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PAIRWISE COMPATIBILITY GRAPHS: A SURVEY

TIZIANA CALAMONERI ∗ AND BLERINA SINAIMERI†

Abstract. A graph G = (V, E) is a pairwise compatibility graph (PCG) if there exists an edge-weighted tree

T and two non-negative real numbers dmin and dmax such that each leaf u of T is a node of V and there is an edge

(u, v) ∈ E if and only if dmin ≤ dT (u, v) ≤ dmax where dT (u, v) is the sum of weights of the edges on the unique path

from u to v in T .

In this paper, we survey the state of the art concerning this class of graphs and some of its subclasses.

Key words. pairwise compatibility graphs, leaf power graphs, min leaf power graphs.

AMS subject classifications. 05C90, 68R01, 68R10

1. Introduction. The reconstruction of ancestral relationships is one of the fundamen-

tal problems in computational biology as widely used to provide both evolutionary and func-

tional insights into biological systems. The evolutionary history of a set of organisms is usu-

ally represented by a tree-like structure called phylogenetic tree which is a tree where each

leaf represents a distinct known taxon and the internal nodes possible ancestors that might

have led through evolution to this set of taxa. Moreover, the edges of the tree can be weighted

in order to represent a sort of evolutionary distance among species. In the phylogenetic tree

reconstruction problem, given a set of taxa, we want to find a phylogenetic tree that “best”

explains the given data. Due to the difficulty in determining the criteria for an “optimal”

tree, the performance of the reconstruction algorithms is usually evaluated experimentally by

comparing the tree produced by the algorithm with the “known” tree. However, as the tree

reconstruction problem is proved to be NP-hard under many criteria of optimality and as real

phylogenetic trees consist usually of a large number of nodes, testing these heuristics on real

data is difficult. Thus, it is interesting to find efficient ways to sample subsets of taxa from

a large phylogenetic tree, subject to some biologically-motivated constraints, in order to test

the reconstruction algorithms on the smaller subtrees induced by the sample. The constraints

on the sample attempt to assure that the behaviour of the algorithm will not be biased by the

fact it is applied on the sample instead on the whole tree. For instance, as observed in [32],

very close or very distant taxa can create problems for phylogeny reconstruction algorithms.

This leads to the following constraint on the sample: given two positive integers dmin, dmax,

select a sample from the leaves of the tree such that the pairwise distance between any two

leaves in the sample is at least dmin and at most dmax. This sampling problem was considered

in [39] and polynomial algorithms were proposed. This motivates the introduction of pair-

wise compatibility graphs (PCG). Indeed, given a phylogenetic tree T , and integers dmin, dmax

we can associate a graph G, called the pairwise compatibility graph of T , whose nodes are

the leaves of T and for which there is an edge between two nodes if the corresponding leaves

in T are at a distance within the interval [dmin, dmax]. While it is trivial to construct the graph

G starting from T, dmin, dmax, the inverse problem is difficult.

PCGs can be seen as a generalization of the well-studied class of leaf power graphs

(in which dmin = 0), introduced in the problem of constructing phylogenies from species

similarity data [24, 41, 47]. Specifically, interspecies similarity is represented by a graph G

where the nodes are the species and the adjacency relation represents evidence of evolutionary
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similarity. The phylogenetic tree is then built from this graph such that the leaves correspond

to nodes of the graph and two leaves that correspond to adjacent nodes are at distance at most

dmax in the tree, where dmax is a chosen threshold of proximity. Although there has been a lot

of work on this topic (see e.g. [47, 6, 10, 5]), a complete description of leaf power graphs is

still unknown and remains an important research problem.

Another natural relaxation of the pairwise compatibility constraint is the one obtained

when dmax is set to ∞. Thus, there is an edge (u, v) in G if and only if dT (u, v) ≥ dmin. This

relaxation leads to the definition of the class of min leaf power graphs (mLPGs) [20]. It is

worth to mention that initially the mLPG class has been defined as the complement of the

LPG class, in an attempt to better understand the structure of PCGs. This is the reason why

their name evokes the power of graphs although these graphs are not of this type.

In this survey we review the results on the identification of the classes PCG and mLPG,

and some of the results for LPG. For more details on the characterization of the LPG class

we refer the reader to the nice survey of Brandstädt [3].

This paper is organized as follows. Section 2 is devoted to some basic definitions and

some preliminary results. We have included most of the definitions of the graph classes we

mention. However, for further details the interested reader can consult [9]. In Section 3

we survey the main results related to the complexity of recognizing pairwise compatibility

graphs. Section 4 is devoted to the graph class LPG ∩ mLPG. In Section 5 we list the

graphs classes which are known not to belong to the class PCG. Section 6 includes the state

of the art on the characterization of the PCG class and its subclasses mLPG and LPG. In

particular it presents the known results on the graph classes contained in PCG as well as the

results concerning the characterization of the PCGs in terms of forbidden configurations. In

Section 7 we consider PCGs of particular subclasses of trees, such as stars and caterpillars.

In each section we also include a number of main open problems. Finally, we conclude in

Section 8 with some possible research directions related to pairwise compatibility graphs.

2. Basic definitions. In this section we recall some basic definitions that we use through-

out this paper.

A graph G = (V, E) is a pairwise compatibility graph (PCG) if there exists a tree T ,

a positive edge weight function w on T and two non-negative real numbers dmin and dmax,

dmin ≤ dmax, such that each node u ∈ V is uniquely associated to a leaf lu of T and there is

an edge (u, v) ∈ E if and only if dmin ≤ dT,w(lu, lv) ≤ dmax where dT,w(lu, lv) is the sum of the

weights of the edges on the unique path from lu to lv in T . In such a case, we say that G is a

PCG of T for dmin and dmax; in symbols, G = PCG(T,w, dmin, dmax).

A graph G(V, E) is called a leaf power graph (LPG) if there exists a tree T , a positive

edge weight function w on T and a non-negative number dmax such that there is an edge (u, v)

in E if and only if for their corresponding leaves in T , lu, lv, we have dT,w(lu, lv) ≤ dmax; in

symbols G = LPG(T,w, dmax).

A graph G = (V, E) is a minimum leaf power graph (mLPG) if there exists a tree T , a

positive edge weight function w on T and an integer dmin such that there is an edge (u, v) in E

if and only if for their corresponding leaves in T lu, lv we have dT,w(lu, lv) ≥ dmin; in symbols,

G = mLPG(T,w, dmin).

We refer by k-leaf power graph (k-min leaf power graph, respectively) to a graph which

is leaf power graph with dmax = k (dmin = k, respectively). In Figure 1 examples of a PCG, an

LPG and an mLPG are depicted.

A graph G = (V, E) is an exact k-leaf power [8] if there is a weighted tree T such that each

node u ∈ V is uniquely associated to a leaf lu of T and there is an edge (u, v) ∈ E if and only

if dT (lu, lv) = k. It is clear that an exact k-leaf power graph is a PCG where dmin = dmax = k.
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Fig. 1: An edge-weighted tree T and an example of a PCG, an LPG and an mLPG.

Observe that here we always assume that dmin, dmax and the weight of the edges of the

tree of a PCG are all positive real numbers. In the original problem concerning the LPGs,

these quantities were required to be natural numbers. It is proved in [5] that it is not a loss

of generality to consider positive real numbers instead of naturals for LPGs. This result is

extended to the general case of PCGs as follows:

Lemma 2.1. [16] Let G = PCG(T,w, dmin, dmax), where dmin, dmax are non-negative real

numbers and the weight w(e) of each edge e of T is a positive real number. Then it is possible

to choose natural numbers ŵ, d̂min, d̂max such that G = PCG(T, ŵ, d̂min, d̂max).

A graph G = (K, S , E) is said to be a split graph [33] if there is a node partition V = K ∪ S

such that the subgraphs induced by K and S are complete and stable, respectively.

A graph G = (V, E) is a thin spider [38] if V can be partitioned into three sets K, S and R

such that:

i. K is complete, S is stable, and |K| = |S | ≥ 2;

ii. each node in R is adjacent to each node of K and to no node in S ;

iii. each node in S has a unique neighbor in K; more formally there exists a bijection f : K →

S such that every node k ∈ K is adjacent to f (k) ∈ S and to no other node in S .

The complement of a thin spider is a thick spider.

The special case of these graphs in which R = ∅ is considered in [20] and they are

called n-split matching and n-split antimatching graphs, respectively. Examples are shown in

Figure 2. Note that the 3-split matching is sometimes called a net and denoted by S̄ 3 while

the 3-split anti-matching is denoted by S 3 [26].

We will denote by SM andSA the class of split matching and split antimatching graphs,

respectively.

✉ ✉ ✉ ✉
✉ ✉ ✉ ✉

✉ ✉ ✉ ✉
✉ ✉ ✉ ✉

Fig. 2: A 4-split matching and a 4-split antimatching.

The Dilworth number [27] of a graph is the size of the largest subset of its nodes in which

the closed neighborhood of no node contains the neighborhood of another.

The class of threshold graphs has been introduced many times in several contexts, with
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different names and various equivalent definitions (see for example [42]). For the purposes

of this paper, it is enough to say that the class of threshold graphs T , is characterized as all

the graphs with Dilworth number one [25]. Note that threshold graphs are split graphs. An

example of a threshold graph is depicted in Figure 3(a).

A graph G = (V, E) is a threshold tolerance graph [44] if every node vi can be assigned

a real weight ai and a real tolerance ti such that for every (vi, v j) ∈ E ⇔ |ai + a j| ≥ min{ti, t j}.

Figure 3(b) shows a threshold tolerance graph. Threshold tolerance graphs have been intro-

duced in [44] as a generalization of threshold graphs. Indeed, threshold graphs constitute a

proper subclass obtained by considering a constant tolerance function [45].

✉ ✉ ✉ ✉
✉ ✉ ✉ ✉

(a)

✉ ✉ ✉ ✉
✉ ✉ ✉ ✉

(b)

Fig. 3: (a) A threshold graph, (b) a threshold tolerance graph.

A graph is planar if it can be embedded in the plane so that no two edges intersect

geometrically except at the node to which both of them are incident. A graph is outerplanar

if it has a planar embedding where all nodes are on the outer face.

A ladder consists of two distinct paths of the same length u1, . . . , un/2 and v1, . . . , vn/2

plus the edges (ui, vi), i = 1, . . . , n/2.

A chord of a cycle C is an edge not in the edge set of C whose endpoints lie in the node

set of C. We say that an edge is a chord of a graph if it is a chord of some cycle in the graph.

A graph is chordal if every cycle of length at least 4 has a chord.

A sun graph [31] is a graph G on 2n nodes for some n ≥ 3 whose node set can be

partitioned into two sets, W = {w1, . . . ,wn} and U = {u1, . . . , un}, such that U induces a

clique, W is an independent set and for each i and j, w j is adjacent to ui if and only if i = j or

i ≡ j + 1( mod n). In Figure 4(a) a sun with n = 4 is depicted.

Strongly chordal graphs [31] are sun-free chordal graphs.

✉
✉ ✉✉ ✉✉ ✉
✉

(a)

r ra r rb r rc

r rd

r re r rf

(b)

✉
✉

✉
✉ ✉ ✉e

a

d

f

b

c

Fig. 4: (a) A sun graph; (b) an interval graph.

A t-caterpillar [36] is a tree in which all the nodes are within distance ≤ 1 of a central

path, called spine, constituted of t nodes.
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A graph G is an intersection graph if its nodes correspond to a family of sets {S v : v ∈

V(G)} and (u, v) is an edge of G if and only if S u ∩ S v , ∅.

We consider now some graph classes that can be defined through a intersection graphs of

special objects.

An interval graph is the intersection graph of a set of intervals on a line (an example is

shown in Figure 4(b) ).

A disk graph is the intersection graph of disks in the plane. A graph is grid intersection

if it is the intersection graph of horizontal and vertical line segments in the plane. A circular

arc graph is the intersection graph of arcs of a circle.

A graph is rectangle (square) intersection if it has an intersection model consisting of

axis-parallel rectangular (squared) boxes in the plane.

A trapezoid graph is the intersection graph of trapezoids between two parallel lines. A

permutation graph is the intersection graph of straight lines between two parallels.

The following chain of inclusions holds:

interval graphs ⊆ circular arc graphs ⊆ permutation graphs ⊆ trapezoid graphs.

A graph is a tolerance graph [35] if to every node v can be assigned a closed interval Iv on

the real line and a tolerance tv such that x and y are adjacent if and only if |Ix∩ Iy| ≥ min{tx, ty},

where |I| is the length of the interval I. Tolerance graphs can be described through another

intersection model, as they are equivalent to parallelepiped graphs, defined as the intersection

graphs of special parallelepiped on two parallel lines.

3. Complexity of recognizing pairwise compatibility graphs. The problem of recog-

nizing whether a graph is PCG is formally defined as follows:

Problem 1 (The PCG Recognition Problem).

INSTANCE : A graph G = (V, E).

DECIDE : Is there a tree T , an edge-weight function w and two integers dmin, dmax such

that G = PCG(T,w, dmin, dmax)?

The complexity of this problem is still unknown. However, in [30] the NP-completeness

is proved for the following generalization of the previous problem.

Problem 2 (The Max-Generalized-PCG Recognition Problem).

INSTANCE : A graph G, a subset S of the edges of its complement graph, and a positive

integer k.

DECIDE : Is there a G′ = PCG(T,w, dmin, dmax) such that G′ contains G as a (not

necessary induced) subgraph but does not contain any edge of S ; and at least k edges of S

have distance greater than dmax between their corresponding leaves in T?

Observe that when S = Ē then the problem becomes exactly determining whether G is a

PCG.

It is worth to note that the problem of sampling a set of m leaves for a weighted tree T ,

such that their pairwise distance is within some interval [dmin, dmax], reduces to selecting a

clique of size m uniformly at random from the graph PCG(T,w, dmin, dmax). As the sampling

problem can be solved in polynomial time on PCGs [39], it follows that the max clique

problem is solved in polynomial time on this class of graphs, providing that the tree T , the

weight function w and the two values dmin, dmax are known or can be found in polynomial

time.

Open problem: Determine the computational complexity of the PCG Recognition problem.

Durocher et al. [30] conjecture that the PCG recognition problem is NP-hard.

For what concerns LPGs, given an integer k we can formulate the following:
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Problem 3 (The k-LPG Recognition Problem).

INSTANCE : A graph G = (V, E).

DECIDE : Is there a tree T such that G = LPG(T, k)?

In [29] it is shown that this problem can be solved in polynomial time if the (k − 2)-

Steiner root problem can be solved in polynomial time. Chang and Ko [23] give a linear

time algorithm for the 3-Steiner root problem, so implying that the k-leaf power recognition

problem can be solved in linear time for k = 5.

Open problem: Determine the computational complexity of the k-LPG Recognition Problem

for k ≥ 6.

4. LPG ∩mLPG. Here we give some relations between mLPG and LPG, the two main

subclasses of PCG. In particular the next result holds.

Proposition 4.1. [16] The class co-LPG coincides with mLPG and, consequently, the

class co-mLPG coincides with LPG.

The relation between the classes LPG and mLPG is graphically shown in Figure 5 and it

is deduced from the following considerations:

• the union of LPG and mLPG does not coincide with the whole class PCG. Indeed,

the class C of cycles is in PCG but does not belong either to LPG or to mLPG

[16, 55];

• the class T of threshold graphs belongs to LPG ∩ mLPG [20];

• the class SM of split matchings belongs to mLPG \LPG while the class SA of split

antimatchings belongs to LPG \ mLPG [20].

PCG✬

✫

✩

✪

✬

✫

✩

✪
LPG

mLPG✓✒ ✏✑SM

✓✒ ✏✑T

✓✒ ✏✑SA

✓✒ ✏✑C
Fig. 5: Relationships between PCG, LPG and mLPG.

The previous arguments lead to the following summarizing result:

Theorem 4.2. For the classes of LPG and mLPG, the following relations hold: (a)

mLPG ∪ LPG ⊂ PCG, (b) mLPG ∩ LPG , ∅, (c) LPG \ mLPG , ∅, (d) mLPG \ LPG , ∅.

Particular attention in the literature has been given to the characterization of the in-

tersection of the mLPG and LPG classes. Due to Proposition 4.1, it is clear that a self-

complemented class that is included either in LPG or in mLPG is included also in LPG ∩

mLPG. For example split permutation graphs that are the intersection class between interval

and co-interval graphs, are in LPG ∩ mLPG as interval graphs are in LPG (see Section 6.1.).

Nevertheless a complete characterization of the set of graphs in this intersection is still miss-

ing. Some graph classes that are known to be included inside LPG∩mLPG are the followings:

disjoint union of cliques, that are the sole 2-leaf power graphs [3] and threshold graphs (which
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have Dilworth number 1) [20]. More in general for graphs with arbitrary Dilworth number,

the following result holds.

Theorem 4.3. [19, 18, 17]

• All Dilworth 1 graphs (i.e. threshold graphs) are in PCG ∩ mLPG and the witness

trees are stars.

• All Dilworth 2 graphs are in PCG ∪mLPG and the witness trees are 2-caterpillars.

A proper subclass of Dilworth 2 graphs (properly containing threshold graphs) is in

PCG ∩ mLPG.

• Given a t-caterpillar Γ, for any edge-weight w and any value c, the graphs LPG(Γ,w, c)

and mLPG(Γ,w, c) are Dilworth t graphs; nevertheless, there are Dilworth t graphs,

t ≥ 2 that do not belong to LPG ∩ mLPG. As an example, the graph depicted in

Figure 6 has Dilworth number 3 and is neither a LPG nor a mLPG.

✉
✉ ✉

✉✉ ✉
d

a

j

i

b

c

Fig. 6: A graph on 6 vertices that has Dilworth number 3 and is neither a LPG nor a mLPG.

Open problem: Characterize completely the intersection of mLPG and LPG.

5. Graphs that are not PCGs. Initially it was believed that every graph was a PCG.

Indeed, first Phillips [48] proved in an exhaustive way that all graphs with less than 5 nodes

are PCGs, then the result has been extended to all graphs with at most 7 nodes [14] and finally

to all bipartite graphs on 8 nodes [43].

However, not all graphs are PCGs: Yanhaona et al. [54] show a bipartite graph with

15 nodes (depicted in Figure 7(a)) that is not PCG. Subsequently, Mehnaz and Rahman [43]

provide a list of bipartite graphs not to be in PCG. More recently, Durochet et al. [30] prove

that there exists a (not bipartite) graph with 8 nodes that is not PCG (depicted in Figure 7(b)).

In view of the previously listed results, this is the smallest graph that is not PCG. The same

authors provide also an example of a planar graph with 20 nodes that is not a PCG (depicted

in Figure 8). As a consequence, neither bipartite nor planar graphs are included in PCG.

It is known that graph H depicted in Fig. 7(b) is not in PCG [51]. On the other hand,

Figures 9(a), 9(b) and 9(c) show a representation of graph H as a disk graph, as a circular

arc graph, and as square intersection graphs, respectively. This is enough to ensure that all

these graph classes are not in PCG [15]. Moreover, rectangle (square) intersection graphs are

a superclass of grid intersection graphs, and hence they are not in PCG. Recalling the chain

of inclusions stated in the preliminaries we can deduce that trapezoid and permutation graphs

are not in PCG.

Finally, in [15] it was shown that tolerance graphs are not in PCG.

Open problem: Find other graph classes that do not belong to the PCG class.

6. Graph classes in PCG. In this section we list the graph classes which are proven

to belong to the PCG class. For many of these graph classes it is also known whether they

belong to mLPG or LPG. Hence, for facilitating the reading we state the results concerning

LPG and mLPG separately.
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✉ ✉ ✉ ✉ ✉
✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉

✉✉
✉ ✉ ✉ ✉✉✉

8

7
3 4 5 6

2

1

(a) (b)

Fig. 7: (a) The first graph proven not to be a PCG. (b) The graph of smallest size proven not to be a

PCG.

✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉
✉

✉

✉

✉

Fig. 8: A planar graph with 20 nodes that is not PCG.

6.1. LPGs. Observe that trees are sun-free and chordal, and taking powers and induced

subgraphs does not destroy this property [50]. It follows that every LPG is strongly chordal,

i.e. (Cn+4, sun)–free, n ≥ 0 [31].

However, not every strongly chordal graph is an LPG: as an example, the graph –found

by Bibelnieks and Dearing [2] and shown in Figure 10– is a strongly chordal graph and is not

a LPG.

Neighborhood subtree tolerance (NeST) graphs were introduced by Bibelnieks and Dear-

ing [2] and were also studied in [37]. For the sake of brevity, we avoid defining NeST graphs

here, and we only mention that Brandstädt et al. [5] show that LPG coincides with the fixed

tolerance NeST graph class.

LPG is a superclass of ptolemaic graphs [4, 5], and even a superclass of directed rooted

path graphs, introduced by Gavril [34]. Interval graphs are LPGs [4]; it follows that quasi-

threshold graphs (that are P4-free interval graphs) are also LPGs.

Open Problem: Characterize the graphs that are in LPG.

As we have previously mentioned, a graph is leaf power if it is k-leaf power for some

integer k. Thus, it is interesting to exploit the structure of these subclasses of LPG. Obviously,

a graph G is a 2-leaf power graph if and only if it is the disjoint union of cliques, that is, G

does not contain a chordless path of length 2. Dom et al. [29, 28] prove that 3-leaf power

graphs are exactly the graphs that do not contain an induced bull, dart, or gem (see Figure 11).

Brandstädt et al. [6] provide another characterization of 3-leaf power graphs by showing

that they are exactly the graphs that result from substituting cliques into the nodes of a tree.

Moreover, they give a linear time algorithm to recognize 3-leaf power graphs based on their

characterization.
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1

1
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7

3 4 5 6
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(a) (b) (c)

Fig. 9: Representation of H as: (a) a disk graph, (b) a circular arc graph, (c) a square intersection graph.

✉✉ ✉ ✉ ✉✉ ✉✉ ✉ ✉ ✉✉

Fig. 10: A strongly chordal graph which is not in LPG.

Basic 4-leaf power graphs, i.e. the 4-leaf power graphs without true twins (two connected

nodes with the same neighbourhood), are characterized by eight forbidden subgraphs [49]. It

is shown that every 4-leaf power graph results from substituting cliques into the nodes of a

basic 4-leaf power graph. Thus, a characterization of basic 4-leaf power graphs automatically

leads to a characterization of 4-leaf power graphs in general [10].

Concerning 5-leaf power graphs, a polynomial time recognition algorithm was given in

[23]. However, again no structural characterization is known, even for basic 5-leaf power

graphs. Only for distance-hereditary basic 5-leaf power graphs a characterization in terms of

34 forbidden induced subgraphs has been discovered [7].

For general k, it is proved that k-leaf power graphs are not included in (k + 1)-leaf power

graphs class [11, 12]. Beside these result, there has not been much progress towards the

characterisation of these graph classes and the following problem remains open.

Open problem: Determine the structure of k-leaf power graphs for k ≥ 5.

Recently, Nevries and Rosenke [46] have provided a list of 7 graphs that cannot be in-

duced subgraphs of any LPG, and they conjecture that these are sufficient to characterize LPG

in terms of forbidden subgraphs. We only remark that one of these graphs is the one already

presented in Figure 10, while the other six graphs are strongly chordal graphs of smaller size.

Before this work, it was conjectured that the graph of size 12 in Figure 10 was the smallest

strongly chordal graph which does not belong to LPG. Nevertheless, the results in [46] imply

that the smallest known strongly chordal graph that does not belong to LPG has 10 nodes.

Open problem: It remains an open problem either to prove or to disprove the conjecture

stating that the LPG class can be defined as the class of graphs that does not contain any of

the 7 subgraphs provided in [46]. It is important to notice that if this conjecture is true, it

would imply a polynomial time recognition algorithm for LPGs.
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✉✉✉ ✉✉

(a)

✉✉ ✉✉ ✉
(b)

✉ ✉ ✉ ✉
✉
(c)

Fig. 11: (a) A bull; (b) a dart; (c) a gem.

6.2. mLPGs. A graph is 2K2-free if it does not contain an independent pair of edges as

an induced subgraph. Recall that LPGs are chordal and hence C4-free. Consequently, their

complement, mLPG is 2K2-free.

Observe that a tree that is 2K2-free can not have a path of length greater than 3, and hence

it has a diameter at most 3. It follows that every tree of diameter at least 4 does not belong in

mLPG.

In [20] it is proved that split matching graphs are not in mLPG. As split matching graphs

are 2K2-free this means that mLPG does not coincide with the 2K2-free graph class.

Finally, it has been proved in [22] that threshold tolerance graphs are strictly included in

mLPG.

Open problem: It follows from the results presented in this survey that if G is in LPG∩mLPG

then G is (2K2,Cn+4, sun, split matching, split antimatching)–free. It would be interesting to

characterize the class LPG ∩ mLPG in terms of forbidden subgraphs.

6.3. PCGs. Many graph classes have been proved to be in PCG: cycles, single chord

cycles, cacti, tree power graphs, Steiner k-power and phylogenetic k-power graphs [54, 55].

More recently, even trees, ladder graphs, triangle-free outerplanar 3-graphs [52] and Dilworth

2 graphs [19] have been proved to be PCGs. All these graphs admit as a witness tree a

caterpillar.

We have already stated that the class of bipartite graphs is not included in PCG. However,

in [54] some particular subclasses of bipartite graphs are proved to be in PCG.

A split matrogenic graph [42] is a graph that can be constructed as a particular com-

position of split matchings and split anti-matchings. More formally, given a split graph

F = (VK ∪ VS , E(F)) and a simple graph H = (V(H), E(H)), their composition is a graph

G = (V, E) = F ◦ H defined as follows:

- V = VK ∪ VS ∪ V(H)

- E = E(F) ∪ E(H) ∪ {(a, v) : a ∈ VK , v ∈ V(H)}.

A split matrogenic graph is the composition of t split graphs Gi = (Ki, S i, Ei) with i =

1, . . . , t such that: either Gi is a split matching or Gi is a split antimatching or Ki = ∅ (and Gi

is called stable graph) or S i = ∅ (and Gi is called clique graph) [53].

In [21] it is proved that if the split matrogenic graph is composed using only split match-

ing graphs or only split anti-matching graphs, then it belongs to PCG.

This result was extended to the following larger subclass of split matrogenic graphs [21].

Theorem 6.1. [21] Let H = G1 ◦ . . . ◦ Gt be a split matrogenic graph for which there

exists an index 1 ≤ h ≤ t such that G1, . . .Gh are all split matching graphs, and Gh+1, . . . ,Gt

are all split anti-matching graphs. Then, H is in PCG.

In fact, it seems that the order of appearance of a split matching or an split antimatching

in the composition of a split matrogenic graph is somehow strictly related to the pairwise

compatibility property.
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Fig. 12: The smallest split matrogenic graph for which it is still an open problem determining whether

it belongs to the PCG class or not. The triple lines between the split antimatching graph and the split

matching graph represent the composition operation.

Open problem: It would be interesting to understand whether the split matrogenic graph in

Figure 12 with 16 nodes constituted by an 8-node split anti-matching composed with an 8-

node matching is in PCG. The solution of this problem would shed some light on the possible

inclusion of split matrogenic graphs in PCG.

In [16] the authors study the closure properties of the classes PCG, mLPG and LPG,

under some common graph operations as: adding an isolated or universal node, adding a

degree one node, adding a twin, taking the complement of a graph and taking the disjoint

union of two graphs. Except for its intrinsic interest, this is also important as it is known

that many graph classes can be built by means of recursive applications of particular graph

operations. Using these results it was proved in [22] that the class of bipartite distance-

hereditary graphs are PCGs.

Open problem: In [16] it was also proved that the classes mLPG, LPG and PCG exhibit

different closure properties under a given graph operation. In particular the mLPG and LPG

are not closed under the complement, however determining whether the PCG class is closed

under the complement is still an open problem.

7. PCGs of a particular tree topology. Given a graph, even knowing that it is PCG,

it is in general rather difficult to find the witness tree. And in fact, in the literature, most

of the trees witnessing that a certain graph class is in PCG (or in LPG, or in mLPG) are

very easy structures, such as stars and caterpillars. So, it seems interesting to consider the

problem of characterizing subclasses of PCGs derived from a specific topology of the pairwise

compatibility tree.

7.1. Stars. Stars are a very simple subclass of trees and hence it is natural to ask what are

the graphs that are PCGs of a star. In [20] it is proved that threshold graphs are characterized

by being LPG (and mLPG) of stars. In the same paper, this result was extended to show that

PCGs of stars are in fact a special superclass of threshold graphs. In particular, the authors

define the following superclass of threshold graphs:

The vicinal preorder � of a graph G = (V, E) on the set of nodes V guarantees that for

any two nodes u, v ∈ V , u � v if and only if N(u) ⊆ N[v]. The dual preorder �∗ is defined by:

u �∗ v if and only if v � u.

A graph G = (V, E) is nearly three-threshold if it is possible to partition the set of nodes

V into three classes VK ,VS 1
,VS 2

so that:

a) The subgraph induced by K ∪ S 1 is a threshold graph.,

b) The subgraph induced by K ∪ S 2 is a threshold graph.

c) The subgraph induced by S 1 ∪ S 2 is a bipartite graph.
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Furthermore, the total vicinal preorder related to the graph induced by K ∪ S 2 is the dual of

the total vicinal preorder defined by the graph induced by K ∪ S 1 (see Figure 13(a)).

☛✡ ✟✠

☛✡ ✟✠
☛✡ ✟✠✁

✁
✁

✁
✁
✁

✁
✁
✁

❆
❆
❆

❆
❆
❆

❆
❆
❆

K

S 1 S 2

� �∗

(a)

✉ ✉ ✉ ✉
✉✉✉ ✉ ✉ ✉

S 1 S 2

K

(b)

✉ ✉ ✉ ✉
✉ ✉ ✉ ✉ ✉ ✉✉2 2 3 4

1
1

1

5

6
6

(c)

Fig. 13: (a) The structure of a PCG generated by a star; (b) the PCG generated by the star depicted in

(c).

Theorem 7.1. [20] If a graph G is a PCG of a star then G is a nearly three-threshold

graph.

Open problem: Determine whether the class of graphs that are PCGs of a star coincides with

the class of nearly three-threshold graphs.

7.2. Caterpillars. Another important considered tree structure is the caterpillar. PCGs

of caterpillars are very general graphs, so we first consider a simplified model, i.e. we assume

that w(e) = 1 for each edge of the tree. Observe that this restriction is natural as in many

papers (e.g. see [3, 39]) the tree is not weighted and the distance is defined as the number of

edges on the (unique) path connecting two leaves.

The problem of characterizing PCGs of unit weight caterpillars has been considered in

[4] in the special case of LPGs, providing the following result:

Theorem 7.2. [4] Let G be an n node connected graph and Γn be a unit weight n leaf

caterpillar. Then the following statements are equivalent:

1. G = LPG(Γn, dmax);

2. G is a unit interval graph.

In [13], the authors generalize the previous result to PCGs of unit weight caterpillars:

Theorem 7.3. [13] Let G be an n node connected graph, Γn be a unit weight n leaf

caterpillar. Then the following statements are equivalent:

1. G = PCG(Γn, dmin, dmax);

2. G = P
dmax−2
n − P

dmin−3
n if dmin > 3 and G = P

dmax−2
n otherwise, where Pi

n is the i − th

power of the n-node path.

The authors of [13] generalize then the model to general weighted caterpillars, giving

some properties of the resulting PCG. In particular, they give some conditions on the weight

function w and on dmax so that PCG(Γn,w, dmin, dmax) is either triangle free or has an induced

clique.

Unfortunately, we are far from giving a characterization. So the following open problem

arises:

Open problem: Give a complete characterization of PCGs of caterpillars.
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7.3. Other trees. It is worth to mention that the 7 node wheel W7 is proved to be a PCG

but not PCG of a caterpillar [13], and the witness tree is shown in Figure 14(b) [14]. As a

consequence, caterpillars cannot generate all PCGs, and this fact makes even more significant

the last open problem of the previous section.
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Fig. 14: (a) The wheel W7 and (b) the edge-weighted tree T such that W7 = PCG(T,w, 5, 7).

Open problem: It is not known whether wheels on at least eight nodes are PCGs or not.

Given a graph known to be in PCG, finding its witness tree it is far from trivial. A brute

force approach is unfeasible as there are too many n-leaf trees to check (and, on each of them,

it is necessary to check all possible edge weights). The following result goes in the direction

of simplifying the search of the topology providing a unifying tree structure.

Theorem 7.4. [14] Let G be a graph, and T a tree. If G = PCG(T,w, dmin, dmax), then

there always exist a full binary tree Λ, a new edge-weight function w′, and a new value d′max

such that G = PCG(Λ,w′, dmin, d
′
max).

Unfortunately, the previous theorem does not guarantee to have a unique tree, but it is

anyway an improvement in practice for the pairwise compatibility tree construction problem,

as it leads to consider only a particular subclass of all the n leaf trees.

8. Conclusions. Pairwise compatibility graphs were introduced in the context of phylo-

genetics and generalize the well-studied class of leaf power graphs. Much attention has been

dedicated to them in the literature. However, as shown by this survey, many problems remain

open and we are still far from a complete characterization of the PCG class. Any progress

towards the latter problem would be interesting not only from a graph theory perspective but

also could help in the design of better sampling algorithms for phylogenetic trees. Finally,

we conclude by observing that lately it is becoming more and more evident that phyloge-

netic networks may provide an alternative to phylogenetic trees and may be more suitable for

datasets where evolution involves significant amounts of reticulate events such as hybridiza-

tion, horizontal gene transfer or recombination [1, 40]. Thus, except for the many already

existing open problems in this area, it could be interesting to consider possible extensions of

these problems and concepts to network graphs.
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