Uncertainty Principles for the Dunkl-Bessel type transform

Najat Safouane ${ }^{1}$, Radouan Daher ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Sciences Aïn Chock, University of Hassan II, Casablanca, Morocco
${ }^{2}$ Department of Mathematics, Faculty of Sciences Aïn Chock, University of Hassan II, Casablanca, Morocco

Article Info

Article history:

Received Sep 20, 2021
Revised Jan 10, 2022
Accepted Sep 20, 2022

Abstract

The Dunkl-Bessel type transform satisfies some uncertainty principles similar to the Euclidean Fourier transform. A generalization of Beurling's theorem, Gelfand-Shilov theorem, Cowling-Price's theorem and Morgan's theorem are obtained for the DunklBessel type transform.

Keywords:

Beurling's theorem
Gelfand-Shilov theorem
Cowling-Price's theorem
Morgan's theorem

Corresponding Author:

Najat Safouane,
Department of Mathematics,
Faculty of Sciences Aïn Chock, University of Hassan II,Casablanca, Morocco
Email: safouanenajat@live.fr

1. INTRODUCTION AND PRELIMINARIES

There are many theorems known which state that a function and its classical Fourier transform on \mathbb{R} cannot both be sharply localized. That is, it is impossible for a nonzero function and its Fourier transform to be simultaneously small. Here a concept of the smallness had taken different interpretations in different contexts. Hardy [6], Morgan [9], Cowling and Price [5], Beurling [2] for example interpreted the smallness as sharp pointwise estimates or integrable decay of functions. Hardy's theorem [6] for the classical Fourier transform \mathcal{F} on \mathbb{R} asserts that

Theorem 1..1 Let f be a measurable function on \mathbb{R} such that

$$
\begin{equation*}
|f(x)| \leq C e^{-a x^{2}} \quad \text { and } \quad|\mathcal{F}(f)(y)| \leq C e^{-b y^{2}} \tag{1}
\end{equation*}
$$

for some constants $a>0, b>0, C>0$. We have

- If $a b>\frac{1}{4}$, then $f=0 a$.
- If $a b<\frac{1}{4}$, then infinitely nonzero functions satisfy condition (1).
- If $a b=\frac{1}{4}$ then $f(x)$

Considerable attention has been devoted for discovering generalizations to new contexts for the Hardy's theorem. In particular, Cowling and Price [4] have studied an L^{p} version of Hardy's theorem which states that for $p, q \in[1, \infty]$, at least one of them is finite, if $\left\|e^{a x^{2}} f\right\|_{p}<\infty$ and $\left\|e^{b y^{2}} \widehat{f}\right\|_{q}<\infty$, then $f=0$ a.e. if $a b \geq \frac{1}{4}$. . Furthermore, Beurling's theorem, which was found by Beurling and his proof was published much later by Hrmander [7], says that for any non trivial function $f \in L^{2}(\mathbb{R})$, the product $f(x) \widehat{f}(y)$ is never integrable on \mathbb{R}^{2} with respect to the measure $e^{|x||y|} d x d y$, where \widehat{f} stands for the Fourier transform of f. A far reaching
generalization of this result has been recently proved by Bonami, Demange and Jaming [2]. They proved that if $f \in L^{2}(\mathbb{R})$ satisfies for an integer N

$$
\int_{\mathbb{R}} \int_{\mathbb{R}} \frac{|f(x)||\widehat{f}(y)|}{(1+|x|+|y|)^{N}} e^{|x||y|} d x d y<\infty
$$

then f is the form $f(x)=P(x) e^{-b x^{2}}$, where P is a polynomial of degree strictly lower than $\frac{N-1}{2}$ and b is a positive constant. Morgan [9] has established a famous theorem stating that for $\gamma>2$ and $\eta=\frac{\gamma}{\gamma-1}$, if $(a \gamma)^{\frac{1}{\gamma}}(b \eta)^{\frac{1}{\eta}}>\left(\sin \left(\frac{\pi}{2}(\eta-1)\right)^{\frac{1}{\eta}}, e^{a|x|^{\gamma}} f \in L^{\infty}(\mathbb{R})\right.$ and $e^{b|x|^{\eta}} \mathcal{F}(f) \in L^{\infty}(\mathbb{R})$. then f is null almost everywhere.
The outline of the content of this paper is as follows. In section 2 we give an analogue of Cowling-Price's theorem for the Dunkl-Bessel type transform $\mathcal{F}_{k, \beta, n}$. Section 3 is devoted to Miyachi's theorem for $\mathcal{F}_{k, \beta, n}$. Section 4 is dedicated to generalize Beurling's theorem for $\mathcal{F}_{k, \beta, n}$. Section 5 is devoted to Morgan's type theorem for $\mathcal{F}_{k, \beta, n}$.
Let us now be more precise and describe our results. To do so, we need to introduce some notations.
Throughout this paper, the letter C indicates a positive constant not necessarily the same in each occurrence. We denote by

- $a_{\beta}=\frac{2 \Gamma(\beta+1)}{\sqrt{\pi} \Gamma\left(\beta+\frac{1}{2}\right)}$, where $\beta>\frac{-1}{2}$.
- $\left.x=\left(x_{1}, \ldots, x_{d+1}\right)=\left(x^{\prime}, x_{d+1}\right) \in \mathbb{R}^{d} \times\right] 0, \infty[$.
- $\left.\mathbb{R}_{+}^{d+1}=\mathbb{R}^{d} \times\right] 0, \infty[$.
- $\lambda=\left(\lambda_{1}, \ldots, \lambda_{d+1}\right)=\left(\lambda^{\prime}, \lambda_{d+1}\right) \in \mathbb{C}^{d+1}$.
- $C\left(\mathbb{R}^{d+1}\right)$ the space of continuous functions on \mathbb{R}^{d+1}, even with respect to the last variable.
- $E\left(\mathbb{R}^{d+1}\right)$ (resp. $D\left(\mathbb{R}^{d+1}\right)$) the space of C^{∞} functions on \mathbb{R}^{d+1}, even with respect to the last variable (resp. with compact support).
- \mathcal{R} the root system in $\mathbb{R}^{d} \backslash\{0\}, \mathcal{R}_{+}$is a fixed positive subsystem and $\left.k \in \mathcal{R} \rightarrow\right] 0, \infty[$ a multiplicity function.
- w_{k} the weight function defined by

$$
w_{k}\left(x^{\prime}\right)=\prod_{\alpha \in \mathcal{R}_{+}}\left|<\alpha, x^{\prime}>\right|^{2 k(\alpha)}, x^{\prime} \in \mathbb{R}^{d}
$$

- $L_{k, \beta}^{p}\left(\mathbb{R}^{d} \times \mathbb{R}_{+}\right), \quad 1 \leq p \leq+\infty$ the space of measurable functions on $\mathbb{R}^{d} \times \mathbb{R}_{+}$such that

$$
\begin{gather*}
\|f\|_{k, \beta, p}=\left(\int_{\mathbb{R}^{d} \times \mathbb{R}_{+}}|f(x)|^{p} d \mu_{k, \beta}(x) d x\right)^{\frac{1}{p}}<+\infty, \text { if } 1 \leq p<+\infty \tag{2}\\
\|f\|_{k, \beta, \infty}=\text { ess } \sup _{x \in \mathbb{R}^{d} \times[0,+\infty[}|f(x)|<+\infty, \text { if } p=\infty \tag{3}
\end{gather*}
$$

where

$$
\begin{equation*}
\mu_{k, \beta}(x) d x=w_{k}\left(x^{\prime}\right) x_{d+1}^{2 \beta+1} d x^{\prime} d x_{d+1}, \quad x=\left(x^{\prime}, x_{d+1}\right) \in \mathbb{R}^{d} \times \mathbb{R}^{+} . \tag{4}
\end{equation*}
$$

- \mathcal{M}_{n} the map defined by $\mathcal{M}_{n} f\left(x^{\prime}, x_{d+1}\right)=x_{d+1}^{2 n} f\left(x^{\prime}, x_{d+1}\right)$.
- $L_{k, \beta, n}^{p}\left(\mathbb{R}_{+}^{d+1}\right)$ the class of measurable functions f on \mathbb{R}_{+}^{d+1} for which

$$
\|f\|_{k, \beta, n, p}=\left\|\mathcal{M}_{n}^{-1} f\right\|_{k, \beta+2 n, p}<\infty .
$$

- $E_{n}\left(\mathbb{R}^{d+1}\right)$ (resp. $\left.D_{n}\left(\mathbb{R}^{d+1}\right)\right)$ stand for the subspace of $E\left(\mathbb{R}^{d+1}\right)$ (resp. $D\left(\mathbb{R}^{d+1}\right)$) consisting of functions f such that

$$
f\left(x^{\prime}, 0\right)=\left(\frac{d^{k} f}{d x_{d+1}^{k}}\right)\left(x^{\prime}, 0\right)=0, \forall k \in\{1, \ldots 2 n-1\} .
$$

In this section we recall some facts about harmonic analysis related to the Dunkl-Bessel type operator $\mathcal{F}_{k, \beta, n}$. We cite here, as briefly as possible, only some properties. For more details we refer to [1].

Definition 1..2 For all $\left.x \in \mathbb{R}^{d} \times\right] 0, \infty\left[\right.$ we define the measure $\xi_{x}^{k, \beta}$ on $\left.\mathbb{R}^{d} \times\right] 0, \infty[$ by

$$
d \xi_{x}^{k, \beta}(y)=a_{\beta} x_{d+1}^{-2 \beta}\left(x_{d+1}^{2}-y_{d+1}^{d+1}\right)^{\beta-\frac{1}{2}} 1_{] 0, x_{d+1}}\left[\left(y_{d+1}\right) d \mu_{x^{\prime}}\left(y^{\prime}\right) d y_{d+1}\right.
$$

where $\mu_{x^{\prime}}$ is a probability measure on \mathbb{R}^{d}, with support in the closed ball $B(o,\|x\|)$ of center o and radius $\|x\| .1_{] 0, x_{d+1}[}$ is the characteristic function of the interval $] 0, x_{d+1}[$.

For all $y \in \mathbb{R}^{d}$, we define the measure $\varrho_{y}^{k, \beta}$ on $\mathbb{R}^{d} \times[0, \infty[$, by

$$
\begin{equation*}
d \varrho_{y}^{k, \beta}(x)=a_{\beta}\left(x_{d+1}^{2}-y_{d+1}^{2}\right)^{\beta-\frac{1}{2}} x_{d+1} 1_{y_{d+1}, \infty[}\left(x_{d+1}\right) d \nu_{y^{\prime}}\left(x^{\prime}\right) d x_{d+1} \tag{5}
\end{equation*}
$$

We define the heat functions $W_{s, p}^{k, \beta}(r,$.$) related to the Dunkl-Bessel type Laplacian \Delta_{k, \beta, n}$ by

$$
\begin{equation*}
\forall y \in \mathbb{R}_{+}^{d+1}, W_{s, p}^{k, \beta}(r, y)=\frac{i^{|s|}(-1)^{p} c_{k}^{2}}{4^{\gamma+\beta+d}(\Gamma(\beta+1))^{2}} y_{d+1}^{2 n} \int_{\mathbb{R}_{+}^{d+1}} x_{1}^{s_{1}} \ldots x_{d}^{s_{d}} x_{d+1}^{2 p} e^{-r\|x\|^{2}} \Lambda(x, y) d \mu_{k, \beta+n}(x) \tag{6}
\end{equation*}
$$

These functions satisfy the following properties

$$
\begin{equation*}
\forall y \in \mathbb{R}_{+}^{d+1}, \mathcal{F}_{k, \beta, n}\left(W_{s, p}^{k, \beta}(r, .)\right)(y)=i^{|s|}(-1)^{p} y_{1}^{s_{1}} \ldots y_{d}^{s_{d}} y_{d+1}^{2 p} e^{-r\|y\|^{2}} \tag{7}
\end{equation*}
$$

Definition 1..3 The Dunkl-Bessel type intertwining operator is the operator $\mathcal{R}_{k, \beta, n}$ defined on $C\left(\mathbb{R}^{d+1}\right)$ by

$$
\mathcal{R}_{k, \beta, n} f(x)=\int_{\mathbb{R}^{d+1}} x_{d+1}^{2 n} f(y) d \xi_{x}^{k, \beta+2 n}(y)
$$

Definition 1..4 The dual of the Dunkl-Bessel type intertwining operator $\mathcal{R}_{k, \beta, n}$ is the operator defined on $D_{n}\left(\mathbb{R}^{d+1}\right)$ by: $\left.\forall y=\left(y^{\prime}, y_{d+1}\right) \in \mathbb{R}^{d} \times\right] 0 ; \infty[$,

$$
\begin{equation*}
{ }^{t} \mathcal{R}_{k, \beta, n}(f)(y)=\int_{\mathbb{R}_{+}^{d+1}} x_{d+1}^{-2 n} f(x) d \varrho_{y}^{k, \beta+2 n}(x) \tag{8}
\end{equation*}
$$

Proposition 1..5 Let f be in $L_{k, \beta, n}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$. Then

$$
\int_{\mathbb{R}_{+}^{d+1}}{ }^{t} \mathcal{R}_{k, \beta, n}(f)(y) d y=\int_{\mathbb{R}_{+}^{d+1}} f(x) d \mu_{k, \beta+n}(x) d x
$$

Theorem 1..6 Let $f \in L_{k, \beta, n}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$ and $g \in C\left(\mathbb{R}^{d+1}\right)$, we have ${ }^{t} \mathcal{R}_{k, \beta, n}(f)$ is defined almost every where on \mathbb{R}_{+}^{d+1} and the following formula

$$
\int_{\mathbb{R}_{+}^{d+1}}{ }^{t} \mathcal{R}_{k, \beta, n}(f)(y) g(y) d y=\int_{\mathbb{R}_{+}^{d+1}} f(x) \mathcal{R}_{k, \beta, n}(g)(x) d \mu_{k, \beta+n}(x) d x .
$$

We consider the function $\Lambda_{k, \beta, n}$, given for $\lambda=\left(\lambda^{\prime}, \lambda_{d+1}\right) \in \mathbb{C}^{d} \times \mathbb{C}$ by

$$
\begin{equation*}
\Lambda_{k, \beta, n}(x, \lambda)=x_{d+1}^{2 n} K\left(x^{\prime},-i \lambda^{\prime}\right) j_{\beta}\left(x_{d+1} \lambda_{d+1}\right) \tag{9}
\end{equation*}
$$

where $j_{\beta}\left(x_{d+1} \lambda_{d+1}\right)$ is the normalized Bessel function defined by

$$
j_{\beta}\left(x_{d+1} \lambda_{d+1}\right)=a_{\beta} \int_{0}^{1}\left(1-t^{2}\right)^{\beta-\frac{1}{2}} \cos \left(x_{d+1} \lambda_{d+1} t\right) d t
$$

and $K\left(x^{\prime},-i \lambda^{\prime}\right)$ is the Dunkl Kernel defined by

$$
K\left(x^{\prime},-i \lambda^{\prime}\right)=\int_{\mathbb{R}^{d}} e^{-i<y, \lambda^{\prime}>} d \mu_{x^{\prime}}(y) .
$$

Definition 1.. 7 The Dunkl-Bessel type transform is given for f in $D_{n}\left(\mathbb{R}^{d+1}\right)$ by

$$
\begin{equation*}
\forall \lambda \in \mathbb{R}^{d} \times \mathbb{R}_{+}, \quad \mathcal{F}_{k, \beta, n}(f)(\lambda)=\int_{\mathbb{R}^{d} \times \mathbb{R}_{+}} f(x) \Lambda_{k, \beta, n}(x, \lambda) d \mu_{k, \beta}(x) d x \tag{10}
\end{equation*}
$$

Proposition 1..8 For $f \in D_{n}\left(\mathbb{R}^{d+1}\right)$, we have

$$
\begin{equation*}
\mathcal{F}_{k, \beta, n}(f)=\mathcal{F}_{0} \circ{ }^{t} \mathcal{R}_{k, \beta, n}(f), \tag{11}
\end{equation*}
$$

where \mathcal{F}_{0} is the transform defined by $\forall \lambda=\left(\lambda^{\prime}, \lambda_{d+1}\right) \in \mathbb{R}^{d} \times \mathbb{R}_{+}$

$$
\mathcal{F}_{0}(f)\left(\lambda^{\prime}, \lambda_{d+1}\right)=\int_{\mathbb{R}^{d} \times \mathbb{R}_{+}} f\left(x^{\prime}, x_{d+1}\right) e^{-i<\lambda^{\prime}, x_{d+1}>} \cos \left(x_{d+1} \lambda_{d+1}\right) d x^{\prime} d x_{d+1}
$$

We denote by $L_{k, \beta, n}^{p}\left(\mathbb{R}_{+}^{d+1}\right)$ the class of measurable functions f on \mathbb{R}_{+}^{d+1} for which

$$
\begin{equation*}
\|f\|_{k, \beta, n, p}=\left\|\mathcal{M}_{n}^{-1} f\right\|_{k, \beta+2 n, p}<\infty . \tag{12}
\end{equation*}
$$

2. BEURLING'S THEOREM FOR THE DUNKL-BESSEL TYPE TRANSFORM

To prove the main theorem of this section we need the following lemmas.
Lemma 2..1 Let $N \geq 0$. We consider f in $L_{k, \beta, n}^{2}\left(\mathbb{R}_{+}^{d+1}\right)$ satisfying

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d+1}} \int_{\mathbb{R}_{+}^{d+1}} \frac{\left|f(x) \| \mathcal{F}_{k, \beta, n}(f)(y)\right|}{(1+\|x\|+\|y\|)^{N}} e^{\|x\|\|y\|} d \mu_{k, \beta+n}(x) d y<+\infty . \tag{13}
\end{equation*}
$$

Then $f \in L_{k, \beta, n}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$.
Proof. Using the Fubini's theorem and the relation (13) we have for almost every $y \in \mathbb{R}_{+}^{d+1}$:

$$
\frac{\left|\mathcal{F}_{k, \beta, n}(f)(y)\right|}{(1+\|y\|)^{N}} \int_{\mathbb{R}_{+}^{d+1}} \frac{|f(x)|}{(1+\|x\|)^{N}} e^{\|x\|\|y\|} d \mu_{k, \beta+n}(x)<+\infty
$$

As f is not negligible, there exists $y_{0} \in \mathbb{R}_{+}^{d+1}, y_{0} \neq 0$ such that $\mathcal{F}_{k, \beta, n}(f)\left(y_{0}\right) \neq 0$. Thus

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d+1}} \frac{|f(x)|}{(1+\|x\|)^{N}} e^{\|x\|\left\|y_{0}\right\|} d \mu_{k, \beta+n}(x)<+\infty . \tag{14}
\end{equation*}
$$

Since the function $\frac{e^{\|x\|\left\|y_{0}\right\|}}{(1+\|x\|)^{N}}$ is greater than 1 for large $\|x\|$, then

$$
\begin{aligned}
\int_{\mathbb{R}_{+}^{d+1}}|f(x)| d \mu_{k, \beta+n}(x) & <+\infty \\
\int_{\mathbb{R}_{+}^{d+1}} \frac{|f(x)|}{x_{d+1}^{2 n}} d \mu_{k, \beta+2 n}(x) & <+\infty \\
\int_{\mathbb{R}_{+}^{d+1}}\left|\mathcal{M}_{n}^{-1} f(x)\right| d \mu_{k, \beta+2 n}(x) & <+\infty
\end{aligned}
$$

which proves that $f \in L_{k, \beta, n}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$.

Theorem 2..2 Let $N \in \mathbb{N}$ and $f \in L_{k, \beta, n}^{2}\left(\mathbb{R}_{+}^{d+1}\right)$ satisfying (13). Then

- If $N \geq d+2$ we have

$$
\begin{equation*}
f(y)=\sum_{|s|+p<\frac{N-d-1}{2}} a_{s, p}^{k, \beta} W_{s, p}^{k, \beta}(r, y), y \in \mathbb{R}_{+}^{d+1} \tag{15}
\end{equation*}
$$

where $r>0, a_{s, p}^{k, \beta} \in \mathbb{C}$ and $W_{s, p}^{k, \beta}(r,$.$) given by the relation (6).$

- Else $f(y)=0$ a.e $y \in \mathbb{R}_{+}^{d+1}$.

Proof. From Lemma 1 and Theorem 2, the function f belongs to $L_{k, \beta, n}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$ and the function ${ }^{t} R_{k, \beta, n}(f)$ is defined almost everywhere on \mathbb{R}_{+}^{d+1}. We shall prove that

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d+1}} \int_{\mathbb{R}_{+}^{d+1}} \frac{\left.e^{\|x\|\|y\|}\right|^{t} \mathcal{R}_{k, \beta, n} f(x) \| \mathcal{F}_{0}\left({ }^{t} \mathcal{R}_{k, \beta, n}\right)(y) \mid}{(1+\|x\|+\|y\|)^{N}} d y d x<+\infty \tag{16}
\end{equation*}
$$

Take y_{0} as in Lemma 1. We write the above integral as a sum of the following integrals

$$
\left.I=\left.\int_{\mathbb{R}_{+}^{d+1}} \int_{\|y\| \leq\left\|y_{0}\right\|} \frac{e^{\|x\|\|y\|}}{(1+\|x\|+\|y\|)^{N}}\right|^{t} \mathcal{R}_{k, \beta, n} f(x) \| \mathcal{F}_{0}\left({ }^{t} \mathcal{R}_{k, \beta}(f)\right)(y) \right\rvert\, d y d x
$$

and

$$
\left.J=\left.\int_{\mathbb{R}_{+}^{d+1}} \int_{\|y\| \geq\left\|y_{0}\right\|} \frac{e^{\|x\|\|y\|}}{(1+\|x\|+\|y\|)^{N}}\right|^{t} \mathcal{R}_{k, \beta, n} f(x) \| \mathcal{F}_{0}\left({ }^{t} \mathcal{R}_{k, \beta, n}(f)\right)(y) \right\rvert\, d y d x
$$

We will prove that I and J are finite, which implies (16).

- As the functions $\left|\mathcal{F}_{k, \beta, n}(f)(y)\right|$ is continuous in the compact $y \in \mathbb{R}_{+}^{d+1} /\|y\| \leq\left\|y_{0}\right\|$, so we get

$$
I \leq C \int_{\mathbb{R}_{+}^{d+1}} \frac{\left.e^{\|x\|\left\|y_{0}\right\|}\right|^{t} \mathcal{R}_{k, \beta, n} f(x) \mid}{(1+\|x\|)^{N}} d x
$$

Writing the integral of the second member as $I_{1}+I_{2}$ with

$$
I_{1}=\int_{\|x\| \leq \frac{N}{\left\|y_{0}\right\|}} \frac{e^{\left.\|x\|\left\|y_{0}\right\|\right|^{t} \mathcal{R}_{k, \beta, n} f(x) \mid}}{(1+\|x\|)^{N}} d x
$$

and

$$
I_{2}=\int_{\|x\| \geq \frac{N}{\left\|y_{0}\right\|}} \frac{\left.e^{\|x\|\left\|y_{0}\right\|}\right|^{t} \mathcal{R}_{k, \beta, n} f(x) \mid}{(1+\|x\|)^{N}} d x
$$

There for, we have the following results:

- As the function $x \rightarrow \frac{e^{\|x\|\left\|y_{0}\right\|}}{(1+\|x\|)^{N}}$ is continuous in the compact $x \in \mathbb{R}_{+}^{d+1} /\|x\| \leq \frac{N}{\left\|y_{0}\right\|}$, and f is in $L_{k, \beta, n}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$ we deduce by using Fubini-Tonelli's theorem, and the relation (5), (7) that ${ }^{t} \mathcal{R}_{k, \beta, n}(|f|)$ belong to $L_{k, \beta, n}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$. Hence I_{1} is finite.
- On the other hand, for $t>\frac{N}{\left\|y_{0}\right\|}$, the function $t \rightarrow \frac{e^{t\left\|y_{0}\right\|}}{(1+t)^{N}}$ is increasing, so we obtain by using Fubini-Tonelli's theorem, and (5), (8) and Proposition 1, that

$$
I_{2} \leq \int_{\mathbb{R}_{+}^{d+1}} \frac{e^{\|\xi\|\left\|y_{0}\right\|}}{(1+\|\xi\|)^{N}}|f(\xi)| d \mu_{k, \beta+n}(\xi)
$$

The inequality (14) assert that I_{2} is finite. This proves that I is finite.

- We suppose $\left\|y_{0}\right\| \leq N$. Let $J=J_{1}+J_{2}+J_{3}$, with

$$
\begin{aligned}
& J_{1}= \left.\left.\int_{\|x\| \leq \frac{N}{\left\|y_{0}\right\|}} \int_{\left\|y_{0}\right\| \leq\|y\| \leq N} \frac{e^{\|x\|\|y\|}}{(1+\|x\|+\|y\|)^{N}}\right|^{t} \mathcal{R}_{k, \beta, n}(f)(x) \| \mathcal{F}_{k, \beta, n}(f)(y) \right\rvert\, d y d x . \\
& J_{2}= \left.\left.\int_{\|x\| \geq \frac{N}{\left\|y_{0}\right\|}} \int_{\left\|y_{0}\right\| \leq\|y\| \leq N} \frac{e^{\|x\| \| y_{\|}}}{(1+\|x\|+\|y\|)^{N}}\right|^{t} \mathcal{R}_{k, \beta, n}(f)(x) \| \mathcal{F}_{k, \beta, n}(f)(y) \right\rvert\, d y d x . \\
& \left.J_{3}=\left.\int_{\mathbb{R}_{+}^{d+1}} \int_{\|y\| \geq N} \frac{e^{\|x\|\|y\|}}{(1+\|x\|+\|y\|)^{N}}\right|^{t} \mathcal{R}_{k, \beta, n}(f)(x) \| \mathcal{F}_{k, \beta, n}(f)(y) \right\rvert\, d y d x .
\end{aligned}
$$

- As the function $(x, y) \rightarrow \frac{e^{\|x\|\|y\|}}{(1+\|x\|+\|y\|)^{N}}\left|\mathcal{F}_{k, \beta, n}(f)(y)\right|$ is bounded in the compact $\{x \in$ $\left.\mathbb{R}_{+}^{d+1} /\|x\| \leq \frac{N}{\left\|y_{0}\right\|}\right\} \times\left\{\xi \in \mathbb{R}_{+}^{d+1} /\left\|y_{0}\right\| \leq\|\xi\| \leq N\right\}$ and ${ }^{t} \mathcal{R}_{k, \beta, n}(|f|)(x)$ is Lebesgue-integrable on \mathbb{R}_{+}^{d+1}, then J_{1} is finite.
- Let $\lambda>0$. As the function $t \rightarrow \frac{e^{\lambda t}}{(1+t+\lambda)^{N}}$ is increasing for $t>\frac{N}{\lambda}$. Thus, for all $(x, y) \in$ $C\left(\xi, y_{0}, N\right)$ we have the inequality

$$
\frac{e^{\|x\|\|y\|}}{(1+\|x\|+\|y\|)^{N}} \leq \frac{e^{\|\xi\|\|y\|}}{(1+\|\xi\|+\|y\|)^{N}},
$$

with $C\left(\xi, y_{0}, N\right)=\left\{(x, y) \in \mathbb{R}_{+}^{d+1} \times \mathbb{R}_{+}^{d+1} / \frac{N}{\|y\|} \leq\|x\| \leq\|\xi\|\right.$ and $\left.\left\|y_{0}\right\| \leq\|y\| \leq N\right\}$. Therefore, from Fubini-Tonelli's theorem and the relations (5), (8), we get

$$
J_{2} \leq \int_{\mathbb{R}_{+}^{d+1}} \int_{\mathbb{R}_{+}^{d+1}}\left|(f)(\xi) \| \mathcal{F}_{k, \beta, n}(f)(y)\right| \frac{e^{\|\xi\|\|y\|}}{(1+\|\xi\|+\|y\|)^{N}} d y d \mu_{k, \beta+n}(\xi)
$$

Taking account of the condition (13), we deduce that J_{2} is finite.

- For $\|y\|>N$, the function $t \rightarrow \frac{e^{t\|y\|}}{(1+t+\|y\|)^{N}}$ is increasing. We deduce, by using FubiniTonelli's theorem and the relations (5), (8), (13) that

$$
J_{3} \leq \int_{\mathbb{R}_{+}^{d+1}} \int_{\|y\|>N}\left|(f)(\xi) \| F_{k, \beta, n}(f)(y)\right| \frac{e^{\|\xi\|\|y\|}}{(1+\|\xi\|+\|y\|)^{N}} d y d \mu_{k, \beta+n}(\xi)<+\infty
$$

This implies that J_{3} is finite.
Finally for $\left\|y_{0}\right\|>N$, we have $J \leq J_{3}<\infty$. This completes the proof of the relation (16).
According to Corollary 3.1, ii) of [4], we deduce that

$$
\forall x \in \mathbb{R}_{+}^{d+1},{ }^{t} \mathcal{R}_{k, \beta, n}(f)(x)=P(x) e^{-\delta\|x\|^{2}}
$$

with $\delta>0$ and P a polynomial of degree strictly lower than $\frac{N-d-1}{2}$.
Using this relation and (6), we deduce that

$$
\forall x \in \mathbb{R}_{+}^{d+1}, \mathcal{F}_{k, \beta, n}(f)(y)=\mathcal{F}_{0} \circ^{t} \mathcal{R}_{k, \beta, n}(f)(y)=\mathcal{F}_{0}\left(P(x) e^{-\delta\|x\|^{2}}\right)(y)
$$

But

$$
\forall x \in \mathbb{R}_{+}^{d+1}, \mathcal{F}_{0}\left(P(x) e^{-\delta\|x\|^{2}}\right)(y)=Q(y) e^{\frac{-\|y\|^{2}}{4 \delta}},
$$

With Q a polynomial of degree strictly lower than $\frac{N-d-1}{2}$.
Thus from (7) we obtain

$$
\forall x \in \mathbb{R}_{+}^{d+1}, \mathcal{F}_{k, \beta, n}(f)(y)=\mathcal{F}_{k, \beta, n}\left(\sum_{|s|+p<\frac{N-d-1}{2}} a_{s, p}^{k, \beta} W_{s, p}^{k, \beta}\left(\frac{1}{4 \delta}, .\right)\right)(y) .
$$

The injectivity of the transform $\mathcal{F}_{k, \beta, n}$ implies

$$
\forall x \in \mathbb{R}_{+}^{d+1}, f(x)=\sum_{|s|+p<\frac{N-d-1}{2}} a_{s, p}^{k, \beta} W_{s, p}^{k, \beta}\left(\frac{1}{4 \delta}, .\right)(x) \text { a.e }
$$

and the theorem is proved.

3. GELFAND-SHILOV TYPE FOR THE DUNKL-BESSEL TYPE TRANSFORM

In this section we give analogue of the Gelfand-Shilov for the Dunkl-Bessel type transform $\mathcal{F}_{k, \beta, n}$.
Theorem 3.1 (Gelfand-Shilov type) Let $N \in \mathbb{N}$ and assume that $f \in L_{k, \beta}^{2}\left(\mathbb{R}_{+}^{d+1}\right)$ is such that

$$
\begin{gather*}
\int_{\mathbb{R}_{+}^{d+1}} \frac{|f(x)| e^{\frac{(2 a)^{p}}{p}}\|x\|^{p}}{(1+\|x\|)^{N}} d \mu_{k, \beta+n}(x)<+\infty \tag{17}\\
\int_{\mathbb{R}_{+}^{d+1}} \frac{\left|\mathcal{F}_{k, \beta, n}(f)(y)\right| e^{\frac{(2 b)^{q}}{q}\|y\|^{q}}}{(1+\|y\|)^{N}} d y<+\infty \tag{18}
\end{gather*}
$$

Where $1<p, q<+\infty, \frac{1}{p}+\frac{1}{q}=1, a>0, b>0$ and $a b \geq \frac{1}{4}$. Then:

1. If $a b>\frac{1}{4}$, we have $f(x)=0$ a.e.
2. We suppose that $a b=\frac{1}{4}$.

- If $N<\frac{d}{2}+1,1<p, q<+\infty$ we have $f(x)=0$, a.e $x \in \mathbb{R}^{d}$.
- If $N \geq \frac{d}{2}+1$.
- For the cases: $2 \leq q<+\infty, 1<p<+\infty$,
$1<q<2,2<p<+\infty$,
$q=2, p=2$
we have $f(x)=0$, a.e $x \in \mathbb{R}^{d}$.
- For the case $1<q<2,1<p<2$, we have

$$
\begin{equation*}
f(x)=\sum_{|s|+p<\frac{2 N-d-1}{2}} a_{s, p}^{k, \beta} W_{s, p}^{k, \beta}(r, x), \text { a.e. } x \in \mathbb{R}_{+}^{d+1}, \tag{19}
\end{equation*}
$$

Where $r>0$ and $a_{s, p}^{k, \beta} \in \mathbb{C}$.

- For the case $q=2,1<p<2$ If $0<r \leq 2 b^{2}$ we have $f(x)=0$, a.e $x \in \mathbb{R}_{+}^{d+1}$. If $r>2 b^{2}$ the function f is given by the relation (18).
- For the case $p=2,1<q<2$

If $r \geq 2 b^{2}$ we have $f(x)=0$, a.e $x \in \mathbb{R}_{+}^{d+1}$. If $0<r<2 b^{2}$ the function f is given by the relation (18).

Proof. Using the inequality

$$
4 a b\|x\|\|y\| \leq \frac{(2 a)^{p}}{p}\|x\|^{p}+\frac{(2 b)^{q}}{q}\|y\|^{q}
$$

we get

$$
\begin{gather*}
\int_{\mathbb{R}_{+}^{d+1}} \int_{\mathbb{R}_{+}^{d+1}} \frac{\left|f(x) \| \mathcal{F}_{k, \beta, n}(f)(y)\right|}{(1+\|x\|+\|y\|)^{2 N}} e^{4 a b\|x\|\|y\|} d y d \mu_{k, \beta+n}(x) \leq \\
\int_{\mathbb{R}_{+}^{d+1}} \frac{|f(x)| e^{\frac{(2 a)^{p}}{p}\|x\|^{p}}}{(1+\|x\|)^{N}} d \mu_{k, \beta+n}(x) \int_{\mathbb{R}_{+}^{d+1}} \frac{\left|\mathcal{F}_{k, \beta, n}(f)(y)\right| e^{\frac{(2 b b)}{q}}\|y\|^{q}}{(1+\|y\|)^{N}} d y<+\infty . \tag{20}
\end{gather*}
$$

As $a b \geq \frac{1}{4}$, then from (20) we deduce that the condition (14) is satisfied. By using the proof of Theorem 3 , we obtain, $\forall x \in \mathbb{R}_{+}^{d+1}$,

$$
\begin{equation*}
{ }^{t} \mathcal{R}_{k, \beta}(f)(x)=P(x) e^{-\frac{\|x\|^{2}}{4 r}} ; \forall x \in \mathbb{R}_{+}^{d+1}, \mathcal{F}_{k, \beta, n}(f)(y)=Q(y) e^{-r\|y\|^{2}}, \tag{21}
\end{equation*}
$$

where r is a positive constant and P, Q are polynomials of the same degree which is strictly lower than $\frac{2 N-d-1}{2}$. 1) From (20) and the proof of (16) we deduce that

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d+1}} \int_{\mathbb{R}_{+}^{d+1}} \frac{\left|{ }^{t} \mathcal{R}_{k, \beta} f(x) \| \mathcal{F}_{0}\left({ }^{t} \mathcal{R}_{k, \beta}(f)\right)(y)\right|}{(1+\|x\|+\|y\|)^{2 N}} e^{4 a b\|x\|\|y\|} d x d y<+\infty, \tag{22}
\end{equation*}
$$

By replacing in (22) the functions ${ }^{t} \mathcal{R}_{k, \beta, n}(f)(x)$ and $\mathcal{F}_{k, \beta, n}(f)(y)$ by their expression given in (21), we get

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d+1}} \int_{\mathbb{R}_{+}^{d+1}} \frac{|P(x) \| Q(y)|}{(1+\|x\|+\|y\|)^{2 N}} e^{-\left(\sqrt{r}\|y\|-\frac{1}{2 \sqrt{r}}\|x\|\right)^{2}} e^{(4 a b-1)\|x\|\|y\|} d x d y<+\infty \tag{23}
\end{equation*}
$$

As $a b>\frac{1}{4}$, there exists $\varepsilon>0$ such that $4 a b-1-\varepsilon>0$. If P is non null, Q is also non null and we have

$$
\begin{gathered}
\int_{\mathbb{R}_{+}^{d+1}} \int_{\mathbb{R}_{+}^{d+1}} \frac{|P(x) \| Q(y)|}{(1+\|x\|+\|y\|)^{2 N}} e^{-\left(\sqrt{r}\|y\|-\frac{1}{2 \sqrt{r}}\|x\|\right)^{2}} e^{(4 a b-1)\|x\|\|y\|} d x d y \\
\quad \geq C \int_{\mathbb{R}_{+}^{d+1}} \int_{\mathbb{R}_{+}^{d+1}} e^{-\left(\sqrt{r}\|y\|-\frac{1}{2 \sqrt{r}}\|x\|\right)^{2}} e^{(4 a b-1-\varepsilon)\|x\|\|y\|} d x d y
\end{gathered}
$$

Where C is a positive constant. But the function

$$
e^{-\left(\sqrt{r}\|y\|-\frac{1}{2 \sqrt{r}}\|x\|\right)^{2}} e^{(4 a b-1-\varepsilon)\|x\|\|y\|}
$$

is not integrable, (23) does not hold. Hence $f(x)=0$ a.e.
2)
i) We deduce the result from (20) and Theorem 3.
ii) By using (20) the relations (9), (11) can also be written in the form

$$
\int_{\mathbb{R}^{d}} \frac{\left|\mathcal{F}_{k, \beta, n}(f)(y)\right| e^{\frac{(2 b)}{q}}\|y\|^{q}}{(1+\|y\|)^{N}} d y=\int_{\mathbb{R}^{d}} \frac{|Q(y)| e^{-r\|y\|^{2}} e^{\frac{(2 b)^{q}}{q}\|y\|^{q}}}{(1+\|y\|)^{N}} d y
$$

and

$$
\int_{\mathbb{R}^{d}} \frac{|f(x)| e^{\frac{(2 a)^{p}}{p}\|x\|^{p}}}{(1+\|x\|)^{N}} \omega_{k}(x) d x=\int_{\mathbb{R}^{d}} \frac{|P(x)| e^{-\frac{\|x\|^{2}}{4 r}} e^{\frac{(2 a)^{p}}{p}\|x\|^{p}}}{(1+\|x\|)^{N}} \omega_{k}(x) d x
$$

We obtain ii) from Theorem 3 and by studying the convergence of these integrals as we have made it
in 1).

4. HARDY TYPE FOR THE DUNKL-BESSEL TYPE TRANSFORM

Theorem $4 . .1$ (Hardy type) Let $N \in \mathbb{N}$. Assume that $f \in L_{k, \beta}^{2}\left(\mathbb{R}_{+}^{d+1}\right)$ is such that

$$
|f(x)| \leq M e^{-\frac{1}{4 a}\|x\|^{2}} \text { a.e }
$$

and

$$
\begin{equation*}
\forall x \in \mathbb{R}_{+}^{d+1},\left|\mathcal{F}_{k, \beta, n}(f)(y)\right| \leq M\left(1+\left|y_{j}\right|\right)^{N} e^{-b\left|y_{j}\right|^{2}}, j=1, \ldots, d+1 \tag{24}
\end{equation*}
$$

for some constants $a>0, b>0$ and $M>0$. Then,
i) If $a b>\frac{1}{4}$, then $f=0$ a.e.
ii) If $a b=\frac{1}{4}$, the function f is of the form

$$
f(x)=\sum_{|s|+p \leq N} a_{s, p}^{k, \beta} W_{s, p}^{k, \beta}\left(\frac{1}{4 a}, x\right) \text { a.e. where } a_{s, p}^{k, \beta} \in \mathbb{C} .
$$

iii) If $a b<\frac{1}{4}$, there are infinity many nonzero functions f satisfying the condition (24).

Proof. The first condition of (24) implies that $f \in L_{k, \beta}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$. So by Theorem 2, the function ${ }^{t} \mathcal{R}_{k, \beta, n}(f)$ is defined almost everywhere. By using the relation (11) we deduce that for all $x \in \mathbb{R}_{+}^{d+1}$,

$$
\left|{ }^{t} \mathcal{R}_{k, \beta, n}(f)(x)\right| \leq M_{0} e^{-a\|x\|^{2}}
$$

where M_{0} is a positive constant. So,

$$
\begin{equation*}
\left|{ }^{t} \mathcal{R}_{k, \beta, n}(f)(x)\right| \leq M_{0}\left(1+\left|x_{j}\right|\right)^{N} e^{-a\left|x_{j}\right|^{2}}, j=1, \ldots, d+1 \tag{25}
\end{equation*}
$$

On the other hand from (11) and (24) we have for all $x \in \mathbb{R}_{+}^{d+1}$,

$$
\begin{equation*}
\left|\mathcal{F}_{0}\left({ }^{t} \mathcal{R}_{k, \beta, n}\right)(f)(y)\right| \leq M\left(1+\left|y_{j}\right|\right)^{N} e^{-b\left|y_{j}\right|^{2}}, j=1, \ldots, d+1 \tag{26}
\end{equation*}
$$

The relations (25) and (26) show that the conditions of Proposition 3.2 of [4] are satisfied by the function ${ }^{t} \mathcal{R}_{k, \beta, n}(f)$. Thus we get:
i) If $a b>\frac{1}{4},{ }^{t} \mathcal{R}_{k, \beta, n}(f)=0$ a.e. Using (11) we deduce

$$
\forall y \in \mathbb{R}_{+}^{d+1}, \mathcal{F}_{k, \beta, n}(f)(y)=\mathcal{F}_{0} \circ\left({ }^{t} \mathcal{R}_{k, \beta, n}\right)(f)(y)=0
$$

Then from Theorem 2.3.1 of [8] we have $f=0$ a.e.
ii) If $a b=\frac{1}{4}$, then ${ }^{t} \mathcal{R}_{k, \beta, n}(f)(x)=P(x) \mid e^{-a\|x\|^{2}}$, where P is a polynomial of degree strictly lower than N. The same proof as the end of theorem shows that

$$
f(x)=\sum_{|s|+p \leq N} a_{s, p}^{k, \beta} W_{s, p}^{k, \beta}\left(\frac{1}{4 a}, x\right) \text { a.e. }
$$

iii) If $a b<\frac{1}{4}$, let $\left.t \in\right] a, \frac{1}{4 b}\left[\right.$ and $f(x)=C e^{-t\|x\|^{2}}$ for some real constant C, these functions satisfy the conditions (24).

5. COWLING-PRICE THEOREM FOR THE DUNKL-BESSEL TYPE TRANSFORM

Theorem $5 . .1$ (Cowling-Price type) Let $N \in \mathbb{N}$ and assume that $f \in L_{k, \beta}^{2}\left(\mathbb{R}_{+}^{d+1}\right)$ is such that

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d+1}} e^{a\|x\|^{2}}|f(x)| d \mu_{k, \beta+n}(x)<+\infty, \text { and } \int_{\mathbb{R}_{+}^{d+1}} \frac{e^{b\|y\|^{2}}}{(1+\|y\|)^{N}}\left|\mathcal{F}_{k, \beta, n}(f)\right| d y<+\infty \tag{27}
\end{equation*}
$$

for some constants $a>0, b>0$. Then
i) If $a b>\frac{1}{4}$, we have $f=0$ a.e.
ii) If $a b=\frac{1}{4}$, then when $N \geq d+2$ we have

$$
f(x)=\sum_{|s|+p \leq \frac{N-d-1}{2}} a_{s, p}^{k, \beta} W_{s, p}^{k, \beta}\left(\frac{1}{4 a}, x\right) \text { a.e where } a_{s, p}^{k, \beta} \in \mathbb{C} .
$$

iii) If $a b<\frac{1}{4}$, there are infinity many nonzero functions f satisfying the condition (27).

Proof. From the first condition of (27) we deduce that $f \in L_{k, \beta}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$. So by Theorem 3, the function ${ }^{t} \mathcal{R}_{k, \beta, n}(f)$ is defined almost everywhere. By using the relation (5), (8) and (27) we have:

$$
\begin{array}{r}
\int_{\mathbb{R}_{+}^{d+1}} \frac{\left|{ }^{t} \mathcal{R}_{k, \beta, n}(f)(x)\right| e^{a\|x\|^{2}}}{(1+\|x\|)^{N}} d x \leq \int_{\mathbb{R}_{+}^{d+1}}{ }^{t} \mathcal{R}_{k, \beta, n}\left(e^{a\|x\|^{2}}|f|\right)(x) d x \\
\leq \int_{\mathbb{R}_{+}^{d+1}} e^{a\|y\|^{2}}|f(y)| d \mu_{k, \beta+n}(y)<+\infty
\end{array}
$$

So

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d+1}} \frac{\left|{ }^{t} \mathcal{R}_{k, \beta, n}(f)(x)\right| e^{a\|x\|^{2}}}{(1+\|x\|)^{N}} d x<+\infty \tag{28}
\end{equation*}
$$

On the other hand from (11) and (27) we have:

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d+1}} \frac{e^{b\|y\|^{2}}}{(1+\|y\|)^{N}}\left|\mathcal{F}_{k, \beta, n}(f)\right| d y=\int_{\mathbb{R}_{+}^{d+1}} \frac{e^{b\|y\|^{2}}}{(1+\|y\|)^{N}}\left|\mathcal{F}_{0}\left({ }^{t} \mathcal{R}_{k, \beta, n}\right)(f)(y)\right| d y<+\infty \tag{29}
\end{equation*}
$$

The relations (28) and (29) are the conditions of Proposition 3.2 of [2] which are satisfied by the function ${ }^{t} \mathcal{R}_{k, \beta, n}(f)$. Thus we get: i) If $a b>\frac{1}{4},{ }^{t} \mathcal{R}_{k, \beta, n}(f)=0$ a.e.
Using the same proof as of Theorem 5 we deduce $f(x)=0$. a.e. $x \in \mathbb{R}_{+}^{d+1}$.
ii) If $a b=\frac{1}{4}$, then ${ }^{t} \mathcal{R}_{k, \beta, n}(f)(x)=P(x) \mid e^{-a\|x\|^{2}}$, where P is a polynomial of degree strictly lower than $\frac{N-d-1}{2}$. The same proof as the end of theorem shows that

$$
f(x)=\sum_{|s|+p \leq \frac{N-d-1}{2}} a_{s, p}^{k, \beta} W_{s, p}^{k, \beta}\left(\frac{1}{4 a}, x\right) \text { a.e. }
$$

iii) If $a b<\frac{1}{4}$, let $\left.t \in\right] a, \frac{1}{4 b}\left[\right.$ and $f(x)=C e^{-t\|x\|^{2}}$ for some real constant C, these functions satisfy the conditions (27). This complete the proof.

6. MORGAN TYPE FOR THE DUNKL-BESSEL TYPE TRANSFORM

Theorem $6 . .1$ (Morgan type) Let $1<p<2$ and q be the conjugate exponent of p. Assume that $f \in$ $L_{k, \beta}^{2}\left(\mathbb{R}_{+}^{d+1}\right)$ satisfies

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d+1}} e^{\frac{a^{p}}{p}\|x\|^{p}}|f(x)| d \mu_{k, \beta+n}(x)<+\infty, \text { and } \int_{\mathbb{R}_{+}^{d+1}} e^{\frac{b^{q}}{q}\|y\|^{q}}\left|\mathcal{F}_{k, \beta, n}(f)(y)\right| d y<+\infty \tag{30}
\end{equation*}
$$

for some constants $a>0, b>0$.
Then if $a b>\left|\cos \left(\frac{p \pi}{2}\right)\right|^{\frac{1}{p}}$, we have $f=0$ a.e.
Proof. From the first condition of (30) implies that $f \in L_{k, \beta}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$. So by Theorem 2, the function ${ }^{t} R_{k, \beta}(f)$ is defined almost everywhere. By using the relation (5), (30) we have:

$$
\left.\int_{\mathbb{R}_{+}^{d+1}}| |^{t} \mathcal{R}_{k, \beta, n}(f)(x)\left|e^{\frac{a^{p}}{p}\|x\|^{p}} d x \leq \int_{\mathbb{R}_{+}^{d+1}} e^{\frac{a^{p}}{p}\|y\|^{p}}\right| f(y) \right\rvert\, d \mu_{k, \beta+n}<+\infty .
$$

So

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d+1}}\left|{ }^{t} \mathcal{R}_{k, \beta, n}(f)(x)\right| e^{\frac{a^{p}}{p}\|x\|^{p}} d x<+\infty \tag{31}
\end{equation*}
$$

On the other hand, from (11) and (30) we have:

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d+1}} e^{\frac{b q}{q}\|y\|^{q}}\left|\mathcal{F}_{k, \beta, n}(f)(y)\right| d y=\int_{\mathbb{R}_{+}^{d+1}} e^{\frac{b q}{q}\|y\|^{q}}\left|\mathcal{F}_{0}\left({ }^{t} \mathcal{R}_{k, \beta, n}\right)(f)(y)\right| d y<+\infty \tag{32}
\end{equation*}
$$

The relations (31) and (32) are the conditions of Theorem 1.4 of [4], which are satisfied by the function ${ }^{t} \mathcal{R}_{k, \beta, n}(f)$. Thus we deduce that if $a b>\left|\cos \left(\frac{p \pi}{2}\right)\right|^{\frac{1}{p}}$ we have ${ }^{t} \mathcal{R}_{k, \beta, n}(f)=0$ a.e. Using the same proof as the Theorem 5 we obtain $f(y)=0$. a.e. $y \in \mathbb{R}_{+}^{d+1}$.

REFERENCES

[1] A. Abouelaz, A. Achak, R. Daher, El. Loualid, Harmonic analysis associated with the Dunkl-Bessel typeLaplace operator, (IJAREM) volume. 01, Issue 04, July 2015.
[2] A. Beurling, In: The Collected Works of Arne Beurling. Birkhuser, Boston (1989), 1-2.
[3] A. Bonami, B. Demange and P. Jaming, Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms. Rev. Mat. Iberoamericana 19 (2002), 22-35.
[4] L. Bouattour and K. Trimche, An analogue of Beurling-Hrmader's theorem for the Chbli-Trimche transfrom. Global J. of Pure and Appl. Math. 1, No 3(2005), 342-357.
[5] M. G. Cowling and J. F. Prices, Generalizations of Heisemberg's inequality. In: Lecture Notes in Math. 992, Springer, Berlin (1983), 443-449.
[6] G. H. Hardy, A theorem concerning Fourier transform. J. London Math. Soc. 8 (1933), 227-231.
[7] L. Hrmander, A uniqueness theorem of Beurling for Fourier transform pairs. Ark. For Math. 2, No 2 (1991), 237-240.
[8] H. Mejjaoli and K. Trimche, An analogue of Hardy's theorem and its L^{p} - version for the Dunkl-Bessel transform. Concrete Mathematica (2004).
[9] G. W. Morgan, A note on Fourier transforms. J. London Math. Soc. 9 (1934), 188-192.

