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Abstract Given a connected graph G = (V, E), the closeness centrality of a
vertex v is defined as Zw;_dl(v’w)' This measure is widely used in the analysis
of real-world complex networks, and the problem of selecting the k£ most central
vertices has been deeply analysed in the last decade. However, this problem is
computationally not easy, especially for large networks: in the first part of the
paper, we prove that it is not solvable in time O(| E|>~€) on directed graphs, for
any constant € > 0, under reasonable complexity assumptions. Furthermore,
we propose a new algorithm for selecting the k£ most central nodes in a graph:
we experimentally show that this algorithm improves significantly both the
textbook algorithm, which is based on computing the distance between all
pairs of vertices, and the state of the art. For example, we are able to compute
the top k nodes in few dozens of seconds in real-world networks with millions

* This paper is an extended and improved version of the conference paper [6]. A
preliminary study appeared in [10].
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of nodes and edges. Finally, as a case study, we compute the 10 most central
actors in the IMDB collaboration network, where two actors are linked if they
played together in a movie, and in the Wikipedia citation network, which
contains a directed edge from a page p to a page ¢ if p contains a link to g.



1 Introduction

The problem of identifying the most central nodes in a network is a funda-
mental question that has been asked many times in a plethora of research
areas, such as biology, computer science, sociology, and psychology. Because
of the importance of this question, dozens of centrality measures have been
introduced in the literature (for a recent survey, see [8]). Among these mea-
sures, closeness centrality is certainly one of the oldest and of the most widely
used [5]: almost all books dealing with network analysis discuss it (for example,
[22]), and almost all existing graph libraries implement algorithms to compute
it.

In a connected graph, the closeness centrality of a node v is defined as
c(v) = #dl(vw) The idea behind this definition is that a central node
should be very efficient in spreading information to all other nodes: for this
reason, a node is central if the average number of linkes needed to reach another
node is small. If the graph is not strongly connected, the definition is more
complicated, but still very established in the literature [21,31,7,8,24] (see Sect.

2.2 for more details).

In order to compute the k vertices with largest closeness, the textbook
algorithm computes c(v) for each v and returns the k largest found values.
The main bottleneck of this approach is the computation of d(v,w) for each
pair of vertices v and w (that is, solving the All Pairs Shortest Paths or
APSP problem). This can be done in two ways: either by using fast matrix
multiplication, in time O(n?3™logn) [35,33], or by performing a breadth-
first search (in short, BFS) from each vertex v € V, in time O(mn), where
n = |V| and m = |E|. Usually, the BFS approach is preferred because the
other approach contains big constants hidden in the O notation, and because
real-world networks are usually sparse, that is, m is not much bigger than n.
However, also this approach is too time-consuming if the input graph is very
big (with millions of nodes and hundreds of millions of edges).

Our first result proves that, in the worst case, the BFS-based approach
cannot be improved, under reasonable complexity assumptions. Indeed, we
construct a reduction from the problem of computing the most central vertex
(the case k = 1) to the Orthogonal Vector problem [3]. This reduction implies
that we cannot compute the most central vertex in O(m?~¢) for any e > 0,
unless the Orthogonal Vector conjecture [3] is false. Note that the Orthogonal
Vector conjecture is implied by the well-known Strong Exponential Time Hy-
pothesis (SETH, [17]), and hence all our results hold also if we assume SETH.
This hypothesis is heavily used in the context of polynomial-time reductions,
and, informally, it says that the SATISFIABILITY problem is not solvable in
time O((2 — €)V) for any € > 0, where N is the number of variables. This
result still holds if we assume the input graph to be sparse, that is, if we as-
sume that m = O(n) (of course, if the input graph is not sparse, then the
BFS-based approach can be improved using fast matrix multiplication). The
proof is provided in Sect. 3.



Knowing that the BFS-based algorithm cannot be improved in the worst
case, in the second part of the paper we provide a new exact algorithm that
performs much better on real-world networks, making it possible to compute
the k most central vertices in networks with millions of nodes and hundreds
of millions of edges. The new approach combines the BFS-based algorithm
with a pruning technique: during the algorithm, we compute and update up-
per bounds on the closeness of all the nodes, and we exclude a node v from the
computation as soon as its upper bound is “small enough”, that is, we are sure
that v does not belong to the top k& nodes. We propose two different strategies
to set the initial bounds, and two different strategies to update the bounds
during the computation: this means that our algorithm comes in four different
variations. The experimental results show that different variations perform
well on different kinds of networks, and the best variation of our algorithm
drastically outperforms both a probabilistic approach [23], and the best exact
algorithm available until now [24]. We have computed for the first time the 10
most central nodes in networks with millions of nodes and hundreds of millions
of edges, in very little time. A significant example is the wiki-Talk network,
which was also used in [27], where the authors propose an algorithm to up-
date closeness centralities after edge additions or deletions. Our performance
is about 30000 times better than the performance of the textbook algorithm:
if only the most central node is needed, we can recompute it from scratch more
than 150 times faster than the geometric average update time in [27]. Finally,
our approach is not only very eflicient, but it is also very easy to code, making
it a very good candidate to be implemented in existing graph libraries. Indeed,
it is already implemented in NetworKit [29], and one of its variations is imple-
mented in Sagemath [14]. We sketch the main ideas of the algorithm in Sect. 4,
and we provide all details in Sect. 5-8. We experimentally evaluate the effi-
ciency of the new algorithm in Sect. 9. In the last part of the paper (Sect. 10,
11), we consider two case studies: the actor collaboration network (1797446
vertices, 72880 156 edges) and the Wikipedia citation network (4229 697 ver-
tices, 102165832 edges). In the actor collaboration network, we analyze the
evolution of the 10 most central vertices, considering snapshots taken every 5
years between 1940 and 2014. The computation was performed in little more
than 45 minutes. In the Wikipedia case study, we consider both the standard
citation network, that contains a directed edge (p, q) if p contains a link to g,
and the reversed network, that contains a directed edge (p, q) if ¢ contains a
link to p. In a few minutes, we are able to compute the 10 most central pages
of most of these graphs, making them available for future analyses.

2 Preliminaries
2.1 Related Work

Closeness is a “traditional” definition of centrality, and consequently it was
not “designed with scalability in mind”, as stated in [18]. Also in [11], it is said



that closeness centrality can “identify influential nodes”, but it is “incapable to
be applied in large-scale networks due to the computational complexity”. The
simplest solution considered was to define different measures, that might be
related to closeness centrality [18].

A different line of research has tried to develop more efficient algorithms,
or lower bounds for the complexity of this problem. In particular, in [10] it is
proved that finding the less closeness central vertex is not subquadratic-time
solvable, unless SETH is false. In the same line, it is proved in [3] that finding
the most central vertex is not solvable in O(m?~¢), assuming the Hitting Set
conjecture. This conjecture is very recent, and there are not strong evidences
that it holds, apart from its similarity to the Orthogonal Vector conjecture.
Conversely, the Orthogonal Vector conjecture is more established: it is implied
both by the Hitting Set conjecture [3], and by SETH [32], a widely used as-
sumption in the context of polynomial-time reductions [17,32,34,25,26,4,2,1,
10,3,9]. Similar hardness results were also proved in the dense weighted con-
text [1], by linking the complexity of centrality measures to the complexity of
computing the All Pairs Shortest Paths.

In order to avoid these hardness results, it is possible to design approxima-
tion algorithms: the simplest approach samples the distance between a node v
and ! other nodes w, and returns the average of all values d(v, w) found [15].
The time-complexity is O(Im), to obtain an approximation &(v) of the central-

S L > eD) < 2¢=2(1¢*) where D is the

c(v)  elv)
diameter of the graph. A more refined approximation algorithm is provided
in [12], which combines the sampling approach with a 3-approximation algo-
rithm: this algorithm has running time O(Im), and it provides an estimate ¢(v)

of the centrality of each node v such that P ( L L £ ) < 2679063)

ity of each node v such that P

o) T Aoy | 2 )
(note that, differently from the previous algorithm, this algorithm provides a
guarantee on the relative error). However, even if these approximation algo-
rithms work quite well, they are not suited to the ranking of nodes: indeed,
we work with so-called small world networks, having a low diameter. Conse-
quently, in a typical graph, the average distance between v and a random node
w is between 1 and 10, meaning that most of the n centrality values lie in this
range. In order to obtain a ranking, we need the error to be close to ln—o, which
might be very small. Nevertheless, an approximation algorithm was proposed
in [23], where the sampling technique developed in [15] was used to actually
compute the top k vertices: the result is not exact, but it is exact with high
probability. The authors proved that the time-complexity of their algorithm is
O(mn% logn), under the rather strong assumption that closeness centralities
are uniformly distributed between 0 and D, where D is the maximum distance
between two nodes (in the worst case, the time-complexity of this algorithm
is O(mn)).

Other approaches have tried to develop incremental algorithms that might
be more suited to real-world networks. For instance, in [20], the authors develop
heuristics to determine the k£ most central vertices in a varying environment.
Furthermore, in [27], the authors consider the problem of updating the close-




ness centrality of all nodes after edge insertions or deletions: in some cases,
the time needed for the update could be orders of magnitude smaller than the
time needed to recompute all centralities from scratch.

Finally, some works have tried to exploit properties of real-world networks
in order to find more efficient algorithms. In [19], the authors develop a heuris-
tic to compute the k most central vertices according to different measures. The
basic idea is to identify central nodes according to a simple centrality measure
(for instance, degree of nodes), and then to inspect a small set of central nodes
according to this measure, hoping it contains the top k vertices according to
the “complex” measure. The last approach [24], proposed by Olsen et al., tries
to exploit the properties of real-world networks in order to develop exact al-
gorithms with worst case complexity O(mn), but performing much better in
practice. As far as we know, this is the only exact algorithm that is able to
efficiently compute the k& most central vertices in networks with up to 1 million
nodes, before this work.

However, despite this huge amount of research, the major graph libraries
still use the textbook algorithm, or the algorithm presented in this paper:
among them, Boost Graph Library [16], Sagemath [14], igraph [30], NetworkX
[28], and NetworKit [29]. This is due to the fact that efficient available exact
algorithms for top k closeness centrality, like [24], are relatively recent and
make use of several other non-trivial routines.

2.2 Preliminary Definitions

We assume the reader to be familiar with the basic notions of graph theory
(see, for example, [13]): all the notations and definitions used throughout this
paper are summarised in Table 1 (in any case, all notations are also defined
in the text). Here, let us only define precisely the closeness centrality of a
vertex v. As already said, in a connected graph, the farness of a node v in

a graph G = (V,E) is f(v) = w, and the closeness centrality of
v is f(lv). In the disconnected case, the most natural generalization would

be f(v) = W, and c(v) = ﬁ, where R(v) is the set of vertices

reachable from v, and r(v) = |R(v)|. However, this definition does not capture
our intuitive notion of centrality: indeed, if v has only one neighbor w at
distance 1, and w has out-degree 0, then v becomes very central according to
this measure, even if v is intuitively peripheral. For this reason, in the literature
[21,31,7,8,24], the most common generalization is:

ZwER(v) d(’l), w) n—1 1

) = r(v)—1 . r(v) —1

If a vertex v has (out)degree 0, the previous fraction becomes 3: in this
case, the closeness of v is set to 0.



Table 1 Notations used throughout the paper.

[ Symbol [ Definition
Graphs

G=(V,E) Graph with node/vertex set V and edge/arc set E

n,m V1, 5]

G=0W,Ew) Weighted directed acyclic graph of strongly connected compo-
nents (see Sect. 8.4)

deg(v) Degree of a node in an undirected graph

outdeg(v) Out-degree of a node in a directed graph

d(v,w) Number of edges in a shortest path from v to w

Reachability set function

R(v) Set of nodes reachable from v (by definition, v € R(v))

r(v) |2(v)]

a(v) Lower bound on 7(v), that is, a(v) < r(v) (see Sect. 8.4)

w(v) Upper bound on r(v), that is, r(v) < w(v) (see Sect. 8.4)

Neighborhood functions

I'y(v) Set of nodes at distance d from v: {w € V : d(v,w) = d}

I'(v) Set of neighbors of v, that is I'1 (v)

vq(v) Number of nodes at distance d from v, that is, |z(v)]

Faq(v) Upper bound on ~4(v) computed using the neighborhood-
based lower bound (see Sect. 5)

Ya41(v) Upper bound on 7441 (v), defined as Zuef‘d(v) deg(u) — 1 if
the graph is undirected, Zuefd(u) outdeg(u) otherwise

Ng(v) Set of nodes at distance at most d from v, that is, {w € V :
d(v,w) < d}

ng(v) Number of nodes at distance at most d from v, that is, |[Ng(v)|

Closeness functions

(r(v)-1)7
P (n—1) Xy eRr(w) 4vsw)

Distance sum functions

c(v) Closeness of node v, that is

S(v) Total distance of node v, that is 3, c g(y) (v, W)

SNB (v, 1) Lower bound on S(v) if 7(v) = r, used in the computeBoundsNB
function (see Prop. 1)

STUT (v, r) Lower bound on S(v) if r(v) = r, used in the
updateBoundsBFSCut function (see Lemma 2)

SIB (v, r) Lower bound on S(v) if 7(v) = r, used in the updateBoundsLB

function (see Eq. 4, 5)

Farness functions
(n—=1)S(v)

f(v) Farness of node v, that is, (RO
L(v,r) Generic lower bound on f(v), if r(v) =r
NB
LNB (v, r) Lower bound on f(v), if r(v) = r, defined as (n — l)i(UT(f)’;)
LGYT (v, 1) Lower bound on f(v), if r(v) = r, defined as (n — 1)54(?1()“2@
L5,
LEB (v, 7) Lower bound on f(v), if r(v) = r, defined as (n — 1)557(0’”

(r—1)2

3 Complexity of Computing the Most Central Vertex

In this section, we show that, even in the computation of the most central
vertex, the textbook algorithm is almost optimal in the worst case, assuming
the Orthogonal Vector conjecture [32,3], or the well-known Strong Exponential
Time Hypothesis (SETH) [17]. The Orthogonal Vector conjecture says that,



given N vectors in {0,1}%, where d = O(log" N) for some Fk, it is impossible
to decide if there are two orthogonal vectors in O(N27¢), for any € > 0 not
depending on k. The SETH says that the k-SATISFIABLILITY problem cannot
be solved in time O((2 — €)V), where N is the number of variables and e is
a positive constant not depending on k. Our reduction is summarized by the
following theorem.

Theorem 1 On directed graphs, in the worst case, an algorithm computing
the most closeness central vertex in time O(m?2~¢) for some € > 0 would falsify
the Orthogonal Vector conjecture. The same result holds even if we restrict the
input to sparse graphs, where m = O(n).

It is worth mentioning that this result still holds if we restrict our analysis
to graphs with small diameter (where the diameter is the maximum distance
between any two connected nodes). Indeed, the diameter of the graph obtained
from the reduction is 9. Moreover, it is well known that the Orthogonal Vector
conjecture is implied by SETH [32,10,3]: consequently, the following corollary
holds.

Corollary 1 On directed graphs, in the worst case, an algorithm computing
the most closeness central vertex in time O(m?2~¢) for some € > 0 would falsify
SETH. The same result holds even if we restrict the input to sparse graphs,
where m = O(n).

The remainder of this section is devoted to the proof of Theorem 1. We
construct a reduction from the [-TWODISJOINTSET problem, that is, finding
two disjoint sets in a collection C of subsets of a given ground set X, where
|X| = O(log'(|C])). For example, X could be the set of numbers between 0
and h, and C could be the collection of subsets of even numbers between 0
and h (in this case, the answer is True, since there are two disjoint sets in
the collection). It is simple to prove that this problem is equivalent to the
Orthogonal Vector problem, by replacing a set X with its characteristic vector
in {0, 1}/X1[10]: consequently, an algorithm solving this problem in O(|C|>~¢)
would falsify the Orthogonal Vector conjecture. For a direct reduction be-
tween the I-TWODISJOINTSET problem and SETH, we refer to [32] (where the
TwODISJOINTSET problem is named COOPERATIVESUBSETQUERY).

Given an instance (X,C) of the I-TWODISJOINTSET problem, and given a
set C € C,let Rg be [{C" € C: CNC" # (}|. The TWODISJOINTSET problem
has no solutions if and only if Rc = |C| for all C' € C; indeed, R¢ = |C| means
that C intersects all the sets in C. We construct a directed graph G = (V, E),
where |V, |E| = O(C||X]) = O(|C|log’ [C]), such that:

1. V contains a set of vertices Cy representing the sets in C (from now on, if
C € C, we denote by Cj the corresponding vertex in Cp);

2. the centrality of Cj is a function ¢(R¢), depending only on R¢ (that is, if

Rc = Rev then ¢(Ch) = ¢(C)));

the function ¢(R¢) is decreasing with respect to R¢;

4. the most central vertex is in Cg.

@



Fig. 1 Reducing the TwoDI1sJoINTSET problem to the problem of finding the most closeness
central vertex.

In such a graph, the vertex with maximum closeness corresponds to the set
S minimizing Rg: indeed, it is in Cy by Condition 4, and it minimizes Rg
by Condition 2-3. Hence, assuming we can find Sy in time O(n?~¢), we can
easily check if the closeness of Sy is ¢(|C|): if it is not, it means that the
corresponding TWODISJOINTSET instance has a solution of the form (S, S1)
because Rg # C. Otherwise, for each C, Rc > Rg = |C|, because ¢(Cp) <
¢(Sp) = ¢(|C]), and ¢ is decreasing with respect to R¢. This means that Ro =
IC| for each C, and there are no two disjoints sets. This way, we can solve the
I-TWODISJOINTSET problem in O(n?~¢) = O((|C|log" |C[)>~¢) = O(|C|*~%),
against the Orthogonal Vector conjecture, and SETH. If we also want the
graph to be sparse, we can add O(|C|log' |C|) nodes with no outgoing edge.

To construct this graph (see Figure 1), we start by adding to V' the copy Co
of C, another copy C; of C and a copy X; of X. These vertices are connected
as follows: for each element x € X and set C € C, we add an edge (Cp, )
and (z,C1), where Cj is the copy of C in Cy, and C} is the copy of C in C;.
Moreover, we add a copy Xs of X and we connect all pairs (Cy, z) with C € C,
z € X and x ¢ C. This way, the closeness centrality of a vertex Cy € Cp is
% (which only depends on R¢). To enforce Conditions 3-4, we
add a path of length p leaving each vertex in Cy1, and ¢ vertices linked to each
vertex in Cp, each of which has out-degree |C|: we show that by setting p = 7
and g = 36, all required conditions are satisfied.

More formally, we have constructed the following graph G = (V, E):

- V=ZUYUCUX 1 UXoUCiU---UC,, where Z is a set of cardinality
q|C|, Y a set of cardinality ¢, the C;s are copies of C and the X;s are copies
of X;

— each vertex in Y has |C| neighbors in Z, and these neighbors are disjoint;

— for each x € C, there are edges from Cy € Cp to z € X1, and from z € X,
to C1 € Cl;

— for each z ¢ C, there is an edge from Cy € Cy to x € X;

— each C; € C;, 1 < i < p, is connected to the same set C;11 € Ci41;

— no other edge is present in the graph.



Note that the number of edges in this graph is O(|C||X]) = O(|C|log'(|C])),
because | X| < log'(|C|),

Lemma 1 Assuming |C| > 1, all vertices outside Cy have closeness centrality
2[¢|

at most ~ =,

where n is the number of vertices.

Proof If a vertex is in Z, Xy, or C,, its closeness centrality is not defined,
because it has out-degree 0.
A vertex y € Y reaches |C| vertices in 1 step, and hence its closeness
T lcl> _ _ |
centrality is =T = n=1
A vertex in C; reaches p —i other vertices, and their distance is 1,...,p—1i:

. . . (p—1) _ 2(p—1i) 2
consequently, its closeness centrality is G000 ) — DG = w1

Finally, for a vertex x € X; contained in N, sets, for each 1 < i < p,
x reaches N, vertices in C;, and these vertices are at distance i. Hence, the

(pNz)* _ __2pN, 2N, - 2(c| :
WD N (1) — (= D(pFD < #=¢ < ~—= . This concludes the

proof. a

closeness of x is

Let us now compute the closeness centrality of a vertex C' € Cy. The
reachable vertices are:

all ¢ vertices in Y, at distance 1;

— all |C|q vertices in Z, at distance 2;

| X | vertices in X; or Xs, at distance 1;

R¢ vertices in C; for each 4, at distance ¢ + 1 (the sum of the distances of

these vertices is Y7 i +1=—14+ P 1= w —1).

Hence, the closeness centrality of C is:

(¢(1 +1C|) + |X] + pRc)?

«(Ro) =
(a1 +20ch) + 1] + (2222 1) Re) (n - 1)
_ (g1 +C]) +]X| +pRc)?
(¢(1+2[C]) + | X[+ g(p)Rc) (n — 1)
where g(p) = W — 1. We want to choose p and ¢ verifying:

a. the closeness of vertices in Cy is bigger than % (and hence bigger than

I
the closeness of all other vertices);
b. ¢(R¢) is a decreasing function of R for 0 < Re < |C|.
In order to satisfy Condition b., the derivative ¢/(R¢) of ¢ is (g(1+|C|) +
|X| + pRc) [Pg(p) Re+2p(q(1+2[C))+|X ) —g(p)(¢(1+[|CD+[XD)]
(a(1+2[CD)+|X|+g(P)Rc)?(n—1) :
This latter value is negative if and only if pg(p)R.+2p (¢(1 + 2|C|) + | X|) —
g(p)(q(1 +1C|) + |X|) < 0. Assuming g(p) > 5p and R¢c < |C|, this value is:

pg(p)Rc + 2p (¢(1 + 2(C) +|X|) — g(p)(¢(1 + [C]) + |X])
< pg(p)IC| + 2pq + 4pq|C| + 2p|X| — g(p)(q — |C| — |X])
< pg(p)IC| + 4pq|C| — g(p)q|C]

< pg(p)IC| — pqlC|.




Assuming ¢ > g(p), we conclude that ¢/(R¢) < 0 for 0 < Re < |C], and we
verify Condition b.. In order to verify Condition a., we want ¢(R¢o) > 21

n+1
(since ¢(R¢) is decreasing, it is enough ¢(|C|) > Zl—f‘l) Under the assumptions

q > g(p), 0 < |X| < |C] (which trivially holds for |C| big enough, because
[ X] < log”[C]),

(a1 +[C]) + |X| + pRc)®

€D = T ae) + X1+ 9 fo) (n = 1)
q2|C|2
= @GRy Tl -1
L del 20

5(n—1) " n-1

if ¢ > 10.
To fulfill all required conditions, it is enough to choose p = 7, g(p) = 35,
and q = 36.

4 Overview of the Algorithm

In this section, we describe our new approach for computing the k£ nodes with

maximum closeness (equivalently, the & nodes with minimum farness, where

the farness f(v) of a vertex v is ﬁ = (n_l)a‘ﬁf%éd(v’w), as in Table 1). If

we have more than one node with the same score, we output all nodes having
a centrality bigger than or equal to the centrality of the k-th node.

In the previous section, we have shown that the trivial algorithm cannot be
improved in the worst case: here, we describe an algorithm that is much more
efficient when tested on real-world graphs. The basic idea is to keep track of a
lower bound on the farness of each node, and to skip the analysis of a vertex
v if this lower bound implies that v is not in the top k.

More formally, let us assume that we know the farness of some ver-
tices v1,...,v;, and a lower bound L(w) on the farness of any other vertex
w. Furthermore, assume that there are k vertices among vy, ..., v; verifying
f(v;) > L(w) Yw € V — {v1,...,u}, and hence f(w) < L(w) < f(w) Yw €
V —{wv1,...,u}. Then, we can safely skip the exact computation of f(w) for
all remaining nodes w, because the k vertices with smallest farness are among
V1y...,0].

This idea is implemented in Algorithm 1: we use a list Top containing
all “analysed” vertices vy, ..., v; in increasing order of farness, and a priority
queue Q containing all vertices “not analysed, yet”, in increasing order of lower
bound L (this way, the head of Q always has the smallest value of L among
all vertices in Q). At the beginning, using the function computeBounds(), we
compute a first bound L(v) for each vertex v, and we fill the queue Q according
to this bound. Then, at each step, we extract the first element v of Q: if L(v) is
smaller than the k-th biggest farness computed until now (that is, the farness




of the k-th vertex in variable Top), we can safely stop, because for each z € Q,
f(z) < L(xz) < L(v) < f(Toplk]), and x is not in the top k. Otherwise, we
run the function updateBounds(v), which performs a BFS from v, returns the
farness of v, and improves the bounds L of all other vertices. Finally, we insert
v into Top in the right position, and we update Q if the lower bounds have
changed.

Algorithm 1: Pseudocode of our algorithm for top k closeness centrali-
ties.
Input : A graph G = (V, E)
Output: Top k nodes with highest closeness and their closeness values ¢(v)
global L, Q + computeBounds (G);
global Top < [ |;
global Farn;
for v € V do Farn[v] = 4o00;
while Q is not empty do
v + Q.extractMin();
if |Top| > k and L[v] > Top[k] then return Top;
Farn[v] + updateBounds(v); // This function might also modify L
add v to Top, and sort Top according to Farn;
update Q according to the new bounds;

© 0N O oA W N
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The crucial point of the algorithm is the definition of the lower bounds,
that is, the definition of the functions computeBounds and updateBounds. We
propose two alternative strategies for each of these these two functions: in
both cases, one strategy is conservative, that is, it tries to perform as few
operations as possible, while the other strategy is aggressive, that is, it needs
many operations, but at the same time it improves many lower bounds.

Let us analyze the possible choices of the function computeBounds. The
conservative strategy computeBoundsDeg needs time O(n): it simply sets
L(v) = 0 for each v, and it fills Q by inserting nodes in decreasing order
of degree (the idea is that vertices with high degree have small farness, and
they should be analysed as early as possible, so that the values in Top are
correct as soon as possible). Note that the vertices can be sorted in time O(n)
using counting sort.

The aggressive strategy computeBoundsNB needs time O(mD), where D is
the diameter of the graph: it computes the neighborhood-based lower bound
LNB(v) for each vertex v (we will explain shortly afterwards how it works),
it sets L(v) = LNB(v), and it fills Q by adding vertices in decreasing order
of L. The idea behind the neighborhood-based lower bound is to count the
number of paths of length [ starting from a given vertex v, which is also an
upper bound U; on the number of vertices at distance [ from v. From Uy, it is
possible to define a lower bound on ), d(v,z) by “summing U; times the
distance [”, until we have summed n distances: this bound yields the desired
lower bound on the farness of v. The detailed explanation of this function is
provided in Sect. 5.

10



For the function updateBounds(w), the conservative strategy
updateBoundsBFSCut(w) does not improve L, and it cuts the BFS as
soon as it is sure that the farness of w is smaller than the k-th biggest farness
found until now, that is, Farn[Top[k]]. If the BFS is cut, the function returns
400, otherwise, at the end of the BFS we have computed the farness of v,
and we can return it. The running time of this procedure is O(m) in the
worst case, but it can be much better in practice. It remains to define how
the procedure can be sure that the farness of v is at least x: to this purpose,
during the BFS, we update a lower bound on the farness of v. The idea
behind this bound is that, if we have already visited all nodes up to distance
d, we can upper bound the closeness centrality of v by setting distance d + 1
to a number of vertices equal to the number of edges “leaving” level d, and
distance d + 2 to all the remaining vertices. The details of this procedure are
provided in Sect. 6.

The aggressive strategy updateBoundsLB(v) performs a complete BF'S from
v, and it bounds the farness of each node w using the level-based lower bound.
The running time is O(m) for the BFS, and O(n) to compute the bounds. The
idea behind the level-based lower bound is that d(w,z) > |d(v,w) — d(v, )],
and consequently > i d(w,z) > >y |d(v,w) — d(v,z)|. The latter sum
can be computed in time O(n) for each w, because it depends only on the
level d of w in the BFS tree, and because it is possible to compute in O(1) the
sum for a vertex at level d + 1, if we know the sum for a vertex at level d. The
details are provided in Sect. 7.

Finally, in order to transform these lower bounds on .y d(v,) into
bounds on f(v), we need to know the number of vertices reachable from a
given vertex v. In Sect. 5, 6, 7, we assume that these values are known: this
assumption is true in undirected graphs, where we can compute the number
of reachable vertices in linear time at the beginning of the algorithm, and in
strongly connected directed graphs, where the number of reachable vertices is
n. The only remaining case is when the graph is directed and not strongly con-
nected: in this case, we need some additional machinery, which are presented
in Sect. 8.

5 Neighborhood-Based Lower Bound

In this section, we propose a lower bound SNE (v, r(v)) on the total sum S(v) =
> weR(v) (v, w) of an undirected or strongly-connected graph. If we know the
number r(v) of vertices reachable from v, this bound translates into a lower
bound on the farness of v, simply multiplying by (n — 1)/(r(v) — 1)2. The
basic idea is to find an upper bound 4;(v) on the number of nodes v;(v) at
distance 7 from v. Then, intuitively, if we assume that the number of nodes at
distance ¢ is greater than its actual value and “stop counting” when we have
r(v) nodes, we get something that is smaller than the actual total distance.
This is because we are assuming that the distances of some nodes are smaller
than their actual values. This argument is formalized in Prop. 1.

11



Proposition 1 If 4;(v) is an upper bound on ~;(v), for i = 0,...,diam(G)
and ecc(v) = maxyeq) d(v,w), then S¥B(v,r(v)) = ZC:CY))I@ .

min {’yk(v), max {r(v) - Zf;ol Fi(v), 0}} is a lower bound on S(v).

Proof First, we notice that S(v) = Y 7 U) k-v:(v) and r(v) = EZCCOU) Vi (v).
Let us assume that o(v) < r(v). In fact, if 49(v) > r(v), the statement
is trivially satisfied. Then, there must be a number ecc’ > 0 such that for

k < ecc’ the quantity min {%(v), max {r(v) - Z;:Ol ;i (v), O}} is equal to

Ak (v), for k = ecc’, the quantity is equal to « := r(v) — ZC:CO_I Fr(v) > 0
and, for k > ecc/, it is equal to 0. Therefore we can write SN2 (v,r(v)) as
ecc’ —1

= 1 (o) + ecc” a.
We show that ecc’ < ecc( ). In fact, we know that Zecc () <

r(v) = ZZCC(()U v (v) < ZZCC ") 51,(v). Therefore ecc’ —1 < ecc(v), which im-
plies ecc’ < ecc(v).
For each 4, we can write 7;(v) = 7;(v) + €;, €; > 0. Therefore, we can write

e e ta=rw) = X T (v) = 109 v (v). Then, SNB(v, r(v)) =

’

ecc _lk ’Yk( )+Zecc —1 €l+€CC a < Zecc —lk_ 'Vk(v) +ecc'(a—|—

mub“cmmWwﬂ%mwﬁwmmﬁm
O

In the following paragraphs, we propose upper bounds 4;(v) for trees, undi-
rected graphs and directed strongly-connected graphs. In case of trees, the
bound #;(v) is actually equal to 7;(v), which means that the algorithm can be
used to compute closeness of all nodes in a tree exactly.

Computing closeness on trees. Let us consider a node s for which we want to
compute the total distance S(s) (notice that in a tree ¢(s) = (n — 1)/S(s)).
The number of nodes at distance 1 in the BFS tree from s is clearly the degree
of s. What about distance 27 Since there are no cycles, all the neighbors of
the nodes in I (s) are nodes at distance 2 from s, with the only exception of s
itself. Therefore, naming I'x(s) the set of nodes at distance k from s and i (s)
the number of these nodes, we can write 72(s) = >_,,c, (5) 71(w) — deg(s). In
general, we can always relate the number of nodes at each distance k of s to the
number of nodes at distance k — 1 in the BFS trees of the neighbors of s. Let
us now consider 7(s), for k > 2. Figure 2 shows an example where s has three
neighbors wy, wy and ws. Suppose we want to compute I'y(s) using information
from wy, wy and ws. Clearly, I'y(s) C I's(w1)UI3(ws)UTI3(ws); however, there
are also other nodes in the union that are not in I';(s). Furthermore, the nodes
in I'3(w1) (red nodes in the leftmost tree) are of two types: nodes in I'4(s) (the
ones in the subtree of w;) and nodes in I'3(s) (the ones in the subtrees of w,
and ws3). An analogous behavior can be observed for wy and ws (central and
rightmost trees). If we simply sum all the nodes in y3(w1), v3(w2) and v3(ws),
we would be counting each node at level 2 twice, i.e. once for each node in

12



Levels

Fig. 2 Relation between nodes at distance 4 for s and the neighbors of s. The red nodes
represent the nodes at distance 3 for wy (left), for wa (center) and for w3 (right).

Iy (s) minus one. Hence, for each k > 2, we can write

()= 3 et (w) —yeoals) - (deg(s) — 1), (2)

wel(s)

Algorithm 2: Closeness centrality in trees

w N

© 0N o np

10
11

12
13
14
15
16

17
18

19

Input : Atree T = (V,E)
Output: Closeness centralities ¢(v) of each node v € V
foreach s € V do

Yi—1(8) < deg(s);
S(s) < deg(s);

k < 2;
nFinished « 0;
while nFinished < n do

foreach s € V do

if k =2 then
L Y (8) < Pwen(s) Ve—1(w) — deg(s);
else

| m(8) < Cwen(s) Te-1(w) — yi—2(s)(deg(s) — 1);

foreach s € V do
Yr—2(8) < Yr—1(8);
Yi—1(8) < V()3
if y,_1(s) > 0 then
L S(s) « S(s) + k-vk—1(s);
else
L nFinished < nFinished + 1;

| k<k+1
foreach s € V do
| e(v) « (n=1)/S(v);

return c

From this observation, we define a new method to compute the total distance
of all nodes, described in Algorithm 2. Instead of computing the BFS tree of
each node one by one, at each step we compute the number 74 (v) of nodes
at level k for all nodes v. First (Lines 1 - 3), we compute v;(v) for each
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node (and add that to S(v)). Then (Lines 6 - 19), we consider all the other
levels k one by one. For each k, we use v;x_1(w) of the neighbors w of v and
~Yk—2(v) to compute v;(v) (Line 9 and 11). If, for some k, vy, (v) = 0, all the
nodes have been added to S(v). Therefore, we can stop the algorithm when
() =0 YveV.

Proposition 2 Algorithm 2 requires O(D-m) operations to compute the close-
ness centrality of all nodes in a tree T.

Proof The for loop in Lines 1 - 3 of Algorithm 2 clearly takes O(n) time. For
each level of the while loop of Lines 6 - 19, each node scans its neighbors in
Line 9 or Line 11. In total, this leads to O(m) operations per level. Since the
maximum number of levels that a node can have is equal to the diameter of
the tree, the algorithm requires O(D - m) operations. O

Lower bound for undirected graphs. For general undirected graphs, Eq. (2) is
not true anymore — but a related upper bound () on i (-) is still useful. Let
Ak(s) be defined recursively as in Eq. (2): in a tree, 9x(s) = Yx(s), while in
this case we prove that 9;(s) is an upper bound on Ik (s). Indeed, there could
be nodes x for which there are multiple paths between s and = and that are
therefore contained in the subtrees of more than one neighbor of s. This means
that we would count = multiple times when considering 7 (s), overestimating
the number of nodes at distance k. However, we know for sure that at level k
there cannot be more nodes than in Eq. (2). If, for each node v, we assume that
the number 44 (v) of nodes at distance k is that of Eq. (2), we can apply Prop. 1
and get a lower bound SNB(v,7(v)) on the total sum for undirected graphs.
The procedure is described in Algorithm 3. The computation of SNE(v,7(v))
works basically like Algorithm 2, with the difference that here we keep track of
the number of the nodes found in all the levels up to k (nVisited) and stop the
computation when nVisited becomes equal to r(v) (if it becomes larger, in the
last level we consider only r(v) — nVisited nodes, as in Prop. 1 (Lines 22 - 25).

Proposition 3 For an undirected graph G, computing the lower bound
SNB(y,r(v)) described in Algorithm 3 takes O(D - m) time.

Proof Like in Algorithm 2, the number of operations performed by Algorithm 3
at each level of the while loop is O(m). At each level 7, all the nodes at distance
i are accounted for (possibly multiple times) in Lines 11 and 13. Therefore,
at each level, the variable nVisited is always greater than or equal to the the
number of nodes v at distance d(v) < 4. Since d(v) < D for all nodes v, the
maximum number of levels scanned in the while loop cannot be larger than
D, therefore the total complexity is O(D - m). O

Lower bound on directed graphs. In directed graphs, we can simply consider
the out-neighbors, without subtracting the number of nodes discovered in the
subtrees of the other neighbors in Eq. (2). The lower bound (which we still
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Algorithm 3: Neighborhood-based lower bound for undirected graphs

Input : A graph G = (V, E)
Output: Lower bounds LNB (v, r(v)) of each node v € V
foreach s € V do

1
2 Th—1(s) < deg(s);
3 Sun) ()  deg(s);
4 nVisited[s] < deg(s) + 1;
5 | finished[s] < false;
6 k< 2;
7 nFinished + 0;
8 while nFinished < n do
9 foreach s € V do
10 if £ =2 then
1 | 90(8) = e nrge) Voot (w) — deg(s);
12 else
13 L T (8) < Pwen(s) V=1 (W) — Yr—2(s)(deg(s) — 1);
14 foreach s € V do
15 if finished[v] then
16 L continue;
17 Yi—2(8) = Yr—1(8);
18 Ye—1(8) < k()
19 nVisited[s] «— nVisited[s] + yrk—1(s);
20 if nVisited[s] < r(v) then
21 | S () = SO () + k- 1 (5);
22 else ~ ~
23 Sun) () — S(m) (5) 4 k(r(v) — (nVisited[s] — yx—1(s)));
24 nFinished < nFinished + 1;
25 finished[s] < true;
26 | k< k+1

27 foreach v € v do

2 | INB(ur() « GRS

(r(v)-12 >
29 return LVB(- 7(.))

refer to as SNEB(v,7(v))) is obtained by replacing Eq. (2) with the following in
Lines 11 and 13 of Algorithm 3:

F(s) = Y Ak-1(w) 3)

wel(s)
6 The updateBoundsBFSCut Function
The updateBoundsBFSCut function is based on a simple idea: if the k-th biggest

farness found until now is x, and if we are performing a BFS from vertex v
to compute its farness f (v)7 we can stop as soon as we can guarantee that

flv) = .
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Informally, assume that we have already visited all nodes up to distance
d: we can lower bound S(v) = > .y d(v,w) by setting distance d + 1 to a
number of vertices equal to the number of edges “leaving” level d, and distance
d + 2 to all the remaining reachable vertices. Then, this bound yields a lower
bound on the farness of v. As soon as this lower bound is bigger than z, the
updateBoundsBFSCut function may stop; if this condition never occurs, at the
end of the BFS we have exactly computed the farness of x.

More formally, the following lemma defines a lower bound S$YT (v,7(v))
on S(v), which is computable after we have performed a BFS from v up to
level d, assuming we know the number r(v) of vertices reachable from v (this
assumption is lifted in Sect. 8).

Lemma 2 Given a graph G = (V, E), a vertexv € V, and an integer d > 0,
let Ng(v) be the set of vertices at distance at most d from v, ng(v) = |Ng(v)]|,
and let Y441(v) be an upper bound on the number of vertices at distance d 4 1
from v (see Table 1). Then,

S() > 8¢ (v, r() = Y d(v,w) = Fayr(v) + (d+2)(r(v) = na(v)).
wENg(v)

Proof The sum of all the distances from v is lower bounded by setting the
correct distance to all vertices at distance at most d from v, by setting distance
d + 1 to all vertices at distance d + 1 (there are y441(v) such vertices), and
by setting distance d + 2 to all other vertices (there are r(v) — ngy1(v) such
vertices, where r(v) is the number of vertices reachable from v and ng41(v)
is the number of vertices at distance at most d + 1). More formally, f(v) >
S wenaoy A0 w) + (d+ Vs () + (d + 2)(r(0) — nasa (v).

Since na41(v) = Ya+1(v)+na(v), we obtain that f(v) = 3-,, e n, ) (v, w)—
Yar1(0) + (d+2)(r(v) — ng(v)). We conclude because, by assumption, J441(v
is an upper bound on 441 (v). O

Corollary 2 For each vertex v and for each d > 0,
(n—1)S§"" (v, r(v))
(r(v) = 1)?

It remains to define the upper bound 411 (v): in the directed case, this
bound is simply the sum of the out-degrees of vertices at distance d from wv.
In the undirected case, since at least an edge from each vertex v € I'y(v) is
directed towards Iy—1(v), we may define Y441(v) = >_,cp, () deg(w) — 1 (the
only exception is d = 0: in this case, 71 (v) = 71 (v) = deg(v)).

f) = L§7 (v, r(v)) =

Remark 1 When we are processing vertices at level d, if we process an edge
(z,y) where y is already in the BFS tree, we can decrease J441(v) by one,
obtaining a better bound.

Assuming we know r(v), all quantities necessary to compute L™ (v,7(v))
are available as soon as all vertices in Ng(v) are visited by a BFS. This func-
tion performs a BFS starting from v, continuously updating the upper bound
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Algorithm 4: The updateBoundsBFSCut(v) function in the case of di-
rected graphs, if r(v) is known for each v.

1 x < Farn(Toplk]); // Farn and Top are global variables, as in Algorithm 1.
2 Create queue Q;

3 Q.enqueue(v);

4 Mark v as visited;

5 d < 0; S < 0; ¥ < outdeg(v); nd < 1;

6 while Q is not empty do

7 u < Q.dequeue();

8 if d(v,u) > d then

9 d<+d+ 1,

—1)(S—7+(d+2 —nd
10 LSUT(UJ“(U)) P (n—1)( Zr(z())—l))gr<v) n ));
11 if L§U"(v,7(v)) > x then return +oo;
12 | 7«0
13 for w in adjacency list of u do
14 if w is not visited then
15 S+ S+ d(v,w);
16 7 4= 4 + outdeg(w);
17 nd < nd + 1;
18 Q.enqueue(w);
19 | Mark w as visited
20 else
21 // we use Remark 1
-1
22 LGV (v,7(v)) + LT (v,7(0)) + g2
23 | if LgUT(v,r(v)) > z then return z;
N S(n—1)

24 return [COEDE

L§Y" (v,r(v)) < f(v) (the update is done whenever all nodes in I';(v) have
been reached, or Remark 1 can be used). As soon as LT (v,7(v)) > z, we
know that f(v) > LGV (v,r(v)) > z, and we return +oo.

Algorithm 4 is the pseudo-code of the function updateBoundsBFSCut when
implemented for directed graphs, assuming we know the number r(v) of ver-
tices reachable from each v (for example, if the graph is strongly connected).
This code can be easily adapted to all the other cases.

7 The updateBoundsLB Function

Differently from updateBoundsBFSCut function, updateBoundsLB computes a
complete BFS traversal, but uses information acquired during the traversal
to update the bounds on the other nodes. Let us first consider an undirected
graph G and let s be the source node from which we are computing the BFS.
We can see the distances d(s,v) between s and all the nodes v reachable from
s as levels: node v is at level ¢ if and only if the distance between s and v is 1,
and we write v € I;(s) (or simply v € I; if s is clear from the context). Let ¢
and j be two levels, ¢ < j. Then, the distance between any two nodes v at level
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i and w at level j must be at least j — ¢. Indeed, if d(v,w) was smaller than
j — i, w would be at level i + d(v,w) < j, which contradicts our assumption.
It follows directly that » . |d(s,w) — d(s,v)| is a lower bound on S(v), for
all v € R(s):

Lemma 3 }_ p,) ld(s,w) —d(s,v)| < S(v) Vve R(s).

To improve the approximation, we notice that the number of nodes at distance
1 from v is exactly the degree of v. Therefore, all the other nodes w such that
|d(s,v) — d(s,w)] <1 must be at least at distance 2 (with the only exception
of v itself, whose distance is of course 0). This way we can define the following
lower bound on S(v):

2(#{w € R(s) : |d(s,w) — d(s,v)| <1} —deg(v) — 1)+

bdeg)+ Y Jd(s,w) —d(s,v))
weR(s)
|d(s,w)—d(s,v)|>1

that is:

23wt ) velideul-deg) -2y

li—d(s,v)|<1 li—d(s,v)[>1

where v; = |I}]|.

Multiplying the bound of Eq. (4) by (T,((v");_ll))g, we obtain a lower bound
on the farness f(v) of node v, named LYB(v,r(v)). A straightforward way to
compute LYB (v, r(v)) would be to first run the BFS from s and then, for each
node v, to consider the level difference between v and all the other nodes.
This would require O(n?) operations, which is clearly too expensive. However,
we can notice two things: First, the bounds of two nodes at the same level
differ only by their degree. Therefore, for each level i, we can compute 2 -
2oj—ij<1 Vi T 22pj—ij>17 * 17 — il — 2 only once and then subtract deg(v) for
each node at level i. We call the quantity 2-3° ., <7+ _5>1 71— =2
the level-bound L(%) of level i. Second, we can prove that L(¢) can actually be
written as a function of L(i — 1).

Lemma 4 Let L(i) 1= 2 3, ;<1 % + 2j_i=17% - 1J — i — 2. Also, let
v = 0 for j < 0 and j > maxD, where maxD = max,cr(s) d(s,v). Then
L) =L —1) =32, 2% — 2jsir1 Vs Vi € {1,...,maxD}.

Proof Since 7; = 0 for j < 0 and j > maxD, we can write L(¢) as 2 - (y;—1 +
Vit Y1) Do jmi=1 % 17— il =2, Vi € {1, ...,maxD}. The difference between
L(i) and L(i — 1) is: 2 (yim1 + % + Yir1) + 2o 17—l — 2+ (vi2 +
Vier )+ 2 i = 2 (i = vi2) £ 22 = 2 i +
Zj<i—2uj>i+1(|j —il=lj—i+1) -y = Zj<i—2 Vi~ Z_j>i+1 ReE o
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Algorithm 5: The updateBoundsLB function for undirected graphs

Input : A graph G = (V, E), a source node s
Output: Lower bounds LB (v, r(v)) of each node v € R(s)
d < BFSfrom(s);
maxD <« max,cy d(s,v);
suml'<g < 0; sumI'<_1 < 0; sumI's maxp+1 < 0;
for i =1,2,...,maxD do

I+ {weV:d(s,w) =i}

Vi < #1;

suml'«; <—suml'<;_1 + vi;

sumI's; < |V| —sumI'<;;
L(1) < y1 + 72 +suml'so — 2;
10 for i =2,...,maxD do
11 | L)« L —1) +sumlc; 3 —suml's41;

W N O oA W N

©

12 fori=1,...,maxD do
13 L foreach v € I'; do

| ZEP(u,r(©)) = (L) - deg(v)) - iy

15 return L:B(v,r(v)) Yo eV

14

Algorithm 5 describes the computation of LLB(v,r(v)). First, we compute
all the distances between s and the nodes in R(s) with a BFS, storing the
number of nodes in each level and the number of nodes in levels j < i and
j > i respectively (Lines 1 - 4). Then we compute the level bound L(1) of level
1 according to its definition (Line 9) and those of the other level according to
Lemma 4 (Line 11). The lower bound LLE(v,7(v)) is then computed for each
node v by subtracting its degree to L(d(s,v)) and normalizing (Line 14). The
complexity of Lines 1 - 4 is that of running a BFS, i.e. O(n + m). Line 11
is repeated once for each level (which cannot be more than n) and Line 14
is repeated once for each node in R(s). Therefore, the following proposition
holds.

Proposition 4 Computing the lower bound LEB (v, r(v)) takes O(n+m) time.

For directed strongly-connected graphs, the result does not hold for nodes
w whose level is smaller than [(v), since there might be a directed edge or a
shortcut from v to w. Yet, for nodes w such that d(s,w) > d(s,v), it is still
true that d(v,w) > d(s,w) — d(s,v). For the remaining nodes (apart from the
outgoing neighbors of v), we can only say that the distance must be at least
2. The upper bound LYB(v,7(v)) for directed graphs can therefore be defined
as:
2-#{w € R(s) : d(s,w) — d(s,v) <1}
+ > (d(s,w) — d(s,v)) — deg(v) — 2. (5)
weR(s)
d(s,w)—d(s,v)>1

The computation of LLB (v, r(v)) for directed strongly-connected graphs is
analogous to the one described in Algorithm 5.
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8 The Directed Disconnected Case

In the directed disconnected case, even if the time complexity of computing
strongly connected components is linear in the input size, the time complexity
of computing the number of reachable vertices is much bigger (assuming SETH,
it cannot be O(m?2~¢) [9]). For this reason, when computing our upper bounds,
we cannot rely on the exact value of r(v): for now, let us assume that we know
a lower bound «(v) < r(v) and an upper bound w(v) > r(v). The definition
of these bounds is postponed to Sect. 8.4.

Furthermore, let us assume that we have a lower bound L(v,r(v)) on the
farness of v, depending on the number r(v) of vertices reachable from v: in
order to obtain a bound not depending on r(v), the simplest approach is
f(v) > L(v,r(v)) > ming)<r<w(w) L(v,r). However, during the algorithm,
computing the minimum among all these values might be quite expensive,
if w(v) — a(v) is big. In order to solve this issue, we find a small set X C
[(v), w(v)] such that ming,,)<r<w(w) L(v,7) = min.cx L(v,7).

More specifically, we find a condition that is verified by “many” values of
r, and that implies L(v,r) > min (L(v,r — 1), L(v,r 4+ 1)): this way, we may
define X as the set of values of r that either do not verify this condition, or
that are extremal points of the interval [a(v),w(v)] (indeed, all other values
cannot be minima of L(v,7)). Since all our bounds are of the form L(v,r) =
%, where S(v,r) is a lower bound on },  p(, d(v,w), we state our
condition in terms of the function S(v,r). For instance, in the case of the
updateBoundsBFSCut function, S¢VT(v,r) = 2 weNy (o) AV, W) = Yap1(v) +
(d+ 2)(r — ng(v)), as in Lemma 2.

Lemma 5 Let v be a vertex, and let S(v,r) be a positive function such that
S(v,r(v))) £ Xpere) Av,w) (where r(v) is the number of vertices reach-
able from v). Assume that S(v,r + 1) — S(v,r) < S(v,7) — S(v,r — 1).
Then, if L(v,r) := % is the corresponding bound on the farness of

v, min (L(v,r 4+ 1), L(v,r — 1)) < L(v, 7).

Proof Let us define d = S(v,r+1) — S(v,r). Then, L(v,r+1) < L(v,r) if and
only if (n—1)S(v,r+1) o ("z”f;;’v” if and only if Sur+d o S(”i;)z if and only if
(r—1)2(S(v,7) +d) <r2S(v,r) if and only if S(v,r)(r? — (r—1)2) > (r—1)d
if and only if S(v,7)(2r — 1) > (r — 1)%d.

Slmllarly, it d = S(v,r) — S(w,r—1), L(v,r — 1) < L(v r) if and only

if (= 125(21;); b < ("zrlzslgéw) if and only if S(UT )2 < (S(v ) if and only if

(r—1)2(S(v,r) = d') < (r —2)2S(v,r) if and only if S(v, r)((r — 12— (r—
2)?) < (r — 1)2d’ if and only if S(v,r)(2r — 3) < (r — 1)2d’ if and only if
S(v,r)(2r — 1) < (r —1)2d" +2S(v, 7).

We conclude that, assuming d < d’, (r — 1)2d < (r — 1)2d' < (r — 1)%d +
2S(v,r), and one of the two previous conditions is always satisfied. O
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8.1 The Neighborhood-Based Lower Bound

In the neighborhood-based lower bound, we computed upper bounds 4 (v) on
I'.(v), and we defined the lower bound SNB (v, r(v)) < 2 weR(w) AV, w), by

diam(G)

k—1
SNB(v,r(v)) = Z k - min {’?k(v), r(v) — Z%(v), O} .
k=1 i=0

The corresponding bound on f(v) is LNB(v,r(v)) := W let

us apply Lemma 5 with S(v,r) = SNB(v,r) and L(v,r) = LNB(v,r). We
obtain that the local minima of LNB(v,r(v)) are obtained on values r such
that SNB(v,r + 1) — SNB(v,r) > SNB(v,r) — SNB(v,r — 1), that is, when
r= Zé:o 7:(v) for some [. Hence, our final bound LNB(v) becomes:

l
min <LNB(U,a(v))7LNB(U,w(U)),min {LNB(U,’/‘) sa(v) <r <w(),r= Z’%(U)}) .

=0
(6)
This bound can be computed with no overhead, by modifying Lines 20 -
25 in Algorithm 3. Indeed, when r(v) is known, we have two cases: ei-
ther nVisited[s] < r(v), and we continue, or nVisited[s] > r(v), and
SNB(y,r(v)) is computed. In the disconnected case, we need to distinguish
three cases:

— if nVisited[v] < a(v), we simply continue the computation;

— if a(v) < nVisited[v] < w(v), we compute LNB(v,nVisited[v]), and
we update the minimum in Eq. 6 (if this is the first occurrence of this
situation, we also have to compute LNB(v, a(v)));

— if nVisited[v] > w(v), we compute LNB(v,w(v)), and we update the
minimum in Eq. 6.

Since this procedure needs time O(1), it has no impact on the running time
of the computation of the neighborhood-based lower bound.

8.2 The updateBoundsBFSCut Function

Let us apply Lemma 5 to the bound used in the updateBoundsBFSCut func-
tion. In this case, by Lemma 2, S¢UT (v,7) = 2 weNa () AV, w) = Fav1(v) +
(d + 2)(r — na(v)), and SGVT(v,r + 1) — S§UT(v,r) = d + 2, which does
not depend on r. Hence, the condition in Lemma 5 is always verified,
and the only values we have to analyze are a(v) and w(v). Hence, the
lower bound becomes f(v) > L§VT(v,7(v)) > ming ) <r<w) LG (v, 1) =
min(L§VT (v, a(v)), L§YT (v,w(v))) (which does not depend on 7(v)).

This means that, in order to adapt the updateBoundsBFSCut function (Al-
gorithm 4), it is enough to replace Lines 10, 22 in order to compute both
L§YT (v, a(v)) and L§YT(v,w(v))), and to replace Lines 11, 23 in order to
stop if min(L§YT (v, a(v)), LV (v, w(v))) > =.
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8.3 The updateBoundsLB Function

In this case, we do not apply Lemma 5 to obtain simpler bounds. Indeed, the
updateBoundsLB function improves the bounds of vertices that are quite close
to the source of the BFS, and hence are likely to be in the same component
as this vertex. Consequently, if we perform a BFS from a vertex s, we can
simply compute LLB(v,r(v)) for all vertices in the same strongly connected
component as s, and for these vertices we know the value r(v) = r(s). The
computation of better bounds for other vertices is left as an open problem.

8.4 Computing a(v) and w(v)

It now remains to compute a(v) and w(v). This can be done during the pre-
processing phase of our algorithm, in linear time. To this purpose, let us pre-
cisely define the node-weighted directed acyclic graph G = (V,£) of strongly
connected components (in short, SCCs) corresponding to a directed graph
G = (V, E). In this graph, V is the set of SCCs of G, and, for any two SCCs
C,D €V, (C,D) € & if and only if there is an arc in E from a node in C' to the
a node in D. For each SCC C € V, the weight w(C') of C' is equal to |C|, that
is, the number of nodes in the SCC C. Note that the graph G is computable
in linear time.

For each node v € C, r(v) = ZDER(C)_ w(D), where R(C) denotes the set of
SCCs that are reachable from C in G. This means that we simply need to com-
pute a lower (respectively, upper) bound agcc(C) (respectively, wsce(C)) on
ZDGR(C) w(D), for every SCC C. To this aim, we first compute a topological
sort {Cy,...,Ci} of V (that is, if (C;,C};) € &, then ¢ < j). Successively, we
use a dynamic programming approach, and, by starting from Cj, we process
the SCCs in reverse topological order, and we set:

ascc(C) = w(C)+(Cf7I}:%>ég ascc(D)  wsce(C) =w(C)+ Z wsce (D).

Note that processing the SCCs in reverse topological ordering ensures that the
values a(D) and w(D) on the right hand side of these equalities are available
when we process the SCC C. Clearly, the complexity of computing «(C) and
w(C), for each SCC C, is linear in the size of G, which in turn is smaller than
G.

Observe that the bounds obtained through this simple approach can be
improved by using some “tricks”. First of all, when the biggest SCC C is
processed, we do not use the dynamic programming approach and we exactly
compute - per ey w(D) by performing a BFS starting from any node in C.

This way, not only a(C) and w(C) are exact, but also agcc(C) and wgcc(C)
are improved for each SCC C from which it is possible to reach C. Finally,
in order to compute the upper bounds for the SCCs that are able to reach
C, we can run the dynamic programming algorithm on the graph obtained
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from G by removing all components reachable from C, and we can then add

ZDER(C’) w(D).
The pseudo-code is available in Algorithm 6.

Algorithm 6: Estimating the number of reachable vertices in directed,
disconnected graphs.
Input : A graph G = (V, E)
Output: Lower and upper bounds a(v),w(v) on the number of vertices reachable
from v
(V, €, w) + computeSCCGraph(G);
C < the biggest SCC;
agcc(é’),wscc (é) + the number of vertices reachable from C;
for X € V in reverse topological order do
if X == C then continue;
asco(X),wsco(X),wsoo(X) + 0 for Y neighbor of X in G do
ascc(X) « max(ascc(X), asce(Y));
wsce(X) < wsco(X) twsce(Y);
if W not reachable from C then wi. o (X) + wson(X) +wsco(Y);

© 0N O o W N

10 if X reaches C then wsco(X) +— wyoo(X) + wscc(é);
11 ascc(X) « asco(X) +w(X);
12 wscc(X) «+ wsco(X) +w(X);

13 for v € V do
14 a(v) = agce(the component of v);
15 | w(v) =wscc(the component of v);

16 return o,w

9 Experimental Results

In this section, we test the four variations of our algorithm on sev-
eral real-world networks, in order to evaluate their performances. All
the networks used in our experiments come from the datasets SNAP
(snap.stanford.edu/), NEXUS (nexus.igraph.org), @ LASAGNE
(piluc.dsi.unifi.it/lasagne), LAW (law.di.unimi.it), KONECT
(http://konect.uni-koblenz.de/networks/, and IMDB (www.imdb.com).
The platform for our tests is a shared-memory server with 256 GB RAM and
2x8 Intel(R) Xeon(R) E5-2680 cores (32 threads due to hyperthreading) at 2.7
GHz. The algorithms are implemented in C+-, building on the open-source
NetworKit framework [29].

9.1 Comparison with the State of the Art

In order to compare the performance of our algorithm with state of the art
approaches, we select 19 directed complex networks, 17 undirected complex
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networks, 6 directed road networks, and 6 undirected road networks (the
undirected versions of the previous ones). The number of nodes of most of
these networks ranges between 5000 and 100 000. We test four different varia-
tions of our algorithm, that provide different implementations of the functions
computeBounds and updateBounds (for more information, we refer to Sect. 4):

DEGCUT uses the conservative strategies computeBoundsDeg and
updateBoundsBFSCut;

DEGBOUND uses the conservative strategy computeBoundsDeg and the ag-
gressive strategy updateBoundsLB;

NBCuUT uses the aggressive strategy computeBoundsNB and the conservative
strategy updateBoundsBFSCut;

NBBOUND uses the aggressive strategies computeBoundsNB and
updateBoundsLB.

We compare these algorithms with our implementations of the best existing
algorithms for top k closeness centrality.! The first one [24] is based on a
pruning technique and on A-BFS, a method to reuse information collected
during a BFS from a node to speed up a BFS from one of its in-neighbors; we
denote this algorithm as OLH. The second one, OCL, provides top k closeness
centralities with high probability [23]. It performs some BFSes from a random
sample of nodes to estimate the closeness centrality of all the other nodes,
then it computes the exact centrality of all the nodes whose estimate is big
enough. Note that this algorithm requires the input graph to be (strongly)
connected: for this reason, differently from the other algorithms, we have run
this algorithm on the largest (strongly) connected component of the input
graph. Furthermore, this algorithm offers different tradeoffs between the time
needed by the sampling phase and the second phase: in our tests, we try all
possible tradeoffs, and we choose the best alternative in each input graph
(hence, our results are upper bounds on the real performance of the OcCL
algorithm).

In order to perform a fair comparison, we consider the improvement fac-
tor, which is defined as mv:: in directed graphs, Zm"vm in undirected graphs,
where myis is the number of arcs visited during the algorithm, and mn (resp.,
2mn) is an estimate of the number of arcs visited by the textbook algorithm
in directed (resp., undirected) graphs (this estimate is correct whenever the
graph is connected). Note that the improvement factor does not depend on
the implementation, nor on the machine used for the algorithm, and it does
not consider parts of the code that need subquadratic time in the worst case.
These parts are negligible in our algorithm, because their worst case running
time is O(nlogn) or O(mD) where D is the diameter of the graph, but they
can be significant when considering the competitors. For instance, in the par-
ticular case of OLH, we have just counted the arcs visited in BFS and A-BFS,
ignoring all the operations done in the pruning phases (see [24]).

1 Note that the source code of our competitors is not available.
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Table 2 Complex networks: geometric mean and standard deviation of the improvement
factors of the algorithm in [24] (OLH), the algorithm in [23] (OcL), and the four variations
of the new algorithm (DecCut, DEGBounp, NBCuTt, NBBouUND).

DIRECTED UNDIRECTED BorH

k ALGORITHM GMEAN GSTDDEV GMEAN GSTDDEV GMEAN GSTDDEV
1 OLH 21.24 5.68 11.11 2.91 15.64 4.46
OcL 1.71 1.54 2.71 1.50 2.12 1.61
DecCut 104.20 6.36 171.77 6.17 131.94 6.38
DecBounDp 3.61 3.50 5.83 8.09 4.53 5.57
NBCur 123.46 7.94 257.81 8.54 174.79 8.49
NBBounD 17.95 10.73 56.16 9.39 30.76 10.81

10 OLu 21.06 5.65 11.11 2.90 15.57 4.44
OcL 1.31 1.31 1.47 1.11 1.38 1.24
DecCut 56.47 5.10 60.25 4.88 58.22 5.00
DecBounD 2.87 3.45 2.04 1.45 2.44 2.59
NBCurt 58.81 5.65 62.93 5.01 60.72 5.34
NBBounD 9.28 6.29 10.95 3.76 10.03 5.05

100 | OLu 20.94 5.63 11.11 2.90 15.52 4.43
OcL 1.30 1.31 1.46 1.11 1.37 1.24
DecCut 22.88 4.70 15.13 3.74 18.82 4.30
DecBounD 2.56 3.44 1.67 1.36 2.09 2.57
NBCurt 23.93 4.83 15.98 3.89 19.78 4.44
NBBounD 4.87 4.01 4.18 2.46 4.53 3.28

Table 3 Street networks: geometric mean and standard deviation of the improvement fac-
tors of the algorithm in [24] (OLn), the algorithm in [23] (OcL), and the four variations of
the new algorithm (DecCut, DEcBounp, NBCuTt, NBBouUND).

DIRECTED UNDIRECTED BotH

ALGORITHM GMEAN GSTDDEV GMEAN GSTDDEV GMEAN GSTpDDEV

1 OLH 4.11 1.83 4.36 2.18 4.23 2.01
OcL 3.39 1.28 3.23 1.28 3.31 1.28
DecCurt 4.14 2.07 4.06 2.06 4.10 2.07
DecBounp 187.10 1.65 272.22 1.67 225.69 1.72
NBCur 4.12 2.07 4.00 2.07 4.06 2.07
NBBounD 250.66 1.71 382.47 1.63 309.63 1.74

10 | OLH 4.04 1.83 4.28 2.18 4.16 2.01
OcL 2.93 1.24 2.81 1.24 2.87 1.24
DecCur 4.09 2.07 4.01 2.06 4.05 2.07
DecBounp 172.06 1.65 245.96 1.68 205.72 1.72
NBCur 4.08 2.07 3.96 2.07 4.02 2.07
NBBounD 225.26 1.71 336.47 1.68 275.31 1.76

100 | OLH 4.03 1.82 4.27 2.18 4.15 2.01
OcL 2.90 1.24 2.79 1.24 2.85 1.24
DecCurt 3.91 2.07 3.84 2.07 3.87 2.07
DecBounp 123.91 1.56 164.65 1.67 142.84 1.65
NBCur 3.92 2.08 3.80 2.09 3.86 2.08
NBBounD 149.02 1.59 201.42 1.69 173.25 1.67

We consider the geometric mean of the improvement factors over all graphs
in the dataset. In our opinion, this quantity is more informative than the arith-
metic mean, which is highly influenced by the maximum value: for instance,
in a dataset of 20 networks, if all improvement factors are 1 apart from one,
which is 10000, the arithmetic mean is more than 500, which makes little
sense, while the geometric mean is about 1.58. Our choice is further confirmed
by the geometric standard deviation, which is always quite small.

The results are summarised in Table 2 for complex networks and Table 3
for street networks. For the improvement factors of all graphs, we refer to
Appendix A.

On complex networks, the best algorithm is NBCuT: when & = 1, the
improvement factors are always bigger than 100, up to 258, when k£ = 10 they
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are close to 60, and when k& = 100 they are close to 20. Another good option
is DEGCuT, which achieves results similar to NBCuT, but it has almost no
overhead at the beginning (while NBCUT needs a preprocessing phase with
cost O(mD)). Furthermore, DEGCUT is very easy to implement, becoming
a very good candidate for state-of-the-art graph libraries. The improvement
factors of the competitors are smaller: OLH has improvement factors between
10 and 20, and OcCL provides almost no improvement with respect to the
textbook algorithm.

We also test our algorithm on the three complex unweighted networks
analysed in [24], respectively called web-Google (Web in [24]), wiki-Talk
(Wiki in [24]), and com-dblp (DBLP in [24]). In the com-dblp graph (resp.
web-Google), our algorithm NBCuUT computed the top 10 nodes in about 17
seconds (resp., less than 2 minutes) on the whole graph, having 1 305 444 nodes
(resp., 875 713), while OLH needed about 25 minutes (resp. 4 hours) on a sub-
graph of 400000 nodes. In the graph wiki-Talk, NBCUT needed 8 seconds
for the whole graph having 2394 385 nodes, instead of about 15 minutes on a
subgraph with 1 million nodes. These results are available in Table 9 in the
Appendix.

On street networks, the best option is NBBOUND: for k = 1, the average
improvement is about 250 in the directed case and about 382 in the undirected
case, and it always remains bigger than 150, even for k = 100. It is worth
noting that also the performance of DEGBOUND are quite good, being at least
70% of NBBOUND. Even in this case, the DEGBOUND algorithm offers some
advantages: it is very easy to be implemented, and there is no overhead in the
first part of the computation. All the competitors perform relatively poorly on
street networks, since their improvement is always smaller than 5.

Overall, we conclude that the preprocessing function computeBoundsNB
always leads to Dbetter results (in terms of visited edges) than
computeBoundsDeg, but the difference is quite small: hence, in some cases,
computeBoundsDeg could be even preferred, because of its simplicity. Con-
versely, the performance of updateBoundsBFSCut is very different from the
performance of updateBoundsLB: the former works much better on complex
networks, while the latter works much better on street networks. Currently,
these two approaches exclude each other: an open problem left by this work is
the design of a “combination” of the two, that works both in complex networks
and in street networks. Finally, the experiments show that the best variation of
our algorithm outperforms all competitors in all frameworks considered: both
in complex and in street networks, both in directed and undirected graphs.

9.2 Real-World Large Networks
In this section, we run our algorithm on bigger inputs, by considering a dataset
containing 23 directed networks, 15 undirected networks, and 5 road networks,

with up to 3774 768 nodes and 117 185083 edges. On this dataset, we run the
fastest variant of our algorithm (DEGBOUND in complex networks, NBBOUND
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Table 4 Big networks: geometric mean and standard deviation of the improvement factors
of the best variation of the new algorithm (DEGBoOUND in complex networks, NBBoUND in
street networks).

DIRECTED UNDIRECTED Boru

Input k GMEAN GSTDDEV GMEAN GSTDDEV GMEAN GSTtpDEV
1 742.42 2.60 1681.93 2.88 1117.46 2.97

Street 10 724.72 2.67 1673.41 2.92 1101.25 3.03
100 686.32 2.76 1566.72 3.04 1036.95 3.13

1 247.65 11.92 551.51 10.68 339.70 11.78

Complex 10 117.45 9.72 115.30 4.87 116.59 7.62
100 59.96 8.13 49.01 2.93 55.37 5.86

in street networks), using 64 threads (however, the server used ounly runs 16
threads, or 32 with hyperthreading).
mn

Once again, we consider the improvement factor, which is defined as ™™
vis
2mn

in directed graphs, St in undirected graphs. It is worth observing that we are
able to compute for the first time the k£ most central nodes of networks with
millions of nodes and hundreds of millions of arcs, with £k = 1, kK = 10, and
k = 100. The detailed results are shown in Table 9 in the Appendix, where
for each network we report the running time and the improvement factor. A
summary of these results is available in Table 4, which contains the geometric
means of the improvement factors, with the corresponding standard deviations.

For k = 1, the geometric mean of the improvement factors is always above
200 in complex networks, and above 700 in street networks. In undirected
graphs, the improvement factors are even bigger: close to 500 in complex net-
works and close to 1600 in street networks. For bigger values of k, the perfor-
mance does not decrease significantly: on complex networks, the improvement
factors are bigger than or very close to 50, even for £ = 100. In street networks,
the performance loss is even smaller, always below 10% for k = 100.

Regarding the robustness of the algorithm, we outline that the algorithm
always achieves performance improvements bigger than y/n in street networks,
and that in complex networks, with k = 1, 64% of the networks have improve-
ment factors above 100, and 33% of the networks above 1000. In some cases,
the improvement factor is even bigger: in the com-Orkut network, our algo-
rithm for £ =1 is almost 35000 times faster than the textbook algorithm.

In our experiments, we also report the running time of our algorithm. Even
for k£ = 100, a few minutes are sufficient to conclude the computation on most
networks, and, in all but two cases, the total time is smaller than 3 hours. For
k =1, the computation always terminates in at most 1 hour and a half, apart
from two street networks where it needs less than 2 hours and a half. Overall,
the total time needed to compute the most central vertex in all the networks
is smaller than 1 day. This is quite impressive if we consider that many input
graphs have millions of nodes, and tens of millions of edges.

10 IMDB Case Study

In this section, we apply the new algorithm NBBOUND to analyze the IMDB
graph, where nodes are actors, and two actors are connected if they played
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Fig. 3 Growth of performance ratio with respect to the number of nodes (k = 1).

together in a movie (TV-series are ignored). The data collected comes from
the website http://www.imdb.com: in line with http://oracleofbacon.org,
we decide to exclude some genres from our database: awards-shows, documen-
taries, game-shows, news, realities and talk-shows. We analyse snapshots of
the actor graph, taken every 5 years from 1940 to 2010, and 2014. The results
are reported in Table 10 and Table 11 in the Appendix.

The Algorithm. Thanks to this experiment, we can evaluate the performance
of our algorithm on increasing snapshots of the same graph. This way, we
can have an informal idea on the asymptotic behavior of its complexity. In
Figure 3, we have plotted the improvement factor with respect to the number
of nodes: if the improvement factor is /, the running time is O(”#*). Hence,
assuming that I = cn for some constant ¢ (which is approximately verified
in the actor graph, as shown by Figure 3), the running time is linear in the
input size. The total time needed to perform the computation on all snapshots
is little more than 30 minutes for k£ = 1, and little more than 45 minutes for
k = 10.

The Results. In 2014, the most central actor is Michael Madsen, whose career
spans 25 years and more than 170 films. Among his most famous appearances,
he played as Jimmy Lennox in Thelma € Louise (Ridley Scott, 1991), as
Glen Greenwood in Free Willy (Simon Wincer, 1993), as Bob in Sin City
(Frank Miller, Robert Rodriguez, Quentin Tarantino), and as Deadly Viper
Budd in Kill Bill (Quentin Tarantino, 2003-2004). The second is Danny Trejo,
whose most famous movies are Heat (Michael Mann, 1995), where he played as
Trejo, Machete (Ethan Maniquis, Robert Rodriguez, 2010) and Machete Kills
(Robert Rodriguez, 2013), where he played as Machete. The third “actor” is
not really an actor: he is the German dictator Adolf Hitler: he was also the
most central actor in 2005 and 2010, and he was in the top 10 since 1990.
This a consequence of his appearances in several archive footages, that were
re-used in several movies (he counts 775 credits, even if most of them are in
documentaries or TV-shows, that were eliminated). Among the movies where
Adolf Hitler is credited, we find Zelig (Woody Allen, 1983), and The Imitation
Game (Morten Tyldum, 2014). Among the other most central actors, we find
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Table 5 Top 10 pages in Wikipedia directed graph, both in the standard graph and in the
reversed graph.

Position | Standard Graph | Reversed Graph
1sT | 1989 United States
2ND | 1967 World War I1
3rD | 1979 United Kingdom
4tH | 1990 France
5TH | 1970 Germany
6TH | 1991 English language
7TH | 1971 Association football
8tH | 1976 China
9TH | 1945 World War I

10TH 1965 Latin

many people who played a lot of movies, and most of them are quite important
actors. However, this ranking does not discriminate between important roles
and marginal roles: for instance, the actress Bess Flowers is not widely known,
because she rarely played significant roles, but she appeared in over 700 movies
in her 41 years career, and for this reason she was the most central for 30
years, between 1950 and 1980. Finally, it is worth noting that we never find
Kevin Bacon in the top 10, even if he became famous for the “Six Degrees of
Kevin Bacon” game (http://oracleofbacon.org), where the player receives
an actor z, and he has to find a path of length at most 6 from z to Kevin
Bacon in the actor graph. Kevin Bacon was chosen as the goal because he
played in several movies, and he was thought to be one of the most central
actors: this work shows that, actually, he is quite far from the top. Indeed, his
closeness centrality is 0.336, while the most central actor has centrality 0.354,
the 10th actor has centrality 0.350, and the 100th actor has centrality 0.341.

11 Wikipedia Case Study

In this section, we apply the new algorithm NBBOUND to analyze the
Wikipedia graph, where nodes are pages, and there is a directed edge from
page p to page ¢ if p contains a link to gq. The data collected comes from
DBPedia 3.7 (http://wiki.dbpedia.org/). We analyse both the standard
graph and the reverse graph, which contains an edge from page p to page ¢ if
q contains a link to p. The 10 most central pages are available in Table 5.

The Algorithm. In the standard graph, the improvement factor is 1784 for
k =1, 1509 for £ = 10, and 870 for £ = 100. The total running time is
about 39 minutes for £ = 1, 45 minutes for £ = 10, and less than 1 hour and
20 minutes for k£ = 100. In the reversed graph, the algorithm performs even
better: the improvement factor is 87918 for k£ = 1, 71923 for £ = 10, and
21989 for k£ = 100. The total running times are less than 3 minutes for both
k=1 and k = 10, and less than 10 minutes for £ = 100.
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The Results. If we consider the standard graph, the results are quite unex-
pected: indeed, all the most central pages are years (the first is 1989). How-
ever, this is less surprising if we consider that these pages contain a lot of links
to events that happened in that year: for instance, the out-degree of 1989 is
1560, and the links contain pages from very different topics: historical events,
like the fall of Berlin wall, days of the year, different countries where par-
ticular events happened, and so on. A similar argument also works for other
years: indeed, the second page is 1967 (with out-degree 1438), and the third
is 1979 (with out-degree 1452). Furthermore, all the 10 most central pages
have out-degree at least 1269. Overall, we conclude that the central page in
the Wikipedia standard graph are not the “intuitively important” pages, but
they are the pages that have a biggest number of links to pages with different
topics, and this maximum is achieved by pages related to years.

Conversely, if we consider the reversed graph, the most central
page is United States, confirming a common conjecture. Indeed, in
http://wikirank.di.unimi.it/, it is shown that the United States are the
center according to harmonic centrality, and many other measures (how-
ever, in that work, the ranking is only approximated). A further evi-
dence for this conjecture comes from the Six Degree of Wikipedia game
(http://thewikigame.com/6-degrees-of-wikipedia), where a player is
asked to go from one page to the other following the smallest possible number
of link: a hard variant of this game forces the player not to pass from the
United States page, which is considered to be central. In this work, we show
that this conjecture is true. The second page is World War II, and the third is
United Kingdom, in line with the results obtained by other centrality measures
(see http://wikirank.di.unimi.it/), especially for the first two pages.

Overall, we conclude that most of the central pages in the reversed graph
are nations, and that the results capture our intuitive notion of “important”
pages in Wikipedia. Thanks to this new algorithm, we can compute these pages
in a bit more than 1 hour for the original graph, and less than 10 minutes for
the reversed one.

12 Conclusions

In this paper we have presented a hardness result on the computation of the
most central vertex in a graph, according to closeness centrality. Then, we
have presented a very simple algorithm for the exact computation of the k
most central vertices. Even if the time complexity of the new algorithm is
equal to the time complexity of the textbook algorithm (which, in any case,
cannot be improved in general), we have shown that in practice the former
improves the latter by several orders of magnitude. We have also shown that
the new algorithm outperforms the state of the art (whose time complexity is
still equal to the complexity of the textbook algorithm), and we have computed
for the first time the most central nodes in networks with millions of nodes
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and hundreds of millions of edges. Finally, we have considered as a case study
several snapshots of the IMDB actor network, and the Wikipedia graph.
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Appendix

A Comparison with the State of the Art: Detailed Results

Table 6 Detailed comparison of the improvement factors, with £ = 1.

Directed Street

Network Orn | OcL | DEcCut | DEGBOUND NBCut | NBBounD
faroe-islands 4.080 | 3.742 4.125 338.011 4.086 437.986
liechtenstein 2.318|2.075 2.114 130.575 2.115 137.087
isle-of-man 2.623 | 3.740 2.781 224.566 2.769 314.856
malta 5.332|4.351 4.147 73.836 4.141 110.665
belize 2.691 | 3.969 2.606 253.866 2.595 444.849
azores 13.559 | 3.038 19.183 230.939 19.164 266.488
Undirected Street
Network OLH | OcL | DecCut | DEGBouND NBCut | NBBounDp
faroe-islands 4.126 | 3.276 4.118 361.593 3.918 444.243
liechtenstein 2.318 | 2.027 2.107 171.252 2.122 183.240
isle-of-man 2.613|3.661 2.767 266.734 2.676 370.194
malta 4.770 | 4.164 3.977 122.729 3.958 232.622
belize 2.565 | 3.945 2.510 340.270 2.481 613.778
azores 22.406 | 2.824 18.654 589.985 18.810 727.528
Directed Complex
Network OrH | OcL | DecCut | DEcBounD NBCut | NBBounD
polblogs 3.201(1.131 31.776 1.852 31.974 5.165
out.opsahl-openflights 13.739|1.431 73.190 2.660 73.888 18.255
ca-GrQc 9.863 | 1.792 36.673 3.630 38.544 6.307
out.subelj jung-j jung-j 125.219 | 1.203 79.559 1.024 79.882 1.897
p2p-Gnutella08 5.696 | 1.121 66.011 4.583 81.731 6.849
out.subelj jdk jdk 116.601 | 1.167 74.300 1.023 74.527 1.740
wiki-Vote 9.817 | 2.760 | 261.242 1.479 749.428 395.278
p2p-Gnutella09 5.5634|1.135 41.214 4.650 43.236 6.101
ca-HepTh 7.77212.121 40.068 3.349 42.988 5.217
freeassoc 33.616 | 1.099 12.638 2.237 12.700 2.199
ca-HepPh 7.682 | 2.836 10.497 3.331 10.516 4.387
out.lasagne-spanishbook 13.065 | 2.553 | 1871.296 7.598 | 6786.506 | 3160.750
out.cfinder-google 16.725 | 1.782 38.321 2.665 25.856 3.020
ca-CondMat 7.382|3.526 | 409.772 5.448 517.836 29.282
out.subelj cora_cora 14.118 | 1.700 14.098 1.345 14.226 2.299
out.ego-twitter 2824.713(1.000 | 1870.601 28.995 | 3269.183 278.214
out.ego-gplus 722.024 | 1.020 | 3481.943 236.280 | 3381.029 875.111
as-caida20071105 20.974 | 3.211 | 2615.115 1.737| 2837.853 802.273
cit-HepTh 4.294 | 3.045 16.259 1.514 16.398 3.290
Undirected Complex
Network OLH | OcL | DecCut | DEGBouNnD NBCut | NBBounD
HC-BIOGRID 5.528 | 1.581 15.954 3.821 14.908 3.925
facebook combined 10.456 | 3.726 56.284 18.786 56.517 98.512
Mus__musculus 18.246 | 1.743 70.301 3.253 104.008 7.935
Caenorhabditis _elegans 11.446 | 2.258 86.577 2.140 110.677 9.171
ca-GrQc 6.567 | 1.904 38.279 3.551 41.046 6.824
as20000102 19.185 | 2.402 | 1550.351 3.213 | 1925.916 498.000
advogato 8.520|2.018 | 315.024 18.181 323.163 142.654
p2p-Gnutella09 3.744 | 2.336 90.252 1.708 100.427 13.846
hprd pp 6.543|2.397| 392.853 2.091 407.261 63.953
ca-HepTh 7.655|2.075 42.267 3.308 46.326 5.593
Drosophila_ melanogaster 5.573|2.346 69.457 1.822 75.456 6.904
oregonl 010526 20.474 | 3.723 | 1603.739 2.703 | 1798.822 399.071
oregon2 010526 17.330 | 4.748 | 1138.475 2.646 | 1227.105 520.955
Homo sapiens 6.689 | 2.700 | 1475.113 1.898 | 1696.909 130.381
GoogleNw 15.591 | 8.389 | 107.902| 15763.000 | 15763.000 | 15763.000
dip20090126 _ MAX 2.883 | 3.826 5.833 6.590 5.708 7.392
com-amazon.all.cmty 415.286 | 2.499 | 5471.982 3.297 | 8224.693 373.294
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Table 7 Detailed comparison of the improvement factors, with k£ = 10.

Directed Street

Network OLH | OcL | DEcCut | DEcBounp | NBCut | NBBouNnD
faroe-islands 3.713 | 2.884 4.037 290.626 4.025 361.593
liechtenstein 2.318 | 2.002 2.104 111.959 2.106 116.713
isle-of-man 2.623 | 2.933 2.711 209.904 2.720 288.123
malta 5.325 | 3.861 4.094 70.037 4.086 101.546
belize 2.690 | 3.638 2.592 244.275 2.580 416.210
azores 13.436 | 2.644 19.043 222.073 19.045 254.206
Undirected Street
Network OLu | OcL | DEcCut | DEcBounp | NBCut | NBBouNnD
faroe-islands 3.702 | 2.594 4.046 320.588 3.848 388.713
liechtenstein 2.316 | 1.965 2.097 142.047 2.114 150.608
isle-of-man 2.612 | 2.889 2.695 241.431 2.636 323.185
malta 4.768 | 3.615 3.920 115.574 3.910 208.192
belize 2.564 | 3.634 2.496 323.257 2.469 563.820
azores 22.392 | 2.559 18.541 539.032 18.712 653.372
Directed Complex
Network OrH | OcL | DeEcCut | DEcBounp | NBCut | NBBounDp
polblogs 3.199 | 1.039 13.518 1.496 13.544 2.928
out.opsahl-openflights 13.739 | 1.130 32.297 1.984 32.405 6.867
ca-GrQc 9.863 | 1.356 25.238 3.096 25.786 4.565
out.subelj jung-j jung-j 124.575 | 1.000 79.284 1.024 79.657 1.884
p2p-Gnutella08 5.684 | 1.064 12.670 3.241 12.763 3.599
out.subelj jdk_jdk 116.228 | 1.000 74.106 1.023 74.363 1.730
wiki-Vote 9.812]1.205| 166.941 1.453 | 174.775 25.411
p2p-Gnutella09 5.532 | 1.084 16.293 3.624 16.265 4.213
ca-HepTh 7.772 | 1.586 31.314 3.013 32.604 4.356
freeassoc 33.414 | 1.034 10.612 2.210 10.704 2.178
ca-HepPh 7.682|2.077 10.322 3.042 10.340 4.010
out.lasagne-spanishbook 13.063 | 1.483 | 303.044 1.067 | 351.262 94.351
out.cfinder-google 16.725 | 1.413 36.364 2.665 24.765 3.017
ca-CondMat 7.382|2.318 91.209 3.507 93.548 7.027
out.subelj cora cora 13.699 | 1.287 12.763 1.334 12.909 2.072
out.ego-twitter 2689.884 | 1.000 | 1817.032 28.157 | 2872.213 218.411
out.ego-gplus 722.024 | 1.000 | 951.983 201.949 | 1085.361 482.204
as-caida20071105 20.974 | 1.615| 997.996 1.371 | 1266.443 448.729
cit-HepTh 4.030 | 2.179 11.361 1.486 11.423 2.832
Undirected Complex
Network OLH | OcL | DEcCut | DEcBounp | NBCut | NBBouND
HC-BIOGRID 5.528 [ 1.240 10.714 3.102 10.036 3.058
facebook combined 10.456 | 1.292 9.103 2.236 9.371 2.694
Mus_musculus 18.246 | 1.316 18.630 2.279 20.720 3.288
Caenorhabditis _elegans 11.445 | 1.405 58.729 1.904 68.905 7.605
ca-GrQc 6.567 | 1.340 26.050 3.052 26.769 5.011
as20000102 19.185 | 1.529 | 196.538 1.314 | 209.674 52.210
advogato 8.520 | 1.405 | 131.173 2.043 | 132.207 11.155
p2p-Gnutella09 3.744 | 1.632 79.093 1.623 87.357 12.941
hprd _pp 6.543 | 1.436 47.945 1.837 47.866 8.620
ca-HepTh 7.655 | 1.546 32.612 2.961 34.407 4.677
Drosophila_ melanogaster 5.573 | 1.672 50.840 1.646 54.637 5.743
oregonl 010526 20.474 | 1.451| 418.099 1.282| 429.161 109.549
oregon2 010526 17.330 | 1.560 | 364.277 1.302 | 371.929 71.186
Homo _sapiens 6.689 | 1.599 81.496 1.620 82.250 15.228
GoogleNw 15.591 | 1.320 23.486 1.252 23.053 2.420
dip20090126 _ MAX 2.881 | 1.836 4.055 4.556 4.065 4.498
com-amazon.all.cmty 414.765 | 1.618 | 3407.016 3.279 | 3952.370 199.386
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Table 8 Detailed comparison of the improvement factors, with k = 100.

Directed Street

Network OLH | OcL |DecCut | DEcBounp | NBCut | NBBounD
faroe-islands 3.713(2.823 3.694 150.956 3.691 168.092
liechtenstein 2.318|1.998 2.078 84.184 2.086 86.028
isle-of-man 2.620 | 2.902 2.551 139.139 2.567 167.808
malta 5.282 | 3.850 3.933 56.921 3.942 76.372
belize 2.688 | 3.617 2.526 184.718 2.516 268.634
azores 13.334|2.628 18.380 194.724 18.605 220.013
Undirected Street
Network OLH | OcL | DecCut | DEcBounp | NBCut | NBBounD
faroe-islands 3.702 | 2.548 3.693 159.472 3.523 171.807
liechtenstein 2.311|1.959 2.072 96.782 2.095 99.768
isle-of-man 2.607 | 2.847 2.533 153.859 2.468 183.982
malta 4.758 | 3.605 3.745 89.929 3.730 137.538
belize 2.562 | 3.629 2.428 226.582 2.406 323.257
azores 22.345 | 2.548 18.092 411.760 18.384 476.253
Directed Complex
Network OrH| OcL | DecCut | DEcBounp | NBCut | NBBounD
polblogs 3.198 | 1.037 3.951 1.245 3.961 1.731
out.opsahl-openflights 13.739|1.124 5.524 1.456 5.553 1.740
ca-GrQc 9.863 | 1.339 11.147 2.353 10.407 2.926
out.subelj jung-j jung-j 123.393 | 1.000 78.473 1.021 78.798 1.787
p2p-Gnutella08 5.684 | 1.063 6.611 2.935 7.750 3.278
out.subelj jdk_jdk 114.210 | 1.000 73.522 1.020 73.755 1.669
wiki-Vote 9.812|1.186 61.375 1.236 60.475 9.436
p2p-Gnutella09 5.531|1.083 6.370 3.109 7.650 3.508
ca-HepTh 7.772]1.570 16.135 2.477 16.747 3.135
freeassoc 33.266 | 1.032 6.314 2.154 6.428 2.138
ca-HepPh 7.682|2.032 9.605 2.549 9.619 3.340
out.lasagne-spanishbook 13.063 | 1.467 56.689 1.043 80.069 33.271
out.cfinder-google 16.725 | 1.392 13.521 2.655 12.298 2.722
ca-CondMat 7.382|2.288 16.884 2.602 16.950 2.824
out.subelj cora cora 13.231 | 1.280 11.171 1.315 11.350 1.870
out.ego-twitter 2621.659 | 1.000 | 1574.836 26.893 | 1908.731 110.236
out.ego-gplus 722.024 | 1.000 | 522.333 181.754 | 522.576 236.280
as-caida20071105 20.974 | 1.606 17.971 1.216 18.694 5.479
cit-HepTh 3.969 | 2.143 8.867 1.466 9.068 2.662
Undirected Complex
Network OLH | OcL | DecCut | DEcBounp | NBCut | NBBounD
HC-BIOGRID 5.528 | 1.236 4.452 2.154 4.345 1.999
facebook combined 10.456 | 1.292 3.083 1.470 3.074 1.472
Mus_musculus 18.245|1.305 7.940 1.944 9.518 2.631
Caenorhabditis_elegans 11.445]1.391 11.643 1.463 12.296 3.766
ca-GrQc 6.567 | 1.331 11.311 2.346 10.389 3.105
as20000102 19.185| 1.512 7.318 1.174 7.956 3.593
advogato 8.520 | 1.398 32.629 1.706 33.166 7.784
p2p-Gnutella09 3.744 | 1.625 11.378 1.374 11.867 3.695
hprd _pp 6.543 | 1.422 21.053 1.547 22.191 3.468
ca-HepTh 7.655 | 1.539 16.406 2.454 17.030 3.301
Drosophila__melanogaster 5.573 | 1.655 29.115 1.487 30.979 4.614
oregonl 010526 20.474 | 1.443 13.300 1.163 14.611 6.569
oregon2 010526 17.330| 1.530 18.203 1.173 21.758 7.258
Homo _sapiens 6.689 | 1.577 19.350 1.445 20.182 3.080
GoogleNw 15.591 | 1.320 16.224 1.172 16.506 2.010
dip20090126 _ MAX 2.880 | 1.815 2.789 2.602 2.784 2.546
com-amazon.all.cmty 414.765 | 1.605 | 1368.675 3.236 | 1654.150 97.735
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B Real-World Large Networks Experiments: Detailed Results

Table 9 Detailed comparison of the improvement factors of the new algorithm, in a dataset
made of big networks.

Directed Street

k=1 k=10 k =100
Input Nodes Edges Impr. Time Impr. Time Impr. Time
egypt 1054242 2123036 144.91|0:03:55 132.86 [ 0:04:25| 116.74| 0:04:48
new _ zealand 2759124 5562944 447.55 | 0:02:34 443.950:02:35| 427.31| 0:02:38
india 16230072 | 33355834 | 1370.32|0:43:42| 1369.05|0:44:17 | 1326.31 | 0:45:05
california 16905319 | 34303746 | 1273.66|0:54:56 | 1258.12|0:56:00 | 1225.73 | 0:56:02

north am 35236615 | 70979433 | 1992.68 |2:25:58 | 1967.87 | 2:29:25|1877.78 | 2:37:14
Undirected Street

k=1 k=10 k =100
Input Nodes Edges Impr. Time Impr. Time Impr. Time
egypt 1054242 1159808 344.86 [ 0:01:54 340.30 | 0:01:54 | 291.71| 0:02:11
new_zealand | 2759124 2822257 811.75 | 0:02:47 786.52|0:03:02 | 734.20| 0:03:02
india 16230072 | 17004400 | 2455.38 | 0:44:21 | 2484.70|0:44:38 | 2422.40 | 0:44:21
california 16905319 | 17600566 | 2648.08 | 0:39:15 | 2620.17 | 0:42:04 | 2504.86 | 0:44:19

north _am 35236615 | 36611653 | 7394.88|1:13:37| 7530.80|1:15:01|7263.78 | 1:10:28
Directed Complex

k=1 k=10 k =100
Input Nodes Edges Impr.| Time Impr.| Time| Impr. Time
cit-HepTh 27769 352768 16.34 [ 0:00:01 11.41]0:00:01 9.06 | 0:00:02
cit-HepPh 34546 421534 23.68 | 0:00:01 19.8810:00:01 14.41| 0:00:02
p2p-Gnut31 62586 147892 194.19 | 0:00:01 44.24 | 0:00:01 19.34| 0:00:04
soc-Epsl 75879 508837 243.14 | 0:00:01 43.75|0:00:01 33.60| 0:00:05

soc-Slash0811 77360 828161 | 1007.70|0:00:00 187.46 | 0:00:00 21.09| 0:00:18
twitter _comb 81306 2684592 | 1024.32|0:00:01 692.96 | 0:00:01 | 145.68 | 0:00:05

Slash090221 82140 549202 177.82|0:00:02 162.30 | 0:00:02 | 108.53| 0:00:03
gplus__comb 107614 | 24476570 | 1500.35 | 0:00:04 235.17 | 0:00:04 62.54 | 0:02:19
soc-sign-eps 131828 840799 225.91 | 0:00:03 161.58 | 0:00:03 39.26 | 0:00:16
email-EuAll 265009 418956 | 4724.80|0:00:00 | 3699.48 | 0:00:00 | 1320.22| 0:00:01
web-Stanford 281903 2312497 13.59 | 0:04:00 8.70| 0:04:00 7.47| 0:07:15
web-NotreD 325729 1469679 | 1690.08 | 0:00:02 132.83 | 0:00:02 66.88 | 0:00:49
amazon0601 403394 3387388 10.81 | 0:14:54 8.87|0:14:54 6.84 | 0:22:04
web-BerkStan 685230 7600595 3.95]1:36:21 3.67]1:36:21 3.47 | 1:49:12
web-Google 875713 5105039 228.61 | 0:01:51 96.63 | 0:01:51 38.69| 0:10:29
youtube-links | 1138494 4942297 662.78 | 0:01:33 200.68 | 0:01:33 | 125.72| 0:07:02
in-2004 1382870 | 16539643 43.68 | 0:41:45 29.890:41:45 16.68| 1:48:42
trec-wt10g 1601787 8063026 33.86|0:36:01 20.39 | 0:36:01 16.73 | 1:10:54
soc-pokec 1632803 | 22301964 | 21956.64 | 0:00:17 | 2580.43 | 0:06:14 | 1106.90 | 0:12:35

zhishi-hudong | 1984484 | 14682258 30.37|1:25:38 27.71 | 1:25:38 24.95| 1:53:27
zhishi-baidu 2141300 | 17632190 44.05(1:17:52 38.61 | 1:17:52 23.17| 3:08:05

wiki-Talk 2394385 5021410 | 34863.42 | 0:00:08 | 28905.76 | 0:00:08 | 9887.18 | 0:00:18
cit-Patents 3774768 | 16518947 | 9454.04|0:02:07 | 8756.77|0:02:07 | 8340.18 | 0:02:13
Undirected Complex

k=1 k=10 k =100
Input Nodes Edges Impr. Time Impr. Time Impr. Time
ca-HepPh 12008 118489 10.370:00:00 10.20 | 0:00:00 9.57| 0:00:01
CA-AstroPh 18772 198050 62.47|0:00:00 28.87(0:00:01 14.54| 0:00:01
CA-CondMat 23133 93439 247.35 | 0:00:00 84.48 | 0:00:00 17.06| 0:00:01
email-Enron 36692 183831 365.92 | 0:00:00 269.80 | 0:00:00 41.95| 0:00:01
loc-brightkite 58228 214078 308.03 | 0:00:00 93.85 | 0:00:01 53.49 | 0:00:02
flickrEdges 105938 2316948 39.61|0:00:23 17.89|0:00:55 15.39| 0:01:16
gowalla 196591 950327 | 2412.26 | 0:00:01 33.40(0:01:18 28.13| 0:01:33
com-dblp 317080 1049866 500.83 | 0:00:10 300.61 | 0:00:17 99.64 | 0:00:52
com-amazon 334863 925872 37.76 | 0:02:21 31.33|0:02:43 18.68| 0:04:34
com-lj.all 477998 530872 849.57 | 0:00:07 430.72|0:00:13| 135.14| 0:00:45
com-youtube 1134890 2987624 | 2025.32|0:00:32 167.45|0:06:44| 110.39| 0:09:16
soc-pokec 1632803 | 30622564 | 46725.71 | 0:00:18 | 8664.33|0:02:16 | 581.52| 0:18:12
as-skitter 1696415 | 11095298 185.91|0:19:06 164.24 | 0:21:53 | 132.38| 0:27:06
com-orkut 3072441 | 117185083 | 23736.30 | 0:02:32 255.17 | 2:54:58 69.23 | 15:02:06

youtube-u-g 3223585 9375374 | 11473.14 | 0:01:07 91.17 | 2:07:23 66.23 | 2:54:12
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C IMDB Case Study: Detailed Results

Table 10 Detailed ranking of the IMDB actor graph.

1940 1945 1950 1955
1 Semels, Harry (I) Corrado, Gino Flowers, Bess Flowers, Bess
2 Corrado, Gino Steers, Larry Steers, Larry Harris, Sam (II)
3 Steers, Larry Flowers, Bess Corrado, Gino Steers, Larry
4 Bracey, Sidney Semels, Harry (I) Harris, Sam (II) Corrado, Gino
5 Lucas, Wilfred White, Leo (I) Semels, Harry (I) Miller, Harold (I)
6 White, Leo (I) Mortimer, Edmund Davis, George (I) Farnum, Franklyn
7 Martell, Alphonse Boteler, Wade Magrill, George Magrill, George
8 Conti, Albert (I) Phelps, Lee (I) Phelps, Lee (I) Conaty, James
9 Flowers, Bess Ring, Cyril Ring, Cyril Davis, George (I)
10 Sedan, Rolfe Bracey, Sidney Moorhouse, Bert Cording, Harry
1960 1965 1970 1975
1 Flowers, Bess Flowers, Bess Flowers, Bess Flowers, Bess
2 Harris, Sam (II) Harris, Sam (II) Harris, Sam (II) Harris, Sam (II)
3 Farnum, Franklyn Farnum, Franklyn Tamiroff, Akim Tamiroff, Akim
4 Miller, Harold (I) Miller, Harold (I) Farnum, Franklyn Welles, Orson
5 Chefe, Jack Holmes, Stuart Miller, Harold (I) Sayre, Jeffrey
6 Holmes, Stuart Sayre, Jeffrey Sayre, Jeffrey Miller, Harold (I)
7 Steers, Larry Chefe, Jack Quinn, Anthony (I) Farnum, Franklyn
8 Paris, Manuel Paris, Manuel O’Brien, William H. Kemp, Kenner G.
9 O’Brien, William H. O’Brien, William H. Holmes, Stuart Quinn, Anthony (I)
10 Sayre, Jeffrey Stevens, Bert (I) Stevens, Bert (I) O’Brien, William H.
1980 1985 1990 1995
1 Flowers, Bess Welles, Orson ‘Welles, Orson Lee, Christopher (I)
2 Harris, Sam (II) Flowers, Bess Carradine, John Welles, Orson
3 Welles, Orson Harris, Sam (II) Flowers, Bess Quinn, Anthony (I)
4 Sayre, Jeffrey Quinn, Anthony (I) Lee, Christopher (I) | Pleasence, Donald
5 Quinn, Anthony (I) Sayre, Jeffrey Harris, Sam (II) Hitler, Adolf
6 Tamiroff, Akim Carradine, John Quinn, Anthony (I) Carradine, John
7 Miller, Harold (I) Kemp, Kenner G. Pleasence, Donald Flowers, Bess
8 Kemp, Kenner G. Miller, Harold (I) Sayre, Jeffrey Mitchum, Robert
9 Farnum, Franklyn Niven, David (I) Tovey, Arthur Harris, Sam (II)
10 Niven, David (I) Tamiroff, Akim Hitler, Adolf Sayre, Jeffrey
2000 2005 2010 2014
1 Lee, Christopher (I) Hitler, Adolf Hitler, Adolf Madsen, Michael (I)
2 Hitler, Adolf Lee, Christopher (I) Lee, Christopher (I) Trejo, Danny
3 Pleasence, Donald Steiger, Rod Hopper, Dennis Hitler, Adolf
4 Welles, Orson Sutherland, Donald (I)| Keitel, Harvey (I) Roberts, Eric (I)
5 Quinn, Anthony (I) Pleasence, Donald Carradine, David De Niro, Robert
6 Steiger, Rod Hopper, Dennis Sutherland, Donald (I) Dafoe, Willem
7 Carradine, John Keitel, Harvey (I) Dafoe, Willem Jackson, Samuel L.
8 |Sutherland, Donald (I)| von Sydow, Max (I) Caine, Michael (I) Keitel, Harvey (I)
9 Mitchum, Robert Caine, Michael (I) Sheen, Martin Carradine, David
10 Connery, Sean Sheen, Martin Kier, Udo Lee, Christopher (I)
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Table 11 Detailed improvement factors on the IMDB actor graph.

YEAR 1940 1945 1950 1955
NoDEs 69011 83068 97824 120430
EbGEs 3417144 | 5160584 | 6793184 | 8674159
ImPr (k= 1) 51.74 61.46 67.50 91.46
Impr (k = 10) 32.95 40.73 44.72 61.52
YEAR 1960 1965 1970 1975
NobEs 146 253 174826 210527 257896
EpbcEs 11197509 | 12649114 | 14209908 | 16080065
Impr (k= 1) 122.63 162.06 211.05 285.57
Impr (k = 10) 80.50 111.51 159.32 221.07
YEAR 1980 1985 1990 1995
NobEs 310278 375322 463078 557373
EbcEs 18252462 | 20970510 | 24573288 | 28542684
Impr (k= 1) 380.52 513.40 719.21 971.11
Impr (k = 10) 296.24 416.27 546.77 694.72
YEAR 2000 2005 2010 2014
NoDEs 681358 880032 1237879 | 1797446
EbGES 33564142 | 41079259 | 53625608 | 72880156
ImPr (k= 1) 1326.53 1897.31 2869.14 2601.52
Impr (k = 10) 838.53 991.89 976.63 1390.32

39



