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Abstract: To study and understand the importance of Internet of Things-driven citizen science (IoT-
CS) combined with data satisficing, we set up and undertook a citizen science experiment for air
quality (AQ) in four Pakistan cities using twenty-one volunteers. We used quantitative methods to
analyse the AQ data. Three research questions (RQ) were posed as follows: Which factors affect CS
IoT-CS AQ data quality (RQ1)? How can we make science more inclusive by dealing with the lack
of scientists, training and high-quality equipment (RQ2)? Can a lack of calibrated data readings be
overcome to yield otherwise useful results for IoT-CS AQ data analysis (RQ3)? To address RQ1, an
analysis of related work revealed that multiple causal factors exist. Good practice guidelines were
adopted to promote higher data quality in CS studies. Additionally, we also proposed a classification
of CS instruments to help better understand the data quality challenges. To answer RQ2, user
engagement workshops were undertaken as an effective method to make CS more inclusive and also
to train users to operate IoT-CS AQ devices more understandably. To address RQ3, it was proposed
that a more feasible objective is that citizens leverage data satisficing such that AQ measurements
can detect relevant local variations. Additionally, we proposed several recommendations. Our
top recommendations are that: a deep (citizen) science approach should be fostered to support a
more inclusive, knowledgeable application of science en masse for the greater good; It may not
be useful or feasible to cross-check measurements from cheaper versus more expensive calibrated
instrument sensors in situ. Hence, data satisficing may be more feasible; additional cross-checks
that go beyond checking if co-located low-cost and calibrated AQ measurements correlate under
equivalent conditions should be leveraged.

Keywords: Internet of Things (IoT); Citizen Science (CS); data quality; data satisficing

1. Introduction

Science seeks to objectively understand and explain the events of nature in a repro-
ducible way. As noted by Silvertown [1], the first scientists were not paid professionals
but amateur scientists, an early type of citizen scientist. Currently, modern professional
scientists to date carry out the vast majority of scientific research and development. How-
ever, since the mid-1990s, a new form of amateur Citizen Science (CS) has been proposed
by Irwin [2] that works in collaboration with, yet is usually led by, professional scientists,
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such that: first, science can be responsive to citizens’ concerns and needs; and second, that
citizens themselves could produce reliable scientific knowledge.

According to Cooper and Lewenstein [3], there are two different facets to Irwin’s
definition [2]. The first emphasises the responsibility of science to society, which is termed
“democratic” citizen science. The second facet is “participatory” citizen science, as a practice
in which people mostly contribute observations or efforts to the scientific enterprise. A
comprehensive review of CS terminology is given in [4]. However, the term CS is commonly
attributed to Irvin in 1995 as one of the first researchers to more clearly explain and explicitly
promote it. Vohland et al. [5] state that the term CS was used even earlier in 1989 by the
Massachusetts Institute of Technology (MIT). The author of [5] also contends that CS
needs to encompass and promote an open and broad understanding of multiple research
practices and participatory activities that take place when people who are not tasked with
carrying out research as part of their paid work get involved in it. They also assert multiple
definitions are essential for the development of CS, including its enabling frameworks,
mechanisms, and the different needs of specific applications.

Pelacho et al. [6] raise the issue of who governs and manages the fruits of labour
resulting from CS. It often seems that it is more professional scientists, authorities and
businesses rather than citizens that benefit most from CS. Pelacho et al. [6] propose to
manage science as a commons, a form of community management of a shared resource.
The commons results from a collaborative, open, and experimental process that necessarily
involves a community of practice as a group of people who share a concern or a passion for
something they do and learn how to do it better when they interact regularly.

There are different drivers for citizen science, including but not limited to:

• Aid scientists through citizens by providing wider, more temporal-spatial measurements of
the physical and natural world than scientists’ conventional approaches, e.g., using
mobile air quality monitoring rather than that based upon networks of static, sparse
measurement stations [7];

• Environment monitoring equipment may be prohibitively expensive to be used to capture
temporal-spatial heterogeneity and identify environment hotspots leading to the
development of robust real-time strategies for exposure control [8]—hence the need
for low-cost sensors (LCS) such as IoT-based approaches;

• The lack of scientists and specialised resources to monitor the physical and natural world,
especially in developing countries [6];

• Serve the education and outreach goals to widen, make more inclusive citizens’ participa-
tion in science [9].

Whilst some applications of citizen science can be performed without any technology,
i.e., through using human observation, technology has become an important enabler for
citizen science [1], including the use of an Internet of Things (IoT), where a wider range of
environment measurement devices that includes low cost and low resource devices can
be used to instrument, sense and exchange data about the environment. In this paper, we
focus on a subset of CS, on the use of IoT-driven or IoT-enabled CS (IoT-CS).

A further focus is on the challenge of producing good quality data through IoT-CS.
Although data quality is a well-known general concern for the CS, much of the analysis
of data quality issues for CS is quite high-level and quite generic, in contrast to the focus
here. It is often taken for granted that CS data quality should attain the level of professional
scientist data quality, e.g., to ascertain how well the sensed state of the environment meets
regularity standards or norms [3]. In brief, (see the related work in Section 2 for more
details), there is a range of reasons why this is somewhat unrealistic for specific types of CS
to achieve, such as IoT-CS. This includes a lack of CS training and the use of lower quality
equipment; measurements may occur in more varied less-defined conditions that affect
instruments’ operations.

So, if the main decision or outcome by scientists is the CS data quality is such that it
can validate the state of the environment being normal or not to meet regulatory concerns,
this can be hard to achieve by CS [10]. This aim may be far less of a concern for CS than for
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professional scientists. Thus, we introduce the concept of satisficing, a decision-making
strategy that entails searching through the available alternatives until an acceptability
threshold is met [11]. For CS, a relevant optimal solution may not be able to be determined
because many natural problems are characterised by computational intractability or a lack
of information. Hence, the main novel contributions of this paper are:

1. Analysis and classification of surveyed CS projects, especially with respect to the CS
equipment used.

2. Analysis of IoT-enabled CS issues, in part based upon a field study to determine AQ
across four different cities in Pakistan.

3. Recommendations for IoT-enabled CS, data satisficing and deep CS.

It is vitally important to monitor the physical environment scientifically, with a focus
on certain air pollutants that are relevant to both industrial and residential areas. In a
country like Pakistan, where a large part of the population is concentrated around the
largest cities, the density of air pollutants can reach unhealthy to hazardous levels. This is
partly due to the tropical climate, particularly in the cities where this study was conducted.
These cities experience very little wind and rain in autumn and winter, and due to a
temperature inversion in November, various pollutants mix with the atmospheric humidity
creating a layer of thick ‘smog’ that covers the entire city [12]. There are too few scientists
in the world, let alone in a low/middle-income country like Pakistan that have the skill
required to monitor and study these conditions. In these circumstances, it would be helpful
to motivate and equip citizens to join in with the monitoring and data collection process.
This would greatly improve the temporal–spatial density of the data and would also
help create much-needed awareness about the importance of air quality and pollutants in
the atmosphere.

To study and understand the importance of IoT-driven citizen science (IoT-CS) combined
with data satisficing, three research questions (RQ) were posed in this study as follows:

RQ1—Which factors affect CS IoT-CS data quality in the context of AQ?
RQ2—How can we make science more inclusive by dealing with the lack of scientists,
training and high-quality equipment through deploying IoT-CS?
RQ3—Can a lack of calibrated data readings yield otherwise useful results for IoT-CS AQ
data analysis?

The remainder of this paper is organised as follows. The next section, Section 2,
surveys related work. Section 3 presents our method and results. Finally, Section 4 presents
the conclusions and recommendations.

2. Related Work

The focus of this survey is as follows: To highlight the challenges of using LCS IoT
devices as scientific instruments to undertake CS applied to AQ monitoring; to better
understand what we can do when the resulting data quality of CS is variable; to more
appropriately frame how this affects the decisions about its impact and the implications of
its outcomes. It is well-known that a major challenge with CS is that amateur citizens can
produce lower quality data than professional scientists. Rather than classify and analyse CS
projects as a single group or by science topic, the equipment used for CS and the challenges
in using LCS IoT equipment for CS to generate quality data were considered. Hence, we
first postulated a taxonomy of CS equipment, as shown in Figure 1.

Figure 1 describes three basic types of equipment used for CS: humans as sensors or
no instrument human observations, LCS versus standard scientific instruments. Another
dimension is that these range from simple to Do It Yourself (DIY) IoT instrument creation to
the use of standard, calibrated, scientific instruments. A further dimension is the use of am-
ateur or less-well trained instrument operators versus trained or scientific operators. This
is in contrast to a coarse-grained classification of data quality errors by human participants
or from the protocols being used for CS [13]. This taxonomy highlights that different types
of CS instruments can introduce different challenges, including those for data quality that
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govern the outcomes and decisions that can be drawn from that data. Projects employing
IoT systems of sensors for monitoring the environment require a quantitative analysis of
uncertainties for data quality estimates. While analysing the data quality of projects on
environmental monitoring, environmental factors or operating conditions also need to be
considered as these can impact the performance and efficiency of the sensors. The focus of
this survey is on LCS IoT-CS systems and deployment issues therefrom and data quality.
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If we classify CS projects with respect to the equipment they use, the subset of IoT-CS
projects tends to have a specific set of additional challenges, e.g., as surveyed in part by
Kumar et al. for AQ IoT projects [8]:

• Sensor calibration and reliability: Some cheap sensors have no defined calibration to
relate their given voltage outputs to measurement units. Measurements may need to
be evaluated under a range of ambient environmental conditions, e.g., temperature
and humidity, as these affect the AQ measurements. Hence, cross-checks of LCS
with calibrated instruments in the lab or under only a few field conditions need to be
considered where feasible. Relevant metrics for the comparison of LCS systems against
reference systems should be considered. Ref. [14] highlighted the most cost-effective
LCS that could be used to monitor air quality pollutants versus reference systems
with a good level of agreement represented by a coefficient of determination R2 > 0.75
and a linear slope of the regression line between these, close to 1.0. Note that R2 is
overly dependent on the range of reference measurements, the duration of the test,
and the season and location of the tests, meaning that changes in R2 are not completely
dependent on LCS or their calibration methods [15]. Note, also that citizens would
also need a business, local authority or scientific partner that has access to a calibrated
instrument, as these are expensive to buy. Periodic recalibration may also be needed
as the sensitivity of sensors can change over time.

• Sensor sensitivity versus selectivity: A limitation in improving the sensitivity of the AQ
sensors is that some (AQ) sensors may be marketed for one pollutant but exhibit cross-
sensitivity to other pollutants or contaminants. This is especially an issue for gases
at low concentrations, in the parts per billion (ppb) range. Such contaminants can
contribute to a biased response of the sensors, thereby deteriorating their selectivity.

• Sensor stability and response time: Sensing (AQ) mechanisms can involve quite complex
chemical reactions, e.g., oxidation and reduction of the sensing materials and adsorp-
tion of oxygen and other chemical species on their surface, and catalytic reactions
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between the adsorbents. As a result, the performance of these sensors is sensitive to
their operating conditions. A waiting time may be needed for sensors to stabilise, and
if the conditions change, i.e., sensors are moved, further stabilisation times are needed
before reliable measurements can be undertaken.

• Slow changes in environment state: The physical world often changes slowly, from
minutes to hours to days or even longer, in part because of its mass, leading to
biological, chemical and physical phenomena that also change slowly, including
human health effects. Short periods of measurement do not capture such changes.
Measurement equipment may not be able to be safely left and maintained (powered
up) to attain such measurements. Note also that some standardised measurements for
the USA AQ Index (AQI) require taking long periods of measurements from several
hours to a day to get a standard average value [16]. It is also difficult to quantitively
ascertain that isolated short exposure periods of less than a day to some potentially
harmful environment states are, in turn, harmful to humans and other life forms too.

• Variable operating conditions: e.g., temperature and humidity, can affect the operation
of (AQ) sensors, and these vary temporally and spatially [17]. These may also be
affected by artificial hot spots, e.g., machines generating outbursts of hot or humid air
leading to noisy data. Hence such operating conditions should also be recorded too.
These conditions include location coordinates, location context as the type of location,
indoors versus outdoors, proximity to any suspected pollution sensors, the height of
sensors above ground level, if and how the human holding the sensor is moving or
not when sensing, time and weather conditions.

• Resilience: IoT sensor systems need to be designed to operate reliably under a range of
diverse environmental conditions and to be moved.

• Equipment costs: the higher the IoT-CS equipment cost, the more exclusive the group of
citizens that can afford to procure it to use, perhaps excluding low-income neighbour-
hoods that may be more at risk of the effects of poor physical environment quality.

• Maintenance or operational costs: These may be considerable, e.g., for calibration, bat-
tery recharging or replacement, data management, analysis, and visualisation. The
maintenance costs may easily exceed the cost of the actual IoT CS equipment itself.

• Longevity of components before replacement. Note, AQ sensors could have a working
time of the order of six months to a couple of years at most.

• Trust by the scientific community and decision-makers as they may not be prepared to
embrace such technology.

• Data quality of the monitored phenomena needs to be addressed effectively and trans-
parently to maximise the benefit to scientists, the public and authorities to help make
more informed decisions. However, it may not be simple to just automatically collect
and publish the data. This is because of the issues concerning:

◦ Differences in conditions of context, such as location [15], time, temperature
and humidity, between different instruments’ measurements.

◦ Labelling the data with the measurement operating conditions (measurement
context) to help understand the meaning of the data;

◦ Pre-processing or filtering the data before publishing;
◦ Standardising the data in terms of common measurement units, data format, etc.

• Data dissemination issues of the monitored phenomena need to be addressed effectively
and transparently:

◦ Anonymising any personal context for the data;
◦ Visualising and providing understandable commentaries or interpretations of the

data to citizens.

The focal point of this study is first to analyse the limitations of how to improve
scientific instrument use and the quality of the data-driven science within IoT orientated CS
projects applied to AQ studies. In addition, we selectively analyse applications somewhat
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wider than AQ studies to discuss the wider issues of using data-driven science within IoT
orientated CS projects for deep CS.

In the CitiSense project [18], an AQ IoT-CS that sensed carbon monoxide (CO), nitrogen
dioxide (NO2), and ozone (O3) was trialled by 16 mobile commuters. The main objective
was to investigate the temporal-spatial distribution of standardised readings of AQ to
enable the identification of pollution hot spots and microenvironments. Kriging was used
to interpolate incomplete data. The main finding was that CitiSense could provide more
details about the AQ distribution than that published by a standard environment agency.
Data quality issues were not discussed much. However, sensor calibration was performed
in a Lab, and the need for periodic calibration was noted.

In [19], an AQ IoT-CS consisting of multiple microcontroller unit (MCU) boards was
combined with LCS to sense dust concentration (as an indicator of air quality), noise,
temperature, humidity, and pedestrian count as citizens walked along roads in a city. The
main findings were that: more citizen training could improve the reliability and accuracy
of the CS sensor data collected; context data about key events that affect the data quality
would be useful to be recorded to provide a linkage analysis of cause to effect.

In [20], the focus was on mobile AQ sensing based upon an Arduino MCU board
that is integrated with sensors to measure CO (Volatile Organic Compounds (VOC), O3,
NO2, gasoline and diesel exhaust, temperature, humidity and location via GNSS (Global
Navigation Satellite Systems). This considered that cross-contamination and changing
environment conditions (temperature and humidity) affect the gas concentration. It also
enclosed the measurement device in a box with a regulated airflow to mitigate against
movement changing the airflow and gas density. They considered the limited nature of in
lab sensor calibration and considered infield calibration through cross-comparing multiple
sensors’ readings.

Some researchers have focused in particular on three main techniques for LCS cal-
ibration: sending a calibrated measurement value or signal periodically to an in-field
sensor (operating in similar conditions); requiring citizens to self-calibrate sensors using
chemicals (gases) at known concentrations; co-locating LCS with a standard reference cali-
brated device, and then cross-comparing measurements [21]. A few studies have compared
co-located LCS against calibrated instruments, e.g., Castell et al. [22] compared multiple
instances of an LCS IoT AQ device against a calibrated device. There was a reasonable
agreement for NO and particles on the order of 2.5 µm or less (PM2.5), but less so for NO2,
O3, PM10 and CO. Another interesting finding was the response of different instances of the
same type of IoT AQ varied concerning changing operating or environmental conditions.
Ref. [23] undertook a comparison of a PM LCS to a calibrated one and noted that the
agreement between the two varied concerning particle size.

Some other IoT AQ platforms or projects give very little technical information in
published papers about the components used, such as sensors, the data acquisition board,
data quality issues, sensor calibration, etc., e.g., OpenSense [24] and ExposureSense [25].

Although the focus of this paper is predominantly on CS combined with IoT applied
to the AQ domain, rather than on a survey of CS in general, we nevertheless highlight
some other CS work that comments on equipment usage, operation and data quality issues.
Others specify the equipment but say little about data quality, e.g., [26,27] proposed that
user studies are fully-integrated into CS to aid technological implementations. However,
these papers say little about the quality of the science, sensors used and data. In contrast,
Ref. [28] considers how data quality could be improved in CS projects, albeit applied to
weather rather than AQ measurements. They propose good practice guidelines concerning
six aspects such as (a) giving equipment operational instructions in an accessible language,
avoiding technical terminology; (b) providing technical details about different devices and
their accuracy; (c) asking citizens to report contextual information such as the instrument
they used and the operational conditions; (d) undertaking checks to enhance data quality
during data analysis such as data cleaning to remove outliers; (e) comparing data points
reported from multiple citizens’ instruments in the same geographic location (postcode)
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to identify the degree of agreement amongst them. The more accurate the data, the more
likely those points should overlap; (f) comparing citizens’ recordings to the official weather
data for a specific area and identifying the degree of agreement or distance between the
recordings. We discuss how such good practice guidelines can be leveraged to improve
data quality for air quality measurements in Section 4.

To the best of our knowledge, none of the surveyed IoT-CS systems provides sufficient
evidence that they thoroughly meet these challenges to attain sensor measurements so that
they are of a high quality similar to those of standardised, calibrated, scientific instruments.
This agrees with the findings of others, e.g., [29]. Hence, rather than having an IoT-CS
project goal for citizens to be able to undertake high-quality measurements using LCS in
variable operating conditions to determine the environmental quality, e.g., the AQ level
according to a standard, we focus on their ability to satisficing as a goal.

To answer RQ1, our survey of related work indicates the multiple dimensions and
complexity of sensing needed to better understand the various factors that affect IoT-CS
data quality of AQ monitoring. In this pilot study, we also adopted good practice guidelines
to promote higher data quality in CS studies in practice as proposed by [24]. Additionally,
we also proposed a classification of CS instruments to help better understand the data
quality challenges when using different types of CS scientific instruments.

3. LCS IoT-CS AQ Study in 4 Cities

A pilot study for a project called Scientific Analytics of Green Everyday Internet of
Chemistry Things (SAGE-IoCT) was researched, developed and then evaluated as part
of a wider funded initiative called the UK Global Challenges Research Fund that is in
part related to the United Nations Sustainability Development Goals (SDG) for 2030, in
particular, Goal 11: Sustainable Cities and Communities [30]. Based upon the analysis
of related work for IoT-CS projects, in the pilot study, we could not support citizens to
undertake standardised AQ measurements to relate to the standard AQI and thus classify
their AQ to standard levels from good to hazardous. This was mainly due to practical
constraints to check our AQ LCS against calibrated instruments and the otherwise need for
citizens to take AQ measurements over longer periods to get a long-enough averaged value
according to the standard. First, the study goals were defined in terms of what to satisfice:

• Raising awareness of temporal-spatial variations in the environment state in the habitat
close to where someone lives or works that has meaning to them, e.g., that they could
observe high versus low temporal-spatial variations in AQ using an AQ LCS IoT kit;

• Determining if increasing proximity to artificial sources of pollution decreases the environ-
mental quality;

• Providing some preliminary field evidence that there may be some citizen-driven issues
and concerns about their local environmental state warranting the need for addi-
tional, more rigorous standardised measurements to confirm or refute the IoT-CS
LCS measurements.

Second, the method and process to achieve the goals were defined. Third, the study
was undertaken, and then its results were evaluated. This pilot project had a limited budget
of £14k and a time-span of six months. Although we accept that user engagement and
user experience are important [31], it was not the focus of our project, given that we only
had access to limited resources to support this pilot project. We recruited 21 participants,
gender-balanced, who were students at Pakistan universities. In terms of the DITO (Doing It
Together Science) project’s escalator framework for public engagement [31], we position our
participants at Level 6, as this requires regular data collection and analysis by participants.

3.1. Apparatus

This kit was based upon a low-cost Arduino Uno MCU board for local sensor data
acquisition, extended with a Wi-Fi extension board called a Wi-Fi shield to exchange the
data with a data server and a sensor shield to ease the connection of multiple AQ sensors,
plus a battery power pack to power all these (for 5 h or so). The gas sensors included: a
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dust sensor (Grove PPD42NS) to measure Particle Matter (PM)—size not specified, but
the sensor is responsive down to 1 µM; a combined CO and NO2 (Grove Multichannel
Gas) Sensor and an SO2 (Logele G123) sensor. An overview of the architecture of the kits
is shown in Figure 2. 20 of these IoT CS AQ kits were assembled and tested in terms of
responsiveness. They reacted as expected to short artificial stimuli, such as burning a
candle or spraying air fresheners or perfume nearby. Such stimuli experiments were also
proposed at the workshop such that participants could replicate these after the workshop
(see Figures 3–5). These readings (if the sensors were calibrated) indicate that the air quality
when spraying perfume is hazardous for a short time. This agrees with other studies that
indicate perfume sprays contain VOCs that are considered harmful [32]. Note also that
VOC measurements are not defined within standard AQIs. This may be because VOCs may
occur more problematically indoors, whereas most standard AQ instruments are situated
outdoors. Harmful VOCs may have low concentrations, and detrimental health symptoms
may be slow to develop.
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3.2. The Workshop

Next, citizens were recruited and invited to attend a half-day IoT-CS AQ monitoring
workshop. This citizen science project involved volunteers that were mainly students but not
experts in environmental science who showed some common interest concerning the need
to monitor air quality because it also impacts human health. In terms of researchers directly
leading the study, it was not a multi-disciplinary team but composed of faculty members who
had a computer science engineering background rather than an environment science one.

At the workshop, participants received some background information about AQ
monitoring, e.g., to discuss sources of bad AQ indoors and outdoors as examples of where
and what causes AQ changes. They also received hands-on training on how to use the
IoT kit. We proposed that the main goal of the study was to satisfice that they could
take AQ measurements in their surroundings and discover average, high and low spots
of AQ readings, temporally and spatially. Participants were also asked to note, where
possible, the sensor operational conditions such as location coordinates, time, temperature
using additional devices and note the type of location (e.g., indoors, outdoors at a busy
crossroads), and what, if any, human activities affected the AQ occurred in the vicinity.
Participants took AQ measurements in four different cities in Pakistan, within one major
region within each city: Islamabad (the H-12 region of the city where NUST is located,
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Rawalpindi (New Lalazar region), Taxila (the region where UET is located) and Wah
(Cantonment region, often abbreviated to Wah Cantt).
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In terms of the opportunistic versus participatory sensor data acquisition process we
used in this pilot study, once citizens left the workshop, we adopted a hands-off approach
to how citizens decided to collect the data, how they exchanged data with us (we set up no
central public server), which AQ data they collected, in which physical world context they
collected it, where they went when they collected the data and for how long they collected
the data. We wanted to empower citizens to have the choice and control to collect the data
on how, where, and when they wanted to.

The minimum time for data collection was 8 min, and the maximum was 2.5 h.
Although we said we would not aim to present standardised measurements for the reasons
given previously, we did use the AQI standards to help interpret the results even though
our input data for analysis may not be of high data quality. Essentially, this meant that
we made a relative comparison to compare different readings temporally and spatially,
interpreting the values of our measurements concerning each other and concerning the
standards even though there may be a response bias, non-linear response, offset errors etc.,
when using our LCS.

In response to RQ2, user engagement workshops such as the one described in this
section can be an effective method of making citizen science more inclusive. The de-
sign, organization and content of these workshops can directly influence the interest and
motivation of the attendees to participate in CS projects.

Each of the 21 attendees of the workshop was given a survey questionnaire. The
workshop was initially assessed by the participants on a scale of 1 to 5, 1 being ‘insufficient’
and 5 being ‘excellent’. Of these, 62% of the participants assessed the workshop as ‘excel-
lent’. Furthermore, 100% of the participants thought that the workshop met the program
objectives, and 95% were confident about the knowledge and information that they had
gained on air quality monitoring. Moreover, on a scale of 1 to 5, 50% rated their level of
enjoyment working with the Arduino as 4 (Good), and 52% rated their experience of AQ
monitoring as 5 (Excellent).

The volunteers were asked about their interest in taking part in a citizen science-based
AQ monitoring project before the workshop and then were asked once again after the
workshop. Before the workshop, 43% explicitly expressed their interest. The rest were
somewhat interested in AQ monitoring or citizen science in general. After the workshop,
this number increased to 78%, while the remaining volunteers expressed some interest in
working on some kind of CS project in future.

The results of this survey imply that reaching out to citizens with the intent to impart
information and to equip them with the basic skills and means would help to make science
more inclusive. By giving opportunities to individuals with no (physical, geo) science
background to take part in scientific activities of local interest, tasks such as data collection
can be performed by ordinary citizens if proper training is given, and some motivation as
to why to take part in CS is given.

3.3. Results

Some example results of the analysis that participants undertook to demonstrate dif-
ferences in the air quality in four different cities of Pakistan in the time interval 1700–2100 h
during the period from 19 March 2018 to 21 March 2018 are presented and discussed below.
Outdoors, the air quality level in all four selected cities was hazardous for the same period
(Figure 6).

Indoors, the air quality in Taxila and Rawalpindi was hazardous compared to that of
Islamabad (Figure 7) during the same period. The major AQ pollution contaminants seem
to be dust and CO. Figure 8 shows the AQI of the cities of Islamabad, Rawalpindi, Wah
and Taxila for some overlapping periods between 6:30 p.m. and 11:00 p.m.
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In response to RQ3, it is evident from Figures 6–8 that satisficing/uncalibrated readings
can provide some useful results. The AQI values in all three figures are within the normal
range and provide a useful comparison of the cities in question. Though historical AQ data
for all four cities was not available, Figure 7 shows the relative AQI that one would expect,
with Islamabad being the city that experiences more wind and rain and less traffic than
Rawalpindi and Wah Cantt should have a relatively lower AQI. When the AQI for Wah
Cantt is compared versus Taxila (Figure 8), the AQI in Taxila significantly reduces from
6:30 to 10:30 p.m., while it seemed to remain constant in Wah Cantt over the same period.
Our hypothesis here is that because UET/Taxila is not situated close to a main arterial road,
unlike Wah Cantt, its traffic does drop as the evening wears on, leading to a drop in the
AQI, unlike for Wah Cantt. Additionally, note the challenges in undertaking voluntary
distributed CS in the wild. As this project had minimal resources, it could only supply one
researcher to oversee the study. She was not able to oversee the collection of the data in
four different cities by voluntary CSs at the same time. This led to data being collected over
different periods in different cities despite directions to the contrary and made it difficult to
compare AQI for Islamabad and Rawalpindi versus the other two cities. Performing CS
with a low budget is especially challenging. Though the data collected in this study is not
sufficient to make a perfect comparison, it does still satisfice in terms of identifying some
useful insights concerning a comparison of the relative AQIs in these cities.

Moreover, the Pearson Correlation Coefficients based on N = 75748 data entries were
calculated between each outdoor pollutant. The highest correlation was between CO and
SO2 (r = 0.874), which is probably because both gasses are primary and secondary vehicular
emissions, respectively. A relatively low correlation, yet significant (r = 0.17) was found
between CO and NO2. Though NO2 is also a secondary vehicular emission, it reacts with
oxygen in the presence of sunlight to produce ground-level ozone, ultimately reducing its
overall presence. It was also observed that NO2 does not correlate with SO2 (r = 0.005).
Dust had smaller but significant correlations with SO2 (r = 0.71), CO (r = 0.82) and NO2
(r = 0.44). This initial statistical analysis provides useful information about the presence of
different pollutants and their interaction with one another.

To address RQ3, it is evident from the results that satisficing/uncalibrated readings can
provide some useful results. The AQI values in Figures 6–8 are within the accepted range,
and hence, a useful comparison of these four cities’ AQ readings at any given time can be
made. An underlying assumption by professional scientists is that any data supplied by
citizens to be processed via their input (opportunistic sensing) should be of sufficient quality
to be comparable and aggregable. This is even though the equipment used by citizens is
often under more variable, less controllable, in the wild operating conditions and could
be undertaken with more variable (lower?) quality scientific equipment, e.g., LCS IoT-CS
equipment. Hence, it is proposed that at a base level at least, a more feasible objective is that
citizens satisfice that relative AQ measurements can be made to identify temporal–spatial
variations in periods and regions that they frequent that are meaningful to them.

3.4. Discussion: The Need for Deep Citizen Science

In most CS studies, such as this one, citizens behave more as data collectors data
consumers. The participants apply and gain only a somewhat shallow knowledge of
science, shallower citizen science. In these CS studies, even though there may be a focus
on user studies where citizens also act as co-creators of the study [27,28], the study design
often limits citizens’ ability to deepen their knowledge of science, to become better and
more knowledgeable amateur citizen scientists. Fostering a deep citizen science approach,
defined as enabling an ability to deepen citizens’ understanding and quality of science, is
needed. This can help address the shortfall of a very small proportion of trained professional
scientists in the general population. This can also help drive a more inclusive knowledge
and application of science en masse for the greater good of the local community and society
as a whole.
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The primary goal of deep citizen science is where through citizens’ local application
of science, e.g., during CS, they deepen their knowledge and quality of science. This can
be facilitated through various means as follows. A deeper user engagement in CS can
be modelled and fostered by considering the escalator framework for public engagement
from [31]. Although there is a link between deeper, more frequent participation in CS at
the top end of the escalator and science awareness, participants could still act more as
(frequent) spectators rather than actively increasing their science awareness and knowledge.
This is borne out by [6], who comments that many hours of volunteering may be spent
to support the vast diversity of CS and crowdsourced projects where citizens contribute
by mass observations, while they are not necessarily deeply involved epistemically. CS
can help deepen the meanings, possibilities, and implications of cooperation, particularly
in science [6]. Further, openness in science will lead us to deepen the approach of the
commons leading to a knowledge commons where knowledge is considered to be a complex
ecosystem that operates as a common, shared resource that is digitally represented and can
be openly accessed [6].

The use of IoT-CS can help widen and deepen CS by widening the range of scientific
measurements via the use of low-cost DIY instruments. This can be a means of engaging
citizens in experiential and hands-on forms of learning, such as learning by doing. The
relevance of the science can be deepened via a stronger user context—a focus and awareness
of local, situated needs, conditions, and challenges. The data quality and its interpretation
can be deepened via data satisficing to help detect local variations and anomalies and via
automating the recording of the important measurement context. For example, for AQ,
this context can include location and time and meteorological data such as temperature,
pressure, humidity, wind and precipitation.

4. Conclusions

We classified CS studies not by the field of study but by the equipment used and
focused on IoT-(driven) CS, i.e., CS undertaken with IoT equipment.

Three research questions (RQ) were posed in this study to advance CS: What factors
affect CS and the interpretation of IoT-CS AQ data quality (RQ1)? How can we make
science more inclusive by dealing with the lack of scientists, training and high-quality
equipment (RQ2)? Can a lack of calibrated data readings yield otherwise useful results for
IoT-CS AQ data analysis (RQ3)? We addressed these as follows.

To address RQ1, our survey of related work indicates the multiple dimensions and
complexity needed to better understand the various factors that affect IoT-CS data quality.
To answer RQ2, user engagement workshops such as the one described in Section 3.2, can
be an effective method in making citizen science more inclusive that also train users to
operate the IoT-CS AQ devices more understandably. To address RQ3, it is evident from
the results (Section 3.3) that satisficing/uncalibrated readings can provide some useful
results and interpretation. An interesting open question raised in future directions of [4]
relevant to this article is who gets to decide what science consists of? Further to this, we
can add who gets to decide what quality of science is sufficient to fulfil some CS aims. This
question remains open.

4.1. Main Findings

In addition, our main findings were that:

1. IoT-CS can provide a versatile platform to experiment with multiple factors offering new
types of CS that would not otherwise be feasible. A moveable IoT-CS device means
that experimentation can be situated local to citizens, fostering strong ownership.
Incremental experimentation can then be used to provide a more relevant context to
the citizens involved, e.g., to find an individual’s norm, to detect (normal or abnormal)
variations about this, and to investigate local AQ change sources that affect the normal
environmental state.
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2. IoT-CS can raise awareness and broaden participation in science through the utility of
more cost-effective and affordable IoT.

3. A classification of CS instruments can help us to better understand the data quality challenges
when using different types of CS scientific instruments.

4. An analysis of the data shows that it has been possible to detect AQ differences and to make
an initial comparison. Hence, the analysis provides some insight into the indoor and
outdoor AQ within a city and between cities. However, from a CS point of view, this
knowledge could also help to highlight mitigating solutions, e.g., keeping windows
closed and less use of extractor fans may significantly improve AQ during a high-
dust season.

5. Adopting the good practice guidelines to promote higher data quality in CS studies proposed
by [28]: (a) We gave equipment operational instructions in an accessible language at
workshops; (b) we did not provide technical details about different devices and their
accuracy as it is far more complex to ascertain this for AQ data than temperature data,
and in our study, we only used one type of device; (c) we asked citizens to report
contextual information such as location, time but we needed to add more context
info, such as temperature, humidity and a more fine-grained spatial context such
as the spatial topology. However, for the latter, this could be very challenging for
citizens to define in such a way that could be automated, fused and correlated; (d)
we considered that removing outliers is not all that necessary since our goal is to
‘satisfice’, which was done. The AQIs calculated were all within the normal range, and
though we have no reference, they were also in line with the state of each city whose
data was available. Note also, given the size of the data, many outliers would have
cancelled each other out; (e) we did not compare data points reported from multiple
citizens’ instruments in the same geographic location (postcode) to identify the degree
of agreement amongst them because in our pilot study we had insufficient citizens
and instruments; (f) we did not compare citizens’ recordings to official AQ data for
the reasons given in recommendation 2, see below.

6. For IoT AQ use, the majority of studies focus on PM sized 1,2.5,10 microns and far
less on the other AQ indices of CO, NO2, O3, SO2 determined in many regional AQ
standards and regarded as hazardous to humans and other living things.

7. For IoT AQ use, very few studies consider the cross-correlation of changes in indi-
vidual AQ gases [14] as an additional cross-check of AQ changes to satisfy local AQ
change hypotheses.

4.2. Recommendations

Our main recommendations are:

1. A deep citizen science approach (Section 3.4) should be fostered to help address the shortfall of
a very small proportion of trained professional scientists in the general population to support a
more inclusive knowledge and application of science en masse for the greater good.

2. It may not be useful or even feasible to cross-check measurements from cheaper versus more
expensive calibrated instrument sensors in situ in some regions/locations for some CS studies.
Hence, data satisficing could be more of a focus if this occurs. This is because, in some
regions, calibrated instruments may not be deployed. For example, during our study
period, there were no available calibrated instruments operating in Rawalpindi, Taxila
and Wah. Even where calibrated instrument readings may be available, significant
variations in measurements due to distance may occur for physical phenomena such
as air quality, along with canyon effects. These may cause readings to be different
between two instruments that are not exactly collocated at the same time. Additionally,
note that for some physical phenomena, e.g., temperature, it can be far easier to check
than for others, such as air quality.

3. Additional cross-checks that go beyond checking if co-located LCS and calibrated AQ mea-
surements correlate under equivalent conditions should be leveraged to consider if IoT CS
AQ studies support local satisficing of expected AQ changes, such as: considering
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correlations: when measuring multiple AQ indices, how well these correlate to each
other [14], temporal correlations, e.g., carbon-based transport use should cause out-
door peaks in the morning and early evening; checking the normal responsiveness
of AQ sensors to well-known physical environment stimuli such as burning candles,
using air freshener sprays or perfumes (indoors) [33], as these can help to identify
potential faulty or very inaccurate sensors, etc.

4. Clearly state how similar the conditions and context are between LCS and calibrated instru-
ment measurements and consider how to model any differences between these, e.g., spatial
differences [17].

5. There is a need for multi-disciplinary input of scientists, technologists, designers and par-
ticipants through participatory design and thinking approaches to be able to address the
challenges of engagement and agency of empowerment to meet the opportunity of
sustainability of CS for informed change.

6. Citizens often require re-orientation, a mindset change, to improve their scientific undertakings,
i.e., to switch from the plug and play expectation when interacting with the digital
world to a longer setup and operation time, constrained operation and to realise the
slower changes of the physical world.

7. With engagement, a more local approach is needed to mitigate the influence of hazardous
findings that are found in more technical research articles so that they may be converted to
everyday activities.

8. To make the meaning of CS findings more accessible and understandable to the more general
public, both enhanced data and knowledge rendering techniques are needed.

9. For measurements to benefit local citizens, there is a need to develop techniques that map
to local satisficing CS criteria, highlighting local change factors.
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