
HAL Id: hal-01388505
https://hal.inria.fr/hal-01388505

Submitted on 23 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Enumeration of Solutions Produced by Closure
Operations

Arnaud Mary, Yann Strozecki

To cite this version:
Arnaud Mary, Yann Strozecki. Efficient Enumeration of Solutions Produced by Closure Operations.
33rd Symposium on Theoretical Aspects of Computer Science, STACS 2016, Feb 2016, Orléans, France.
�10.4230/LIPIcs.STACS.2016.52�. �hal-01388505�

https://hal.inria.fr/hal-01388505
https://hal.archives-ouvertes.fr

Efficient enumeration of solutions produced by
closure operations
Arnaud Mary1 and Yann Strozecki2

1 Université Lyon 1 ; CNRS, UMR5558, LBBE / INRIA - ERABLE
2 Université de Versailles Saint-Quentin-en-Yvelines, DAVID laboratory

Abstract
In this paper we address the problem of generating all elements obtained by the saturation of
an initial set by some operations. More precisely, we prove that we can generate the closure
by polymorphisms of a boolean relation with a polynomial delay. Therefore we can compute
with polynomial delay the closure of a family of sets by any set of “set operations” (e.g. by
union, intersection, difference, symmetric difference. . .). To do so, we prove that for any set of
operations F , one can decide in polynomial time whether an elements belongs to the closure by
F of a family of sets. When the relation is over a domain larger than two elements, we prove
that our generic enumeration method fails, since the associated decision problem is NP-hard.

Keywords and phrases enumeration, set saturation, polynomial delay, Post’s lattice

1 Introduction

In enumeration we are interested in listing a set of elements, which can be of exponen-
tial cardinality in the size of the input. The complexity of enumeration problems is thus
measured in term of the input size and output size. The enumeration algorithms with a
complexity polynomial in both the input and output are called output polynomial or total
polynomial time. Another, more precise notion of complexity, is the delay which measures
the time between the production of two consecutive solutions. We are especially interested
in problems solvable with a delay polynomial in the input size, which are considered as the
tractable problems in enumeration complexity. For instance, the maximal independent sets
of a graph can be enumerated with polynomial delay [8].

If we allow the delay to grow during the algorithm, we obtain incremental delay algo-
rithms: the first k solutions can be enumerated in a time polynomial in k and in the size of
the input. Many problems which can be solved with an incremental delay have the following
form: given a set of elements and a polynomial time function acting on tuples of elements,
produce the closure of the set by the function. For instance, the best algorithm to generate
all circuits of a matroid is in incremental delay because it uses some closure property of the
circuits [9].

In this article, we try to understand when saturation problems which are natural incre-
mental delay problems can be in fact solved by a polynomial delay algorithm. To attack
this question we need to restrict the saturation operation. In this article, an element will
be a vector over some finite set and we ask the saturation operation to act coefficient-wise
and in the same way on each coefficient. We prove that, when the vector is over the boolean
domain, every possible saturation can be computed in polynomial delay. To do that we
study a decision version of our problem, denoted by ClosureF : given a vector v and a set
of vectors S decide whether v belongs to the closure of S by the operations of F . We prove
ClosureF ∈ P for all set of operations F over the boolean domain.

When the domain is boolean, the problem can be reformulated in term of set systems or
hypergraphs. It is equivalent to generating the smallest hypergraph which contains a given

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Efficient enumeration of solutions produced by closure operations

hypergraph and which is closed by some operations. We show how to efficiently compute
the closure of an hypergraph by any family of set operations (any operation that is the
composition of unions, intersections and complementations) on the hyperedges. This extends
known methods such as the closure of a hypergraph by union, by union and intersection or
the generation of the cycles of a graph by computing the closure of the fundamental cycles
by symmetric difference. In general, knowing how to compute a closure may serve as a
good tool to design other enumeration algorithms. One only has to express an enumeration
problem as the closure of some sufficiently small and easy to compute set of elements and
then to apply the algorithms presented in this article.

The closure computation is also related to constraint satisfaction problems (CSP). In-
deed, the set of vectors can be seen as a relation R and the problem of generating its closure
by some operation f is equivalent to the computation of the smallest relation R′ containing
R such that f is a polymorphism of R′. There are several works on enumeration in the
context of CSP, which deal with enumerating solutions of a CSP in polynomial delay [5, 3].
The simplest such result [5] states that in the boolean case, there is a polynomial delay
algorithm if and only if the constraint language is Horn, anti-Horn, bijunctive or affine. Our
work is completely unrelated to these results, since we are not interested in the solutions of
CSPs but only in generating the closure of relations. However, we use tools from CSPs such
as the Post’s lattice [11], used by Schaefer in its seminal paper [14], and the Baker-Pixley
theorem [2].

The main theorem of this article settles the complexity of a whole family of decision
problems and implies, quite surprisingly, that the backtrack search is enough to obtain a
polynomial delay algorithm to enumerate any closure of boolean vectors. For all these enu-
meration problems, compared to the naive saturation algorithm, our method has a better
time complexity (even from a practical point of view) and a better space complexity (polyno-
mial rather than exponential). Moreover, besides the generic enumeration algorithm, we try
to give for each closure rule an algorithm with the best possible complexity. In doing so, we
illustrate several classical methods used to enumerate objects such as amortized backtrack
search, hill climbing, Gray code . . .

1.1 Organization of the paper

In Sec. 2, we define enumeration complexity, our problem and the backtrack search. In Sec.
3, we use Post’s lattice, restricted through suitable reductions between clones, to determine
the complexity of ClosureF for all set of binary operations F . It turns out that there are
only a few types of closure operations: the monotone operations (Sec. 3.1), the addition
over F2 (Sec. 3.2), the set of all operations (Sec.3.3), two infinite hierarchies related to the
majority function (Sec. 3.4) and the limit cases of the previous hierarchies (Sec.3.5). Finally,
in Sec. 4, we give polynomial delay algorithms for three classes of closure operation over any
domain and prove that the method we use in the boolean case fails.

2 Preliminary

Given n ∈ N, [n] denotes the set {1, ..., n}. For a set D and a vector v ∈ Dn, we denote by
vi the ith coordinate of v. Let i, j ∈ [n], we denote by vi,j the vector (vi, vj). More generally,
for a subset I = {i1, ..., ik} of [n] with i1 < ... < ik we denote by vI the vector (vi1 , ..., vik

).
Let S be a set of vector we denote by SI the set {vI | v ∈ S}. The characteristic vector v
of a subset E of [n], is the vector in {0, 1}n such that vi = 1 if and only if i ∈ X.

Arnaud Mary and Yann Strozecki 3

2.1 Complexity
In this section, we recall basic definitions about enumeration problems and their complexity,
for further details and examples see [15].

Let Σ be some finite alphabet. An enumeration problem is a function A from Σ∗ to
P(Σ∗). That is to each input word, A associates a set of words. An algorithm which solves
the enumeration problem A takes any input word w and produces the set A(w) word by
word and without redundancies. We always require the sets A(w) to be finite. We may also
ask A(w) to contain only words of polynomial size in the size of w and that one can test
whether an element belongs to A(w) in polynomial time. If those two conditions hold, the
problem is in the class EnumP which is the counterpart of NP for enumeration. Because of
this relationship to NP, we often call solutions the elements we enumerate.

The delay is the time between the productions of two consecutive solutions. Usually we
want to bound the delay of an algorithm for all pairs of consecutive solutions and for all
inputs of the same size. If this delay is polynomial in the size of the input, then we say that
the algorithm is in polynomial delay and the problem is in the class DelayP. If the delay
is polynomial in the input and the number of already generated solutions, we say that the
algorithm is in incremental delay and the problem is in the class IncP. By definition we have
DelayP ⊂ IncP. Moreover (DelayP ∩ EnumP) 6= (IncP ∩ EnumP) modulo the exponential
time hypothesis [4]. In practice problems in DelayP are much more tractable, often because
they can be solved with a memory polynomial in the size of the input. Note that in a
polynomial delay algorithm we allow a polynomial precomputation step, usually to set up
data structures, which is not taken into account in the delay. This is why we can have a
delay smaller than the size of the input.

We now explain a very classical and natural enumeration method called the Backtrack
Search (sometimes also called the flashlight method) used in many previous articles [12, 16].
We represent the solutions we want to enumerate as vectors of size n and coefficients in D.
In practice solutions are often subsets of [n] which means that D = {0, 1} and the vector is
the characteristic vector of the subset.

The enumeration algorithm is a depth first traversal of a tree whose nodes are partial
solutions. The nodes of the tree will be all vectors v of size l, for all l ≤ n, such that v = w[l]
and w is a solution. The children of the node v will be the vectors of size l + 1, which
restricted to [l] are equal to v. The leaves of this tree are the solutions of our problem,
therefore a depth first traversal will visit all leaves and yield all solutions. We want an
enumeration algorithm with a delay polynomial in n. Since a branch of the tree is of size
n, we need to be able to find the children of a node in a time polynomial in n to obtain a
polynomial delay. The delay also depends linearly on |D|, but in the rest of the paper |D|
will be constant. Therefore the problem is reduced to the following decision problem: given
v of size l is there w a solution such that v = w[l] ? This problem is called the extension
problem associated to the enumeration problem.

I Proposition 1. Given an enumeration problem A, such that for all w, A(w) can be seen
as vectors of size n and coefficients in D, with n and |D| polynomially related to |w|. If the
extension problem associated to A is in P, then A is in DelayP.

2.2 Closure of families by set operations
We fix D a finite domain. Given a t-ary operation f (a function from Dt to D), f can be
naturally extended to a t-ary operation over vectors of the same size. For a t-uples of vectors
of size n v1, . . . vt, f will then acts coefficient-wise, that is for all i ≤ n, f(v1, . . . , vt)i =

4 Efficient enumeration of solutions produced by closure operations

f(v1
i , . . . , v

t
i).

I Definition 2. Let F be a finite set of operations over D. Let S be a set of vectors of size
n over D. Let F i(S) = {f(v1, . . . , vt) | v1, . . . , vt ∈ F i−1(S) and f ∈ F} and F0(S) = S.
The closure of S by F is ClF (S) = ∪iF i(S).

Remark that ClF (S) is also the smallest set which contains S and which is closed by the
operations of F . The set ClF (S) is invariant under the operations of F : these operations
are called polymorphisms of the set ClF (S), a notion which comes from universal algebra.

As an illustration, assume thatD = {0, 1} and that F = {∨}. Then the elements of S can
be seen as subsets of [n] (each vector of size n is the characteristic vector of a subset of [n]) and
Closure{∨}(S) is the closure by union of all sets in S. Let S = {{1, 2, 4}, {2, 3}, {1, 3}} then
Cl{∨}(S) = {{1, 2, 4}, {1, 2, 3, 4}, {2, 3}, {1, 3}, {1, 2, 3}}. Remark that Cl{∨}(S) is indeed
closed by union, that is ∨ is a polymorphism of Cl{∨}(S).

The problem we try to solve in this article, for all set of operations F over D, is
EnumClosureF : given a set of vectors S compute ClF (S). We will always denote the
size of the vectors of S by n and the cardinal of S by m. We introduce two related decision
problems. First, the extension problem associated to a set of operations F , is the problem
ExtClosureF : given S a set of vectors of size n, and a vector v of size l ≤ n, is there a
vector v′ ∈ ClF (S) such that v[l] = v′. Second, the closure problem, denoted by ClosureF ,
is a restricted version of the extension problem where v is of size n. As a direct consequence
of Prop. 1, we have the following proposition.

I Proposition 3. If ClosureF ∈ P then EnumClosureF ∈ DelayP.

We have introduced an infinite family of problems, whose complexity we want to deter-
mine. Several families of operations may always produce the same closure. To deal with
that, we need to introduce the notion of functional clone.

I Definition 4. Let F be a finite set of operations over D, the functional clone generated by
F , denoted by < F >, is the set of operations obtained by any composition of the operations
of F and of the projections πn

k : Dn → D defined by πn
k (x1, . . . , xn) = xk.

This notion is useful, because two sets of functions which generate the same clone applied
to the same set produce the same closure.

I Lemma 5. For all set of operations F and all set of vectors S, ClF (S) = Cl<F>(S).

The number of clones over D is infinite even when D is the boolean domain (of size
2). However, in this case the clones form a countable lattice, called the Post’s lattice [11].
Moreover there is a finite number of well described clones plus a few very regular infinite
family of clones.

3 The Boolean Domain

In this part we will prove our main theorem on the complexity of ClosureF , when the
domain is boolean. An instance of one such problem, denoted by S, will be indifferently
seen as a set of vectors of size n or a set of subsets of [n].

I Theorem 6. Let F be any fixed finite set of operations over the boolean domain, then
ClosureF ∈ P and EnumClosureF ∈ DelayP.

Arnaud Mary and Yann Strozecki 5

To prove our main theorem, we will prove that ClosureF ∈ P, for each clone F of the
Post’s lattice. We first show that for some F the problem ClosureF can be reduced to
ClosureG where G is another clone obtained from F . This helps to reduce the number of
cases we need to consider.

To an operation f we can associate its dual f defined by f(s1, . . . , st) = ¬f(¬s1, . . . ,¬st).
If F is a set of operations, F is the set of duals of operation in F . We denote by 0 and 1
the constant functions which always return 0 and 1. By a slight abuse of notation, we will
also denote by 0 the all zero vector and by 1 the all one vector.
I Proposition 7. The following problems can be polynomially reduced to ClosureF :
1. ClosureF∪{0}, ClosureF∪{1}, ClosureF∪{0,1}
2. ClosureF
3. ClosureF∪{¬} when F = F

In Fig. 1, we represent the clones which cannot be reduced to another one using Prop. 7
and that we will investigate in this article. For a a modern presentation of all boolean clones,
their bases and the Post’s lattice see [13].

Clone Base
I2 ∅
L2 x + y + z

L0 x + y

E2 ∧
S10 x ∧ (y ∨ z)
Sk

10 T hk+1
k , x ∧ (y ∨ z)

S12 x ∧ (y → z)
Sk

12 T hk+1
k , x ∧ (y → z)

D2 maj

D1 maj, x + y + z

M2 ∨, ∧
R2 x ? y : z

R0 ∨, +

I2

L2

L0

E2

S10

S12

S3
12

S2
12

S3
10

S2
10

D2

D1

M2

R

R0

Sec. 3.3

Sec. 3.4

Sec. 3.5

Sec. 3.1

Sec. 3.2

Figure 1 The reduced Post’s lattice, the edges represent inclusions of clones

3.1 Conjunction
We first study one of the simplest clone: E2 =< ∧ >. We give an elementary proof that
ClosureE2 ∈ P, then we explain how to obtain a good delay for EnumClosureE2 . For a
binary vector v, let us denote by 0(v) (resp. 1(v)) the set of indices i for which vi = 0 (resp.
vi = 1).
I Proposition 8. ClosureE2 ∈ P.

Proof. Let S be a set of boolean vectors, if we apply ∧ to a couple of vectors in S it
produces the intersection of two vectors when seen as sets. Since the intersection operation

6 Efficient enumeration of solutions produced by closure operations

is associative and commutative, ClE2(S) is the set of arbitrary intersections of elements of
S. Let v be a vector and let S1 be the set {w ∈ S | w1(v) = 1}. Assume now that v can
be obtained as an intersection of elements v1, . . . , vt, those elements must be in S1 because
of the monotonicity of the intersection for the inclusion. On the other hand, by definition
of S1, v will always be smaller or equal to ∩w∈S1w. Therefore, v ∈ ClE2(S) if and only
if v = ∩w∈S1w. This intersection can be computed in time O(mn) which concludes the
proof. J

By Prop. 1, we can turn the algorithm for ClosureE2 into an enumeration algorithm
for EnumClosureE2 with delay O(mn2). We explain in the next proposition how to reduce
this delay to O(mn), which is the best known complexity for this problem.
I Proposition 9. There is an algorithm solving EnumClosureE2 with a delay O(mn).

Proof. We use the backtrack search described in Prop. 1 but we maintain data structures
which allow to decide ClosureE2 quickly. Let S be the input set of m vectors of size n.
During the traversal of the tree we update the partial solution p, represented by an array of
size n which stores whether pi = 1, pi = 0 or is yet undefined.

A vector v of S is compatible with the partial solution if 1p ⊆ 1v. We maintain an
array COMP indexed by the sets of S, which stores whether each vector of S is compatible
or not with the current partial solution. Finally we update an array COUNT , such that
COUNT [i] is the number of compatible vectors v ∈ S such that vi = 0. Remark that a
partial solution p can be extended into a vector of ClE2(S) if and only if for all i ∈ 0p

COUNT [i] > 0, the solution is then the intersection of all compatible vectors.
At each step of the traversal, we select an index i such that pi is undefined and we set

first pi = 0 then pi = 1. When we set pi = 0, there is no change to do in COUNT and
COMP and we can check whether this extended partial solution is correct by checking if
COUNT [i] > 0 in constant time. When we set pi = 1, we need to update COMP by
removing from it every vector v such that vi = 0. Each time we remove such a vector v,
we decrement COUNT [j] for all j such that vj = 0. If there is a j such that COUNT [j] is
decremented to 0 then the extension of p by pi = 1 is not possible.

When we traverse a whole branch of the tree of partial solutions during the backtrack
search, we will set pi = 1 for each i at most once and then we need to remove each vector
from COMP at most once. Therefore the total number of operations we do to maintain
COMP and COUNT is O(mn) and so is the delay. J

The problem EnumClosureE2 is related to several interesting enumeration problems
such as listing the solutions of a DNF formula. There is an intriguing open question on
its complexity: can we have a delay sublinear in m or only dependent in n, that is a delay
polynomial in the size of the solutions. It contrasts with all other clones, for which we give
enumeration algorithms with a delay polynomial in the size of the solutions.

3.2 Algebraic operations
We first deal with the clone L0 =< + > where + is the boolean addition. Note that ClL0(S)
is the vector space generated by the vectors in S. Seen as an operation on sets, + is the
symmetric difference of the two sets.
I Proposition 10. ClosureL0 ∈ P.

Proof. Let S be the set of input vectors, let v be a vector and let A be the matrix whose
rows are the elements of S. The vector v is in ClL0(S) if and only if there is a solution to

Arnaud Mary and Yann Strozecki 7

Ax = v. Solving a linear system over F2 can be done in polynomial time which proves the
proposition. J

The previous proposition yields a polynomial delay algorithm by applying Prop. 1. One
can get a better delay, by computing in polynomial time a maximal free family M of S,
which is a basis of ClL0(S). The basis M is a succinct representation of ClL0(S). One
can generate all elements of ClL0(S) by going over all possible subsets of elements of M
and summing them. The subsets can be enumerated in constant time by using Gray code
enumeration (see [10]). The sum can be done in time n by adding a single vector since two
consecutive sets differ by a single element in the Gray code order. Therefore we have, after
the polynomial time computation of M , an enumeration in delay O(n).

With some care, we can extend this result to the clone L2 generated by the sum modulo
two of three elements.

I Proposition 11. ClosureL2 ∈ P.

Proof. First remark that any vector in ClL2(S) is the sum of an odd number of vectors in
S. In other words v ∈ ClL2(S) if and only if there is a x such that Ax = v and that the
Hamming weight of x is odd. One can compute a basis B of the vector space of the solutions
to the equation Ax = v. If all elements of B have Hamming weight even, then their sums
also have Hamming weight even. Therefore v ∈ ClL2(S) if and only if there is an element
in B with odd Hamming weight, which can be decided in polynomial time. J

3.3 Conjunction and disjunction
In this subsection, we deal with the largest possible clones of our reduced Post lattice:
M2 =< ∧,∨ >, R2 =< x ? y : z > and R0 =< ∨,+ >.

I Proposition 12. ClosureM2 ∈ P.

Proof. Let S be a vector set and for all i ∈ [n], let Xi := {v ∈ S | vi = 1}. We will show that
a vector u belongs to ClM2(S) if and only if u :=

∨
i∈1(u)

∧
v∈Xi

v. Clearly, if u :=
∨

i∈1(u)

∧
v∈Xi

v

then u ∈ ClM2(S).
Assume first that there exists i ∈ 1(u) such that Xi = ∅ i.e. for all v ∈ S, vi = 0. Then

clearly, for all w ∈ ClM2(S), wi = 0 and then u /∈ ClM2(S). Assume now that Xi 6= ∅ for all
i ∈ 1(u) and assume that u 6= t :=

∨
i∈1(u)

∧
v∈Xi

v. So there exists j ∈ 0(u) such that tj = 1.

Thus, there exists i ∈ 1(u) such that for all v ∈ Xi, vj = 1. We have that for all v ∈ S,
vi = 1 =⇒ vj = 1. Let us show that this property is preserved by both operations ∧ and
∨ and then that this property holds for all w ∈ ClM2(S). Assume that the property holds
for a set F . Let a, b ∈ F and let v := a ∧ b. If vi = 1, we have ai = 1 and bi = 1 and then
aj = 1 and bj = 1. We conclude that vj = aj ∧ bj = 1. Assume now that v = a ∨ b and
that vi = 1. Then either ai = 1 or bi = 1, say w.l.o.g. that ai = 1. Then aj = 1 and we
have vj = aj ∨ bj = 1. We have shown that the property is preserved by both operations,
therefore u cannot belong to ClM2(S) since ui = 1 and uj = 0. J

We can decide ClosureM2 is O(mn2) therefore by applying Prop. 1, we get an enu-
meration algorithm with delay O(mn3). We can precompute the n vectors xi =

∧
v∈Xi

v

and generate their unions in delay O(n2) thanks to Prop. 9. We can do better by using the
inclusion structure of the xi to obtain a O(n) delay.

I Proposition 13. EnumClosureM2 can be solved with delay O(n).

8 Efficient enumeration of solutions produced by closure operations

If we consider EnumClosureM2∪{¬}(S), it is very easy to enumerate. Let Xi = {v | v ∈
S, vi = 1} ∪ {¬v | v ∈ S, vi = 0} and let xi =

∧
v∈Xi

v. The set ClM2∪{¬}(S) is in fact
a boolean algebra, whose atoms are the xi. Indeed, either xi

i,j = xj
i,j and they are equal

or 1xi ∩ 1xj = ∅. Let A = {xi | i ∈ [n]}, two distinct unions of elements in A produce
distinct elements. Hence by enumerating all possible subsets of A with a Gray code, we
can generate ClM2∪{¬}(S) with a delay O(n) (even O(1) when always equal coefficients are
grouped together).

The closures by the clones R2 and R0 are equal to the closure by M2 ∪ {¬} up to some
coefficients which are fixed to 0 or 1, thus they are as easy to enumerate.
I Proposition 14. The problems ClosureR2 , ClosureR0 can be reduced to ClosureM2

in polynomial time.

3.4 Majority and threshold
An operation f is a near unanimity of arity k if it satisfies f(x1, x2, . . . , xk) = x for each
k-tuple with at most one element different from x. The threshold function of arity k, denoted
by Thk

k−1, is defined by Thk
k−1(x1, . . . , xk) is equal to 1 if and only if at least k − 1 of the

elements x1, . . . , xk are equal to one. It is the smallest near unanimity operation over the
booleans. The threshold function Th3

2 is the majority operation over three booleans that
we denote by maj and the clone it generates is D2. We first give a characterization of
ClD2(S) which helps prove that ClosureD2 ∈ P . The characterization is a particular case
of a universal algebra theorem that we then use to compute the closure by any clone which
contains a threshold function.

I Lemma 15. Let S be a vector set, a vector v belongs to ClD2(S) if and only if for all
i, j ∈ [n], i 6= j, there exists x ∈ S such that xi,j = vi,j.

Proof. (=⇒) Given a, b ∈ {0, 1} and i, j ∈ [n], i 6= j, we first show that if for all v ∈ S,
vi 6= a or vj 6= b then for all u ∈ ClD2(S), vi 6= a or vj 6= b. It is sufficient to prove that
this property is preserved by applying maj to a vector set i.e. that if S has this property,
then maj(S) has also this property. Let x, y, z ∈ S, v := maj(x, y, z), and assume for
contradiction that vi,j = (a, b). Since vi = a, there is at least two vectors among {x, y, z}
that are equal to a at index i. Without loss of generality, let x and y be these two vectors.
Since for all u ∈ S, ui 6= a or uj 6= b, we have xj 6= b and yj 6= b and then vj 6= b which
contradicts the assumption. We conclude that if v ∈ ClD2(S), then for all i, j ∈ [n], there
exists u ∈ S with vi,j = ui,j .
(⇐=) Let k ≤ n and let a1, ..., ak ∈ {0, 1}. We will show by induction on k, that if for all
i, j ≤ k there exists v ∈ S with vi = ai and vj = aj , then there exists u ∈ ClD2(S) with
u1 = a1, u2 = a2, ..., uk = ak. The assertion is true for k = 2. Assume it is true for k − 1,
and let a1, ..., ak ∈ {0, 1}. By induction hypothesis there exists a vector w ∈ ClD2(S) with
w1 = a1, ..., wk−1 = ak−1. By hypothesis, for all i ≤ k there exists vi ∈ S with vi

i = ai and
vi

k = ak. We then construct a sequence of vectors (ui)i≤k as follow. We let u1 = v1 and
for all 1 < i < k, ui = maj(w, ui−1, vi). We claim that u := uk−1 has the property sought
i.e. for all i ≤ k, ui = ai. First let prove that for all i < k and for all j ≤ i, ui

j = aj . It
is true for u1 by definition. Assume now that the property holds for ui−1, i < k. Then, by
construction, for all j ≤ i− 1, we have ui

j = aj since wj = aj and ui−1
j = aj . Furthermore,

we have ui
i = maj(wi, u

i−1
i , vi

i) = ai since wi = ai and vi = ai. We conclude that for all
i ≤ k − 1, ui = uk−1

i = ai.
We claim now that for all i < k, ui

k = ak. It is true for u1. Assume it is true for
ui−1, i < k. Then we have ui

k = maj(wk, u
i−1
k , vi

k) which is equal to ak since ui−1
k = ak by

Arnaud Mary and Yann Strozecki 9

induction and vi
k = ak by definition. We then have ui = ai for all i ≤ k which concludes the

proof. J

As an immediate consequence we get the following corollary and proposition.

I Corollary 16. ClosureD2 ∈ P.
Proof. Using Lemma 15, one decides whether a vector v is in ClD2(S), by considering every
pair of index i, j and checking whether there is a vector w ∈ S such that vi, j = wi, j. The
complexity is in O(mn2). J

I Proposition 17. EnumClosureD2 can be solved in delay O(n2).

Proof. We do a backtrack search and we explain how to efficiently decide ClosureD2 during
the enumeration. We first precompute for each pair (i, j) all values (a, b) such that there
exists v ∈ S, vi,j = (a, b). When we want to decide whether the vector v of size l can be
extended into a solution, it is enough that it satisfies the condition of Lemma 15. Moreover,
we already know that v[l−1] satisfies the condition of Lemma 15. Hence we only have to
check that the values of vi,l for all i < l can be found in Si,l which can be done in time O(l).
The delay is the sum of the complexity of deciding ClosureD2 for each partial solution in
a branch: O(n2). J

It turns out that Lemma 15 is a particular case of a general theorem of universal algebra
which applies to all near unanimity terms. However we felt it was interesting to give the
lemma and its proof to get a sense of how the following theorem is proved.

I Theorem 18 (Baker-Pixley, adapted from [2]). Let F be a clone which contains a near
unanimity term of arity k, then v ∈ ClF (S) if and only if for all set of indices I of size
k − 1, vI ∈ ClF (S)I .

This allows to settle the case of D1 =< maj, x+y+z > and of the two infinite families of
clones of our restricted lattice Sk

10 =< Thk+1
k , x∧(y∨z) > and Sk

12 =< Thk+1
k , x∧(y → z) >.

I Corollary 19. If a clone F contains Thk+1
k then ClosureF is solvable in O(mnk). In

particular Closure(Sk
10), Closure(Sk

12) and Closure(D1) are in P.
We have proved that the complexity of any closure problem in one of our infinite families

is polynomial. Remark that we can use the method of Prop. 17 to obtain a delay O(nk) for
enumerating the elements of a set closed by a near unanimity function of arity k. Notice
that we could have applied Theorem 18 to the clones of Subsection 3.3 which all contain the
maj function. However, it was relevant to deal with them separately to obtain a different
algorithm with delay O(n) rather than O(n2).

Notice that the complexity of ClosureF is increasing with the smallest arity of a near
unanimity function in F . We should thus investigate the complexity of the uniform problem
when the clone is given as input. Let ClosureTreshold be the following problem: given a
set S of vectors and an integer k decide whether the vector 1 ∈ ClSk

10
(S). It is a restricted

version of the uniform problem, but it is already hard to solve because we can reduce the
Hitting Set problem to its complementary.

I Theorem 20. ClosureTreshold is coNP-complete.

In fact, the result is even stronger. We cannot hope to get an FPT algorithm for Clo-
sureTreshold parametrized by k since the Hitting Set problem parametrized by the size of
the hitting set is W[2]-complete [6]. It means that if we want to significantly improve the
delay of our enumeration algorithm for the clone Sk

10, we should drop the backtrack search
since it relies on solving ClosureSk

10
.

10 Efficient enumeration of solutions produced by closure operations

3.5 Limits of the infinite parts
Here we deal with the two cases left which are the limits of the two infinite hierarchies of
clones we have seen in the previous subsection. Let begin with S12 =< x ∧ (y → z) >.
I Remark. Let S be a vector set and assume that there exists a i ∈ [n] such that for all
v ∈ S, vi = 1 (resp. vi = 0) then for all w ∈ ClS12(S) we have wi = 1 (resp. wi = 0). Then
we will assume in this section that for all i ∈ [n] there is at least a vector v in S with vi = 1
and a vector w with wi = 0.

I Theorem 21. Let S be a vector set, a vector v belongs to ClS12(S) if and only if
there exists w ∈ S such that 1(v) ⊆ 1(w)
for all (k, i) ∈ 1(v)× 0(v) there exists w ∈ S with wk,i = (0, 1) or wk,i = (1, 0)

Proof. Let us start by proving the following claim.
Claim: Let k, i ∈ [n]. Then there exists u ∈ ClS12(S) such that uk,i = (1, 0) if and only if
there exists v ∈ S such that vk,i = (1, 0) or vk,i = (0, 1).

Assume first that there exists v ∈ S such that vk,i = (0, 1). Let x ∈ S such that xk = 1
and y ∈ S such that yi = 0. Without loss of generality, such vectors exist by the assumption
of Remark 3.5. Then u := x∧(v → y) has the sought property, i.e uk,i = (1, 0). Assume now
that for all v ∈ S, vk,i 6= (1, 0) and vk,i 6= (0, 1). We show that this property is preserved
by the application of x ∧ (y → z). For all v ∈ S, vk,i = (1, 1) or vk,i = (0, 0). Since the
function x∧(y → z) acts coordinate-wise on the vectors, if we consider w = x∧(y → z) with
x, y, z ∈ S we must have wi = wk. Therefore wk,i 6= (1, 0) and wk,i 6= (0, 1) which implies
by induction that there is no v with vk,i = (0, 1) and v ∈ ClS12(S). We can now prove the
theorem.
(⇐=) We can simulate w ∧ v with w ∧ (w → v). We will show that for all i ∈ 0(v) either
there exists a vector vi ∈ S such that 1(v) ⊆ 1(vi) and vi

i = 0 or we can construct it. Notice
that it is sufficient in order to prove that v ∈ ClS12(S) since we have v =

∧
i∈0(v) v

i. So let
i ∈ 0(v) and assume that for all w ∈ S such that 1(v) ⊆ 1(w) we have wi = 1. Let w be
such a vector and let 1(v) = {j1, j2, ..., jk}. We will construct a sequence of vector (wl)l≤k

such that for all l ≤ k and for all r ≤ l, wl
jr

= 1 and wl
i = 0. Let w1 be the vector with

w1
j1

= 1 and w1
i = 0. By the claim, such a vector exists in ClS12(S). Now for all l ≤ k, let

us define wl := w ∧ (ul → wl−1) where ul is a vector such that ul
jl

= 0 and ul
i = 1 and there

is such a vector in ClS12(S) by the claim. Since by induction we have wl−1
i = 0, and since

ul
i = 1, we have (ul → wl−1)i = 0 and thus wl

i = 0. Now since ul
jl

= 0 and wjl
= 1 we have

wl
jl

= 1. Finally, for all r < l, we have wjr
and wl−1

jr
= 1. Hence wl

jr
= 1. We obtain that

1(v) ⊆ 1(wk) and wk
i = 0.

(=⇒) Let v ∈ ClS12(S). Notice that if v = x∧ (y → z), then 1(v) ⊆ 1(x). Thus, there exists
w ∈ S such that 1(v) ⊆ 1(w). Now, by the claim, for all k, i ∈ [n] such that vk,i = (1, 0)
there exists w ∈ S such that wk,i = (1, 0) or wk,i = (0, 1) which conclude the proof. J

I Corollary 22. ClosureS12 ∈ P.

Finally, we deal with the clone S10 =< x ∧ (y ∨ z) >. The characterization of ClS10(S)
and its proof are very similar to the one of ClS12(S).

I Theorem 23. Let S be a vector set, a vector v belongs to ClS10(S) if and only if
there exists w ∈ S such that 1(v) ⊆ 1(w)
for all (k, i) ∈ 1(v)× 0(v) there exists w ∈ S with wk,i = (1, 0)

I Corollary 24. ClosureS10 ∈ P.

Arnaud Mary and Yann Strozecki 11

4 Larger Domains

In this section, we try to extend some results of the boolean domain to larger domains.

4.1 Tractable closure
The first tractable case is an extension of the clones of Subsection 3.4. Indeed using Th. 18,
we can get an equivalent to Corollary. 19 and to Prop. 17 in any domain size.

I Corollary 25. If F contains a near unanimity operation, then ClosureF ∈ P .

I Proposition 26. If F contains a near unanimity term of arity k, then EnumClosureF
can be solved in delay O(nk−1).

The second tractable case is a generalization of Subsection 3.2.
I Proposition 27. Let f be a commutative group operation over D, then Closure<f> ∈ P .

Proof. We want to solve Closure<f>, given S a set of vectors and v a vector. Let A be the
matrix which has the elements of S as rows. The vector v is in Closure<f>(S) if and only
there is a vector x with coefficients in Z such that Ax = v. This equation is not over a field
so we cannot solve it directly. We apply a classical group theorem to the finite commutative
group (D, f), which states that D is a direct sum of cyclic groups D1, . . . , Dt whose order
is the power of a prime. The equation Ax = v can be seen as a set of equations over fields:
Aixi = vi, for i ≤ t, where Ai, xi and vi are the projection of A, x and v over Di. We
can easily reconstruct an x which have the projections xi on Di by the Chinese remainder
theorem. Therefore, deciding whether v ∈ Closure<f>(S) is equivalent to solving a set of
linear systems and hence is in polynomial time. J

One natural generalization would be to allow the function f to be non commutative. In
that case, we conjecture that Closure<f> is NP-hard.

4.2 A limit to the backtrack search
The last case we would like to extend is the clone generated by the conjunction. A natural
generalization is to fix an order on D and to study the complexity of Closure<f> with
f monotone. Let f be the function over D = {0, 1, 2} defined by f(x, y) = min(x + y, 2).
This function is clearly monotone for the usual order. However we can prove that EXACT-
3-COVER reduces to Closure<f>.
I Proposition 28. Closure<f> is NP-complete.

This hardness result implies that we cannot use the backtrack search to solve the asso-
ciated enumeration algorithm. However, if we allow a space proportional to the number of
solutions, we can still get a polynomial delay algorithm for associative functions, a prop-
erty satisfied by the function f of the last proposition. Remark that the space used can be
exponential while the backtrack search only requires a polynomial space.
I Proposition 29. If f is an associative function, then EnumClosure<f> ∈ DelayP.

Proof. Let S be an instance of EnumClosure<f>. Let G be the directed graph with
vertices Cl<f>(S) and from each v ∈ Cl<f>(S), there is an arc to f(v, s) for all s ∈ S.
Since f is associative, by definition of G, every vertex of Cl<f>(S) is accessible from a
vertex in S. Therefore we can do a depth-first traversal of the graph G to enumerate all
solutions. A step of the traversal is in polynomial time: from an element v we generate its

12 Efficient enumeration of solutions produced by closure operations

neighborhood: f(v, s) for s ∈ S. The computation of f(v, s) is in time O(n) and |S| = m.
We must also test whether the solution f(v, s) has already been generated. This can be done
in time O(n) by maintaining a self balanced search tree containing the generated solutions,
since there are at most |D|n solutions. In conclusion the delay of the enumeration algorithm
is in O(mn) thus polynomial. J

To obtain a polynomial space algorithm, we could try to use the reverse search method [1].
To do that, we want the graph G to be a directed acyclic graph, which is the case if we
require the function to be monotone. The monotonicity also ensures that the depth of G
is at most n(|D| − 1). However we also need to be able to compute for each element of G
a canonical ancestor in polynomial time and it does not seem to be easy even when f is
monotone. We leave the question of finding a good property of f which ensures the existence
of an easy to compute ancestor open for future research.
Acknowledgements Authors have been partly supported by the ANR project Aggreg and
we thank the members of the project and Mamadou Kanté for interesting discussions about
enumeration. We also thank Florent Madelaine for his help with CSP and universal algebra.

References
1 D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Applied Mathematics,

65(1):21–46, 1996.
2 Kirby A Baker and Alden F Pixley. Polynomial interpolation and the chinese remainder

theorem for algebraic systems. Mathematische Zeitschrift, 143(2):165–174, 1975.
3 Andrei A Bulatov, Víctor Dalmau, Martin Grohe, and Dániel Marx. Enumerating homo-

morphisms. Journal of Computer and System Sciences, 78(2):638–650, 2012.
4 Florent Capelli, Arnaud Durand, and Yann Strozecki. A note on polynomial delay and

incremental delay. Available on: http: // www. prism. uvsq. fr/ ~ystr , 2015.
5 N. Creignou and JJ Hébrard. On generating all solutions of generalized satisfiability prob-

lems. RAIRO Theoretical Informatics and Applications, 31(6), 1997.
6 J. Flum and M. Grohe. Parameterized complexity theory. Springer-Verlag, 2006.
7 M.R. Garey and D.S. Johnson. Computers and intractability: a guide to NP-completeness.

WH Freeman and Company, San Francisco, 1979.
8 David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. On generating all

maximal independent sets. Information Processing Letters, 27(3):119–123, 1988.
9 L. Khachiyan, E. Boros, K. Elbassioni, V. Gurvich, and K. Makino. On the complexity

of some enumeration problems for matroids. SIAM Journal on Discrete Mathematics,
19(4):966–984, 2005.

10 Donald E Knuth. Combinatorial algorithms, part 1, volume 4a of the art of computer
programming, 2011.

11 Emil Leon Post. The two-valued iterative systems of mathematical logic. Princeton Univer-
sity Press, 1941.

12 RC Read and RE Tarjan. Bounds on backtrack algorithms for listing cycles, paths, and
spanning trees. Networks, 5(3):237–252, 1975.

13 Steffen Reith and Heribert Vollmer. Optimal satisfiability for propositional calculi and
constraint satisfaction problems. Information and Computation, 186(1):1–19, 2003.

14 T.J. Schaefer. The complexity of satisfiability problems. In Proceedings of the tenth annual
ACM symposium on Theory of computing, page 226. ACM, 1978.

15 Y. Strozecki. Enumeration complexity and matroid decomposition. PhD thesis, Université
Paris Diderot - Paris 7, 2010.

16 Yann Strozecki. On enumerating monomials and other combinatorial structures by poly-
nomial interpolation. Theory Comput. Syst., 53(4):532–568, 2013.

http://www.prism.uvsq.fr/~ystr

Arnaud Mary and Yann Strozecki 13

A Appendix

You can find here the proofs missing in the article. You can also read the long version of
the paper on ArXiv.
I Proposition 3. If ClosureF ∈ P then EnumClosureF ∈ DelayP.

Proof. ExtClosureF can be reduced to ClosureF . Indeed, given a vector v of size l,
because the operations of F act coordinate-wise, the two following predicates are equivalent:
∃v′ ∈ ClF (S) such that v[l] = v′

v ∈ ClF (S[l])
Therefore if ClosureF ∈ P then we have also ExtClosureF ∈ P. We can use Prop. 1 to
conclude. J

I Proposition 7. The following problems can be polynomially reduced to ClosureF :
1. ClosureF∪{0}, ClosureF∪{1}, ClosureF∪{0,1}
2. ClosureF
3. ClosureF∪{¬} when F = F
Proof of Prop. 7.

Proof. The reductions follow easily from these observations:
1. ClF∪{f}(S) = ClF (S ∪ {f}) for f = 0 or f = 1 and S 6= ∅.
2. ClF (S) = ClF (S) where S is the set of negation of vectors in S.
3. ClF∪{¬}(S) = ClF (S∪S) since for every f ∈ F , there exists g ∈ F such that ¬(f(v1, . . . , vt) =

f(¬v1, . . . ,¬vt) = g(¬v1, . . . ,¬vt).
J

I Proposition 13. EnumClosureM2 can be solved with delay O(n).

Proof. Let S be the input. We first build the xi =
∧

v∈S,vi=1
v. The inclusion is a partial

order between the xi, we extend it into some total order T by topological sorting. We then
generate all elements of ClM2(S) by an Hill climbing algorithm: we go from one solution to
another by adding a single xi. Let v be the current solution, we maintain a list L of the
indices i of v such that vi = 0. At each step we select i the first element of L and we set
vj = 1 and remove j from L for all j ∈ xi. This produces a new solution in time O(n). We
then recursively call the algorithm on this new solution and list. When the recursive call is
finished, we call the algorithm on v and L \ {i}.

This algorithm is correct, because the solutions generated in the two recursive calls are
disjoint. Indeed, in the second call vi will always be 0, because all indices in L are smaller
than i in T . It means that xj for j ∈ L is either smaller or incomparable. Since xi is the
smallest element with xi

i = 1 it implies that xj
i = 0. J

I Proposition 14. The problems ClosureR2 , ClosureR0 can be reduced to ClosureM2

in polynomial time.

Proof. Let S be a set of binary vectors. If for some i, for all v ∈ S, vi = 0 (resp. 1) then
for all w ∈ ClR2(S), wi = 0 (resp. 1). Therefore, we can assume that for all i, there is u
and v in S such that ui = 0 and vi = 1. Remark that x ?x : y = x∨ y thus by the previous
assumption we can generate 1. Let wl = wl−1 ?ul : wl−1. By assumption, we can chose
ul such that ul

l = 0. We set w0 = u0 and by a trivial induction wn = 0. Now remark that
x ? 0 : 1 = x. Therefore we have ClR2(S) = Cl<∨,¬> and the problem Closure<∨,¬> can
be polynomially reduced to ClosureM2 by point 3 of Prop. 7.

14 Efficient enumeration of solutions produced by closure operations

If for some i, for all v ∈ S, vi = 0 then for all w ∈ ClR0(S), wi = 0. Therefore we can
assume that for all i, there is u ∈ S such that ui = 1. Therefore, 1 ∈ ClR0(S) by doing
the union of the elements ul such that ul

l = 1. Finally, x + 1 = x therefore we also have
ClR0(S) = Cl<∨,¬>. J

I Corollary 19. If a clone F contains Thk+1
k then ClosureF is solvable in O(mnk). In

particular Closure(Sk
10), Closure(Sk

12) and Closure(D1) are in P.

Proof. Let S bet a set of vectors and let v be a vector. By Th. 18, v ∈ ClF (S) if and only
if for all I, vI ∈ ClF (S)I . First remark that ClF (S)I = ClF (SI) because the functions of F
act coefficient-wise on S. The algorithm generates for each I of size k the set ClF (SI). For
a given I, we first need to build the set SI in time m and then the generation of ClF (SI)
can be done in constant time. Indeed, we can apply the classical incremental algorithm to
generate the elements in ClF (SI), and the cardinal of ClF (SI) only depends on k which is
a constant. The time to generate all ClF (SI) is O(mnk) and then all the tests can be done
in O(nk). J

I Theorem 20. ClosureTreshold is coNP-complete.

Proof. First notice that the problem is in coNP since by Theorem 18, the answer to the
problem is negative if and only if one can exhibit a subset of indices of I of size k such that
no elements of SI is equal to 1.

Let us show that the Hitting Set problem can be reduced to ClosureTreshold. Given a
hypergraph H = (V, E), the Hitting set problem asks whether there exists a subset X ⊆ V

of size k that intersects all the hyperedges of H. This problem is a classical NP-complete
problem [7]. Let H = (V, E) be a hypergraph and k be an integer. Let H̄ be the hypergraph
on V whose hyperedges are the complementary of the hyperedges of H, and let S be the set
of characteristic vectors of the hyperedges of H̄. Then H has a transversal of size k if and
only if there is a set I of indices of size k such for all v ∈ SI , v 6= 1. Indeed, I is a hitting
set of H if for all E ∈ E , there exists i ∈ I such that i ∈ E which implies that i /∈ E and
then the characteristic vector v of E is such that vi = 0.

Let us show that a set I of indices of size k is such that no element in SI is equal to 1 if and
only if no element of ClSk

10
(SI) is equal to 1. We assume that k ≥ 3 hence Sk

10 =< Thk+1
k >.

Remark that if no element in SI is equal to 1, then the application of Thk+1
k to SI preserves

this property. Indeed, let consider Thk+1
k (v1, . . . , vk+1), each vi has a zero coefficient and

since there are k + 1 such vectors and the vectors are of size k, by the pigeonhole principle,
there are i, j, l such that vi

l = vj
l = 0. This implies that Thk+1

k (v1, . . . , vk+1) 6= 1.
Since the other direction is straightforward, we have thus proved that there is a set I of

indices of size k such that for all v ∈ SI , v 6= 1 if and only if there is a set I of indices of size
k such that for all v ∈ ClSk

10
(SI), v 6= 1. By Theorem 18, the later property is equivalent to

1 /∈ ClSk
10

(S). Therefore we have given a polynomial time reduction from Hitting set to the
complementary of ClosureTreshold which proves the proposition. J

I Theorem 23. Let S be a vector set, a vector v belongs to ClS10(S) if and only if
there exists w ∈ S such that 1(v) ⊆ 1(w)
for all (k, i) ∈ 1(v)× 0(v) there exists w ∈ S with wk,i = (1, 0)

Proof. (⇐=) Assume first that v ∈ ClS10(S). Notice that if v = x∧(y∨z), then 1(v) ⊆ 1(x).
Thus by a simple induction, there exists w ∈ S such that 1(v) ⊆ 1(w).

Now let (k, i) ∈ 1(v) × 0(v). Let us show that if for all w ∈ S wk,i 6= (1, 0), then
uki
6= (1, 0) for all u ∈ ClS10(S) and then v /∈ ClS10(S). It is sufficient to show that this

Arnaud Mary and Yann Strozecki 15

property is preserved by the operation x∧ (y ∨ z). So let a, b and c be three boolean vectors
such that ak,i 6= (1, 0), bk,i 6= (1, 0), ck,i 6= (1, 0) and let d = a∧ (b∨ c). Assume that di = 0.
Then either ai = 0 or both bi and ci are 0. If ai = 0 then ak = 0 since ak,i 6= (1, 0) and then
dk = ak ∧ (bk ∨ ck = 0) = 0. Now if bi = 0 and ci = 0, we have bk = 0 and ck = 0 and then
dk = ak ∧ (bk ∨ ck = 0) = 0. We conclude that dk,i 6= (0, 1)

(=⇒) Assume that there exists u ∈ S such that 1(v) ⊆ 1(u) and for all (k, i) ∈ 1(v)× 0(v)
there exists w ∈ S with wk,i = (1, 0). Notice that ∧ ∈ S10 since a ∧ b = a ∧ (b ∨ b). Let
t :=

∧
u∈S, 1(v)⊆1(u) u. We have 1(v) ⊆ 1(t). Either v = t or there is i ∈ [n] for which vi = 0

and ti = 1. For each such coordinate i, we will show how to construct a vector t′ such that
t′i = 0 and such that 1(v) ⊆ 1(t′) ⊆ 1(t). Let x :=

∨
u∈S, ui=0 u. Notice that xi = 0 and

since for all j ∈ 1(v) there exists w ∈ S such that wi,j = (0, 1) we have 1(v) ⊆ 1(x). Now
let us define t′ := t∧ x. It is easy to see that t′ satisfies the conditions sought. To construct
t′ we proceed as follow. Let {y1, ..., yk} := {u ∈ S | ui = 0}. Then let us construct the
following sequence of vectors t1 := t∧ (y1 ∨ y2), t2 := t∧ (t1 ∨ y3), ..., tk−1 := t∧ (tk−2 ∨ yk).
It is easy to see that t′ = tk−1, and then t′ ∈ ClS10(S). We conclude that v ∈ ClS10(S).
Indeed starting from t, we can apply the previous procedure to set to 0 each index i for
which vi = 0 and ti = 1. J

I Proposition 28. Closure<f> is NP-complete, with f(x, y) = min(x+ y, 2).

Proof. We reduce EXACT-3-COVER to Closure<f>. Let S be an instance of EXACT-
3-COVER, that is a set of subsets of [n] of size 3. Clearly, S can be seen as an instance of
Closure<f> and we prove that 1 ∈ Closure<f>(S) if and only if there is an exact cover of
S. First remark that f associative, therefore any element of Closure<f>(S) can be written
f(v1, f(v2, f(v3, . . .) with vi ∈ S. It is also commutative therefore we can associate a unique
element of Closure<f>(S) to a multiset of elements of S by the previous construction.
Remark that it is never useful to have three times the same element in the multiset since
f(v, v) = f(v, f(v, v)). If vi > 0 then f(vi, vi) = 2, therefore the vector 1 can only be
generated by a set and not a multiset. Moreover a set which generates 1 satisfies that for
all i ≤ n there is one and only one of its elements with a coefficient 1 at the index i. Such
a set is an exact cover of S, which proves the reduction.

The problem is in NP because an element v is in Closure<f>(S), if and only if there
is a multiset of elements of S such that applying f to its elements yields v. This witness is
of polynomial size since each element is at most twice in the multiset. J

	Introduction
	Organization of the paper

	Preliminary
	Complexity
	Closure of families by set operations

	The Boolean Domain
	Conjunction
	Algebraic operations
	Conjunction and disjunction
	Majority and threshold
	Limits of the infinite parts

	Larger Domains
	Tractable closure
	A limit to the backtrack search

	Appendix

