
HAL Id: hal-01389228
https://hal.inria.fr/hal-01389228

Submitted on 28 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Satisfiability Modulo Free Data Structures Combined
with Bridging Functions

Raphaël Berthon, Christophe Ringeissen

To cite this version:
Raphaël Berthon, Christophe Ringeissen. Satisfiability Modulo Free Data Structures Combined with
Bridging Functions. 14th International Workshop on Satisfiability Modulo Theories, affiliated with
IJCAR 2016, Jul 2016, Coimbra, Portugal. pp.71–80. �hal-01389228�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49320375?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01389228
https://hal.archives-ouvertes.fr

Satisfiability Modulo Free Data Structures

Combined with Bridging Functions

(Extended Abstract)

Raphaël Berthon1∗ and Christophe Ringeissen2

1 ENS Rennes, France
2 Inria Nancy - Grand Est and LORIA, France

Abstract

Free Data Structures are finite semantic trees modulo equational axioms that are useful to represent

classical data structures such as lists, multisets and sets. We study the satisfiability problem when free

data structures are combined with bridging functions. We discuss the possibility to get a combination

method à la Nelson-Oppen for these particular non-disjoint unions of theories. In order to handle

satisfiability problems with disequalities, we investigate a form of sufficient surjectivity for the bridging

functions.

1 Introduction

Solving Satisfiability Modulo Theory (SMT) problems consists in deciding the satisfiability of
first order formulas with respect to a given theory. Satisfiability procedures exist for various
theories, for instance the equality theory and Presburger arithmetic, but also for many data
structures like arrays, lists, multisets, or sets, some of them being successfully handled by
general proof techniques [1,2]. To increase the number of theories where the SMT problem can
be solved, a natural approach is to proceed in a modular way for the union of theories when
a decision procedure is known for each component theory. The Nelson-Oppen method [16]
gives a way to solve this problem while combining two theories, but this method requires the
component theories to be both stably-infinite (if a formula has a model, it has an infinite model
— this ensures that we can find a model with a cardinality suitable for both theories), and
to be disjoint (the theories only share the equality symbol). The case where one theory is
not stably infinite has led to the study of theories with good properties with respect to the
cardinality of the model, with the case of shiny [21], polite [13, 18], or gentle [11] theories.
Another challenging problem is to investigate the modular construction of decision procedures
for non-disjoint unions of theories [3, 12]. For instance, an interesting case appears when two
disjoint theories are connected via a third bridging theory. Bridging functions [8,17,19,20] are
good examples of this form of non-disjoint combination.

As SMT solvers are mostly used in (program) verification, they often need to solve problems
involving data structure theories (list, sets, multisets, arrays, . . .) [6,14]. These data structures
may interact with each other, and their elements may be used in computations; the resulting
theory being a non-disjoint union. Functions used to represent the transformation of a data
structure into another data structure (like calculating the set of elements in a list) are called
bridging functions in [19] and abstraction functions in [20]. The task is then to design a decision
procedure for these data structures connected by a bridging function.

∗This work has been partly done during an internship at Inria Nancy - Grand Est.

The theory of Absolutely Free Data Structures (AFDS) corresponds to the theory of finite
syntactic trees axiomatized by Injectivity, Acyclicity, and Disjoint Constructors. The combina-
tion with a bridging function can be handled using a locality approach [19] based on the some
finite instantiations of the axioms. More recently, a Nelson-Oppen combination method has
been proposed for this particular non-disjoint union of theories [8].

Following the work on AFDS [8], a challenging problem is to consider semantic trees instead
of syntactic ones. The use of semantic trees is clearly of practical interest, since it allows
us to represent more data structures such as multisets or sets. Some contributions in that
direction are already reported in [19]. Moreover, combination methods are already known for
some individual data structures connected to the integers via a bridging function such as the
cardinality for multisets [23] and sets [24]. More generally, we are interested in lifting the
combination method given in [8] to handle semantic trees in a uniform way.

Our approach is based on the reduction of the satisfiability in combined theories to the
satisfiability in individual theories. Our procedure extends the one used for AFDS [8]. We study
Free Data Structures (FDS), defined as trees modulo a set of equational axioms, connected by
a bridging function. Our method can only be used for some specific formulas, whose equalities
are solved. Given the possibility of having a measure function (notion defined later) to order the
(semantic) trees, we will separate our variables in two. The lesser ones for our order will have
their value guessed. For the other variables, the specific chosen solved forms and the measure
function will ensure the existence of a combined model.

The difficulty of the approach is related to the surjectivity of the bridging function. A form
of sufficient surjectivity [20] is needed to get a completeness result in presence of disequalities.
We investigate how the surjectivity assumption used for AFDS also applies to FDS. In [8] the
focus was on the combination where the source is (the standard interpretation of) AFDS and
the target is the theory of integers. In this paper, the aim is to go beyond bridging functions
targeting the integers, by considering free data structures as source and target. For instance,
the presented approach enables us to consider a bridging function computing the set of elements
in a multiset.

This work is the opportunity to reuse the constraint solving techniques known for tree
algebras, e.g., unification and matching procedures to solve equalities. In our approach, disuni-
fication would be needed [4, 10, 15]. The presence of disequalities is really challenging. Indeed,
disunification in initial tree algebras can be undecidable whilst a unification algorithm is known,
e.g., for the Associativity-Commutativity [22]. Even if it is impossible to get a general solution,
we believe it is interesting to identify decidable classes of equational formulas. In this work,
we discuss how to handle some particular disequalities in the case of sufficient surjectivity and
when assuming a solver to compute solved forms for the equalities.

2 Preliminaries

We assume the reader has some basic familiarities with equational theories and equational
unification [5]. Given a first-order signature Σ and a (countable) set of variables V , the set of
Σ-terms over variables V is denoted by T (Σ, V). The set of variables in a term t is denoted by
V ar(t). A term t is ground if V ar(t) = ∅. A substitution is an endomorphism of T (Σ, V), with
only finitely many variables not mapped to themselves. A substitution is denoted by σ = {x1 7→
t1, . . . , xn 7→ tm}, its domain is Dom(σ) = {x1, . . . , xn} and its range is Ran(σ) = {t1, . . . , tn}.

Given a set E of Σ-axioms (i.e., pairs of Σ-terms, denoted by l = r), the equational theory =E

is the congruence closure of E under the law of substitutivity. By a slight abuse of terminology,
E will be often called an equational theory. An axiom l = r is regular if V ar(l) = V ar(r).

A Σ-equality is a pair of Σ-terms denoted by s = t. An E-unification problem is a set of
Σ-equations, φ = {s1 = t1, . . . , sm = tm}. The set of variables of φ is denoted by V ar(φ).
When t1, . . . , tm are ground, φ is called a matching problem. A solution to an E-unification
problem φ, called an E-unifier , is a substitution σ such that siσ =E tiσ for all 1 ≤ i ≤ m.
A decision procedure for E-unification is a decision procedure returning true if and only if the
input E-unification problem admits an E-unifier. E-unification is said to be finitary if any
E-unification problem admits a (computable) finite complete set of E-unifiers.

A flat equality is either of the form t0 = t1 or t0 = f(t1, . . . , tn) where each term t0, . . . , tn
is a variable or a constant. A disequality t0 6= t1 is flat when each term t0, t1 is a variable or
a constant. A flat literal is either a flat equality or a flat disequality. For n distinct variables
x1, . . . , xn, the set of literals {xi 6= xj | i 6= j, i, j = 1, . . . , n} is denoted by {x1 6= · · · 6= xn}.

A set of equalities φ = {xk = tk}k∈K is a solved form if xk is a variable occurring only
once in φ for each k ∈ K. Note that a solved form corresponds to a most general E-unifier: it
is not necessarily flat, but using flattening, we can obtain an equivalent flat dag solved form.
For instance, the flattening of {v = c(u(e), y)} is the dag solved form {v = c(x, y), x = u(e)}.
Roughly speaking, a dag solved form is a set of (acyclic) solved equalities leading to a solved
form by variable replacement.

3 Free Data Structures

In this paper, we focus on data structure theories constructed from three operators:

• A binary operator c, which is not necessarily absolutely free: it may satisfy some equational
properties;

• A unary operator u to construct a singleton structure;

• A constant nil to denote the empty structure.

Definition 1. A binary constructor-based signature is of the form

{c : struct× struct→ struct, nil : struct, u : elem→ struct}

To simplify the notation, we often write c(e, x) instead of c(u(e), x), by assuming that
e, e1, . . . , en denote only elem-sorted variables. We may use an infix notation to write e ∪ x
instead of ∪(e, x).

Definition 2. Let Σ be a binary constructor-based signature. Given an equational Σ-theory
E, FDSE denotes the class of Σ-structures A such that structA = T (Σ ∪ elemA)/ =E .

Definition 3 (Standard term). Let Σ be a binary constructor-based signature. A struct-
sorted Σ-term is said to be standard if it contains no struct-sorted variables.

In this paper, we focus on regular theories whose axioms do not involve the unary operator u.
We are interested in the following regular axioms: Associativity (A) (X∪Y)∪Z = X∪(Y ∪Z),
Commutativity (C) X ∪ Y = Y ∪X, Right Unit (RU) X ∪ ∅ = X, Left Unit (LU) ∅ ∪X = X,
and Idempotency (I) X ∪X = X. But the Nilpotency (N) X ⊕X = 0 is not regular and will
not be considered. In the following, we consider any combination of the above regular axioms,
such as

AU = A ∪ LU ∪RU, AC = A ∪ C, ACU = AC ∪ LU, ACUI = ACU ∪ I

Besides these regular theories, we also consider two special non-regular ones involving the unary
operator u, related to positive integers and booleans.

Given a binary constructor-based signature Σ = {c : struct × struct → struct, nil :
struct, u : elem→ struct}, a Σ-structure A is a standard (positive integer) N-interpretation if
structA = N, c is interpreted in A as the addition, A[nil] = 0 and for any a ∈ elemA, A[u](a) =
1. Analogously, a Σ-structure A is a standard (boolean) B-interpretation if structA = B, c is
interpreted in A as the disjunction, A[nil] = ⊥ and for any a ∈ elemA, A[u](a) = >. Standard
N-interpretations and standard B-interpretations can be viewed as models of respectively two
free data structures:

EN = AC(+) ∪ {∀X.X + 0 = X} ∪ {∀V,W. 1(V) = 1(W)}

EB = AC(∨) ∪ {∀X.X ∨ ⊥ = X,X ∨X = X} ∪ {∀V,W.>(V) = >(W)}

Proposition 1. Any model of FDSEN (resp., FDSEB) is isomorphic to a standard N-interpre-
tation (resp., B-interpretation).

Obviously, FDSEN -satisfiability and FDSEB-satisfiability are decidable.
For an arbitrary equational theory E, FDSE-satisfiability and E-unification can be related

as follows:

Proposition 2. A set of equalities is satisfiable in FDSE if and only if it is E-unifiable.

Moreover, an E-unification algorithm computing most general E-unifiers is sufficient to
check E-equality and so to check the satisfiability of disequalities, since an infinite interpretation
domain for the elem sort can be chosen.

Proposition 3. FDSE-satisfiability is decidable if a finitary E-unification algorithm is known.

4 Combination of Free Data Structures

In a way similar to [8], we consider two theories connected via a bridging theory defining a
function f by structural induction over the constructors. In the context of this paper, the two
theories are free data structures sharing only the elem sort.

Definition 4. ([8]) Let Σ be a binary constructor-based signature, Σt a signature such that Σ
and Σt do not share function symbols. Let f be a new function symbol f with arity struct→ t,
where t is a sort in Σt. Given the signature Σf = Σ ∪ Σt ∪ {f : struct → t}, a bridging Σf -
theory Tf associated to f has the form:

Tf =

 f(c(X,Y)) = fc(f(X), f(Y))
f(u(V)) = fu(V)
f(nil) = fnil

where fc, , fu, fnil are Σt-terms of respective arities 2, 1, 0.

The term rewrite system F of a bridging theory Tf is F = {f(l)→ r | f(l) = r ∈ Tf}.
The term rewrite system (for short, TRS) of a bridging theory Tf is convergent. Let Σ1 and

Σ2 be two binary constructor-based signatures sharing only the elem sort. The non-shared sort
in Σi is denoted by structi for i = 1, 2. Let Tf be a bridging Σf -theory between signatures
Σ = Σ1 and Σt = Σ2, where struct = struct1 and t = struct2. Assume an equational
Σi-theory Ei for i = 1, 2. The bridging theory Tf is said to be E1-compatible in E2 if, for any
l = r ∈ E1 we have f(l) ↓F =E2 f(r) ↓F .

Example 1. Consider E1 = {(X ∪ Y) ∪ Z = X ∪ (Y ∪ Z), X ∪ Y = Y ∪ X,X ∪ ∅ = X}
and E2 = EN. The theory E1 corresponds to multisets of elements and the bridging function
computing the number of elements in a multiset is given by the bridging theory

Tf = {f(X ∪ Y) = f(X) + f(Y), f({e}) = 1, f(∅) = 0}.

Tf is E1-compatible in E2 since

(f(X) + f(Y)) + f(Z) =E2
f(X) + (f(Y) + f(Z))

f(X) + f(Y) =E2 f(Y) + f(X)
f(X) + 0 =E2 f(X)

Let E′1 = E1 ∪ {X ∪ X = X}. We remark that Tf is not E′1-compatible in E2. However,
given E′2 = EB, the bridging theory

Tg = {g(X ∪ Y) = g(X) ∨ g(Y), g({e}) = >, g(∅) = ⊥}

is E′1-compatible in E′2. Indeed, E′1 allows us to represent sets of elements. The bridging
function g returns > if the input set is non-empty, and ⊥ otherwise.

The notion of compatibility is required to get a consistent combined theory:

Definition 5. Assume Tf is E1-compatible in E2. Tf [E1, E2] denotes the class of Σf -structures
A such that AΣ1 ∈ FDSE1

, AΣ2 ∈ FDSE2
, and A |= Tf .

From now on, we assume that T = Tf [E1, E2], and Ti = FDSEi for i = 1, 2. By this
definition, we have T = T1 ∪ Tf ∪ T2.

5 Combination Procedure

The decision procedure works as a classical Nelson-Oppen combination procedure. As usual,
the input set of literals is first purified to get a separate form, by introducing fresh variables.
Then, we may need to perform some guessing over the fresh variables in order to guarantee
the existence of a combined model. In the classical Nelson-Oppen combination procedure, the
guessing phase only enumerates the arrangements over the shared variables. In our context,
we may need an additional guessing to explore possible values taken by the bridging function.
We want to focus on cases where only finitely many guesses are sufficient to get a complete
procedure.

Definition 6. A set of literals ϕ is in separate form if ϕ = ϕ1 ∪ ϕelem ∪ ϕ2 ∪ ϕf where:

• ϕ1 contains only flat struct1-sorted literals

• ϕelem contains only elem-sorted literals

• ϕ2 contains only struct2-sorted literals

• ϕf contains only flat equalities of the form fx = f(x), where fx denotes a variable associ-
ated to f(x), such that fx and f(x) occur once in ϕf and each variable of sort struct1 in
ϕ1 occurs in ϕf .

The sets of literals ϕ1 ∪ ϕelem and ϕ2 ∪ ϕelem are called respectively the 1-component and the
2-component of ϕ.

It is easy to convert any set of literals into an equisatisfiable separate form ϕ by introducing
fresh variables to denote impure terms. In order to take into account the axioms of Tf , we need
additional Σ2-equalities obtained by encoding the flat equalities in ϕ1.

Definition 7. Given a bridging theory Tf , the target encoding of a set of flat struct1-sorted
equalities ϕ is the set of struct2-sorted equalities

CPϕ = {fv = fc(fx, fy) | v = c(x, y) ∈ ϕ}
∪ {fv = fu(e) | v = u(e) ∈ ϕ}
∪ {fv = fnil | v = nil ∈ ϕ}
∪ {fv = fx | v = x ∈ ϕ}

When a separate form ϕ contains only flat struct1-equalities corresponding to a dag solved
form, the target encoding of this dag solved form is sufficient to reduce T -satisfiability into
T2-satisfiability:

Proposition 4. Let ϕ = ϕ1 ∪ ϕelem ∪ ϕ2 ∪ ϕf be a set of literals in separate form such that
ϕ1 is a dag solved form. The formula ϕ is T -satisfiable if and only if ϕelem ∪ ϕ2 ∪ CPϕ1

is
T2-satisfiable.

The problem of considering struct1-literals including both equalities and disequalities is
much more complicated. We have investigated several possible scenarios.

5.1 Theory of Integers as Target

In a first case, we can assume that the target is the theory of integers, and that the source
admits a unification algorithm to solve the equalities. Consider f defines the size of a data
structure. We introduce a guessing of finitely many range constraints [8] to check the possible
values of f(x) for any x occurring in the problem:

• either f(x) = 0, and this implies x = nil;

• or f(x) > 0, and there will be enough distinct struct1-entities to satisfy the struct1-
disequalities, by considering that each x is built only with its own distinct element ex: this
is possible since the elem-sort can be interpreted by an infinite domain.

This guessing phase leads to a T -equivalent disjunction of separate forms, each of them being
T -satisfiable if and only if its 1-component and its 2-component are respectively T1-satisfiable
and T2-satisfiable.

Proposition 5. Consider E1 is included in AC(c)∪ {c(X,nil) = X, c(nil,X) = X}, E2 = EN
and Tf = {f(c(X,Y)) = f(X) + f(Y), f(u(e)) = 1, f(nil) = 0}. For any separate form
ϕ = ϕ1 ∪ ϕelem ∪ ϕ2 ∪ ϕf such that ϕ1 is a dag solved form together with flat disequalities,
there exists a computable T -equivalent disjunction of separate forms

∨
k∈K ϕk such that ϕ is T -

satisfiable if and only if there exists some k ∈ K such that the i-component of ϕk is Ti-satisfiable
for each i ∈ {1, 2}.

Example 2. Assume E1 = AC(]) ∪ LU(∅). Consider the separate form

ϕ =

 z = x] y, x = e] v, y = e] w, x 6= y
fz = 2, fz = fx + fy, fx = 1 + fv, fy = 1 + fw
fx = f(x), fy = f(y), fz = f(z), fv = f(v), fw = f(w)

We can check that ϕ is T -unsatisfiable by considering the following cases: (1) fv > 0, fw > 0,
(2) fv = 0, fw > 0, (3) fv > 0, fw = 0, (4) fv = 0, fw = 0. For the cases (1), (2) and (3), we
get the unsatisfiability in T2. The case (4) fv = 0, fw = 0 is T2-satisfiable. Adding v = ∅ and
w = ∅ to ϕ1 leads to x = {e} and y = {e}, which contradicts x 6= y.

5.2 Arbitrary Free Data Structures as Target

In the general case, we need a form of sufficient/infinite surjectivity in order to satisfy problems
of the form x1 6= · · · 6= xn, f(x1) = · · · = f(xn). We have studied in [8] the particular case
where the source theory is AFDS and the target is the theory of integers. In this paper, we
investigate a generalization for the case where the source and the target are both free data
structures. To this aim, we introduce a notion of measure to order the standard terms of a free
data structure.

Definition 8 (Measure). Let Σ be a binary constructor-based signature and E an equational
Σ-theory. A measure for E is a mapping τ from standard Σ-terms to N such that

• for any standard Σ-terms s and t, s =E t implies τ(s) = τ(t);

• for any standard Σ-term s and any substitution σ, τ(sσ) = τ(s);

• for any k ∈ N and for ./ in {=,≥}, the constraint τ(x) ./ k can be equivalently expressed
as a constraint in FDSE of the form (∃v̄ . x = t ∧ ϕ), where v̄ = V ar(t), x /∈ v̄, ϕ is a
conjunction of disequalities between elem-variables in v̄, and t is standard if ./ is =.

Example 3. There exists a very natural measure for the following equational theories:

• If E = A(·) ∪ {X · nil = X,nil · X = X}, then τ can be chosen as the number of elem-
occurrences of a list. The constraints τ(x) = k and τ(x) ≥ k can be respectively encoded
into

∃e1, . . . , ek . x = u(e1) · · ·u(ek) and ∃y, e1, . . . , ek . x = u(e1) · · ·u(ek) · y

• If E = AC(])∪ {X] ∅ = X}, then τ can be chosen as the number of elem-occurrences of
a multiset. The constraints τ(x) = k and τ(x) ≥ k can be respectively encoded into

∃e1, . . . , ek . x = u(e1)] · · ·] u(ek) and ∃y, e1, . . . , ek . x = u(e1)] · · ·] u(ek)] y

• If E = AC(∪) ∪ {X ∪X = X,X ∪ ∅ = X}, then τ can be chosen as the cardinality of a
set. The constraints τ(x) = k and τ(x) ≥ k can be respectively encoded into

∃e1, . . . , ek . x = u(e1) ∪ · · · ∪ u(ek) ∧ e1 6= · · · 6= ek

and

∃y, e1, . . . , ek . x = u(e1) ∪ · · · ∪ u(ek) ∪ y ∧ e1 6= · · · 6= ek

• If E = EN, then τ can be chosen as the identity on N. The constraints τ(x) = k and
τ(x) ≥ k can be respectively encoded into x = k and ∃y . x = k + y.

The definition of gently growing is introduced in [8] as a way to express a form of sufficient
surjectivity. We adapt it to integrate the measure concept defined above. This allows us to
consider a target theory which is not necessarily the theory of integers.

Definition 9. Let T be a theory defined as a class of structures in Tf [E1, E2] and τ a measure
for E2. For any A ∈ T and any standard Σ2-term s, F−1

A (s) = {t | A[f](t) = A[s]}. The
bridging function f is gently growing in T w.r.t τ if

1. for any A ∈ T and any standard Σ2-term s, F−1
A (s) 6= ∅;

2. for any A ∈ T and any standard Σ2-terms s and t, τ(s) < τ(t) implies |F−1
A (s)| < |F−1

A (t)|;
3. for any natural n > 1 there exists a computable k such that, for any standard Σ2-term s,

• if τ(s) ≥ k, then for any A ∈ T , |F−1
A (s)| ≥ n;

• if τ(s) < k, then one can compute a finite non-empty set F−1(s) of standard Σ1-terms
such that

T |= f(x) = s⇐⇒ (∃v̄ .
∨

t∈F−1(s)

x = t) where v̄ = Var(F−1(s))

We now introduce a class of satisfiability problems including flat struct1-sorted disequalities
together with particular dag solved forms.

Definition 10 (Isolated variable, standard variable). Let ϕ be a dag solved form and let σ be
the substitution corresponding to the solved form obtained by variable replacement. A variable
x is isolated in ϕ if xσ is a variable. A variable x is standard in ϕ if xσ is a standard term.

We consider dag solved forms extended with disequalities x 6= y such that x, y are both
standard or both isolated.

Proposition 6. Consider a theory T = Tf [E1, E2] such that f is gently growing in T with
respect to a measure τ for E2. Let ϕ be any separate form

ϕ = ϕ1 ∪ ϕelem ∪ ϕ2 ∪ ϕf

such that ϕ1 is a dag solved form together with flat disequalities x 6= y where x, y are both
standard or both isolated. There exists a computable T -equivalent disjunction of separate forms∨

k∈K ϕk such that ϕ is T -satisfiable if and only if there exists some k ∈ K such that the
i-component of ϕk is Ti-satisfiable for each i ∈ {1, 2}.

Example 4. Consider the bridging function f computing the set of elements in a multiset.
Consider the separate form

ϕ =

 v = x] y, x 6= y
fx = fy, fv = fx ∪ fy, fv = {e}
fx = f(x), fy = f(y), fv = f(v)

Using the formula ϕ ∧ (fx = ∅ ∨ fx = e′ ∪ v′), we get the T -satisfiability of ϕ thanks to the
branching fx = e′ ∪ v′. Indeed, ϕ is T -satisfiable by considering for instance x = e] e and
y = e] e] e.

6 Conclusion

In this paper, we have studied the problem of combining satisfiability procedures for the union
T of two free data structure theories T1 and T2 connected by a bridging theory Tf . We have
identified some basic propositions to solve the T -satisfiability problem in a modular way when

the source component of the input is already in solved form. As a pre-processing step, applying
a unification algorithm is a natural way to compute the expected solved forms. In the case
of Proposition 6, the considered solved forms can be obtained, for instance, by applying a
matching algorithm on particular equations with one standard (ground) side.

The (combined) data structure theory T involves a free sort elem. The next step is to
consider the combinability of T with an elem-sorted theory Telem. In the easy case, T and
Telem are stably infinite, and we can rely on the classical Nelson-Oppen combination method.
Actually, all the theories T1, T2 and T = T1 ∪ Tf ∪ T2 studied in this paper are stably infinite.
In the general case, a politeness property [13, 18] for T would be welcome to a get a modular
T ∪ Telem-satisfiability procedure when Telem is arbitrary (non-necessarily stably infinite). To
establish the politeness of a class of T -satisfiability problems, we have to show:

• (finite witnessability) if a formula in the class is T -satisfiable, then it must be satisfiable
in a small (computable) model;

• (smoothness) if a formula in the class is satisfiable in a model of T , then it is satisfiable
in model of T of any larger cardinality.

The technical propositions stated in this paper will allow us to show the politeness of some
particular T -satisfiability problems. Hence, this will be a way to identify significant cases for
which a combination method à la Nelson-Oppen will compute the right answer when it returns
satisfiable.

Acknowledgements. We are very grateful to Paula Chocron and Pascal Fontaine for their
collaboration on the design of new combination methods for SMT solving [7–9]. This work on
FDS has been made possible thanks to the joint study of the AFDS case [8].

References

[1] A. Armando, M. P. Bonacina, S. Ranise, and S. Schulz. New results on rewrite-based satisfiability
procedures. ACM Trans. Comput. Log., 10(1), 2009.

[2] A. Armando, S. Ranise, and M. Rusinowitch. A rewriting approach to satisfiability procedures.
Inf. Comput., 183(2):140–164, 2003.

[3] F. Baader and S. Ghilardi. Connecting many-sorted theories. J. Symb. Log., 72(2):535–583, 2007.

[4] F. Baader and K. U. Schulz. Combination techniques and decision problems for disunification.
Theor. Comput. Sci., 142(2):229–255, 1995.

[5] F. Baader and W. Snyder. Unification theory. In J. A. Robinson and A. Voronkov, editors,
Handbook of Automated Reasoning, pages 445–532. Elsevier and MIT Press, 2001.

[6] T. Bouton, D. C. B. De Oliveira, D. Déharbe, and P. Fontaine. veriT: an open, trustable and
efficient SMT-solver. In Automated Deduction–CADE-22, pages 151–156. Springer, 2009.

[7] P. Chocron, P. Fontaine, and C. Ringeissen. A Gentle Non-Disjoint Combination of Satisfiabil-
ity Procedures. In S. Demri, D. Kapur, and C. Weidenbach, editors, Proc. of the 7th Interna-
tional Joint Conference on Automated Reasoning, IJCAR, volume 8562 of LNCS, pages 122–136.
Springer, 2014.

[8] P. Chocron, P. Fontaine, and C. Ringeissen. A Polite Non-Disjoint Combination Method: Theories
with Bridging Functions Revisited. In A. P. Felty and A. Middeldorp, editors, Proc. Conference
on Automated Deduction (CADE), volume 9195 of LNCS, pages 419–433. Springer, 2015.

[9] P. Chocron, P. Fontaine, and C. Ringeissen. A rewriting approach to the combination of data
structures with bridging theories. In C. Lutz and S. Ranise, editors, Frontiers of Combining
Systems (FroCoS), volume 9322 of LNCS, pages 275–290. Springer, 2015.

[10] H. Comon. Disunification: A survey. In Computational Logic - Essays in Honor of Alan Robinson,
pages 322–359, 1991.

[11] P. Fontaine. Combinations of theories for decidable fragments of first-order logic. In S. Ghilardi
and R. Sebastiani, editors, Frontiers of Combining Systems (FroCoS), volume 5749 of LNCS, pages
263–278. Springer, 2009.

[12] S. Ghilardi. Model-theoretic methods in combined constraint satisfiability. Journal of Automated
Reasoning, 33(3-4):221–249, 2004.

[13] D. Jovanovic and C. Barrett. Polite theories revisited. In C. Fermueller and A. Voronkov, editors,
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR’10), volume 6397 of LNCS,
pages 402–416. Springer, 2010.

[14] V. Kuncak. Verifying and synthesizing software with recursive functions - (invited contribution).
In ICALP, volume 8572 of Lecture Notes in Computer Science, pages 11–25. Springer, 2014.

[15] J. Meseguer. Variant-based satisfiability in initial algebras. In C. Artho and P. C. Ölveczky,
editors, Formal Techniques for Safety-Critical Systems - Fourth International Workshop, FTSCS
2015, Paris, France, November 6-7, 2015. Revised Selected Papers, volume 596 of Communications
in Computer and Information Science, pages 3–34. Springer, 2015.

[16] G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures. ACM Trans. on
Programming Languages and Systems, 1(2):245–257, Oct. 1979.

[17] T.-H. Pham and M. W. Whalen. An improved unrolling-based decision procedure for algebraic data
types. In E. Cohen and A. Rybalchenko, editors, Verified Software: Theories, Tools, Experiments
- 5th International Conference, VSTTE 2013, Menlo Park, CA, USA, Revised Selected Papers,
volume 8164 of LNCS, pages 129–148. Springer, 2014.

[18] S. Ranise, C. Ringeissen, and C. G. Zarba. Combining data structures with nonstably infinite the-
ories using many-sorted logic. In B. Gramlich, editor, Frontiers of Combining Systems (FroCoS),
volume 3717 of LNCS, pages 48–64. Springer, 2005.

[19] V. Sofronie-Stokkermans. Locality results for certain extensions of theories with bridging functions.
In R. A. Schmidt, editor, Proc. Conference on Automated Deduction (CADE), volume 5663 of
LNCS, pages 67–83. Springer, 2009.

[20] P. Suter, M. Dotta, and V. Kuncak. Decision procedures for algebraic data types with abstractions.
In M. V. Hermenegildo and J. Palsberg, editors, Principles of Programming Languages (POPL),
pages 199–210. ACM, 2010.

[21] C. Tinelli and C. G. Zarba. Combining non-stably infinite theories. Journal of Automated Rea-
soning, 34(3):209–238, Apr. 2005.

[22] R. Treinen. A new method for undecidablity proofs of first order theories. J. Symb. Comput.,
14(5):437–458, 1992.

[23] C. G. Zarba. Combining multisets with integers. In A. Voronkov, editor, Automated Deduc-
tion - CADE-18, 18th International Conference on Automated Deduction, Copenhagen, Denmark,
volume 2392 of LNCS, pages 363–376. Springer, 2002.

[24] C. G. Zarba. Combining sets with cardinals. J. Autom. Reasoning, 34(1):1–29, 2005.

	Introduction
	Preliminaries
	Free Data Structures
	Combination of Free Data Structures
	Combination Procedure
	Theory of Integers as Target
	Arbitrary Free Data Structures as Target

	Conclusion

