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Abstract

The microscopic description of phases in strongly correlated systems such as the

fullerides (A3C60) is a challenge. In particular, how these strong interactions become

attraction leading to a superconducting state remains a mystery. Understanding the

mechanism(s) that drive(s) unconventional superconductivity is one of the most sought-

after goals in many-body physics and indeed very complex to solve.

The aim of this thesis is, firstly, to investigate the conditions in which pairing may

take place between two electrons in both body-centred cubic (BCC) and face-centred

cubic (FCC) systems, and secondly, to examine the possibility for the emergence of

a superconducting or superfluid state from paired electrons in three-dimensional (3D)

systems. Here, pair properties are studied both in the anti-adiabatic and adiabatic limits.

In the anti-adiabatic limit, we use a symmetrised approach, group theory analysis, and

perturbation theory to exactly solve the two-body problem and analyse the properties

of the electron pair. We also examine, using a continuous-time Monte Carlo algorithm

(CTQMC), the effects of retarded electron-phonon interactions on the pair properties

away from the anti-adiabatic limit. In the high-phonon frequency limit, the CTQMC

also serves as a validation check for the anti-adiabatic analytic result and vice-versa (with

both results showing perfect agreement).

Our result predicts that superfluidity can occur in BCC optical lattices up to a few

tens of nanokelvin for fermionic lithium-6 atoms. Additionally, we found that, in the

high-frequency limit, a paired state in an FCC lattice can be extremely light and small

as compared to paired states on other 3D lattices. Such superlight states are expected

to yield high transition temperatures under favourable circumstances. However, when

the retardation effects arising from the electron-phonon interaction become important,

bound pairs in the BCC lattice become lighter by orders of magnitude in a wide region
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of the parameter space. We also found significant long-range effects due to the vibration

of the alkali ions in the cesium-doped fulleride systems leading to the creation of light

pairs in its BCC structure.
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Chapter 1

Introduction

This thesis begins with a brief introduction to the discovery of superconductivity and

some of the theories that explain superconductivity. Then we talk about electronic strong

correlations in solids and their impacts on our understanding of superconductivity. As

this research is centred around the investigation of superfluidity and superconductivity

in BCC and FCC systems, we then give a review of fulleride superconductors, and also

briefly discuss optical lattices formed using ultra-cold atoms and how they can be used

to demonstrate some of the results in this thesis. Finally, this chapter is concluded with

our objectives and the overall outline of the thesis.

2
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1.1 Superconductivity

Superconductivity is a phenomenon where materials (known as superconductors) exhibit

complete loss of electrical resistance and expulsion of magnetic fields when cooled below

a characteristic temperature, as was first discovered in 1911 by Heike Kamerlingh Onnes

[1]. The first successful microscopic explanation of this amazing phenomenon only came

about five decades later (in 1957) following the joint effort of Bardeen, Cooper, and

Schrieffer to create the popularly known BCS theory [2, 3]. The BCS theory explains that

weak attraction between electrons mediated by lattice vibrations leads to the formation

of Cooper pairs and thus superconductivity. The earliest superconductors were well

described in the BCS scheme. The mechanism of superconductivity was believed to be

fully understood until 1986 when superconductivity was also observed at unusually high

temperatures in materials that are strongly correlated [4]. This discovery raised the

question: How is Cooper pairing possible when the repulsion between electrons is very

large and dominant?

To understand why this question is raised, it is important to understand the idea be-

hind the BCS formalism. BCS theory relies on the Landau–Fermi liquid theory (LFLT),

which shows that a gas of weakly interacting electrons can be treated as non-interacting

quasiparticles with renormalised mass [5]. Hence, the LFLT explains why a metal, despite

having electrons that are interacting, can be described with free-electron models. How-

ever, the BCS trio understood that for superconductivity to occur, a source of attraction

is needed for the pairing of electrons. This was achieved via retarded electron-phonon

interactions (EPIs), and no matter how small the attraction is, superconductivity will

happen since there is no repulsion between the quasiparticles – this summarises the BCS

description. To understand the importance of the question above, we need to also ex-
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amine the situation where the LFLT breaks down and thus the BCS theory. This leads

us to our next discussion on strong correlation.

1.2 Strong Correlation in Superconductors

Even though the LFLT has been very successful in treating some of the complexities

in condensed matter systems, we know that there are limits to its simplifications. It

cannot apply to non-Fermi liquids [6] as well as as strongly interacting systems. Though

models such as the Hubbard model [7] and formalisms such as the dynamical mean-field

approximation [8, 9] have been useful, the field of strong correlations remains a challenge

for physicists.

In the limit where the Coulomb interactions between particles become large, the

LFLT fails. As a result, materials with strong correlation deviate from metallic states

and display non-Fermi liquid behaviours such as anti-ferromagnetism and a Mott insu-

lating state. High-temperature superconductors (HTS), also known as unconventional

superconductors, have these non-Fermi liquid states in their phase diagrams (e.g. see

Ref. [10]) which means that correlation effects cannot be ignored. Therefore, it is neces-

sary to consider other ways of creating pairs between strongly correlated particles that

interact via strong local Coulomb repulsion. Alternatives include very strong local or

intersite EPIs that can overcome the electrostatic repulsions to create local pairs.

For local pairs, it has been proposed that superconductivity can be described in

the Bose-Einstein condensation (BEC) framework. Interacting bosonic systems at low

temperatures undergo BEC, a phase where the ground state has high occupation [11,

12, 13, 14]. Local pairs of fermions have integer spin and act like bosons. The BEC

framework for superconductivity involves the condensation of small, preformed local
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pairs. Unlike in the BCS theory where pairs are large and their condensation occurs

immediately upon pair formation, the bound pairs are small and their condensation

occurs at a lower temperature than the pair binding temperature in the BEC framework.

This thesis explores BEC superconductivity which we shall use to estimate transition

temperatures.

1.3 BCC and FCC Superconductors: Doped Ful-

lerides

The discovery of high Tc superconductors generated a lot of interest in the search for

other materials that could superconduct at high temperatures. Among them is the solid

form of buckminsterfullerene (fullerenes for short) [15], a molecular solid made from

carbon C60 molecules [16]. The majority of the fullerenes are closely packed into an

FCC structure with the C60 molecules occupying the lattice sites [17]. Band structure

calculations show that the valence electrons in an undoped C60 molecule are below the

Fermi level and the hu level which is the highest occupied molecular orbital (HOMO)

is completely filled while the lowest unoccupied molecular orbital (LUMO) tlu (with 3

degenerate states that can occupy up to 6 electrons) is empty (see Figure 1.1).

While the undoped C60 solid is an insulator [18], doping the solid with alkali and

alkali-earth metals can significantly alter its electronic properties to become a metallic

conductor or even a superconductor. The alkali atoms donate electrons that occupy

the LUMO level. Amongst the doped solids, the trivalent-doped family (A3C60), such

as Cs3C60, Rb3C60 and K3C60, are unconventional superconductors with high transition

temperatures (up to 38 K [19]), large Coulomb repulsion, and Jahn–Teller coupling. The

cesium-doped solid (Cs3C60) is particularly special since it can be synthesised into BCC
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Figure 1.1: The structure (left panel) and the Hückel molecular orbitals (right panel)
of a free C60 molecule. Reproduced from Ref. [18] with permission.

(cubic A15) and FCC structures which both superconduct at similar temperatures under

the application of pressure [19, 20, 21].

For these compounds, the bandwidth energy W is on the order of 0.5 eV. The high-

frequency intramolecular vibron modes, ℏωph/W ∼ 0.1−0.4, play a key role in the re-

sulting high critical temperatures. Also, the Jahn–Teller coupling in these compounds is

quite large, with an electron-phonon coupling of λ ∼ 0.5− 1. The competition between

the Jahn–Teller coupling and the Hund’s rule is significant and determines where and how

electrons are distributed within the LUMO. The Coulomb repulsion in A3C60 supercon-

ductors is also large with the ratio of Hubbard U to the bandwidthW , 1.5 ≲ U/W ≲ 2.5

[22, 17]. Typical values for the onsite and nearest-neighbour Coulomb potentials range

from about 1− 1.5 eV and 0.25− 0.4 eV, respectively [23, 24, 25, 26, 27]. Despite hav-

ing an s-wave order parameter, there are signatures of unconventional superconductivity

such as the proximity of Mott and superconducting states (see Figure 1.2) [28], suggest-

ing that the BCS-like theories, for example Migdal-Eliashberg, are insufficient to explain

the superconducting mechanism in these compounds [29, 30, 31]. So, fullerides are un-

usual materials with features similar to the cuprates and thus interesting to explore for
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better understanding of unconventional pairing in superconductors.

Figure 1.2: Phase diagram of trivalent-doped fullerides (A3C60). The plot shows the
change in the transition temperature as a function of volume and pressure. The promi-
nent feature is the dome-shaped superconducting phase next to a Mott-insulating state
for both BCC and FCC structures. This phase diagram is similar to that of the cuprates
- indicating that strongly correlated electrons are also important in A3C60 solids. Re-
produced from Ref. [28].
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1.4 BCC and FCC Optical Lattices

Optical lattices are created through the interference of laser beams [32]. By varying the

angle of overlap, standing waves which correspond to a variety of optical (Bravais) lattices

can be experimentally realised. For example, the simplest one-dimensional optical lattice

can be generated by using two counter-propagating beams. Similarly, by superimposing

two or three orthogonal counter-propagating beams, one can realise the square and simple

cubic optical lattices, respectively.

There are several ways of generating BCC and FCC lattices using different laser ge-

ometry [33, 34]. In contrast to the orthogonal beam arrangement for the construction

of the simple cubic optical lattice, the BCC and FCC optical lattices are obtained from

non-orthogonal arrangements of multiple beams. Using a variety of methods, for example

the magneto-optical trap technique [35], atoms can be cooled, trapped, and manipulated

in the optical lattices in a precise and controlled manner. As a result, ultra-cold atoms

in optical systems have become the perfect environment for practical quantum simula-

tions which allows for the exploration of low-temperature phenomena such as BEC and

superfluidity, and Mott-Hubbard transitions [36, 37, 38].

1.5 Objectives and Aims of this Thesis

In the wider context of theoretical condensed matter physics research, the complexity of

models grow with lattice dimension d. Theoretical models are well studied on the chain

lattice. However, for d > 1, the problem becomes more complex and typically cannot be

exactly solved.

BEC occurs only in quasi-2D or three dimensional (3D) systems, so, it is imperative

to concentrate our effort on these systems rather than lower dimensions. While the
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simple cubic lattice has been given the most attention (both theoretical and experimental

investigations) amongst 3D systems, the BCC and FCC lattices on the other hand are

often neglected. Our objectives for this study include:

• Exploring local pairing scenarios in relatively complex and unexplored lattices than

were previously investigated.

• Understanding the onset of pair formation and the condensation temperatures in

lattices with substantial signatures of both electron-phonon interaction and strong

electron correlations.

• Develop a realistic model Hamiltonian to study the A3C60 compounds (a family of

molecular superconductors).

The aim of this thesis is to gain a better insight into realistic mechanisms responsible

for superconductivity and superfluidity resulting from preformed local pairs in strongly

interacting systems beyond the weak attraction described by the BCS theory.

1.6 Thesis Outline

This thesis contains eight chapters and is divided into three parts. Part I: Introduction,

models and methods consists of three chapters. Part II: Results and discussions con-

taining four chapters. Part III: Conclusions. The breakdown of each part is explained

below.

Part I : There are three chapters in this part, the first being the current (introduction)

chapter. In chapter two, we will present the models used in this thesis. Chapter three is

the methodology chapter discussing all the methods we have employed for this work.
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Part II : This part consists of four chapters reporting all the new results in this

work. The properties of bound pairs including the superfluid state in a BCC optical

lattice (which is now published in Ref. [39]) is reported in chapter four. In chapter five,

we report the superconducting properties of fermion particles in an FCC lattice (these

results have been submitted for peer review, Ref. [40]). Since the A3C60 compounds

have BCC and FCC structures, we develop a Hamiltonian to study possible pairing

mechanisms and examine any structural effects in these materials in the sixth chapter.

Chapter seven is the last in this part and we report data from the simulation of bound

pairs using a continuous-time quantum Monte Carlo algorithm.

Part III : This thesis ends with summary and conclusions in the eighth chapter. We

also make suggestions for the direction of future work.



Chapter 2

Models of Interaction

2.1 Summary

In the introductory chapter, we discussed strong correlation in fermionic systems, its

consequences for the Landau–Fermi liquid theory, and the challenge of strong correlation

in our understanding of superconductivity. The aim of this chapter is to present some

models that are used to study these correlated systems. We start with the description

of the Bloch states of a free electron and Hubbard models, and then extend to other

models which consider non-static lattices to describe the interplay between electrons

and phonons. We also discuss the (bi)polaron problem and how bipolarons form in

materials. Lastly, we derive an effective UV model using a canonical transformation.

11
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2.2 Preliminaries

Many-body systems have very complicated physics because the behaviour of one particle

depends on the relative positions or behaviours of other particles within the system.

This leads to correlated behaviour (see Section 1.2 of Chapter 1). This is particularly

true for a system of charged particles like the electron gas, interacting via Coulomb

forces. These correlation effects make many-body physics challenging, but there are many

approximations that can be made to understand the basic principles at a fundamental

level. One such approximation is the mean-field theory where a particle is assumed to

be interacting with an average field of other particles. Building on these simplifications,

the acoustic, optical and thermal properties of a solid can be inferred. We will introduce

both the conceptual ideas and the mathematical descriptions of models that are relevant

to this thesis in the next sections.

2.3 Bloch States of an Electron

Given a simple system (Figure 2.1) of an isolated electron in a periodic lattice potential

V (r), the solution to the Schrödinger equation gives rise to Bloch states [41]. By peri-

odicity, we mean that the potential V (r + R) = V (r), where R is the Bravais lattice

vector, i.e. a translation vector of the lattice in real-space. The Bloch function has the

form

ψk(r) = eik·ruk(r) (2.1)

where ψ is the wavefunction or eigenstate of the electron, k is the wave vector of the

lattice, r is the real-space position vector of the lattice (atomic site) and uk(r) is a

function that has the periodicity of the lattice. (We note that in this chapter, nuclei and

ions are used interchangeably). Sometimes, electrons are localised on atomic orbitals,
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which is often the case in solids. In such a localised scenario, an electron would spend a

considerable amount of time on a single site and occasionally hop to other atomic sites.

Due to this observation in many solids, the tight-binding model was developed.

Figure 2.1: Periodic potential in 1D (one dimension). Circles represent lattice ions.

2.4 The Tight-Binding Model

The tight-binding approximation (TBA), based on the LCAO (linear combination of

atomic orbitals) approximation, provides an understanding of the behaviour of electrons

in localised atomic orbitals [42]. In its simplest form, it is a toy model used to demon-

strate the movement of electrons in solids. In the model, the following assumptions are

made: (1) the nuclei are static (Born–Oppenheimer approximation), (2) a single atomic

orbital is considered, and (3) the electrons are situated only on atomic sites (not in

between two sites) and are allowed to hop to the nearest-neighbour nuclei sites.

To derive the Hamiltonian of this model, we first define Wannier functions ϕ in terms

of the Bloch function (2.1) via the transformation

ψk(r) =
1√
N

∑

j

eik·Rjϕ(r −Rj) (2.2)

where ϕ(r−Rj) is the Wannier function for lattice vector R located at the j-th atomic

site and N is the number of primitive unit cells. The one-electron Hamiltonian in this

periodic, non-vibrating crystal is

H = − ℏ2

2m
∇2 + V (r) (2.3)
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and the corresponding total energy is

εk =

∫
d3rψ†

k(r)Hψk(r) ≡ εjl =
1

N

∑

j,l

eik·(Rj−Rl)

∫
d3rϕ∗(r −Rl)Hϕ(r −Rj) (2.4)

To express the Hamiltonian using second quantised notation, we define the wavefunction

and its conjugate in terms of a basis set as,

ψ(r) =
∑

j

cjσϕj (2.5)

ψ†(r) =
∑

j

c†jσϕ
∗
j (2.6)

where j represents the lattice site, c (c†) is the annihilation (creation) operator∗. Hence,

the effective Hamiltonian for the TBA, after some algebraic steps, is

H =
∑

jlσ

εjlc
†
jσclσ ≡

∑

⟨jl⟩σ

tjlc
†
jσclσ (2.7)

where we have introduced σ to represent the electron spin index, ⟨. . . ⟩ implies the sum is

on nearest-neighbour sites only, and εjl is the energy defined in Equation (2.4). The case

for which j = l represents the onsite energy and has been absorbed into the chemical

potential. Equation (2.7) represents a hopping process where electron jumps from site l

to a nearest-neighbour site j and tjl is the hopping integral defined as

tjl =

∫
d3rϕ∗(r −Rl)

[
− ℏ2

2m
∇2 + V (r)

]
ϕ(r −Rj) (2.8)

2.5 Hubbard Hamiltonian

As the TBA is only used to examine the properties of an isolated, non-interacting par-

ticle, it is a simple model and can be solved exactly. Hubbard in 1963 [7] added a

∗These are fermion operators and the anti-commutation rules apply: {ci, c†j} = δij , {ci, cj} = 0 ,

{c†i , c
†
j} = 0, c†jcj = nj . Here, nj is the fermion occupation number operator with index j.
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Coulomb onsite interaction to the tight-binding Hamiltonian to study electron correla-

tion effects in narrow-band materials. Hubbard made an assumption that this narrow

band can be represented by an s molecular orbital. Using this assumption, he developed

a Hamiltonian of the form

H =
∑

⟨jl⟩σ

tjlc
†
jσclσ + UH

∑

j

nj↑nj↓ (2.9)

where the first term represents the TBA discussed earlier, UH represents the Coulomb-

mediated onsite interaction between two electrons situated on the same lattice site j, ↑

and ↓ are the spins of the two electrons (spins in the same direction do not contribute

due to Pauli exclusion), and njσ = c†jσcjσ is the fermion number operator. The onsite

interaction UH is primarily taken to be repulsive as in Hubbard’s original work, but

attractive UH cases are also considered (for example, Refs. [43, 44]). Other treatments of

the Hubbard Hamiltonian extend the Coulomb interaction to neighbouring sites where

the intersite interaction potential is denoted VH. Such considerations are sometimes

called extended-Hubbard models or UV -models and have a Hamiltonian of the form

H =
∑

⟨jl⟩σ

tjlc
†
jσclσ + UH

∑

j

nj↑nj↓ + VH
∑

j ̸=l,σσ′

njσnlσ′ (2.10)

where the first and second terms are from Equation (2.9) and VH is the Coulomb-mediated

intersite interaction. Note that j = l is excluded from the summation in the third term.

2.5.1 Mott-Hubbard Insulator

Inspecting carefully, we see that some characteristics of a material can be examined by

considering which term is dominant in Equation (2.9). Sir Nevill Mott studied correlation

effects in a lattice at half filling (i.e. one electron per lattice site) [45]. The physics goes

thus: when the electrons are strongly correlated (i.e. very strong Coulomb repulsion

is present), the hopping is suppressed and electrons predominantly sit on their original
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lattice sites. On the other hand, they can move around if the repulsion is insignificant.

This description is what distinguishes a metal (where electric current can be transferred

by electrons due to their motion) from a Mott insulator (where the large onsite Coulomb

repulsion disfavours double occupancy in a way that inhibits electron motions).

2.6 Phonons

In the discussions so far, the models used an approximation of static nuclei. In reality,

atoms that make up the lattice vibrate about their fixed positions. Phonons, which

represent a collective vibration of nuclei in a solid, can interact with electrons thereby

turning an electron into a quasiparticle with either slightly or significantly different

properties [41]. It is also possible for the same phonon to travel to another electron and

interact with it. Phonons play essential roles in describing many phenomena observed in

condensed matter systems. We shall briefly talk about the description of a system with

vibrating ions only, and, in subsequent sections, we will look at the consequences for the

Hamiltonian of the overall system (ions and electrons).

The phonon Hamiltonian Hph can be treated classically like the harmonic oscillator

[46] whereby the atoms, separated by lattice constant b, are assumed to be linked by

elastic springs.

Hph =
∑

j

[
K

2
(xj − xj−1)

2 +
1

2M
p2j

]
, (2.11)

[pj, xj′ ] =
ℏ
i
δj,j′ (2.12)

where M is the mass of the atoms, K is the spring constant, xj is the displacement of

the atom at site j, and pj is the momentum of the atom located at site j.
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In Fourier-space, x and p can be expressed as

xj =
1√
N

∑

k

xk e
ik·Rj : xk =

1√
N

∑

j

xj e
−ik·Rj (2.13)

pj =
1√
N

∑

k

pk e
ik·Rj : pk =

1√
N

∑

j

pj e
−ik·Rj (2.14)

where k is the wave vector in momentum-space. Straightforward substitutions of Equa-

tions (2.13) and (2.14) into the original Hamiltonian (2.11) gives

Hph =
∑

k

[
Mω2

k

2
xkx−k +

1

2M
pkp−k

]
(2.15)

where ωk =
√

K
M

× 2
∣∣sin kb

2

∣∣ is a momentum-dependent vibrational frequency.

We may introduce the annihilation and creation operators as

ak =

(
Mωk

2ℏ

)1/2(
xk +

ip−k

Mωk

)
(2.16)

a†k =

(
Mωk

2ℏ

)1/2(
x−k −

ipk
Mωk

)
(2.17)

and the solution to the Hamiltonian can be re-written, in terms of operators, as

Hph =
∑

k

ℏωk

(
a†kak +

1

2

)
=
∑

k

ℏωk

(
nk +

1

2

)
. (2.18)

Note that ak and a†k obey the boson commutation relation [ak, a
†
k′ ] = δk,k′ , and a†kak = nk

is the boson occupation number.

In the remaining part of this thesis, however, we will be using a non-dispersive Hamil-

tonian which has the form, in real-space,

Hph = ℏω0

∑

j

(
a†jaj +

1

2

)
= ℏω0

∑

j

(
nj +

1

2

)
, (2.19)

where ω0 is the frequency of the optical branch of the phonon modes (assumed flat), to

describe the phonon subsystem.
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Figure 2.2: Illustration of an electron (small black dot) interacting with lattice ions
(big circles). If the lattice is highly deformable, the positive ions will be strongly pulled
towards the electron and negative ions strongly repelled. Dashed-line circles represent
the original (equilibrium) ions’ positions.

2.7 Electron-Phonon Interaction (EPI)

Since electrons can interact with ions via Coulomb-like interactions as in Figure 2.2,

we will derive the Hamiltonian for the EPI in this section. Let us say the ith electron

interacts with the jth ion via a potential Vel−ion, the Hamiltonian reads

Hel−ion = −e
∫
driρel(ri)

∑

j

Vel−ion(ri −Rj) (2.20)

where e is the charge of the electron, ρel is the electron density, ri and Rj represents the

vector position of the electron and ion, respectively.

If we perturb the ion to move a small distance ξj from its equilibrium position R
(0)
j ,

then we can express Rj in terms of the displacement as Rj = R
(0)
j + ξj. Thus, we have

Hel−ion = −e
∫
driρel(ri)

∑

j

Vel−ion(ri −R
(0)
j − ξj) (2.21)

The Taylor expansion of the right-hand-side of Equation (2.21) gives

Vel−ion(ri −R
(0)
j − ξj) = Vel−ion(ri −R

(0)
j )− ξj · ∇Vel−ion(ri −R

(0)
j ) +O(ξ2j) (2.22)
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so that if we neglect O(ξ2j) and higher-order terms, our Hamiltonian becomes

Hel−ion =− e

∫
driρel(ri)

∑

j

Vel−ion(ri −R
(0)
j )

+ e

∫
driρel(ri)

∑

j

ξj · ∇Vel−ion(ri −R
(0)
j )

(2.23)

The first term (zeroth-order) in ξj is the periodic potential which leads to Bloch states

(see Section 2.3). The second term is the main ingredient of the EPI as it describes the

force experienced by an electron when an ion moves away from its equilibrium position.

Higher-order terms in ξ are usually small and can be neglected in our case. However,

higher terms in the series (2.22) may be relevant to the treatment of high temperature

systems [47].

In a simple 1D case, the EPI can be expressed as

H
(1)
el−ph =

∫
driρel(ri)

{∑

j

e ξj · ∇Vel−ion(ri −Rj)

}
≡
∑

ij

fijξj(ni↑ + ni↓) (2.24)

where fij represents the force experienced by an electron at a position i and an ion

located at a position j.

If we combine the EPI with the TBA, we end up with more comprehensive models

of electron motion. We note here that the EPI can be long range or local: by local we

mean that only electrons nearest to the displaced ion are considered while long-range

EPI implies that the ion vibration can have effects on distant electrons.

2.8 Long-range Electron-Phonon Interaction

In the previous two sections, we mentioned that phonons propagate through solids and

we have also developed the basic Hamiltonian describing interaction of this vibration

with an electron (i.e. the EPI). A full Hamiltonian which incorporates the phononic and

electronic contributions has the general form
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H = Hel +Hel−ph +Hph (2.25)

where Hel represents the tight-binding electron subsystem Hamiltonian, Hel−ph is the

interaction between electron and the vibrating lattice, and Hph is the Hamiltonian de-

scribing the phonon subsystem.

This model of long-range electron-phonon interaction (EPI), also known as the Fröhlich

model [48], in real-space is written as

H =
∑

⟨ii′⟩σ

tii′c
†
iσci′σ +

ℏ√
2Mω0

∑

ijσ

gijniσ(a
†
j + aj) + ℏω0

∑

j

(a†jaj +
1

2
) (2.26)

where gij is a parameter that represents the coupling of an electron on site i to the

phonon at site j, all other variables are explained in earlier equations. Equation (2.26)

captures all the information that is needed to describe the behaviour of a single electron

in a lattice (Note: up to this point, we still assume that our system contains just one

valence electron). However, the strength of the EPI decreases with distance. When

the Coulomb interactions between electrons are added in the Hamiltonian, the Fröhlich

model can be used to study various phenomena in condensed matter physics including

superconductivity - the main focus of this thesis.

2.9 Holstein Model

The Holstein model is identical to Fröhlich’s in that they both describe electrons in a

deformable lattice but differ by the extent and strength of the coupling parameter gij.

The Hamiltonian reads

H =
∑

⟨ii′⟩σ

tii′c
†
iσci′σ +

ℏg√
2Mω0

∑

iσ

niσ(a
†
i + ai) + ℏω0

∑

i

(a†iai +
1

2
) (2.27)
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We see that the Hamiltonian focuses only on electrons and ions that are at the same

location i. Hence Holstein’s model is often referred to as local EPI. In Holstein’s original

work [49], he studied the EPI, describing electron self-trapping (i.e. the possibility of an

electron being trapped in a potential it has created).

2.10 Polaron and Bipolaron

Generally speaking, when charge carriers (valence electrons or holes) travel through a

solid, they interact with the lattice phonons. We continue our discussion assuming that

the charge carriers are electrons and we neglect the Coulomb repulsion between these

electrons. At finite temperature, the EPI often has two major consequences. Firstly,

electrons are scattered by the vibrating atoms which brings about electrical resistance,

particularly in semiconductors and insulators [50]. Secondly, the phonon alters the char-

acteristic properties of the electron [41].

In 1933, Landau reported how the properties of a free electron can change due to

lattice polarisation and postulated the possibility of self-trapping of an electron at low

temperature [51]. His explanation can be summarised thus: when an electron is present

in a polarisable medium such as an ionic lattice, the surrounding ions are attracted or

pulled towards the electron (as in Figure 2.2) thereby creating virtual phonons with

low frequency. The motions of the ions leads to the distortion of the underlying lattice

and a dense phonon cloud forms around the electron - sometimes referred to as “electron

dressing”. It turns out that the electron interacts with the polarised field, and as coupling

between the electron and this polarisation increases, the energy of the whole system is

lowered. In Landau’s picture, when the electron moves from one point to another, the

phonon cloud appears to adiabatically follow the trajectory of the passing electron.
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2.10.1 Polaron

The dressed electron described by Landau is a quasiparticle which is known today as a

polaron: a name coined by Pekar in 1946 [52]. Pekar argued that in solids, electrons do

not always move freely but as polarons instead [52]. Today, we know that polarons exist

in range of media and materials including high temperature superconductors, ultracold

atoms and plasmas [53, 54, 55]. Fundamentally, a polaron has significantly different

properties from the original band carrier. It is characterised by its self-energy, Epol,

an enhanced effective mass, mpol, and its characteristic response to external electric

and magnetic fields [56]. These properties are in principle determined by factors which

include the type of phonon, the strength of coupling and the dimensionality of the system

[57].

Some terminology used in polaron problems

Polaron studies are categorised based on the polaron size, coupling strength and phonon

frequencies etc.

1. If the polaron radius rpol is compared with the lattice spacing b, we can have

• A small polaron: when rpol ≈ b.

• A large polaron: when rpol ≫ b.

2. The Fröhlich polaron can be studied at different coupling strengths. The cou-

pling parameter α, which is related to the number of phonons in the cloud [58], is

expressed as [59, 60]

α =
e2

ℏ

√
mpol

2ℏωLO

(
1

ε∞
− 1

ε0

)
(2.28)

where mpol is the effective mass of the polaron (to be discussed shortly), ωLO being

the plasma frequency (usually represented by an Einstein phonon i.e. ωLO ≡ ω0),
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ε∞ and ε0 are the high-frequency and static dielectric constants, respectively. Note

that α and g defined in Equations (2.26) and (2.27) are directly related: α ∝ g2

[61]. The three regimes are

• Weak-coupling regime when α ≪ 1.

• Strong-coupling regime when α ≫ 1.

• Intermediate coupling where α ∼ 1.

3. The ratio of the phonon frequency ℏωph, and the half-bandwidth W , is also signif-

icant. The polaron problem is regarded as in the

• Adiabatic limit if W ≫ ℏωph.

• Anti-adiabatic (non-adiabatic) limit if W ≪ ℏωph.

2.10.1.1 Weak-Coupling Regime

In the weak-coupling limit, the electron-phonon coupling (EPI) term in Equation (2.26)

can be treated as a perturbation [60]. While there is not an exact solution to this problem

yet [56], the polaron wavefunctions and the lattice distortions spreads over many lattice

sites, and the problem can be solved perturbatively. To first order in the coupling

constant α, the polaron self-energy in the Fröhlich model is obtained as [56]

Epol = −αℏω0 (2.29)

with an effective mass

mpol =
m∗

1− α
6

(2.30)

where ω0 is the phonon frequency, m∗ is the bare electron band mass. Equations (2.29)

and (2.30) are the results obtained from the Rayleigh-Schrödinger perturbation theory
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[60]. The increase in the effective mass is due to the fact that the electron is self-

trapped (which means it spends a lot of time polarising its surrounding, forming a

bound state with the polarisation while occupying a local state) and for it to move, it

requires extra energy to drag this deformation along. Looking at Equation (2.30), one

might immediately ask: what happens when α = 6? At α = 6, the mass diverges and the

polaron becomes completely localised (non-itinerant). Hence, the validity of Equation

(2.30) as a weak-coupling solution means that the coupling must be much smaller than

a critical value (α < αc = 6).

The weak-coupling expansions [56] yield the polaron energy

Epol = −ℏω0(α + 0.015919α2 + 0.000806α3 + . . . , ) (2.31)

with mass given as

mpol = m∗(1 +
α

6
+ 0.0236276α2 + . . . , ) (2.32)

This expression for the polaron mass is identical to that obtained in Ref. [62]: mpol ≈

m∗ (1 + α/6) when α → 0. As the coupling diminishes, a very large polaron is formed

and its motion is related to the half-bandwidth zt where z is the coordination number

and t is the hopping parameter.

2.10.1.2 Strong-Coupling Regime

The strong-coupling treatment was first carried out in the pioneering work of Landau and

Pekar [63]. In this limiting case, the Holstein Hamiltonian (2.27) describes the problem

in such a way that the tight-binding term can be treated as a perturbation. This means

that the bandwidth is small compared to the EPI term. The polaron radius is on the

order of the lattice spacing (small polaron). A variational calculation using a Gaussian
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wavefunction yields polaron self-energy [56]

Epol = −α
2ℏω0

3π
= −0.106α2ℏω0 (2.33)

Unlike the weak-coupling limit, the energy is proportional to the square of the coupling

parameter. The expansion for the polaron energy in the strong-coupling limit, obtained

in Miyake’s work [64], is

Epol = −ℏω0

(
0.108513α2 + 2.836 +O(1/α2)

)
, (2.34)

with the polaron mass given as

mpol = m∗ (1 + 0.0227019α4
)

(2.35)

As can be seen in Equation (2.35), the enhanced mass is proportional to the fourth-

power in α which means it can be very large. For example, the polaron mass is heavier

by several orders of magnitude than the bare electron mass [63]. The spatial extent

of the polaron wavefunction in the strong-coupling limit can be determined using the

formula

r−1
pol =

α

3

√
4ω0m∗

πℏ
(2.36)

which is the inverse radius. The polaron ground state energy in the weak- and strong-

coupling limits is shown in Figure 2.3. It summarises that the Rayleigh-Schrödinger

perturbation theory is sufficient at small values of α while the strong-coupling calculation

is valid when α gets very large. We can see that at a coupling constant of about α ≈ 5,

both plots almost converge. Therefore, the value for α ∼ 5 may be considered the

crossover between the weak- and strong-coupling theories.
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Figure 2.3: Comparing the polaron energy in the weak and strong-coupling expansion
limits according to Equations (2.31) and (2.34), respectively. Both curves almost touch
around α ≈ 5 and, hence, this value of α may be considered the crossover point between
the weak- and strong-coupling theories.

2.10.1.3 All-Coupling Result

No exact solution exists for the polaron mass at arbitrary coupling values, but the best

approximation so far was determined by Feynman using his path integral formalism [62].

Figure 2.4 shows a summary of his result which agrees quite well both in the weak-

and strong-coupling regimes. The key difference between Figures 2.3 and 2.4 is that the

constant term 2.836 (from Equaton (2.34)) has been neglected in the α expansion of

Feynman’s all-coupling result.

All categories or types of polaron (for example, see Table 3 in Ref. [65]) are formed

in a similar way; an ion vibration creates a potential well for the charge carrier. The

transport mechanisms for small polarons are distinct in the limits of high and low phonon

frequencies [66]. In the adiabatic limit W ≫ ℏωph, where the motion of an electron is

fast with respect to the ions’ motions, the electron hops when the distortions in the

neighbouring sites are about the same size as the occupied state. This enables the

electron to move many times within a unit cell. Also, this leads to scattering as the
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Figure 2.4: Polaron energy at arbitrary coupling from Feynman’s all-coupling theory
(solid line) compared with some weak-coupling (dotted line) result and strong-coupling
(dashed line) results. Reproduced from Ref. [57].

electron interacts with the new distortion [59]. During a hopping event, the scattering

process is considered inelastic if the number of phonons Nph changes, whilst it is elastic

if Nph is unaltered [49]. In contrast, when W ≪ ℏωph, the ion motion is faster than the

electron hopping. In this case, the lattice relaxation rate is fast.

Experimentally, a polaron can be observed in the optical absorption spectrum. It

corresponds to the peak in the spectrum when the energy of the incident light (in the

THz frequency range) is comparable with the Debye frequency ωD [57, 67]. It is worth

mentioning that, even though they may appear different at first glance, the Fröhlich and

Holstein Hamiltonians have similar properties over a wide range of parameters in the

polaron treatments, and both can lead to small or large polarons [68].

2.10.2 Bipolaron

As complex as they are, the polaron theories discussed above consider a single electron

in a polarisable environment. We can extend the treatment to a more realistic situation
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where there is more than one electron. Let us consider a system with only two electrons.

Two electrons can experience an attractive force via the phonons as long as the EPI

strength dominates over the Coulomb repulsion. Therefore, if the EPI is dominant two

polarons can bind into a single quasiparticle known as bipolaron, which behaves as a

charged boson. The ground state of bipolarons generally forms a singlet with an s-

wave symmetry (sometimes the onsite and intersite singlets are referred to as s0 and s1,

respectively). In addition, other states with p-, d- and f - symmetries can be realised

too. All the terminologies discussed previously for polarons apply to bipolarons too,

except that there are now two particles. Thus, a bipolaron can be small or large, treated

in the weak-, intermediate- or strong-coupling regimes, as well as in the adiabatic or

non-adiabatic limits. Below a critical onsite repulsion Uc (which depends on the lattice),

a stable onsite bipolaron can be formed for finite EPI. When U = 0, bipolarons are

stable in 1D for an arbitrary non-zero EPI, but a critical EPI has to be reached to form

stable bipolarons in higher dimensions [57]. The formation process of both small and

large bipolarons is the same but their properties greatly differ [59].

Bipolaron properties vary depending on the dimension and the structure of the lattice.

In the extreme case of strong EPI, two small localised polarons can bind to form a small

bipolaron with a heavy effective mass that scales as the square of the polaron hopping

integral t or alternatively as the square of single polaron mass (i.e. mbip ∝ (mpol)
2)

[69]. A second-order bipolaron tunnelling manifests in lattices such as chain [70, 71],

square [72] and simple cubic [73]. Conversely, in the weak-coupling limit where large

bipolarons can be formed, the bipolaron has a relatively light mass with a first-order

hopping dependence (i.e. mbip ∝ mpol). This is due to a partially pre-existing lattice

deformation that spans over many sites, so that one of the polaron pair can hop without

breaking the pairing. First-order tunnelling of bipolarons can exist at strong coupling in
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systems such as the staggered ladder [69] and triangular lattices [74, 72]. In fact, in some

cases, superlight bipolarons [69] can be formed: meaning that the bipolarons would be

slightly heavier than a single polaron only by a factor between 2 and 6.

We mentioned in Chapter 1 that small bound polaron pairs can form a condensate

which may lead to superconductivity or superfluidity upon lowering the temperature

of the system. Since the discovery of HTS, an explanation to the superconductivity

mechanism has been attempted in the context of strongly bound bipolarons [75, 76, 77,

78, 79]. The two main conditions for bipolaronic superconductivity are: (1) The polaron

(and thus the bipolaron) density must not be high, otherwise, a charge-density wave may

occur. We, however, note that the charge carriers in the majority of the superconductors

are not dilute. (2) The bipolarons should be strongly coupled (i.e. a pair of polaron binds

via strong EPI), small and must not be strongly interacting to hinder superconductivity.

Polarons are well-established in nearly all media, but bipolarons have a lesser oc-

currence [65]. It is hoped that with advancing technologies, experimental observation

of bipolaron signatures will become possible. The main ingredients of the method and

approximations that I applied in this thesis will be discussed in the next section.

2.11 Lang-Firsov Canonical Transformation

The EPI models described above, and by extension phonon-mediated superconductivity,

are very difficult to treat exactly because contributions from both the electrons and

phonons are intertwined. However, it is possible to decouple the EPI term (electron and

phonon operators) into standalone terms representing electron and phonon subsystems

while retaining the underlying physics of the EPI.

The Lang-Firsov (LF) canonical transformation [80] is a powerful technique one can
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employ to disentangle the subsystem operators. This leads to a transformed Hamiltonian

with a transformed wavefunction |Ψ⟩LF = e−S|Ψ⟩. To demonstrate how the transforma-

tion works in the present context, let us examine the generalised EPI of Holstein type:

H =
∑

⟨ii′⟩

tii′c
†
ici′ +

∑

ij

γijc
†
ici(a

†
j + aj) + ℏω

∑

j

(a†jaj +
1

2
) (2.37)

where tii′ , ω and γij are constant parameters. Next, we perform a canonical operation

with a new (transformed) Hamiltonian as

H̃ = eSHe−S = H + [S,H] +
1

2!
[S, [S,H]] +

1

3!
[S, [S, [S,H]]] + . . . (2.38)

where S = −γij
ℏω c

†
ici(a

†
j −aj) is an anti-hermitian operator such that S† = −S to preserve

the physical observables [80]. Then, we can derive the commutation relations for the

series in Equation (2.38). For example

[S, ci] = −γij
ℏω

c†icici(a
†
j − aj) +

γij
ℏω

cic
†
ici(a

†
j − aj)

= 0 +
γij
ℏω

ci(1− cic
†
i )(a

†
j − aj) = −γij

ℏω
ci(a

†
j − aj)

(2.39)

[S, [S, ci]] = −γij
ℏω

(a†j − aj)[S, ci] = ci

[
−γij
ℏω

(a†j − aj)
]2

(2.40)

[S, aj] = −γij
ℏω

c†ici(a
†
j − aj)aj +

γij
ℏω

c†iciaj(a
†
j − aj)

= −γij
ℏω

cic
†
i ([a

†
j, aj] + ajaj − ajaj) =

γij
ℏω

c†ici

(2.41)

[S, [S, aj]] = 0 (2.42)

We also define new (transformed) electron and phonon operators below.

ci → c̃i = ci exp

[∑

j

γij
ℏω

(a†j − aj)

]
, c†i → c̃†i = c†i exp

[
−
∑

j

γij
ℏω

(a†j − aj)

]
(2.43)

aj → ãj = aj −
∑

i

γij
ℏω

c†ici , a†j → ã†j = a†j −
∑

i

γij
ℏω

c†ici (2.44)
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Then setting ℏ = 1 for convenience, the transformed Hamiltonian can be expressed in

terms of Equations (2.43) and (2.44) as

H̃ =eS
[∑

⟨ii′⟩

tii′c
†
ici′ +

∑

ij

γijc
†
ici(a

†
j + aj) + ω

∑

j

(a†jaj +
1

2
)

]
e−S

=
∑

⟨ii′⟩

tii′ c̃
†
i c̃i′ +

∑

ij

γij c̃
†
i c̃i(ã

†
j + ãj) + ω

∑

j

(ã†j ãj +
1

2
)

=
∑

⟨ii′⟩

t̃ii′c
†
ici′ +

∑

ij

γijc
†
ici(a

†
j + aj − 2

∑

i′

γi′j
ω
c†i′ci′) (2.45)

+ ω
∑

j

[
(a†j −

∑

i

γij
ω
cic

†
j)(aj −

∑

i′

γi′j
ω
c†i′ci′) +

1

2

]

=
∑

⟨ii′⟩

t̃ii′c
†
ici′ −

∑

ii′

c†icic
†
i′ci′

∑

j

γijγi′j
ω

+ ω
∑

j

(a†jaj +
1

2
) (2.46)

We can now see that the electron and phonon operators are completely decoupled by

this transformation. This means that the EPI term splits into a polaron and phonon

decoupled system such that the polaron moves with a renormalised electron hopping

matrix t̃ ∗.

2.11.1 Transformed Hamiltonian in the Atomic Limit

Consider the atomic limit where the hopping term is set to zero t̃ii′ → 0, the relevant

terms are the phonon and interaction parts

H̃at = −
∑

ii′

nini′

∑

j

fijfi′j
2ω2M

+ ω
∑

j

(a†jaj +
1

2
) (2.47)

where we have introduced γij =
fij√
2Mω

: fij is the force felt by an electron located at the

ith site from a phonon at jth site, M is the mass of the ion. From here we can define an

interaction function Φ which represents the total interaction between the electron and

∗The Coulomb part remains unchanged because the electron number operators are unchanged upon

transformation.



32 CHAPTER 2. MODELS OF INTERACTION

the surrounding phonons.

Φii′ =
∑

j

fijfi′j (2.48)

We define a dimensionless parameter λ = Epol/W which measures the coupling strength

between the electron and the phonon, where W = zt is the half-bandwidth. The self

energy of the polaron Epol is found when i = i′, so that

Epol =
1

2ω2M

∑

j

f 2
0j =

Φ00

2ω2M
(2.49)

Hence,

H̃at = −
∑

ii′

nini′λW
Φii′

Φ00

+ ω
∑

j

(a†jaj +
1

2
) (2.50)

In this limit, we have a simplified Hamiltonian which is proportional to the ratio of two

interaction functions and the coupling parameter λ.

2.11.2 Transformation of the Tight-Binding Hamiltonian

The first term in Equation (2.45) represents the electron hopping term

H̃tb =
∑

⟨ii′⟩

t̃ii′c
†
ici′ (2.51)

where

t̃ii′ = tii′ exp

[
−
∑

j

γij
ω
(a†j − aj)

]
exp

[∑

j

γi′j
ω

(a†j − aj)

]
(2.52)

Using the identity

eAeBe−[A,B]/2 = eA+B , (2.53)

which is valid if [A,B] commutes with A and B respectively. We can also write Equation

(2.53) as: eAeB = eA+Be[A,B]/2. We use the last (equivalent) expression by taking

A = −
∑
j

γij
ω
(a†j − aj) and B =

∑
j

γi′j
ω
(a†j − aj). We note that [A,B] = 0, therefore

t̃ii′ = tii′ exp

[
1

(ω)2

{∑

j

(γi′j − γij)a
†
j −

∑

j

(γi′j − γij)aj)

}]
(2.54)
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Re-using Equation (2.53) in its original form by choosing

A =
∑
j

(γi′j − γij)a
†
j and B = −

∑
j

(γi′j − γij)aj, then,

[A,B] =
∑
j

(γi′j − γij)(γi′j − γij) =
∑
j

(γ2i′j − 2γi′jγij + γ2ij).

After some algebra, with the substitution of γij =
fij√
2Mω

as we defined earlier, we

arrive at

t̃ii′ =tii′ exp

[
− λW

ω

(
1− Φii′

Φ00

)]
exp

(∑

j

(γi′j − γij)a
†
j

)

× exp

(∑

j

(γi′j − γij)aj

) (2.55)

The original hopping integral tii′ becomes modified by the EPI through the parameters

Φii′/Φ00 and λ, similar to Equation (2.50). Equation (2.55) also provides valuable infor-

mation particularly due to the order of the creation and annihilation operators. In the

anti-adiabatic limit where there are no real phonons, the phonon operators are set to

zero and the hopping integral reduces [81] to

t̃ii′ = tii′ exp

[
− λW

ω

(
1− Φii′

Φ00

)]
. (2.56)

2.12 UV Models

Above, the decoupling of the electron and phonon operators was successfully achieved

through the canonical transformation, and it was noted that the electron in the electronic

part of the Hamiltonian becomes a phonon-dressed electron. If we re-introduce the

Coulomb potential between electrons and consider the bipolaron problem in the anti-

adiabatic, strong-coupling regime (ℏω ≫ t, λ ≫ 1) [71, 72, 81, 82], then the effective

Hamiltonian for the Hubbard-Fröhlich model has the form [81]

H = −
∑

nn′σ

t̃nn′c†nσcn′σ−Epol

∑

n

c†nσcnσ+ Ũ
∑

n

c†n↑c
†
n↓cn↓cn↑+

∑′

nn′

∑

σσ′

Ṽnn′c†nσcnσc
†
n′σ′cn′σ′

(2.57)
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where the prime in the last summation excludes self-interaction, and the renormalised

onsite and intersite interactions respectively are

Ũ → U = UH − 2Wλ (2.58)

Ṽ → V = VH − 2Wλ
Φnn′

Φ00

(2.59)

where UH and VH are typical Hubbard interactions. Equations (2.10) and (2.57) are

similar except for the renormalised U and V in the latter. Restricting n′ to the nearest-

neighbours of n, the Hamiltonian defines the UV model which is often referred to as the

extended-Hubbard model (EHM) [70, 83]. It is possible to extend the intersite interaction

to next-nearest-neighbour distances [84], but the studies in this thesis only consider the

nearest-neighbour interactions.



Chapter 3

Methodology

3.1 Summary

In this chapter, we discuss the methods that are used in this thesis. Firstly, we find a

solution to the UV Hamiltonian derived in Chapter 2. Then, we review group theory

analysis which will be used for the identification of pairing symmetries. Next, we dis-

cuss the standard Rayleigh–Schrödinger perturbation theory. Finally, we conclude by

introducing a quantum Monte-Carlo algorithm which can be used to simulate bipolarons.

35
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3.2 Preliminaries

The methods applied in this work can be split into four types and they will be presented

in the following order.

Method I: Solution to the UV model. This involves solving a two-particle Schrödinger

equation for the UV Hamiltonian. The solution yields a self-consistent equation which

can be found in Section 3.3.1. Because the dimension of the secular equation increases

with the lattice coordination number z (and thus the number of pairing states), we will

introduce a symmetrisation approach (Section 3.3.2) which helps categorise the pair sym-

metries. The steps and the benefits of using the symmetrised solutions will be discussed.

Method II: Group theory. This method can be very helpful in the simplification of

physics problems. Amongst other things, it can be used for transformations, to analyse

symmetries, and in the construction of the band structure of a crystal [85]. We review

basic concepts of group theory analysis relevant to this work in Section 3.4. They include

the representation theory, symmetry operations, the character table, eigenvalue problem

and block-diagonalisation of secular matrices.

Method III: Perturbation theory. The degenerate Rayleigh-Schrödinger time-independent

perturbation theory is discussed in Section 3.5. The purpose of this method is to validate

our UV results in certain limits.

Method IV: Monte-Carlo simulation. Numerical simulation is advantageous where

certain approximations become invalid. We introduce how bipolaron properties can be

obtained using a Monte-Carlo algorithm in Section 3.6.1.
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3.3 The Standard UV Model

We have previously derived an effective UV model in Section 2.12 of Chapter 2. Here,

we will focus on the general form of the model Hamiltonian and demonstrate how it can

be used to solve a problem of two spin-1
2
fermions in a single orbital. The Hamiltonian

has the form

H =
∑

⟨n,a⟩σ

t̃ac
†
n+aσcnσ + U

∑

n

ρ̂n↑ρ̂n↓ + V
∑

⟨n,a⟩

ρ̂n+aρ̂n (3.1)

where c† (c) is the creation (annihilation) operator, σ is the electron spin, ρ̂n = ρ̂n↑+ ρ̂n↓

(ρ̂nσ is the number operator for electrons on site n with spin σ), a the intersite lattice

vector, and t̃a is the intersite hopping parameter. U and V are the effective onsite and

intersite interactions, respectively.

3.3.1 Solution to the UV Model

To solve Equation (3.1) for the case of two particles, we construct a real-space Schrödinger

equation. The two-body wavefunction Ψ(n1n2) must satisfy:

∑

a

t̃a [Ψ(n1 + a,n2) + Ψ(n1,n2 + a)] +
∑

a

V̂a δn1−n2,aΨ(n1,n2) = EΨ(n1,n2) (3.2)

where n1 and n2 are the spatial coordinates, the interaction terms have been combined

into a single function (i.e. V̂a=0 = U and V̂a̸=0 = V ), E is the total energy of the system.

We will drop the subscript from t̃a for brevity.

Equation (3.2) can be solved as follows. We define the Fourier-space wavefunction

ψk1k2 =
1

N

∑

n1n2

Ψ(n1,n2) e
−ik1·n1−ik2·n2 (3.3)

where N is the total number of lattice sites. If we multiply Equation (3.2) by 1
N
e−ik1·n1×
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e−ik2·n2 and sum over n1 and n2, we get

1

N

∑

a

t̃

[ ∑

n1n2

e−ik1·n1−ik2·n2{Ψ(n1 + a,n2) + Ψ(n1,n2 + a)}
]

+
1

N

∑

a

V̂a
∑

n1n2

e−ik1·n1−ik2·n2δn1−n2,aΨ(n1,n2)

=
1

N
E
∑

n1n2

e−ik1·n1−ik2·n2Ψ(n1,n2)

(3.4)

Since the summation
∑
n1n2

is independent of a, we can define new variables m1 = n1+a,

and m2 = n2 + a. Then we have

∑

a

t̃eik1·a 1

N

∑

m1n2

e−ik1·m1−ik2·n2Ψ(m1,n2) +
∑

a

t̃eik2·a 1

N

∑

n1m2

e−ik1·n1−ik2·m2Ψ(n1,m2)

+
1

N

∑

aP

V̂ae
−iP ·a 1

N

∑

n1n2

e−i(k1−P )·n1e−i(k2+P )·n2Ψ(n1,n2)

=
1

N
E
∑

n1n2

e−ik1·n1−ik2·n2Ψ(n1,n2)

(3.5)

where we have replaced the Dirac-delta function as δm,n = 1
N

∑
P

eiP ·(m−n). Using the

definition in Equation (3.3) and expressing P = k1 − q, we arrive at

(E − εk1 − εk2)ψk1k2 =
1

N

∑

aq

V̂a e
i(q−k1)·a ψq,k1+k2−q , (3.6)

where

εk =
∑

a

t̃ eik·a (3.7)

is the dispersion relation for one particle with momentum k.

Next, we define a new wavefunction Φa

Φa(k1 + k2) = Φa(P ) ≡ 1

N

∑

q

eiq·a ψq,P−q (3.8)

where P = k1 + k2 is the total momentum of the particle pair. After the substitution

of Φa, Equation (3.6) may be re-written as

ψk1k2 =
∑

a

V̂a
e−ik1·a

E − εk1 − εk2

Φa(P ) . (3.9)
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Lastly, we substitute Equation (3.9) back into Equation (3.8) to get

Φa(P ) = −
∑

a′

V̂a′ Gaa′(E,P ) Φa′(P ) (3.10)

where Gaa′(E,P ) is the Green’s function defined as

Gaa′(E,P ) =
1

N

∑

q

eiq·(a−a′)

−E + εq + εP−q

. (3.11)

Note that the sign of E in the denominator has been flipped and this is done for conve-

nience only. The set of linear equations generated from (3.10)

det | −V̂a′ Gaa′(E,P )− δaa′ |= 0 , (3.12)

determines the energy E(P ) of the system as a function of the pair’s total momentum.

Equation (3.12) is solved self-consistently to obtain the general solution of the two-body

problem.

3.3.2 Symmetrised and Anti-symmetrised Solutions

In general, Equation (3.10) generates a square matrix of size z + 1, where z is the

coordination number of the lattice. As a result, we would have (3× 3), (5× 5), (7× 7),

(7 × 7), (9 × 9) and (13 × 13) matrices for the two-particle problem in chain, square,

triangular, simple cubic, body-centred cubic, and face-centred cubic lattices respectively.

Hence, it is helpful to apply a symmetrisation approach that reduces the matrix size to

about half. In the following, we shall demonstrate how this is done.

The two-particle wavefunction has to be symmetric or anti-symmetric under spatial

exchange Ψ(n1,n2) = ±Ψ(n2,n1) which relates to the singlet (+) and triplet (−) spin

states. To express the symmetrised wavefunctions, we permute k1 → k2 in Equation

(3.6) and then we add/subtract the resulting equation from the unpermuted version of
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Equation (3.6). Doing this yields

(E − εk1 − εk2)(ψk1k2 ± ψk2k1) =
1

N

∑

aq

V̂a

{
ei(q−k1)·a ± ei(q−k2)·a

}
ψq,k1+k2−q (3.13)

We can re-write the (anti-)symmetrised pair wavefunctions on the left-hand side of

Equation (3.13) as

ϕ±
k1k2

= ψk1k2 ± ψk2k1 . (3.14)

where ϕ+
k1k2

and ϕ−
k1k2

respectively are the singlet and the triplet wavefunctions. So,

Equation (3.13) becomes

(E − εk1 − εk2)ϕ
±
k1k2

=
1

N

∑

qa

V̂a

{
ei(q−k1)·a ± ei(q−k2)·a

}
ψq,k1+k2−q (3.15)

Notice that on the right-hand side, we still have ψ. The summation over the lattice vector

a, in Equation (3.15) can be split into two sets ({a+} for singlets, and {a−} for triplets)

which thus allows us to write Equation (3.15) in terms of ϕ± instead of ψ. To do this,

we define {a+} and {a−} to be a set of near-neighbour lattice vectors, and also include

the zero vector in the case of singlets. Neither of the new vectors should contain member

pairs that are related by inversion. Otherwise, there are no specific rules of selection. Let

us illustrate this on a square lattice. The lattice vectors for the onsite and all nearest-

neighbour sites are {(0, 0), (1, 0), (0, 1)(−1, 0), (0,−1)}. So, an acceptable combination

can be {a+} = {(0, 0), (1, 0), (0, 1)} for the singlet, and {a−} = {(1, 0), (0, 1)} for the

triplet. But we cannot have, say, {a+} = {(0, 0), (1, 0), (−1, 0)} because the second and

third elements are related by inversion.

Once the singlet and triplet vectors have been correctly chosen, we can express Equa-

tion (3.15) as

(E − εk1 − εk2)ϕ
±
k1k2

=
1

N

∑′

qa±

V̂a±

{
ei(q−k1)·a± ± ei(q−k2)·a±

}
ϕ±
q,k1+k2−q (3.16)
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where the primed summation in Equation (3.16) above means that a factor of 1
2
should

be included for the case a+ = 0 to account for double counting of onsite pairs. Following

similar steps in Equations (3.8)−(3.11), we obtain

Φ±
a±(P ) = −

∑

a
′
±

V̂a±G±
a± a

′
±
(E,P ) Φ±

a
′
±
(P ) (3.17)

where the Green’s function is now

G±
a± a

′
±
(E,P ) =

1

N

∑

q

eiq·(a±−a
′
±) ± ei[q·a±−(P−q)·a′

±]

−E + εq + εP−q

(3.18)

Hence, Equations (3.15)−(3.18) are used to obtain the (anti-)symmetrised solutions.

Some advantages of using (anti-)symmetrised solutions include

• Reduction in the size of the self-consistent equation. For example, the matrix

equation for the BCC case would reduce to two (5×5) and (4×4) matrices instead

of one (9 × 9) matrix equation, and for the FCC case, we will have (7 × 7) and

(6× 6) matrices instead of (13× 13) matrix equation.

• Improvements in both the numerical stability and computational speed of calcula-

tions.

• Lack of ambiguity in identifying singlet and triplet states. Since the matrix equa-

tions for the singlets and triplets are completely separated, their properties are

obtained independently, thus eliminating any form of ambiguity.

In addition to applying the symmetrised approach, we can obtain further simplifica-

tion using group theory. Hence, we will briefly discuss the application of group theory

relevant to this work.
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3.4 Group Theory Analysis

Group theory finds a lot of applications in quantum physics via the representation theory.

For every physical observable, there exists a corresponding Hermitian operator with a

complete set of eigenfunctions. Hence, the state of a system can be represented by a

linear combination of these eigenfunctions. The representation theory is useful when

a set of operators acting on a Hilbert space have common properties and thus form a

group. In this thesis, we take advantage of the fact that when operators belonging to a

group act on a system and the system remains physically invariant, a linear combination

of basis which represents the states of the system can be obtained to simplify the two-

particle problem. The details will become clear in Chapters 4 and 5 when this is applied.

In what follows, some mathematical concepts of group theory will be introduced.

Mathematically, a set G of elements is called a “group” if the four conditions below

are satisfied.

1. A group must obey the closure property such that if we multiply any two elements

A and B of G, the result C must also be an element of G. That is,

A ·B = C ∈ G . (3.19)

2. G contains an element I or E called the identity element such that for every element

A ∈ G,

A · E = E · A = A . (3.20)

3. For any element A ∈ G, there exists an inverse element B = A−1 ∈ G such that

A ·B = E (3.21)

4. For three elements A,B and C ∈ G, the law of associativity must hold i.e.

A · (B · C) = (A ·B) · C (3.22)
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Before proceeding, we will briefly define some of the commonly used terms in group

theory.

• Conjugate Elements: Element B′ is conjugate to the element B if

B′ = XBX−1 where B,B′and X ∈ G (3.23)

Note that any element B is also conjugate to itself, for example, B = EBE−1.

• Classes: A class of a group G is the collection of elements of G that are conjugate

to each other. Put in another way, when each element X ∈ G is applied to the

RHS of Equation (3.23), the set of distinct results for an element B forms a class.

Note that: no element of G can be a member of two different classes; the identity

element is a class on its own.

• Similarity transformation: The equation of the form (3.23) is known as the “simi-

larity transformation” and will be used many times in this work. We can use this

expression to diagonalise a matrix equation into block-diagonal form.

3.4.1 Groups of Coordinate Transformations

In quantum physics problems, we often apply transformations to reduce the complex-

ity of a Hamiltonian. The transformation must be chosen in a way that the physical

representation (e.g. symmetry) of the system will not be compromised. Examples of

symmetry transformations are rotation, reflection, translation, permutation, and so on.

Meanwhile, the set of all the transformations which leave the system physically invariant

constitutes a group [85]. The set of coordinate transformations that leave the Hamilto-

nian invariant form a group usually called “the group of the Schrödinger equation”, but

sometimes referred to as “the invariance group of the Hamiltonian operator” [86]. In the

next section, we will briefly describe some symmetry transformations.
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Our application of group theory in this work involves performing rotations of rigid

bodies about different axes and orientations. We note that the symmetry of the system

remains conserved in all cases.

Suppose that we have a point P in a three-dimensional Euclidean space IR3, in an

orthogonal XY Z coordinate and we rotate about OX to a new orthogonal coordinate

system X ′Y ′Z ′. It is possible to describe the point P in the new coordinate system.

This is done by mapping the new coordinate onto the old coordinate.

In a compact form, we can write

r′ = R(T )r (3.24)

where r′ and r represent the new and old coordinates, respectively, and the rotation

operator

R(T ) =




1 0 0

0 cos θ sin θ

0 − sin θ cos θ




(3.25)

depends on the rotation T but is independent of the position P . R(T ) obeys the orthog-

onality rule

[R(T )]T = [R(T )]−1 (3.26)

and

det | R(T ) |= 1 (3.27)

The product of two rotations T1 and T2 is

R(T1T2) = R(T1)R(T2) , (3.28)

but in general, R(T1)R(T2) ̸= R(T2)R(T1).

Translation symmetry is achieved by simply moving a body in IR3 (without rotation).

Inversion and reflection are similar in that they involve the rearrangement (or swapping)



3.4. GROUP THEORY ANALYSIS 45

of identical points of a body in space while the system remains physically unchanged.

3.4.2 Representation Theory of Finite Groups

The two main reasons for applying group theory in this work are for further simplification

of analytic calculations and the classification of the symmetries of bound pairs. Even

though we can use the symmetrised solution to separate singlets from triplets, group

theory further helps to identify the sub-symmetries within these separate classes. In

other words, it is possible to identify s-wave and d-wave singlets and, similarly, we can

distinguish between p-wave and f -wave triplets. We note that identification of states

using this method is most useful at the Brillouin zone centre because states of the same

symmetry class (e.g different singlets or different triplets) can mix away from the zone

centre. We will introduce some mathematical concepts of representation theory below.

If each element A of a group G can be assigned a non-singular square matrix Γ(A)

such that Γ(A1A2) = Γ(A1)Γ(A2) ∈ G for every pair A1 and A2 of the group, then, the

set of matrices {Γ(A1),Γ(A2), . . . ,Γ(An)} is said to be the representation of G and the

order of these matrices gives the dimension of the representation.

3.4.2.1 Equivalent Representation

Let Γ be a d-dimensional representation of a group G and let S be any non-singular d×d

matrix. If for each element A ∈ G we can define a d× d matrix Γ′(A) such that

Γ′(A) = S · Γ(A) · S−1 , (3.29)

then the set {Γ′(A1),Γ
′(A2), . . . ,Γ

′(An)} also forms a d-dimensional representation of

G. Hence, both representations Γ and Γ′ are said to be equivalent. Note that Equation

(3.29) is a similarity transformation (see Section 3.4).
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3.4.2.2 Unitary Representation

If there is a representation Γu in which the matrices Γu(A) are unitary for every A ∈ G,

such a representation is called a “unitary representation”. For a unitary matrix U , the

identity U †U = I = UU † holds. Similarly, a unitary representation obeys the identity

relation

Γu(A)
†Γu(A) = Γu(A)Γu(A)

† = 1 . (3.30)

Furthermore, a unitary transformation obeys the similarity transformation

Γ′
u(A) = S · Γu(A) · S−1 , (3.31)

if S is a unitary matrix. In essence, when Equation (3.31) is valid, Γ′
u and Γu are

equivalent unitary representations.

3.4.3 Reducible & Irreducible Representations

In this work, we will make use of the irreducible representations to identify the symme-

tries of bound states and to determine linear combinations of the orthogonal basis. The

irreducible representations of crystallographic point groups can be found in standard

textbooks (e.g. Cornwell [86]). However, we will only explain the general procedures for

obtaining the irreducible representations from the reducible ones.

Partitioned Matrix: Sometimes a matrixM may be partitioned into smaller matrices

in the form

M =




m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34



≡



M11 M12 M13

M21 M22 M23


 (3.32)
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where

M11 =



m11

m12


 , M

12 =



m12 m13

m22 m23


 , M

13 =



m14

m24


 ,

M21 =

[
m31

]
, M22 =

[
m32 m33

]
, M23 =

[
m34

]

then each sub-matrix has some independent characteristics of the original matrix.

3.4.3.1 Reducible Representations

Suppose that we partition a d-dimensional representation Γ of a group G as

Γ(T ) =




Γ11(T ) X(T )

0 Γ22(T )


 : for all T ∈ G (3.33)

where Γ11(T ), X(T ), Γ22(T ) and the zero matrix 0 have dimensions s1 × s1, s1 × s2,

s2 × s2 and s2 × s1 respectively. (Here s1 + s2 = d, s1 ≥ 1, s2 ≥ 1 and s1 and s2 are the

same for all T ∈ G.) Then, the product Γ(T1)Γ(T2) must have the form (3.33)

Γ(T1)Γ(T2) =



Γ11(T1)Γ11(T2) Γ11(T1)X(T2) +X(T1)Γ22(T2)

0 Γ22(T1)Γ22(T2)


 (3.34)

so that

Γ11(T1T2) = Γ11(T1)Γ11(T2)

Γ22(T1T2) = Γ22(T1)Γ22(T2) (3.35)

and X(T1T2) = Γ11(T1)X(T2) +X(T1)Γ22(T2)

The first two expressions in (3.35) mean that Γ11(T ) and Γ22(T ) are both representations

of G. From this, we understand that (quoting from Ref. [86]):

“A representation of a group G is said to be ‘reducible’ if it is equivalent to

a representation Γ that has the form of Equation (3.33) for all T ∈ G.”
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3.4.3.2 Irreducible Representations

It may be possible that the representations Γ11(T1T2) and Γ22(T1T2) in Equations (3.35)

can be reduced further. The reduction process proceeds by selecting a suitable matrix

S (usually unitary) where one performs similarity transformations S · Γ(T ) · S−1 until

all the matrices of a representation are no longer reducible. As such, the irreducible

representation of Γ would finally be composed of diagonal blocks of matrices that are

themselves non-reducible

Γ
′′
(T ) =




Γ
′′
11(T ) 0 0 . . . 0

0 Γ
′′
22(T ) 0 . . . 0

0 0 Γ
′′
33(T ) . . . 0

...
...

...
. . .

...

0 0 0 . . . Γ
′′
nn(T )




(3.36)

Thus, Γ
′′
11, . . .Γ

′′
nn, form the irreducible representations of the group G.

3.4.4 The Orthogonality Theorem

If ϕp
1(r), ϕ

p
2(r), . . . , and ψ

q
1(r), ψ

q
2(r) are respectively basis functions for the unitary irre-

ducible representations Γp and Γq of a group of coordinate transformations G, while Γp

and Γq are not equivalent if p ̸= q (but are identical if p = q), then

(ϕp
m, ψ

q
n) = δp,qδm,n . (3.37)

In the process of finding a set of basis functions for the two-particle problem, all the

basis functions representing the bound states must obey the orthogonality rule. The

basis used in this thesis conforms with this rule.
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3.4.5 Character & Character Table

The character table via the irreducible representations is probably the most important

tool in the application of group theory in this work. It allows the construction of a

reduction formula in conjunction with the irreducible representations which is then used

to identify the symmetries of the bound states. The following concepts are most relevant.

Character χ: this is the trace of an irreducible matrix i.e.

χ(T ) = tr [Γ(T )] =
d∑

j=1

Γ(T )jj . (3.38)

For example, the character of the identity representation of dimension d is χ(E) = d.

Character Table: this is a tabular presentation of the character (χ) for each class of

a group G.

3.4.6 Eigenvalue Problem

Suppose that an operator T acts on a set of basis functions ϕn, this operation can be

expressed as

Tϕn =
∑

m

ϕmTmn , (3.39)

which represents a set of linear equations, one for each value of n. The choice of the set

of the basis {ϕn} is not unique. If we choose a set of orthonormal basis functions {ψn}

such that the non-vanishing term only occurs when m = n, this gives a simple equation

Tψn = Tnnψn ≡ tnψn (3.40)

where tn is a scalar for every n. Any non-zero vector ψn which satisfies Equation (3.40)

is called an eigenvector or eigenfunction of the operator T and tn is the corresponding
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eigenvalue. Equation (3.40) has a non-trivial solution if and only if

det(Tnn − tn) = 0 (3.41)

and this form of expression is referred to as the eigenvalue problem or sometimes called

the secular equation. This is the form of the UV solution in Equation (3.12).

3.4.7 Procedure as used in this Thesis

Below is the systematic procedure used in this work and the steps are to be followed in

this order.

1. Perform all symmetry operations of the crystallographic point group and construct

a reducible character table (also called the reduction formula).

2. Decompose the reducible representations in step 1 into irreducible representations

and identify the symmetries.

3. Define a set of unitary, orthogonal bases while omitting the normalisation con-

stants.

4. Using the bases defined in step 3, apply the similarity transformation to block-

diagonalise the matrix equations.

3.5 Perturbation Theory (PT)

The two-particle solution of the UV model obtained in Section (3.3.1) is exact, so we

can, for example, calculate the eigenvalues and eigenfunctions in the ground state and

extract some properties of the pair. Meanwhile, we sometimes want to gain quantitative

information on the dynamics of the two-body problem when the the system is perturbed.

For example, we may want to know how a bound pair moves in a lattice.
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Perturbation theory (PT) is an effective tool that we can use to understand how a

well-known system changes when it is slightly disturbed. Perturbative treatments can

be applied both in the degenerate and non-degenerate situations. A dedicated chapter

on perturbation theory in quantum mechanics with practical examples can be found in

Sakurai and Napolitano [87]. In addition, many online resources (e.g. [88, 89]) can be

found discussing perturbation theory. Here, we mainly discuss the degenerate Rayleigh-

Schrödinger perturbation theory as it is used in this thesis. However, we will briefly

talk about the non-degenerate case up to first order so as to make some remarks on the

perturbation series when degeneracy is present.

Let us assume that a system with a known solution is described by the eigenequation

Ĥ0

∣∣ψ(0)
n

〉
= E(0)

n

∣∣ψ(0)
n

〉
(3.42)

where Ĥ0 is the unperturbed Hamiltonian, ψ
(0)
n is the unperturbed, discrete eigenstate,

and E
(0)
n is the corresponding eigenvalue (unperturbed energy). If we introduce an exter-

nal perturbation described by a Hamiltonian ϵH ′ to the physical system, then the (new)

Hamiltonian describing the perturbed system is the sum of the contributing Hamiltoni-

ans

Ĥ ≡ Ĥ(ϵ) = Ĥ0 + ϵĤ ′ : ϵ≪ 1 (3.43)

where ϵ is the strength of the introduced perturbation. In addition to the new Hamilto-

nian Ĥ, we have new eigenstates |ψn⟩ϵ such that

Ĥ |ψn⟩ϵ = E
′

n |ψn⟩ϵ (3.44)

where

|ψn⟩ϵ =
∣∣ψ(0)

n

〉
+ |∆ψn⟩ =

∣∣ψ(0)
n

〉
+ ϵ
∣∣ψ(1)

n

〉
+ ϵ2

∣∣ψ(2)
n

〉
+ . . . (3.45)

E
′

n ≡ En(ϵ) = E(0)
n +∆En = E(0)

n + ϵE(1)
n + ϵ2E(2)

n + . . . (3.46)
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|ψn⟩ϵ and E
′
n are the eigenstate and the total energy, respectively, in the perturbed state.

Up to first-order in perturbation, the correction to energy and the corresponding

eigenstate is respectively

E
′

n = E(0)
n + ϵ

〈
ψ(0)
n

∣∣Ĥ ′∣∣ψ(0)
n

〉
+O(ϵ2) (3.47)

|ψn⟩ϵ =
∣∣ψ(0)

n

〉
+ ϵ
∑

k ̸=n

H ′
kn

E
(0)
n − E

(0)
k

∣∣ψ(0)
k

〉
+O(ϵ2) (3.48)

Remarks

1. The correction up to the first order Equation (3.47) for the ground state energy

overestimates the true ground state energy due to the variational principle.

2. When there is (unlifted) degeneracy such that E
(0)
n = E

(0)
k , Equation (3.48) diverges

and becomes unsolvable for those degenerate states. This is also true for higher-

orders in the perturbation as they all contain energy differences in the denominator.

To circumvent the divergence problem, we will consider the degenerate case.

3.5.1 Degenerate PT

The second remark above requires us to treat degenerate states specially. Suppose that

Ĥ0 possesses N degenerate eigenstates |ψ(0)
r ⟩ with eigenvalues E

(0)
r , where the subscript

r = 1, 2, 3, . . . , N . Having degeneracy adds another layer of complexity when treating a

system perturbatively. Our primary aim will be to examine the effect of perturbation

on the degenerate subspace of Ĥ0.

For this degenerate subspace, we have

|ψr⟩ϵ =
∣∣ψ(0)

r

〉
+ ϵ
∣∣ψ(1)

r

〉
+ ϵ2

∣∣ψ(2)
r

〉
+ . . . (3.49)

Er(ϵ) = E(0)
r + ϵE(1)

r + ϵ2E(2)
r + . . . (3.50)
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The implication of Equation (3.50) in particular is that the degeneracy becomes totally

lifted to first-order if all E
(1)
r are different for the new eigenstates. Sometimes, however,

some of the states may still have the same energy and partial degeneracy is retained.

Then the Schrödinger equation due to the perturbation becomes

[
Ĥ0 + ϵĤ ′

][ ∣∣ψ(0)
r

〉
+ ϵ
∣∣ψ(1)

r

〉
+ ϵ2

∣∣ψ(2)
r

〉
+ . . .

]
=

[
E(0)

r + ϵE(1)
r + ϵ2E(2)

r + . . .

][ ∣∣ψ(0)
r

〉
+ ϵ
∣∣ψ(1)

r

〉
+ ϵ2

∣∣ψ(2)
r

〉
+ . . .

] (3.51)

First-order: ϵ1

Up to first-order in Equation (3.51), we have

Ĥ0

∣∣ψ(1)
r

〉
+ Ĥ ′ ∣∣ψ(0)

r

〉
= E(0)

r

∣∣ψ(1)
r

〉
+ E(1)

r

∣∣ψ(0)
r

〉

(Ĥ0 − E(0)
r )
∣∣ψ(1)

r

〉
= (E(1)

r − Ĥ ′)
∣∣ψ(0)

r

〉 (3.52)

To find the energy due to the perturbation, we define new basis sets which are linear

superpositions of the degenerate eigenstates

∣∣ψ(0)
r

〉
=

N∑

s=1

∣∣ϕ(0)
s

〉 〈
ϕ(0)
s

∣∣ψ(0)
r

〉
=

N∑

s=1

Crs

∣∣ϕ(0)
s

〉
(3.53)

∣∣ψ(1)
r

〉
=

N∑

p=1

A(1)
rp

∣∣ψ(0)
p

〉
(3.54)

where Crs and Arp are unknown constants. From (3.52), we obtain

N∑

p=1

A(1)
rp (Ĥ0 − E(0)

r )
∣∣ψ(0)

p

〉
=

N∑

s=1

Crs(E
(1)
r − Ĥ ′)

∣∣ϕ(0)
s

〉
(3.55)

Taking the inner product of Equation (3.55) with
〈
ϕ
(0)
u

∣∣∣ for u = 1, 2, 3, . . . , N , the LHS

vanishes, thus we have

N∑

s,u=1

Crs

〈
ϕ(0)
u

∣∣ (E(1)
r − Ĥ ′)

∣∣ϕ(0)
s

〉
= 0 . (3.56)

The interpretation of this expression is that the perturbed Hamiltonian must be

diagonal in the degenerate subspace by the choice of a “good” basis in Equation (3.53).
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We also note that the energy correction to first order in both the non-degenerate and

degenerate cases (i.e. Equations (3.47) and (3.56), respectively) look very similar (though

they are not practically the same). The solution to Equation (3.56) is obtained by finding

the determinant of the matrix

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H ′
11 − E(1) H ′

12 H ′
13 . . . H ′

1N

H ′
21 H ′

22 − E(1) H ′
23 . . . H ′

2N

...
...

...
. . .

...

H ′
N1 H ′

N2 H ′
N3 . . . H ′

NN − E(1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (3.57)

which has N roots (energy). If the roots are distinct, then the degeneracy is com-

pletely lifted. Degeneracy is partial or not lifted at all if some or all of the roots are

equal.

Unlike in the non-degenerate case where the eigenstate to first-order is obtained easily

(see Equation (3.48)), the first-order eigenstate correction in the degenerate case could

have contributions both from within the degenerate subspace as well as from other states

[87, 88]. We can find the component of
∣∣∣ψ(1)

r

〉
along other states

〈
ψ

(0)
q

∣∣∣ (i.e. states outside

the degenerate subspace and we will do that first) and within the degenerate subspace.

For the first case, we perform the scalar product of Equation (3.55) with
〈
ψ

(0)
q

∣∣∣. Doing

this yields

∣∣ψ(1)
r

〉
̸∈deg =

∑

q ̸=r

〈
ψ

(0)
q

∣∣∣ Ĥ
∣∣∣ψ(0)

r

〉

E
(0)
r − E

(0)
q

∣∣ψ(0)
q

〉
=
∑

q ̸=r

Hqr

E
(0)
r − E

(0)
q

∣∣ψ(0)
q

〉
(3.58)

The subscript “̸∈ deg” implies that these are states outside the degenerate subspace.

However, for components of these eigenstates within the degenerate subspace, we have

to use the second-order expression and it turns out that if we perform the scalar product

with
〈
ψ

(0)
l

∣∣∣ for l = 1, 2, 3, . . . , N , the eigenstate along the degenerate subspace
∣∣∣ψ(1)

r

〉
∈deg

does not vanish only if the degeneracy is lifted to first order but vanishes if otherwise.
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In the non-vanishing case, we obtain

∣∣ψ(1)
r

〉
∈deg =

∑

l ̸=r

〈
ψ

(0)
l

∣∣∣ Ĥ
∣∣∣ψ(1)

r

〉
̸∈deg

E
(0)
l − E

(0)
r

∣∣∣ψ(0)
l

〉
(3.59)

Similarly, we see that we will encounter divergence problem if degeneracy (i.e. l = r)

still exists after first-order perturbation. Hence, Equation (3.59) is only useful when the

degeneracy is completely lifted to first-order.

Second-order: ϵ2

After some algebra, the energy to second-order correction has the form of Equation (3.56)

and is given as

N∑

s=1

(M (2)
us − E(2)

r δu,s)Crs = 0 (3.60)

where

M (2)
us =

∑

p ̸=r

HupHps

E
(0)
r − E

(0)
p

(3.61)

The second-order correction to energy E
(2)
r is obtained by solving the determinant of the

matrix equation (3.60). In general, second-order perturbation calculations are usually

considered if degeneracy is not lifted by the first-order correction or in cases where first-

order perturbation does not take the system to a state of interest. In this thesis, for

example, we will be interested in finding the energy of a bound pair perturbatively. If

to first-order the particles become unbound, we will go higher in perturbation. The

calculations carried out in this thesis are limited to second-order.
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3.6 Monte-Carlo Simulation

While analytic methods can give exact solutions, they can be cumbersome and laborious.

Equally, not all problems are analytically solvable, and thus, sometimes, we have to rely

on computational methods. In computational research, the term Monte–Carlo generally

means stochastic simulations where new configurations of a system are suggested and

generated randomly based on a set of rules. It involves starting with an initial configura-

tion and a move is made to change to a different configuration. Based on an acceptance

rule that ensures ergodicity, the new configuration is either accepted or rejected. If the

move is rejected, another attempt will be made. This continues until a fixed number of

updates has been made.

3.6.1 Continuous-time Quantum Monte-Carlo (CTQMC)

So far we have considered purely analytic methods (UV approximation and group theory

analysis) that we will be using in our study. We note that the UV model, through

the Lang-Firsov transformation, is an approximation that does not provide much, if

any, information about the phonon degrees of freedom. It means that some inherent

information about lattice vibrations could be lost.

Fortunately, the dynamics of the system resulting from the EPI can be investigated

using a continuous-time quantum Monte-Carlo algorithm (CTQMC) [90]. The algorithm

has been used extensively to study properties of polarons and bipolarons in 1D to 3D

lattices [69, 71, 72, 73, 81, 91, 92, 93, 94] but not for bipolarons in the BCC and FCC

lattices. In this thesis, I have used the algorithm to simulate properties of two fermions

in BCC lattices and extended it for FCC lattices.

The CTQMC algorithm works using path integral formalism [95] whereby the path
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Figure 3.1: Illustration of two-electron paths in a 1D system after imaginary time
evolution 0 → β̄. (a) Paths do not cross each other. N+i and N-i are total kinks of
a certain type on path i. The kinks are introduced by an acceptance rule. (b) An
exchanged configuration where paths interact on a particular site and then particles
continue to meander. (c) Paths end on the same site in an ambiguous configuration.
(Reproduced from Ref. [71])

of a particle exists in imaginary time τ . Figure 3.1 shows an example of two-particle

paths. The value of τ ranges between 0 and the inverse temperature β̄ = 1/kBT . The

partition function Z determines the number of accessible paths in a configuration. In

quantum statistical problems, the partition function, which is independent of the choice

of representation, can simply be written as the trace over the state space [96]

Z = tr
[
e−β̄H

]
=
∑

R

⟨R|e−β̄H |R⟩ (3.62)

where |R⟩ represents a complete set of orthonormal basis states in real space. In path

integral form, Z can be expressed as

Z =

∫
Dre−A[r(τ)] (3.63)

where D represents the integral over all the possible paths, and

A[r(τ)] =

∫ β̄

0

dτL [r(τ)] (3.64)

is the phonon-induced action parameter which contains all the information about the

path r(τ) via the Lagrangian L [r(τ)] [97]. L describes all the interactions within the

system, and, hence, information such as the hopping of a particle (represented by a kink)
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can be understood during a path update. The bipolaron action used in this work has

the form [90]

A[r(τ)] = A0[r(τ)] + A∆r[r(τ)]− V (r1, r2)

=

p∑

s=1

∑

n

ℏ
4Msωs

∫ β̄

0

∫ β̄

0

dτ1dτ2
cosh ℏωs

(
β̄
2
− |τ1 − τ2|

)

sinh ℏωs
β̄
2

Fns(τ1)Fns(τ2)

+

p∑

s=1

∑

n

ℏ
2Msωs

Bns (Cn+∆r,s − Cns)−
∫ β

0

V [r1(τ), r2(τ)]dτ

(3.65)

where

Bns ≡
∫ β̄

0

dτ
sinh ℏωs

(
β̄ − τ

)

sinh ℏωsβ̄
Fns(τ) , (3.66)

Cns ≡
∫ β̄

0

dτ
sinh ℏωsτ

sinh ℏωsβ̄
Fns(τ) , (3.67)

Fns(τ) = fns[r1(τ)] + fns[r2(τ)] . (3.68)

Fns(τ) describes the total force (contributed by two particles) acting at the s-th oscillator

(with frequency ωs and mass Ms) in the n-th unit cell at time τ . Also, r1(τ) and r2(τ)

are the respective locations of the paths (i.e. particles) at time τ .

Note that in Equation (3.65), the first term A0[r(τ)] corresponds to bipolaron action

under a periodic boundary condition in time such that ξm(0) = ξm(β̄). The second term

A∆r[r(τ)] corresponds to bipolaron action with a twisted boundary condition such that

ξm(0) = ξm+∆r(β̄). The twisted boundary condition is needed for the estimation of the

pair mass [92]. ∆r = r(β̄)−r(0) is the offset distance between the endpoints of the paths

in a non-exchange configuration, V [r1(τ), r2(τ)] is an instantaneous Coulomb interaction

which can take the Hubbard form V [r1(τ), r2(τ)] = Uδr1,r2 .

The estimators used to calculate the thermodynamic properties of bipolarons are

defined below [97]

1. Total Energy: The total ground state energy is given as

Ebip = − lim
β̄→∞

[〈
δA

δβ̄

〉
+

1

β̄

〈∑

i

Ni

〉]
(3.69)
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2. Number of Phonons: The total number of excited phonons in the system can

be estimated as

Nph = − lim
β̄→∞

1

β̄

〈
δA

δω̄

∣∣∣∣∣
λω̄

〉
(3.70)

3. Bipolaron Mass: We estimate the inverse mass using the relation

1

mbip

= − lim
β̄→∞

⟨(∆ri)2⟩
β̄ℏ2

(3.71)

4. Bipolaron Radius: The radius is calculated as

Rbip =

〈√
1

β̄

∫ β̄

0

∆r12(τ)2δτ

〉
(3.72)

All other parameters have their meanings and definitions declared in previous equations.

Other technical details on the CTQMC can be found in Appendix A.

To end this chapter, we give a summary of the bipolaron simulation.

1. The required parameters must be defined and fed into the algorithm. The code

flags error(s) if any of these parameters are not properly set.

2. At the start, each particle has a straight path and a few kinks are randomly inserted

into these paths.

3. As per the binary update rules (see Appendix A), kink (or anti-kink) insertion

or removal is proposed. In addition to the existing updates used prior to the

commencement of this work, I have introduced additional update rules which will

be discussed in Chapter 7.

4. Accept or reject updates in step 3 based on the Metropolis acceptance algorithm.

5. After a warm-up period, calculate physical observables (such as the ground-state

energy, average number of excited phonons, effective mass and bipolaron size) and

estimate errors in measurements using the bootstrap re-sampling method.
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6. Repeat steps 2–5 depending on a pre-determined number of measurements. More

accurate results are obtained with increased simulation time.

End of Part I

This chapter completes Part I of this thesis. We believe we have set the stage to discuss

our results in the next part (Part II). The solution to the UV model on BCC and FCC

lattice is reported in Chapters 4 and 5, respectively, where we apply the symmetrised and

anti-symmetrised solutions, group theory analysis and degenerate perturbation theory.

In Chapter 6, we apply the (anti-)symmetrised UV solution after deriving an effective

UV Hamiltonian for the fulleride compounds. The properties of bipolarons both on the

BCC and FCC lattices from the CTQMC are reported in Chapter 7.



Part II

RESULTS AND DISCUSSIONS
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Chapter 4

Superfluidity in BCC Optical

Lattices

4.1 Summary

We analytically study the properties of bound pairs in a BCC optical lattice using the

UV model derived in Chapter 3. We begin this chapter with a preliminary discussion

of how the UV model can be applied to fermions in a BCC lattice, then we obtained

the self-consistent equations for the spin-singlet and spin-triplet states using the (anti-

)symmetrisation method. Next, pair properties like the total energy, critical binding

interaction, dispersion, effective mass, and effective radius are calculated in that order.

The procedures for each calculation are discussed in detail. We also compute the BEC

transition temperatures of fermion pairs in the ultra-cold regime and in the dilute limit.

Finally, we end this chapter with a discussion of our findings.

62
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4.2 Preliminaries

The coordination number in a BCC lattice is 8 as shown in Figure 4.1, thus there are

nine possible configurations for onsite and intersite pairing in the unit cell. With a lattice

constant b, the lattice vectors, including the central site, are (0, 0, 0), ( b
2
, b
2
, b
2
), (− b

2
, b
2
, b
2
),

( b
2
,− b

2
, b
2
), ( b

2
, b
2
,− b

2
), (− b

2
,− b

2
,− b

2
), ( b

2
,− b

2
,− b

2
), (− b

2
, b
2
,− b

2
), (− b

2
,− b

2
, b
2
).

𝑌

𝑋

𝑍

𝑂

𝑏

𝑏

Figure 4.1: A BCC lattice showing the 8 nearest-neighbour sites.

We recall from Chapter 3 that the (anti-)symmetrised solution is

(E − εk1 − εk2)ϕ
±
k1k2

=
1

N

∑′

qa±

V̂a±

{
ei(q−k1)a± ± ei(q−k2)a±

}
ϕ±
q,k1+k2−q (4.1)

where ϕ+
q,k1+k2−q and ϕ−

q,k1+k2−q are respectively the singlet and triplet wavefunctions.

The free-particle dispersion in a BCC lattice for negative hopping integral (−t) between

nearest-neighbour vectors a is

εk =
∑

a

t eik·a = −8t cos
kxb

2
cos

kyb

2
cos

kzb

2
(4.2)

Next, we define vector sets {a+} and {a−}, and then substitute them into Equation

(4.1). By doing so, we will have (5× 5) and (4× 4) matrices for the singlets and triplet
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states, respectively. The respective vectors may be chosen as ∗

{a+} = {a+
0 ,a

+
1 ,a

+
2 ,a

+
3 ,a

+
4 } = {(0, 0, 0), ( b

2
,
b

2
,
b

2
), (− b

2
,
b

2
,
b

2
), (

b

2
,− b

2
,
b

2
), (

b

2
,
b

2
,− b

2
)}

(4.3)

{a−} = {a−
1 ,a

−
2 ,a

−
3 ,a

−
4 } = {( b

2
,
b

2
,
b

2
), (− b

2
,
b

2
,
b

2
), (

b

2
,− b

2
,
b

2
), (

b

2
,
b

2
,− b

2
)} (4.4)

We now proceed with finding the separate solutions to the singlet and triplet states. Note

that when we say singlet or triplet states we are referring to spin-singlet and spin-triplet

states.

4.2.1 Solution for Singlets

For the singlets, we use the vectors {a+} in Equation (4.1). Doing this we have †

(E − εk1 − εk2)ϕ
+
k1k2

=
1

N

∑

q

[
1

2
U(ei(q−k1)a

+
0 + ei(q−k2)a

+
0 ) + V (ei(q−k1)a

+
1 + ei(q−k2)a

+
1 )

+ V (ei(q−k1)a
+
2 + ei(q−k2)a

+
2 ) + V (ei(q−k1)a

+
3 + ei(q−k2)a

+
3 )

+ V (ei(q−k1)a
+
4 + ei(q−k2)a

+
4 )

]
ϕ+
q,k1+k2−q

=
1

N

∑

q

[
U + V ei(

qx
2
+

qy
2
+ qz

2
)(e−ik1a

+
1 + e−ik2a

+
1 )

+ V ei(
−qx
2

+
qy
2
+ qz

2
)(e−ik1a

+
2 + e−ik2a

+
2 )

+ V ei(
qx
2
− qy

2
+ qz

2
)(e−ik1a

+
3 + e−ik2a

+
3 )

+ V ei(
qx
2
+

qy
2
− qz

2
)(e−ik1a

+
4 + e−ik2a

+
4 )

]
ϕ+
q,k1+k2−q

(4.5)

∗We ensure that no set of vectors is related by inversion and that a+
0 belongs to the singlets.

†Reminder that a+ = 0 term must be multiplied by 1
2 to account for double occupancy.
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We can then represent some basis functions as follows:

Φ+
0 (P ) =

1

N

∑

q

ϕ+
q,P−q , Φ+

1 (P ) =
1

N

∑

q

ei(
qx
2
+

qy
2
+ qz

2
) ϕ+

q,P−q

Φ+
2 (P ) =

1

N

∑

q

ei(
−qx
2

+
qy
2
+ qz

2
) ϕ+

q,P−q , Φ+
3 (P ) =

1

N

∑

q

ei(
qx
2
− qy

2
+ qz

2
) ϕ+

q,P−q

Φ+
4 (P ) =

1

N

∑

q

ei(
qx
2
+

qy
2
− qz

2
) ϕ+

q,P−q

(4.6)

where P = k1 + k2. Hence, Equation (4.5) can be written in a more generalised form

ϕ+
k1k2

=
1

(E − εk1 − εk2)

{
UΦ+

0 (P ) + V Φ+
1 (P )(e−ik1a

+
1 + e−ik2a

+
1 )

+ V Φ+
2 (P )(e−ik1a

+
2 + e−ik2a

+
2 ) + V Φ+

3 (P )(e−ik1a
+
3 + e−ik2a

+
3 )

+ V Φ+
4 (P )(e−ik1a

+
4 + e−ik2a

+
4 )

}
(4.7)

We apply Equation (4.7) to each basis function Φ+
0 (P ), Φ+

1 (P ), Φ+
2 (P ), Φ+

3 (P ),

Φ+
4 (P ) and replace the variable qj as: qj = q

′
j +

Pj

2
. A simple substitution would yield

five equations for Φ+
i (P ): i = 0, 1, 2, 3, 4.

Φ+
0 (P ) =

1

N

∑

q′

1

E − εP
2
+q′ − εP

2
−q′

{
UΦ+

0 (P )

+ V Φ+
1 (P ) e−i(Px

4
+

Py
4
+Pz

4
)
[
ei(

q
′
x
2
+

q
′
y
2
+

q
′
z
2
) + e−i(

q
′
x
2
+

q
′
y
2
+

q
′
z
2
)
]

+ V Φ+
2 (P ) ei(

Px
4
−Py

4
−Pz

4
)
[
ei(

q
′
x
2
−

q
′
y
2
− q

′
z
2
) + e−i(

q
′
x
2
−

q
′
y
2
− q

′
z
2
)
]

+ V Φ+
3 (P ) e−i(Px

4
−Py

4
+Pz

4
)
[
ei(

q
′
x
2
−

q
′
y
2
+

q
′
z
2
) + e−i(

q
′
x
2
−

q
′
y
2
+

q
′
z
2
)
]

+ V Φ+
4 (P ) e−i(Px

4
+

Py
4
−Pz

4
)
[
ei(

q
′
x
2
+

q
′
y
2
− q

′
z
2
) + e−i(

q
′
x
2
+

q
′
y
2
− q

′
z
2
)
] }

(4.8)

Φ+
1 (P ) =

1

N

∑

q′

1

E − εP
2
+q′ − εP

2
−q′

{
UΦ+

0 (P ) ei(
Px
4
+

Py
4
+Pz

4
)ei(

q
′
x
2
+

q
′
y
2
+

q
′
z
2
)

+ V Φ+
1 (P )

[
1 + e2i(

q
′
x
2
+

q
′
y
2
+

q
′
z
2
)
]
+ V Φ+

2 (P )ei
Px
2

[
e2i(

q
′
x
2
) + e2i(

q
′
y
2
+

q
′
z
2
)
]

+ V Φ+
3 (P )ei

Py
2

[
e2i(

q
′
y
2
) + e2i(

q
′
x
2
+

q
′
z
2
)
]
+ V Φ+

4 (P )ei
Pz
2

[
e2i(

q
′
z
2
) + e2i(

q
′
x
2
+

q
′
y
2
)
] }

(4.9)
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Φ+
2 (P ) =

1

N

∑

q
′

1

E − εP
2
+q′ − εP

2
−q′

{
UΦ+

0 (P ) e−i(Px
4
−Py

4
−Pz

4
) e−i(

q
′
x
2
−

q
′
y
2
− q

′
z
2
)

+ V Φ+
1 (P ) e−iPx

2

[
e−2i(

q
′
x
2
) + e2i(

q
′
y
2
+

q
′
z
2
)
]
+ V Φ+

2 (P )
[
1 + e−2i(

q
′
x
2
−

q
′
y
2
− q

′
z
2
)
]

+ V Φ+
3 (P ) e−i(Px

2
−Py

2
)
[
e−2i(

q
′
x
2
−

q
′
y
2
) + e2i(

q
′
z
2
)
]

+ V Φ+
4 (P ) e−i(Px

2
−Pz

2
)
[
e−2i(

q
′
x
2
− q

′
z
2
) + e2i(

q
′
y
2
)
] }

(4.10)

Φ+
3 (P ) =

1

N

∑

q′

1

E − εP
2
+q′ − εP

2
−q′

{
UΦ+

0 (P ) ei(
Px
4
−Py

4
+Pz

4
) ei(

q
′
x
2
−

q
′
y
2
+

q
′
z
2
)

+ V Φ+
1 (P ) e−i

Py
2

[
e−2i(

q
′
y
2
) + e2i(

q
′
x
2
+

q
′
z
2
)
]
+ V Φ+

2 (P ) ei(
Px
2
−Py

2
)
[
e2i(

q
′
x
2
−

q
′
y
2
) + e2i(

q
′
z
2
)
]

+ V Φ+
3 (P )

[
1 + e2i(

q
′
x
2
−

q
′
y
2
+

q
′
z
2
)
]
+ V Φ+

4 (P ) e−i(
Py
2
−Pz

2
)
[
e−2i(

q
′
y
2
− q

′
z
2
) + e2i(

q
′
x
2
)
] }

(4.11)

Φ+
4 (P ) =

1

N

∑

q′

1

E − εP
2
+q′ − εP

2
−q′

{
UΦ+

0 (P ) ei(
Px
4
+

Py
4
−Pz

4
) ei(

q
′
x
2
+

q
′
y
2
− q

′
z
2
)

+ V Φ+
1 (P ) e−iPz

2

[
e−2i(

q
′
z
2
) + e2i(

q
′
x
2
+

q
′
y
2
)
]
+ V Φ+

2 (P ) ei(
Px
2
−Pz

2
)
[
e2i(

q
′
x
2
− q

′
z
2
) + e2i(

q
′
y
2
)
]

+ V Φ+
3 (P )ei(

Py
2
−Pz

2
)
[
e2i(

q
′
y
2
−q

′
z
2
) + e2i(

q
′
x
2
)
]
+ V Φ+

4 (P )
[
1 + e2i(

q
′
x
2
+

q
′
y
2
− q

′
z
2
)
] }

(4.12)

Each of these equations (4.8)–(4.12) can be re-written in a simple form. For example,

Φ̃+
0 (P ) = UG(0,0,0)(P )Φ̃+

0 (P ) + V
[
G(1,1,1)(P ) + G(1̄,1̄,1̄)(P )

]
Φ̃+

1 (P )

+ V
[
G(1,1̄,1̄)(P ) + G(1̄,1,1)(P )

]
Φ̃+

2 (P ) + V
[
G(1,1̄,1)(P ) + G(1̄,1,1̄)(P )

]
Φ̃+

3 (P )

+
[
G(1,1,1̄)(P ) + G(1̄,1̄,1)(P )

]
Φ̃+

4 (P )

(4.13)

where a new function Φ̃+
i (P ) = e

−i
2
(Pa+

i )Φ+
i (where i = 0, 1, 2, 3, 4) containing a phase

factor that describes the centre-of-mass motion of the pair has been introduced. In
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addition, G is the momentum-dependent Green’s function defined as

G(l,m,n)(P ) =
1

N

∑

q′

ei(l
q
′
x
2
+m

q
′
y
2
+n

q
′
z
2
)

E − εP
2
+q′ − εP

2
−q′

= −
∫ 2π

−2π

∫ 2π

−2π

∫ 2π

−2π

dq
′
xdq

′
ydq

′
z

(4π)3

cos

(
l q

′
x

2
+m

q
′
y

2
+ n q

′
z

2

)

|E|+ εP
2
+q′ + εP

2
−q′

(4.14)

where l, m, and n are integers ∈ [0 ±1 ±2]. We will place a bar above a negative integer

subscript for compactness. For instance, G(1,−1,−1) ≡ G11̄1̄; G(−2,0,2) ≡ G2̄02. Finally, we

combine all these equations to form a (5 × 5) matrix equation for the spin-singlets at

arbitrary pair momentum as:




UG000 V (G111 + G1̄1̄1̄) V (G1̄11 + G11̄1̄) V (G11̄1 + G1̄11̄) V (G111̄ + G1̄1̄1)

UG111 V (G000 + G222) V (G200 + G022) V (G020 + G202) V (G002 + G220)

UG1̄11 V (G2̄00 + G022) V (G000 + G2̄22) V (G2̄20 + G002) V (G2̄02 + G020)

UG11̄1 V (G02̄0 + G202) V (G22̄0 + G002) V (G000 + G22̄2) V (G02̄2 + G200)

UG111̄ V (G002̄ + G220) V (G202̄ + G020) V (G022̄ + G200) V (G000 + G222̄)







Φ̃+
0

Φ̃+
1

Φ̃+
2

Φ̃+
3

Φ̃+
4




=




Φ̃+
0

Φ̃+
1

Φ̃+
2

Φ̃+
3

Φ̃+
4




(4.15)
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4.2.2 Solution for Triplets

Using {a−} in Equation (4.1), the anti-symmetrised equation is

(E − εk1 − εk2)ϕ
−
k1k2

=
1

N

∑

q

[
V ei(

qx
2
+

qy
2
+ qz

2
)(e−ik1a

−
1 − e−ik2a

−
1 )

+ V ei(
−qx
2

+
qy
2
+ qz

2
)(e−ik1a

−
2 − e−ik2a

−
2 )

+ V ei(
qx
2
− qy

2
+ qz

2
)(e−ik1a

−
3 − e−ik2a

−
3 )

+ V ei(
qx
2
+

qy
2
− qz

2
)(e−ik1a

−
4 − e−ik2a

−
4 )

]
ϕ−
q,k1+k2−q

(4.16)

Our spin-triplet basis functions are obtained similarly to the singlet case as:

Φ−
1 (P ) =

1

N

∑

q

ei(
qx
2
+

qy
2
+ qz

2
) ϕ−

q,P−q , Φ−
2 (P ) =

1

N

∑

q

ei(
−qx
2

+
qy
2
+ qz

2
) ϕ−

q,P−q

Φ−
3 (P ) =

1

N

∑

q

ei(
qx
2
− qy

2
+ qz

2
) ϕ−

q,P−q , Φ−
4 (P ) =

1

N

∑

q

ei(
qx
2
+

qy
2
− qz

2
) ϕ−

q,P−q

(4.17)

Going through a procedure similar to the spin-singlets, the set of self-consistent

equations for the triplets are

Φ−
1 (P ) =

1

N

∑

q′

1

E − εP
2
+q′ − εP

2
−q′

{
V Φ−

1 (P )
[
1− e2i(

q
′
x
2
+

q
′
y
2
+

q
′
z
2
)
]

+ V Φ−
2 (P ) e2i(

Px
4
)
[
e2i(

q
′
x
2
) − e2i(

q
′
y
2
+

q
′
z
2
)
]
+ V Φ−

3 (P ) e2i(
Py
4
)
[
e2i(

q
′
y
2
) − e2i(

q
′
x
2
+

q
′
z
2
)
]

+ V Φ−
4 (P ) e2i(

Pz
4
)
[
e2i(

q
′
z
2
) − e2i(

q
′
x
2
+

q
′
y
2
)
] }

= V Φ−
1 (P )

[
G000 − G222

]
+ V Φ−

2 (P ) ei
Px
2

[
G200 − G022

]

+ V Φ−
3 (P ) ei

Py
2

[
G020 − G202

]
+ V Φ−

4 (P ) ei
Pz
2

[
G002 − G220

]

(4.18)

Φ−
2 (P ) = V Φ−

1 (P ) e−iPx
2

[
G2̄00 − G022

]
+ V Φ−

2 (P )
[
G000 − G2̄22

]

+ V Φ−
3 (P ) e−i(Px

2
−Py

2
)
[
G2̄20 − G002

]
+ V Φ−

4 (P ) e−i(Px
2
−Pz

2
)
[
G2̄02 − G020

]

(4.19)

Φ−
3 (P ) = V Φ−

1 (P ) e−i
Py
2

[
G02̄0 − G202

]
+ V Φ−

2 (P ) ei(
Px
2
−Py

2
)
[
G22̄0 − G002

]

+ V Φ−
3 (P )

[
G000 − G22̄2

]
+ V Φ+

4 (P ) e−i(
Py
2
+Pz

2
)
[
G02̄2 − G200

] (4.20)
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Φ−
4 (P ) = V Φ−

1 (P ) e−iPz
2

[
G002̄ − G220

]
+ V Φ−

2 (P ) ei(
Px
2
−Pz

2
)
[
G202̄ − G020

]

+ V Φ−
3 (P )ei(

Py
2
−Pz

2
)
[
G022̄ − G200

]
+ V Φ−

4 (P )
[
G000 − G222̄

] (4.21)

We also re-write the triplet equations above to contain the centre-of-mass motion as we

did for the singlets. For example, Equation (4.18) becomes

Φ̃−
1 (P ) =V

[
G000 − G222

]
Φ̃−

1 (P ) + V
[
G200 − G022

]
Φ̃−

2 (P )

+ V
[
G020 − G202

]
Φ̃−

3 (P ) + V
[
G002 − G220

]
Φ̃−

4 (P )

(4.22)

The matrix equation for the spin-triplet at arbitrary momentum is thus:



V (G000 − G222) V (G200 − G022) V (G020 − G202) V (G002 − G220)

V (G2̄00 − G022) V (G000 − G2̄22) V (G2̄20 − G002) V (G2̄02 − G020)

V (G02̄0 − G202) V (G22̄0 − G002) V (G000 − G22̄2) V (G02̄2 − G200)

V (G002̄ − G220) V (G202̄ − G020) V (G022̄ − G200) V (G000 − G222̄)







Φ̃−
1

Φ̃−
2

Φ̃−
3

Φ̃−
4




=




Φ̃−
1

Φ̃−
2

Φ̃−
3

Φ̃−
4




(4.23)

and the Green’s function G is defined in Equation (4.14). Equations (4.15) and (4.23)

are the respective eigenequations that are solved to obtain pair properties for the singlets

and triplets.

In the next section, we will discuss the properties of bound pairs in a BCC lattice.

4.3 Pair Properties

In this section, we examine the properties of two bound fermions in BCC optical lat-

tices. The properties of interest include the total energy, pairing diagram, dispersion,

pair effective mass, effective radius, and estimate of Bose-Einstein condensation (BEC)

transition temperatures. The main discussion focuses on the s-states (onsite and ex-

tended). Nonetheless, other pairing symmetries (p-, d- and f - states) will be briefly

discussed too.
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4.3.1 Total Energy

The total energy in the ground state provides the most vital information about the

system. With the total energy, one can tell whether the particles are bound or not.

However, to create a bound pair, a minimum threshold of attraction is required. The

attraction can either be onsite U or intersite V . As noted earlier in the preliminary

discussion, we can determine the total energy of a pair at an arbitrary pair momentum

P .

4.3.1.1 Energy of an Unbound Pair at P = 0

The minimum energy of one free particle (also called the half-bandwidthW ) from Equa-

tion (4.2) εmin ≡ W = −8t is obtained when k = 0. Thus, the total energy of two

free-particles, each at zero momentum, is −16t. However, binding only occurs when

there is sufficient attraction, and if the particles bind, the energy of the system has to

drop. So in the simplest case of zero total momentum (P = 0), we consider the transi-

tion from unbound free-particles to a bound pair to occur when the total energy drops

below −16t.

4.3.1.2 Energy of a Bound Pair at P = 0

To calculate the total energy at zero pair momentum, we set P= 0 in Equation (4.15).

For P = 0 which corresponds to the Γ point (the centre of the Brillouin zone (BZ)),

there is a simplification of the Green’s function (4.14), and the BCC lattice possesses Oh

point symmetry. It means that we can apply group theory analysis.
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Simplification at the Γ point

At the BZ centre, the Green’s function from Equation (4.14) becomes

Glmn(0) = −
∫ 2π

−2π

∫ 2π

−2π

∫ 2π

−2π

dq
′
xdq

′
ydq

′
z

(4π)3

cos
(
l q

′
x

2

)
cos

(
m

q
′
y

2

)
cos
(
n q

′
z

2

)

|E|+ 2εq′

= − 1

(2π)3

∫ π

−π

∫ π

−π

∫ π

−π

cos
(
lq

′′
x

)
· cos

(
mq

′′
y

)
· cos

(
nq

′′
z

)

|E| − 16t cos(q′′x) · cos
(
q′′y
)
· cos(q′′z )

dq
′′

x dq
′′

ydq
′′

z : (q
′′

j =
q
′
j

2
)

(4.24)

and the following relations hold

G000(0) ≡ G0

G111(0) = G1̄11(0) = G11̄1(0) = G111̄(0) = G1̄11̄(0) = G1̄1̄1(0) = G11̄1̄(0) ≡ G1

G222(0) = G2̄22(0) = G22̄2(0) = G222̄(0) = G2̄22̄(0) = G2̄2̄2(0) = G22̄2̄(0) ≡ G2

G200(0) = G02̄0(0) = G002(0) = G2̄00(0) = G02̄0(0) = G002̄(0) ≡ G3

G220(0) = G022(0) = G202(0) ≡ G4

(4.25)

Then, Equations (4.15) and (4.23) respectively become (note that Φ̃±
i ≡ Φ±

i since P = 0)



UG0 2V G1 2V G1 2V G1 2V G1

UG1 V (G0 + G2) V (G3 + G4) V (G3 + G4) V (G3 + G4)

UG1 V (G3 + G4) V (G0 + G2) V (G4 + G3) V (G4 + G3)

UG1 V (G3 + G4) V (G4 + G3) V (G0 + G2) V (G4 + G3)

UG1 V (G3 + G4) V (G4 + G3) V (G4 + G3) V (G0 + G2)




︸ ︷︷ ︸
Ĥsinglet




Φ+
0

Φ+
1

Φ+
2

Φ+
3

Φ+
4




︸ ︷︷ ︸
Φ̂singlet

=




Φ+
0

Φ+
1

Φ+
2

Φ+
3

Φ+
4




︸ ︷︷ ︸
Φ̂singlet

(4.26)




V (G0 − G2) V (G3 − G4) V (G3 − G4) V (G3 − G4)

V (G3 − G4) V (G0 − G2) V (G4 − G3) V (G4 − G3)

V (G3 − G4) V (G4 − G3) V (G0 − G2) V (G4 − G3)

V (G3 − G4) V (G4 − G3) V (G4 − G3) V (G0 − G2)




︸ ︷︷ ︸
Ĥtriplet




Φ−
1

Φ−
2

Φ−
3

Φ−
4




︸ ︷︷ ︸
Φ̂triplet

=




Φ−
1

Φ−
2

Φ−
3

Φ−
4




︸ ︷︷ ︸
Φ̂triplet

(4.27)



72 CHAPTER 4. SUPERFLUIDITY IN BCC OPTICAL LATTICES

The matrix equations above can be written in a compact form as

Ĥs,t Φ̂s,t = µs,t Φ̂s,t (4.28)

thus forming an eigenvalue problem. Ĥs and Ĥt are the singlet and triplet dispersion

matrices, µs and µt being the eigenvalues corresponding to singlet Φ̂s and triplet Φ̂t

eigenvectors respectively. So, the values of E (in the denominator of the Green’s function)

corresponding to the pair’s total energy are found by searching for eigenvalues of µs,t = 1.

12

3

𝑌

𝑋

𝑍

𝑂

𝑐

𝑑

𝑒

𝑓

𝑎𝑏

𝛾

𝛿𝛽

∝

67

8

4

5

Figure 4.2: A basic BCC lattice showing the axes of the Oh operations. The axes are
OX, OY , OZ, Oa, Ob, Oc, Od, Oe, Of , Oα, Oβ, Oγ, and Oδ.

Application of Group Theory

In addition to the simplified Green’s function at the zone centre, the system of equations

(4.26) and (4.27) can be further reduced by following the procedure listed in Section

3.4.7 of Chapter 3 where the symmetry operations, in this case, are those belonging to

the Oh group. After going through the steps, we will have the s, p, d, and f symmetries

in block-diagonal form. A breakdown of these steps follows:
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Step 1: Using the site labels in Figure 4.2, we perform the 48 operations on the system

and then find the character of the input representation (sometimes called the reduction

formula): this is labelled Red. rep (the second row in Table 4.1).

Oh group E 8C2
3C3 6C4 6C5 C6 8C7

3C8 6C9 6C10

Red. rep (Γbcc
t ) 8 2 0 0 0 0 0 0 0 4

∑ ∑
/48

A1g 8 16 0 0 0 0 0 0 0 24 48 1

A2g 8 16 0 0 0 0 0 0 0 -24 0 0

Eg 16 -16 0 0 0 0 0 0 0 0 0 0

T1g 24 0 0 0 0 0 0 0 0 -24 0 0

T2g 24 0 0 0 0 0 0 0 0 24 48 1

A1u 8 16 0 0 0 0 0 0 0 -24 0 0

A2u 8 16 0 0 0 0 0 0 0 24 48 1

Eu 16 -16 0 0 0 0 0 0 0 0 0 0

T1u 24 0 0 0 0 0 0 0 0 24 48 1

T2u 24 0 0 0 0 0 0 0 0 -24 0 0

Table 4.1: Constructing irreducible representation from Oh point group using the reduc-
tion formula in a BCC lattice. The symmetry classes and the matrices for irreducible
representations of each symmetry operation are provided in Appendix B.

Step 2: We obtain the irreducible representations (irred. reps.) by looking at the

non-zero contributions in the last column of Table 4.1. Hence the sought irreducible

representations for both the singlet and triplet states are

Γbcc
singlet = A1g ⊕ T2g (4.29)

Γbcc
triplet = T1u ⊕ A2u (4.30)

whence A1g, T2g, A2u and T2u forms the s-, d-, p- and f - states respectively. From

here, we can find the linear combinations of bases that represent these symmetries. For
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instance, the singlets, Γbcc
singlet, can have the combinations

χA1g = Φ+
1 + Φ+

2 + Φ+
3 + Φ+

4 (4.31)

χT2g =





Φ+
1 + Φ+

2 − Φ+
3 − Φ+

4

Φ+
1 − Φ+

2

Φ+
3 − Φ+

4

(4.32)

and the triplets, Γbcc
triplet, can have the combinations

χT1u =





Φ−
1 − Φ−

2 + Φ−
3 + Φ−

4

Φ−
1 + Φ−

2

Φ−
3 − Φ−

4

(4.33)

χA2u = Φ−
1 − Φ−

2 − Φ−
3 − Φ−

4 (4.34)

Step 3: If we combine Equation (4.31) with Φ+
0 (the onsite basis), we transform to a

new basis ‡,§

Φ̂s =




Φ0

Φs

Φd1

Φd2

Φd3




=




1 0 0 0 0

0 1 1 1 1

0 1 1 −1 −1

0 1 −1 0 0

0 0 0 1 −1







Φ+
0

Φ+
1

Φ+
2

Φ+
3

Φ+
4




≡ χ̂s




Φ+
0

Φ+
1

Φ+
2

Φ+
3

Φ+
4




(4.35)

Φ̂t =




Φp1

Φp2

Φp3

Φf




=




1 −1 1 1

1 1 0 0

0 0 1 −1

1 −1 −1 −1







Φ−
1

Φ−
2

Φ−
3

Φ−
4




≡ χ̂t




Φ−
1

Φ−
2

Φ−
3

Φ−
4




(4.36)

‡Remember that we have omitted the normalisation factors of the new symmetrised basis.
§The subscript s has been used twice: Φ̂s means all possible singlet states (s, d, . . . ) while Φs means

an extended s-state.
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χ̂i (where i = s, t) is derived by performing the symmetry operations or by a trial and

error method. Note that these bases are orthogonal.

Step 4: We can diagonalise the matrix equation using the similarity transformation

Ĥdiag
i = χ̂i · Ĥi · χ̂−1

i (4.37)

By applying Equation (4.37), the new symmetrised bases χ̂s and χ̂t respectively block-

diagonalise the matrices Ĥs and Ĥt as follows




UG0 2V G1 0 0 0

4UG1 Ks 0 0 0

0 0 Kd 0 0

0 0 0 Kd 0

0 0 0 0 Kd







Φ0

Φs

Φd1

Φd2

Φd3




=




Φ0

Φs

Φd1

Φd2

Φd3




(4.38)




Kp 0 0 0

0 Kp 0 0

0 0 Kp 0

0 0 0 Kf







Φp1

Φp2

Φp3

Φf




=




Φp1

Φp2

Φp3

Φf




(4.39)

where

Ks = V (G0 + G2 + 3G3 + 3G4) (4.40)

Kd = V (G0 + G2 − G3 − G4) = 1 (4.41)

Kp = V (G0 − G2 + G3 − G4) = 1 (4.42)

Kf = V (G0 − G2 − 3G3 + 3G4) = 1 (4.43)
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In (4.38), the top-left 2 × 2 block corresponds to the s-symmetrical states (having

contributions from both the onsite and intersite interactions) while the other three 1× 1

blocks are d-symmetrical states which are triply degenerate (when P = 0). Similarly, in

Equation (4.39), the p-states are 3-fold degenerate and there is a single f -state.

The total energy measured in terms of the half-bandwidth W is shown in Figure 4.3.

The flat region of the curve corresponds to the total energy of two unbound particles

(the threshold energy ETh = −2W ). The energy drops below −2W as the attraction

gets stronger, indicating that a bound pair has been formed. Pairs are highly stable (well

bound) at large attractive coupling. The symmetries of the pairs are indicated. The p-

and d-states are both three-fold degenerate, and the s- and f -states have degeneracy 1.

Figure 4.3a and 4.3b respectively, show a shift in the critical U (V ) required to form

stable s-symmetric pair when modifying the intersite (onsite) repulsion. A stable s-

symmetric pair is guaranteed to form if U ≤ −2W or V ≤ −0.8858W (more details

in the next section 4.3.2). For infinite attractive V , the particles form deep, localised

pairs and the energies associated with all the intersite pairing symmetries converge, on a

single value i.e. E → −|V | (inset plots in Figure 4.3). For non-s pairing symmetries, the

critical interaction is independent of U . For the onsite s-pair, E → −|U | as U → −∞.

In these large interaction limits, binding energies and thus binding temperatures can be

very large.
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Figure 4.3: The total energy of bound pairs on the BCC optical lattice at P = 0,
T = 0. The s-state forms the ground state. The critical Hubbard attraction for V = 0
is UHub.

c (0) = −1.4355W and for U = 0, V s
c (0) = −0.6358W . The p-, d- and f - states

are not dependent on U (this means that a change in U only affects the total energy of
the s-state). For large onsite, |U | ≫ |V |, t (intersite, |V | ≫ |U |, t) attraction, E → −|U |
(E → −|V |) for all the states (inset plots). The corresponding symmetry of each state
is also indicated.
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4.3.2 Binding Criteria

Once the equations have been diagonalised, it is possible to calculate the critical binding

threshold by setting the energy of the system equal to the energy of two free-particles

E → −2W = −16t. These critical binding values are exact and accurate because one

can obtain exact analytic solutions to the Green’s functions at P = 0. For this purpose,

it is convenient to re-write the singlet and triplet determinant matrices (4.38) and (4.39),

and remove redundant elements. Doing this gives the respective states:

s :



1− UG0 −2V G1

−4UG1 1−Ks


 = 0 (4.44)

d : 1−Kd = 0 (4.45)

p : 1−Kp = 0 (4.46)

f : 1−Kf = 0 (4.47)

The Green’s function (4.25) can be expressed in terms of the elliptic integral of the first

kind [98] as

G0 = − K2
0

4π2t
=

−0.087075245605354804

t
(4.48)

G1 =
1

16t
− K2

0

4π2t
=

1

16t
+ G0 (4.49)

G2 =
1

2t
− K2

0

π2t
− 9

16tK2
0

=
1

2t
+ 4G0 +

9

64π2t2G0

(4.50)

G3 = − 1

16tK2
0

=
1

64π2t2G0

(4.51)

G4 = − K2
0

4π2t
+

1

4tK2
0

= G0 −
1

16π2t2G0

= G0 − 4G3 (4.52)

where K0 = K
(

1√
2

)
= 1.85407467 . . . is the complete elliptic integral of the first kind.

Expanding the determinant (4.44) gives the critical binding for the s-states

V s
c ≤ V (U) =

UG0 − 1

UG0C − C − 8UG2
1

(4.53)
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where C = G0 + G2 + 3G3 + 3G4 = 8G0 +
1
2t
= −0.19660196484283837/t.

Therefore,

V s
c (U = 0) = −5.0864191t ≈ −0.6358W (4.54)

V s
c (U → +∞) = −7.0864191t ≈ −0.8858W (4.55)

Uc(V = 0) = −11.4843202t ≈ −1.4355W (4.56)

Uc(V → +∞) = −16t = −2W (4.57)

Similarly, (4.45) - (4.47) respectively yields

V d
c = −15.0428185t ≈ −1.8804W (4.58)

V p
c = −12.6624416t ≈ −1.5828W (4.59)

V f
c = −15.7113739t ≈ −1.9639W (4.60)

By identifying the point at which the total energy drops below −2W , the binding

diagram at P = 0 can be constructed (see Figure 4.4). From Equations (4.58)–(4.60), it

is clear that for any pairing symmetry with a node at the origin, binding of the particles

is independent of U .

Within the U -V parameter space, pairing is found at large, attractive U/W and/or

V/W . The kinetic energy of the particles in the BCC lattice is high (relative to 1D,

2D, and simple cubic lattices) due to the higher coordination number and, as a result,

U or V must be large and attractive to form a bound state. For a negative-U Hubbard

model with no intersite interaction, the critical binding is U s
c (V=0)≈−1.4355W . Also,

V s
c (U=0)≈−0.6358W is required to bind particles when the onsite interaction is absent.

An intersite strength V s
c (+∞)≈−0.8858W is sufficient to maintain a bound state even

if the Hubbard repulsion is infinite while U s
c (V → +∞)=−2W . Figure 4.4 also shows

the binding thresholds of the p-, d- and f -states respectively occurring at large intersite

attractions, that is, V p
c =−1.5828W , V d

c =−1.8804W , V f
c =−1.9639W .
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Figure 4.4: Binding diagram for pair formation when P = 0 (temperature T = 0) on
the BCC lattice. The top curved solid line shows the formation of one bound s-state
pair (singlet), the shaded region enclosed by the curved magenta solid line indicates
the region of formation of two s-states, the blue dotted line shows the onset of triply
degenerate p-states (three p-wave triplets), the red dash-dotted line shows the binding
of the three-fold degenerate d-states (three d-wave singlets) and the green dashed line
indicates the formation of a pair with f -symmetry (one f -wave triplet). The p-, d-
and f - states begin to appear at critical intersite attractions −1.5828W , −1.8803W
and −1.9639W respectively. The smaller dotted vertical and horizontal lines are the
asymptotes (V s

asym. ≈ −0.8858W and UHub.
asym. = −2W ) and for potentials equal to or more

attractive than these values, the creation of an s-state bound pair is guaranteed.

4.3.3 Dispersion

The energy of a bound pair can be constructed across the entire BZ using Equations

(4.15) and (4.23). To produce a band structure that shows all the pairing symmetries,

we consider intersite attraction sufficient to bind the most energetic f -state at the zone

centre (i.e. Γ point). One of the benefits of the dispersion calculation is that we can

compute the pair effective mass (section 4.3.4) which is required for the estimation of

the condensation temperature (section 4.3.6). Examples of dispersions are plotted in
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Figure 4.5: Examples of dispersions with (a) repulsive U and attractive V , (b) U and
V are both attractive but dominant U , (c) competing attractions where both U and V
are attractive and equal. Solid (red dotted) lines are the singlet (triplet) states. In (b)
there is a low-lying onsite state. Note the axis re-scaling in (b).
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Figure 4.5. The dispersion for two free particles is not shown but lies in the range

−2 ≤ E/W ≤ 2. The singlet s-symmetric pair has the lowest energy around the BZ

centre but this is not always the case at other high symmetry points. There is a high level

of degeneracy on the Γ-H line; all states with the same symmetry class are degenerate and

the simplification at the Γ point (refer to Section 4.3.1.2) applies too. The momentum

contribution only renormalises the hopping parameter t along the Γ-H line.

Away from the Γ-H line, states with different symmetries mix. Although the singlet

and triplet states can be unambiguously classified because the (anti-)symmetrised solu-

tion separates singlets from triplets. From the dispersion calculations, we note that away

from the Γ point, there is a possibility of forming bound pairs with vanishingly small

attraction. This provides further insights into pair formation and stability at different

attractive U and V values. Across the BZ, there are singlet-triplet crossings, especially

along N -H.

At the H point where the total pair momentum is maximal, there is some special

behaviour. Firstly, the bound onsite s-state has an energy equal to U and all other states

(which are bound by the intersite potential) have energy V (as long as the relevant

potential is non-zero and attractive). Secondly, for repulsive U , the extended-s state

becomes completely independent of the Hubbard U repulsion (Figure 4.6, panels (a) and

(b)). Thirdly, a vanishingly small attraction (U → 0(−) and V → 0(−)) is sufficient to

bind pairs (Figure 4.6c).

When U is repulsive, the band structure gets narrower as the intersite attraction V

increases, consistent with an increase in the effective mass. Whereas in the situation of

competing attractions (i.e. when U and V are both attractive and equal), the bandwidth

increases (Figure 4.5c), and the singlet pair becomes highly mobile because its movement

is a first-order effect. Since we expect convergence of bound states at the H point for
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any attractive U and/or V (see last paragraph and Figure 4.6c), the dispersion in Figure

4.5c is reminiscent of the conical band structure of monolayer graphene [99] with point

H similar in form to the Dirac points in graphene. This condition U = V (such that

both are sufficiently attractive) is the superlight limit where the bound pair has a light

mass and hence higher mobility in the BCC lattice. This may be analogous to the very

high mobility of charge carriers found in graphene as a material with massless fermions

[100].

Figure 4.6: Panels (a) and (b): Dispersion of the extended s-state only on the Γ-H
line showing that it is independent of repulsive U at the H point. Panel (c): energy of
all bound states at point H (N.B. extended-s, d, p and f states are only bound if V
is attractive, and the onsite s state is only bound if U is attractive). (c) shows that a
pair, whatever the symmetry, can be formed at the H point at a very weak attraction, in
contrast to the critical attractions Uc, Vc (refer to Section 4.3.2 or Figure 4.4), required
at the Γ point. The legends for the plots in (a) and (b) are at the top-right.
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4.3.3.1 Application of Second-Order Perturbation Theory (SOPT)

We validate the dispersion results in the strong-coupling limits where we will introduce

kinetic hopping of particles in the system as a perturbation. Firstly, we consider the

strongly attractive Hubbard limit: U → −∞, |U | ≫ t, V = 0. Secondly, we compute

the dispersion in the limit U → +∞, V < 0, |V | ≫ t.

To do this, we define four nearest-neighbour vectors (see Figure 4.7)

a1 =

{
b

2
,
b

2
,
b

2

}
,a2 =

{
b

2
,
b

2
,− b

2

}
,a3 =

{
b

2
,− b

2
,
b

2

}
,a4 =

{
b

2
,− b

2
,− b

2

}
, (4.61)

where b is the BCC lattice constant. Next, we define the Fourier-space vectors below

An =
∑

P

eiPnAP , An+a =
∑

P

eiP (n+a)AP = eiPaAn (4.62)

where P is the pair total momentum.

𝑌

𝑋

𝑍

𝐴𝒏

𝒂1

-𝒂4

-𝒂1

𝒂4

𝒂3

-𝒂3

-𝒂2

𝒂2

𝐷1

𝐷2
𝐷4

𝐷3
𝒂1

-𝒂1

-𝒂4

𝒂4

𝒂3

-𝒂3

-𝒂2

𝒂2𝑏 𝑏

(𝑏)(𝑎)

𝑏 𝑏

Figure 4.7: BCC nearest-neighbour vectors and dimer basis for: (a) Onsite attraction
- note that P = 0 in the initial configuration An. (b) Intersite attraction - D1, D2, D3

and D4 are pre-defined intersite configurations. In (b) we use the central lattice site as
the anchor point, the double-line arrow shows the anchor direction which is important
in analysing the hopping of triplet states. The need for this is to help determine the sign
arising from particle exchange.
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Strongly bound onsite pair

In the limit of large attractive U , V = 0, the UV Hamiltonian only contains the

kinetic and the Hubbard terms. The perturbation H ′ is the hopping of particles, and

since we are performing second-order perturbation theory (SOPT) calculation, there are

two hopping events via t . However, the energy at the intermediate step is zero because

the particles occupy different lattice sites and V = 0, and, thus, the energy due to the

perturbation is proportional to t2/U . If the initial configuration is An as in Figure 4.7a,

then the perturbed Hamiltonian matrix is

Ĥ ′·An = −16t2

|U |
An−

2t2

|U |
(An+a1+An−a1+An+a2+An−a2+An+a3+An−a3+An+a4+An−a4)

(4.63)

The substitution of Equation (4.62) into Equation (4.63) gives the second-order energy

perturbation

E(2)
n = −16t2

|U |
− 2t2

|U |
(eiPa1 + e−iPa1 + eiPa2 + e−iPa2 + eiPa3 + e−iPa3 + eiPa4 + e−iPa4)

= −16t2

|U |
− 16t2

|U |
· cos Pxb

2
· cos Pyb

2
· cos Pzb

2
(4.64)

Therefore, the only bound state in the strong attractive U limit has the dispersion

E(P ) = −|U | − 16t2

|U |

(
1 + cos

Pxb

2
· cos Pyb

2
· cos Pzb

2

)
(4.65)

where the first and the second terms correspond to the unperturbed and the perturbed

energy, respectively.

We plot the result obtained from Equation (4.15) versus Equation (4.65) in Figure

4.8. Both results are in perfect agreement. The dispersion resembles that of a free

particle in a BCC BZ. This means that even though the two particles form a bound

state, the pair behaves like a single particle moving across the zone.
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Figure 4.8: Comparing the dispersion of a strongly bound onsite pair (U = −16W ,
V = 0) obtained from Equation (4.15) against the second-order perturbation calculation
Equation (4.65). The blue solid line is the direct calculation and the red dashed line is
for the SOPT result. There is an excellent agreement between both results.

Strongly bound pairs requiring intersite attraction

In the limit U = +∞, V < 0, V ≫ t, the pair is made of two particles occupying a

pair of nearest-neighbour sites with the zeroth-order binding energy −|V |. Due to the

strong onsite repulsion, the hopping processes exclude double occupation on a site and

the relevant energy scale is therefore

t̃ =
t2

|V |
. (4.66)

We can also define an auxiliary function

ε̃P ≡ −8t̃ · cos Pxb

2
· cos Pyb

2
· cos Pzb

2
, (4.67)

where P is the total pair momentum.
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Next, we define four dimer basis states for the singlets and triplets, respectively, as

Ds
i,n =

1√
2

(
|↑⟩n |↓⟩n+ai

+ |↓⟩n |↑⟩n+ai

)
, (4.68)

Dt
i,n = |↑⟩n |↑⟩n+ai

. (4.69)

Note that for the triplet states, Dt
i,n = −Dt

i,n−ai
. The second-order Hamiltonian ma-

trices are quite complicated in comparison to Equation (4.63). Meanwhile, the Fourier

transform yields a matrix equation of the form:

E1(P ) ·D1,P = B11 ·D1,P +B12 ·D2,P +B13 ·D3,P +B14 ·D4,P (4.70)

E2(P ) ·D2,P = B21 ·D1,P +B22 ·D2,P +B23 ·D3,P +B24 ·D4,P (4.71)

E3(P ) ·D3,P = B31 ·D1,P +B32 ·D2,P +B33 ·D3,P +B34 ·D4,P (4.72)

E4(P ) ·D4,P = B41 ·D1,P +B42 ·D2,P +B43 ·D3,P +B44 ·D4,P , (4.73)

where for the singlet states

B11 = −14 t̃+ 2 ε̃P + 2t̃ cos (Pa1)− |V | (4.74)

B12 = −2t̃ (1 + eiPa1)(1 + e−iPa2)− 2t̃ (1 + eiPa3)(1 + e−iPa4) (4.75)

B13 = −2t̃ (1 + eiPa1)(1 + e−iPa3)− 2t̃ (1 + eiPa2)(1 + e−iPa4) (4.76)

B14 = −2t̃ (1 + eiPa1)(1 + e−iPa4)− 2t̃ eiPa1(1 + e−iPa2)(1 + e−iPa3) , (4.77)

B21 = −2t̃ (1 + e−iPa1)(1 + eiPa2)− 2t̃ (1 + e−iPa3)(1 + eiPa4) (4.78)

B22 = −14 t̃+ 2 ε̃P + 2t̃ cos (Pa2)− |V | (4.79)

B23 = −2t̃ (1 + eiPa2)(1 + e−iPa3)− 2t̃ eiPa2(1 + e−iPa1)(1 + e−iPa4) (4.80)

B24 = −2t̃ (1 + eiPa2)(1 + e−iPa4)− 2t̃ (1 + eiPa1)(1 + e−iPa3) , (4.81)
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B31 = −2t̃ (1 + e−iPa1)(1 + eiPa3)− 2t̃ (1 + e−iPa2)(1 + eiPa4) (4.82)

B32 = −2t̃ (1 + e−iPa2)(1 + eiPa3)− 2t̃ eiPa3(1 + e−iPa1)(1 + e−iPa4) (4.83)

B33 = −14 t̃+ 2 ε̃P + 2t̃ cos (Pa3)− |V | (4.84)

B34 = −2t̃ (1 + eiPa1)(1 + e−iPa2)− 2t̃ (1 + eiPa3)(1 + e−iPa4) , (4.85)

B41 = −2t̃ (1 + e−iPa1)(1 + eiPa4)− 2t̃ eiPa4(1 + e−iPa2)(1 + e−iPa3) (4.86)

B42 = −2t̃ (1 + e−iPa1)(1 + eiPa3)− 2t̃ (1 + e−iPa2)(1 + eiPa4) (4.87)

B43 = −2t̃ (1 + e−iPa1)(1 + eiPa2)− 2t̃ (1 + e−iPa3)(1 + eiPa4) (4.88)

B44 = −14 t̃+ 2 ε̃P + 2t̃ cos (Pa4)− |V | , (4.89)

whereas, for the triplets

B11 = −14 t̃+ 2 ε̃P + 2t̃ cos (Pa1)− |V | (4.90)

B12 = −2t̃ (1 + eiPa3)(1 + e−iPa4) (4.91)

B13 = −2t̃ (1 + eiPa2)(1 + e−iPa4) (4.92)

B14 = 2t̃ eiPa1(1 + e−iPa2)(1 + e−iPa3) , (4.93)

B21 = −2t̃ (1 + e−iPa3)(1 + eiPa4) (4.94)

B22 = −14 t̃+ 2 ε̃P + 2t̃ cos (Pa2)− |V | (4.95)

B23 = 2t̃ eiPa2(1 + e−iPa1)(1 + e−iPa4) (4.96)

B24 = −2t̃ (1 + eiPa1)(1 + e−iPa3) , (4.97)

B31 = −2t̃ (1 + e−iPa2)(1 + eiPa4) (4.98)

B32 = 2t̃ eiPa3(1 + e−iPa1)(1 + e−iPa4) (4.99)

B33 = −14 t̃+ 2 ε̃P + 2t̃ cos (Pa3)− |V | (4.100)

B34 = −2t̃ (1 + eiPa1)(1 + e−iPa2) , (4.101)
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B41 = 2t̃ eiPa4(1 + e−iPa2)(1 + e−iPa3) (4.102)

B42 = −2t̃ (1 + e−iPa1)(1 + eiPa3) (4.103)

B43 = −2t̃ (1 + e−iPa1)(1 + eiPa2) (4.104)

B44 = −14 t̃+ 2 ε̃P + 2t̃ cos (Pa4)− |V | . (4.105)

We note that our perturbation approach separates the singlet states from the triplet

states like the (anti-)symmetrised solutions. Therefore, in the limit U → +∞, V → −∞,

there are four bound singlet states with corresponding energies E1(P ), E2(P ), E3(P ),

and E4(P ), and similarly, there are four bound triplet states with corresponding energies

E1(P ), E2(P ), E3(P ), and E4(P ). These solutions are valid at arbitrary total pair

momentum P : this means that the BZ dispersion can be calculated in the strong coupling

limit.

We compute the dispersion from direct UV solutions (4.15) and (4.23) and then

compare it with the perturbative dispersion (4.70)–(4.73) with the parameters V =

−16W , U = +∞. The results are plotted in Figure 4.9. We note that these results are

qualitatively and quantitatively consistent. With increasing intersite attraction V while

considering higher-order contributions in perturbation, perhaps the dispersions would

become replicas.
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Figure 4.10: The pair mass expressed in the unit of a free particle mass. m0 = ℏ2/(2b2t)
is the bare mass of one free particle in the BCC lattice (see derivation in Appendix B).
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4.3.4 Effective Mass

The pair mass denotedm∗, can be calculated from the second derivative of the dispersion

within the standard effective mass approximation as

[m∗
i ]

−1 =
1

ℏ2
∂2E

∂P 2
i

. (4.106)

where E and P is the pair total energy and momentum respectively.

The effective masses, measured relative to m0, can be seen in Figure 4.10. Weakly

bound pairs are light (about 2m0 when pair energy approaches the threshold energy ETh)

and get heavier as the binding attraction is increased. Note that m0 = ℏ2/(2b2t) is the

effective bare mass of one free particle in the BCC lattice (see derivation in Appendix

B).

Pairs with strong intersite attraction are much lighter in comparison to their counter-

part pairs with strong onsite attraction (for example, compare the masses at U = −20W

in Figure 4.10a and for V = −20W in Figure 4.10b). This occurs since large attractive U

confines the pair to the same site thereby suppressing the probability of particles hopping

to other sites (the suppression is even greater when V is repulsive).

When U and V are both attractive and of similar magnitude, we find superlight

pairs (minima in Figure 4.10a and 4.10b). These correspond to the situation where

particles can move without passing through a high-energy intermediate state. Figure

4.11 demonstrates this superlight process where the pair travels through the lattice in a

crawler motion [69]. The process of movement can be summarised in three main steps:

(i) the particles interact via attractive V ; (ii) one particle hops to interact with the

other via an attractive U ; (iii) either of the particles can hop so interaction is intersite

again. While it moves around, the pair’s total energy remains unchanged in all the

configurations.
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Figure 4.11: One-dimensional schematic of superlight behaviour of a singlet when U
and V are comparable and sufficiently attractive. The big circle, grey ball (with vertical
arrow), and the dashed line oval represent lattice site, particle (spin) and bonding, re-
spectively. The two-way arrow indicates that the total energy of the pair E, is the same,
thus hopping between configurations comes with no energy penalty.

4.3.5 Radius

The effective radius has been calculated using the relation

⟨r∗⟩ =

√√√√√

∑
n

n2Ψ∗(n1,n2)Ψ(n1,n2)

∑
n

Ψ∗(n1,n2)Ψ(n1,n2)
, (4.107)

where n = n1 − n2 is the spatial separation between the particles and Ψ(n1,n2) is the

pair wavefunction in real-space.

The procedure for calculating the radius of a bound s-state is as follows. Firstly, we

calculate the energy of the bound pair and obtain the eigenvectors using Equation (4.15).

Then we create a basis set for the reciprocal lattice which in the case of a real-space BCC

lattice has an FCC structure. Using a three-dimensional fast-Fourier-transform (FFT)

algorithm, for example [101], we transform the k-space wavefunction ϕ+
k1k2

in Equation

(4.7) into its real-space counterpart Ψ(n1,n2). Finally, we calculate n, the relative

position of the particles, and apply Equation (4.107) above.

Figure 4.12 shows the radius of a bound pair. Near the threshold energy (E → ETh),

the particles form a large pair: a consequence of the delocalisation of the pair wave-

function. At intermediate U and V (both attractive), the pair’s size is on the order of



94 CHAPTER 4. SUPERFLUIDITY IN BCC OPTICAL LATTICES

the near-neighbour distance, a (the horizontal line in Figure 4.12). In a pairing scenario

where V is fixed and U is tuned to be highly attractive, the two bound particles are

localised and held on the same site. The pair is also local for large intersite attractions,

but the size levels off to the nearest-neighbour distance at large attractive V . By local,

we mean bound pairs that are not larger than the lattice constant. Notice how a shoulder

is formed when the onsite and intersite attraction are equal. This happens because the

pair fluctuates between onsite and intersite configurations.
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Figure 4.12: Effective radius for various U and V . The thin solid horizontal lines
represent the nearest-neighbour distance a =

√
3b/2 on a BCC lattice. Note that the

radius diverges at low attraction. A shoulder forms around the superlight regions (part
of the curves when both attractions are comparable U ∼ V ).
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4.3.6 Estimation of Transition Temperature

In this section, we redirect our attention back to ultra-cold atoms in optical lattices.

As mentioned in Chapter 1, advancement in quantum technologies makes it possible to

implement Hubbard models in a clean and precise manner. We also recall that the onsite

and intersite interactions can be made attractive or repulsive: implying that phenomena

like superconductivity and superfluidity could be simulated and observed experimentally.

At sufficiently low temperature, Bose-Einstein condensation of bound pairs may take

place on the optical lattice for well-separated, weakly-interacting, local pairs (i.e. a dilute

system). The BEC transition temperature can be calculated from the Bose integral:

nb

Ωsite

=

∫
d3P

(2π)3
1

exp[(EP − E0)/kBTBEC]− 1
(4.108)

where nb is the number of pairs per lattice site, Ωsite is the volume of the Wigner–Seitz

cell, kB is Boltzmann’s constant, TBEC is the BEC transition temperature, and the pair

dispersion EP is used in this expression. At low energies, the behaviour of the pair

dispersion is parabolic, as can be seen in Figure 4.5.

The Bose–Einstein distribution decreases rapidly when EP −E0 > TBEC. This means

that only P points where EP ≲ kBTBEC contribute to the integral. For pair dispersions

that are parabolic (i.e. consistent with an effective mass approximation) up to energy

scales comparable with kBTBEC, the transition temperature is:

TBEC ≈ 3.31ℏ2

m∗
bkB

(
nb

Ωsite

)2/3

(4.109)

where m∗
b is the pair mass, ℏ is the reduced Planck’s constant, and Ωsite = b3/2 for a

BCC lattice. Note that nb is the number of pairs per site and should not be confused

with the particle density, which is nb/Ωsite = 2nb/b
3.

A four laser scheme can be used to construct a BCC optical lattice (see scheme A

from Table 1 of Ref. [102]), for which b/λbeam =
√
3/2. Then Ωsite = 33/2λ3beam/16, so
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we can re-write (4.109) in terms of the laser beam wavelength λbeam, as

TBEC = 7.01
n
2/3
b ℏ2

m∗
bkBλ

2
beam

. (4.110)

In the following, we assume either a red laser with wavelength 650 nm or a blue laser

with wavelength 450 nm, and fermionic 6Li atoms. Equations (4.109) and (4.110) are

valid when pairs are dilute and weakly interacting. This means both that (1) nb must

be small, and (2) that the pair wavefunctions should not overlap strongly, else these

equations need to be corrected. We also require that pairs exist before condensation

such that TBEC < T∆, where T∆ = ∆/kB is a characteristic pairing temperature and

∆ = 2ε0 − E0 (where ε0 is the energy of a free particle with zero momentum, E0 is the

energy of a bound pair).

We can estimate the maximum nb for which TBEC is consistent with the effective mass

approximation in the following way: If we express the effective pair hopping teff , in terms

of the effective mass via m∗
b = ℏ2/2b2teff , Equation (4.110) becomes

TBEC = 10.52
n
2/3
b teff
kB

. (4.111)

Typical pair dispersions have parabolic behaviour up to at least EP ∼ teff . We set an

upper bound that kBTBEC ≲ teff for the effective mass approximation to be reasonable.

This leads to the estimate that nb ≲ 10.52−3/2 = 0.0293 for TBEC to be consistent with

the effective mass approximation.

The hopping in a sinusoidal optical lattice can be estimated [32] to be

t ≈ h2

2
√
πMa2

(
V0
Er

)3/4

exp

[
−2

(
V0
Er

)1/2
]

(4.112)

where a is the nearest-neighbour distance, V0 is the depth of the lattice potential, Er is

the recoil energy and M is the atomic mass of the atoms. According to Ref. [32], this is

accurate to ∼10% for V0/Er ≳ 15, and ∼15% for V0/Er ≳ 10 . The recoil energy Er is
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given as

Er =
h2

8Ma2
. (4.113)

We use V0/Er = 10, thus, the hopping energy t scales as ∼ 10−12 electron-volt for 6Li

atoms. Using Equation (4.112), one can express the bare mass

m0 =
ℏ2

2b2t
(4.114)

in terms of the atomic mass M as

m0 ≈
Ma2

4b2π3/2

(
Er

V0

)3/4

exp

[
2

(
V0
Er

)1/2
]

(4.115)

For BCC lattice, a =
√
3b/2, which means that a2/b2 = 3/4. Hence,

m0 ≈
3M

16π3/2

(
Er

V0

)3/4

exp

[
2

(
V0
Er

)1/2
]

(4.116)

The condition on overlap is whether pairs of radius R′ = αr∗ and density nb can fit into

space, i.e. that 8nbR
′3/3 < 1. The constant α should be sufficiently large that overlap of

the exponentially decaying tails of the pair wavefunction are small. We suggest taking

α = 5. At higher densities we expect that pairs will start to interact and overlap and

that would lead to many-body corrections that cause the transition temperature to level

out and then fall as pairs begin to interact strongly and other phases are encountered

(and potentially clusters form [103, 104, 105]).

We examine the transition temperature for fixed value of nb, noting that there is

a peak associated with the superlight behaviour of pairs (Figures 4.13a and 4.13b).

The coloured regions of the plots indicate cases where the value of nb is compatible

with the conditions on pair overlap. Also, the dotted regions imply that the binding

temperature T∆ is lower than the estimated condensation temperature TBEC, hence, the

bound state cannot Bose condense. In order to probe the TBEC of non-overlapping pairs

with superlight characteristics (i.e. the peak in TBEC) in an optical lattice setting, the
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Figure 4.13a: BEC transition temperatures for 6Li atoms in BCC lattices formed with
blue and red lasers. Here, V is fixed while U is varied. The coloured regions in the plots
indicate cases where the value of nb is compatible with the conditions on pair overlap.
The horizontal lines in each panel are the corresponding TBEC value for m∗ = 2m0. The
dotted regions imply that T∆ < TBEC i.e. the pair is formed below the condensation
temperature.
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Figure 4.13b: BEC transition temperatures for 6Li atoms in BCC lattices formed with
blue and red lasers. Here, U is fixed while V is varied. The coloured regions in the plots
indicate cases where the value of nb is compatible with the conditions on pair overlap.
The horizontal lines in each panel are the corresponding TBEC value for m∗ = 2m0. The
dotted regions imply that T∆ < TBEC i.e. the pair is formed below the condensation
temperature.
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number of pairs has to be low (say nb ∼ 0.0015). In that case, the superlight behaviour

occurs at roughly 3 nK.

4.4 Discussion

The formation and condensation of fermion pairs in cold atom quantum simulators (op-

tical lattice) with BCC structure have been investigated. We make calculations of BEC

transition temperatures and other pair properties.

To examine pair properties in the dilute limit, we have solved the two-particle

Schrödinger equation to analytically compute the critical interactions required for bind-

ing, pair total energy, mass, radius, and transition temperatures. Using group theory

analysis, we identified the different pair symmetries and diagonalised the secular equa-

tions. Furthermore, we constructed BZ dispersions of bound pairs. We note the unique-

ness of the H point which shares some similarities with the Dirac points in graphene. At

the H point: (a) surprisingly, particles can bind with very small attractions U or V , (b)

pairs formed in the limit of equal onsite and intersite attractions have very high degen-

eracy where all bands cross. By performing second-order perturbation calculations, the

dispersion results were validated in the strong coupling limits. We also found that local

pairs formed in BCC optical lattices can have light masses. By considering fermionic

6Li atoms, we estimated Bose-Einstein condensation of non-overlapping pairs to occur

around 10 nK.

The mass of a bound pair becomes superlight when U and V are of similar magnitude

and both attractive. In this regime, the pair is highly mobile with graphene-like disper-

sion characteristics and can move freely through the optical lattice without the need to

access high-energy intermediate states. This low mass state corresponds to a change
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from onsite pairs to intersite pairs and leads to a peak in the transition temperature.

Superlight states have been predicted to lead to high superconducting transition temper-

atures [69], and they are of particular interest in electron-phonon systems where a single

particle’s mass is greatly enhanced due to retarded self-interaction effect. The ability to

examine superlight behaviour and the properties of pairs in BCC lattices is of interest

because there are no previous calculations regarding pairing on a BCC optical lattice.

We note that pairs form above the condensation temperature, thus, pair properties are

accessible at higher temperatures.



Chapter 5

Superlight States for High-Tc

Superconductivity in FCC Lattices

5.1 Summary

This chapter has a similar structure to Chapter 4 since they both present solutions to the

UV model but in distinct lattices, and the lattice of consideration in this chapter is more

complex. This chapter is structured as follows: After solving the (anti-)symmetrised

Schödinger equation of two fermions in an FCC lattice in Section 5.2, the properties

of the two bound particles, as well as the Bose-Einstein condensation of pairs are then

reported in Section 5.3. Lastly, this chapter concludes with a discussion in Section 5.4.

103
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5.2 Preliminaries

Unlike in the simple cubic and BCC lattices, the two-particle problem in an FCC lattice

is harder. Partly due to its complicated structure and the larger coordination number.

The 12 nearest-neighbour sites of an FCC lattice is shown in Figure 5.1. The vectors

in an FCC unit cell, expressed in terms of the lattice constant b, are (0, 0, 0), ( b
2
, b
2
, 0),

(− b
2
,− b

2
, 0), ( b

2
,− b

2
, 0), (− b

2
, b
2
, 0), (0, b

2
, b
2
), (0,− b

2
,− b

2
), (0, b

2
,− b

2
), (0,− b

2
, b
2
), ( b

2
, 0, b

2
),

(− b
2
, 0,− b

2
), ( b

2
, 0,− b

2
), and (− b

2
, 0, b

2
).

𝑌

𝑋

𝑍

𝑂

2𝑏

2𝑏

Figure 5.1: Visualising the 12 nearest-neighbour sites (grey oval circles) with respect
to a central lattice site (green circle) in an FCC lattice.

We derived the (anti-)symmetrised solution in Chapter 3 to be

(E − εk1 − εk2)ϕ
±
k1k2

=
1

N

∑′

qa±

V̂a±

{
ei(q−k1)a± ± ei(q−k2)a±

}
ϕ±
q,k1+k2−q (5.1)

where the singlet and triplet wave function is respectively ϕ+
q,k1+k2−q and ϕ−

q,k1+k2−q. In

an FCC lattice, the free-particle dispersion is

εk = −
∑

a

t eik·a = −4t

[
cos

kxb

2
· cos kyb

2
+ cos

kyb

2
· cos kzb

2
+ cos

kxb

2
· cos kzb

2

]
(5.2)
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As required, we define the vector sets {a+} and {a−} to split symmetric and anti-

symmetric states, and then substitute them into Equation (5.1) to give (7 × 7) and

(6× 6) matrices for the singlets and triplet states, respectively. For example ∗

{a+} ={a+
0 ,a

+
1 ,a

+
2 ,a

+
3 ,a

+
4 ,a

+
5 ,a

+
6 } (5.3)

={(0, 0, 0), ( b
2
,
b

2
, 0), (0,

b

2
,
b

2
), (

b

2
, 0,

b

2
), (

b

2
,− b

2
, 0), (0,

b

2
,− b

2
), (− b

2
, 0,

b

2
)} (5.4)

{a−} ={a−
1 ,a

−
2 ,a

−
3 ,a

−
4 ,a

−
5 ,a

−
6 } (5.5)

={( b
2
,
b

2
, 0), (0,

b

2
,
b

2
), (

b

2
, 0,

b

2
), (

b

2
,− b

2
, 0), (0,

b

2
,− b

2
), (− b

2
, 0,

b

2
)} (5.6)

5.2.1 Solution for Singlets

For the singlets, we make use of the vectors {a+} in Equation (5.1) † to obtain

(E − εk1 − εk2)ϕ
+
k1k2

=
1

N

∑

q

[
1

2
U(ei(q−k1)a

+
0 + ei(q−k2)a

+
0 ) + V (ei(q−k1)a

+
1 + ei(q−k2)a

+
1 )

+ V (ei(q−k1)a
+
2 + ei(q−k2)a

+
2 ) + V (ei(q−k1)a

+
3 + ei(q−k2)a

+
3 )

+ V (ei(q−k1)a
+
4 + ei(q−k2)a

+
4 ) + V (ei(q−k1)a

+
5 + ei(q−k2)a

+
5 )

+ V (ei(q−k1)a
+
6 + ei(q−k2)a

+
6 )

]
ϕ+
q,k1+k2−q

=
1

N

∑

q

[
U + V ei(

qx
2
+

qy
2
)(e−ik1a

+
1 + e−ik2a

+
1 )

+ V ei(
qy
2
+ qz

2
)(e−ik1a

+
2 + e−ik2a

+
2 )

+ V ei(
qx
2
+ qz

2
)(e−ik1a

+
3 + e−ik2a

+
3 )

+ V ei(
qx
2
− qy

2
)(e−ik1a

+
4 + e−ik2a

+
4 )

+ V ei(
qy
2
− qz

2
)(e−ik1a

+
5 + e−ik2a

+
5 )

+ V ei(−
qx
2
+ qz

2
)(e−ik1a

+
6 + e−ik2a

+
6 )

]
ϕ+
q,k1+k2−q

(5.7)

∗As before, no member of a set is related by inversion and a+
0 belongs to the singlets.

†We require that a+ = 0 term must be multiplied by 1
2 to account for double occupancy.
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If we substitute the following basis functions

Φ+
0 (P ) =

1

N

∑

q

ϕ+
q,P−q , Φ+

1 (P ) =
1

N

∑

q

ei(
qx
2
+

qy
2
) ϕ+

q,P−q ,

Φ+
2 (P ) =

1

N

∑

q

ei(
qy
2
+ qz

2
) ϕ+

q,P−q , Φ+
3 (P ) =

1

N

∑

q

ei(
qx
2
+ qz

2
) ϕ+

q,P−q ,

Φ+
4 (P ) =

1

N

∑

q

ei(
qx
2
− qy

2
) ϕ+

q,P−q , Φ+
5 (P ) =

1

N

∑

q

ei(
qy
2
− qz

2
) ϕ+

q,P−q ,

Φ+
6 (P ) =

1

N

∑

q

ei(−
qx
2
+ qz

2
) ϕ+

q,P−q

(5.8)

where P = k1 + k2, into Equation (5.7) to arrive at the generalised expression

ϕ+
k1k2

=
1

(E − εk1 − εk2)

{
UΦ+

0 (P ) + V Φ+
1 (P )(e−ik1a

+
1 + e−ik2a

+
1 )

+ V Φ+
2 (P )(e−ik1a

+
2 + e−ik2a

+
2 ) + V Φ+

3 (P )(e−ik1a
+
3 + e−ik2a

+
3 )

+ V Φ+
4 (P )(e−ik1a

+
4 + e−ik2a

+
4 ) + V Φ+

5 (P )(e−ik1a
+
5 + e−ik2a

+
5 )

+ V Φ+
6 (P )(e−ik1a

+
6 + e−ik2a

+
6 )

}

(5.9)

Applying Equation (5.9) to each basis function Φ+
0 (P ),Φ+

1 (P )... Φ+
6 (P) and redefin-

ing qj = q
′
j +

Pj

2
would yield the seven distinct equations below.

Φ+
0 (P ) =

1

N

∑

q′

1

E − εP
2
+q′ − εP

2
−q′

{
UΦ+

0 (P )

+ V Φ+
1 (P ) e−i(Px

4
+

Py
4
)
[
ei(

q
′
x
2
+

q
′
y
2
) + e−i(

q
′
x
2
+

q
′
y
2
)
]

+ V Φ+
2 (P ) e−i(

Py
4
+Pz

4
)
[
ei(

q
′
y
2
+

q
′
z
2
) + e−i(

q
′
y
2
+

q
′
z
2
)
]

+ V Φ+
3 (P ) e−i(Px

4
+Pz

4
)
[
ei(

q
′
x
2
+

q
′
z
2
) + e−i(

q
′
x
2
+

q
′
z
2
)
]

+ V Φ+
4 (P ) e−i(Px

4
−Py

4
)
[
ei(

q
′
x
2
−

q
′
y
2
) + e−i(

q
′
x
2
−

q
′
y
2
)
]

+ V Φ+
5 (P ) e−i(

Py
4
−Pz

4
)
[
ei(

q
′
y
2
− q

′
z
2
) + e−i(

q
′
y
2
− q

′
z
2
)
]

+ V Φ+
6 (P ) e−i(−Px

4
+Pz

4
)
[
ei(−

q
′
x
2
+

q
′
z
2
) + e−i(− q

′
x
2
+

q
′
z
2
)
] }

(5.10)
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Φ̃+
0 (P ) =UG000(P )Φ̃+

0 (P ) + V
[
G110(P ) + G1̄1̄0(P )

]
Φ̃+

1 (P )

+ V
[
G011(P ) + G01̄1̄(P )

]
Φ̃+

2 (P ) + V
[
G101(P ) + G1̄01̄(P )

]
Φ̃+

3 (P )

+ V
[
G11̄0(P ) + G1̄10(P )

]
Φ̃+

4 (P ) + V
[
G011̄(P ) + G01̄1(P )

]
Φ̃+

5 (P )

+ V
[
G1̄01(P ) + G101̄(P )

]
Φ̃+

6 (P )

(5.11)

Φ̃+
1 (P ) =UΦ̃+

0 (P )G110(P ) + V
[
G000(P ) + G220(P )

]
Φ̃+

1 (P ) + V
[
G101̄(P ) + G121(P )

]
Φ̃+

2 (P )

+ V
[
G011̄(P ) + G211(P )

]
Φ̃+

3 (P ) + V
[
G020(P ) + G200(P )

]
Φ̃+

4 (P )

+ V
[
G101(P ) + G121̄(P )

]
Φ̃+

5 (P ) + V
[
G211̄(P ) + G011(P )

]
Φ̃+

6 (P )

(5.12)

Φ̃+
2 (P ) =UΦ̃+

0 (P )G011(P ) + V
[
G1̄01(P ) + G121(P )

]
Φ̃+

1 (P ) + V
[
G000(P ) + G022(P )

]
Φ̃+

2 (P )

+ V
[
G1̄10(P ) + G112(P )

]
Φ̃+

3 (P ) + V
[
G1̄21(P ) + G101(P )

]
Φ̃+

4 (P )

+ V
[
G002(P ) + G020(P )

]
Φ̃+

5 (P ) + V
[
G110(P ) + G1̄12(P )

]
Φ̃+

6 (P )

(5.13)

Φ̃+
3 (P ) =UΦ̃+

0 (P )G101(P ) + V
[
G01̄1(P ) + G211(P )

]
Φ̃+

1 (P ) + V
[
G11̄0(P ) + G112(P )

]
Φ̃+

2 (P )

+ V
[
G000(P ) + G202(P )

]
Φ̃+

3 (P ) + V
[
G011(P ) + G21̄1(P )

]
Φ̃+

4 (P )

+ V
[
G11̄2(P ) + G110(P )

]
Φ̃+

5 (P ) + V
[
G200(P ) + G002(P )

]
Φ̃+

6 (P )

(5.14)

Φ̃+
4 (P ) =UΦ̃+

0 (P )G11̄0(P ) + V
[
G02̄0(P ) + G200(P )

]
Φ̃+

1 (P ) + V
[
G12̄1̄(P ) + G101(P )

]
Φ̃+

2 (P )

+ V
[
G01̄1̄(P ) + G21̄1(P )

]
Φ̃+

3 (P ) + V
[
G000(P ) + G22̄0(P )

]
Φ̃+

4 (P )

+ V
[
G12̄1(P ) + G101̄(P )

]
Φ̃+

5 (P ) + V
[
G21̄1̄(P ) + G01̄1(P )

]
Φ̃+

6 (P )

(5.15)
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Φ̃+
5 (P ) =UΦ̃+

0 (P )G011̄(P ) + V
[
G1̄01̄(P ) + G121̄(P )

]
Φ̃+

1 (P ) + V
[
G002̄(P ) + G020(P )

]
Φ̃+

2 (P )

+ V
[
G1̄12̄(P ) + G110(P )

]
Φ̃+

3 (P ) + V
[
G1̄21̄(P ) + G101̄(P )

]
Φ̃+

4 (P )

+ V
[
G000(P ) + G022̄(P )

]
Φ̃+

5 (P ) + V
[
G112̄(P ) + G1̄10(P )

]
Φ̃+

6 (P )

(5.16)

Φ̃+
6 (P ) =UΦ̃+

0 (P )G1̄01(P ) + V
[
G2̄1̄1(P ) + G011(P )

]
Φ̃+

1 (P ) + V
[
G1̄1̄0(P ) + G1̄12(P )

]
Φ̃+

2 (P )

+ V
[
G2̄00(P ) + G002(P )

]
Φ̃+

3 (P ) + V
[
G2̄11(P ) + G01̄1(P )

]
Φ̃+

4 (P )

+ V
[
G1̄1̄2(P ) + G1̄10(P )

]
Φ̃+

5 (P ) + V
[
G000(P ) + G2̄02(P )

]
Φ̃+

6 (P )

(5.17)

The newly introduced functions, Φ̃+
i (P ) = e

−i
2
(Pa+

i )Φ+
i (where i = 0, 1, ...6), have phase

factors which provide information about the centre-of-mass motion of the bound state.

Furthermore, G represents the Green’s function of the FCC lattice and is defined as

Gl,m,n(P ) =
1

N

∑

q′

ei(l
q
′
x
2
+m

q
′
y
2
+n

q
′
z
2
)

E − εP
2
+q′ − εP

2
−q′

= −
∫ 2π

−2π

∫ 2π

−2π

∫ 2π

−2π

dq
′
xdq

′
ydq

′
z

(4π)3

cos

(
l q

′
x

2
+m

q
′
y

2
+ n q

′
z

2

)

|E|+ εP
2
+q′ + εP

2
−q′

(5.18)

where l, m, and n ∈ [0,±1,±2].

Combining Equations (5.11)–(5.17) gives the matrix equation below for all singlets

at arbitrary momentum




UG000 V (G110 + G1̄1̄0) V (G011 + G01̄1̄) V (G101 + G1̄01̄) V (G11̄0 + G1̄10) V (G011̄ + G01̄1) V (G1̄01 + G101̄)

UG110 V (G000 + G220) V (G101̄ + G121) V (G011̄ + G211) V (G020 + G200) V (G101 + G121̄) V (G211̄ + G011)

UG011 V (G1̄01 + G121) V (G000 + G022) V (G1̄10 + G112) V (G1̄21 + G101) V (G002 + G020) V (G110 + G1̄12)

UG101 V (G01̄1 + G211) V (G11̄0 + G112) V (G000 + G202) V (G011 + G21̄1) V (G11̄2 + G110) V (G200 + G002)

UG11̄0 V (G02̄0 + G200) V (G12̄1̄ + G101) V (G01̄1̄ + G21̄1) V (G000 + G22̄0 V (G12̄1 + G101̄) V (G21̄1̄ + G01̄1)

UG011̄ V (G1̄01̄ + G121̄) V (G002̄ + G02̄0) V (G1̄12̄ + G110) V (G1̄21̄ + G101̄) V (G000 + G022̄) V (G112̄ + G1̄10)

UG1̄01 V (G2̄1̄1 + G011) V (G1̄1̄0 + G1̄12) V (G2̄00 + G002) V (G2̄11 + G01̄1) V (G1̄1̄2 + G1̄10) V (G000 + G2̄02)







Φ̃+
0

Φ̃+
1

Φ̃+
2

Φ̃+
3

Φ̃+
4

Φ̃+
5

Φ̃+
6




=




Φ̃+
0

Φ̃+
1

Φ̃+
2

Φ̃+
3

Φ̃+
4

Φ̃+
5

Φ̃+
6




(5.19)
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5.2.2 Solution for Triplets

For the triplets, we substitute {a−} in Equation (5.1), to obtain

(E − εk1 − εk2)ϕ
−
k1k2

=
1

N

∑

q

[
V ei(

qx
2
+

qy
2
)(e−ik1a

−
1 − e−ik2a

−
1 )

+ V ei(
qy
2
+ qz

2
)(e−ik1a

−
2 − e−ik2a

−
2 )

+ V ei(
qx
2
+ qz

2
)(e−ik1a

−
3 − e−ik2a

−
3 )

+ V ei(
qx
2
− qy

2
)(e−ik1a

−
4 − e−ik2a

−
4 )

+ V ei(
qy
2
− qz

2
)(e−ik1a

−
5 − e−ik2a

−
5 )

+ V ei(−
qx
2
+ qz

2
)(e−ik1a

−
6 − e−ik2a

−
6 )

]
ϕ−
q,k1+k2−q

(5.20)

We also define the following basis functions for the spin-triplets:

Φ−
1 (P ) =

1

N

∑

q

ei(
qx
2
+

qy
2
) ϕ−

q,P−q , Φ−
2 (P ) =

1

N

∑

q

ei(
qy
2
+ qz

2
) ϕ−

q,P−q

Φ−
3 (P ) =

1

N

∑

q

ei(
qx
2
+ qz

2
) ϕ−

q,P−q , Φ−
4 (P ) =

1

N

∑

q

ei(
qx
2
− qy

2
) ϕ−

q,P−q

Φ−
5 (P ) =

1

N

∑

q

ei(
qy
2
− qz

2
) ϕ−

q,P−q , Φ−
6 (P ) =

1

N

∑

q

ei(−
qx
2
+ qz

2
) ϕ−

q,P−q

(5.21)

After some algebra, we arrive at

Φ−
1 (P ) =

1

N

∑

q′

1

E − εP
2
+q′ − εP

2
−q′

{
V Φ−

1 (P )
[
1− e2i(

q
′
x
2
+

q
′
y
2
)
]

+ V Φ−
2 (P ) ei(

Px
4
−Pz

4
)
[
ei(

q
′
x
2
− q

′
z
2
) − ei(

q
′
x
2
+2(

q
′
y
2
)+

q
′
z
2
)
]

+ V Φ−
3 (P ) ei(

Py
4
−Pz

4
)
[
ei(

q
′
y
2
− q

′
z
2
) − ei(2(

q
′
x
2
)+

q
′
y
2
+

q
′
z
2
)
]

+ V Φ−
4 (P )e2i(

Py
4
)
[
e2i(

q
′
y
2
) − e2i(

q
′
x
2
)
]

+ V Φ−
5 (P ) ei(

Px
4
+Pz

4
)
[
ei(

q
′
x
2
+

q
′
z
2
) − ei(

q
′
x
2
+2(

q
′
y
2
)− q

′
z
2
)
]

+ V Φ−
6 (P ) ei(2(

Px
4
)+

Py
4
−Pz

4
)
[
ei(2(

q
′
x
2
)+

q
′
y
2
− q

′
z
2
) − ei(

q
′
y
2
+

q
′
z
2
)
] }

(5.22)
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So we have

Φ̃−
1 (P ) =V

[
G000(P )− G220(P )

]
Φ̃−

1 (P ) + V
[
G101̄(P )− G121(P )

]
Φ̃−

2 (P )

+ V
[
G011̄(P )− G211(P )

]
Φ̃−

3 (P ) + V
[
G020(P )− G200(P )

]
Φ̃−

4 (P )

+ V
[
G101(P )− G121̄(P )

]
Φ̃−

5 (P ) + V
[
G211̄(P )− G011

]
Φ̃−

6 (P )

(5.23)

Φ̃−
2 (P ) =V

[
G1̄01(P )− G121(P )

]
Φ̃−

1 (P ) + V
[
G000(P )− G022(P )

]
Φ̃−

2 (P )

+ V
[
G1̄10(P )− G112(P )

]
Φ̃−

3 (P ) + V
[
G1̄21(P )− G101(P )

]
Φ̃−

4 (P )

+ V
[
G002(P )− G020(P )

]
Φ̃−

5 (P ) + V
[
G110(P )− G1̄12(P )

]
Φ̃−

6 (P )

(5.24)

Φ̃−
3 (P ) =V

[
G01̄1(P )− G211(P )

]
Φ̃−

1 (P ) + V
[
G11̄0(P )− G112(P )

]
Φ̃−

2 (P )

+ V
[
G000(P )− G202(P )

]
Φ̃−

3 (P ) + V
[
G011(P )− G21̄1(P )

]
Φ̃−

4 (P )

+ V
[
G11̄2(P )− G110(P )

]
Φ̃−

5 (P ) + V
[
G200(P )− G002(P )

]
Φ̃−

6 (P )

(5.25)

Φ̃−
4 (P ) =V

[
G02̄0(P )− G200(P )

]
Φ̃−

1 (P ) + V
[
G12̄1̄(P )− G101(P )

]
Φ̃−

2 (P )

+ V
[
G01̄1̄(P )− G21̄1(P )

]
Φ̃−

3 (P ) + V
[
G000(P )− G22̄0(P )

]
Φ̃−

4 (P )

+ V
[
G12̄1(P )− G101̄(P )

]
Φ̃−

5 (P ) + V
[
G21̄1̄(P )− G01̄1(P )

]
Φ̃−

6 (P )

(5.26)

Φ̃−
5 (P ) =V

[
G1̄01̄(P )− G121̄(P )

]
Φ̃−

1 (P ) + V
[
G002̄(P )− G020(P )

]
Φ̃−

2 (P )

+ V
[
G1̄12̄(P )− G110(P )

]
Φ̃−

3 (P ) + V
[
G1̄21̄(P )− G101̄(P )

]
Φ̃−

4 (P )

+ V
[
G000(P )− G022̄(P )

]
Φ̃−

5 (P ) + V
[
G112̄(P )− G1̄10(P )

]
Φ̃−

6 (P )

(5.27)

Φ̃−
6 (P ) =V

[
G2̄1̄1(P )− G011(P )

]
Φ̃−

1 (P ) + V
[
G1̄1̄0(P )− G1̄12(P )

]
Φ̃−

2 (P )

+ V
[
G2̄00(P )− G002(P )

]
Φ̃−

3 (P ) + V
[
G2̄11(P )− G01̄1(P )

]
Φ̃−

4 (P )

+ V
[
G1̄1̄2(P )− G1̄10(P )

]
Φ̃−

5 (P ) + V
[
G000(P )− G2̄02(P )

]
Φ̃−

6 (P )

(5.28)
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The same steps which apply for the singlets apply here too. Hence, the combined self-

consistency equations for all triplets is



V (G000 − G220) V (G101̄ − G121) V (G011̄ − G211) V (G020 − G200) V (G101 − G121̄) V (G211̄ − G011)

V (G1̄01 − G121) V (G000 − G022) V (G1̄10 − G112) V (G1̄21 − G101) V (G002 − G020) V (G110 − G1̄12)

V (G01̄1 − G211) V (G11̄0 − G112) V (G000 − G202) V (G011 − G21̄1) V (G11̄2 − G110) V (G200 − G002)

V (G02̄0 − G200) V (G12̄1̄ − G101) V (G01̄1̄ − G21̄1) V (G000 − G22̄0 V (G12̄1 − G101̄) V (G21̄1̄ − G01̄1)

V (G1̄01̄ − G121̄) V (G002̄ − G02̄0) V (G1̄12̄ − G110) V (G1̄21̄ − G101̄) V (G000 − G022̄) V (G112̄ − G1̄10)

V (G2̄1̄1 − G011) V (G1̄1̄0 − G1̄12) V (G2̄00 − G002) V (G2̄11 − G01̄1) V (G1̄1̄2 − G1̄10) V (G000 − G2̄02)







Φ̃+
1

Φ̃+
2

Φ̃+
3

Φ̃+
4

Φ̃+
5

Φ̃+
6




=




Φ̃+
1

Φ̃+
2

Φ̃+
3

Φ̃+
4

Φ̃+
5

Φ̃+
6




(5.29)

where Glmn are the Green’s functions defined in Equation (5.18). Equations (5.19) and

(5.29) are the respective eigenequations that are solved to obtain pair properties for the

singlets and triplets. With the size of these matrices, it is easy to tell that there will be

more bound states in the FCC lattice as compared to the BCC lattice. The properties

of two fermions in an FCC lattice will be discussed next.

5.3 Pair Properties

The characteristic properties of fermion pair in FCC lattices are reported in this section.

In the following order, we: (1) calculate the total energy of the pair with different sym-

metries; (2) construct a pairing diagram for binding analysis; (3) calculate the dispersion

characteristics of bound pairs in the FCC BZ; (4) calculate the pair effective mass at

various attraction strengths; (5) evaluate the effective radius of a bound s-state; and (6)

estimate the BEC transition temperatures at which s-wave pairs may Bose condense in

the low-density limit.

5.3.1 Total Energy

In the present study, we can tell if two particles are bound or not by inspecting the total

energy of the pair. Although, a bound state can form only if there is sufficient potential
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U or V to bind the particles. One of the consequential advantages of Equations (5.19)

and (5.29) is that we can determine the total energy of a pair at an arbitrary P .

5.3.1.1 Energy of an Unbound Pair at P = 0

The minimum energy of a free particle (also the half-bandwidth W ) in an FCC lattice

can be determined from Equation (5.1) to be εmin ≡ W = −12t, when k = 0. Therefore,

the total energy of two free-particles, each at zero momentum, is −24t. By implication,

we can say that for the case of zero total momentum (P = 0), the energy of the system

equals the bandwidth −24t.

5.3.1.2 Energy of a Bound Pair at P = 0

If there is a strong enough attractive potential to bind the particles, the energy of the

system drops below the energy of two unbound free particles. To calculate the total

energy at zero pair momentum, we set P= 0 in Equation (5.19). The Γ point which is

at the centre of the FCC BZ corresponds to momentum P = 0. At this point of the

zone, the FCC lattice possesses Oh point symmetry, thus, we can apply our group theory

analysis.

Simplification at the Γ point

At the Γ point where (Px = Py = Pz = 0), the Green’s function in Equation (5.18)

becomes

Glmn(0) =
1

N

∑

q′

ei(l
q
′
x
2
+m

q
′
y
2
+n

q
′
z
2
)

E − 2εq′

= −
∫ 2π

−2π

∫ 2π

−2π

∫ 2π

−2π

dq
′
xdq

′
ydq

′
z

(4π)3

cos
(
l q

′
x

2

)
cos

(
m

q
′
y

2

)
cos
(
n q

′
z

2

)

|E|+ 2εq′

= − 1

(2π)3

∫ π

−π

∫ π

−π

∫ π

−π

cos
(
lq

′′
x

)
cos
(
mq

′′
y

)
cos
(
nq

′′
z

)

|E|+ 2εq′′
dq

′′

x dq
′′

ydq
′′

z : (q
′′

j =
q
′
j

2
)

(5.30)
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where εq′′ = −4t
{
cos
(
q
′′
x

)
cos
(
q
′′
y

)
+ cos

(
q
′′
x

)
cos
(
q
′′
z

)
+ cos

(
q
′′
y

)
cos
(
q
′′
z

)}
. Because some

of the Green’s functions are numerically identical due to symmetry properties [106], we

may then use the simplifications below

G000 = G0

G110 = G101 = G011 = G1̄01 = G01̄1 = G101̄ = G1̄01̄ = G01̄1̄ = G011̄ = G1̄10 = G11̄0 = G1̄1̄0 ≡ G1

G220 = G022 = G202 = G22̄0 = G022̄ = G2̄02 ≡ G2

G200 = G020 = G002 = G2̄00 = G02̄0 = G002̄ ≡ G3

G211 = G121 = G112 = G2̄11 = G12̄1 = G112̄ = G1̄1̄2 = ... ≡ G4

(5.31)

to modify our dispersion matrices (5.19) and (5.29) respectively as :



UG0 2V G1 2V G1 2V G1 2V G1 2V G1 2V G1

UG1 V (G0 + G2) V (G1 + G4) V (G1 + G4) 2V G3 V (G1 + G4) V (G4 + G1)

UG1 V (G1 + G4) V (G0 + G2) V (G1 + G4) V (G4 + G1) 2V G3 V (G1 + G4)

UG1 V (G1 + G4) V (G1 + G4) V (G0 + G2) V (G1 + G4) V (G4 + G1) 2V G3

UG1 2V G3 V (G4 + G1) V (G1 + G4) V (G0 + G2) V (G4 + G1) V (G4 + G1)

UG1 V (G1 + G4) 2V G3 V (G4 + G1) V (G4 + G1) V (G0 + G2) V (G4 + G1)

UG1 V (G4 + G1) V (G1 + G4) 2V G3 V (G4 + G1) V (G4 + G1) V (G0 + G2)




︸ ︷︷ ︸
Ĥsinglet




Φ+
0

Φ+
1

Φ+
2

Φ+
3

Φ+
4

Φ+
5

Φ+
6




︸ ︷︷ ︸
Φ̂singlet

=




Φ+
0

Φ+
1

Φ+
2

Φ+
3

Φ+
4

Φ+
5

Φ+
6




︸ ︷︷ ︸
Φ̂singlet

(5.32)


V (G0 − G2) V (G1 − G4) V (G1 − G4) 0 V (G1 − G4) V (G4 − G1)

V (G1 − G4) V (G0 − G2) V (G1 − G4) V (G4 − G1) 0 V (G1 − G4)

V (G1 − G4) V (G1 − G4) V (G0 − G2) V (G1 − G4) V (G4 − G1) 0

0 V (G4 − G1) V (G1 − G4) V (G0 − G2) V (G4 − G1) V (G4 − G1)

V (G1 − G4) 0 V (G4 − G1) V (G4 − G1) V (G0 − G2) V (G4 − G1)

V (G4 − G1) V (G1 − G4) 0 V (G4 − G1) V (G4 − G1) V (G0 − G2)




︸ ︷︷ ︸
Ĥtriplet




Φ−
1

Φ−
2

Φ−
3

Φ−
4

Φ−
5

Φ−
6




︸ ︷︷ ︸
Φ̂triplet

=




Φ−
1

Φ−
2

Φ−
3

Φ−
4

Φ−
5

Φ−
6




︸ ︷︷ ︸
Φ̂triplet

(5.33)

Note that Φ̃±
i ≡ Φ±

i since P = 0. The matrices above form the eigenequation

Ĥs,t Φ̂s,t = µs,t Φ̂s,t (5.34)

where Ĥs and Ĥt are the singlet and triplet dispersion matrices, Φ̂s and Φ̂t are the singlet

and triplet eigenvectors, and µs and µt being the corresponding eigenvalues, respectively.
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To find the pair energy, we select E, compute G, and then µ. A true pair state corresponds

to µ = 1. Thus, all pair energies can be found by adjusting E and searching for µ = 1

using standard binary search algorithms.

2
𝑌

𝑋

𝑍

∝𝑑
𝛾

𝛽

𝑏

𝛿

𝑒

𝑎

𝑐

𝑂
1

3

4

5

6

7

8

9

10

11

12

𝑓

Figure 5.2: A basic FCC lattice showing the axes for the Oh operations. The axes are
OX, OY , OZ, Oa, Ob, Oc, Od, Oe, Of , Oα, Oβ, Oγ, and Oδ. The numbers 1, 2, . . . , 12
represent nearest-neighbour lattice sites.

Application of Group Theory

In addition to the simplification of the Green’s functions, one can take further advantage

of this high symmetry point. We follow the procedure explained in Section 3.4.7 of

Chapter 3. The symmetry operations are those belonging to the Oh point group. The

resulting output from each step will follow.

Step 1: If we label the lattice sites according to Figure 5.2 and then perform the 48

symmetry operations, we can find the character of the input representation (reducible

reps.).

Step 2: We obtain the irreducible representations (irred. reps.) by selecting the non-

zero representations in the last column of Table 5.1. Finally, the sought irred. reps. for
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Oh group E 8C2
3C3 6C4 6C5 C6 8C7

3C8 6C9 6C10

Red. rep (Γfcc
t ) 12 0 0 0 2 0 0 4 0 2

∑ ∑
/48

A1g 12 0 0 0 12 0 0 12 0 12 48 1

A2g 12 0 0 0 -12 0 0 12 0 -12 0 0

Eg 24 0 0 0 0 0 0 24 0 0 48 1

T1g 36 0 0 0 -12 0 0 -12 0 -12 0 0

T2g 36 0 0 0 12 0 0 -12 0 12 48 1

A1u 12 0 0 0 12 0 0 -12 0 -12 0 0

A2u 12 0 0 0 -12 0 0 -12 0 12 0 0

Eu 24 0 0 0 0 0 0 -24 0 0 0 0

T1u 36 0 0 0 -12 0 0 12 0 12 48 1

T2u 36 0 0 0 12 0 0 12 0 -12 48 1

Table 5.1: Constructing irreducible representation from Oh point group using the reduc-
tion formula in the FCC lattice. The symmetry classes and the matrices for irreducible
representations of each symmetry operation are provided in Appendix B.

both the singlet and triplet states are respectively

Γfcc
singlet = A1g ⊕ Eg ⊕ T2g (5.35)

Γfcc
triplet = T1u ⊕ T2u (5.36)

We note that A1g is s-symmetrical, Eg (dx2−y2 and d2z2−x2−y2) and T2g (dxy, dxz and dyz)

are of d-symmetry, T1u (px, py and pz) has p-symmetry whilst T2u (fx[z2−y2], fy[z2−x2] and

fz[x2−y2]) forms the f - symmetric states. We define an example of symmetrised linear

combinations for the singlets as
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χA1g = Φ+
1 + Φ+

2 + Φ+
3 + Φ+

4 + Φ5
3 + Φ+

6 (5.37)

χT2g =





Φ+
1 − Φ+

4

Φ+
3 − Φ+

6

Φ+
2 − Φ+

5

χEg =





Φ+
1 − 2Φ+

2 + Φ+
3 + Φ+

4 − 2Φ+
5 + Φ+

6

Φ+
1 − Φ+

3 + Φ+
4 − Φ+

6

(5.38)

and for the triplets as

χT1u =





Φ−
1 + Φ−

2 − Φ−
4 + Φ−

5

Φ−
1 + Φ−

3 + Φ−
4 − Φ−

6

−Φ−
2 − Φ−

3 + Φ−
5 − Φ−

6

χT2u =





Φ−
2 − Φ−

3 − Φ−
5 − Φ−

6

Φ−
1 − Φ−

3 + Φ−
4 + Φ−

6

Φ−
1 − Φ−

2 − Φ−
4 − Φ−

5

(5.39)

Step 3: Next, we combine Equation (5.37) with Φ+
0 (the onsite basis), to arrive at a

complete orthogonal basis ‡,§

Φ̂s =




Φ0

Φs

Φd1

Φd2

Φd3

Φd4

Φd5




=




1 0 0 0 0 0 0

0 1 1 1 1 1 1

0 1 0 0 −1 0 0

0 0 0 1 0 0 −1

0 0 1 0 0 −1 0

0 1 −2 1 1 −2 1

0 1 0 −1 1 0 −1







Φ+
0

Φ+
1

Φ+
2

Φ+
3

Φ+
4

Φ+
5

Φ+
6




≡ χ̂s




Φ+
0

Φ+
1

Φ+
2

Φ+
3

Φ+
4

Φ+
5

Φ+
6




(5.40)

‡We have omitted the normalisation factors of the new symmetrised basis.
§The subscript s has been used twice: Φ̂s means all possible singlet states (s, d, . . . ) while Φs means

an extended s-state.
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Φ̂t =




Φp1

Φp2

Φp3

Φf1

Φf2

Φf3




=




1 1 0 −1 1 0

1 0 1 1 0 −1

0 −1 −1 0 1 −1

0 1 −1 0 −1 −1

1 0 −1 1 0 1

1 −1 0 −1 −1 0







Φ−
1

Φ−
2

Φ−
3

Φ−
4

Φ−
5

Φ−
6




≡ χ̂t




Φ−
1

Φ−
2

Φ−
3

Φ−
4

Φ−
5

Φ−
6




(5.41)

The matrices χ̂i (where i = s, t) are independent unitary matrices that help to diagonalise

the problem.

Step 4: Using the similarity transformation as in Equation, (4.37), we block-diagonalise

the Hamiltonians Ĥs and Ĥt. The respective block-diagonal dispersion relations are




UG0 2V G1 0 0 0 0 0

6UG1 Ks 0 0 0 0 0

0 0 KdT2g
0 0 0 0

0 0 0 KdT2g
0 0 0

0 0 0 0 KdT2g
0 0

0 0 0 0 0 KdEg
0

0 0 0 0 0 0 KdEg







Φ0

Φs

Φd1

Φd2

Φd3

Φd4

Φd5




=




Φ0

Φs

Φd1

Φd2

Φd3

Φd4

Φd5




(5.42)




Kp 0 0 0 0 0

0 Kp 0 0 0 0

0 0 Kp 0 0 0

0 0 0 Kf 0 0

0 0 0 0 Kf 0

0 0 0 0 0 Kf







Φp1

Φp2

Φp3

Φf1

Φf2

Φf3




=




Φp1

Φp2

Φp3

Φf1

Φf2

Φf3




(5.43)
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where

Ks = V (G0 + 4G1 + G2 + 2G3 + 4G4) (5.44)

KdT2g
= V (G0 + G2 − 2G3) = 1 (5.45)

KdEg
= V (G0 − 2G1 + G2 + 2G3 − 2G4) = 1 (5.46)

Kp = V (G0 + 2G1 − G2 − 2G4) = 1 (5.47)

Kf = V (G0 − 2G1 − G2 + 2G4) = 1 (5.48)

These are the solutions to the two-body problem at zero temperature and pressure.

The 2 × 2 block in Equation (5.42) corresponds to the s-symmetrical state, the next

three 1× 1 blocks are triply degenerate d- states of T2g symmetry, and the last two 1× 1

are doubly degenerate d- states with the Eg symmetry. In the case of triplet states in

Equation (5.43), the p- and f - states are 3-fold degenerate and they belong to the T1u

and T2u symmetry, respectively.
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Figure 5.3: The total energy of pairs for (a) the s-states only, and (b) all states of
various symmetries.The critical attractions for the s-state are UHub.

c (V=0)=−1.4874W
and V s

c (U=0)=−0.4836W . All states except the s-state are unaffected by U . The excited
states (p, dT2g , dEg and f) only appear at strongly attractive V . At very large attractions
U and V , all s-states have similar values (insets of panels (a) and (b)). For large intersite
attraction, V → −∞, the dEg and f states have approximately the same energies and
are indiscernible: inset of panel (b).
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The plot in Figure 5.3 shows the total energy of all the different pair symmetries

found in the FCC lattice. We note that there is a plateau at −2W when the particles

are not bound. Whereas there is a transition into a bound state when the plot drops

below −2W . At zero momentum, the ground state pair is of s symmetry.

A critical attraction must be reached before the formation of any bound state. At

very large attractions U and V , the s-states have very similar values (insets of Figure 5.3a

and 5.3b). In Figure 5.3b, the s-states are formed at relatively weak intersite attractions

V compared to other states. Additionally, for very strong attractive V , the energies

of all the pair symmetries are separated by an energy of order t: except for the dEg -

and f - states that have approximately the same energies and are therefore indiscernible

when plotted (inset of Figure 5.3b). Note that the labels dT2g and dEg are d-states with

T2g and Eg symmetries respectively. The separation of states at large attractive V is

a consequence of the superlight effect. We emphasise that at P = 0, the degeneracy

of the p-, dT2g -, dEg -, and f - states is three-fold, three-fold, two-fold, and three-fold,

respectively, as identified by the group theory analysis.
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5.3.2 Binding Criteria

We evaluate the minimum binding threshold for the formation of a bound state at zero

pair momentum. With the diagonalised equations (5.42) and (5.43), the different pair

symmetries are given by:

s :



1− UG0 −2V G1

−6UG1 1−Ks


 = 0 (5.49)

dT2g : 1−KdT2g
= 0 (5.50)

dEg : 1−KdEg
= 0 (5.51)

p : 1−Kp = 0 (5.52)

f : 1−Kf = 0 (5.53)

A phase diagram that shows where bound pairs form can be constructed by setting

E → −2W = −24t in the expressions (5.49)–(5.53) above. Following Ref. [107], the

exact solution of the Green’s functions (5.31) for E = −24t are

G0 = −
√
3K2

0

8π2t
=

−0.056027549298548

t
(5.54)

G1 =
1

24t
−

√
3K2

0

8π2t
=

1

24t
+ G0 (5.55)

G2 = −9
√
3K2

0

8π2t
− 3

4t
√
3K2

0

+
2

3t
= 9G0 +

3

32π2t2G0

+
2

3t
(5.56)

G3 =

√
3K2

0

24π2t
− 1

8t
√
3K2

0

=
1

64π2t2G0

− G0

3
(5.57)

G4 =

√
3K2

0

24π2t
+

1

4t
√
3K2

0

− 1

12t
= −G0

3
− 1

32π2t2G0

− 1

12t
(5.58)

where K0 = K
(√

3−1
2
√
2

)
= 1.598142002112540 is the complete elliptic integral of the first

kind. The binding condition for the s-state is obtained by expanding Equation (5.49).
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Doing this, we have

V s
c ≤ V (U) =

UG0 − 1

UG0C − C − 12UG2
1

(5.59)

where C = G0 + 4G1 + G2 + 2G3 + 4G4 = 12G0 +
1
2t
= −0.172330591582576/t.

From Equation (5.59), the critical attractions to bind pairs into s-symmetric states in

certain limits are

V s
c (U = 0) = −5.80280025...t (5.60)

V s
c (U → +∞) = −7.8028002504...t (5.61)

Uc(V = 0) = −17.84836232388...t (5.62)

Uc(V → +∞) = −24t (5.63)

Similarly, for the non-s states, we obtain the following critical attractions

V
dT2g
c = −22.734195989010747t (5.64)

V
dEg
c = −26.810644276320041t (5.65)

V p
c = −16.302567033831927t (5.66)

V f
c = −27.416574191996979t (5.67)

To construct the binding diagram in Figure 5.4, we vary the interaction strengths U

and V , and note when the total energy drops slightly below −2W . The non-s-symmetric

states (i.e. p-, dT2g -, dEg - and f - states) are insensitive to U . In comparison to other

lattices with lower coordination numbers, pairs require stronger attractions for their for-

mation in the FCC lattice. This is due to the increase in kinetic energy with coordination

number.

We measure the critical attractions above relative to the half-bandwidth energy.

The required potential to create bound onsite pairs with no intersite interaction is
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UHub.
c (V=0) ≈ −1.4874W (the negative Hubbard model, V=0). This is a slightly greater

attraction relative to the simple cubic [73] and body-centred cubic (Chapter 4, section

4.3.2) lattices. On the other hand, the critical attraction to form an intersite s-state

with no onsite interaction is V s
c (U=0)≈ −0.4836W . Furthermore, the s-states in the

limit of infinite repulsions are analysed. The onsite s-state is guaranteed to form if

UHub.
c (V→+∞)≤−2W . Similarly, V s

c (+∞)≤−0.6502W will certainly bind an extended

s-state when U is infinite. The non-s pairs have critical intersite binding strength V p
c

≈−1.3586W , V
dT2g
c ≈−1.8945W , V

dEg
c ≈−2.2342W , V f

c ≈−2.2847W .
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Figure 5.4: Binding diagram showing pair formation at P = 0 in an FCC lattice. The
black curved line is the boundary that separates bound from unbound s-symmetry pairs,
the grey shaded region enclosed by the magenta solid line indicates a region with two
s-states, the blue thick dashed line represents the onset of triply degenerate p-states,
the purple dash-dotted line shows the binding of a triple degenerate d-symmetry pair of
T2g symmetry (labelled dT2g), the green dotted line is the line below which two d-wave
pairs with Eg symmetry start to form (labelled dEg) and the red solid line indicates the
formation of triply-degenerate f pairs. An s-state is guaranteed to form for attractions
equal to or stronger than U = −2W , V = −0.65023W .
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To examine the effect of the coordination number (alternatively referred to as the

number of nearest-neighbour sites) on the binding strength in 3D lattices, we compare

the critical attractions in the simple cubic, BCC and FCC lattices. Noting that the

respective half-bandwidths are WSC = 6t, WBCC = 8t, and WFCC = 12t, the summary of

this comparison is given in Table 5.2. First and foremost, it is evident that the number of

paired states increases with the coordination number. Secondly, there are similarities in

the minimal thresholds for creating pairs on these 3D lattices. A striking commonality

found in these systems is that an onsite attraction equal to the bandwidth energy in

each lattice will adequately form a well-bound onsite pair in the limit of infinitely large

intersite repulsion. In contrast, however, an intersite attraction that is stronger than the

bandwidth would be required to bind two fermions into highly energetic states (dEg - and

f - states) in the FCC lattice.

Pairing Binding Minimum attraction required

symmetry parameter SC BCC FCC

s-wave

U(V=0) −1.3189WSC −1.4355WBCC −1.4874WFCC

U(V=+∞) −2WSC −2WBCC −2WFCC

V (U=0) −0.6455WSC −0.6358WBCC −0.4836WFCC

V (U=+∞) −0.9789WSC −0.8858WBCC −0.6502WFCC

p-wave (A2u) V −1.5885WSC −1.5828WBCC −1.3586WFCC

d-wave (T2g) V −1.8804WBCC −1.8945WFCC

d-wave (Eg) V −1.8034WSC −2.2342WFCC

f -wave (T2u) V −1.9639WBCC −2.2847WFCC

Table 5.2: Comparing critical binding strengths at P = 0, T = 0 in 3D cubic lattices
(simple cubic, body-centred cubic, and face-centred cubic). WSC = 6t, WBCC = 8t, and
WFCC = 12t are the respective half-bandwidths. We note that there are more pairing
states in the FCC lattice than the other lattices.
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5.3.3 Dispersion

Here, we calculate the dispersion of bound pairs in the first BZ of the FCC lattice. We

recall from the last section that V must be attractively greater than the bandwidth

energy (i.e V < −2.2847W ) to observe the excited states. We begin with the dispersions

obtained from the secular equations (5.19) and (5.29). Next, we compare perturbation

theory calculations and the dispersions.

Figure 5.5 shows the characteristic dispersion for intersite paired states (using the

secular equations) whereby U is repulsive and V is attractive: a very common scenario

found in many materials. Also, we construct the dispersion of pairs in the limit of com-

peting attractive interactions (i.e. |U | = |V |) in Figure 5.6. In both figures, degeneracies

are lifted away from the Γ point, and there is mixing and crossing of states, making it

difficult to specify pair symmetries. Our method aids the explicit classification of the

singlet and triplet states.

In addition to having more bound states when U is attractive, there is a considerable

modification in the shape of the singlets between Figures 5.5 and 5.6. For example in

Figure 5.6 and along the Γ-X line, a high singlet energy drops drastically to almost

coincide with the lowest singlet energy at the X point - this behaviour is absent in

Figure 5.5 where U is repulsive and is not due to the increase in V . Similarly, a slight

discrepancy can be noticed in the U -Γ direction. Whereas the general form of the triplets

is not altered in both plots since the dispersion matrix, Equation (5.29), does not contain

U , but their energies scale with the strength of V .
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5.3.3.1 Perturbation Theory Calculations

We perform perturbation calculations in the strong-coupling limits and present the dis-

persion results. The perturbation is the hopping of particles. We first perform this

treatment in the strongly attractive Hubbard limit: U → −∞, |U | ≫ t, V = 0. In this

case, there has to be two hops for the pair to bind again after initially breaking. Secondly,

we find the secular Hamiltonian due to the perturbation in the limit of strong repulsive

onsite interaction but strongly attractive intersite interaction: U → +∞, V < 0, |V | ≫ t.

In this case, the movement of pairs is a first-order effect in t because of the FCC lattice

structure.

(𝑏)(𝑎)

2𝑏

𝑌

𝑋

𝑍

𝒂1𝒂2

𝒂3

𝒂4

𝒂5

𝒂6

𝐴𝒏

2𝑏

𝑌

𝑋

𝑍

𝒂1𝒂2

𝒂3

𝒂4

𝒂5

𝒂6

𝐷2

𝐷3
𝐷5

𝐷6𝐷4

𝐷1
2𝑏2𝑏

Figure 5.7: FCC nearest-neighbour vectors and dimer basis for (a) Initial configuration
An, the small black circles represent the two electrons. (b) Intersite attraction - D1, D2,
D3, D4, D5, and D6 are pre-defined intersite configurations. In (b), the small green
circles represent electrons, the dashed oval depicts a bound state, we use the central
lattice site as the anchor point, the double-line arrow shows the anchor direction used
to analyse the hopping of triplet states. The need for the anchor is to help resolve the
sign problem arising from particle exchange.

Before we proceed, we shall define six dimer basis vectors (see Figure 5.7b):

a1 =

{
b

2
,
b

2
, 0

}
, a2 =

{
b

2
,− b

2
, 0

}
, a3 =

{
b

2
, 0,

b

2

}
,

a4 =

{
b

2
, 0,− b

2

}
, a5 =

{
0,
b

2
,
b

2

}
, a6 =

{
0,
b

2
,− b

2

} (5.68)
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where b is the lattice constant. Next, we define the Fourier-space vectors below

An =
∑

P

eiPnAP , An+a =
∑

P

eiP (n+a)AP = eiPaAn (5.69)

where P is the pair total momentum.

Strongly bound onsite pair

In the limit of large attractive U , V = 0, |U | ≫ t, the energy due to perturbation

is proportional to t2/U . If the initial configuration is An as in Figure 5.7a, then the

perturbed Hamiltonian matrix is

Ĥ ′ · An =− 24t2

|U |
An − 2t2

|U |
(An+a1 + An−a1 + An+a2 + An−a2 + An+a3 + An−a3

+ An+a4 + An−a4 + An+a5 + An−a5 + An+a6 + An−a6)

(5.70)

Next, we substitute Equation (5.69) in Equation (5.70) to have

E(2)
n = −24t2

|U |
− 2t2

|U |
(eiPa1 + e−iPa1 + eiPa2 + e−iPa2 + eiPa3 + e−iPa3

+ eiPa4 + e−iPa4 + eiPa5 + e−iPa5 + eiPa6 + e−iPa6)

= −24t2

|U |
− 8t2

|U |

[
cos

Pxb

2
· cos Pyb

2
+ cos

Pxb

2
· cos Pzb

2
+ cos

Pyb

2
· cos Pzb

2

]
(5.71)

Hence, the bound state in this limit has the dispersion of the form

E(P ) = −|U | − 8t2

|U |

[
3 + cos

Pxb

2
· cos Pyb

2
+ cos

Pxb

2
· cos Pzb

2
+ cos

Pyb

2
· cos Pzb

2

]

(5.72)

where the first term is the strong coupling unperturbed energy, and the rest is the energy

due to perturbation.

We plot the result obtained from Equation (5.19) versus Equation (5.72) in Figure

5.8. Both results are in good agreement except at the Γ and K points where there is

less than 2.5% and 0.6% energy difference at those points respectively. The difference in

energy reduces as the attraction U is further increased. We note that in this limit, the

bound pair moves like a dressed free particle in the FCC BZ.
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Strongly bound pairs requiring intersite attraction

In the limit U = +∞, V < 0, V ≫ t, the pair is made of two particles occupying a

pair of nearest-neighbours with the zero-order binding energy as −|V |. If we introduce a

first-order perturbationH ′, then the energy gained due to perturbation is the expectation

value of the perturbed Hamiltonian which is −t. With the dimer basis defined earlier,

we can declare the configurations for the singlets and triplets respectively as

Ds
i,n =

1√
2

(
|↑⟩n |↓⟩n+ai

+ |↓⟩n |↑⟩n+ai

)
, (5.73)

Dt
i,n = |↑⟩n |↑⟩n+ai

. (5.74)

where for the triplet states, Dt
i,n = −Dt

i,n−ai
. Unlike in the BCC lattice, the perturbation

is first-order in the FCC lattice due to its structural advantage. Using Equation (5.73),

the first-order Hamiltonian matrix for the singlet states is

Ĥ ′D1,n = −t (D3,n +D3,n+a6
)− t (D4,n +D4,n+a5

)− t (D5,n +D5,n+a4
)− t (D6,n +D6,n+a3

)

(5.75)

Ĥ ′D2,n = −t (D3,n +D3,n−a5
)− t (D4,n +D4,n−a6

)− t (D5,n+a2
+D5,n−a5

)− t (D6,n+a2
+D6,n−a6

)

(5.76)

Ĥ ′D3,n = −t (D1,n +D1,n−a6
)− t (D2,n +D2,n+a5

)− t (D5,n +D5,n+a2
)− t (D6,n+a3

+D6,n−a6
)

(5.77)

Ĥ ′D4,n = −t (D1,n +D1,n+a2
)− t (D2,n +D2,n+a6

)− t (D5,n−a5
+D5,n+a4

)− t (D6,n +D6,n+a2
)

(5.78)

Ĥ ′D5,n = −t (D1,n +D1,n−a4
)− t (D2,n−a2

+D2,n+a5
)− t (D3,n +D3,n−a2

)− t (D4,n−a4
+D4,n+a5

)

(5.79)

Ĥ ′D6,n = −t (D1,n +D1,n−a3
)− t (D2,n−a2

+D2,n+a6
)− t (D3,n+a6

+D3,n−a3
)− t (D4,n +D4,n−a2

)

(5.80)

Applying a Fourier transform, one obtains the consistency equation below
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


E(P ) + |V | 0 t(1 + eiPa6) t(1 + eiPa5) t(1 + eiPa4) t(1 + eiPa3)

0 E(P ) + |V | t(1 + e−iPa5) t(1 + e−iPa6) t(eiPa2 + e−iPa5) t(eiPa2 + e−iPa6)

t(1 + e−iPa6) t(1 + eiPa5) E(P ) + |V | 0 t(1 + eiPa2) t(eiPa3 + e−iPa6)

t(1 + e−iPa5) t(1 + eiPa6) 0 E(P ) + |V | t(eiPa4 + e−iPa5) t(1 + eiPa2)

t(1 + e−iPa4) t(eiPa5 + e−iPa2) t(1 + e−iPa2) t(eiPa5 + e−iPa4) E(P ) + |V | 0

t(1 + e−iPa3) t(eiPa6 + e−iPa2) t(eiPa6 + e−iPa3) t(1 + e−iPa2) 0 E(P ) + |V |







D1,n

D2,n

D3,n

D4,n

D5,n

D6,n




= 0

(5.81)

where E(P ) are the singlet pair energies at pair momentum P .

Similarly, we obtain the first-order Hamiltonian matrix for the triplets as

Ĥ ′D1,n = −t (D3,n +D3,n+a6
)− t (D4,n +D4,n+a5

)− t (D5,n +D5,n+a4
)− t (D6,n +D6,n+a3

)

(5.82)

Ĥ ′D2,n = −t (D3,n +D3,n−a5)− t (D4,n +D4,n−a6) + t (D5,n+a2 +D5,n−a5) + t (D6,n+a2 +D6,n−a6)

(5.83)

Ĥ ′D3,n = −t (D1,n +D1,n−a6)− t (D2,n +D2,n+a5)− t (D5,n +D5,n+a2) + t (D6,n+a3 +D6,n−a6)

(5.84)

Ĥ ′D4,n = −t (D1,n +D1,n+a2)− t (D2,n +D2,n+a6) + t (D5,n−a5 +D5,n+a4)− t (D6,n +D6,n+a2)

(5.85)

Ĥ ′D5,n = −t (D1,n +D1,n−a4) + t (D2,n−a2 +D2,n+a5)− t (D3,n +D3,n−a2) + t (D4,n−a4 +D4,n+a5)

(5.86)

Ĥ ′D6,n = −t (D1,n +D1,n−a3) + t (D2,n−a2 +D2,n+a6) + t (D3,n+a6 +D3,n−a3)− t (D4,n +D4,n−a2)

(5.87)

and the their energies E(P ) are determined from the equation below
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


E(P ) + |V | 0 t(1 + eiPa6) t(1 + eiPa5) t(1 + eiPa4) t(1 + eiPa3)

0 E(P ) + |V | t(1 + e−iPa5) t(1 + e−iPa6) −t(eiPa2 + e−iPa5) −t(eiPa2 + e−iPa6)

t(1 + e−iPa6) t(1 + eiPa5) E(P ) + |V | 0 t(1 + eiPa2) −t(eiPa3 + e−iPa6)

t(1 + e−iPa5) t(1 + eiPa6) 0 E(P ) + |V | −t(eiPa4 + e−iPa5) t(1 + eiPa2)

t(1 + e−iPa4) −t(eiPa5 + e−iPa2) t(1 + e−iPa2) −t(eiPa5 + e−iPa4) E(P ) + |V | 0

t(1 + e−iPa3) −t(eiPa6 + e−iPa2) −t(eiPa6 + e−iPa3) t(1 + e−iPa2) 0 E(P ) + |V |







D1,n

D2,n

D3,n

D4,n

D5,n

D6,n




= 0

(5.88)

We note that the Equations (5.81) and (5.88) are similar except for sign changes in some

of the matrix elements. The result from the perturbation theory calculation is shown

in Figure 5.9a and is compared with the direct UV calculations: using Equations (5.19)

and (5.29), in Figure 5.9b. Both results are in good agreement albeit there is a high level

of degeneracy in the perturbation calculations.
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5.3.4 Effective Mass

For the effective mass, we use Equation (4.106) defined in Chapter 4 and the mass for

pair in the FCC lattice can be seen in Figure 5.10.

In some lattices (e.g. rectangular ladder [81], simple cubic [73], and BCC [Chapter

4]), a superlight itinerant state is formed only when U and V are nearly equal and are

both attractive which enhances the mobility of the pair via a single hop. However, for

superlight pairs in staggered ladder [69] and triangular lattices [74], attractive onsite

attraction is not required: a condition that is closer to physical systems which typically

have onsite repulsion. The FCC lattice, due to its structure, is special and belongs to

the latter group.

In the limit where the intersite interaction is attractive and dominant V→−∞, the

pair mass does not increase infinitely (Figure 5.10b) but is only six times heavier than

a single particle’s (i.e. m∗ = 6m0, see derivation in the next section). This result shows

the superlight nature of pairs in the FCC lattice because the energy and the movement

of the pair only linearly depend on t. Similar low–mass states were reported in lower

dimensions (Refs. [74, 81]) at very strong attractive V . Superlight pair movement is

depicted in Figure 5.11 and during motion, the pair’s total energy remains unchanged

in all configurations.

On the other hand, in the limit where the onsite attraction is largely dominant

U→−∞ and V is small or repulsive, the mass of the bound pair increases infinitely. In

this case, the pair movement has a second-order effect in the hopping parameter t.
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Figure 5.10: The pair mass expressed in the unit of a free particle mass. m0 = ℏ2/(2b2t)
is the bare mass of one free particle in the FCC lattice (see derivation in Appendix B).
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(II) (III)

Ƹ𝑧

ො𝑥

ො𝑦

(I)

Figure 5.11: Superlight states move by first-order hops in the FCC lattice. The white
vertical arrow represents an electron with its spin, each small grey circle is a lattice site
(only the 13 sites of interest shown), the dashed oval represents a bound state through
an attractive V and the two-way arrow implies that the configurations are degenerate.
The key feature here is that the pair is itinerant as long as the intersite interaction
is sufficiently attractive. Unlike in other 3D lattices where first-order superlight states
are only attainable via an attractive U , a superlight state in the FCC lattice depicts
a physical system where the Coulomb repulsion is large and pair movement does not
require U .

5.3.4.1 Limiting Behaviour for Superlight Pair Mass

We use the dispersion equation (5.81) to derive the mass of the singlet in the limit

V → −∞. It is sufficient to evaluate the energy E(P ) at small P . Utilising the isotropic

property of cubic dispersion relations close to the Γ point, we can set P = (Px, 0, 0) and

expand Equation (5.81) to arrive at

E3(E − 4t)

[
E2 + 4tE − 16t2

(
1 + cos

Pxb

2

)]
= 0 , (5.89)

The above expression gives the dispersion of six pair bands along the Px direction where

the lowest band is

E1(Px) = −2t

(
1 +

√
5 + 4 cos

Pxb

2

)
. (5.90)

If we expand Equation (5.90) at small Px, one obtains

E1(Pxb≪ 1) ≈− 2t

[
1 + 3

(
1− (Pxb)

2

18

)1/2
]

≈− 8t+
1

6
t(Pxb)

2 ≡ E0 +
ℏ2P 2

x

2m∗ ,

(5.91)
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wherefrom we can extract the pair mass as

m∗ =
3ℏ2

tb2
= 6m0 . (5.92)

5.3.5 Radius

The effective radius has been calculated using the relation defined in Equation (4.107)

and the procedure described in Section 4.3.5 of Chapter 4 applies too.

The size of the pair diverges near the threshold energy (E → ETh) because the

pair is weakly bound and the pair wave function spreads over distant lattice sites. If

the particles unbind, the size of the pair becomes infinite whereas it shrinks as the

attraction increases. When V is strongly attractive and dominates over U , we see the

formation of a local intersite pair. A bound pair is local if its size is on the order of the

lattice parameter. In contrast, if the Hubbard attraction is very strong and dominant,

an onsite pair is formed. We notice a shoulder-like shape in the radius when the onsite

and intersite attractions are comparable. When the attractions are comparable, there is

a random fluctuation in the pair’s configuration i.e. it can easily switch between onsite

and intersite configurations.
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Figure 5.12: Effective radius for various U and V . The thin solid horizontal lines
represent the nearest-neighbour distance a = b/

√
2 on a FCC lattice. Note that the

radius diverges at low attraction. A shoulder forms when both attractions are comparable
U ∼ V .
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5.3.6 Estimation of Transition Temperature

In this section, we examine if superlight pairs in an FCC lattice could Bose-condense at

significant transition temperatures in a low-density system. As before (refer to Section

4.3.6), the transition temperature is given by the approximation:

TBEC =
3.31ℏ2

m̄m0kB

(
nb

Ωsite

)2/3

(5.93)

where m∗
b is the pair mass (m0 is the mass of a free particle and the dimensionless mass

m̄ = m∗/m0), Ωsite = b3/4 is the volume of the Wigner–Seitz cell for the FCC lattice,

and nb is the number of pairs per lattice site. For our calculation, we use an exemplar

lattice constant b = 14.24Å (consistent with the FCC fullerides, although we note that

electrons are not dilute in fullerides).

The transition temperatures for fixed nb are plotted in Figures 5.13a and 5.13b. For

condensation to take place, there must be pairs. This means that pairs must exist above

TBEC, i.e. TBEC < T∆, where T∆ = ∆/kB is the pairing temperature and the binding

energy is ∆ = 2ε0 − E0. The hopping parameter t = 0.04eV has been chosen to be

consistent with fulleride superconductors [17] to set the energy scale. The maximum nb

for which TBEC is consistent with the effective mass approximation is estimated to be

approximately 0.015. We adopt a similar requirement to that used in Chapter 4 where

pairs of radius R′ = αr∗ can fit into space without overlapping, i.e. that nb16R
′3/3 < 1.

We also assign the value α = 5 to minimise the overlap of wave functions of different

pairs. For the lowest nb considered in this study, superlight pairs can yield a transition

temperature up to 30 K (see Figures 5.13a and 5.13b for nb = 0.0015). When nb is

increased, the transition temperature goes up but these superlight pairs begin to overlap.

Nonetheless, this calculation predicts a transition temperature up to 70 K when nb =

0.015 which is consistent with the overlap condition above.
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Figure 5.13a: Plots of
BEC transition tempera-
ture for bound pairs with an
increasing number of pairs
per site nb, and V is fixed
while U is varied. The dark
regions of the curves indi-
cate cases where the value
of nb is compatible with the
conditions that the pair do
not overlap. We observe
a peak in TBEC in the su-
perlight regimes. The hor-
izontal line in each panel
is the corresponding TBEC

value for m∗ = 2m0. The
dotted regions imply that
T∆ < TBEC i.e. the pair is
formed below the condensa-
tion temperature or where
there are no bound pairs to
form condensates.
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Figure 5.13b: Plots of
BEC transition tempera-
ture for bound pairs with an
increasing number of pairs
per site nb, and U is fixed
while V is varied. The dark
regions indicate cases where
the value of nb is compati-
ble with the conditions that
the pair do not overlap. We
observe a peak in TBEC in
the superlight regimes. The
horizontal line in each panel
is the corresponding TBEC

value for m∗ = 2m0. The
dotted regions imply that
T∆ < TBEC i.e. the pair is
formed below the condensa-
tion temperature or where
there are no bound pairs to
form condensates.
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5.4 Discussion

We have studied the formation and the characteristic properties of fermion pairs in an

FCC lattice. At the same, the consequences as to whether such pairs can Bose-condense

in the dilute limit are also examined.

We found superlight local pairs forming in the FCC lattice. When the intersite

attraction becomes infinitely large, there is no significant impact on the pair mass; the

bound pair is just six times heavier than a single particle mass. The FCC lattice is

the 3D analogue of the triangular and staggered lattices in the sense that pairs formed

on these lattices are superlight and can move freely via a single hop even in the strong

coupling limit V→−∞. For the dispersion of pairs where the intersite interaction is

considered attractive, the singlet states show a slightly different behaviour between the

cases of attractive and repulsive U . Degenerate perturbation calculations were used to

validate the dispersion results in the strong coupling limits.

When conditions on overlap are maintained to keep pairs dilute and weakly interact-

ing, the transition temperature is predicted to be as high as 70 K. This work has shown

that small pairs formed in FCC lattice are much lighter than pairs in the simple cubic

and body-centred cubic lattices by an order of magnitude. Consequentially, we propose

that FCC systems with infinite Hubbard U repulsion and moderate intersite attraction

V would be a good place to search for high-temperature superconductivity. We note that

transition temperatures predicted here are similar to those in FCC fulleride materials

(albeit fullerides are not dilute).



Chapter 6

Bipolaronic Pairing in A3C60 Solids

6.1 Summary

This chapter has been motivated by the complex nature of the A3C60 compounds. These

are interesting materials with surprising behaviours, particularly as they sit at the inter-

section of conventional and unconventional superconductivity. We approach the problem

of electron pairing in these compounds using the UV formalism. We start with a brief

recap of the relevant interactions in these compounds and discuss how an appropriate

Hamiltonian that captures the essential physics could be established. Then, we per-

form a canonical transformation to derive an effective UV Hamiltonian. Next, we study

the properties of two electrons in the two distinct structures of cesium-doped fullerides

(Cs3C60). Finally, we discuss the consequences of the structural difference on the prop-

erties of bound pairs and on their transition temperatures.

146
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6.2 Preliminaries

In addition to the bandwidth, other relevant interaction parameters considered in the

theoretical treatment of electrical conductivity in the doped fullerides are the onsite

Coulomb repulsion, Hund’s coupling, and the Jahn-Teller effect (JTE arising from the

C60 vibron modes). As the onsite correlation is large in these materials, the Coulomb

interaction suppresses the hopping of electrons to and from different C60 molecules. In

the normal state of a trivalent-doped fulleride (A3C60) solid, the Hund’s distribution

rule favours high-spin states when electrons are donated by the alkali atoms to the C60

molecules (accordingly, the donated electrons must singly occupy the three different

orbital levels of t1u with parallel spins). However, the intramolecular vibrations resulting

from the Jahn-Teller distortion create an effective attraction between electrons located

on the same C60 molecule despite the strong Coulomb repulsion. The latter favours the

formation of a local singlet pair [108] (i.e. two electrons with anti-parallel spins occupy

the same orbital level and the third electron occupies one of the remaining two orbitals

of the t1u levels).

In the present work, we assume the following. (1) Each C60 molecule forms a lattice

site where an electron is located. (2) We consider a single band approximation [109]

to this problem and thus interorbital exchange interactions are neglected. (3) The JTE

dominates over Hund’s coupling [108], making it possible to create an onsite singlet

pair. With these simplifications, we can derive an effective UV Hamiltonian where

some underlying physics of bipolarons in A3C60 solids can be understood. Our goal is to

examine structural effects on the bipolaron properties of cesium-doped fulleride (Cs3C60)

since it has two structural phases (BCC and FCC). The derivation of the Hamiltonian

will be discussed next.
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6.3 The Hamiltonian

For the alkali-doped fulleride compounds (A3C60), we consider a Hamiltonian of the form

H = Hel +Hph +Hel−ph (6.1)

where the first term is the Hamiltonian describing the electron subsystem, the second

term is the phonon subsystem that describes the vibration of the C60 molecules (vibrons)

and the alkali atoms, and the third term accounts for the coupling of electrons to the

phonons in the system. We will treat each term in more detail in the following sections.

6.3.1 The Electron Subsystem

With Cs3C60 in mind and to minimise the number of free parameters, we introduce the

scaled Coulomb coupling, Ṽ , which is related to the intersite electron-electron interaction

V = Ṽ /b, where b is the lattice parameter. This form of interaction means that there

is just a single parameter to vary which is identical (or at least very similar) within the

different structures of Cs3C60 (BCC and FCC). The Hamiltonian is

Hel = −
∑

⟨ii′⟩

tii′ ĉ
†
i ĉi′ +

UH

2

∑

i

n̂i↑n̂i↓ +
1

2

∑

ij

Ṽij
b
n̂in̂j (6.2)

where the first term is the tight-binding term describing the hopping of electrons between

nearest-neighbour C60 sites i and j, the second term is the onsite Coulomb interaction

between two electrons located at site i, and the last term describes the intersite Coulomb

potential experienced by two electrons on nearest-neighbour sites i and j.
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6.3.2 Phonon and Vibron Hamiltonians

The phonon subsystem contains the vibrational modes (vibrons) of the C60 molecules

and the vibration of the alkali atoms. The Hamiltonian reads

Hph = ℏωC

∑

i

â†i âi + ℏωA

∑

jν

d̂†jν d̂jν (6.3)

where â and â† are phonon operators for the C60 molecules, and d̂ and d̂† are phonon

operators for the alkali atoms. ωC and ωA are the frequency of vibration for the C60

molecule and alkali atom respectively. The index j is used uniquely for the alkali sites.

6.3.3 Electron Coupling with Vibrons and Phonons

The electrons donated by the alkali atoms are strongly coupled to the two Ag and eight Hg

intramolecular phonons (vibrons). The nature of the electron-phonon coupling affects

the direction and magnitude of orbital distortion but does not cause the splitting of

the orbital degeneracy [18]. However, only one of the Hg modes (which is five-fold

degenerate) is responsible for the JTE [110]. To write our electron-phonon Hamiltonian

for the Cs3C60 solid, we need to bear in mind: Firstly, the stoichiometric difference in its

two structural phases. Secondly, the polarisation of the underlying lattice. In addition

to the intramolecular phonons from the C60 molecules, the positions of the cesium atoms

introduce additional polarisation in the lattice which may enhance or hinder the effective

interaction with a phonon experienced by an electron. This polarisation effect will be

taken into account when considering the respective Hamiltonian equation for the BCC

and FCC systems. What this means is that we allow for the possibility that electrons

on C60 molecules can interact via phonons on Cs sites since they can modify the local
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JT modes [111]. Thus the full electron-phonon interaction is:

Hel−ph = g
∑

i

ĉ†i ĉi(â
†
i + âi) +

∑

ij,ν

g′ij,CA

b2
ĉ†i ĉi(d̂

†
A,jν + d̂A,jν)r̂ij · ην (6.4)

= g
∑

i

ĉ†i ĉi(â
†
i + âi) +

∑

ij,ν

g̃ijν
b2
ĉ†i ĉi(d̂

†
A,jν + d̂A,jν) (6.5)

where the first term is a Holstein-like coupling between an electron and a phonon on

the same C60 site, which is used as an approximation to the JT coupling [112, 113].

The second term is the coupling between an electron and vibration modes of the cesium

atoms. Note that g̃ijν = g′ij,CA r̂ij · ην . Calculation of r̂ij · η is specific to the lattice and

the orientation of the phonon modes and will be discussed later. ην is the polarisation

of mode ν. We assume that these polarisations are orthogonal. Here, â† create vibrons

on fullerene sites and d̂† create phonons on the alkali sites.

Now that all the sub-Hamiltonians in Equation (6.1) have been declared, we turn to

the derivation of the UV Hamiltonian for these compounds.

6.4 Derivation of UV Model for Cs3C60 Solids

In this section, we will discuss a step-by-step procedure for the derivation of an effective

UV Hamiltonian using a canonical transformation. We note that the Hamiltonian in

Equation (6.1) contains seven terms if the subset Hamiltonians are combined.

6.4.1 Applying a Canonical Transformation

We use the Lang–Firsov canonical transformation to derive an effective UV model in the

limit that the phonon frequency is large. To do this, we perform a canonical operation

below with a unitary operator S. The essence of this operation is to decouple the EPI
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terms in Equation (6.1).

H̃ = eS H e−S = H + [S,H] +
1

2!
[S, [S,H]] + ... (6.6)

where the original Hamiltonian, in full, is

H =−
∑

⟨ii′⟩

tii′ ĉ
†
i ĉi′ +

UH

2

∑

i

n̂i↑n̂i↓ +
∑

⟨ii′⟩

Ṽii′

b
n̂in̂i′ +

∑

ij

gδij ĉ
†
i ĉi(â

†
j + âj)

+
∑

ij,ν

g̃ijν
b2
ĉ†i ĉi(d̂

†
jν + d̂jν) + ℏωC

∑

j

â†j âj + ℏωA

∑

jν

d†jν d̂jν

(6.7)

The operator S in Equation (6.6) takes the form

S =
∑

ij,ν

g̃ijν
b2ℏωA

ĉ†i ĉi(κd̂
†
jν − κd̂jν) +

∑

ij

gij
ℏωC

ĉ†i ĉi(κâ
†
j − κâj) (6.8)

where κ is a scaling parameter and gij = gδij in the second term.

The electron and phonon operators are also transformed as follows

ĉi → c̃i = eS ĉie
−S (6.9)

d̂jν → d̃jν = eS d̂jνe
−S (6.10)

âj → ãj = eS âje
−S (6.11)

Then the transformed operators are obtained by solving a set of differential equations

∂c̃i
∂κ

=
∂c̃i
∂S

· ∂S
∂κ

(6.12)

∂d̃j
∂κ

=
∂d̃j
∂S

· ∂S
∂κ

(6.13)

∂ãj
∂κ

=
∂ãj
∂S

· ∂S
∂κ

(6.14)

From Equation (6.8), we have that

∂S

∂κ
=
∑

ij,ν

g̃ijν
b2ℏωA

ĉ†i ĉi(d̂
†
jν − d̂jν) +

∑

ij

gδij
ℏωC

ĉ†i ĉi(â
†
j − âj) (6.15)

Using Equation (6.9) in (6.12), we get

∂c̃i
∂κ

=eS
∑

i

[ĉ†i ĉi, ĉi]

{∑

jν

g̃ijν
b2ℏωA

(d̂†jν − d̂jν) +
∑

j

gδij
ℏωC

(â†j − âj)

}
e−S

=− ĉi

[∑

jν

g̃ijν
b2ℏωA

(d̂†jν − d̂jν) +
∑

j

gδij
ℏωC

(â†j − âj)

] (6.16)
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If we take the limits κ→ 1, we arrive at

ĉi → c̃i = ĉi exp

[
−
∑

jν

g̃ijν
b2ℏωA

(d̂†jν − d̂jν)−
∑

j

gδij
ℏωC

(â†j − âj)

]
(6.17)

So that its conjugate operator is given as

ĉ†i → c̃†i = ĉ†i exp

[∑

jν

g̃ijν
b2ℏωA

(d̂†jν − d̂jν) +
∑

j

gδij
ℏωC

(â†j − âj)

]
(6.18)

Similarly, we solve Equations (6.13) and (6.14) using (6.10) and (6.11), respectively, to

arrive at the transformed operators

d̂jν → d̃jν = d̂jν −
∑

iν

g̃ijν
b2ℏωA

ĉ†i ĉi , d̂†jν → d̃†j = d̂†j −
∑

iν

g̃ijν
b2ℏωA

ĉ†i ĉi (6.19)

and

âj → ãj = âj −
∑

i

gδij
ℏωC

ĉ†i ĉi , â†j → ã†j = â†j −
∑

i

gδij
ℏωC

ĉ†i ĉi (6.20)

From Equation (6.6), we have

H̃ =−
∑

⟨ii′⟩

tii′ c̃
†
i c̃i′ +

UH

2

∑

i

ñi↑ñi↓ +
1

2

∑

⟨ii′⟩

Ṽii′

b
ñiñi′ + g

∑

i

c̃†i c̃i(ã
†
i + ãi)

+
∑

ij,ν

g̃ijν
b2
c̃†i c̃i(d̃

†
jν + d̃jν) + ℏωC

∑

i

ã†i ãi + ℏωA

∑

jν

d̃†jν d̃jν

(6.21)

Treating each term separately for convenience and substituting the transformed operators

(6.17)–(6.20), we get

1st term:

−
∑

⟨ii′⟩

tii′ c̃
†
i c̃i′ = −

∑

⟨ii′⟩

tii′ ĉ
†
i ĉi′ exp

[∑

jν

g̃ijν
b2ℏωA

(d̂†jν − d̂jν) +
∑

j

gδij
ℏωC

(â†j − âj)

]

× exp

[
−
∑

jν

g̃
′

i′jν

b2ℏωA

(d̂†jν − d̂jν)−
∑

j

g′δi′j
ℏωC

(â†j − âj)

]

= −
∑

⟨ii′⟩

t̃ii′ ĉ
†
i ĉi′

where

t̃ii′ = tii′ exp

[∑

jν

g̃ijν
b2ℏωA

(d̂†jν − d̂jν) +
∑

j

gδij
ℏωC

(â†j − âj)

]

× exp

[
−
∑

jν

g̃
′

i′jν

b2ℏωA

(d̂†jν − d̂jν)−
∑

j

g′δi′j
ℏωC

(â†j − âj)

] (6.22)



6.4. DERIVATION OF UV MODEL FOR CS3C60 SOLIDS 153

2nd term:

UH

2

∑

i

ñi↑ñi↓ =
UH

2

∑

i

c̃†i↑c̃i↑c̃
†
i↓c̃i↓ =

UH

2

∑

i

ĉ†i↑ĉi↑ĉ
†
i↓ĉi↓ =

UH

2

∑

i

n̂i↑n̂i↓

3rd term:

1

2

∑

⟨ii′⟩

Ṽii′

b
ñiñj =

1

2

∑

⟨ii′⟩

Ṽij
b
c̃†i c̃ic̃

†
i′ c̃i′ =

1

2

∑

⟨ii′⟩

Ṽii′

b
ĉ†i ĉiĉ

†
i′ ĉi′ =

1

2

∑

⟨ii′⟩

Ṽii′

b
n̂in̂i′

4th term:

∑

ij

gδij c̃
†
i c̃i(ã

†
j + ãj) =

∑

ij

gδij ĉ
†
i ĉi

(
â†j + âj − 2

∑

i′

gδi′j
ℏωC

ĉ†i′ ĉi′

)

5th term:

∑

ij,ν

g̃ijν
b2
c̃†i c̃i(d̃

†
jν + d̃jν) =

∑

ij,ν

g̃ijν
b2
ĉ†i ĉi

(
d̂†jν + d̂jν − 2

∑

i′ν

g̃i′jν
b2ℏωA

ĉ†i′ ĉi′

)

6th term:

ℏωC

∑

j

ã†j ãj = ℏωC

∑

j

[
â†j âj −

∑

i

gδij
ℏωC

ĉ†i ĉi(â
†
i + âi) +

∑

ii′

gδijgδi′j

(ℏωC)
2 ĉ

†
i ĉic

†
i′ ĉi′

]

7th term:

ℏωA

∑

jν

d̃†jν d̃jν =ℏωA

∑

jν

[
d†jν d̂jν −

∑

iν

g̃ijν
b2ℏωA

ĉ†i ĉi(d
†
jν + d̂jν)

+

(
1

b2ℏωA

)2∑

ii′ν

g̃ijν g̃i′jν ĉ
†
i ĉic

†
i′ ĉi′

]

Hence, the fully transformed Hamiltonian is

H̃ =−
∑

⟨ii′⟩

t̃ii′ ĉ
†
i ĉi′ +

UH

2

∑

i

n̂i↑n̂i↓ +
1

2

∑

⟨ii′⟩

Ṽii′

b
n̂in̂i′ −

1

ℏωC

∑

ii′j

gδijgδi′j ĉ
†
i ĉic

†
i′ ĉi′

− 1

b4ℏωA

∑

ii′jν

g̃ijν g̃i′jν ĉ
†
i ĉic

†
i′ ĉi′ + ℏωC

∑

j

â†j âj + ℏωA

∑

jν

d̂†j d̂j

(6.23)

We recall that g̃ijν ≡ g′ij,CAr̂ij · ην , thus

H̃ =−
∑

⟨ii′⟩

t̃ii′ ĉ
†
i ĉi′ +

UH

2

∑

i

n̂i↑n̂i↓ +
1

2

∑

⟨ii′⟩

Ṽii′

b
n̂in̂i′ −

1

ℏωC

∑

ii′j

gδijgδi′j ĉ
†
i ĉiĉ

†
i′ ĉi′

− 1

b4ℏωA

∑

ii′jν

g′ij,CAg
′
i′j,CA ĉ

†
i ĉiĉ

†
i′ ĉi′(r̂ij · ην)(r̂i′j · ην)

+ ℏωC

∑

j

â†j âj + ℏωA

∑

jν

d̂†jν d̂jν

(6.24)
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6.4.1.1 Transformed Hamiltonian in the Atomic Limit

In the limit t̃ → 0 where electrons are considered static, only the phonon-related terms

are activated. If we let

gδij
ℏωC

−→ ḡC =
fijδij

ℏωC

√
2MℏωC

(6.25)

and

g̃ijν
b2ℏωA

−→ ḡν =
f

′
ijν

ℏωA

√
2MℏωA

, (6.26)

the EPI terms (4th and 5th terms in 6.23 ) become

−
∑

ii′j

fijfi′j
2Mℏ2ω2

C

n̂in̂i′ −
∑

ii′jν

f
′
ijνf

′

i′jν

2Mℏ2ω2
A

n̂in̂i′ (6.27)

We then define functions relating to the molecular vibrons and alkali phonon, polaron

self-energy and the dimensionless coupling parameter respectively as

ΦC
ii′ =

∑

j

fijfi′j , (6.28)

ΦA
ii′ν =

∑

jν

f
′

ijνf
′

i′jν : {f ′
ijν = (r̂ij · ην) e

−rij/Rsc/r3ij} , (6.29)

Ep =
1

2Mℏ2ω2

∑

i

f 2
i =

Φ00

2Mℏ2ω2
, (6.30)

λ =
Φ00

2MWℏ2ω2
(6.31)

where W is the half-bandwidth. We emphasise that the summation in Equation (6.29)

runs over all modes of the alkali phonon. The expression for f
′
ijν is of the Fröhlich form

[93], where Rsc (expressed in units of the lattice vector |a| and ranges from 0 → ∞) is

the screening radius that controls the effect of the alkali phonon-mediated interaction

(from short- to long-range), rij is the separation distance between a C60 ball at site i

and an alkali ion at site j. The EPI terms can be re-written as

−
∑

ii′

λCW
ΦC

ii′

ΦC
00

n̂in̂i′ −
∑

ii′ν

λ′W
ΦA

ii′ν

ΦA
00ν

n̂in̂i′ (6.32)
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where λC and λ′ are the dimensionless coupling parameter of electrons with the C60 and

the alkali ion (A) phonons respectively. Taking the atomic limit of Equation (6.23), the

transformed Hamiltonian is thus

H̃at = −
∑

ii′

λCW
ΦC

ii′

ΦC
00

n̂in̂i′ −
∑

ii′ν

λ′W
ΦA

ii′ν

ΦA
00ν

n̂in̂i′ + ℏωC

∑

j

â†j âj + ℏωA

∑

jν

d̂†jν d̂jν (6.33)

6.4.1.2 Transforming the Tight-Binding Hamiltonian

Examining the tight-binding Hamiltonian (first term in Equation (6.23) ), we have

H̃tb = −
∑

⟨ii′⟩

tii′ c̃
†
i c̃i′ −→ −

∑

⟨ii′⟩

t̃ii′ ĉ
†
i ĉi′ (6.34)

where, from Equation (6.22), the renormalised hopping integral t̃ corresponding to the

kinetic term of a polaron (dressed electron) is

t̃ii′ = tii′ exp

[∑

jν

ḡν(d̂
†
jν−d̂jν)+

∑

j

ḡC(â
†
j−âj)

]
×exp

[
−
∑

jν

ḡ′ν(d̂
†
jν−d̂jν)−

∑

j

ḡ′C(â
†
j−âj)

]

(6.35)

where ḡC =
fijδij

ℏωC
√
2MℏωC

, ḡ′C =
fi′jδi′j

ℏωC
√
2MℏωC

, ḡν =
f
′
ijν

ℏωA
√
2MℏωA

, and ḡ′ν =
f
′
i′jν

ℏωA
√
2MℏωA

. It is

immediately obvious that there are still electron-phonon couplings via t̃ii′ . These can be

eliminated by rearranging the exponent and then taking the near anti-adiabatic limit (i.e.

finite phonon frequency). To do this, we make use of the identity eAeB = eA+Be[A,B]/2,

where this relation holds if A and B commute. For the moment, let A =
∑
jν

ḡν(d̂
†
jν −

d̂jν) +
∑
j

ḡC(â
†
j − âj) and B = −

∑
jν

ḡ′ν(d̂
†
jν − d̂jν)−

∑
j

ḡ′C(â
†
j − âj). Thus, we have

A+B =
∑
jν

(ḡν − ḡ′ν)(d̂
†
jν − d̂jν) +

∑
j

(ḡC − ḡ′C)(â
†
j − âj), and [A,B] = 0. So,

t̃ii′ = tii′ exp

[[∑

jν

(ḡν − ḡ′ν)d̂
†
jν +

∑

j

(ḡC − ḡ′C)â
†
j

]
−
[∑

jν

(ḡν − ḡ′ν)d̂jν +
∑

j

(ḡC − ḡ′C)âj

]]

(6.36)

Reusing the identity eA+B = eAeBe−[A,B]/2 again, where

A =
[∑

jν

(ḡν − ḡ′ν)d̂
†
jν +

∑
j

(ḡC − ḡ′C)â
†
j

]
and B = −

[∑
jν

(ḡν − ḡ′ν)d̂jν +
∑
j

(ḡC − ḡ′C)âj

]
.
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It follows that

[A,B] =−
∑

jν

(ḡν − ḡ′ν)
2[d̂†jν , d̂jν ]−

∑

jj′ν

(ḡν − ḡ′ν)(ḡC − ḡ′C)[d̂
†
j′ν , âj]

−
∑

jj′ν

(ḡC − ḡ′C)(ḡν − ḡ′ν)[â
†
j, d̂j′ν ]−

∑

j

(ḡC − ḡ′C)
2[â†j, âj]

=
∑

jν

(ḡν − ḡ′ν)
2 +

∑

j

(ḡC − ḡ′C)
2

=
∑

jν

{
f

′2
ijν

ℏωA

− 2
f

′
ijνf

′

i′jν

ℏωA

+
f

′2
i′jν

ℏωA

}
· 1

2Mℏ2ω2
A

+
∑

j

{
f 2
ij

ℏωC

− 2
fijfi′j
ℏωC

+
f 2
i′j

ℏωC

}
· 1

2Mℏ2ω2
C

=
2λ′W

ℏωA

(
1− ΦA

ii′ν

ΦA
00ν

)
+

2λCW

ℏωC

(
1− ΦC

ii′

ΦC
00

)

(6.37)

∴ −[A,B]/2 =− λ′W

ℏωA

(
1− ΦA

ii′ν

ΦA
00ν

)
− λCW

ℏωC

(
1− ΦC

ii′

ΦC
00

)
(6.38)

The final expression for the renormalised hopping integral t̃ii′ is

t̃ =tii′ exp

[
− λ′W

ℏωA

(
1− ΦA

ii′ν

ΦA
00ν

)
− λCW

ℏωC

(
1− ΦC

ii′

ΦC
00

)]
×

exp

[∑

jν

(ḡν − ḡ′ν)d̂
†
jν +

∑

j

(ḡC − ḡ′C)â
†
j

]
× exp

[
−
∑

jν

(ḡν − ḡ′ν)d̂jν −
∑

j

(ḡC − ḡ′C)âj

]

(6.39)

An advantage of taking the finite frequency limit of this transformation is that the

phonon degrees of freedom are integrated out. Thus, we have an effective UV Hamilto-

nian for the alkali-doped fullerides as

Heff =
∑

⟨n,a⟩σ

t̃a ĉ
†
n+a,σ ĉnσ + U

∑

n

ρ̂n↑ ρ̂n↓ +
∑′

⟨n,a⟩

Va ρ̂n+a ρ̂n (6.40)

where the first two terms are the standard Hubbard Hamiltonian and the third term

describes the intersite electron-electron interaction. Note that a is the nearest-neighbour

lattice vector which should not be confused with the lattice constant b, and the prime

in the last summation implies that a = 0 is excluded from summation. U and V are

renormalised potentials defined as

U =
UH

2
−W (λC + λ′) (6.41)
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Va =
Ṽ

2a
−W

[
λ′
ΦA

ν (0,a)

ΦA
ν (0, 0)

]
(6.42)

The Hamiltonian (6.40) is solved to obtain the properties of two bound electrons in

the Cs3C60 solids. We will compare these properties in both BCC and FCC lattices, and

then discuss their consequences in the next sections.
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6.5 Bipolaron Properties in the BCC and FCC forms

of Cs3C60 Solids

We derived an effective Hamiltonian for Cs3C60 in the previous section. Now, we will

determine some characteristic properties of two electrons in the two structures of the

solid. Then, these properties will be compared and contrasted to examine the effects of

the underlying lattice structure.

6.5.1 Polarisation Effects and the Φ Functions

Here, we demonstrate how the polarisation (r̂ij · ην) is computed both in the BCC and

FCC lattices. We also examine implications for the the function ΦA
ν (i, i

′) in the respective

lattices.

6.5.1.1 Computation of (r̂ij · ην)(r̂i′j · ην)

We will calculate the polarisation separately in the BCC and FCC lattices. For conve-

nience, we set the lattice constant to unity in both lattices.

BCC Lattice

Intersite: two electrons occupying two different but neighbouring C60 sites

As depicted in Figure 6.1, if the coordinate of the central C60 molecule is (0, 0, 0), and that

labelled “A” is (1
2
, −1

2
, 1
2
), then, the three Cs ions labelled “1”,“2”,“3” - with respective

coordinates (0, −1
2
, 1
4
), (1

4
, 0, 1

2
), (1

2
, −1

4
, 0) - connect the two C60 molecules in consideration.

We define a vector of the form r̂ij = ˆCiCsj which represents the separation between the

C60 molecule at site i and a cesium ion at site j. Then, we find the dot products using

Cartesian coordinates. Examples are given below for the C60 at site A and the three
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Figure 6.1: Annotated BCC structure of the Cs3C60. The small green balls represent
the cesium atoms and the big brown balls represent the C60 molecules. For consideration
of effective interaction, we assume one electron is located at the central C60 ball and
another electron at the C60 labelled A. The closest cesium atoms connecting the central
ball and ball A are the small green balls labelled 1, 2, 3.

nearest cesium ions (treating a single Cs ion at a time).

ION 1 (Cs1):

ˆCACs1 =
4√
5
(−1

2
, 0, −1

4
) =⇒ ˆCACs1 · x̂mode =

−2√
5
; ˆCACs1 · ŷmode = 0; ˆCACs1 · ẑmode =

−1√
5
.

ˆCOCs1 =
4√
5
(0, −1

2
, 1
4
) =⇒ ˆCoCs1 · x̂mode = 0; ˆCoCs1 · ŷmode =

−2√
5
; ˆCoCs1 · ẑmode =

1√
5

So, | ˆCACs1 · ˆCoCs1|mode = | ˆ(CACs1 · x̂) · ( ˆCoCs1 · x̂)|mode+ | ˆ(CACs1 · ŷ) · ( ˆCoCs1 · ŷ)|mode+

| ˆ(CACs1 · ẑ) · ( ˆCoCs1 · ẑ)|mode =
−1
5
.

ION 2 (Cs2):

ˆCACs2 =
4√
5
(−1

4
, 1
2
, 0) =⇒ ˆCACs2 · x̂mode =

−1√
5
; ˆCACs2 · ŷmode =

2√
5
; ˆCACs2 · ẑmode = 0.

ˆCOCs2 =
4√
5
(1
4
, 0, 1

2
) =⇒ ˆCoCs2 · x̂mode =

1√
5
; ˆCoCs2 · ŷmode = 0; ˆCoCs2 · ẑmode =

2√
5

∴ | ˆCACs2 · ˆCoCs2|mode =
−1
5
.

ION 3 (Cs3):

ˆCACs3 =
4√
5
(0, 1

4
, −1

2
) =⇒ ˆCACs3 · x̂mode = 0; ˆCACs3 · ŷmode =

1√
5
; ˆCACs3 · ẑmode =

−2√
5
.

ˆCOCs3 =
4√
5
(1
2
, −1

4
, 0) =⇒ ˆCoCs3 · x̂mode =

2√
5
; ˆCoCs3 · ŷmode =

−1√
5
; ˆCoCs3 · ẑmode = 0.

∴ | ˆCACs3 · ˆCoCs3|mode =
−1
5
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We see from above that between a pair of C60 neighbours, the effective interaction

due to the (orthogonal) vibrations of the nearest alkali ions is

3∑

n=1

| ˆ(CACsn · {x̂, ŷ, ẑ}) · ( ˆCoCsn · {x̂, ŷ, ẑ})|mode = | ˆ(CACs1 · x̂) · ( ˆCoCs1 · x̂)|

+ | ˆ(CACs1 · ŷ) · ( ˆCoCs1 · ŷ)|+ | ˆ(CACs1 · ẑ) · ( ˆCoCs1 · ẑ)|

+ | ˆ(CACs2 · x̂) · ( ˆCoCs2 · x̂)|+ | ˆ(CACs2 · ŷ) · ( ˆCoCs2 · ŷ)|

+ | ˆ(CACs2 · ẑ) · ( ˆCoCs2 · ẑ)|+ | ˆ(CACs3 · x̂) · ( ˆCoCs3 · x̂)|

+ | ˆ(CACs3 · ŷ) · ( ˆCoCs3 · ŷ)|+ | ˆ(CACs3 · ẑ) · ( ˆCoCs3 · ẑ)| =
−3

5

(6.43)

Onsite: two electrons occupying the same C60 site

Similarly, we compute for the case of two electrons at the central site in Figure 6.1

12∑

n=1

| ˆ(CoCsn · {x̂, ŷ, ẑ}) · ( ˆCoCsn · {x̂, ŷ, ẑ})|mode

However, it should be noted that in the BCC Cs3C60 unit cell, all the Cs ions are

equidistant from the central C60 molecule, therefore all the 12 ions would participate in

the onsite case and not just 3 ions as in the case of the intersite. Depending on how they

are labelled, we can find the coordinates and perform the summation as before. We will

only illustrate here the result from the vibrational modes of the Cs ion labelled “1” in

Figure 6.1.

| ˆ(CoCs1·x̂)·( ˆCoCs1·x̂)|mode+| ˆ(CoCs1·ŷ)·( ˆCoCs1·ŷ)|mode+| ˆ(CoCs1·ẑ)·( ˆCoCs1·ẑ)|mode =

1.

It immediately becomes obvious that all the surrounding balls will contribute the

same weight. Thus, the overall contribution is 12× 1 = 12. We note here that between

two electrons situated onsite, the overall effect from the vibrations of the nearest alkali



6.5. BIPOLARON PROPERTIES IN CS3C60 161

ions on these electrons is positive (attractive) whilst for intersite electrons at nearest-

neighbour C60 balls, the overall contribution from the alkali ions is negative (repulsive).

In summary, in the BCC phase of a Cs3C60 solid, the effective interaction between two

electrons interacting via the Cs vibrational modes is

• repulsive (negative, −→ −3
5
) when the electrons occupy nearest-neighbour sites, and

• attractive (positive with a weight N, where N = 12 is the total number of nearest

Cs ions) for onsite configuration.

Figure 6.2: The structure of the Cs3C60 in its FCC phase. There are four cesium atoms
connecting two C60 molecules: 2 green balls at the tetrahedral sites and 2 red balls at
the octahedral sites.

FCC Lattice

Intersite: two electrons occupying two different but neighbouring C60 sites

Just as in the BCC case above, we will similarly determine the effective interaction

between electrons on two C60 molecules (Figure 6.2). We use a central C60 molecule at

(0, 0, 0) and a neighbouring C60 molecules at position A (1
2
, 1
2
, 0). For the chosen C60

molecules, the two closest Cs ions (green balls) are at coordinates (1
4
, 1
4
, 1
4
) and (1

4
, 1
4
, −1

4
)

respectively, while the next two (red balls) ions have their respective coordinates as

(1
2
, 0, 0) and (0, 1

2
, 0).
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ION 1: green Cs

ˆCACs1 =
4√
3
(−1

4
, −1

4
, 1
4
) =⇒ ˆCACs1 ·x̂mode =

−1√
3
; ˆCACs1 ·ŷmode =

−1√
3
; ˆCACs1 ·ẑmode =

1√
3
.

ˆCOCs1 =
4√
3
(1
4
, 1
4
, 1
4
) =⇒ ˆCoCs1 · x̂mode =

1√
3
; ˆCoCs1 · ŷmode =

1√
3
; ˆCoCs1 · ẑmode =

1√
3

So, | ˆCACs1 · ˆCoCs1|mode = | ˆ(CACs1 · x̂) · ( ˆCoCs1 · x̂)|mode+ | ˆ(CACs1 · ŷ) · ( ˆCoCs1 · ŷ)|mode+

| ˆ(CACs1 · ẑ) · ( ˆCoCs1 · ẑ)|mode =
−1
3
.

ION 2: green Cs

ˆCACs2 =
4√
3
(−1

4
, −1

4
, −1

4
) =⇒ ˆCACs2 · x̂mode =

−1√
3
; ˆCACs2 · ŷmode =

−1√
3
; ˆCACs2 · ẑmode =

−1√
3
.

ˆCOCs2 =
4√
3
(1
4
, 1
4
, −1

4
) =⇒ ˆCoCs2 · x̂mode =

1√
3
; ˆCoCs2 · ŷmode =

1√
3
; ˆCoCs2 · ẑmode =

−1√
3

∴ | ˆCACs2 · ˆCoCs2|mode =
−1
3
.

ION 3: red Cs

ˆCACs3 = 2(0, −1
2
, 0) =⇒ ˆCACs3 · x̂mode = 0; ˆCACs3 · ŷmode = −1; ˆCACs3 · ẑmode = 0.

ˆCOCs3 = 2(1
2
, 0, 0) =⇒ ˆCoCs3 · x̂mode = 1; ˆCoCs3 · ŷmode = 0; ˆCoCs3 · ẑmode = 0.

∴ | ˆCACs3 · ˆCoCs3|mode = 0

ION 4: red Cs

ˆCACs4 = 2(−1
2
, 0, 0) =⇒ ˆCACs4 · x̂mode = −1; ˆCACs4 · ŷmode = 0; ˆCACs4 · ẑmode = 0.

ˆCOCs4 = 2(0, 1
2
, 0) =⇒ ˆCoCs4 · x̂mode = 0; ˆCoCs4 · ŷmode = 1; ˆCoCs4 · ẑmode = 0.

∴ | ˆCACs4 · ˆCoCs4|mode = 0

Clearly from above, the effective interaction between two electrons sitting on two

neighbouring sites taking account of polarisation is

4∑

n=1

| ˆ(CACsn · {x̂, ŷ, ẑ}) · ( ˆCoCsn · {x̂, ŷ, ẑ})|mode =
−2

3

which is interpreted as repulsive. The alkali ions on a direct line between the coordinates

(i.e. at octahedral sites) play no role at all in intersite consideration.

Onsite: two electrons occupying the same C60 site



6.5. BIPOLARON PROPERTIES IN CS3C60 163

In the FCC phase of the cesium-doped fulleride, when two onsite electrons interact via

the cesium vibration, only the closest ions (8 at the tetrahedral sites) have significant

contributions.
8∑

n=1

| ˆ(CoCsn · {x̂, ŷ, ẑ}) · ( ˆCoCsn · {x̂, ŷ, ẑ})|mode = 8

We may conclude that the polarisation effect on effective interactions in an FCC unit

cell for electrons on

• different (nearest-neighbour) sites is repulsive −→ −2
3

• the same site creates an attraction with a weight N , where N = 8.

The above illustrations are done only for few ions within a unit cell. In our work, we

have numerically computed the effective interaction between the two electrons via the Φ

function defined in Equation (6.29).

6.5.1.2 The Φ Function and Screening Effect

Next, we investigate the functions, Φ defined in Equation (6.29). For a finite-size lattice,

the net effect of the cesium phonons is calculated by summing all contributions from

the cesium ions in the entire lattice. We plot the ratio of the intersite ΦA
ν (0,a) to the

onsite function ΦA
ν (0, 0) as a function of the screening radius Rsc in Figure 6.3 for both

lattices. The first conclusion that can be drawn is that the interaction is higher for onsite

interactions than intersite interactions (at least ten times stronger) in both lattices. It

should be noted that only the cesium atoms closest to the doubly occupied site are used

to compute ΦA
ν (0, 0). Secondly, short-range screening brings about a net repulsive inter-

action (negative ratio). Thus it has an inhibiting effect on pair formation. On the other

hand, for screening radii beyond the nearest-neighbour distance |a|, the net interaction

force between two particles is attractive (positive ratio) which may favour the formation



164 CHAPTER 6. BIPOLARONIC PAIRING IN A3C60 SOLIDS

of light pairs. Long-range effects become saturated at a screening distance of about 15|a|

in both lattices. Hence, this means that increasing the screening radius further will not

modify the attraction strength significantly.

Figure 6.3: The ratio of the Φ functions in the BCC and FCC lattices of a Cs3C60 solid.
ΦA(0,a) and ΦA(0, 0) are the total intersite and onsite functions, respectively. Accord-
ingly, positive (negative) value of the ratio means attraction (repulsion). The interaction
becomes attractive when the screening radius approaches the distance between the two
nearest C60 molecules. Superlight pairs could result from the long-range contributions.
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6.5.2 UV Model for Cs3C60 Solids

In the last section, we demonstrated how the electron-electron interaction functions

Φ mediated by the alkali phonons in the Hamiltonian (6.24) can be computed. The

instantaneous interaction between electrons resulting from Cs phonon exchange is

H inst
el−el =

∑

ii′

Φ̃ii′ ĉ
†
i ĉiĉ

†
i′ ĉi′ (6.44)

where Φ̃00 = −(λC+λ
′)W , and Φ̃nn′ = Qnn′λ̃AW : [λC = g2/(ℏωCW );λ′ = g′ 2/(b4ℏωAW )],

g is the electron-phonon matrix element due to the C60 vibron modes and g′ is the

electron-phonon matrix element due to the phonon mode of an alkali ion. The value of

Qnn′ is determined depending on whether the interaction is short or long range. The

Hamiltonian (6.40) is solved as standard UV with dispersion matrices of the form (4.15)

and (5.19) for the BCC and FCC, respectively. The difference, however, lies in the ex-

pressions for the interaction parameters U and V . Unlike in Chapters 4 and 5, here, these

interaction parameters depend on the vibrational properties of the alkali ions (Equations

(6.41) and (6.42)).

Figure 6.4: Electrons interacting with Cs vibrational modes in Cs3C60 BCC. Two
electrons (small black circles) on different C60 balls interact through the three phonon
modes of Cs: along the x and y axes, the z−axis is out of the page. Note that the two
C60 molecules are not in the xy plane, rather the diagram above has been drawn only
for simplified visualisation.
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6.5.2.1 Bipolaron Properties in the Distinct Structures of Cs3C60

It is important to note that the distances of the cesium ions from a central C60 molecule

vary in the two structures of Cs3C60. In the BCC structure (Figure 6.1) for example,

all the cesium ions (small green balls) are equidistant from the central C60 molecule.

Also, it should be recalled that the angle between vectors connecting a cesium ion and

two nearest C60 molecules is 101.5369◦ as seen in Figure 6.4. Unlike in the BCC phase,

the cesium ions linking a pair of nearest C60 molecules in the FCC phase are at two

inequivalent locations (i.e. nonequidistant from a central C60 molecule). Hence, the

cesium ions are drawn in two colours (green and red balls) in the FCC structure (see

Figure 6.2) where 4 cesium ions (2 red, 2 green balls) connect any nearest-neighbour C60

pair. Two of these four ions (i.e. the green balls) sitting at the tetrahedral positions

are the closest, with the angle between vectors connecting Cs and C60 positions being

109.471220◦ while the remaining two (red balls which are slightly more distant) sit at

the octahedral positions and separate the C60 molecules at 90◦. For our calculations,

the interaction parameters measured in eV (electron-volt) are taken from Ref. [114] as

UH,BCC = 1.1, UH,FCC = 1.07, VBCC = 0.31, VFCC = 0.3, WBCC = 0.6, and WFCC = 0.4,

respectively. The respective Ṽ is obtained by multiplying V with the lattice parameter

in each structure of the Cs3C60 solid.

As mentioned before, the solution to Equation (6.40) is that of a typical UV problem,

except for the definitions of U and V . Thus, we will apply the same method as we did

in Chapters 4 and 5. The total energy and effective mass of the pair are reported below.
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a. Total Energy

We explore the parameter space for bipolaron formation in the two structural phases

of Cs3C60 by varying the phonon coupling due to the vibrons λC and due to cesium

phonons λ
′
, as well as the screening radius Rsc. This allows us to determine if and when

the particles bind. ε0 in the respective lattice is the total energy of two unbound particles

at zero momentum.

Firstly, we found that the formation of a bound state is easier in the BCC structure

than in the FCC structure of Cs3C60. The critical value of the parameters required for

pairing was determined. In the BCC structure, an intermediate vibron coupling λC ∼ 0.5

is sufficient to bind onsite pair (though weakly) when the alkali phonon coupling is

λ
′ ∼ 2.9 and at a screening radius Rsc ∼ 4.6|a|. Whereas the same vibron coupling

(λC ∼ 0.5) cannot create a bound pair in the FCC phase which is mainly due to the

larger lattice constant. Instead, a coupling of about unity λC ≈ 1 is required for the

onset of a weakly bound bipolaron which occurs via long-range interaction Rsc ≈ 15|a|

when λ
′ ≈ 3.25 in the FCC.

In Figure 6.5, we show the bound state energy in both lattices with vibron coupling

λC = 1, and at a range of λ
′
and Rsc parameters. At this vibron coupling, the onset

of a weakly bound onsite bipolaron in the BCC lattice is found at λ
′ ≈ 2.33 and at a

screening radius of Rsc ≈ 4.45|a|. This value of alkali coupling λ
′
is consistent with the

result in Ref. [115] for K3C60. We note that K3C60 has an FCC structure and even a

larger lattice constant. In both lattices, increasing λ
′
further results in a strongly bound

onsite bipolaron as Rsc → 0.

For λ
′
value of 3.5, the effect of the screening radius is more pronounced in the FCC

plot. As the screening radius increases from zero, the energy of the pair significantly

drops, and further increase beyond Rsc = 12|a| does not change the energy much.
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Figure 6.5: Total bipolaron energy as a function of the screening radius Rsc and the
coupling to Cs phonons λ′ at C60 vibron coupling of λC = 1 in (a) BCC and (b) FCC
structures of Cs3C60. ϵ0 is the total energy of two unbound free electrons, thus, the
electrons are unbound in the flat regions where ε = ε0. Note that ε0 = −16t and
ε0 = −24t is the ground state energy of two free particle in the BCC and FCC lattices
respectively. The particles begin to bind at λ

′ ≈ 2.33 in the BCC and at λ
′ ≈ 3.25 in

the FCC lattice, respectively.
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b. Mass

We also calculate the effective mass of the bipolaron m∗, measured in the unit of a free

lattice electron (polaron) m0 in both lattices. The masses are plotted in Figure 6.6. At

low λ
′
when the particles are not bound, the bipolaron mass equals 2m0 (twice the mass

of lattice electron), and hence is not shown. We only plot the parameter space where

the particles begin to bind.

Overall, the bipolaron is heavier in the BCC phase as compared to the FCC phase.

This is because there is a higher polarisation due to the Cs atoms in the BCC phase,

and hence the Φ function (Figure 6.3) contributes a greater net attraction. The effective

mass increases as the alkali phonon coupling λ
′
increases in both lattices. However,

the effect of screening shows contrasting behaviours in these lattices. For significant

regions of the parameter space, there is a decline in the effective mass in the BCC phase

when the screening radius Rsc increases. Conversely, in the FCC phase, the bipolaron

mass increases with Rsc. This difference in the behaviour of bipolaron mass would have

a significant impact on the condensation temperature of bipolarons in the respective

lattices.
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Figure 6.6: Bipolaron mass m∗ in the BCC and FCC phases of Cs3C60 at λC = 1. m0

is the mass of lattice electron (polaron) in the respective lattice.
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6.6 Discussion

We have developed an effective UV Hamiltonian to study the pairing mechanism in the

alkali-doped fullerides and then obtained properties of bound electrons specifically in the

two structural phases (BCC and FCC) of Cs3C60. Based on our findings, a few remarks

can be made:

• Within the parameter space, the two electrons are bound onto onsite bipolaron.

• Smaller attraction (via λC and λ
′
) is required to bind two particles in the BCC

phase compared to the FCC phase. This means that forming of a tightly bound,

local pair is more favourable in the Cs3C60 solid with a BCC (A15) structure.

• Beside the attractive interaction created by C60 vibrons, our result suggests that

additionally relevant attractions could be generated when the vibration of the

cesium ions are taken into account.

• There is significant effect of long-range interactions in these solids. As bipolarons

in the BCC phase are found to be heavier in this work, one would expect the FCC

phase with lighter mass to yield a higher Bose-Einstein condensation temperature.

However, experiments [19, 20] have proved otherwise. We note that there are

opposing behaviours of bipolaron mass in the two structural phases with increasing

screening radius.

Even though the bipolarons are lighter in the FCC phase at short screening distance,

a very strong coupling (which leads to heavy pair taking account of a polaron mass) is

required to bind them. Our conclusion is that: Since local pairs can be formed in the

BCC phase at weak to moderate coupling and their masses (which will be similar to the

FCC) can further reduce with long-range effects, then, they may Bose-condense at high
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temperatures. This result might provide a useful explanation as to why a higher Tc is

observed in the BCC phase of a Cs3C60 solid or open new ideas for understanding the

superconducting mechanism in the alkali-doped fulleride family.



Chapter 7

QMC Simulations on BCC and FCC

Lattices

7.1 Summary

In this chapter, we study the properties of bipolarons in the BCC and FCC lattices in the

adiabatic regime using the continuous-time quantum Monte Carlo algorithm introduced

in Chapter 3. Here, we study the effects of the EPIs on the bipolaron properties. The

preliminary discussion briefly introduces the two types of interaction of interest in this

study: the Holstein-Hubbard and the near-neighbour interaction (extended Holstein-

Hubbard model, EHHM). For this project, an update was made to the QMC code in

order to effectively capture loops due to triple kinks in an FCC lattice. So, we will

discuss how the new update is implemented in the code. Then, we report the results

for simulations carried out at low phonon frequency (which can be used to examine

retardation effects) while varying the EPI and Coulomb interaction strengths. We end

this chapter with a discussion of our findings.
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(𝑎)

𝑏

(𝑏)

𝑡

𝑡
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𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛s

Figure 7.1: One-dimensional schematic of (a) the Holstein-Hubbard model and (b) the
extended Holstein-Hubbard model with near-neighbour EPI. The filled circles, empty
circles and dashed oval circles represent the electron Wannier orbitals, lattice ions, and
nonzero electron-phonon coupling, respectively. The nearest-neighbour electron sites
have overlapping orbitals such that an electron can hop via t, and b is the lattice constant.
Adapted from Ref. [70].

7.2 Preliminaries

Bipolarons formed in the Holstein-Hubbard model (HHM) [57, 116] and those formed in

an extended Holstein-Hubbard model (EHHM) [70] consist of two polarons that can bind

into a stable singlet state when the exchange of phonons overcomes Coulomb repulsion.

These categories of bipolarons differ in the spatial extent of their EPI. As shown in

Figure 7.1, the nature of the EPI in the former model is site-local (electron located at

the vibrating atomic site) whereas the latter has a long-range EPI (of near-neighbour

type). In the local HHM, we note that even though the phonon-mediated attraction

between two polarons on different sites is zero, an intersite Coulomb repulsion V could

still be present (as considered in this study). To our knowledge, there is not yet a

numerical study of bipolaron properties, neither in the BCC nor the FCC lattice.

In this work, we placed two fermions in a 20× 20× 20 box (BCC and FCC lattices,

respectively), and then simulations were carried out at a normalised phonon frequency

of ω̄ = ℏω/t = 1 and inverse temperature β̄ = 1/kBT = 20 for a range of Coulomb
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repulsion (U and V ) and coupling constant λ. The interaction parameters U and V are

scaled by the lattice half-bandwidths W . We adopted twisted boundary condition on

paths to estimate the mass. The procedure for the simulation has been summarised in

Section 3.6.1. Measurements are done every few Monte Carlo steps and for each data

point, the error bars are displayed as 3 standard deviations. Where the error bars are

not visible it means they are too small to be apparent on the scale of the plot.

7.3 Triple Update on FCC Lattice

Due to the geometry of the FCC lattice, it is possible that a bound bipolaron returns

to an initial configuration after three consecutive hops of one of the particles. Hence, it

is important to use detailed balance to derive updates with this property to be used in

the Metropolis algorithm. We note that this update is only applied to one of the two

electron paths. The procedure and implementation of the triple update in the QMC

code is as follows:

1. We use the weighting scheme, detailed in Appendix A, to select a path with equal

probability 1/2.

2. A combination of three kinks that is suitable for this update is determined. For

example, a kink is selected from the 12 possible kinks (the number of nearest-

neighbour sites) and we label it l1. Then, we choose two other kinks (l2 and l3)

such that l1 + l2 + l3 = 0. Satisfying this condition means that the particle returns

to its initial site after three hops.

3. We choose insertion or removal of the (three) kinks with equal probability 1/2.

4. If insertion is chosen in step 4, we select the imaginary times τ1, τ2, τ3 for the new
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kinks with equal probability 1/β̄ from the interval [0, β̄). The Metropolis condition

is given as:

Padd(τ1, τ2, τ3) = min

{
1,

tβ̄

Nl1 + 1

tβ̄

Nl2 + 1

tβ̄

Nl3 + 1
· eA(D)−A(C)

}
(7.1)

where C andD are the initial and final configurations, respectively. A(C) and A(D)

are the bipolaron actions in both initial and final configurations. Nli (i = 1, 2, 3)

is the number of kinks of type li before the addition update (i.e. in the initial

configuration, C).

5. On the other hand, if removal of kinks is selected in step 4, there are two pos-

sibilities. The first is to check whether the kink types l1, l2, and l3 chosen from

step 3 already exist in the initial configuration. If any of those selected kinks does

not exist in the current path, the acceptance probability is zero and the update

is aborted. Otherwise, provided that there is at least one of each kink type, the

removal at imaginary times τ1, τ2, τ3 is carried out with the acceptance probability:

Premove(τ1, τ2, τ3) = min

{
1,
Nl1

tβ̄

Nl2

tβ̄

Nl3

tβ̄
· eA(C)−A(D)

}
(7.2)

where Nli (i = 1, 2, 3) is the number of kinks of type li before removal.
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7.4 Bipolaron Properties

This section splits into two parts because we studied two types of singlet bipolarons

(in the HHM and EHHM as mentioned above) - treating one at a time. The measured

properties of the bipolarons in both the BCC and FCC lattices include the ground state

energy, the total number of excited phonons, the effective mass, and the bipolaron radius.

7.4.1 Holstein-Hubbard Model (HHM) Bipolarons

For the majority of the simulations of Holstein-Hubbard model (HHM) bipolarons found

in the literature (e.g. [61, 70, 72, 73, 117, 118]), only the Hubbard U is retained in

the model Hamiltonian whilst the intersite Coulomb interaction V is usually ignored.

However, in this work, we include both the onsite and intersite Coulomb interaction

terms in the Hamiltonian Equation (2.27) and consider only the physical case for which

both U and V are repulsive. We have also considered this scenario so as to mimic the

fulleride compounds where repulsive U and V , as well as EPI are present. V is small in

the fullerides [24], and this will be the case in our simulations.

7.4.1.1 Total Energy of HHM Bipolarons

The energy of the HHM bipolarons, expressed in terms of the half-bandwidthW , in both

the BCC and FCC lattices is depicted in Figure 7.2. In both lattices, the polarons do

not bind when λ = 0 as expected of two free-electrons experiencing repulsive Coulomb

interactions. If U and/or V are present while λ = 0, the simulation of the two-particle

HHM directly maps onto the UV model (see Chapters 4 and 5). Thus, we have used

the QMC code (in the λ = 0 limit) to validate our analytic results and vice-versa.

However, when the phonon coupling is turned on, its effect is seen as the particles begin

to bind via lattice phonons. The energy curve (Figure 7.2) is sloped for a bound (onsite)
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bipolaron while it remains flat when there is insufficient phonon interaction to overcome

the Coulomb repulsions. The effect of small repulsive V is that the probability of forming

an intersite bipolaron is further diminished.

In the strong coupling limit, the energy of the onsite bipolaron is given as [72]

E/W = U/W − 4λ , (7.3)

which is also plotted as dashed lines in Figure 7.2. Upon lowering U or increasing

λ, the energy of the HHM bipolaron rapidly approaches the limiting behaviour of a

strongly bound onsite pair. A large onsite repulsion U is required to break the pairing

as the electron-phonon coupling increases. For both BCC and FCC lattices, the energies

(measured in W ) are qualitatively similar and neither system is significantly modified

due to small intersite repulsion.



7.4. BIPOLARON PROPERTIES 179

-8

-7

-6

-5

-4

-3

-2

 0  0.5  1  1.5  2  2.5  3

E
 /

 W

U / W

(a) BCC HHM, V = 0.050W

-8

-7

-6

-5

-4

-3

-2

 0  0.5  1  1.5  2  2.5  3

E
 /

 W

U / W

(b) FCC HHM, V = 0.050W 

-8

-7

-6

-5

-4

-3

-2

 0  0.5  1  1.5  2  2.5  3

E
 /

 W

U / W

(c) BCC HHM, V = 0.175W

-8

-7

-6

-5

-4

-3

-2

 0  0.5  1  1.5  2  2.5  3

E
 /

 W

U / W

(d) FCC HHM, V = 0.175W 

-8

-7

-6

-5

-4

-3

-2

 0  0.5  1  1.5  2  2.5  3

E
 /

 W

U / W

(e) BCC HHM, V = 0.300W

-8

-7

-6

-5

-4

-3

-2

 0  0.5  1  1.5  2  2.5  3

E
 /

 W

U / W

(f) FCC HHM, V = 0.300W 

Figure 7.2: Total singlet energy of the Holstein-Hubbard model (HHM) bipolaron ob-
tained from the continuous-time QMC simulation in the BCC and FCC lattices at various
U and small repulsive V . Panels (a), (c), and (e) on the left are for singlet bipolarons
in the BCC lattice and panels on the right (b), (d), (f) are for singlet bipolarons in the
FCC lattice. The first, second and third row corresponds to cases where V = 0.05W ,
V = 0.175W , and V = 0.3W , respectively. Dashed lines running diagonally are the
energy of onsite bipolarons in the strong coupling limit.
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7.4.1.2 Number of Phonons for HHM Bipolarons

To further investigate the HHM bipolarons, we plot the number of phonons, Nph associ-

ated with the phonon cloud within which the polarons are confined as a function of U ,

V and λ (Figure 7.3). For λ = 0, there are no phonons in the system. However, when

electron-phonon interactions are switched on in these systems, the number of phonons

becomes non-zero regardless of whether a bound state is formed or not.

As the repulsive Hubbard U is slowly decreased, there is a sharp increase in the

number of associated phonons signifying the formation of a bound state. We observe

a linear increase in the number of phonons as the electron-phonon coupling strength

increases. In the strong-coupling limit, Nph = 4λz for HHM bipolarons [72]. Once the

onsite bipolaron is formed, each curve remains flat upon reducing U and approaches the

strong-coupling limit (represented by the black arrows on the left in Figure 7.3). This

implies that the number of excited phonons in the system is unaffected by any change

in U after pairing has occurred and the convergence improves as λ increases.

There is a clear distinction in the number of excited phonons surrounding the elec-

trons in the BCC lattice as compared to the FCC lattice - though the curves are similar

in form. An interesting feature is observed at λ = 1 and for U ≥ 2 where there are no

bound states (i.e. 2 free polarons). The number of phonons appear to be greater in the

BCC lattice with around twice as many as in the FCC lattice. In the region of bound

onsite pairs, however, the number of phonons is significantly higher in the latter. Thus,

the possibility of binding pairs could be higher in the FCC lattice than the BCC lattice

due to the presence of more phonons. We will examine in the next section whether the

increased number of phonons causes the bipolarons to be heavier in the FCC lattice. The

effect of increasing the intersite Coulomb interaction V is only noticeable in the BCC

lattice (see Figures 7.3a, 7.3c and 7.3e for 0.5 ≲ λ ≲ 0.75 and U ≤ W ).
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(b) FCC HHM, V = 0.050W
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(c) BCC HHM, V = 0.175W
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(d) FCC HHM, V = 0.175W
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(e) BCC HHM, V = 0.300W
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(f) FCC HHM, V = 0.300W

Figure 7.3: The number of excited phonons for HHM bipolarons in both the BCC
and FCC lattices. Results are obtained from the simulation of singlet bipolarons in the
presence of intersite repulsions.
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7.4.1.3 Inverse Effective Mass of HHM Bipolarons

The next property we examine is the effective mass of the HHM bipolarons. Figure 7.4

shows the inverse bipolaron mass (expressed in units of non-interacting electron mass,

m0) in the BCC and FCC lattices. Low (high) values along the vertical axis of the plots

in Figure 7.4 implies that the bipolaron is heavy (light). Bipolarons are heavy for lower

U and are conversely light for large U . We note that the change from unbound to bound

bipolaron properties is very abrupt, similar to the number of phonons discussed above.

In such a crossover region, the pair mass becomes very heavy when particles bind, hence

the inverse mass becomes very small.

In both BCC and FCC systems, the pair becomes very heavy for λ > 1. The effect

of the finite size lattice can be observed in the calculation of the mass when λ = 0

where there are no phonons to bind the particles, and as such the pair mass should be

twice the mass of free lattice electron (i.e. m0/m
∗ ≈ 0.45 when it should be 0.5 in an

infinite lattice). As there are more phonons in the FCC lattice, bound FCC bipolarons

are relatively heavier - for example, compare the inverse mass for λ = 0.5, U < W , and

V > 0.05W in both lattices. Again, the effects of an intersite repulsion V can be seen

only in the BCC lattice in the region U ≤ W and 0.5 ≲ λ < 0.75. For an unbound pair

at large U and λ = 1, the FCC pair appears to be lighter than the BCC one.
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(c) BCC HHM, V = 0.175W
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(f) FCC HHM, V = 0.300W

Figure 7.4: Inverse mass of Holstein-Hubbard model (HHM) bipolarons in the BCC
and FCC lattices in the presence of intersite repulsions. The effect of changing V on the
inverse mass is only noticeable in the BCC case when V goes above 0.05W . Within the
QMC calculations, inverse mass is zero unless visible on the linear scale.



184 CHAPTER 7. QMC SIMULATIONS ON BCC AND FCC LATTICES

7.4.1.4 Inverse Radius of HHM Bipolarons

The inverse radius of HHM bipolarons is plotted in Figure 7.5. We see the contraction

of large two unbound polarons into a small bound bipolaron as the electron-phonon

coupling is increased. Higher values in the plot correspond smaller pair radius. There are

quantitative differences in the size of bound pairs in the considered lattices. Bipolarons

in the FCC lattice are significantly smaller as compared to the BCC counterpart for

all values of U . When V and λ are fixed, and U is varied, there is an abrupt drop

in the inverse bipolaron radius at the transition from bound to the unbound states in

both systems. This substantial increase in pair radius (i.e. low inverse radius) upon

increasing U is because the Coulomb repulsion breaks the pairing and prohibits the

onsite occupation of the particles. We also note that the effect of increasing V is noticed

only in the BCC lattice at λ ∼ 0.5− 0.75.

The total energy, number of phonons, effective mass and size of the HHM bipolaron

have been examined above. The same properties for bipolarons formed in the extended

Holstein-Hubbard model (EHHM) will be explored in the next section.
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(b) FCC HHM, V = 0.050W 
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(c) BCC HHM, V = 0.175W
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(d) FCC HHM, V = 0.175W
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(e) BCC HHM, V = 0.300W
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(f) FCC HHM, V = 0.300W 

Figure 7.5: Holstein-Hubbard model (HHM) bipolaron inverse radius in the BCC and
FCC lattices in the presence of intersite repulsions. For λ = 0.5, the effect of changing
V can be identified in the BCC lattice.
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7.4.2 Extended Holstein-Hubbard Model (EHHM) Bipolarons

We now turn to the simulation of extended Holstein-Hubbard model (EHHM) bipolarons

with nearest-neighbour phonon interactions (NNPIs). We define γ, the strength of in-

teraction, which is the ratio of the phonon-mediated interaction between two particles

occupying the nearest-neighbour sites as

γ =
Φ0a

Φ00

, (7.4)

where a is the nearest-neighbour distance. Note that a =
√
3b/2 in the BCC lattice,

and a =
√
2b/2 for FCC lattice, where b is the lattice constant. For this study, we have

chosen γ = 0.5. We may alternatively refer to EHHM bipolaron as intersite bipolaron or

simply as near-neighbour bipolaron (NNB). It has been demonstrated (in other simple

systems) that NNPIs give the most important contributions to the properties of bipo-

larons [70, 71, 72, 73]. Furthermore, the suppression in the optical absorption spectrum

of multipolaron systems increases with lattice dimensionality due to the screening of

long-range EPI [57]. Hence, no Frölich tail is expected in 3D lattices. More so, the

properties of bipolaron formed from near-neighbour EPI show no effect due to repulsive

intersite Coulomb interaction as long as V < W [69]. In this work, we will examine the

intrinsic properties of pairs from NNPIs for V = 0 in the BCC and FCC lattices.

7.4.2.1 Total Energy of EHHM Bipolarons

Short-range EPI favours the formation of both onsite (when U is small and λ is large)

and intersite bipolarons, and the bipolaron total energy is shown in Figure 7.6. There

is a smoother transition from an unbound to a weakly bound state at small coupling

λ ≤ 0.5, compared to the HHM bipolarons. Upon increasing λ, a well bound state is

formed even at finite U . This is because intersite bipolarons are unaffected by large
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Hubbard U .

Singlet bipolaron energy in the two lattices (BCC and FCC) are quantitatively sim-

ilar when measured in terms of the respective lattice half-bandwidths. The limiting

behaviour of strongly bound onsite bipolaron at U ≫ λW is given as [72]

E/W = −2λ(1 + γ) , (7.5)

and this value is represented by arrows at the right-hand side of the plots in Figure 7.6.

The crossover from intersite to strongly bound onsite bipolaron requires that λ is large

and that the Hubbard U is small. Note how the curves approach the limiting behaviour

of strongly bound onsite bipolaron very slowly in comparison to the HHM bipolaron

(refer to Figure 7.2).
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Figure 7.6: Total singlet energy of extended Holstein-Hubbard model (EHHM) bipo-
larons obtained from the continuous-time QMC simulation in the BCC lattice (left) and
the FCC lattice (right) at different coupling constant λ and repulsive U .
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7.4.2.2 Number of Phonons for EHHM Bipolarons

The effect of the EPI in the EHHM is also apparent in the number of phonons associated

with the bipolaron (Figure 7.7). Similar to the energy of singlet EHHM bipolarons, the

number of phonons at the transition from onsite to intersite bipolarons changes smoothly

and slowly approaches the limit of strongly bound onsite pairs (arrows on the left in

Figure 7.7). For comparison, in the region of U > W and 0.5 < λ < 1, the number

of phonons is higher in the EHHM than in the HHM by several orders of magnitude.

This indicates that bound states can be found in the EHHM at intermediate coupling

for Hubbard U greater than the half-bandwidth (U > W ).

Figure 7.7 also shows that there are more phonons associated with the bipolaron

in the FCC lattice which suggests that the chance of bipolarons forming via nearest-

neighbour interaction is greater in the FCC lattice than in the BCC lattice (this is also

true for HHM bipolarons, see Section 7.4.1.2). As was the case for HHM bipolarons,

the presence of more phonons could lead to the formation of heavy EHHM bipolarons

as we shall see in the next section. For phonon energy ℏω = t, the number of phonons

associated with the strongly-coupled intersite bipolaron is given as Nph = 2λz(1+γ) [72].

Our QMC result is also in good agreement with the strong-coupling behaviour (arrow

on the right in Figure 7.7) as λ increases.
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Figure 7.7: Plots showing the number of phonons for EHHM bipolarons in the BCC
and FCC lattices obtained from the continuous-time QMC simulation with repulsive
Hubbard interaction U .
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7.4.2.3 Inverse Effective Mass of EHHM Bipolarons

The inverse mass of the EHHM bipolarons is shown in Figure 7.8. The inverse mass

decreases (i.e. increase in mass) as λ increases and the plots appear similar for both

lattices. To visualise any difference between the bipolaron masses, we plot the inverse

mass in a logarithmic scale (Figure 7.9).

From Figure 7.9, the onsite bound bipolaron in the FCC lattice quickly gets heavier

by orders of magnitude as compared to the BCC counterpart when λ is increased. This

is not surprising because, in the FCC lattice; (1) the mass of each polaron that forms

the bipolaron sharply increases (i.e. decrease in the inverse mass) for λ > 1 [93], and (2)

we see in the last section that there are more phonons in the FCC system responsible

for binding the two polarons (see Figure 7.7). In comparison to the HHM case, there are

bound EHHM bipolarons at large U , although it initially seems that the HHM bipolaron

is lighter, in practice, in the HHM case these are two free polarons. At low U where

particles form an onsite pair, the HHM bipolarons have relatively larger masses (evident

when the inverse mass are plotted in a log scale) than the EHHM bipolarons.

In the BCC case, maxima are observed in the log scale plots (Figure 7.9) for λ > 0.75

where the pair mass first decreases (i.e. increase in the inverse mass) as the Hubbard

U increases, and the mass gets heavier again (i.e. lowered inverse mass) with further

increment in U . This feature shows the superlight behaviour of bipolarons in the BCC

lattice where the effective U becomes an approximate attractive intersite interaction

similar in size to the effective V (from Equation (2.59) Ũ ∼ U − 4Wλ ∼ V ≈ −2Wλ)

- thus allowing the pair to move via single hop without breaking the pairing. At first

glance, the superlight behaviour in the FCC lattice does not seem obvious. However, if

we carefully examine the mass for large U and 0.75 ≲ λ ≲ 1.25, we see that the FCC

bipolaron is lighter than the BCC bipolaron by at least an order of magnitude.
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Figure 7.8: Inverse mass of EHHM bipolarons in the BCC and FCC lattices (linear
scale). For λ values beyond 0.6, it becomes difficult to see data on the linear scale.
Hence, we make a plot of the same data in the logarithmic scale in Figure 7.9 below.
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Figure 7.9: Inverse mass of EHHM bipolarons in the BCC and FCC lattices plotted
using log scales. For the majority of the parameter space, bipolarons formed in the
FCC lattice are heavier than those in the BCC lattice. This could be mainly due to the
presence of more phonons in the FCC lattice (Figure 7.7).
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7.4.2.4 Inverse Radius of EHHM Bipolarons

We plot the inverse radius of the EHHM bipolarons in Figure 7.10. As the coupling

constant λ increases and U decreases, bipolarons in both lattices become smaller (quan-

titatively different radius though). This is so because the electron-phonon attraction

dominates over the small Coulomb screening. At strong λ and large U , we see the for-

mation of intersite bipolarons, where the bipolaron size tends to the nearest-neighbour

distance. In comparison to the HHM bipolarons, the inverse radius of onsite bipolarons

from the EHHM (i.e. at low U) is twice as large in the examined λ range. This means

that the onsite HHM bipolarons are about half the size of onsite EHHM bipolarons.
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Figure 7.10: Inverse radius of EHHM bipolaron in the BCC and FCC lattices obtained
from QMC simulation.
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7.5 Discussion

Using a QMC simulation algorithm, we have studied the Holstein-Hubbard and extended

Holstein-Hubbard models applied to two interacting particles in the presence of phonon-

mediated attractions. The simulation was carried out for two electrons in the BCC

and FCC lattices. A key difference between HHM and EHHM bipolarons is that the

transition between bound and unbound states is sharp in the former while it is smooth

in the latter. Strongly bound EHHM bipolarons have both onsite and intersite states

whereas HHM bipolarons only show onsite characteristics.

The energy of the HHM and EHHM bipolarons are similar for U ≲ 1.5 and large λ (i.e.

onsite bipolarons). At larger U , however, they have qualitatively different behaviours:

EHHM bipolarons can be well bound and stable at large U due to the near-neighbour

phonon attraction. There is no qualitative difference in the total energy of bipolarons in

both the BCC and FCC lattices for a specific model.

Our results also show that the number of phonons associated with the bipolaron is

not dictated by the dimensionality of the lattice, but perhaps the lattice coordination

number. The number of phonons in both models (HHM and EHHM) quantitatively

differ over a wide region of parameter space. We found that there are more phonons

present in the FCC lattice which suggests an increased chance of binding two polarons

as compared to the BCC lattice. This behaviour (more phonons in the FCC lattice) was

observed in both models (HHM and EHHM).

Another benefit of the QMC simulation is that we can examine the effect of phonon

retardation on the properties of bipolarons. At low phonon frequencies (as considered

in this work), the retardation effect is expected to be significant. For well bound onsite

pairs with a coupling strength of λ ≳ 0.5, pairs on the BCC lattice are lighter by
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orders of magnitude as compared to the FCC lattice. Whereas for well bound intersite

pairs at intermediate electron-phonon coupling, the FCC is lighter by at least an order

of magnitude. Such a near-neighbour bipolaron in the FCC lattice displays superlight

behaviour (i.e. the pair moves by first order hops) as U becomes infinitely large. On the

other hand, pairs in the BCC lattice become superlight in the region of U of around half-

to full-bandwidth of the lattice. For a wide range of parameter space studied, we may

conclude that the mass of the FCC pairs is mainly due to the presence of more phonons

which enhances polaron effects.

Although the FCC pairs are quite heavy, they have a relatively small size when

compared to the BCC pairs. In the entire parameter space, the size of the HHM and

EHHM bipolarons are clearly different with HHM bipolarons being smaller. EHHM

bipolarons are intersite (on the order of the nearest-neighbour separation) at U > W

and λ ≥ 0.75.
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Chapter 8

Conclusions

During this study, we have explored the behaviour of strongly interacting fermions in

three-dimensional systems (BCC and FCC) with a focus on the A3C60 (fulleride) com-

pounds. These compounds, among many other materials, are suitable for studying cor-

related behaviour of electrons and, by extension, for investigating the link(s) between

conventional and unconventional superconductivity. The main goal of this research was

to investigate the mechanism(s) of superfluidity and superconductivity in strongly cor-

related systems. Part I (Chapters 1, 2 and 3) of this thesis reviewed the theoretical

backgrounds of strong correlation in fermionic systems, the fullerides compounds, and

the methodology used in this work. In Part II, we reported our findings and the sum-

mary is given below. (For detailed discussions, please refer to Sections 4.4, 5.4, 6.6 and

7.5, respectively.)

We have presented exact solutions (Chapters 4 and 5) of the two-body problem in

both BCC and FCC lattices in the anti-adiabatic (i.e. high-phonon frequency) limit.

The parameter space for the formation of bound pairs in both lattices was examined

and binding diagrams were constructed. Binding diagrams provide the conditions for

identifying paired and unpaired regions within the parameter space. The stability of

197
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the pairs was analysed, and properties including the effective mass and radius were also

calculated. In these lattices, we found the pairs to be small and light at the same

time. We showed that bound electrons in an FCC lattice can be highly itinerant and

have potential for high-temperature superconductivity. In addition, we predict the onset

of superfluidity in a quantum simulator with fermionic lithium-6 atom occurring at

temperatures up to 10 nK.

Furthermore, we developed an effective UV Hamiltonian for the fullerides in Chapter

6. The critical electron-phonon coupling (arising from the alkali atoms) that is required

for bipolaron pairing has been reported and we have shown that two polarons bind at

a smaller coupling in the BCC phase in comparison to the FCC phase. Our result also

suggests that there may be long-range (attractive) contributions from the vibration of

the alkali atoms. Even though the pairs in the FCC structure of the fullerides have lighter

masses upon binding, the BCC structure in contrast has a higher transition temperature

[19] which may be due to the long-range interactions (reduction of the effective mass with

long-range contributions) reported in this work. This result shows that the underlying

structure and the positions of the alkali atoms in these solids play important roles in the

observed superconducting behaviours.

Lastly, using a QMC simulation in Chapter 7, the direct interplay of phonon coupling

between two polarons was also examined away from the anti-adiabatic limit. It was found

that bipolarons form at moderate coupling constants in both the BCC and FCC lattices.

Results for nearest-neighbour phonon interactions (NNPIs) show a smoother transition

and the bipolarons are well bound (more stable) in a wide parameter range as compared

to their Holstein counterpart. The bound state in an FCC lattice is lighter than BCC

pairs for the Holstein case, whereas the BCC bound pairs are typically lighter than the

FCC pairs in case of NNPIs. Bound onsite pairs in the EHHM have less mass (by several
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orders of magnitude) in comparison to their HHM counterparts. We also found superlight

behaviour of bound pairs in both lattices but the question as to whether increases in

mass due to polaron effects would dominate over any increase in the mobility of the pair

was not investigated. In the FCC lattice, the pair are smaller than the BCC pairs in

both Holstein and NNPI cases.

The summary of our results above has shown that, pairs formed on these lattices are

promising candidates for high-temperature superconductivity, as bound electrons can be

both small and light. These features are the prerequisites for Bose-Einstein condensation

to take place with potentially high-transition temperatures.

Future Work

Due to time constraints for this PhD research, there were other considerations which

could not be investigated. Therefore, we suggest them for future work. Our suggestions

include the following.

• Examining long-range UV model in 3D systems: We have only limited the inter-

actions between the electrons to nearest-neighbour sites. Meanwhile, it would be

of great interest to explore the effects of the next-nearest-neighbour interactions

such that a long-range UV model can be investigated. As for most lattices with

dimension d > 1, the nearest-neighbour distances are often comparable to the next-

nearest-neighbour distances, hence, adding these terms to the UV calculations may

have significant impact on the properties of the pairs in 3D systems.

• Extending the QMC method to simulate multipolaron systems: QMC has the

capability to simulate an interacting system with number of particles N > 3.

Thus, it would be worthwhile to explore systems with additional particles. This
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will provide an extra layer of understanding regarding the effects of many-body

interaction.

• Studying other pair symmetries in more detail: This work mainly focused on the

properties of the s-symmetric pairs and their condensates. Since there is experi-

mental evidence of d-wave pairing in the cuprates and even a mixture with s- and

p-wave symmetries, it will be important to examine and contrast other pairing

symmetries in the 3D lattices.

• Investigating the effects of retardation on the mobility of superlight pairs: In this

work, we have found that bound pairs can be heavy yet they may tunnel through

the lattice with single hopping events. At this stage, we cannot make conclusive

comments on whether polaron effects predominate over their mobility. Investigat-

ing this would be an interesting question to consider.

• Explore a multi-band UV model for the fulleride compounds: Although, we have

made a single-band simplification in the derivation and the solution of the UV

Hamiltonian for the fullerides (Equation 2.41) in Chapter 7, the fullerides are

inherently multi-band systems. Hence, we suggest treating a similar Hamiltonian

with multiple band considerations.
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Appendix A

CTQMC Algorithm

Results from the continuous-time Monte Carlo (CTQMC) simulation of bipolarons on

the BCC and FCC lattices were reported in Chapter 7. Following an introduction to the

CTQMC in Section 3.6 of Chapter 3, we want to elaborate on some of the technicalities

here.

A.1 Update Rules and Weighting Scheme

The electron paths are continuous in time and an electron hops between sites via kinks in

its path. In an exchange configuration, our result is free from sign problem since we only

studied singlet states. The selection of path, insertion or removal of kink, and choosing

the kink type is implemented probabilistically. The kink type specifies the direction of

particle’s hop.

Kink insertion or removal is carried out in pairs so that the end configurations of the

paths maintain their boundary conditions. We refer to kink insertions and/or removals

as updates and there are rules for carrying out these updates for the simulation of two

particles. Four binary updates were used:
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1. Kinks of type l are added to or removed from each path.

2. Add or remove a kink of type l and its anti-kink −l to or from one of the paths.

3. Insert a kink of type l to one path and remove another kink of the same type l

from the same path. This update only works if there is at least one kink of type l

on that path since there will no kink to remove if it is non-existent.

4. Insert a kink of type l from one path and remove an anti-kink −l from the other

path.

All the updates above were the existing rules prior to the commencement of this

study. The detailed balance equations and Metropolis conditions for these updates can

be found in Hague et al. 2007 (J. Phys. Cond. Matt. 19, 255214 ). In this work, I have

added a new update rule which is reported in Section 7.3 of Chapter 7.

The summary of the probabilities for kink selection is given below.

• For Nk number of nearest-neighbours, we choose a kink type l with the probability

Pl = 1/Nk and its anti-kink l is determined.

• Since there are only two particles, we select one of the two paths as path A with

a probability 1/2 and label the other as path B.

• We choose a kink shift type with an equal probability PShift = 1/2. The kink shift

can either be top shift (in the direction of l) or bottom shift (in the direction of

−l).

• To remove the first kink of type l from a path A at imaginary time τ , do so with

the probability 1/NAl(I), where I is the initial configuration before removal.
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• To remove the second kink of type l from path A, this is done with a probability

1/NAl(I), where I represents the configuration before removal.

• The first kink of type l is inserted at time τ with probability density p(τ) = 1/β.

• For the addition of the second kink of type l at time τ ′, do so with a probability

density p(τ) = 1/β.

• The shift type of the second kink is dependent on whether it is correlated or anti-

correlated with the shift type of the first kink. The inter-path distance is unchanged

for correlated insertion but changes for anti-correlated insertion.
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B.1 Classes of the Oh Point Group

The classes are listed below. Cnj denotes a proper rotation through 2π/n in the right-

hand screw sense about the axis Oj. A superscript means that the rotation is performed

in the left-hand screw sense. I implies spatial inversion.

E : the identity operation

8C2 = C3α, C3β, C3γ, C3δ, C
−1
3α , C

−1
3β , C

−1
3γ , C

−1
3δ : 120◦ rotation about Oα, Oβ, Oγ, Oδ axes

3C3 = C2x, C2y, C2z : 180◦ rotation about OX, OY, OZ axes

6C4 = C4x, C4y, C4z, C
−1
4x , C

−1
4y , C

−1
4z : 90◦ rotation about OX, OY, OZ axes

6C5 = C2a, C2b, C2c, C2d, C2e, C2f : 180◦ rotation about Oa, Ob, Oc, Od, Oe, Of axes

C6 = i : the inverse identity operation

8C7 = IC3α, IC3β, IC3γ, IC3δ, IC
−1
3α , IC

−1
3β , IC

−1
3γ , IC

−1
3δ

3C8 = IC2x, IC2y, IC2z

6C9 = IC4x, IC4y, IC4z, IC
−1
4x , IC

−1
4y , IC

−1
4z

6C10 = IC2a, IC2b, IC2c, IC2d, IC2e, IC2f
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The irreducible representation for each group element is given in Table B.1

E =




1 0 0

0 1 0

0 0 1


, C3α =




0 1 0

0 0 −1

−1 0 0


, C3β =




0 −1 0

0 0 −1

1 0 0


, C3γ =




0 −1 0

0 0 1

−1 0 0


,

C3δ =




0 1 0

0 0 1

1 0 0


, C−1

3α =




0 0 −1

1 0 0

0 −1 0


, C−1

3β =




0 0 1

−1 0 0

0 −1 0


, C−1

3γ =




0 0 −1

−1 0 0

0 1 0


,

C−1
3δ =




0 0 1

1 0 0

0 1 0


, C2x =




1 0 0

0 −1 0

0 0 −1


, C2y =




−1 0 0

0 1 0

0 0 −1


, C2z =




−1 0 0

0 −1 0

0 0 1


,

C4x =




1 0 0

0 0 1

0 −1 0


, C−1

4x =




1 0 0

0 0 −1

0 1 0


, C4y =




0 0 −1

0 1 0

1 0 0


, C−1

4y =




0 0 1

0 1 0

−1 0 0


,

C4z =




0 1 0

−1 0 0

0 0 1


, C−1

4z =




0 −1 0

1 0 0

0 0 1


, C2a =




0 1 0

1 0 0

0 0 −1


, C2b =




0 −1 0

−1 0 0

0 0 −1


,

C2c =




0 0 1

0 −1 0

1 0 0


, C2d =




0 0 −1

0 −1 0

−1 0 0


, C2e =




−1 0 0

0 0 1

0 1 0


, C2f =




−1 0 0

0 0 −1

0 −1 0


,

i =




−1 0 0

0 −1 0

0 0 −1


, IC3α =




0 −1 0

0 0 1

1 0 0


, IC3β =




0 1 0

0 0 1

−1 0 0


, IC3γ =




0 1 0

0 0 −1

1 0 0


,

IC3δ =




0 −1 0

0 0 −1

−1 0 0


, IC−1

3α =




0 0 1

−1 0 0

0 1 0


, IC−1

3β =




0 0 −1

1 0 0

0 1 0


, IC−1

3γ =




0 0 1

1 0 0

0 −1 0


,

IC−1
3δ =




0 0 −1

−1 0 0

0 −1 0


, IC2x =




−1 0 0

0 1 0

0 0 1


, IC2y =




1 0 0

0 −1 0

0 0 1


, IC2z =




1 0 0

0 1 0

0 0 −1


,

IC4x =




−1 0 0

0 0 −1

0 1 0


, IC−1

4x =




−1 0 0

0 0 1

0 −1 0


, IC4y =




0 0 1

0 −1 0

−1 0 0


, IC−1

4y =




0 0 −1

0 −1 0

1 0 0


,

IC4z =




0 −1 0

1 0 0

0 0 −1


, IC−1

4z =




0 1 0

−1 0 0

0 0 −1


, IC2a =




0 −1 0

−1 0 0

0 0 1


, IC2b =




0 1 0

1 0 0

0 0 1


,

IC2c =




0 0 −1

0 1 0

−1 0 0


, IC2d =




0 0 1

0 1 0

1 0 0


, IC2e =




1 0 0

0 0 −1

0 −1 0


, IC2f =




1 0 0

0 0 1

0 1 0


.

Table B.1: The matrices for irreducible representations for the Oh group elements. Cnj

are proper rotations, while i and ICnj describe improper rotations a.

aFrom Appendix C - Character Tables for the Crystallographic Point Groups in Ref. [86].
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B.2 Bare Mass of one Free-Particle

From first principles, we derive the mass of one free particle on the BCC and FCC

lattices respectively. We shall use the free particle dispersion relation below

εk = −t
∑

a

eik·a (B.1)

B.2.1 One-Particle Mass in BCC Lattice

The dispersion for a particle on a BCC lattice is

εk = −8t cos
kxb

2
· cos kyb

2
· cos kzb

2
,

ε0 = −8 t

(B.2)

Expanding the dispersion for small k, we get

εk ≈ −8t+ b2t
(
k2x + k2y + k2z

)
+O(k4) ≡ ε0 +

ℏ2

2m0

(
k2x + k2y + k2z

)
, (B.3)

and by comparison, the mass of the free-particle is

m0 =
ℏ2

2b2t
(B.4)

B.2.2 One-Particle Mass in FCC Lattice

The dispersion for a particle in a FCC lattice is

εk = −4t

[
cos

kxb

2
· cos kyb

2
+ cos

kyb

2
· cos kzb

2
+ cos

kxb

2
· cos kzb

2

]

ε0 = −12t

(B.5)

Expanding the dispersion for small k, we get

εk ≈ −12t+ b2t
(
k2x + k2y + k2z

)
+O(k4) ≡ ε0 +

ℏ2

2m0

(
k2x + k2y + k2z

)
, (B.6)

and by comparison, the mass of the free particle in an FCC lattice is

m0 =
ℏ2

2b2t
(B.7)
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We investigate formation and condensation of fermion pairs in cold-atom quantum simulators for 
extended Hubbard models (U V models) with body-centered-cubic (BCC) optical lattices in the dilute 
limit, predicting small and light pairs. Pair mass, radius, and binding conditions are calculated, and used 
to compute transition temperatures. We predict that: (a) local pairs form in BCC optical lattices and 
binding energies can be large; (b) for particular cases where onsite U and intersite V are attractive 
with similar size, pairs are both small and light; and (c) pairs of 6Li atoms Bose–Einstein condense at 
temperatures of around 10 nK.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Optical lattices with BCC structures can be formed using arrays of four laser beams [1], and are of interest for two reasons. Firstly, 
they have been largely neglected in the context of quantum simulators. Secondly, there are condensed matter systems of interest with 
BCC lattices that could benefit from the insight provided by quantum simulators, such as BCC A3C60 superconductors, which have high 
transition temperatures (38K) [2]. The goal of this article is to discuss the properties of fermion pairs formed by extended Hubbard 
interactions in cold-atom quantum simulators with BCC lattices.

The ability to probe Hubbard models in clean and well-controlled systems [3] has been a major success of cold atom quantum sim-
ulators formed using optical lattices. Quantum simulators offer the possibility to implement Hubbard models, in a way that cannot be 
achieved in condensed matter. For example single-band Hubbard models can be implemented without the complications of interactions 
between multiple electronic bands [3]. Several milestones have been achieved using cold atoms in optical lattices, including observations 
of Mott transitions in repulsive Hubbard models [4,5]. The interactions in cold-atom quantum simulators can be tuned such that attractive 
Hubbard models can be studied, allowing local pairs to be observed [6,7].

A simple extension to the Hubbard model [8], known as the extended Hubbard model [9], or (in the low density limit) U V -model [10], 
includes an onsite Hubbard U and an intersite interaction V . The U V Hamiltonian is defined as:

H =
∑

⟨n,a⟩σ
ta c†

n+a,σ cnσ + U
∑

n

ρ̂n↑ ρ̂n↓ +
∑

⟨n,a⟩
V ρ̂n+a ρ̂n (1)

where c†
nσ (cnσ ) creates (annihilates) an atom of spin σ at site n, ρ̂n = ρ̂n↑ + ρ̂n↓ , where ρ̂nσ is the number operator for atoms on site n

with spin σ , a the intersite lattice vector, ta is the intersite hopping, U is the onsite interaction and V is the intersite interaction. Both U
and V may be attractive or repulsive. For a BCC lattice, |a| =

√
3

2 b where b is the lattice constant.
U V models are of interest because local Coulomb repulsion and an intersite effective attraction are key features of many unconven-

tional superconductors [11]. The site-local Hubbard U is typically present in any superconductor with low kinetic energy. Since Coulomb 
repulsion is typically small between sites due to screening (especially in 3D) an effective intersite attraction or repulsion could arise due 

* Corresponding authors.
E-mail addresses: ganiyu.adebanjo@gmail.com (G.D. Adebanjo), jim.hague@open.ac.uk (J.P. Hague).

https://doi.org/10.1016/j.physleta.2021.127704
0375-9601/© 2021 Elsevier B.V. All rights reserved.
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Superlight small pairs in face-centered-cubic extended Hubbard models

Ganiyu D. Adebanjo,1 P.E. Kornilovitch,2 and J.P. Hague1

1School of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
2Department of Physics, Oregon State University, Corvallis, OR, 97331, USA

(Dated: September 8, 2021)

We exactly solve a two-particle UV model to explore the behavior of pairs in a face-centered
cubic (FCC) lattice within an extended Hubbard model. The conditions for pair formation, pair
mass, pair size, and the Bose-Einstein condensation (BEC) temperature are examined. Our results
show that strongly bound, superlight and small pairs can be generated in the FCC lattice, which
are much lighter than pairs in other 3D lattices. We estimate that such pairs can Bose condense at
high temperatures even if the lattice constant is large. Therefore, in the search for materials with
high superconducting transition temperatures, three-dimensional materials with an underlying FCC
structure should be investigated due to the possibility of superlight small pairs.

I. INTRODUCTION

There are a number of low-dimensional systems within
which superlight pair states can be realised, for exam-
ple the staggered ladder [1], triangular lattice [2, 3] and
quasi-two-dimensional hexagonal lattice [4]. Superlight
pairs consist of two fermions bound onto neighbouring
sites by a combination of strong intersite attraction and
strong onsite repulsion. Such pairs can be light and small
if it is possible to move to neighboring lattice sites via a
single hop without breaking the pairing [1], so that the
pair motion is a first order e↵ect. In many materials
there is a strong onsite Coulomb repulsion, so intersite
pairs are formed via any intersite or long-range attrac-
tion, which could originate either from phonons or other
more exotic mechanisms. Localized light states are of
interest because of their potential to form Bose-Einstein
condensates (BEC) at high temperatures.

Extended Hubbard models [5, 6] contain the essential
interactions to realize superlight states. The Hamiltonian
of an extended Hubbard model is defined as:

H =
X

hn,ai�
ta c†

n+a,� cn�+U
X

n

⇢̂n" ⇢̂n#+
X

hn,ai
V ⇢̂n+a ⇢̂n

(1)
where c†

n� (cn�) creates (annihilates) an electron of spin
� at site n, ⇢̂n = ⇢̂n" + ⇢̂n#, where ⇢̂n� is the number
operator for electrons on site n with spin �, a is the
intersite lattice vector, ta is the intersite hopping, U is
the onsite interaction and V is the intersite interaction.
Both U and V may be attractive or repulsive, although
in most materials repulsive U is more likely due to the
di�culties of overcoming the Hubbard U with attractive
interactions, such as those due to electron-phonon inter-
actions. In the low-density limit the model is also known
as the UV model. Properties of local pairs, which can be
used to estimate the Bose-Einstein condensation temper-
ature, have been studied in simple systems using the UV
model [4, 7–10]. If U is highly repulsive and V is attrac-
tive, then exceptionally mobile pairs (superlight states)
can be realized on suitable lattices.

In the context of superlight small pairs, the face-
centered cubic (FCC) lattice can be viewed as the 3D

analogue of the 2D triangular lattice, in that electrons
paired between near-neighbor sites can move with a sin-
gle hop. This remarkable feature should result in a low
e↵ective pair mass which could in turn yield a higher
transition temperature relative to other systems that lack
it. This implies that electron pairing in the FCC lat-
tice is a candidate for obtaining superlight states. To
our knowledge, superlight pairs have not yet been exam-
ined in FCC systems. The complexity of the FCC lattice
structure and increased number of nearest-neighbor sites
complicate the calculation and we aim to fill this gap. An
illustration of the superlight pair movement in an FCC
lattice is shown in Fig. 1. As long as the intersite at-
traction is maintained, and there is su�cient Hubbard
U to suppress on-site pairing, the pair can move easily
through the lattice.

In spite of their ubiquity in condensed matter systems,
FCC lattices are often overlooked within the correlated
electrons community owing to their relative complexity
compared to other lattices. Materials of interest with
FCC lattices include the A3C60 compounds: a family
of molecular compounds with high transition tempera-
ture [11] (where A is an alkali metal e.g. K, Rb, Cs)
which are predominantly FCC structured [12]. In addi-
tion to electron-phonon interactions [11] found in these
alkali-doped compounds, strong correlation [13] is also
prevalent. The presence of long-range phonon mediated
interactions (e.g. the intermolecular modes [12, 14]) may
lead to suitable conditions for extended Hubbard physics
and superlight pairs, and even if they do not have a role
in those compounds, might be relevant to other FCC ma-
terials.

This work aims to provide an exact solution of the
two-electron problem in an FCC lattice. We calculate
the critical potentials Uc (Vc) to bind particles into pairs,
the system’s total energy, the pair’s size and mass, and
BEC transition temperatures of pairs in the low-density
(dilute) limit. The paper is organized as follows: We
describe the model Hamiltonian and methodology used
to solve the UV model in the dilute limit (Sec. II). In
Sec. III, the properties of the formed pairs are reported.
We conclude this work with a discussion in Sec. IV.
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[56] J. T. Devreese. Fröhlich Polarons. Lecture course including detailed theoretical

derivations – 10th edition. https://arxiv.org/pdf/1611.06122.pdf. 2020. arXiv:

1611.06122 [cond-mat.other].

[57] J. T. Devreese and A. S. Alexandrov. “Fröhlich polaron and bipolaron: recent
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In: Phys. Rev. B 80 (2009), p. 054301. doi: 10.1103/PhysRevB.80.054301.

[72] J. P. Hague and P. E. Kornilovitch. “Light and stable triplet bipolarons on square

and triangular lattices”. In: Phys. Rev. B 82 (2010), p. 094301. doi: 10.1103/

PhysRevB.82.094301.

[73] A. R. Davenport, J. P. Hague, and P. E. Kornilovitch. “Mobile small bipolarons

on a three-dimensional cubic lattice”. In: Phys. Rev. B 86 (2012), p. 035106. doi:

10.1103/PhysRevB.86.035106.

[74] J. P. Hague, P. E. Kornilovitch, J. H. Samson, and A. S. Alexandrov. “Singlet

and triplet bipolarons on the triangular lattice”. In: J. Phys. and Chem. Solids

https://doi.org/10.1017/CBO9780511805745.008
https://doi.org/10.1017/CBO9780511805745.008
https://doi.org/10.1103/PhysRevB.60.1633
https://doi.org/10.1103/PhysRevLett.98.037002
https://doi.org/10.1103/PhysRevB.64.094507
https://doi.org/10.1103/PhysRevB.64.094507
https://doi.org/10.1103/PhysRevB.80.054301
https://doi.org/10.1103/PhysRevB.82.094301
https://doi.org/10.1103/PhysRevB.82.094301
https://doi.org/10.1103/PhysRevB.86.035106


220 BIBLIOGRAPHY

69.12 (2008). SNS2007, pp. 3304–3306. doi: https://doi.org/10.1016/j.

jpcs.2008.06.129.

[75] A. S. Alexandrov, J. Ranninger, and S. Robaszkiewicz. “Bipolaronic supercon-

ductivity: Thermodynamics, magnetic properties, and possibility of existence in

real substances”. In: Phys. Rev. B 33 (1986), pp. 4526–4542. doi: 10.1103/

PhysRevB.33.4526.

[76] L. J. De Jongh. “A comparative study of (bi)polaronic (super)conductivity in

high-and low-Tc superconducting oxides”. In: Physica C: Superconductivity 152.2

(1988), pp. 171–216. doi: https://doi.org/10.1016/0921-4534(88)90011-1.

[77] A. S. Alexandrov and J. Ranninger. “Bipolaronic superconductivity”. In: Phys.

Rev. B 24 (1981), pp. 1164–1169. doi: 10.1103/PhysRevB.24.1164.

[78] B. K. Chakraverty. “Bipolarons and superconductivity”. In: J. Phys. France 42.9

(1981), pp. 1351–1356. doi: 10.1051/jphys:019810042090135100.

[79] D. Emin and M. S. Hillery. “Formation of a large singlet bipolaron: Application

to high-temperature bipolaronic superconductivity”. In: Phys. Rev. B 39 (1989),

p. 6575. doi: 10.1103/PhysRevB.39.6575.

[80] I. G. Lang and Y. A. Firsov. “Kinetic theory of semiconductors with low mobility”.

In: Sov. Phys. JETP 16.5 (1963), p. 1301.

[81] J. P. Hague, P. E. Kornilovitch, J. H. Samson, and A. S. Alexandrov. “Superlight

small bipolarons”. In: J. Phys.: Cond. Matt. 19.25 (2007), p. 255214. doi: 10.

1088/0953-8984/19/25/255214.

[82] P. Kornilovitch. “Enhanced stability of bound pairs at nonzero lattice momenta”.

In: Phys. Rev. B 69 (2004), p. 235110. doi: 10.1103/PhysRevB.69.235110.

https://doi.org/https://doi.org/10.1016/j.jpcs.2008.06.129
https://doi.org/https://doi.org/10.1016/j.jpcs.2008.06.129
https://doi.org/10.1103/PhysRevB.33.4526
https://doi.org/10.1103/PhysRevB.33.4526
https://doi.org/https://doi.org/10.1016/0921-4534(88)90011-1
https://doi.org/10.1103/PhysRevB.24.1164
https://doi.org/10.1051/jphys:019810042090135100
https://doi.org/10.1103/PhysRevB.39.6575
https://doi.org/10.1088/0953-8984/19/25/255214
https://doi.org/10.1088/0953-8984/19/25/255214
https://doi.org/10.1103/PhysRevB.69.235110


BIBLIOGRAPHY 221

[83] M. Bak. “Bound electron pairs on a triangular lattice in an extended Hubbard

model”. In: Phys. Stat. Sol. B 244 (2007), pp. 2421–2426. doi: https://doi.

org/10.1002/pssb.200674603.

[84] J. P. Hague, P. E. Kornilovitch, and C. MacCormick. “Cold-atom quantum sim-

ulator to explore pairing, condensation, and pseudogaps in extended Hubbard-

Holstein models”. In: Phys. Rev. A 102 (2020), p. 033333. doi: 10.1103/PhysRevA.

102.033333.

[85] A. W. Joshi. Elements of Group Theory for Physicists. 4th Edition. New Age

International, New Delhi, 1997.

[86] J. F. Cornwell. Group Theory in Physics: An Introduction. Academic Press, Cal-

ifornia and London, 1997.

[87] J. J. Sakurai and J. Napolitano. Modern Quantum Mechanics. 3rd Edition. Cam-

bridge University Press, Cambridge, 2021.

[88] B. Zwiebach. 8.06 Quantum Physics III: Video lectures on perturbation theory.

Massachusetts Institute of Technology: MIT OpenCourseWare. License: Creative

Commons BY-NC-SA. url: https://ocw.mit.edu/courses/physics/8-06-

quantum-physics-iii-spring-2018.

[89] S. Lakshmi-Bala. Quantum Mechanics I: Lectures on perturbation theory. Source:

YouTube. url: https://www.youtube.com/watch?v=zdouC7ZNTJ0&t=312s.

[90] P. E. Kornilovitch. “Continuous-time quantum Monte Carlo algorithm for the

lattice polaron”. In: Phys. Rev. Lett. 81 (1998), pp. 5382–5385. doi: 10.1103/

PhysRevLett.81.5382.

[91] A. S. Alexandrov and P. E. Kornilovitch. “Mobile small polaron”. In: Phys. Rev.

Lett. 82 (1999), pp. 807–810. doi: 10.1103/PhysRevLett.82.807.

https://doi.org/https://doi.org/10.1002/pssb.200674603
https://doi.org/https://doi.org/10.1002/pssb.200674603
https://doi.org/10.1103/PhysRevA.102.033333
https://doi.org/10.1103/PhysRevA.102.033333
https://ocw.mit.edu/courses/physics/8-06-quantum-physics-iii-spring-2018
https://ocw.mit.edu/courses/physics/8-06-quantum-physics-iii-spring-2018
https://www.youtube.com/watch?v=zdouC7ZNTJ0&t=312s
https://doi.org/10.1103/PhysRevLett.81.5382
https://doi.org/10.1103/PhysRevLett.81.5382
https://doi.org/10.1103/PhysRevLett.82.807


222 BIBLIOGRAPHY

[92] P. E. Kornilovitch and E. R. Pike. “Polaron effective mass from Monte Carlo

simulations”. In: Phys. Rev. B 55 (1997), R8634–R8637. doi: 10.1103/PhysRevB.

55.R8634.

[93] J. P. Hague, P. E. Kornilovitch, A. S. Alexandrov, and J. H. Samson. “Effects of

lattice geometry and interaction range on polaron dynamics”. In: Phys. Rev. B

73 (2006), p. 054303. doi: 10.1103/PhysRevB.73.054303.

[94] J. P. Hague, P. E. Kornilovitch, and A. S. Alexandrov. “Trapping of lattice po-

larons by impurities”. In: Phys. Rev. B 78 (2008), p. 092302. doi: 10.1103/

PhysRevB.78.092302.

[95] P. E. Kornilovitch. “Path-integral approach to lattice polarons”. In: J. Phys.

Cond. Matt. 19.25 (2007), p. 255213. doi: 10.1088/0953-8984/19/25/255213.

url: https://doi.org/10.1088/0953-8984/19/25/255213.

[96] K. Huang. Introduction to Statistical Physics. 2nd Edition. Taylor & Francis,

London and New York, 2001. doi: https://doi.org/10.1201/9781439878132.

[97] P. E. Spencer, J. H. Samson, P. E. Kornilovitch, and A. S. Alexandrov. “Effect

of electron-phonon interaction range on lattice polaron dynamics: A continuous-

time quantum Monte Carlo study”. In: Phys. Rev. B 71 (2005), p. 184310. doi:

10.1103/PhysRevB.71.184310.

[98] G. S. Joyce. “Exact results for a body-centered cubic lattice Green’s function with

applications in lattice statistics. I”. In: J. Math. Phys. 12.7 (1971), pp. 1390–1414.

doi: 10.1063/1.1665748.

[99] C. N. R. Rao, K. Biswas, K. S. Subrahmanyam, and A. Govindaraj. “Graphene,

the new nanocarbon”. In: J. Mater. Chem. 19 (2009), pp. 2457–2469. doi: 10.

1039/B815239J.

https://doi.org/10.1103/PhysRevB.55.R8634
https://doi.org/10.1103/PhysRevB.55.R8634
https://doi.org/10.1103/PhysRevB.73.054303
https://doi.org/10.1103/PhysRevB.78.092302
https://doi.org/10.1103/PhysRevB.78.092302
https://doi.org/10.1088/0953-8984/19/25/255213
https://doi.org/10.1088/0953-8984/19/25/255213
https://doi.org/https://doi.org/10.1201/9781439878132
https://doi.org/10.1103/PhysRevB.71.184310
https://doi.org/10.1063/1.1665748
https://doi.org/10.1039/B815239J
https://doi.org/10.1039/B815239J


BIBLIOGRAPHY 223

[100] D. R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N.

Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, et al. “Experimental review

of graphene”. In: International Scholarly Research Notices 2012 (2012). ISRN -

Cond. Matt. Phys. doi: 10.5402/2012/501686.

[101] MathworksTM. N-D Fast Fourier Transform. Matlab Mathematics User’s Guide

R2018b. url: https://uk.mathworks.com/help/matlab/ref/fftn.html.

[102] L. Yuan, G. P. Wang, and X. Huang. “Arrangements of four beams for any Bravais

lattice”. In: Opt. Lett. 28.19 (2003), pp. 1769–1771. doi: 10.1364/OL.28.001769.

[103] P. Kornilovitch. “Ferromagnetism and borromean binding in three-fermion clus-

ters”. In: Phys. Rev. Lett. 112 (2014), p. 077202. doi: 10.1103/PhysRevLett.

112.077202.

[104] P. E. Kornilovitch. “Stability of three-fermion clusters with finite range of attrac-

tion”. In: EPL (Europhys. Lett.) 103.2 (2013), p. 27005. doi: 10.1209/0295-

5075/103/27005.

[105] P. Kornilovitch. “Trion formation and unconventional superconductivity in a

three-dimensional model with short-range attraction”. In: Intl. J. Mod. Phys.

B 34.06 (2020), p. 2050042. doi: 10.1142/S0217979220500423.

[106] T Morita. “Use of a recurrence formula in computing the lattice Green function”.

In: Journal of Physics A: Mathematical and General 8.4 (1975), pp. 478–489. doi:

10.1088/0305-4470/8/4/008.

[107] M. L. Glasser and J Boersma. “Exact values for the cubic lattice Green functions”.

In: Journal of Physics A: Mathematical and General 33.28 (2000), p. 5017. doi:

10.1088/0305-4470/33/28/306.

https://doi.org/10.5402/2012/501686
https://uk.mathworks.com/help/matlab/ref/fftn.html
https://doi.org/10.1364/OL.28.001769
https://doi.org/10.1103/PhysRevLett.112.077202
https://doi.org/10.1103/PhysRevLett.112.077202
https://doi.org/10.1209/0295-5075/103/27005
https://doi.org/10.1209/0295-5075/103/27005
https://doi.org/10.1142/S0217979220500423
https://doi.org/10.1088/0305-4470/8/4/008
https://doi.org/10.1088/0305-4470/33/28/306


224 BIBLIOGRAPHY

[108] K. V. Grigorishin. “The role of electron–vibron interaction and local pairing in

conductivity and superconductivity of alkali-doped fullerides”. In: Physica C: Su-

perconductivity and its Applications 562 (2019), pp. 56–69. doi: https://doi.

org/10.1016/j.physc.2018.12.001.

[109] E. Cappelluti, P. Paci, C. Grimaldi, and L. Pietronero. “Relevance of multiband

Jahn-Teller effects on the electron-phonon interaction in A3C60”. In: Phys. Rev.

B 72.5 (2005), p. 054521. doi: 10.1103/PhysRevB.72.054521.

[110] M. C. M. O’Brien and C. C. Chancey. “The Jahn–Teller effect: An introduction

and current review”. In: American Journal of Physics 61.8 (1993), pp. 688–697.

doi: 10.1119/1.17197.

[111] Z. Huang, M. D. Albaqami, T. Sato, N. Iwahara, and L. F. Chibotaru. “Jahn-

Teller effect in the cubic fullerides A3C60”. In: Phys. Rev. B 103 (2021), p. 134102.

doi: 10.1103/PhysRevB.103.134102.

[112] P. E. Kornilovitch. “Band structure of the Jahn-Teller polaron from quantum

Monte Carlo”. In: Phys. Rev. Lett. 84 (2000), pp. 1551–1554. doi: 10.1103/

PhysRevLett.84.1551.
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