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Augmented Lagrangian Constraint Handling for
CMA-ES—Case of a Single Linear Constraint

Asma Atamna, Anne Auger, Nikolaus Hansen

Inria??

LRI (UMR 8623), University of Paris-Saclay, France

Abstract. We consider the problem of minimizing a function f subject to a sin-
gle inequality constraint g(x)  0, in a black-box scenario. We present a co-
variance matrix adaptation evolution strategy using an adaptive augmented La-
grangian method to handle the constraint. We show that our algorithm is an in-
stance of a general framework that allows to build an adaptive constraint handling
algorithm from a general randomized adaptive algorithm for unconstrained opti-
mization. We assess the performance of our algorithm on a set of linearly con-
strained functions, including convex quadratic and ill-conditioned functions, and
observe linear convergence to the optimum.

1 Introduction

Evolution strategies (ESs) are derivative-free continuous optimization algorithms that
are now well-established to solve unconstrained optimization problems of the form
minx f(x), f : Rn ! R, where n is the dimension of the search space. The state-of-the-
art ES, the covariance matrix adaptation evolution strategy (CMA-ES) [7], is especially
powerful at solving a wide range of problems and particularly ill-conditioned problems
[8,5]. It typically exhibits linear convergence. The default CMA-ES algorithm imple-
ments comma selection where the best solution is not preserved from one iteration to
the next one (contrary to plus selection). Comma selection is an important feature of
CMA-ES that entails robustness of the algorithm to various types of ruggedness includ-
ing noise.

Linear convergence being a central aspect of an ES in the unconstrained case, a
(1 + 1)-ES using an adaptive augmented Lagrangian constraint handing—to deal with
a single inequality constraint—has been introduced in [3] with the motivation to ob-
tain a linearly converging algorithm. Empirical results show the linear convergence of
the algorithm on the sphere and moderately ill-conditioned ellipsoid functions, subject
to one linear constraint. In [4], the authors present a variant of the previous (1 + 1)-
ES with augmented Lagrangian constraint handling and study theoretically its linear
convergence using a Markov chain approach. In both mentioned works, the step-size
is adapted using the 1/5th success rule [10] while the covariance matrix is fixed to
the identity. On ill-conditioned problems, however, adapting the covariance matrix is
crucial. It is hence natural to wonder whether it is possible to design a CMA-ES vari-
ant with augmented Lagrangian constraint handling. The algorithms presented in [3,4],
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however, use plus selection and can thus a priori not be used directly to design such a
variant.

In this context, we consider the constrained problem of minimizing f : Rn ! R
subject to a single inequality constraint g(x)  0, g : Rn ! R. More formally, we
write

min

x
f(x) subject to g(x)  0 . (1)

We bring to light that the algorithms previously presented in [3,4] derive from a more
general framework that seamlessly allows to build an adaptive constraint handling al-
gorithm from a general adaptive stochastic search method. We then naturally apply this
finding to build a (µ/µ

w

,�)-CMA-ES variant with adaptive augmented Lagrangian
constraint handling. We opted for using the median success rule step-size adaptation
(MSR) [2] because it is an extension of the 1/5th success rule algorithm used in [3,4].
We then test the resulting algorithm—the (µ/µ

w

,�)-MSR-CMA-ES with augmented
Lagrangian constraint handling—on a set of functions, including convex quadratic as
well as ill-conditioned functions, subject to one linear inequality constraint.

The rest of this paper is organized as follows: we introduce some basics about aug-
mented Lagrangian in Section 2. Then, we define the general framework and apply it
to the (µ/µ

w

,�)-MSR-CMA-ES in Section 3. We present our empirical results in Sec-
tion 4 and conclude with a discussion in Section 5.

Notations We introduce here the notations that are not explicitly defined in the rest of
the paper. We denote R+ the set of positive real numbers and R+

> the set of strictly
positive real numbers. N> is the set of natural numbers without 0. x 2 Rn is a column
vector, x| is its transpose, and 0 2 Rn is the zero vector. ||x|| denotes the Euclidean norm
of x and ⇠ equality in distribution. (µ/µ

w

,�) denotes comma selection with weighted
recombination and (1 + 1) denotes plus selection with one parent and one offspring.
In⇥n 2 Rn⇥n is the identity matrix. xi is the ith component of vector x. The derivative
with respect to x is denoted rx. Finally, 1{A} returns 1 if A is true and 0 otherwise.

2 Augmented Lagrangian Methods

Augmented Lagrangian methods are constraint handling approaches that transform the
constrained optimization problem into an unconstrained one where an augmented La-
grangian is optimized [9,12].

The augmented Lagrangian consists of a Lagrangian L and a penalty function, with
L : Rn+1 ! R defined as

L(x, �) = f(x) + �g(x) (2)

for the objective function f subject to one constraint g(x)  0, where � 2 R is the
Lagrange factor. The Lagrangian encodes the KKT stationarity condition which states
that, given some regularity conditions are satisfied (constraint qualifications), if x⇤ 2
Rn is a local minimum of the constrained problem, then there exists a constant �⇤ 2
R+, called the Lagrange multiplier, such that

rxf(x⇤) + �⇤rxg(x⇤
)| {z }

rxL(x⇤,�⇤
)

= 0 ,
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where we assume here that f and g are differentiable at x⇤.
A penalty function is combined with the Lagrangian L to create the augmented

Lagrangian h. There exist different ways to construct the augmented Lagrangian and we
refer to [11] for a deeper discussion about this topic. In this work, we use the following
augmented Lagrangian

h(x, �,!) = f(x) +

(
�g(x) + !

2

g2(x) if � + !g(x) � 0

� �2

2! otherwise
, (3)

where ! > 0 is a penalty factor. The same augmented Lagrangian was used for the first
time within an ES in [3]. The function h is minimized successively with respect to x,
and � and ! are updated so that � approaches the Lagrange multiplier �⇤ and ! favors
feasible solutions. By adapting �, the penalty factor ! does not have to grow to infinity
to achieve convergence, unlike with quadratic penalty function methods [11].

Let xopt be the optimum of the constrained problem in (1) and let �
opt

be the corre-
sponding Lagrange multiplier. If f and g are differentiable at xopt, then for all ! > 0,

rxh(xopt, �opt,!) = rxf(xopt) + max(0, �
opt

+ !g(xopt))rxg(xopt) = 0 .

3 A General Framework for Adaptive Augmented Lagrangian
Constraint Handling

In [3] and [4], the authors present two (1 + 1)-ESs with an augmented Lagrangian
constraint handling approach for the optimization problem in (1). The algorithms de-
rive from a general framework for building a constraint handling adaptive algorithm.
This framework starts with a randomized adaptive algorithm for minimizing an uncon-
strained function f : Rn ! R: the randomized adaptive algorithm can be identified by
the sequence of its states st at iteration t that are iteratively computed from an update
function F such that

st+1

= Ff
(st,Ut+1

) , (4)

where the superscript indicates the function being minimized and where (Ut)t2N> is
a sequence of independent identically distributed (i.i.d.) random vectors. For instance,
in the case of a (1 + 1)-ES in [3,4], the state is a vector of the search space (current
estimate of the optimum) and a step-size.

We assume that the state st of the algorithm includes a vector Xt 2 Rn which
typically encodes the current estimate of the optimum at iteration t. Note that the tran-
sition function F above includes a step where candidate solutions are sampled from the
current state st and the random vector Ut+1

, and evaluated on the objective function f .
From the adaptive algorithm above, we construct an algorithm with adaptive con-

straint handling to take into account a single constraint in the following way: we add
to the state of the algorithm two scalars �t and !t that correspond respectively to the
Lagrange factor and the penalty factor of the augmented Lagrangian h at iteration t.
Therefore, the state at iteration t is st0 = [st, �t,!t]. The objective function used at
each iteration to evaluate a candidate solution Xi

t+1

is now

h
(�t,!t)

(Xi
t+1

) := h(Xi
t+1

, �t,!t) , (5)
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where h is the augmented Lagrangian defined in (3). Finally, the update of the state st0

of the adaptive algorithm with augmented Lagrangian constraint handling takes place
in two steps: first, st is updated via

st+1

= Fh(�t,!t)
(st,Ut+1

) , (6)

where candidate solutions are now evaluated on h
(�t,!t)

instead of f . Then, the param-
eters �t and !t of h are updated. In [3], �t is updated according to

�t+1

= max(0, �t + !tg(Xt+1

)) , (7)

while in [4], the authors use the following update

�t+1

= �t + !tg(Xt+1

) . (8)

For !t, the following update is used in both [3] and [4]

!t+1

=

8
><

>:

!t�1/4 if !tg2(Xt+1

) < k
1

|h(Xt+1,�t,!t)�h(Xt,�t,!t)|
n

or k
2

|g(Xt+1

)� g(Xt)| < |g(Xt)|
!t��1 otherwise

, (9)

for some constants � > 1, k
1

, k
2

2 R+.
Based on these examples, we introduce some general update functions G� and G!

for the updates of �t and !t defined implicitly via

�t+1

= Gg
�((�t,!t),Xt+1

) (10)

!t+1

= G(f,g)
! ((Xt, �t,!t),Xt+1

) . (11)

The superscript in G� and G! indicates that the function value is used in the update.

3.1 The (µ/µw,�)-MSR-CMA-ES with Adaptive Augmented Lagrangian

We now apply the general framework sketched above to the covariance matrix adapta-
tion evolution strategy (CMA-ES) with median success rule step-size adaptation (MSR).
We start by presenting the algorithm for the unconstrained case then we give the updates
of the augmented Lagrangian parameters �t and !t.

The (unconstrained) CMA-ES with MSR The original CMA-ES with MSR is given in
Algorithm 1, without the highlighted parts. The algorithm proceeds iteratively: at each
iteration t, � candidate solutions (offspring) Xi

t+1

, i = 1, · · · ,�, are sampled according
to Line 5, where Xt 2 Rn is the current estimate of the optimum (mean vector), �t 2
R+ is the step-size, and Ui

t+1

2 Rn, i = 1, · · · ,�, are i.i.d. random vectors sampled
from the normal distribution N (0,Ct), with mean 0 2 Rn and covariance matrix Ct 2
Rn⇥n. The offspring are ordered according to their fitness (f -value in the unconstrained
case) in Line 6, where i : � is the index of the ith best offspring. The µ best offspring
(parents) are then recombined (Line 7) to create the new mean vector Xt+1

, where the
weights wi > 0, i = 1, · · · , µ, satisfy w

1

> · · · > wµ and
Pµ

i=1

wi = 1.
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The step-sized �t is adapted in Lines 8 to 11 using the MSR step-size adaptation
[2]. MSR is a success-based step-size adaptation method which extends the well-known
1/5th success rule step-size adaptation [10], used with plus selection, to comma selec-
tion. The step-size is adapted depending on “success”, where the success is defined as
the median offspring Xm(�)

t+1

(fitness-wise) of the current population being better than
the jth best offspring Xj:�

t of the previous population. In practice, we choose j to be the
30th percentile–the value for which the median success probability is roughly 1/2 on
the sphere function with optimal step-size [2]. The number Ksucc of offspring better than
Xj:�

t is computed in Line 8. Note that Ksucc � �/2 is equivalent to h(Xm(�)
t+1

, �t,!t) 
h(Xj:�

t , �t,!t). Therefore, we define the success measure zt in Line 9 such that zt � 0

if and only if Xm(�)
t+1

is successful. zt is cumulated in qt+1

(Line 10) and, finally, �t is
updated in Line 11: it increases in the presence of success (qt+1

> 0) and decreases
otherwise in order to increase the probability of success.

The covariance matrix Ct is adapted with CMA [7] in Lines 12 and 13. The up-
date is a combination of the so-called rank-one-update and rank-µ-update. A detailed
discussion on CMA can be found in [6].

Finally, the jth best offspring is updated in Line 17. Therefore, the state of the
algorithm in the unconstrained case is

st = (Xt,�t, qt, pt,Ct,Xj:�
t ) .

The constrained (µ/µ
w

,�)-MSR-CMA-ES with adaptive augmented Lagrangian As
explained in the general framework, the fitness f is replaced with the augmented La-
grangian h in the constrained case. The parameters �t and !t are adapted in Lines 15

and 16 in Algorithm 1, where changes in comparison to the unconstrained case are
highlighted in gray.

The Lagrange factor �t is adapted in Line 15. It is increased when the new solution
Xt+1

is unfeasible and decreased otherwise, unless it is zero. The derivation of this
update is discussed in details in [11].

For the penalty parameter !t, we use the original update proposed in [3] for the
(1 + 1)-ES with augmented Lagrangian. The update rule is given in Line 16. !t is
increased either when (i) the augmented Lagrangian h does not change “enough” after
�t and !t are updated to avoid stagnation. This is translated by the first inequality where

!tg
2

(Xt+1

) ⇡ |h(Xt+1

, �t +��t,!t +�!t)� h(Xt+1

, �t,!t)|

is compared to the change in h due to the change in Xt, |h(Xt+1

, �t,!t)�h(Xt, �t,!t)|.
!t is also increased when (ii) the change in the value of the constraint function is not
large enough (second inequality in Line 16). To prevent an unnecessary ill-conditioning
of the problem, !t is decreased whenever conditions (i) and (ii) are not satisfied.

4 Empirical Results

We evaluate Algorithm 1 on the sphere function (fsphere), two ellipsoid functions (felli)
with condition numbers ↵ = 10

2, 106, f2

sphere, f0.5
sphere, the different powers function
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Algorithm 1 (µ/µ
w

,�)-MSR-CMA-ES with Augmented Lagrangian Constraint Han-
dling

0 given n 2 N>, � = 2

1/n, k1 = 3, k2 = 5, µ,� 2 N>, j = 0.3�, 0  wi < 1,
µX

i=1

wi = 1,

µeff = 1/
µX

i=1

w2
i , c� = 0.3, d� = 2� 2/n, cc =

4 + µeff/n
n+ 4 + 2µeff/n

c1 =

2

(n+ 1.3)2 + µeff
, cµ = min

✓
1� c1, 2

µeff � 2 + 1/µeff

(n+ 2)

2
+ µeff

◆

1 initialize X0 2 Rn, �0 2 R+
>, C0 = In⇥n, t = 0, q0 = 0, p0 = 0,

constrained problem // true if the problem is constrained, false otherwise
2 if constrained problem

3 initialize �0 2 R, !0 2 R+
>

4 while stopping criteria not met
5 Xi

t+1 = Xt + �tUi
t+1, Ui

t+1 ⇠ N (0,Ct), i = 1, · · · ,� // sample candidate solutions
6 Extract indices {1 : �, · · · ,� : �} of ordered candidate solutions such that

(
h(X1:�

t+1, �t,!t)  . . .  h(X�:�
t+1, �t,!t) if constrained problem

f(X1:�
t+1)  . . .  f(X�:�

t+1) otherwise

7 Xt+1 =

µX

i=1

wiXi:�
t+1 = Xt + �t

µX

i=1

wiUi:�
t+1 // recombine µ best candidate solutions

8 Ksucc =

8
><

>:

P�
i=1 1{h(Xi

t+1,�t,!t)h(Xj:�
t ,�t,!t)}

if constrained problem
P�

i=1 1{f(Xi
t+1)f(Xj:�

t )} otherwise

9 zt =
2

�

✓
Ksucc �

�
2

◆
// compute success measure

10 qt+1 = (1� c�)qt + c�zt

11 �t+1 = �t exp

✓
qt+1

d�

◆
// update step-size

12 pt+1 = (1� cc)pt +
p

cc(2� cc)µeff

✓
Xt+1 � Xt

�t

◆
// cumulation path for CMA

13 Ct+1 = (1� c1 � cµ)Ct + c1pt+1p
|
t+1 + cµ

µX

i=1

wi

✓
Xi

t+1 � Xt

�t

◆✓
Xi

t+1 � Xt

�t

◆|

// update covariance matrix
14 if constrained problem

15 �t+1 = max(0, �t + !tg(Xt+1)) // update Lagrange factor

16 !t+1 =

8
><

>:

!t�
1/4 if !tg

2
(Xt+1) < k1

|h(Xt+1,�t,!t)�h(Xt,�t,!t)|
n

or k2|g(Xt+1)� g(Xt)| < |g(Xt)|
!t�

�1 otherwise
// update penalty factor

17 Xj:�
t+1 = Xt + �tUj:�

t+1 // update jth best solution
18 t = t+ 1
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(fdiff pow), and the Rosenbrock function (frosen), with one linear inequality constraint.
The functions are defined in Table 1. We consider the case where the constraint is ac-
tive at the optimum xopt, i.e. g(xopt) = 0. We choose the optimum to be at xopt =

(10, · · · , 10)| and construct the constraint function, g(x) = b|x + c, so that the KKT
stationarity condition is satisfied at xopt with �

opt

= 1. Therefore,

b = �rxf·(xopt)
| and c = rxf·(xopt)xopt ,

for each function. Note that all considered functions are differentiable at xopt = (10, · · · , 10)|.

Name Definition
f↵

sphere(x)
�
1
2

Pn
i=1 x2

i

�↵

felli(x) 1
2

Pn
i=1 ↵

i�1
n�1 x2

i

Name Definition
fdiff pow(x)

pPn
i=1|xi|2+4 i�1

n�1

frosen(x)
Pn�1

i=1

�
10

2
(x2

i � xi+1)
2
+ (xi � 1)

2
�

Table 1: Definitions of the tested functions, where fsphere := f1

sphere.

For the step-size and the covariance matrix adaptation, we use the Python imple-
mentation of CMA-ES whose source code can be found at [1], with the default param-
eter setting detailed in [6]. We run the algorithm 11 times in n = 10, with X

0

sampled
uniformly in [�5, 5]n, �

0

= 1, �
0

= 5, and !
0

= 1. The results are presented for one
run in Figures 1 (fsphere, f2

sphere, and f0.5
sphere) and 2 (felli with ↵ = 10

2, 106, fdiff pow, and
frosen). On the left column of each figure are graphs of the evolution of the distance
to the optimum ||Xt � xopt||, the step-size �t, the distance to the Lagrange multiplier
|�t��

opt

|, and the penalty factor !t in log-scale. On the right column of the figures are
graphs representing the evolution of the coordinates of the mean vector Xt.

Graphs on the right column of Figures 1 and 2 show the overall convergence of the
algorithm to xopt. We also observe linear convergence of Xt to xopt, as well as linear
convergence of �t to �

opt

and �t to 0 (left column of Figures 1 and 2). Moreover, ||Xt�
xopt||, |�t��

opt

|, and �t decrease at the same rate. On the other hand, the penalty factor
!t is observed to converge to a stationary value after a certain number of iterations. We
sometimes observe a stagnation in graphs of kXt � xoptk due to numerical precision.

The largest convergence rate (when excluding the initial adaptation phase) is ob-
served on fsphere and the smallest one on f0.5

sphere, where there is a factor of approxi-
mately 1.5 between the two convergence rates. However, there is some variance in the
empirical convergence rate. In particular, on 11 performed runs we observe the highest
variance in the empirical convergence rate for felli with ↵ = 10

6, fdiff pow, and frosen.
On felli with ↵ = 10

6, fdiff pow, and frosen, we observe a stagnation of Xt in the
early stages of the algorithm (left column in Figure 2). The reason is that the adaptation
of the covariance matrix takes longer on ill-conditioned problems. This explains the
slow convergence of some coordinates of Xt to 10 (right column in Figure 2). Once the
covariance matrix is adapted, the convergence occurs.

When comparing 11 single runs of Algorithm 1 to the (1 + 1)-ESs with augmented
Lagrangian in [3,4] (not shown for space reasons) on constrained fsphere, felli (in n =

7



10), it appears that on fsphere, Algorithm 1 needs approximately up to 1.5 times more
function evaluations than algorithms in [3,4] to reach a distance to the optimum of 10�4.
On felli with ↵ = 10

2, however, Algorithm 1 is faster and needs approximately 1.3
times less function evaluations to reach the same distance, with ↵ = 10

6, Algorithm 1
is around 167 times faster to reach a target of 15 (this large difference is due to the
adaptation of the covariance matrix).

Fig. 1: Single runs of (µ/µ
w

,�)-MSR-CMA-ES with augmented Lagrangian on fsphere
(top row), f2

sphere (middle row), and f0.5
sphere (bottom row) in n = 10. The optimum

xopt = (10, · · · , 10)|. Left: evolution of the distance to the optimum, the distance to
the Lagrange multiplier, the penalty factor, and the step-size in log-scale. Right: evolu-
tion of the coordinates of Xt.

5 Discussion

Linear convergence is a key aspect of ESs in both unconstrained and constrained opti-
mization scenarios. As stated in [3], the minimum requirement for a constraint handling
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Fig. 2: Single runs of (µ/µ
w

,�)-MSR-CMA-ES with augmented Lagrangian on felli
with ↵ = 10

2 (first row), felli with ↵ = 10

6 (second row), fdiff pow (third row), and
frosen (fourth row) in n = 10. The optimum xopt = (10, · · · , 10)|. Left: evolution of
the distance to the optimum, the distance to the Lagrange multiplier, the penalty factor,
and the step-size in log-scale. Right: evolution of the coordinates of Xt.

ES is to converge linearly on convex quadratic functions with a single linear constraint.
On the other hand, an algorithm for constrained optimization should be able to tackle
ill-conditioned problems. Having that in mind, we proposed a (µ/µ

w

,�)-CMA-ES with
an augmented Lagrangian approach for handling one inequality constraint, where the
choice of the augmented Lagrangian constraint handling was motivated by the promis-
ing results of its implementation for the (1 + 1)-ESs with 1/5th success rule in [3,4].
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Moreover, we showed that our algorithm–as well as (1 + 1)-ESs with augmented La-
grangian constraint handling in [3,4]–is an instance of a more general framework for
building an adaptive constraint handling algorithm from a general adaptive algorithm
for unconstrained optimization.

Experiments on linearly constrained convex quadratic functions, as well as ill-conditioned
functions (including the ellipsoid and Rosenbrock functions), showed linear conver-
gence of our algorithm to the unique optimum of the constrained problem.
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