual optimization of top lists thresholds according to C-NC

Value or domain-speci�city metrics, might a�ect the quality of the domain speci�c

terms. Also, the quality of information extracted from the text could be impacted if we

consider another set of C-NC Value thresholds.

Second, the computation of overlapping parts between the speci�cations and the

overviews is based on an equivalence between features names and cell values (see RQ1.3).
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We chose a simple measurement based on occurrence of names to reduce the false

positives. A more sophisticated measure (e.g.based on synonyms) could identify more

overlapping information with the risk of providing false positives.

Besides we chose to consider only 10 products. The main rationale is that we

wanted to obtain compact PCMs with numerous comparable information. Another

number of products might give other results. A big number of products could increase

the complexity of the PCM and a very small number of products could lead to few

comparable information. It is an open problem to determine for which number the

approach is applicable and useful.

The �nal threat we discussed here is related to the evaluation process in the user

study. It is not always evident for the evaluators to decide whether the synthesized PCM

has more or less information than in the speci�cation. In some cases, the evaluator could

�nd more and di�erent re�ned information regarding a same feature in the two sides.

4.10 Conclusion

In this chapter, we described our proposed approach to synthesize product compari-

son matrices from informal product descriptions. We developed an automated process,

based on terminology extraction, information extraction, terms clustering and informa-

tion clustering. Our approach is able to mine relevant features and their values (boolean,

numerical or descriptive) from the text and provide the user with a compact, synthetic,

and structured view of a product line. It is then immediate to identify recurrent features

and understand the di�erences between products.

Our empirical study showed that the resulting PCMs exhibit numerous quantitative

and comparable information: 12.5% of quanti�ed features, 15.6% of descriptive features

and only 13% of empty cells. The user study showed that our automatic approach

retrieves 43% of correct features and 68% of correct values in one step and without

any user intervention. On the other hand, we investigate the complementarity aspect

between products descriptions and technical speci�cations. Regarding a signi�cant por-

tion of features (56%) and values (71%), we obtained as much or more information in

the generated PCMs than in the speci�cations.

Our tool provides the ability for tracing products, features and values of a PCM to

the original product descriptions and technical speci�cations. Likewise users can under-

stand, control and re�ne the information of the synthesized PCM within the context of

product descriptions and speci�cations. The next chapter o�ers a comparison, lessons

learned and discussion regarding the two case studies.





Chapter 5

Two Case Studies: Comparison,

Lessons Learned and Discussion

Without a thorough understanding of the di�erences between the kind of input texts and

variability models in each case study, deciding between variability extraction techniques

is di�cult. In this chapter, we compare the two case studies along four dimensions

which are the nature of the input text (Section 5.1), the kind of variability model and

its exploitable potential (Section 5.2), the adequate NLP techniques applied to mine

variability (Section 5.3) and the kind of the provided traceability (Section 5.4). Table

5.1 summarizes the comparison between the two case studies.

5.1 Input Documentation

We will focus �rst on the type of text considered in the two case studies. As a reminder,

the �rst case study handles regulatory requirements for safety systems certi�cation

in nuclear domain while the second case study deals with publicly available product

descriptions found in online product repositories and marketing websites.

The regulatory requirements are provided in large and heterogeneous documents:

regulatory documents, guides, standards and even tacit knowledge acquired from an-

terior projects in the past. These regulations are most often disconnected from the

technical system requirements, which capture the expected system behavior. In many

cases, regulatory documents provide very high level and ambiguous requirements that

leave a large margin for interpretation. Worse, regulation changes over time and from

one country to another. In Europe, nuclear actors mainly follow the IEC/IAEA corpus

whereas in the US, IEEE/ISO standards are applied. These two corpora have been

written independently from each other.
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The second type of texts which are informal product descriptions describe features

and bene�ts of products. These textual descriptions are provided in medium form

(500-words description) and include technical characteristics of products. However,

product descriptions lack of consistent and systematic structure to describe products,

and constraints in writing these descriptions expressed in natural language.

5.2 Variability Models

In both case studies, we aim to identify and model variability from an informal text

written in natural language. However, the formalization and exploitation of variability

depends on the context. Indeed, to improve the certi�cation of safety products in

di�erent countries, the major challenge is the conformance of products to multiple dif-

ferent regulations. This requires to tackle the problem of variability in both regulatory

requirements and systems architecture. To derive an architecture that conforms to a

requirements con�guration, we obviously need to investigate the robustness of the archi-

tecture against requirements variability. However, when comparing publicly available

related products, organizations or individuals need to capture, understand and compare

the important features, di�erences and commonalities among them. Thus, we need to

provide the reader with an accurate and synthetic data structure.

When handling variability in regulations, we choose to rely on feature models. FMs

are by far the most popular notation for representing and reasoning about common

and variable properties (features) of a system [AK09, BRN+13]. FMs o�er a simple

yet expressive way to de�ne a set of legal con�gurations (i.e., combinations of fea-

tures) [CKK06, TBK09, ACLF13]. A tree-like hierarchy and feature groups are notably

used to organize features into multiple levels of increasing detail and de�ne the ontolog-

ical semantics [CKK06] of an FM. Meanwhile, when extracting variability from online

product descriptions, we use product comparison matrices. Product descriptions are

texts describing qualitative and quantitative features of products. To compare prod-

ucts on the web, PCMs give a clear and simple description of products along di�erent

features. It is then immediate to identify recurrent features and understand the di�er-

ences between products. PCMs provide organizations or individuals with a synthetic,

structured, and reusable model for the understanding of the di�erences and the com-

parison of products.

FMs capture features and the relationships among them. FMs address both struc-

tural and transversal relationships between features. Structural relationships exist be-

tween features and sub-features, they can be optional or mandatory, while transversal
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relationships are cross-tree constraints over features which can be speci�ed to restrict

their valid combinations. PCMs contain more than simple boolean features, they also

handle descriptive and numerical features. Thus, PCMs are capable to provide more

complete and accurate representation when comparing products. Indeed, when using

feature models to capture variability in regulatory requirements, it is easier to address

variability-aware bridging of the two levels of abstraction (requirements and architec-

ture); Meanwhile, when comparing products on the web, PCMs o�er a clear product line

view to practitioners. It is then immediate to identify recurrent features and understand

the di�erences between products.

There is no best formalism to express variability knowledge mined from informal text,

but factors that a�ect the choice of the formalism (nature of the text and the context

including the further exploitation of the variability model). See Figure 5.1.

Figure 5.1: Lessons Learned

5.3 NLP and Data Mining Techniques for Mining Variability

Similarly, the techniques employed when mining variability depend on the formalism

which has been considered. Indeed, when building a feature model, we need to adopt

techniques capable of extracting features and their dependencies: structural dependen-

cies to build the hierarchy (parent-child relationships, mandatory and optional rela-

tionships) and transversal dependencies (requires and exclude relationships). But when

constructing a PCM, we need to apply techniques able to mine relevant features and

their values (boolean, numerical or descriptive) from the text.

To automate reverse engineering FMs from regulations, we adopted information

retrieval and data mining techniques to (1) extract features based on semantic analysis

and requirements clustering and (2) identify features dependencies using association

rules. However, to synthesize PCMs from informal product descriptions, we rely on

contrastive analysis technology to mine domain speci�c terms from text, information
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Table 5.1: Case Studies Comparison

Context Nuclear power plants Manufactured products

Criticity of the Domain
Safety-critical systems and func-
tions, the most sophisticated and
complex energy systems

Not critical

Target
Modeling variability to improve cer-
ti�cation and safety of I&C systems
in di�erent countries

Modeling variability to compare prod-
ucts and select the best

Textual Input
Safety requirements: regulatory
documents, guides, standards, reg-
ulatory practices

Textual product descriptions

Safety Requirements Product Descriptions

Nature of the Input Text

Informal Informal
Heterogeneous Not heterogeneous
High abstraction level Not abstract
Disconnected from the technical sys-
tem requirements

Texts describing features of products
including technical characteristics

Output Feature Models Product Comparison Matrices
Corpus Size Huge number of requirements Medium amount of text

Number of Products 3 Countries (France, US and UK) 10 products (total of 2692 Products)
Variability Few variation points Many variation points

Techniques

Automation Level Semi-Automatic Automatic
Feature Similar Requirements Similar Terms / Similar Information
Clustering Requirements Clustering Terms Clustering / Information Clus-

tering
Similarity Semantic (LSA) Syntactical (Levenshtein)
Linguistic Filters Lucene POS Tagger, Lucene
Statistical Filters Association Rules, Apriori Algo-

rithm, Support, Con�dence, Chi
square, Improvement

Termhood Metric (C-NC Value), Con-
trastive Analysis, Association Rules,
Apriori Algorithm, Support

Heuristics

Heuristics for computing require-
ments similarity, clusters, hierarchy,
structural and transversal depen-
dencies.

Heuristics for computing features and
cell values.

Traceability

Traceability of resulting features
with the original requirements.
Mapping with the architecture ele-
ments.

Traceability of the synthesized PCM
with the original product descriptions
and technical speci�cation for further
re�nement or maintenance by users.

User E�ort

The expert adjusts product mod-
els by removing incorrect clusters,
adding missing features and then re-
naming the �nal features.
He/She also may need to main-
tain and re�ne the synthesized FM
(the hierarchy and features depen-
dencies).

The user can visualize, control and
re�ne the information of the synthe-
sized PCMs within the context of prod-
uct descriptions and technical speci�ca-
tions.

Exploitability

Mapping feature model with archi-
tecture elements to derive a comply-
ing architecture.

To generate other domain models (such
as feature models)
To recommend features
To perform automatic reasoning (e.g.,
multi-objective optimizations)
To devise con�gurators or comparators
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extraction, terms clustering and information clustering.

In the �rst case study, we apply semantic similarity to cluster tight-related require-

ments into features. The requirements are considered related if they concern similar

matters. Yet, in the second case study, to identify a feature with its possible values, we

need to adopt syntactical similarity. In particular, to extract features with descriptive

values, we need to perform terms clustering while to retrieve features with quanti�ed

values, numerical information clustering is required. Elements (i.e. terms or informa-

tion) which are not clustered will be considered as boolean features.

Overall, to extract PCMs, terms are �rst identi�ed and ranked by computing a

�termhood" metric, called C-NC value [BDVM10]. This metric establishes how much

a word or a multi-word is likely to be conceptually independent from the context in

which it appears. The contrastive analysis technology is applied to detect those terms

in a document that are speci�c for the domain of the document under consideration.

Inspired by the "termhood" concept, we also mine conceptually independent numer-

ical information de�ned as domain relevant multi-word phrases containing numerical

values. To identify terms (resp. information) clusters, we then compute syntactical

similarity between terms (resp. information) using Levenshtein distance. We substitute

the feature name and its possible values from each term (resp. information) within the

cluster.

To build FM from regulations, we compute semantic similarity between requirements

using LSA. Each cluster of similar requirements form a feature. To identify features

dependencies, we use the Apriori Algorithm [AIS93] that is supported on frequent item

sets. We rely on statistical measures to assess the quality of the extracted rules. In

particular, we consider support, con�dence, improvements and chi-square to compute

structural dependencies and transversal dependencies.

There is no best NLP technique to apply when mining variability knowledge from

textual artifacts. Actually, NLP and data mining techniques depend on which variability

formalism we relied on and which kind of text we are dealing with (see Figure 5.1).

5.4 Traceability

This section illustrates the exploitability of the variability model in each context. In

nuclear context, we o�er two kinds of traceability:

Traceability with the original regulations: When building requirements variability

model, we keep the traceability between the identi�ed features and the original regu-

latory requirements. Indeed, features provide an abstraction of requirements. Every
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feature covers a particular set of requirements which re�ne that feature. Feature mod-

els are domain models which structure requirements by mapping them to a feature and

by forming relations between them. In this way, domain experts can validate the �nal

feature model against regulations.

Mapping with the architecture elements: Feature models structure traceability

links between requirements and the architecture. Modeling requirements variability is

useful, however there is no direct mapping from requirements to the architecture. To

bridge the gap between textual regulatory requirements and the architecture, we move

towards variability in design rules. In the same time we keep the traceability between

identi�ed features and the original design rules. Our industrial partners rely on these

rules to validate the architecture against regulations. This way allows us to bind a

requirements variability model and an architecture variability model in order to derive

an architecture that conforms to a requirements con�guration.

Now regarding product descriptions case, we provide the ability to tracing products

and features of a PCM to the original product descriptions and also technical speci�ca-

tions for further re�nement or maintenance by users.

Traceability with the original product descriptions: Users can exploit Ma-

trixMiner to visualize the matrix through a Web editor and review, re�ne, or com-

plement the cell values based on the information contained in the text.

Traceability with the technical speci�cations: Similarly, our tool provides the

ability to visualize the resulting PCM in the context of the technical speci�cation typ-

ically to control or re�ne the synthesized information. In particular, our qualitative

review shows that there is also a potential that technical speci�cations complement

product description. So that user can �nd more detailed information in the speci�ca-

tion.

5.5 Conclusion

The main lesson learnt from the two case studies is that the exploitability and the

extraction of variability knowledge depends on the context, the nature of variability and

the nature of text. In particular, the formalism to express variability depends on the

context and the techniques employed when mining variability depend on the formalism.

In this chapter, we compared the two case studies along four dimensions which are

the nature of documentation, the type of variability model and its exploitability, the

NLP and data mining techniques used for mining variability and �nally the kind of

traceability.
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Chapter 6

Conclusion and Perspectives

In this chapter, we �rst summarize all the contributions of this thesis, recalling the

challenges and how we addressed each of them. Next and �nally, we discuss some

perspectives for future research.

6.1 Conclusion

Domain analysis is the process of analyzing a family of products to identify their com-

mon and variable features. Domain analysis involves not only looking at standard

requirements documents (e.g., use case speci�cations) but also regulatory documents,

product descriptions, customer information packs, market analysis, etc. Looking across

all these documents and deriving, in a practical and scalable way, a variability model

that is comprised of coherent abstractions is a fundamental and non-trivial challenge.

Numerous approaches have been proposed to mine variability and support domain

analysis. However, few of them adopt automated techniques for the construction of

variability models from unstructured and ambiguous documents. Such techniques are

essential for both feasibility and scalability of approaches, since many potentially large

informal documents may be given as input to domain analysis, making a manual analysis

of these documents time consuming or even prohibitive.

In this thesis, we have conducted two case studies on leveraging Natural Language

Processing (NLP) and data mining techniques for achieving scalable identi�cation of

commonalities and variabilities from informal documentation. Accordingly, we consid-

ered two di�erent contexts: (1) reverse engineering Feature Models (FMs) from regula-

tory requirements in nuclear domain and (2) synthesizing Product Comparison Matrices

(PCMs) from informal product descriptions. The �rst case study handles regulatory

requirements for safety systems certi�cation in nuclear domain. In the speci�c context
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of nuclear energy, one applicant has to deal with very heterogeneous regulations and

practices, varying from one country to another. Our purpose was to automate the ar-

duous task of manually building a feature model from regulatory requirements. The

second case study deals with publicly available product descriptions found in online

product repositories and marketing websites. Numerous organizations or individuals

rely on these textual descriptions for analyzing a domain and a set of related products.

Our goal was to automate the daunting task of manually analyzing and reviewing each

product description and provide a reader with an accurate and synthetic PCM.

Our �rst contribution is a semi-automated approach to reverse engineering

feature models from regulatory requirements. These regulations are provided in

large and heterogeneous documents such as regulatory documents, guides, standards,

etc. We adopted NLP and data mining techniques to extract features based on semantic

analysis and requirements clustering; and identify features dependencies using associ-

ation rules. The evaluation showed the e�ectiveness of our automated techniques to

synthesize a meaningful feature model. In particular, the approach is able to retrieve

69% of correct clusters. We also noticed that structural dependencies show a high pre-

dictive capacity: 95% of the mandatory relationships and 60% of optional relationships

are found. Furthermore, the totality of requires and exclude relationships are extracted.

Before the automatic construction of feature model, a comprehensive and in-depth

analysis of regulations was required. Therefore, we performed a manual formaliza-

tion of variability in regulations. We relied on Common Variability Language

(CVL) since it is domain independent. As regulations are contained in huge amount of

documents, the key concept to narrow the problem space was to analyze variability in

regulatory documents by topic, in di�erent countries and on the same abstraction level.

When performing the same safety function in di�erent countries, the variability con-

cerns not only the set of requirements to comply with and the certi�cation process, but

also the system's architecture itself. Tracing variability from the problem space to the

solution space is crucial to improve the understanding of system variability, as well as

support its maintenance and evolution. For this purpose, we established a variability-

aware bridging of the two levels of abstraction (requirements and architecture)

in order to derive a complying architecture. This manual work is also a contribution

that provides great value to industry partners and that introduces formal variability

modeling in their engineering processes.

Our second contribution consists in an approach to automate the extraction of

product comparison matrices from informal descriptions of products. We

investigated the use of automated techniques for synthesizing a PCM despite the in-
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formality and absence of structure in the textual descriptions. Indeed, the proposed

method automates the identi�cation of features, their values, and collects information

from each product to deliver a compact, synthetic, and structured view of a product

line. The approach is based on a contrastive analysis technology to mine domain speci�c

terms from text, information extraction, terms clustering and information clustering.

Overall, our empirical study revealed the powerful capabilities of our approach to deliver

PCMs with rich and diversi�ed information while keeping PCMs compact. In fact, the

resulting PCMs include numerous quantitative and comparable information (12.5% of

quanti�ed features and 15.6% of descriptive features) with only 13% of empty cells. The

user study showed the e�ectiveness and usefulness of our automatic approach. Actually,

this latter can retrieve 43% of correct features and 68% of correct values in one step

and without any user intervention.

Another interesting observation was the complementarity aspect that might exist

between product overviews and product speci�cations. Our user study o�ered evidence

that PCMs generated from product descriptions outperform the speci�cations. Indeed,

regarding a signi�cant portion of features (56%) and values (71%), we have as much or

more information in the generated PCMs than in the speci�cations. We showed that

there is a potential to complement or even re�ne technical information of products.

The main lesson learnt from the two case studies is that three key factors a�ect

the choice of techniques to apply when mining and exploiting variability knowledge

from informal documentation. These factors are: the context, the nature of variability

and the nature of text. Speci�cally, formalizing variability depends on the nature of

the input text and the context while the choice of NLP and data mining techniques,

employed when mining variability, are in�uenced by the choice of the formalism and

the kind of text.

As a conclusion, we provided e�cient approaches to leverage natural language pro-

cessing and data mining techniques for achieving scalable extraction of commonalities

and variabilities from informal documentation in two di�erent contexts. As a future

work, we plan to apply, possibly adapt, and evaluate similar automated techniques for

mining variability in other artefacts and contexts. The following section discusses some

perspectives for future research.

6.2 Perspectives

In this section, we present some long- and short-term ideas for research around the

contributions of this thesis. We will �rst outline the general perspectives and then
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enumerate some future works for each case study explored in the thesis. The overall

perspectives are summarized in Figure 6.1.

The short-term perspective of this thesis is to explore automatic extraction and

formalization of variability from other kinds of informal documentation such

as market analysis, customer information packs, functional requirements, con�guration

�les, source code, etc; (see Figure 6.1, A ). By exploiting the latest techniques in

human-language technology and computational linguistics and combining them with

the latest methods in machine learning and traditional data mining, one can e�ectively

mine useful and important knowledge from the continually growing body of electronic

documents and web pages. We also aim to identify other possible key factors that might

a�ect the variability extraction procedure.

Figure 6.1: Context-independent methodology for mining and modeling variability from
informal documentation

The long-term challenge is to generalize the extraction of variability knowledge from tex-

tual artifacts. In other words, we want to deal with context-independent method-

ology for mining and modeling variability from informal documentation. The
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context here refers to the nature of the text and the variability formalism. The idea

behind this is that given any textual artifacts (requirements, product descriptions, con-

�guration �les, source code, etc.) of a family of products and any variability formal-

ism (feature model, product comparison matrix, orthogonal variability model, decision

model, etc.), the tool could apply suitable mining techniques to generate automatically

a meaningful variability model (see Figure 6.1, A , B and C ). A non-trivial task is to

reveal the generic parameters of the automated procedure for retrieving and modeling

variability, such as mandatory elements, optional elements, constraints over elements,

etc.

In the reminder of this chapter we will describe possible improvements and extensions

to the contributions of this thesis. Regarding reverse engineering feature models from

regulations (Chapter 3), we propose these roadmaps for further research to enhance the

quality of feature models.

Improve the determination of requirements similarity. Latent semantic analysis (LSA)

determines relationship among the requirements, but assume a �at structure, i.e., also

known as bag of words. Although the requirement documents considered in the eval-

uation of the approach are textual, they still have latent structure, such as hierarchy

and variability relationship between requirements, and proximity structure, i.e., similar

requirements are physically closer in the document. Such latent structure could be used

to improve requirement similarity determination.

Make feature naming scalable. We note that due to the agglomerative nature of the

clustering algorithm, features closer to the root comprise an increasingly high number

of requirements. Therefore, naming them is a non-trivial task. Naming and �nding

a semantic de�nition of features that summarizes all its encompassing requirements

should be addressed with a scalable approach. We suggest extensions to our approach

in order to tackle this issue.

Our initial suggestion is to use Wmatrix [SRC05], an NLP tool that determines semantic,

part-of-speech, and frequency information of words in text. Our second suggestion is

to select the most frequently occurring phrase from among all of the requirements in

the cluster [DDH+13b]. For this, we propose to apply Stanford Part-of-Speech (POS)

tagger to tag each term in the requirements with its POS in order to retain only nouns,

adjectives, and verbs, and then mining frequent itemsets using the Apriori or FPGrowth

[HPY00] algorithms.

Deal with more complex relationships and constraints in the target feature model. Our

experience showed that there is a need for a process which helps the analyst in assigning
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the group cardinality value. It is interesting for the analyst to have a tool that allows

him to estimate the cardinality for each optional bundle. There is also a need for

techniques able to deal with more complex than Boolean-type features, as for instance,

features with multiple instantiations. How can these be speci�ed? Remain still an open

question for future researches. Several other fundamental questions are still open and

their solutions are envisaged for future works. For instance: How to deal with more

complex constraints? What statistical tools could be used to support the aforementioned

questions?

Automate tracing variability across problem space and solution space. We are currently

improving the di�erent variability modeling tools of both parts - requirements and

architecture - of the project. We plan to further exploit traceability links in order to

reason about the conformance between regulatory requirements and the architecture of

safety systems. As future work, we aim to investigate the use of automated techniques

to trace variability across these two levels of abstraction. Speci�cally, we need to: (1)

automate traceability between requirements FM and design rules FM through features

which correspond respectively to clusters of similar requirements and clusters of similar

design rules. This is feasible since a design rule that belongs to a cluster in design rules

FM can satisfy fully or partially one or more requirements contained in one or several

clusters in requirements FM; (2) automate the mapping between design rules feature

model and the architecture product line model.

Regarding the automated extraction of PCMs from informal product descriptions

(Chapter 4), we identify the following perspectives.

Mine knowledge from text using template �lling. We believe that information extraction

have an enormous potential still to be explored. Traditionally information extraction

tasks assume that the structures to be extracted are well de�ned. In some scenarios, e.g.

in product descriptions, we do not know in advance the structures of the information

we would like to extract and would like to mine such structures from large corpora. To

alleviate this problem, recently there has been an increasing amount of interest in unsu-

pervised information extraction from large corpora. We aim to enhance the extraction

of information from product descriptions using automatically template induction from

an unlabeled corpus and template �lling.

Apply the approach on di�erent websites other than BestBuy. To generalize and claim

that our approach is applicable to any website exhibiting informal product descriptions,

a short-term perspective is to apply our procedure on other websites than BestBuy. In

fact an interesting research direction is to characterize the e�ectiveness of our techniques
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w.r.t. the nature of textual artefacts and sets of product descriptions. We plan to

consider other publicly available product descriptions. Our approach is independent

from Bestbuy and can be technically con�gured for other websites.

Integrate the tool-supported approach as part of OpenCompare. The presented work

has the potential to crawl scattered and informal product descriptions that abound on

the web. We are integrating the tool-supported approach as part of OpenCompare an

initiative for the collaborative edition, the sharing, the standardization, and the open

exploitation of PCMs. The goal is to provide an integrated set of tools (e.g., APIs, visu-

alizers, con�gurators, recommenders, editors) for democratizing their creation, import,

maintenance, and exploitation (see Figure 6.1, D ).
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Abstract

A Product Line (PL) is a collection of closely related products that together address
a particular market segment or ful�l a particular mission. In product line engineering,
domain analysis is the process of analyzing these products to identify their common
and variable features. This process is generally carried out by experts on the basis
of existing informal documentation. When performed manually, this activity is both
time-consuming and error-prone. Numerous approaches have been proposed to mine
variability and support domain analysis, but few of them adopt automated techniques
for the construction of variability models from unstructured and ambiguous documents.
In this thesis, our general contribution is to address mining and modeling variability
from informal documentation. We adopt Natural Language Processing (NLP) and data
mining techniques to identify features, commonalities, di�erences and features depen-
dencies among the products in the PL. We investigate the applicability of this idea
by instantiating it in two di�erent contexts: (1) reverse engineering Feature Models
(FMs) from regulatory requirements in nuclear domain and (2) synthesizing Product
Comparison Matrices (PCMs) from informal product descriptions.

The �rst case study aims at capturing variability from textual regulations in nu-
clear domain. We propose an approach to extract variability from safety requirements
as well as mapping variable requirements and variable architecture elements to derive a
complying architecture. We adopt NLP and data mining techniques based on semantic
analysis, requirements clustering and association rules to assist experts when construct-
ing feature models from these regulations. The evaluation shows that our approach is
able to retrieve 69% of correct clusters without any user intervention. We notice that
structural dependencies show a high predictive capacity: 95% of the mandatory rela-
tionships and 60% of optional relationships are found. We also observe that the totality
of requires and exclude relationships are extracted.

The second case study is about the extraction of variability from informal product
descriptions. Our proposed approach relies on contrastive analysis technology to mine
domain speci�c terms from text, information extraction, terms clustering and infor-
mation clustering. Overall, our empirical study shows that the resulting PCMs exhibit
numerous quantitative and comparable information: 12.5% of quanti�ed features, 15.6%
of descriptive features and only 13% of empty cells. The user study shows that our au-
tomatic approach retrieves 43% of correct features and 68% of correct values in one step
and without any user intervention. We also show that regarding a signi�cant portion of
features (56%) and values (71%), we have as much or more information in the generated
PCMs than in the speci�cations.

The main lesson learnt from the two case studies is that three key factors a�ect
the choice of techniques to apply when mining and exploiting variability knowledge
from informal documentation. These factors are: the context, the nature of variability
and the nature of text. Speci�cally, formalizing variability depends on the nature of
the input text and the context while the choice of NLP and data mining techniques,
employed when mining variability, is in�uenced by the choice of the formalism and the
kind of text.
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