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New Prediction Approach for Stabilizing Time-Varying

Systems under Time-Varying Input Delay

Frédéric Mazenc Michael Malisoff

Abstract— We provide a new sequential predictors approach

for the exponential stabilization of linear time-varying systems

with pointwise time-varying input delays. Our method circum-

vents the problem of constructing and estimating distributed

terms in the stabilizing control laws, and allows arbitrarily

large input delay bounds. We illustrate our method using a

pendulum dynamics.

Key Words—Delay, robustness, stability, time-varying

I. INTRODUCTION

This work continues our search (which we began in [11])
for predictive methods for time-varying systems that can
be applied without computing Lie derivatives and without
computing distributed terms, and which compensate for ar-
bitrarily long input delays. Our work is motivated by the ubi-
quity of input delays across engineering, and the challenges
that can occur when building delay tolerant controls, if one
applies traditional methods that have distributed terms. See,
e.g., [4] and [17], and [6], [15], [18] for electromechanical
input delays in muscle response in neuromuscular electrical
stimulation (or NMES). For constant coefficient linear sys-
tems, it often suffices to use linear matrix inequalities (or
LMIs) to build delay tolerant controls, but many important
linear systems are time-varying. For instance, when tracking
reference trajectories under input delays and linearizing
around the reference trajectories, one obtains time-varying
linear systems, even if the original system is time invariant.

Traditional input delay compensation methods can roughly
be grouped into three categories of approaches. One approach
is to solve the control problem with the input delay set to 0,
and to then look for upper bounds on the input delay that the
resulting closed loop system can tolerate without sacrificing
the desired stability properties. Two advantages of this so-
called emulation approach are that (a) it makes it possible to
use relatively simple controls for undelayed systems (such as
Lie derivative feedback design methods and other approaches
from [7]) and (b) the strict Lyapunov functions one often
obtains from solving the feedback design problem for the
corresponding undelayed system can often be transformed
into Lyapunov-Krasovskii functionals, which can in turn be
used to compute bounds on the input delays that the system
can tolerate. See [12] for ways to transform strict Lyapunov
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functions for undelayed systems into Lyapunov-Krasovskii
functionals for the corresponding input delayed systems.

Another approach is the reduction model method, where
the control is expressed implicitly as a solution of an
integral equation, which can lead to challenging problems
of numerically computing control values, especially when
the system has uncertainty or the delay is time-varying.
Prediction is another useful method, where the state values
in the controls are replaced by numerical predictions of the
state values. Standard prediction or reduction model methods
can compensate for arbitrarily long input delays, but the
distributed terms in their controls may make them harder
to implement than emulation; see [2], [3], [14], and [19].

This note provides a new sequential predictors approach
for the exponential stabilization of time-varying systems with
time-varying pointwise input delays, and so builds on recent
significant works such as [16] (which used LMI methods for
time invariant linear systems to build sequential predictors)
and [9] (which extended [16] by studying constant coefficient
linear systems with time-varying delays, which is a smaller
class of systems than the time-varying systems we consider
here). It also extends our work [11], which was confined to
constant delays. Since we do not use distributed terms or Lie
derivatives in our control, our work is very different from the
classical reduction model or prediction approaches that have
been used by M. Krstic and others (as in [5] and [8]).

We use several dynamic extensions, with each one having
the same dimension as the original system. Since we do not
use distributed terms, our work differs from [1] and other
works that use several dynamic extensions and distributed
terms. Our result gives closed form expressions for the
control and explicit lower bounds on the number of required
dynamic extensions in terms of the time-varying delays and
their derivatives. Our work is mainly a theoretical and met-
hodological development. However, we illustrate our work
using a pendulum dynamics that was also studied in [13],
where we used a predictive approach that led to distributed
controls, but [13] did not cover time-varying delays.

We use standard notation and definitions. Throughout the
sequel, the dimensions are arbitrary, unless otherwise noted.
For simplicity, we omit arguments of functions when they
are clear from the context, and we always assume that the
initial times t0 for our solutions of our time-varying systems
are t0 = 0, but we can write analogs of our results for general
choices of t0 ≥ 0. We use | · | to denote the usual Euclidean
norm and the induced matrix norm, and |φ |∞ (resp., |φ |I )
denotes the essential supremum (resp., supremum over any
interval I ) for bounded measurable functions φ .



II. MAIN RESULT

We study systems of the form
ẋ(t) = A(t)x(t)+B(t)u(t −h(t)), (1)

where the state x and the control u are valued in Rn and R�,
respectively, and h is a time-varying delay. Throughout this
section, we make two assumptions:

Assumption 1: The function h : R → [0,∞) is C
1 and

bounded from above by a constant ch > 0. Also, its derivative
ḣ is bounded from below, and ḣ is bounded from above by
a constant lh ∈ (0,1), and ḣ has a global Lipschitz constant
nh > 0. �

Assumption 2: The functions A and B are bounded and
continuous, and there is a known bounded continuous
function K : [0,∞)→ R�×n such that

ẋ(t) = [A(t)+B(t)K(t)]x(t) (2)
is exponentially stable to 0. �

We also assume that the initial functions are constant on
[−ch,0]. In terms of the known delay h(t) and an integer
m > 1 that we specify later, we then introduce the functions

Ωi(t) = t − i

m
h(t) and θi(t) = Ω−1

m−i+1(Ωm−i(t)) (3)
for all i ∈ {0, ...,m}, and we inductively define the functions

R1(t) = θ̇1(t) and Ri(t) = θ̇i(t)Ri−1(θi(t)) for i > 1. (4)
Such functions exist by Assumption 1, which implies that the
Ωi’s are strictly increasing and that their ranges are all of R.
The required inverses in (3) can be computed in practice
using standard programs. In terms of the positive constants

uc = nh

ch

(1−lh)
2 +

lh

1−lh
(5)

and
b1 =

�
1+

�
1+ uc

m

�m |A|∞
��

1+ uc

m

�m |A|∞,
b2 =

�
1+

�
1+ uc

m

�m |A|∞
�2
, and b3 = b2

�
1+ uc

m

�
,

(6)

and with In ∈ Rn×n denoting the identity matrix, we then
prove:

Theorem 1: If Assumptions 1-2 hold and m ∈ N satisfies

max
�

2,4
�

b1√
2
+b3

�
ch

1−lh

�
< m, (7)

then we can find positive constants µ1 and µ2 such that for
all solutions of (1) in closed loop with the control

u(t) = K(t +h(t))zm(t), (8)
where zm is the last n components of the system
ż1(t) = R1(t)A(θ1(t))z1(t)+R1(t)B(θ1(t))u(Ωm−1(t))

+L1(t)[z1(θ−1
1 (t))− x(t)]

żi(t) = Ri(t)A(Gi(t))zi(t)+Ri(t)B(Gi(t))u(Ωm−i(t))

+Li(t)[zi(θ−1
i

(t))− zi−1(t)], i ∈ {2, . . . ,m}

(9)

with the choices
Li(t) =−In −Ri(t)A(Gi(t)) and Gi = Ω−1

m ◦Ωm−i, (10)
we have

|(x(t),E (t))| ≤ µ1|(x,E )|[−ch,0]e
−µ2t (11)

for all t ≥ 0, where the vector E is defined by E (t) = (z1(t)−
x(θ1(t)),z2(t)− z1(θ2(t)), . . . ,zm(t)− zm−1(θm(t))). �

Remark 1: The estimate (11) means that the combined
(x,E ) dynamics are uniformly globally exponentially stable

to 0. Three key features of the preceding construction are
(a) our allowing arbitrarily large delay bounds ch > 0, (b)
the fact that our control (8) has no distributed terms and
no Lie derivatives, and (c) the fact that only the bottom
n components of the dynamic extension (9) are needed to
compute the control values (8). �

III. SKETCH OF PROOF OF THEOREM 1
We use this lemma, which we prove in the appendix:
Lemma 1: The θi’s in (3) and the constant uc in (5) satisfy

|θ̇i(t)−1|≤ uc

m
and |θ−1

i
(t)− t|≤ ch

1−lh

1
m

(12)
for all t ≥ 0 and i ∈ {1,2, . . . ,m}. �

By Lemma 1 and our definition of the Ri’s in (4), we get
|Ri(t)|≤

�
1+ uc

m

�m (13)
for all i, where throughout the proof, all inequalities and
inequalities are for all t ≥ 0, unless otherwise indicated. In
terms of the states zi of (9), we define ξi(t) = zi−1(θi(t)) for
i ≥ 1, where z0 = x. The rest of the proof has four parts.

Part 1: Error Dynamics. We derive a useful formula for
the dynamics of the error E = (E1, . . . ,Em), where

Ei(t) = zi(t)−ξi(t) (14)
for all i ∈ {1, ...,m}, so Ei(t) = zi(t)− zi−1(θi(t)) for all i ∈
{1, . . . ,m}. Our formulas (3) for the Ωi’s and θi’s give

ξ̇1(t) = R1(t)A(θ1(t))ξ1(t)

+R1(t)B(θ1(t))u(Ωm−1(t)) .

Hence, (14) and our choice of the z1 dynamics in (9) give
Ė1(t) = R1(t)A(θ1(t))E1(t)+L1(t)E1(θ−1

1 (t)). (15)
For i > 1, we can use (10) to get Gi−1 ◦θi = Gi, so (4) gives

ξ̇i(t) = θ̇i(t){Ri−1(θi(t)) [A(Gi(t))zi−1(θi(t))

+B(Gi(t))u(Ωm−i+1(θi(t)))]

+Li−1(θi(t))[zi−1(θ−1
i−1(θi(t)))

−zi−2(θi(t))]}
= Ri(t)B(Gi(t))u(Ωm−i+1(θi(t)))

+θ̇i(t)Li−1(θi(t))[zi−1(θ−1
i−1(θi(t)))

−zi−2(θi(t))]+Ri(t)A(Gi(t))ξi(t).

(16)

Since Ωm−i+1(θi(t)) = Ωm−i(t), we deduce that for i ≥ 2,
Ėi(t) = Li(t)[zi(θ−1

i
(t))− zi−1(t)]

− θ̇i(t)Li−1(θi(t))[zi−1(θ−1
i−1(θi(t)))

−zi−2(θi(t))]+Ri(t)A(Gi(t))Ei(t)

= Ri(t)A(Gi(t))Ei(t)+Li(t)Ei(θ−1
i

(t))

− θ̇i(t)Li−1(θi(t))Ei−1(θ−1
i−1(θi(t))) .

(17)

To summarize, we have the following error dynamics:




Ė1(t) = R1(t)A(G1(t))E1(t)+L1(t)E1(θ−1
1 (t))

Ėi(t) = Ri(t)A(Gi(t))Ei(t)+Li(t)Ei(θ−1
i

(t))

− θ̇i(t)Li−1(θi(t))Ei−1(θ−1
i−1(θi(t)))

for i = 2, . . . ,m

(18)

Part 2: Fundamental System. Motivated by the triangular
structure of (18), we next study stability properties of the
fundamental system

ṡi(t) = Ri(t)A(Gi(t))si(t)+Li(t)si(θ−1
i

(t))

=−si(t)+ [In +Ri(t)A(Gi(t))]
�
si(t)− si(θ−1

i
(t))

� (19)



for a fixed i. Observe that θ−1
i

(t) ≤ t for all t ≥ 0, by our
choices (3) of the Ωi’s. Since θ−1

i
(t) ≥ 0 for all t ≥ ch, it

follows that

ṡi(t) =−si(t)−Li(t)
�

t

θ−1
i

(t)
Ri(l)A(Gi(l))si(l)dl

+Li(t)
�

t

θ−1
i

(t)
(In +Ri(l)A(Gi(l)))si(θ−1

i
(l))dl

(20)

for all t ≥ ch. We will use the function Q(si) = |si|2/2.
By our choices (6) of the constants b1 and b2, our first

bound in (12) from Lemma 1, and (13), it follows that the
time derivative of Q along all trajectories of (20) satisfies

Q̇(t) ≤ −|si(t)|2 +b1|si(t)|
�

t

t− c
h

1−l
h

1
m

|si(l)|dl

+b2|si(t)|
�

t

t− c
h

1−l
h

1
m

|si(θ−1
i

(l))|dl

≤ −|si(t)|2 +b1|si(t)|
�

t

t− c
h

1−l
h

1
m

|si(l)|dl

+b2|si(t)|
� θ−1

i
(t)

θ−1
i

�
t− c

h
1−l

h

1
m

� |si(r)||θ̇i(r)|dr.

(21)

Here and in what follows, all inequalities and equalities
are for all t ≥ max{ch,2ch/(m(1− lh))}, unless otherwise
indicated. Hence, since θ−1

i
(t)≤ t for all t ≥ 0, (12) gives

Q̇(t) ≤ −|si(t)|2 +b1|si(t)|
�

t

t− c
h

1−l
h

1
m

|si(l)|dl

+b3|si(t)|
�

t

t− 2c
h

1−l
h

1
m

|si(r)|dr.
(22)

Since (7) gives
2ch

m(1−lh)
< 1

b1/
√

2+b3
, (23)

we can use Young’s inequality twice (i.e., si(t)r ≤ 1
4 |si(t)|2+

r
2 for suitable r ≥ 0) and then Jensen’s inequality (applied

to the convex integrand function M (s) = |s|2) to get

Q̇(t) ≤ − 1
2 |si(t)|2 + (b1/

√
2)2

b1/
√

2+b3

�
t

t− c
h

1−l
h

1
m

|si(l)|2dl

+
b

2
3

b1/
√

2+b3

�
t

t− 2c
h

1−l
h

1
m

|si(r)|2dr

≤ − 1
2 |si(t)|2 +

�
b1√

2
+b3

��
t

t− 2c
h

1−l
h

1
m

|si(r)|2dr,

(24)

where the first application of Young’s and Jensen’s inequa-
lities that we used to obtain the first inequality in (24) was

b1|si(t)|
�

t

t− c
h

1−l
h

1
m

|si(l)|dl

≤ 1
4 |si(t)|2 +

�
b1

�
t

t− c
h

1−l
h

1
m

|si(l)|dl

�2

≤ 1
4 |si(t)|2 +b

2
1

ch

1−lh

1
m

�
t

t− c
h

1−l
h

1
m

|si(l)|2dl

≤ 1
4 |si(t)|2 + (b1/

√
2)2

b1/
√

2+b3

�
t

t− c
h

1−l
h

1
m

|si(l)|2dl,

(25)

and the second one was analogous, and then we used the
fact that (r2+s

2)/(r+s)≤ r+s for all r ≥ 0 and s > 0, with
the choices r = b1/

√
2 and s = b3.

Since our lower bound on m in (7) also allows us to find
a constant λ > 1 that is close enough to 1 so that

4
�

b1√
2
+b3

�
λch

1−lh
< m, (26)

it follows from (24) that we can also find a constant c0 > 0
such that the time derivative of

Q
�(si,t) = Q(si(t))+λ

�
b1√

2
+b3

��
t

t− 2c
h

1−l
h

1
m

�
t

w

|si(r)|2drdw

along all solutions of the fundamental system (19) satisfies

Q̇
� ≤ − 1

2 |si(t)|2 +
�

b1√
2
+b3

�
2ch

1−lh

λ
m
|si(t)|2

+(1−λ )
�

b1√
2
+b3

��
t

t− 2c
h

m(1−l
h
)

|si(r)|2dr

≤ −c0Q
�(si,t),

(27)

where the second inequality in (27) used the bound
�

t

t− 2c
h

1−l
h

1
m

�
t

w

|si(r)|2drdw ≤ 2ch

(1−lh)m

�
t

t− 2c
h

1−l
h

1
m

|si(r)|2dr

and si,t(�) = si(t + �) for all � ∈ [−2ch/((1− lh)m),0]. This
concludes our analysis of the fundamental system (19).

Part 3: Exponential Stability of the Error Dynamics (18)

This part entails finding positive constants ωi > 0 and ηi > 0
such that along all solutions of the dynamics for

E �(t) =
�
E1(θ−1

1 ◦θm(t)),E2(θ−1
2 ◦θm(t)), . . . ,Em(t)

�
,

the function
Q
�
m(E

�
t ) = ω1Q

�(E �
1,t)+. . .+ωm−1Q

�(E �
m−1,t)+ωmQ

�(E �
m,t)

satisfies
Q̇
�
m(E

�
t )≤−η1Q

�
m(E

�
t ) . (28)

This can be done by an inductive argument, using our lower
and upper bounds on ḣ from Assumption 1. For instance,
we can use the triangle inequality to prove that along all
solutions for the (E �

1 (t),E
�
2 (t)) dynamics, we have

d

dt
Q
�(E �

2,t) ≤ − θc0
2 Q

�(E �
2,t)+

2θ̄ 2

θc0
|θ̇2|2∞|L1|2∞Q

�(E �
1,t)

d

dt
Q
�(E �

1,t) ≤ −θc0Q
�(E �

1,t),
(29)

where the positive constants θ and θ̄ are chosen such that
θ ≤ (θ−1

i
◦θm)�(t)≤ θ̄ for all t ≥ 0 and all i ∈ {1,2, . . . ,m}.

Hence, the function

Q
�
2(E

�
1,t ,E

�
2,t) = Q

�(E �
2,t)+

�
1+2

�
θ̄ |θ̇2|∞|L1|∞

θc0

�2
�

Q
�(E �

1,t)

satisfies

Q̇
�
2 ≤ − θc0

2

�
Q
�
�
E

�
1,t

�
+Q

�
�
E

�
2,t

��
, (30)

and so is a Lyapunov-Krasovskii functional for the
(E �

1 (t),E
�
2 (t)) dynamics, and this process can be continued.

Part 4: Exponential Stability of (1) in Closed Loop with

(8). By our error variable formulas (14) and Ei(t) = zi(t)−
zi−1(θi(t)) for all i ∈ {1, . . . ,m}, we have

zm(t) = ξm(t)+Em(t) = zm−1(θm(t))+Em(t)

= zm−2(θm−1(θm(t)))+Em−1(θm(t))+Em(t),
(31)

and therefore we can argue inductively to get
zm(t) = x(θ1(...θm−1(θm(t))...))
+E1(θ2(...θm(t)...))+ ...+Em(t).

(32)



Then our formulas for the θi’s give
zm(t) = x(Ω−1

m (t))+E1(θ2(...θm(t)...))+ ...+Em(t). (33)
Hence, our control (8) can be written as

u(t −h(t)) = K(t)[x(Ω−1
m (t −h(t)))

+E1(θ2(...θm(t −h(t)...)))+ ...+Em(t −h(t))].
(34)

Since Ωm(t) = t −h(t), the closed loop system (1) is then
ẋ(t) = (A(t)+B(t)K(t))x(t)

+{B(t)[K(t)E1(θ2(...θm(t −h(t)...)))

+...+K(t)Em(t −h(t))]}.
(35)

Also, Assumption 2 provides a C
1 bounded function P

such that the Lyapunov function V (t,x) = x
�

P(t)x has a
quadratic lower bound in |x| and satisfies V̇ ≤−|x(t)|2 along
all solutions of (2) (using [7, Theorem 4.14]). Then the
triangle inequality gives

V̇ ≤ − 1
2 |x(t)|

2 +2|P|2∞|δ �|2∞
≤ − 1

2|P|∞ V (t,x(t))+2|P|2∞|δ �|2∞
≤ − 1

2|P|∞ V (t,x(t))

+2m(|P|∞|B|∞|K|∞)2

×
�
|E1(θ2(...θm(t −h(t)...)))|2 + . . .

+ |Em(t −h(t))|2
�

(36)

along all solutions of (35), where δ � is the quantity in curly
braces in (35). One then can show that the function

Q
�
+

�
E

��
t

�
=V (t,x(t))

+
�

1+ 2m

M η1
(|P|∞|B|∞|K|∞)2

� m

∑
i=1

2
ωi

Q
�
m

�
E

�
Mi(t)

� (37)

admits a constant d0 > 0 such that the Lyapunov-Krasovskii
decay condition

Q̇
�
+(E

��
t )≤−d0Q

�
+(E

��
t ) (38)

holds along all solutions of the dynamics for

E
��(t) =

�
x(t),E �

M1(t)
, . . . ,E �

Mm(t)

�
, (39)

where Mi(t) = θ−1
m ◦ θi ◦ θi+1 ◦ . . . ◦ θm(t − h(t)) = Ω1 ◦

Ω−1
m−i+1◦Ωm(t) for i= 1,2, . . . ,m−1 and Mm(t) = t−h(t) =

Ωm(t), by choosing positive constants M and M̄ such that
M ≤ Ṁi(t)≤ M̄ for all i∈ {1,2, . . . ,m} and t ≥ 0. The final
uniform global exponential stability estimate for the (x,E )
dynamics follows from the quadratic structure of V and Q,
the invertibility of the functions Hi = θ−1

i
◦θm ◦Mi for all

i, the existence of positive constants ha and hb such that
H

−1
i

(t) ≥ hat − hb for all i and t ≥ 0 (which follows from
our bounds on ḣ from Assumption 1 and the Mean Value
Theorem), and the subadditivity of the square root. �

Remark 2: Since Ωm(t) = t −h(t), our control is
u(t −h(t)) = K(t)x(t)+

K(t)[E1(θ2(...θm(t −h(t)...)))+ ...+Em(t −h(t))],
(40)

which may at first seem to contradict our assumption that
the current value of the state x(t) is not available to use in
the control. However, our formulas (3) for the θi’s imply that
θ2 ◦ . . .◦θm(t −h(t)) = θ−1

1 (t) for all t ≥ 0. This gives

E1(θ2(...θm(t −h(t)...))) = z1(θ−1
1 (t))−ξ1(θ−1

1 (t))

= z1(θ−1
1 (t))− x(t),

(41)

so two terms in (40) containing x(t) cancel. Hence, our
control does not require current values x(t). �

IV. APPLICATION TO PENDULUM

Consider the model�
ṙ1(t) = r2(t)

ṙ2(t) = − g

l
sin(r1(t))+

1
m̄l2 v(t −h(t))

(42)

of the simple pendulum with a time-varying delay h(t),
where g = 9.8 m/s is the gravity constant, l is the pendulum
length in meters, m̄ is the pendulum mass, and v is the
input. As in [11] and [13], our control objective is to track
a given C

1 reference trajectory (r1,s(t),r2,s(t)) such that
ṙ1,s(t) = r2,s(t). Using the error variables r̃i = ri − ri,s(t) for
i = 1,2 and the change of feedback
u(t −h(t)) = 1

m̄l2 v(t −h(t))− ṙ2,s(t)− g

l
sin(r1,s(t)), (43)

we obtain the tracking system




˙̃r1(t) = r̃2(t)
˙̃r2(t) = g

l
[sin(r1,s(t))− sin(r̃1(t)+ r1,s(t))]

+u(t −h(t)).

(44)

The work [13] showed that when r1,s(t) = ωt and ω > 0
is a large enough constant and h = 1, the linearization�

ẋ1(t) = x2(t)

ẋ2(t) = − g

l
cos(ωt)x1(t)+u(t −h)

(45)

of (44) at 0 has the globally exponentially stabilizing distri-
buted control u defined by

u(t) =−0.6x1(t)−0.4x2(t)

−
�

t

t−1
�
0.6(t − r−1)+0.4

�
u(r)dr.

(46)

Our work [11] designed a globally asymptotically stabilizing
sequential predictor control for the original nonlinear system
(44) for cases where h is constant. However, it is not obvious
how to extend the analysis from [11] to time-varying delays.
Therefore, we apply Theorem 1 to its linearization (45) using
the time-varying delay h(t) = 1+α sin(t), where α ∈ (0,1)
is a known constant, but analogous reasoning applies for any
delay h(t) satisfying Assumption 1 above.

To this end, first note that for any choice of the constant
ω > 0, Assumption 2 is satisfied using

A(t) =



 0 1

− g

l
cos(ωt) 0



 , B =



 0

1



 ,

and K(t) =
�

g

l
cos(ωt)−1 −1

�
(47)

and then |A|∞ = max{g/l,1}. Therefore, our requirement (7)
on m ≥ 2 from Theorem 1 holds if

m

4 − 1+α
1−α

�
max{g/l,1}√

2

�
1+max

�
g

l
,1
��

1+ uc

m

�m��1+ uc

m

�m

+
�
1+max

�
g

l
,1
��

1+ uc

m

�m�2 �1+ uc

m

��
> 0.

(48)

Condition (48) can easily be checked for suitable choices of
α , and l. For instance, if we pick α = 1/7, any ω > 0, any
l > g, and the choice m= 47, then we get the value 0.376057
for the left side of (48), so Theorem 1 applies with m = 47.



V. CONCLUSIONS AND FUTURE WORK

We designed uniformly globally exponentially stabilizing
sequential predictor controllers for a large class of time-
varying linear systems under general conditions on the time-
varying input delays. By allowing arbitrarily large bounds
on the input delays, we overcame a possible challenge in
applying emulation methods to systems that can have long
input delays. We provided a formula for finding the required
numbers of sequential predictors that are needed to realize
our stability objectives.

We hope to extend our work to systems with uncertainties,
and to adaptive systems, where dynamic extensions iden-
tify unknown parameters. We also hope to cover nonlinear
systems with time-varying delays, by building sequential
predictors for the linear parts, and proving that the controls
ensure local stabilization of the original nonlinear systems.
Finally, we plan to merge our methods with the work [10],
by proving robust forward invariance under state constraints
and time-varying delays.

APPENDIX: PROOF OF LEMMA 1
Fix any i ∈ {1,2, . . . ,m} and t ≥ 0. Our formula θi(t) =

Ω−1
m−i+1(Ωm−i(t)) from (3) gives

θi(t) = t +Ω−1
m−i+1

�
Ωm−i+1(t)+

1
m

h(t)
�

−Ω−1
m−i+1 (Ωm−i+1(t)) .

(A.1)

Hence, the Mean Value Theorem provides a w ∈ R (depen-
ding on t and i in general) such that

θi(t) = t + 1
Ω̇m−i+1(w)

1
m

h(t). (A.2)
Therefore, Assumption 1 gives

|θi(t)− t| ≤ 1
1−lh

1
m

h(t) ≤ ch

1−lh

1
m
, (A.3)

which gives the second inequality in (12), by the invertibility
of θi.

To check the first inequality in (12), first note that

θ̇i(t) =
1−m−i

m
ḣ(t)

1−m−i+1
m

ḣ(Ω−1
m−i+1(Ωm−i(t)))

=
1−m−i+1

m
ḣ(t)

1−m−i+1
m

ḣ(Ω−1
m−i+1(Ωm−i(t)))

+
1
m

ḣ(t)

1−m−i+1
m

ḣ(Ω−1
m−i+1(Ωm−i(t)))

.

(A.4)

Since Ωm−i(t) = Ωm−i+1(t)+
1
m

h(t), the function
Gi(t) = Ω−1

m−i+1
�
Ωm−i+1(t)+

1
m

h(t)
�

(A.5)
is such that

θ̇i(t) =
1−m−i+1

m
ḣ(t)

1−m−i+1
m

ḣ(Gi(t))
+

1
m

ḣ(t)

1−m−i+1
m

ḣ(Ω−1
m−i+1(Ωm−i(t)))

= m−i+1
m

ḣ(t+Gi(t)−Ω−1
m−i+1(Ωm−i+1(t)))−ḣ(t)

1−m−i+1
m

ḣ(Gi(t))

+ 1
m

ḣ(t)

1−m−i+1
m

ḣ(Ω−1
m−i+1(Ωm−i(t)))

+1 ,

(A.6)

by writing ḣ(t) in the first numerator in (A.6) as
ḣ(t) = (ḣ(t)− ḣ(Gi(t))+ ḣ(Gi(t)).

It follows that

|θ̇i(t)−1| ≤ m−i+1
m

nh

|Gi(t)−Ω−1
m−i+1(Ωm−i+1(t))|

1−m−i+1
m

lh

+ 1
m

lh

1−m−i+1
m

lh

,
(A.7)

using the Lipschitz constant nh for ḣ. Hence, our choice of
Gi and the Mean Value Theorem applied to Ω−1

m−i+1 gives

|θ̇i(t)−1| ≤ m−i+1
m

nh

|Ωm−i+1(t)+
1
m

h(t)−Ωm−i+1(t)|
(1−m−i+1

m
lh)

2

+ 1
m

lh

1−m−i+1
m

lh

≤ 1
m

m−i+1
m

nh

ch

(1−m−i+1
m

lh)
2 +

1
m

lh

1−m−i+1
m

lh

.

The lemma now follows from our formula (5) for uc.
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