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ABSTRACT

In this paper,we consider the generalized Dunkl transform which satisfies some un-
certainty principles similar to the Euclidean Fourier transform. A generalization of
Cowling-Price’s theorem, Miyachi’s theorem are obtained for the generalized Dunkl
transform.The techniques of the proofs are based on the properties of the generalized
Dunkl kernel, the relation between the generalized Dunkl transform with the classi-
cal Dunkl transform. The results of this paper are new, and they have novelty and
generalize some results exist in the literature.

Corresponding Author:

El Mehdi Loualid,
Laboratory of Engineering Sciences for Energy
National School of Applied Sciences of El Jadida
University Chouaib Doukkali, Morocco.
Email: mehdi.loualid@gmail.com

1. INTRODUCTION AND PRELIMINARIES
There are many theorems which state that a function and its classical Fourier transform on R cannot

simultaneously be very small at infinity. This principle has several version which were proved by M.G. Cowl-
ing and J.F. Price [2], Miyachi [3]. We refer to [4–9] for more work in this direction. In this paper we study an
analogue of Cowling-Price’s theorem, and Miyachi’s theorem for the generalized Dunkl transform. The outline
of the content of this paper is as follows.
Section 2 is dedicated to some properties and results concerning the generalized Dunkl transform. In Section
3 we give an analogue of Cowling-Price’s theorem and Miyachi’s theorem. Let us now be more precise and
describe our results. To do so, we need to introduce some notations. Throughout this paper we denote by

• mα =
1

22α+2(Γ(α+ 1))2
where α >

−1

2
.

• E(R) the space of C∞ on R, provided with the topology of compact convergence for all derivatives. That
is the topology defined by semi-norms

Pa,m(f) = supx∈[−a,a]

m∑
k=0

| d
k

dxk
f(x) |, a > 0, m = 0, 1, ...
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• Da(R), the space of C∞ function on R, which are supported in [−a, a], equipped with the topology
induced by E(R)

• D(R) =
⋃
a>0Da(R), endowed with inductive limit topology.

• En(R)(resp.Dn(R)) stand for the subspace of E(R)(resp.D(R)) consisting of functions f such that

f(0) = ....... = f (2n−1)(0) = 0.

For a > 0, put
Da,n(R) = Da(R) ∩ En(R).

In this section we recapitulate some facts about harmonic analysis related to the generalized Dunkl transform
Fα,n. We cite here, as briefly as possible, some properties. For more details we refer to [1, 10].

∆α,nf(x) = f ′(x) + (α+
1

2
)
f(x)− f(−x)

x
− 2n

f(−x)

x
,

The one-dimensional generalized Dunkl kernel Λα,n is defined by

Λα,n(x, λ) = aα+2nx
2n

∫ 1

−1
(1− t2)α+2n− 1

2 (1 + t)eiλxtdt,

where aα+2n =
2Γ(α+ 2n+ 1)
√
πΓ(α+ 2n+ 1

2 )
.

Λα,n(., λ) satisfies the differential-difference equation

∆α,nΛα,n(., λ) = iλΛα,n(., λ).

For all m = 0, 1, ....

| ∂
m

∂λm
Λα,n(x, λ) |≤ |x|2n+me|Im λ||x|. (1)

The generalized Dunkl transform of a function f ∈ Dn(R) is defined by

Fα,n(f)(λ) =

∫
R
f(x)Λα,n(x,−λ)dµα(x), λ ∈ C,

where
dµα(x) = |x|2α+1dx. (2)

For all f ∈ Dn(R), we have the inversion formula

f(x) = mα+2n

∫
R
Fα,n(f)(λ)Λα,n(x, λ)dµα+2n(λ). (3)

For every f ∈ Dn(R), we have the Plancherel formula∫
R
|f(x)|2dµα(x) = mα+2n

∫
R
|Fα,n(f)(λ)|2dµα+2n(λ). (4)

We define the function N(., s), s > 0 as follows

N(x, s) = mα+2n

∫
R
e−ry

2

Λα,n(x, y)dµα+2n(y) x ∈ R.

We denote by Lpα(R), 1 ≤ p ≤ +∞ the space of measurable functions on R such that

‖f‖Lpα(R) =

(∫
R
|f(x)|pdµα(x)

) 1
p

< +∞, if 1 ≤ p < +∞,

‖f‖L∞
α (R) = ess sup

x∈R
|f(x)| < +∞, if p =∞.

Lpα,n(R), 1 ≤ p ≤ ∞, be the class of measurable functions f on R for which

‖f‖Lpα,n(R) = ‖x−2nf‖Lpα+2n(R) <∞.
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Proposition 1..1 For all f ∈ L1
α,n(R) we have

‖Fα,n(f)‖L∞
α+2n(R) ≤ ‖f‖L1

α,n(R). (5)

Proof.

|Fα,n(f)(λ)| = |
∫
R
f(x)Λα,n(x,−λ)dµα(x)|

≤
∫
R
|f(x)||Λα,n(x,−λ)|dµα(x),

it follows from (1) that ∫
R
|f(x)|.|Λα,n(x,−λ)|dµα(x) ≤

∫
R
|f(x)|x2ndµα(x)

≤
∫
R

|f(x)|
x2n

dµα+2n(x)

= ‖f‖L1
α,n

(R),

which proves the desired result.
The generalized Dunkl intertwining operator on R is defined by

Vα,n(f)(x) = aα+2nx
2n

∫ 1

−1
f(tx)(1− t2)α−

1
2 (1 + t)dt. (6)

The dual of the generalized Dunkl intertwining on Dn(R) is defined by

tVα,n(f)(y) = aα+2n

∫
|x|≥|y|

f(x)sgn(x)(x2 − y2)α+2n− 1
2 (x+ y)

dx

x2n
, y ∈ R. (7)

In the next we denote by

dvαy (x) = aαsgn(x)(x2 − y2)α−
1
2 (x+ y)1[|y|,+∞[(|x|)dx. (8)

The generalized Dunkl intertwining operator Vα,n and its dual tVα,n are related with the following formula∫
R
Vα,n(f)(x)g(x)|x|2α+1dx =

∫
R
f(y)tVα,ng(y)dy, (9)

where f ∈ E(R) and g ∈ D(R).

Proposition 1..2 tVα,n is a bounded operator from L1
α,n(R) to L1(R) where L1(R) is the space of Lebesgue-

integrable functions.

2. COWLING-PRICE’S THEOREM FOR THE GENERALIZED DUNKL TRANSFORM
Theorem 2..1 Let f be a measurable function on R such that∫

R

eapx
2 |f(x)|p

x2np(1 + |x|)k
|x|2α+1dx <∞ (10)

and ∫
R

ebqξ
2 |Fα,n(f)(ξ)|q

(1 + |ξ|)m
dξ <∞, (11)

for some constants a, b > 0, k > 0,m > 1 and 1 ≤ p, q ≤ +∞.

i) If ab > 1
4 , then f = 0 almost everywhere.

Analogues of Miyachi and Cowling-price theorems for the generalized Dunkl transform (El Mehdi Loualid)
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ii) If ab = 1
4 , then f(x) = Q(x)N(x, b) where Q is a polynomial with degQ ≤ m−1

q . Especially, if

k ≤ 2α+ 4n+ 2 + pmin{k
p

+
2α+ 4n+ 1

p′
,
m− 1

q
},

then f = 0 almost everywhere. Furthermore, if m ∈]1, 1 + q] and k > 2α+ 4n+ 2, then f is a constant
multiple of N(., b).

iii) If ab < 1
4 , then for all δ ∈]b, 14a[ all functions of the form f(x) = P (x)ebx

2

satisfy (10) and (11).

Proof. It follows from (10) that f ∈ L1
α,n and Fα,n(f)(ξ) exists for all ξ ∈ R. Moreover, it has an entire

holomorphic extension on C satisfying for some s > 0,

|Fα,n(f)(z)| ≤ Ce Imz
2

4a (1 + |Imz|)s.

By (1) we have for all z = ξ + iη ∈ C,

|Fα,n(f)(z)| ≤
∫
R
|f(x)||Λξ+iη,α,n(x)||x|2α+1dx (12)

≤ e
η2

4a

∫
R

eax
2 |f(x)|

x2n(1 + |x|)
k
p

x4n(1 + |x|)
k
p e−a(x−

η
2a )

2

|x|2α+1dx. (13)

A combination of (10) and Hlder inequality shows that

|Fα,n(f)(ξ + iη)| ≤ Ce
η2

4a

(∫
R
(1 + |x|)

kp′
p e−ap

′(x− η
2a )

2

|x|2α+4n+1dx

) 1
p′

≤ Ce
η2

4a

(∫
R
(1 + |x|)

kp′
p +2α+4n+1e−ap

′(x− η
2a )

2

dx

) 1
p′

≤ Ce
η2

4a

(∫ ∞
0

(1 + |x|)
kp′
p +2α+4n+1e−ap

′(x− η
2a )

2

dx

) 1
p′

≤ Ce
η2

4a (1 + |η|)
k
p+

2α+4n+1
p′ .

If ab = 1
4 , then

|Fα,n(f)(ξ + iη)| ≤ Cebη
2

(1 + |η|)
k
p+

2α+4n+1
p′ .

We put g(z) = ebz
2Fα,n(f)(z), then

|g(z)| ≤ Ceb|Rez|
2

(1 + |Imz|)
k
p+

2α+4n+1
p′ .

It follows from (11) that ∫
R

|g(z)|q

(1 + |ξ|)m
dξ <∞.

Lemma 2..2 Let h be an entire function on C such that

|h(z)| ≤ Cea|Rez|
2

(1 + |Imz|)l

for some l > 0, a > 0 and ∫
R

|h(x)|q

(1 + |x|)m
|Q(x)|dx <∞

for some q ≥ 1, m > 1 and Q ∈ P (R). Then h is a polynomial with degh ≤ min{l, m−M−1q } and, if
m ≤ q +M + 1, then h is a constant.
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From this Lemma g is a polynomial, we say Pb with degPb ≤ min{kp
′

p + 2α+4n+1
p′

, m−1q }. ThenFα,n(f)(x) =

Pb(x)e−bx
2

then,

f(x) = Qb(x)N(x, b)

where degPb = degQb. Therefore , nonzero f satisfies (10) provided that

k > 2α+ 4n+ 2 + pmin

{
kp

′

p
+

2α+ 4n+ 1

p′ ,
m− 1

q

}
.

If m < q + 1, by Lemma 1 we have g is a constant and Fα,n(f)(x) = Ce−bx
2

and f(x) = Cx2nN(x, b). If
m > 1 and k > 2α+ 4n+ 2, these functions satisfy (10) and (11), which proves (ii).

If ab > 1
4 , then we can find positive constants a1 and b1 such that a > a1 = 1

4b1
> 1

4b . Then f and

Fα,n(f) also satisfy (11) with a and b replaced by a1 and b1 respectively. Then Fα,n(f)(x) = Pb1(x)e−b1x
2

.
Fα,n(f) cannot satisfy (11) unless Pb1 = 0, which implies that f = 0, this proves (i). If ab < 1

4 , then for all
δ ∈]b, 1

4a [, the functions of the form f(x) = x2nP (x)Nk(x, δ), where P is a polynomial on R, satisfy (10)
and (11). This proves (iii).

3. MIYACHI’S THEOREM FOR THE GENERALIZED DUNKL TRANSFORM
Theorem 3..1 Let f be a measurable function on R such that

eax
2

f ∈ Lpα,n(R) + Lqα,n(R) (14)

and ∫
R

log+ |Fα,n(f)(ξ)ebξ|
λ

dξ <∞, (15)

for some constants a, b, λ > 0 and 1 ≤ p, q ≤ +∞.

(i) if ab > 1
4 then f = 0 almost everywhere.

(ii) if ab = 1
4 then f = cN(., b) with |c| ≤ λ.

(iii) if ab > 1
4 then for all δ ∈]b, 14 [, all functions of the form f(x) = P (x)N(x, δ), where P is a polynomial

on R satisfy (14) and (15).

To prove this result, we need the following lemmas.

Lemma 3..2 Let h be an entire function on C such that

|h(z)| ≤ AeB|Rez|
2

,

and ∫
R

log+ |h(y)|dy <∞, (16)

for some constants A and B. Then h is a constant.

Lemma 3..3 Let r ∈ [1,+∞], a > 0. Then for g ∈ Lrα,n(R) there exist c > 0 such that

‖ eax
2 tVα,n(e−ay

2

g) ‖r≤ c ‖ g ‖r,α,n .

Proof. From the hypothesis, it follows that e−ay
2

belongs to L1
α,n(R). Then by proposition 2, tVα,n(e−ay

2

g)
is defined almost everywhere on R. Here we consider two cases:

Analogues of Miyachi and Cowling-price theorems for the generalized Dunkl transform (El Mehdi Loualid)
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i) If r ∈ [1,+∞[ then

‖ eax
2 tVα,n(e−ay

2

g) ‖rr ≤
∫
R
earx

2

(

∫
R
y−2ne−ay

2

|g(y)|dνx(y))rdx,

≤
∫
R
earx

2

(

∫
R
|y−2ng(y)|rdνx(y))(

∫
R
e−ar

′y2dνx(y))
r
r′ dx

where r′ is the conjugate exponent for r. Since∫
R
e−ry

2

dνx(y) = Ce−rx
2

, (17)

for r > 0 it follow from (17) that

‖ eax
2 tVα,n(e−ay

2

g) ‖rr ≤ C

∫
R

tVα,n(|g|r)(x)dx,

= C

∫
R
|g(x)|r|x|2α+1dx <∞.

ii) If r =∞ then it follow from (17) that

‖ eax
2 tVα,n(e−ay

2

g) ‖r ≤ eax
2 tVα,n(e−ay

2

)(x)‖g‖α,n,∞
= C‖g‖α,n,∞.

Lemma 3..4 Let f be a measurable function on R such that

eax
2

f ∈ Lpα,n(R) + Lqα,n(R) (18)

for some a > 0. Then for all z ∈ C, the integral

Fα,n(f)(z) =

∫
R
f(x)Λz,α,n(−x)|x|2α+1dx

is well defined. Fα,n(f)(z) is entire and there exist C > 0 such that for all ξ, η ∈ R,

|Fα,n(f)(ξ + iη)| ≤ Ce
η2

4a . (19)

Proof. From (1) and Hlder’s inequality we have the first assertion. For (19) using (18) we have f ∈ L1
α,n(R)

and tVα,n(f) ∈ L1
α,n(R). for all ξ, η ∈ R,

Fα,n(f)(ξ + iη) =

∫
R

tVα,n(f)(x)e−ix(ξ+iη)dx

|Fα,n (f) (ξ + iη)| ≤ e
η2

4a

∫
R
eax

2 ∣∣tVα,n (f) (x)
∣∣ e−ax2+xη− η

2

4a dx

≤ e
η2

4a

∫
R
eax

2 ∣∣tVα,n (f) (x)
∣∣ e−a(x− η

2a )
2

dx.

From (18) we can deduce that there exist u ∈ Lpα,n(R) and v ∈ Lqα,n(R) such that

f(x) = e−ax
2

u (x) + e−ax
2

v (x) ,

by Lemma 3 we have∫
R
eax

2 ∣∣tVα,n (f) (x)
∣∣ e−a(x− η

2a )
2

dx ≤ C
(
‖u‖p,α,n + ‖v‖q,α,n

)
<∞,

which proves the Lemma.
Proof of Theorem

Int J Eng & App Phy, Vol. 2, No. 1, January 2022 : 355 – 362



Int J Eng & App Phy ISSN: 2737-8071 r 361

• If ab > 1
4 . Let h be a function on C defined by

h(z) = e
z2

4aFα,n (f) (z) .

h is entire function on C, it follows from (19) that

∀ξ ∈ R, ∀η ∈ R |h (ξ + iη)| ≤ Ce
ξ2

4a . (20)

On the other hand, we have∫
R

log+ |h (y)| dy =

∫
R

log+

∣∣∣∣e y24aFα,n (f) (y)

∣∣∣∣ dy
=

∫
R

log+

∣∣∣eby2Fα,n (f) (y)
∣∣∣

λ
λe(

1
4a−b)y

2

dy

≤
∫
R

log+

∣∣∣eby2Fα,n (f) (y)
∣∣∣

λ
dy +

∫
R
λe(

1
4a−b)y

2

dy

because log+(cd) ≤ log+(c) + d for all c, d > 0. Since ab > 1
4 , (15) implies that∫

R
log+ |h(y)|dy <∞. (21)

An combination of (20), (21) and Lemma shows that h is a constant and

Fα,n (f) (y) = Ce−
1
4ay

2

.

Since ab > 1
4 , (11) holds whenever C = 0 and the injectivity of Fα,n implies that f = 0 almost

everywhere.

• If ab = 1
4 . We deduce from previous case that Fα,n(f) = Ce−

ξ2

4a . Then (11) holds whenever |C| ≤ λ.
Hence f = CN(., b) with |C| ≤ λ.

• If ab < 1
4 . If f is a given form, then Fα,n(f)(y) = Q(y)e−δy

2

for some Q.
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