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Abstract—In this paper, the joint state and fault estimation
problem is investigated for a class of discrete-time complex
networks with measurement saturations and stochastic nonlin-
earities. The difference between the actual measurement and the
saturated measurement is regarded as an unknown input and the
system is thus re-organized as a singular system. An appropriate
estimator is designed for each node which aims to estimate
the system states and the loss of the actuator effectiveness
simultaneously. In the presence of measurement saturations and
stochastic nonlinearities, upper bounds of the error covariances of
the fault estimates are recursively obtained and then minimized.
Sufficient conditions are proposed to guarantee the existence,
unbiasedness, and boundeness of the developed estimator. Our
developed estimator design algorithm is distributed because it
depends only on the local information and the information
from the neighboring nodes, thereby avoiding the usage of a
center estimator. Finally, simulation results are presented to
show the performance of the proposed strategy in simultaneously
estimating the states and faults.

Index Terms—Fault estimation; unbiased estimation; complex
network; measurement saturation; stochastic nonlinearity.

I. I NTRODUCTION

The past few decades have witnessed ever-increasing de-
mands on system safety and reliability owing to the growing
complexity of modern processes. The fault diagnosis (FD) has
proven to be an attractive yet promising research direction in
engineering practice. So far, a model-based FD framework has
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been established that consists of two steps: 1) a residual signal
is employed to detect the possible faults in the underlying
system, and 2) the residual generator is then designed to
guarantee that the desired residual is robust against distur-
bances and sensitive to the faults via parity space method [52],
H /H∞ observer [10] and/or some other techniques. Further
research has been carried out to determine the location and
the amplitude of the faults, that is, isolate and estimate the
faults by properly exploiting the system inputs/outputs. A great
number of results have been reported in the literature on the
general fault diagnosis, isolation and estimation problems, see
e.g. [18], [24], [28], [34], [50], [51].

In real-world systems, due mainly to physical and technical
constraints, sensors cannot generate signals whose amplitudes
are unlimited, and the resulting saturation phenomena are
typically described by nonlinearities which, in turn, pose extra
challenges to the analysis/synthesis problems of the overall
systems. Up to now, the control/estimation/FD problems sub-
ject to saturations have received much research attention [1]–
[3], [38]. The FD problem has been investigated in electric
power systems with current transformers [16], [33], where
the three-phase currents at the sending end and receiving end
may be saturated. Furthermore, some appealing algorithms
have been developed in [19] to simultaneously estimate the
system states and reconstruct the additive faults. In the deter-
ministic case, the sector-bounded conditions have been widely
employed to guarantee that the saturation-induced nonlinear-
ities are bounded by some linear terms, and then the linear
matrix inequality technique can be adopted to solve certain
optimization problems. In the stochastic case, the saturation
levels have been employed to calculate the upper bounds of
the error covariances and the estimator parameters have been
selected to minimize these bounds in the minimum variance
sense.

It is noted that, when the sensor saturation levels are sig-
nificantly out of the normal range, it appears inappropriate to
directly use these levels to determine the bounds of the estima-
tion error covariances as this would inevitably introduce severe
conservatism and subsequently degrade the FD performances.
Intuitively, if the difference between the actual value and the
saturated value can be estimated and then compensated in the
FD unit, the accuracy of the FD results can be much improved.
Unfortunately, this is a rather challenging task since the
dynamics of such a difference is dependent on the unavailable
system states, and therefore cannot be accurately obtained.
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Also, calculating the fault estimation error covariances is
a non-trivial task when taking into account the differences
between the actual and the saturated measurements, and this
is further complicated by the need of characterizing the FD
unit in the minimum variance framework. In view of these
identified challenges, we are motivated to investigate the FD
problem for systems with saturation phenomena by developing
a novel yet efficient estimation strategy.

Complex networks have been an attractive research topic
because their successful applications in a variety of practical
systems [17]. In the analysis of complex networks, both the
dynamics of individual nodes and the coupling configuration
between different nodes should be simultaneously taken into
account. Until now, much research attention has been devoted
to the synchronization [6], [42] and state estimation [12], [36]
problems of complex networks. The FD problem for complex
networks has mostly been investigated in the robust framework
[21], [32], [46], [49] where the worst-case performance of the
disturbance attenuation has been considered. It is noted that
many of the above-mentioned results have used the informa-
tion fromall the nodes and, in this case, a center system would
be required to collect information from all the nodes. This is
certainly inconvenient for distributed execution (as preferred in
the setting of complex networks) of the developed algorithms.
In fact, it is much desirable in practice that each node in a
complex network can realize FD with onlylocal information
and the information from its neighboring nodes because, in
doing so, the transmission burden can be greatly reduced and
the real-time FD performance can be improved as well.

The distributed and decentralized FD problem has stirred
some research attention. In [4], [5], the distributed fault detec-
tion problem has been studied for a class of complex networks
by resorting to the concept of Plug-and-Play [37], [41], where
Schur stability of the estimation and detection strategy has
been discussed in details as well. In the presence of bounded
disturbances and unmodeled dynamics, [23], [35] have ana-
lyzed the FD and fault-tolerant control problems in distribut-
ed systems, where the conditions guaranteeing the detection
and isolation of faults have been quantitatively established.
The fault estimation and fault-tolerant control issues have
been considered in distributed multi-agent systems in [26],
[27] via sliding-mode and hierarchical-structure approaches,
respectively. Note that the saturation phenomenon has not
been considered in the distributed estimation methodologies
proposed in [30], [31]. Furthermore, almost all the existing
results concerning fault estimation problems have been ob-
tained based on the assumption that certain knowledge about
the fault dynamics is knowna priori, but such an assumption
is not always realistic since the positions/amplitudes of actual
faults are usually unavailable. Hence, the main motivation of
this work is to estimate the faults (without known dynamics)
for complex networks with measurement saturations.

Apart from the measurement saturation, another frequently
encountered phenomenon in the complex networks is the
nonlinearities. To date, the analysis/synthesis problems of
nonlinear systems with distributed structures have been ex-
tensively studied in [8], [14], [25], [47], where the addressed
nonlinear functions have mostly been handled under some

linear constraints such as sector-bounded conditions and Lips-
chitz conditions. Nonetheless, the FD-related results have been
quite scarce for nonlinear complex networks. Furthermore,
in practice, certain nonlinearities may occur in a random
manner because of imperfect data transmissions, variations
of the working points, changes of the operation environment,
etc [40]. Systems with stochastic nonlinearities have recently
stirred some research interests, see [13] and the references
therein. The FD problem has been addressed for practical
centralized systems with stochastic nonlinearities such as ro-
tating machinery [15] and buck converter [45]. Unfortunately,
it remains challenging as how to address the distributed FD
problem for complex networks with both measurement satu-
rations and stochastic nonlinearities (for which the substantial
challenges may result from the modeling complexity and
the algorithm feasibility), and this provides us with another
motivation for shortening such a gap.

Based on the above discussion, the aim of this article is to
investigate the distributed FD problem for a class of discrete
complex networks with measurement saturations and stochas-
tic nonlinearities. Some components of outputs are subject to
saturation phenomenon at each node. The difference between
the actual measurement and the saturated measurement is
estimated and then used to jointly estimate the system states
and the fault at each node. An upper bound of the estimation
error covariance is obtained and subsequently minimized by
appropriately designing the estimator parameters via solving
recursive matrix equations. The unbiasedness and existence
conditions are explicitly presented for the developed estimator.
It is noticeable that the developed algorithm can be implement-
ed in a trulydistributedway since only local information and
information from the neighboring nodes are utilized. Finally,
some simulation examples are provided to demonstrate the
validity of the proposed strategy.

The main contributions of the paper are highlighted as
follows: 1) a novel idea of estimating and then compensat-
ing the difference induced by the measurement saturation is
proposed for the first time, which proves to help achieve
accurate FD results; 2) a new estimator is established that
jointly estimates the system states and faults by minimizing
an upper bound of the estimation error covariance for each
node; and 3) the proposed algorithm is distributed since only
the information from the local node itself and the neighboring
nodes is adopted.

Notations.The notation used in the paper is fairly standard
except where otherwise stated.R

n denotes then-dimensional
Euclidean space. The variablesAT and A−1 denote the
transpose and inverse of matrixA, respectively. The notation
X ≥ Y (respectively,X > Y ), where X and Y are symmetric
matrices, means thatX−Y is positive semidefinite (respective-
ly, positive definite).I is the identity matrix with compatible
dimension.E{x} stands for the expectation of the stochastic
variablex. tr{A} stands for the trace of a square matrixA.
sign(·) denotes the signum function. When a variable has more
than one subscript, the first one denotes the node identifier, and
the last one corresponds to the time step.
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I I. PROBLEM FORMULATION

Consider the following class of discrete-time complex net-
works withN nodes:






xi,s+1 = Ai,sxi,s + gi,s(xi,s, αi,s) +Bi,sΥi,sui,s

+
N∑

j=1

aij,sΓxj,s + wi,s,

yi,1,s = Ĉi,1,sxi,1,s + Ĉi,2,sxi,2,s + vi,1,s,

yi,2,s = σ[i] (Ci,2,sxi,2,s + vi,2,s) ,

ui,s = Q
[P ]
i,s yi,s +Q

[I]
i,s

M∑

l=1

yi,s−l,

(1)

where the subscripts denotes the time step,xi,s ∈ R
n,

ui,s ∈ R
l and yi,s ∈ R

m are the system state, control input
and measurement output of theith node, respectively.xi,s

and yi,s are partitioned asxi,s = [xT
i,1,s, x

T
i,2,s]

T , yi,s =
[yTi,1,s, y

T
i,2,s]

T , where yi,1,s ∈ R
m1 is those measurement

components which are free of saturations, andyi,2,s ∈ R
m2

corresponds to elements subject to saturations.wi,s ∈ R
n

and vi,s = [vTi,1,s, v
T
i,2,s]

T ∈ R
m are the process noise

and the measurement noise of theith node, respectively,
which are mutually uncorrelated zero-mean sequences with
E{wi,sw

T
i,s} = Wi,s and E{vi,sv

T
i,s} = Vi,s. The matrices

Ai,s, Bi,s, Ĉi,1,s, Ĉi,2,s, Ci,2,s, Q
[P ]
i,s and Q

[I]
i,s are known

with appropriate dimensions. The superscripts [P] and [I]
mean thatQ[P ]

i,s and Q
[I]
i,s are the proportional and integral

control gains, respectively.Γ = diag{r1, . . . , rn} is the inner-
coupling matrix.Υi,s = diag{γi,1,s, . . . , γi,l,s} represents the
possible loss of control effectiveness.As = [aij,s]N×N is the
coupling configuration matrix of the given complex network
with aij,s ≥ 0 for i 6= j. The diffusive coupling condition

aii,s = −
N∑

j=1,j 6=i

aij,s holds for every node [44].

The variableαi,s is random and zero-mean. Furthermore,
gi,s(xi,s, αi,s) satisfies the following conditions:

E{gi,s(xi,s, αi,s)|xi,s} = 0, (2)

E{gi,s(xi,s, αi,s)g
T
j,h(xj,h, αj,h)|xi,s, xj,h} = 0,

if i 6= j or s 6= h (3)

E{gi,s(xi,s, αi,s)g
T
i,s(xi,s, αi,s)|xi,s} = Θi,sx

T
i,sΨi,sxi,s,

(4)

whereΘi,s andΨi,s are known positive semidefinite matrices
with appropriate dimensions. Moreover,αi,s is independent of
wi,s or vi,s.

For a vectorρ = [ρ1, . . . , ρm2
]
T , the saturation function of

the ith nodeσ[i] : Rm2 → R
m2 is defined as:

σ[i](ρ) =
[

σ
[i]
1 (ρ1), . . . , σ

[i]
m2

(ρm2
)
]T

, (5)

whereσ[i]
j (ρj) = sign (ρj)min

(

b
[i]
j , |ρj |

)

andb[i]j ≥ 0 means
the saturation level for allj = 1, . . . ,m2.

Setting

ui,s , [ui,1,s, . . . , ui,l,s]
T ,

Ui,s , diag{ui,1,s, . . . , ui,l,s},

γi,s , [γi,1,s, . . . , γi,l,s]
T ,

the first equation in (1) can be organized as:

xi,s+1 =Ai,sxi,s + gi,s(xi,s, αi,s) +Bi,sUi,sγi,s

+

N∑

j=1

aij,sΓxj,s + wi,s. (6)

Defining the measurement error (induced by the saturation
phenomenon) as

di,s , σ[i] (Ci,2,sxi,2,s + vi,2,s)− Ci,2,sxi,2,s − vi,2,s,

the third equation in (1) can be written as

yi,2,s = Ci,2,sxi,2,s + di,s + vi,2,s. (7)

Constructing an augmented statex̄i,s , [xT
i,s, d

T
i,s]

T , system
(6) and (7) can be rewritten in the followingsingular form:






Ex̄i,s+1 = Āi,sx̄i,s + gi,s(Ex̄i,s, αi,s) +Bi,sUi,sγi,s

+
N∑

j=1

aij,sΓ̄x̄j,s + wi,s,

yi,1,s = C̄i,1,sx̄i,s + vi,1,s,
yi,2,s = C̄i,2,sx̄i,s + vi,2,s,

(8)

where

Āi,s = [Ai,s, 0] , Γ̄ = [Γ, 0] , E = [I, 0],

C̄i,1,s =
[

Ĉi,1,s, Ĉi,2,s, 0
]

, C̄i,2,s = [0, Ci,2,s, I] .

For system (8), the following state and fault estimator is to
be established:

z̃i,s+1 =Mi,sx̂i,s +

N∑

j=1

Hij,sx̂j,s, (9)

x̃i,s+1 =z̃i,s+1 +Ki,s+1yi,2,s+1, (10)

γ̂i,s =Ri,s+1

(
yi,s+1 − C̄i,s+1x̃i,s+1

)
, (11)

ẑi,s+1 =Mi,sẑi,s + Ji,syi,2,s + Si,sγ̂i,s +

N∑

j=1

Hij,sẑj,s

+
N∑

j=1

Lij,syj,2,s, (12)

x̂i,s+1 =ẑi,s+1 +Ki,s+1yi,2,s+1, (13)

whereC̄i,s =
[
C̄T

i,1,s, C̄
T
i,2,s

]T
. γ̂i,s ∈ R

l and x̂i,s ∈ R
n+m2

are the estimates ofγi,s andx̄i,s, respectively.̃zi,s+1 ∈ R
n+m2

and ẑi,s+1 ∈ R
n+m2 are the estimator states, andx̃i,s+1 ∈

R
n+m2 is an interim variable to estimateγi,s. Mi,s, Hij,s,

Ki,s+1, Ri,s+1, Ji,s, Si,s andLij,s are the parameters to be
designed.

Denoteẽi,s , x̄i,s − x̃i,s, ei,s , x̄i,s − x̂i,s, e
[γ]
i,s , γi,s −

γ̂i,s. Our goal is to design an estimator in the form of (9)-
(13) for system (8) which is capable of obtaining the unbiased
estimates ofγi,s and x̄i,s in the presence of the measurement
saturations and the interconnections between different nodes.
Furthermore, the estimator parameters at every node will be
determined with aim to minimize an upper bound of the fault
estimation error covariance at each time step. The scheme of
each node in the complex network and the distributed estimator
is presented in Fig. 1.
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Fig. 1. Scheme of each node and distributed estimator

Remark 1: In this paper, the considered complex network
and the estimator are bothtime-varying, which improves the
applicability of the method. The diffusive coupling condition
stems from the relative state (the difference between system
states of different nodes) in the information exchange [44]. Ad-
ditive plant/actuator faults can also be readily coped with in the
proposed framework via replacingBi,sUi,s. State-dependent
multiplicative noises can be seen as special cases of the
considered stochastic nonlinearities. In the proposed estimator
(9)-(13), the information on the dynamics of neitherγi,s nor
di,s is required, which facilitates the effective handling of the
fault (without priori knowledge) and the saturation. It will be
illustrated later that a group of properly selected parameters
can guarantee the unbiasedness of the estimation results ofγi,s
and x̄i,s under several existence conditions. By introducing
the variablesx̃i,s and z̃i,s, the right-hand side of (11) is a
linear combination of the fault, stochastic nonlinearity, external
noises and estimation error in the previous time step. It will be
shown that the coefficient of the faultγi,s can be a unit matrix
under certain conditions and an unbiased estimation result of
the fault can be obtained correspondingly. Moreover, since it
is overly complicated to calculate the accurate estimation error
covariance in the presence of the saturations and the stochastic
nonlinearities, an upper bound of the fault estimation error
covariance will be derived and then minimized via determining
the estimator parameters.

Remark 2: In case that the saturated measurementyi,2,s is
dependent on all the elements of the system state, the mea-
surement equations in (1) can be obtained after a coordinate
transformation. As long as the matrixCi,2,s is of full row rank,
there always exists an invertible matrixSi,2,s such that

Ci,2,sSi,2,s =
[

0, C̃i,2,s

]

, (14)

whereC̃i,2,s ∈ R
m2×m2 is invertible. Considering the coordi-

nate transformationx[t]
i,s = S−1

i,2,sxi,s, the second measurement
equation becomes

yi,2,s =σ[i]
(

Ci,2,sSi,2,sx
[t]
i,s + vi,2,s

)

=σ[i]
([

0, C̃i,2,s

]

x
[t]
i,s + vi,2,s

)

=σ[i]
(

C̃i,2,sx
[t]
i,2,s + vi,2,s

)

, (15)

wherex[t]
i,s =

[(

x
[t]
i,1,s

)T

,
(

x
[t]
i,2,s

)T
]T

. Thus, it is evident that

the measurement equations can still be written in the form of
(1) after the coordinate transformation even if the saturated
measurement is related to every element of the original system
state.

III. E STIMATOR DESIGN

In this section, the desired state and fault estimator is
to be parameterized, and the existence conditions of the
estimator will be established as well. Firstly, two matrices
Xi,s ∈ R

(n+m2)×n and Ki,s ∈ R
(n+m2)×m2 are provided

to satisfy

[Xi,s,Ki,s]

[
E

C̄i,2,s

]

= I. (16)

It follows from the definitions of matricesE andC̄i,2,s that

[
E

C̄i,2,s

]−1

=





I 0 0
0 I 0
0 Ci,2,s I





−1

=





I 0 0
0 I 0
0 −Ci,2,s I



 . (17)

Therefore, the invertibility of the matrix

[
E

C̄i,2,s

]

can be

guaranteed. Furthermore, it is obvious that

Xi,s =





I 0
0 I
0 −Ci,2,s



 , Ki,s =





0
0
I



 . (18)

The matricesXi,s andKi,s will play important roles in the
following design procedure. It can be seen thatKi,s is in fact
constant, so its subscripts will be omitted in the following
calculations. Now, the unbiasedness of the estimator is to be
discussed.

Theorem 1:If the condition

Ri,s+1C̄i,s+1Xi,s+1Bi,sUi,s = I (19)
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holds for every time step, then with an unbiased initial
conditionE {ei,0} = 0 for all the nodes, the state and fault
estimation results are both unbiased withXi,s+1 andK given
by (18), and the other parameters provided as follows:

Hij,s = aij,sXi,s+1Γ̄, (20)

Mi,s = Xi,s+1Āi,s, (21)

Si,s = Xi,s+1Bi,sUi,s, (22)

Ji,s = Mi,sK, (23)

Lij,s = Hij,sK. (24)

Proof: See Appendix A.
Remark 3:Based on Theorem 1, with the unbiased initial

condition, the unbiased fault and state estimation can be
achieved under condition (19). In this unified framework,
the original system states, the multiplicative fault and the
output error (brought in by the measurement saturation) are all
estimated simultaneously. Compared to some existing results
where the saturation levels have been used to develop a robust
estimator [19], [38], the method proposed in this article direct-
ly estimates the saturation-induced error and then compensates
it in the state and fault estimation. The consideration of the
distributed structure in complex networks constitutes another
contribution of our method with respect to [19]. It is noted
that, when (19) holds,Ri,s+1 cannot be determined uniquely
and, to deal with this issue,Ri,s+1 is to be selected in the
minimum variance sense.

Set Pi,s , E
{
ei,se

T
i,s

}
, P

[γ]
i,s , E

{

e
[γ]
i,s

(

e
[γ]
i,s

)T
}

. In

the following lemma, the state and fault estimation error
covariances are provided.

Lemma 1: If (19) holds, thenP [γ]
i,s obeys the following

equation:

P
[γ]
i,s = Ri,s+1Q

[γ]
i,s+1R

T
i,s+1, (25)

where

Q
[γ]
i,s+1 =C̄i,s+1Xi,s+1R

[γ]
i,s+1X

T
i,s+1C̄

T
i,s+1 +

(
C̄i,s+1

×KF − I
)
Vi,s+1

(
C̄i,s+1KF − I

)T
, (26)

R
[γ]
i,s+1 =

(
Āi,s + aii,sΓ̄

)
Pi,s

(
Āi,s + aii,sΓ̄

)T
+
(
Āi,s

+ aii,sΓ̄
)

N∑

j=1,j 6=i

aij,sE
{
ei,se

T
j,s

}
Γ̄T

+

N∑

j=1,j 6=i

aij,sΓ̄E
{
ej,se

T
i,s

} (
Āi,s + aii,sΓ̄

)T

+
N∑

j=1,j 6=i

N∑

h=1,h 6=i

aij,saih,sΓ̄E
{

ej,se
T
h,s

}

Γ̄T

+Θi,sE
{
x̄T
i,sE

TΨi,sEx̄i,s

}
+Wi,s. (27)

Proof: See Appendix B.
We can see that it is quite complicated to directly compute

P
[γ]
i,s based on Lemma 1 since there are many cross-covariances

between estimation errors of different nodes. Naturally, it is
difficult to characterize the estimator in the sense of mini-
mizing the accurate estimation error covariance. To facilitate

the estimator design, we will calculate an upper bound of the
estimation error covariance and then locally minimize it.

The following lemma is to be used in the subsequent
procedures.

Lemma 2: [19] For any two vectorsx, y ∈ R
n, the

inequality

xyT + yxT ≤ εxxT + ε−1yyT (28)

holds whereε > 0 is a constant scalar.
Lemma 2 can be proved easily with the renowned inequality

of arithmetic and geometric means. In this paper, this lemma
is introduced to deal with the cross-covariances between
estimation errors of different nodes.

Theorem 2:Let ε1 andε2 be positive scalars. Assume that
E {ei,κ} = 0 andPi,κ ≤ P̄i,κ hold for every nodei = 1, . . . , n
and every time stepκ ≤ s. Define the following variable:

P̄
[γ]
i,s = Ri,s+1Q̄

[γ]
i,s+1R

T
i,s+1, (29)

where

Q̄
[γ]
i,s+1 =C̄i,s+1Xi,s+1R̄

[γ]
i,s+1X

T
i,s+1C̄

T
i,s+1 +

(
C̄i,s+1

×KF − I
)
Vi,s+1

(
C̄i,s+1KF − I

)T
, (30)

R̄
[γ]
i,s+1 =



1 + ε1

N∑

j=1,j 6=i

aij,s




(
Āi,s + aii,sΓ̄

)
P̄i,s

×
(
Āi,s + aii,sΓ̄

)T
+



ε−1
1 +

N∑

j=1,j 6=i

aij,s





×

N∑

j=1,j 6=i

aij,sΓ̄P̄j,sΓ̄
T +

(
1 + ε−1

2

)
Θi,str{E

× x̂i,sx̂
T
i,sE

TΨi,s}+ (1 + ε2)Θi,str{EP̄i,sE
T

×Ψi,s}+Wi,s. (31)

Then, we haveP [γ]
i,s ≤ P̄

[γ]
i,s . Moreover, if the following

condition is satisfied:

rank
([

ΦT
i,s+1, F̂

T
])

= rank
(
ΦT

i,s+1

)
, (32)

where

Φi,s+1 =

[

∆i,s+1 Q̄
[γ]
i,s+1

0 −∆T
i,s+1

]

, (33)

∆i,s+1 =C̄i,s+1Xi,s+1Bi,sUi,s, (34)

F̂ = [I, 0] , (35)

then with

Ri,s+1 =F̃i,s+1 [I, 0]
T , (36)

F̃i,s+1 =F̂Φ†
i,s+1 + Ξ

(

I − Φi,s+1Φ
†
i,s+1

)

, (37)

whereΞ is an arbitrary matrix with appropriate dimension, the
gain Ri,s+1 in (36) can minimizetr

{

P̄
[γ]
i,s+1

}

at each time
step.

Proof: See Appendix C.
Remark 4:Based on Theorem 1, it can be seen that the un-

biased fault estimator can be established with the upper bounds
of the distributed state estimation error. In the subsequent
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steps, the upper bound will be obtained with the parameters
designed in Theorems 1 and 2.Si,s can be updated at each time
step when the control input is known. Under condition (32),
the parameter in (36) can always guarantee that assumption
(19) holds.

Let us examine the rank ofΦi,s+1 in detail. According to
the definitions ofC̄i,s, Xi,s andK, Q̄[γ]

i,s+1 can be written as

Q̄
[γ]
i,s+1 =

[

Ĉi,1,s+1 Ĉi,2,s+1

0 0

]

R̄
[γ]
i,s+1

[

Ĉi,1,s Ĉi,2,s

0 0

]T

+

[
I 0
0 0

]

Vi,s+1

[
I 0
0 0

]

. (38)

SinceR̄[γ]
i,s+1 andVi,s+1 are both positive definite matrices

according to their definitions, we can writēQ[γ]
i,s+1 as

Q̄
[γ]
i,s+1 =

[
Πi,s+1 0

0 0

]

, (39)

whereΠi,s+1 is a positive definite matrix.
The matrix∆i,s+1 can be re-organized as

∆i,s+1 =

[

Ĉi,1,s+1 Ĉi,2,s+1

0 0

]

Bi,sUi,s =

[

∆̆i,s+1

0

]

,

(40)

where

∆̆i,s+1 =
[

Ĉi,1,s+1, Ĉi,2,s+1

]

Bi,sUi,s. (41)

It follows that

Φi,s+1 =





∆̆i,s+1 Πi,s+1 0
0 0 0

0 −∆̆T
i,s+1 0



 , (42)

and

[

ΦT
i,s+1, F̂

T
]

=





∆̆T
i,s+1 0 0 I

Πi,s+1 0 −∆̆i,s+1 0
0 0 0 0



 . (43)

Noticing thatΠi,s+1 is a positive definite matrix of full rank,
we have

rank
([

ΦT
i,s+1, F̂

T
])

=m1 + l, (44)

wherem1 and l are the dimensions ofΠi,s+1 andI, respec-
tively.

According to (42), it can be seen that

rank (Φi,s+1) = rank

([
∆̆i,s+1 Πi,s+1

0 −∆̆T
i,s+1

])

. (45)

Based on (44) and (45), we can conclude that if

rank

([
∆̆i,s+1 Πi,s+1

0 −∆̆T
i,s+1

])

= m1 + l, (46)

then (32) is satisfied and the existence of the desiredRi,s+1

can be ensured.
Remark 5: In (68), Lemma 2 has been applied withε = 1 to

reduce the conservatism in the calculation of the upper bound.

A detailed explanation is given as follows. Select an arbitrary
ε, and then (68) becomes

N∑

j=1,j 6=i

N∑

h=1,h 6=i

aij,saih,sΓ̄E
{
ej,se

T
h,s

}
Γ̄T

=
1

2

N∑

j=1,j 6=i

N∑

h=1,h 6=i

aij,saih,sΓ̄E
{
ej,se

T
h,s + eh,se

T
j,s

}
Γ̄T

≤
1

2

N∑

j=1,j 6=i

N∑

h=1,h 6=i

aij,saih,sΓ̄E

{

εej,se
T
j,s +

1

ε
eh,se

T
h,s

}

Γ̄T

=
1

2

(

ε+
1

ε

) N∑

j=1,j 6=i

aij,s

N∑

j=1,j 6=i

aij,sΓ̄E
{
ej,se

T
j,s

}
Γ̄T .

It is obvious that whenε = 1, the coefficient12

(

ε+ 1
ε

)

is minimum and its value is 1. A tight upper bound of the
equation naturally leads to less conservatism.

Based on Theorem 2,Ri,s+1 can be obtained with a group
of P̄i,s ≥ Pi,s, and these upper bounds of estimation errors
are provided in the following theorem.

Theorem 3:Assume that the conditions (19) and (32) hold
for every node and every time step, and the estimator is char-
acterized based on Theorems 1 and 2. Consider the following
matrix:

P̄i,s+1 =
(
I − Si,sRi,s+1C̄i,s+1

)
Xi,s+1R̄

[γ]
i,s+1X

T
i,s+1

(
I

− Si,sRi,s+1C̄i,s+1

)T
+
[
Si,sRi,s+1

(
C̄i,s+1

×KF − I
)
−KF

]
Vi,s+1

[
Si,sRi,s+1

×
(
C̄i,s+1KF − I

)
−KF

]
. (47)

Then,P̄i,s is an upper bound ofPi,s.
Proof: See Appendix D.

The overall algorithm is summarized as follows to show the
determination of the parameters at each time step.

Algorithm:
Step 1. Determine the initial valuēPi,0 ≥ Pi,0.

Step 2. Calculate theP̄ [γ]
i,s , Q̄[γ]

i,s+1 and R̄
[γ]
i,s+1 based

on (29)-(31).
Step 3. If (32) does not hold, the solution does not

exist and stop. Otherwise, computeRi,s+1

with (36).
Step 4. ChooseMi,s, Hij,s, K, Ji,s, Si,s and Lij,s

according to (18) and (20)-(24).
Step 5. UpdateP̄i,s+1 with (47).
Step 6. Sets = s+ 1 and go toStep 2.

Remark 6:Theorem 3 has provided a way to calculate an
upper bound of the state estimation error covariance. So far,
the state and fault estimation problem has been solved in
the paper for a class of complex networks subject to sensor
saturations and stochastic nonlinearities. The structure of the
estimator has been properly selected such that the fault can
be decoupled from the state estimation error under condition
(19). The system has been written in a singular form, where the
saturation error has been integrated into the system state. In
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this way, the covariances of the state/fault estimation errors
can be obtained even in the presence of unknown faults
and saturation errors. The applicability and feasibility of the
established estimator have been greatly enhanced since a
center node is not required. The upper bound of the estimation
error covariance has been calculated in consideration of the
interconnections between different nodes, and the estimator
has been parameterized allowing for the sparse structure of
the complex network.

Remark 7: In the parameters of the estimator (9)-(13),
Mi,s, Hij,s, Ki,s, Ji,s, Si,s and Lij,s have been obtained
based on (18) and (20)-(24), such that the unbiased fault/state
estimates can be achieved. By resorting to (36),Ri,s+1 has
been computed to minimize an upper bound of the fault
estimation error under condition (32).

Now let us analyze the stability of the proposed estimation
strategy. When lim

s→∞
xi,s → ∞, it is obvious thatP̄i,s is

divergent due to the termgi,s(xi,s, αi,s), whose second-order
moment is a quadratic function ofxi,s. Next, the dynamics of
the estimation error will be discussed in the absence of the
stochastic nonlinearitygi,s(xi,s, αi,s). Denote the following
variables:

D1,s ,diag
{(

I − S1,sR1,s+1C̄1,s+1

)
X1,s+1, . . . ,

(
I − SN,sRN,s+1C̄N,s+1

)
XN,s+1

}
,

D2,s ,diag
{
S1,sR1,s+1

(
C̄1,s+1KF − I

)
−KF, . . . ,

SN,sRN,s+1

(
C̄N,s+1KF − I

)
−KF

}
,

Ãs ,diag
{
Ā1,s + a11,sΓ̄, . . . , ĀN,s + aNN,sΓ̄

}
,

W̃s ,diag {W1,s, . . . ,WN,s} , Γ̃1 , diag{Γ̄, . . . , Γ̄
︸ ︷︷ ︸

N

},

Ṽs ,diag {V1,s, . . . , VN,s} , Γ̃2 , [Γ̄, . . . , Γ̄
︸ ︷︷ ︸

N

],

A1,s ,diag






1 + ε

N∑

j=2

a1j,s, . . . , 1 + ε

N−1∑

j=1

aNj,s






⊗ I,

A2,s ,diag






ε−1 +

N∑

j=2

a1j,s, . . . , ε
−1 +

N−1∑

j=1

aNj,s






⊗ I,

A3,s ,[ãij,s]N×N ⊗ I, where ãij,s =

{
aij,s, if i 6= j,
0, if i = j.

(48)

With the variables defined above, the following assumption
is proposed.

Assumption 1:There are positive real numbers̄wi, v̄i, b̄i,
ūi, c̄i and τ i, such that the following bounds on various
matrices are fulfilled for every1 ≤ i ≤ N ands ≥ 0:

‖Wi,s‖ ≤ w̄i, ‖Vi,s‖ ≤ v̄i, ‖Bi,s‖ ≤ b̄i,

‖Ui,s‖ ≤ ūi, ‖Ci,s‖ ≤ c̄i,

C̄i,s+1Xi,s+1Bi,sUi,sU
T
i,sB

T
i,sX

T
i,s+1C̄

T
i,s+1 ≥ τ iI, (49)

and the following inequality holds:

‖A1,s‖
∥
∥
∥D1,sÃs

∥
∥
∥

2

+
∥
∥
∥A2,sA3,sΓ̃1

∥
∥
∥

∥
∥
∥Γ̃2

∥
∥
∥ < 1. (50)

Theorem 4:Consider the complex network (8) (without the
stochastic nonlinearitygi,s(xi,s, αi,s)) with the distributed es-
timator (9)-(13), whose parameters are determined by resorting
to Theorems 2 and 3. If the initial estimation error is bounded
and condition (32) holds, then under Assumption 1, the state
and fault estimation errors are bounded in mean square, i.e.,

sup
s∈N

N∑

i=1

E
{
eTi,sei,s

}
< ∞, (51)

and

sup
s∈N

N∑

i=1

E

{(

e
[γ]
i,s

)T

e
[γ]
i,s

}

< ∞. (52)

Proof: See Appendix E.
Remark 8:The main differences between the methods de-

veloped in this paper and those in [30], [31] mainly lie in two
aspects. 1) The dynamics of the faults has not been required in
our current investigation, while faults in [30], [31] have been
modeled in a polynomial form (with respect to time steps),
which might not be the case in engineering practice. In this
paper, to deal with the unavailable fault dynamics, we have
provided (19) to guarantee the unbiased fault/state estimations,
and then presented the sufficient condition (32) that ensures
(19) to hold. 2) The measurement saturation phenomenon
has been introduced in this paper, which has brought in
extra nonlinearities/errors. To tackle such an extra complexity,
we have constructed a singular system (8) accounting for
the saturation error, and the corresponding structure of the
estimator (9)-(13) has been different from that of the Kalman-
like filter in [30], [31].

IV. I LLUSTRATIONS

Let us consider a time-varying complex network with four
nodes. Wheni 6= j, aij,s = 0.1 or 0. A group of independent
Bernoulli distributed sequences is employed to characterize the
dynamic topology of the system. Define̺ij = Prob(aij,s =
0.1)(i 6= j) with







̺12 ̺13 ̺14
̺21 ̺23 ̺24
̺31 ̺32 ̺34
̺41 ̺42 ̺43






=







0.25 0.35 0.45
0.35 0.45 0.55
0.45 0.55 0.65
0.55 0.65 0.75






.

The simulation example is inspired by the three-tank system
presented in [29], where each node represents a three-tank
system. Three-tank system is a typical nonlinear system widely
used in control and filtering disciplines. Because of the output
signal range of the plate capacitor and the vibration induced by
the water inlet, the actual three-tank system is subject to both
measurement saturations and stochastic nonlinearities. Set the
steady liquid levels to beh⋆ = [0.6813, 0.3321, 0.5534]Tm
and the sampling periodTs = 1s. Then, the system model of
the system can be obtained as follows along the similar line
in [48]:

Ai,s =





0.9908 0 0.0091
0 0.9856 0.0072

0.0091 0.0072 0.9836
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+ sin (s/10)×





0 0 0
0 0 −0.0001
0 0 0.0001



 ,

Bi,s =





64.6627
0.0007
0.2978



+ sin (s/10)×





0
0.0001
−0.0001



 ,

Ĉi,1,s = 1, Ĉi,2,s =
[
0 0

]
, Ci,2,s =

[
1 0

]
,

Q
[P ]
i,s = 10−3 ×

[
−31.9 9.6

]
,

Q
[I]
i,s = 10−3 ×

[
−1.5 2.1

]
, Γ = 0.1I.

Based on the values of̂Ci,1,s, Ĉi,2,s andCi,2,s, it can be
seen that the measurement of Tank 2 is subject to saturation
phenomenon where the saturation level is set to be 0.02.

The disturbanceswi,s and vi,s are 2 × 10−5 times of unit
Gaussian white noises fori = 1, . . . , 4. The parametersε1
and ε2 is determined to be 1.2 and 1.5, respectively. Every
element of the initial system state is uniformly distributed over
[−0.02− 0.01i, 0.08− 0.01i] for the ith node(i = 1, . . . , 4).
The stochastic nonlinear function is selected as:

gi,s(xi,s, αi,s) =





0.4
0.3
0.1





3∑

r=1

sign
(

x
(r)
i,s

)

x
(r)
i,sα

(r)
i,s ,

whereαi,s =
[

α
(1)
i,s , α

(2)
i,s , α

(3)
i,s

]T

is 5 × 10−3 times of unit
Gaussian white noise fori = 1, . . . , 4. It can be readily verified
that such a nonlinear function satisfies (2)-(4) with

Θi,s =





0.16 0.12 0.04
0.12 0.09 0.03
0.04 0.03 0.01



 , Ψi,s = 2.5× 10−5I.

The following multiplicative loss of actuator effectiveness
is considered for Node 4:

Υ4,s =

{
1, if s ≤ 40,

1− (s− 20)/40, otherwise.

A multiplicative ramp fault, which is common in practice
due to ubiquitous component degradations, is considered in
the simulation. It is noted that other types of faults can be
handled with the proposed strategy as well since there is no
limitation on the dynamics of the fault in our estimator.

Firstly, the measurement outputs subject to the saturation
phenomenon at all the nodes are depicted in Fig. 2. It can
be seen that the outputs in Nodes 1 and 4 are saturated at the
first 22 and 13 time steps, respectively, when the system states
are distant from the equilibrium points in the early stage. By
resorting to Theorems 1-3, the estimates of the states and the
actuator faults can be obtained at every node. The Euclidean
norms of state estimation errors are illustrated in Fig. 3. The
state estimation is satisfying in the presence of the saturations
and the multiplicative faults. The actual fault at Node 4 and
the estimate are both presented in Fig. 4. It is clear that the
fault can be estimated well after some unsteady transient steps.
Therefore, the proposed method can estimate the state and fault
well simultaneously. The condition (32) can be verified in this
simulation example by making sure thatui,s 6= 0 at each time
instant.
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Fig. 4. Actual fault and its estimate

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 
Citation information: DOI10.1109/TSIPN.2022.3150183, IEEE Transactions on Signal and Information Processing over Networks 



ACCEPTED 9

0 20 40 60

Time

0

0.02

0.04

0.06

0.08

E
rr

or
 o

f s
ub

sy
st

em
 1

Proposed method
Li et al.

0 20 40 60

Time

0

0.02

0.04

0.06

E
rr

or
 o

f s
ub

sy
st

em
 2

Proposed method
Li et al.

0 20 40 60

Time

0

0.02

0.04

0.06

0.08

E
rr

or
 o

f s
ub

sy
st

em
 3

Proposed method
Li et al.

0 20 40 60

Time

0

0.05

0.1

E
rr

or
 o

f s
ub

sy
st

em
 4

Proposed method
Li et al.

Fig. 5. State estimation error comparisons
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Fig. 6. Equivalent additive fault estimation errors

To further illustrate the estimation performance of our
approach, the estimation result of the method proposed in [25]
that can cope with distributed systems is compared with that
of the developed estimator. The state estimation errors of all
the nodes are presented in Fig. 5, and it is transparent that our
method can achieve smaller errors at almost every time step.
Moreover, the equivalent additive fault (i.e.,ui,s − Υi,sui,s

in our problem formulation) estimation errors are compared
in Fig. 6 because the method in [25] is inapplicable to deal
with the multiplicative parameters. Our estimator can realize
more accurate fault estimation because the saturation effects
are compensated in the framework, and such a strategy leads
to less conservatism.

To show the applicability of the provided method, the
unplugging and plug-in time of each node is illustrated in
Table I. Due to the space limitation, the unplugging and plug-
in time only in the first 20 time steps are presented. It can
be seen that each node is plugged-in and unplugged at least
once, and our method can still achieve the satisfying estimation
results. Therefore, it can be asserted that the developed method
is suitable for complex networks over dynamic topology.

To illustrate the performance of the established estimation

TABLE I
PLUG-IN AND UNPLUGGING OF EACH NODE IN0-20TIME STEPS

Node Unplugging time Plug-in time
1 4 6

10 11
12 13
18 19

2 15 17
19 20

3 18 19
4 9 10
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Fig. 7. State estimation errors in the unstable case

strategy in an unstable system, we resetQ
[P ]
i,s as

Q
[P ]
i,s =10−2 ×

[
−4.35 1.30

]
.

The state and fault estimation results are depicted in Fig. 7
and Fig. 8, respectively. It is clear that the state/fault can be
tracked well in an unstable complex network.

V. CONCLUSION

The joint state and fault estimation problem has been studied
in the paper for a class of complex networks with measurement
saturations and stochastic nonlinearities. The difference be-
tween the actual measurement and the saturated measurement
has been formulated as an unknown input. An augmented state
composed of the original system state and the unknown input
has been constructed and the system has been written in a
singular structure. To cater for the singular form, an estimator
in the proper structure has been put forward at each node
with only locally available information. The parameters have
been obtained ensuring the unbiasedness of the estimation
results and the minimization of the upper bounds of the fault
estimation error covariances. Sufficient conditions have been
established which can guarantee the existence, unbiasedness,
and boundedness of the desired estimator. Some simulation
examples have been demonstrated to show the effectiveness
of the proposed algorithm. Further research topics would be
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Fig. 8. Actual fault and its estimate in the unstable case

the extension of the main results of this paper to more complex
systems with more network-induced phenomena [7], [9], [11],
[20], [22], [39], [43], [53].

APPENDIX A
PROOF OFTHEOREM 1

The theorem can be proved by induction. Considering the
initial condition E {ei,0} = 0, we can assumeE {ei,κ} = 0
for all the nodes and everyκ ≤ s, and it remains to show that
E

{

e
[γ]
i,s

}

= 0 andE {ei,s+1} = 0. The unbiasedness of the
fault estimation is to be dealt with first.

From (10), it follows that

ẽi,s+1 =x̄i,s+1 − x̃i,s+1

=
(
I −KC̄i,2,s+1

)
x̄i,s+1 − z̃i,s+1 −Kvi,2,s+1. (53)

Considering (8), (9) and (16), we have

ẽi,s+1 =Xi,s+1

[

Āi,sx̄i,s + gi,s(Ex̄i,s, αi,s) +Bi,sUi,sγi,s

+

N∑

j=1

aij,sΓ̄x̄j,s + wi,s

]

−

N∑

j=1

Hij,sx̂j,s −Mi,sx̂i,s

−Kvi,2,s+1. (54)

Substituting (20) and (21) into (54) yields

ẽi,s+1 =Mi,sei,s +Xi,s+1gi,s(Ex̄i,s, αi,s) +Xi,s+1Bi,sUi,s

× γi,s +

N∑

j=1

Hij,sej,s +Xi,s+1wi,s −Kvi,2,s+1.

(55)

Now, let us calculate the fault estimation error. Based on
(11) and (55), we have

e
[γ]
i,s =γi,s −Ri,s+1

(
yi,s+1 − C̄i,s+1x̃i,s+1

)

=γi,s −Ri,s+1

(
C̄i,s+1ẽi,s+1 + vi,s+1

)

=
(
I −Ri,s+1C̄i,s+1Xi,s+1Bi,sUi,s

)
γi,s −Ri,s+1

× C̄i,s+1ηi,s+1 +Ri,s+1

(
C̄i,s+1KF − I

)
vi,s+1,

(56)

where

ηi,s+1 =Mi,sei,s +Xi,s+1gi,s(Ex̄i,s, αi,s)

+

N∑

j=1

Hij,sej,s +Xi,s+1wi,s, (57)

F =[0, I]. (58)

According to the assumptions thatE {ei,κ} = 0 for every
κ ≤ s and that the noises are zero-mean, it can be seen that
E

{

e
[γ]
i,s

}

= 0 if (19) holds. Therefore, the fault estimate is
unbiased and we have

e
[γ]
i,s =−Ri,s+1C̄i,s+1ηi,s+1 +Ri,s+1(C̄i,s+1KF

− I)vi,s+1. (59)

Next, the unbiasedness of the state estimate is to be proved.
According to (13), we have

ei,s+1 =x̄i,s+1 − x̂i,s+1

=
(
I −KC̄i,2,s+1

)
x̄i,s+1 − ẑi,s+1 −Kvi,2,s+1. (60)

From (8), (12) and (16), it follows that

ei,s+1 =Xi,s+1

(

Āi,sx̄i,s + gi,s(Ex̄i,s, αi,s) +Bi,sUi,sγi,s

+

N∑

j=1

aij,sΓ̄x̄j,s + wi,s

)

−Mi,sẑi,s − Ji,syi,2,s

− Si,sγ̂i,s −
N∑

j=1

Hij,sẑj,s −
N∑

j=1

Lij,syj,2,s

−Kvi,2,s+1. (61)

According to (20)-(22), we have

ei,s+1 =Mi,sx̄i,s +Xi,s+1gi,s(Ex̄i,s, αi,s) + Si,se
[γ]
i,s

+

N∑

j=1

Hij,sx̄j,s +Xi,s+1wi,s −Mi,sẑi,s

− Ji,syi,2,s −

N∑

j=1

Hij,sẑj,s −

N∑

j=1

Lij,syj,2,s

−Kvi,2,s+1. (62)

Based on (13), (59) and the definition ofei,s, we have

ei,s+1 =Mi,sx̄i,s +Xi,s+1gi,s(Ex̄i,s, αi,s)− Si,sRi,s+1

× C̄i,s+1ηi,s+1 + Si,sRi,s+1(C̄i,s+1KF − I)vi,s+1

+

N∑

j=1

Hij,sx̄j,s +Xi,s+1wi,s −Mi,s

(
x̄i,s − ei,s

−Kyi,2,s
)
− Ji,syi,2,s −

N∑

j=1

Hij,s

(
x̄j,s − ej,s

−Kj,syj,2,s
)
−

N∑

j=1

Lij,syj,2,s −Kvi,2,s+1. (63)
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It follows from (23) and (24) that

ei,s+1 =Mi,sei,s +Xi,s+1gi,s(Ex̄i,s, αi,s)− Si,sRi,s+1

× C̄i,s+1ηi,s+1 + Si,sRi,s+1(C̄i,s+1KF − I)vi,s+1

+

N∑

j=1

Hij,sej,s +Xi,s+1wi,s −KFvi,s+1. (64)

Again, since it has been assumed thatE {ei,κ} = 0 for every
κ ≤ s, it can be concluded thatE {ei,s+1} = 0. The proof is
complete.

APPENDIX B
PROOF OFLEMMA 1

Considering (20) and (21),ηi,s+1 in (57) can be written as

ηi,s+1 =Xi,s+1η̂i,s+1, (65)

where

η̂i,s+1 =Āi,sei,s + gi,s(Ex̄i,s, αi,s) +

N∑

j=1

aij,sΓ̄ej,s + wi,s.

(66)

It is obvious thatR[γ]
i,s+1 = E

{
η̂i,s+1η̂

T
i,s+1

}
. Then, (25) is

easily accessible from (59), where the detailed proof is omitted
here.

APPENDIX C
PROOF OFTHEOREM 2

First, let us show thatR[γ]
i,s+1 ≤ R̄

[γ]
i,s+1. Based on Lemma

2, we have

(
Āi,s + aii,sΓ̄

)
N∑

j=1,j 6=i

aij,sE
{
ei,se

T
j,s

}
Γ̄T

+
N∑

j=1,j 6=i

aij,sΓ̄E
{
ej,se

T
i,s

} (
Āi,s + aii,sΓ̄

)T

≤

N∑

j=1,j 6=i

aij,s

[

ε1
(
Āi,s + aii,sΓ̄

)
E
{
ei,se

T
i,s

} (
Āi,s

+ aii,sΓ̄
)T

+ ε−1
1 Γ̄E

{
ej,se

T
j,s

}
Γ̄T
]

, (67)

and
N∑

j=1,j 6=i

N∑

h=1,h 6=i

aij,saih,sΓ̄E
{
ej,se

T
h,s

}
Γ̄T

=
1

2

N∑

j=1,j 6=i

N∑

h=1,h 6=i

aij,saih,sΓ̄E
{
ej,se

T
h,s + eh,se

T
j,s

}
Γ̄T

≤
1

2

N∑

j=1,j 6=i

N∑

h=1,h 6=i

aij,saih,sΓ̄E
{
ej,se

T
j,s + eh,se

T
h,s

}
Γ̄T

=
N∑

j=1,j 6=i

aij,s

N∑

j=1,j 6=i

aij,sΓ̄E
{
ej,se

T
j,s

}
Γ̄T . (68)

Furthermore, we have

Θi,sE
{
x̄T
i,sE

TΨi,sEx̄i,s

}

=Θi,str
{

EE

{

(ei,s + x̂i,s) (ei,s + x̂i,s)
T
}

ETΨi,s

}

≤Θi,str
{
E
[
(1 + ε2)Pi,s +

(
1 + ε−1

2

)
x̂i,sx̂

T
i,s

]
ETΨi,s

}

=
(
1 + ε−1

2

)
Θi,str

{
Ex̂i,sx̂

T
i,sE

TΨi,s

}
+ (1 + ε2)Θi,s

× tr{EPi,sE
TΨi,s}. (69)

Substituting (67)-(69) into (27) yields

R̄
[γ]
i,s+1 ≤



1 + ε1

N∑

j=1,j 6=i

aij,s




(
Āi,s + aii,sΓ̄

)
Pi,s

×
(
Āi,s + aii,sΓ̄

)T
+



ε−1
1 +

N∑

j=1,j 6=i

aij,s





×

N∑

j=1,j 6=i

aij,sΓ̄Pj,sΓ̄
T +

(
1 + ε−1

2

)
Θi,str{E

× x̂i,sx̂
T
i,sE

TΨi,s}+ (1 + ε2)Θi,str{EPi,sE
T

×Ψi,s}+Wi,s. (70)

Considering the assumption thatPi,κ ≤ P̄i,κ for all the
nodes and every previous time step, we haveR

[γ]
i,s+1 ≤ R̄

[γ]
i,s+1.

Based on (30) and (31), it follows directly thatQ[γ]
i,s ≤ Q̄

[γ]
i,s

andP [γ]
i,s ≤ P̄

[γ]
i,s , respectively.

Now we have proved that̄P [γ]
i,s is an upper bound ofP [γ]

i,s ,
and it is to be shown thatRi,s+1 in (36) can minimize

tr
{

P̄
[γ]
i,s

}

. According to (30) and the condition (19), the
following cost function is to be minimized:

V
[γ]
i,s+1 =tr

{

P̄
[γ]
i,s

}

− 2tr
{
(Ri,s+1C̄i,s+1Xi,s+1Bi,sUi,s

− I)ΛT
i,s+1

}
, (71)

whereΛi,s+1 is the Lagrange multiplier. Then, we have

∂V
[γ]
i,s+1

∂Ri,s+1
=2Ri,s+1Q̄

[γ]
i,s+1 − 2Λi,s+1U

T
i,sB

T
i,sX

T
i,s+1C̄

T
i,s+1.

(72)

Considering the constraint (19) and setting

∂V
[γ]
i,s+1

∂Ri,s+1
= 0, (73)

the following equation can be established:

[Ri,s+1,Λi,s+1] Φi,s+1 = F̂ , (74)

whereΦi,s+1 and F̂ are given in (33) and (35), respectively.
When (32) holds, it is obvious that (74) is solvable and the
solution satisfies

[Ri,s+1,Λi,s+1] = F̂Φ†
i,s+1 + Ξ

(

I − Φi,s+1Φ
†
i,s+1

)

= F̃i,s+1. (75)

Moreover, we have

∂2V
[γ]
i,s+1

∂Ri,s+1∂R
T
i,s+1

= 2Q̄
[γ]
i,s+1 ≥ 0. (76)

Therefore,Ri,s+1 in (36) can minimize the cost function
V

[γ]
i,s+1, and this concludes the proof.
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APPENDIX D
PROOF OFTHEOREM 3

Considering (57) and (64), we have

ei,s+1 =
(
I − Si,sRi,s+1C̄i,s+1

)
ηi,s+1 + Si,sRi,s+1

×
(
C̄i,s+1KF − I

)
vi,s+1 −KFvi,s+1. (77)

From (65) and the factR[γ]
i,s+1 ≤ R̄

[γ]
i,s+1, it follows that

Pi,s+1 ≤
(
I − Si,sRi,s+1C̄i,s+1

)
Xi,s+1R̄

[γ]
i,s+1X

T
i,s+1

(
I

− Si,sRi,s+1C̄i,s+1

)T
+
[
Si,sRi,s+1

(
C̄i,s+1

×KF − I
)
−KF

]
Vi,s+1

[
Si,sRi,s+1

×
(
C̄i,s+1KF − I

)
−KF

]

=P̄i,s+1, (78)

and the proof is now complete.

APPENDIX E
PROOF OFTHEOREM 4

Firstly, we need to investigate the boundedness ofD1,s and
D2,s according to Assumption 1. From (19) and (49), it follows
that

‖Ri,s+1‖ ≤
1

τ i
, r̄i. (79)

Based on (18), we have

‖Xi,s+1‖ ≤
√

1 + c̄2i , x̄i. (80)

Substituting (80) and (49) into (22) yields

‖Si,s‖ ≤ x̄ib̄iūi , s̄i. (81)

From (79)-(81), it follows that

‖D1,s‖ ≤ max
i=1,...,N

[(1 + s̄ir̄ic̄i) x̄i] , d̄1, (82)

and

‖D2,s‖ ≤ max
i=1,...,N

[s̄ir̄i (c̄i + 1)] + 1 , d̄2. (83)

Now we can analyze the boundedness of the state/fault
estimation errors. DenotẽPs , diag

{
P̄1,s, . . . , P̄N,s

}
. Con-

sidering (47), we have

P̃s+1 =A1,sD1,sÃsP̃sÃ
T
s D

T
1,s +A2,sA3,sΓ̃1P̃sΓ̃

T
2

+D1,sW̃sD
T
1,s +D2,sṼsD

T
2,s. (84)

It is readily accessible that
∥
∥
∥P̃s+1

∥
∥
∥ ≤ρ

∥
∥
∥P̃s

∥
∥
∥+ δ̄, (85)

where

ρ = ‖A1,s‖
∥
∥
∥D1,sÃs

∥
∥
∥

2

+
∥
∥
∥A2,sA3,sΓ̃1

∥
∥
∥

∥
∥
∥Γ̃2

∥
∥
∥ ,

δ̄ = max
i=1,...,N

d̄1w̄i + max
i=1,...,N

d̄2v̄i.

According to (49) and (50), we haveρ < 1 and δ̄ is
uniformly bounded. Naturally,

∥
∥
∥P̃s

∥
∥
∥ is convergent with a

bounded initial condition. Sincetr
{

P̃s

}

has proved to be an

upper bound of
N∑

i=1

E
{
eTi,sei,s

}
, it can be asserted that the

state estimation error is bounded in mean square.
Based on (29)-(31), it can be easily seen that the upper

bound of the fault estimation error covariance is convergent if∥
∥
∥P̃s

∥
∥
∥ is convergent. It follows directly that the fault estimation

error is bounded in mean square, and the proof is complete
now.
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