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Abstract
In this article, a parallel formulation of the finite volume method is presented
for solving three-dimensional, turbulent, mixed, reactive, and slightly com-
pressible flows. It can also be used for incompressible laminar/turbulent flows.
The method is designed for nonorthogonal meshes, and oscillations caused by
the advective terms are treated by a deferred correction technique. The cho-
sen finite volume scheme is cell centered. The studied fluid is a single-phase
multicomponent gas with Newtonian behavior. The focus is mainly on gas mix-
tures with predominance of N2, since the chemical reaction of greatest interest
is the combustion process in the air. The buoyancy is caused by the gradient
of the specified mass, which is a function of the temperature and the com-
position of the gas mixture. The mathematical model uses an approximation
for low Mach numbers, describing slightly compressible flows. The coupling
between the fluid dynamic equations is given by the nonlinear Picard’s method,
with the pressure-velocity coupling treatment given by the SIMPLE algorithm
(semi-implicit method for pressure-linked equations). The complete mathemat-
ical model includes the sensitive enthalpy equation for the conservation of
energy. The LES (large eddy simulation) model is used for modeling the turbu-
lence. The chemical reactions are implemented using the EDC (eddy dissipation
concept) and the EDM (eddy dissipation model) approaches. The parallel strat-
egy is based on a subdomain-by-subdomain approach, and uses the MPI and
OpenMP standards in a hybrid parallel scheme. Compressed data structures are
used to store the matrix coefficients.

K E Y W O R D S

compressed data structures, finite volume method, message passing interface, parallel computing,
slightly compressible reactive flows

1 INTRODUCTION

In this article, we present a finite volume model for forced natural flows, involving a gas mixture at low velocities with
energy release. This type of flow can be classified as turbulent, mixed, reactive and slightly compressible. This model is of
great importance to fire simulations, which are based on four main steps: the gas mixture flow, the combustion chemical
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reactions, change of phase of the solid/liquid fuel and heat transfer by radiation. The proposed method includes the first
two steps of a complete fire simulation. Besides representing the first two steps of fire simulations, this method can be
fully exploited in combustion and heat transfer problems. Moreover, it can be used for laminar/turbulent incompressible
flows, just by turning off the combustion and the heat transfer models.

Two main formulations of the finite volume method (FVM) can be found in the literature, cell centered and node
centered. The most commonly used is the cell centered scheme, which is the one adopted in this article. In cell centered
techniques,1-3 the unknowns are associated to the cells in the average sense. For linear approximations the interpolated
values at the centroids coincide with the average values, while in node centered formulation the unknowns are calculated
at the vertices of the cells.

As it is well known, the advective terms need special treatment in order to avoid spurious oscillations and thus leading
to stable solutions. Pure upwind techniques are excessively diffusive, but there are higher order methods that when allied
with the TVD (total variation diminishing) approach provide very good results.4-6 This procedure optimizes the necessary
amount of diffusion to be applied, as it will be seen in Section 3. Other possibilities are WENO (weighted essentially
non-oscillatory)7,8 and hybrid compressible and incompressible.9

To obtain the gradients of the primary unknowns it is necessary to use methods for gradient reconstruction. The most
commonly used methods for this task are the least square and the Green-Gauss methods. Both can be developed for
orthogonal and nonorthogonal meshes.10-12

5 + N unknowns are used to describe this type of flow: three velocity components, pressure, energy and N mass frac-
tions, where N is the number of chemical species. Therefore, solving the whole problem with full coupling between the
equations might lead to high computational costs. One way to circumvent this problem is to uncouple the equations,
observing that special attention should be given to the coupling between pressure and velocity. One way to efficiently
solve these equations in an uncoupled manner is to use the semi-implicit method for pressure-linked equations (SIM-
PLE).13-15 Initially, the SIMPLE method was developed for steady incompressible flows, and later extended to transient
compressible flows.16

Concerning turbulence, there are four main families of turbulence models.17 These methods are the Reynolds aver-
aged Navier–Stokes equations (RANS) family, transport models for the Reynolds tensor, the large eddy simulation (LES)
method and lastly, the direct numerical simulation method (DNS).

The combustion model releases energy into the system through chemical reactions. The time and spatial scales in
which these reactions occur are largely different from flow scales. Another problem to be dealt with is the high nonlinear-
ity of the chemical reactions, due to the Arrhenius law. To circumvent these problems we use a deterministic approach,
in which each cell is divided into two regions; one where the fast chemical reactions occur and another where there are
no chemical reactions. The two main models used to implement this idea are the eddy dissipation concept (EDC) and the
eddy dissipation model (EDM).18-24

The transport of the species present in the gas mixture requires the diffusion velocities of the species. This is highly
complex, mathematically speaking, and it also requires great computational costs.25 In practice, only approximations of
this solution are used. The first possibility is to use the Maxwell–Stefan equation, which is close to the exact solution.
In this approach the diffusion velocities are explicitly calculated. However, the most commonly used approaches find a
correlation between the diffusion velocities and the species gradients, in a way similar to Fick’s law. These approaches
differ in the definition of the diffusion coefficients and the gradients to be applied, that is, molar or mass fraction gradients.

Some procedures use a single diffusion coefficient for all species through an approximation of the unit Lewis’ num-
ber and the gradients of the mass fractions. This is a valid approximation for full turbulent flows where the turbulent
diffusion is predominant in relation to the molecular diffusion.1 Another possibility is to use Fick’s law for each species.
An intermediate possibility, in cases where there is a predominant species, is to use an equivalent diffusion coefficient by
means of the Chapman–Enskog’s theory. In this case, all coefficients are calculated as a function of the coefficient of the
predominant species.26 Further yet, a first order solution of the Maxwel–Stefan equation relates the diffusion velocities
to the molar fraction gradients, known as Hirschfelder and Curtiss approximation. The latter approach was used in the
present work.27

Our model was designed for 3D nonorthogonal meshes, with a TVD upwind scheme, the SIMPLE method for the
equations coupling, the LES model to treat turbulence and the EDM model for the chemical reactions. The gradient
reconstruction is performed by the least square method. For the time discretization we use the Adams–Moulton second
order scheme.

As it can be observed, the proposed model is highly complex and time consuming. Therefore, parallelization of the
code becomes imperative if realistic problems are to be modeled. A state of the art review on parallel strategies for
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computational fluid dynamics (CFD) can be found in reference.28 Many attempts have been made to parallelize CFD
codes using, for example, Message Passing Interface (MPI) routines for distributed memory architectures, OpenMP and
CUDA computing platforms for shared memory architectures, or even hybrid models mixing these tools for both types of
architectures.

The main contribution of this article is the development of a hybrid parallel strategy based on a
subdomain-by-subdomain scheme, designed for both distributed and shared memory platforms.29 This
subdomain-by-subdomain approach is an adaptation of that developed for finite element codes,30 and has been used suc-
cessfully in many different problems.31-36 One major improvement presented in this work is the communication mapping,
which is highly efficient. This mapping fully optimizes point-to-point nonblocking communications performed by calls
to routines of the MPI library. An overlapping partitioning scheme avoids redundancies in terms of floating point opera-
tions, when compared to a sequential code. In addition, the OpenMP standard is used to fine tune the speedups, turning
the parallelization into a hybrid model. Furthermore, compressed data structures are used to store the matrix coeffi-
cients, together with specialized algorithms for matrix-vector and vector-vector operations.37,38 Two types of solver are
used, the CG for symmetric systems (pressure equations) and the BICGSTAB for nonsymmetric systems (Navier–Stokes
and transport equations).39,40 Finally, numerical results demonstrate the efficiency of the proposed method.

2 MATHEMATICAL MODEL

The mathematical model for reactive flows has 5 + N − 1 conservation equations, where N is the number of species
present in the gas mixture. To simplify the equations notation, the symbols () for filtered variable and (̃) for Favre
variable substitution are suppressed. The conservation equations are: mass conservation (Equation 1), three linear
momentum equations (Equation 2), energy conservation written in its sensible enthalpy form (Equation 3), and N − 1
mass conservation equations for the species (Equation 4). Considering the LES turbulence model, these equations can
be written as:

𝜕t𝜌g + ∇ ⋅
[
𝜌gv

]
= 0, (1)

𝜕t
[
𝜌gv

]
+ ∇ ⋅

{
𝜌gv v

}
= ∇ ⋅ 𝝉L − ∇p +

(
𝜌r − 𝜌g

)
g, (2)

𝜕t
(
𝜌ghs

)
+ ∇ ⋅

[
𝜌gvhs

]
= 𝜔̇T − ∇ ⋅ qL

e
, (3)

𝜕t
(
𝜌gYn

)
+ ∇ ⋅

[
𝜌gvYn

]
= 𝜔̇n − ∇ ⋅ qL

y
, (4)

where 𝜌g is the density of the gas mixture, v is the flow velocity, p is the dynamic pressure, g is the gravitational field, hs
is the sensible enthalpy, Yn is the mass fraction of species n, 𝜔̇T is the energy released by the chemical reactions, 𝜔̇n is the
mass source term for species n, 𝝉L is the molecular turbulent viscous stress tensor, qL

e
is the molecular turbulent energy

flux, qL
y

is the molecular turbulent mass flux and 𝜌r is the reference density. The mass fraction of species i is calculated by:

Yi = 1 −
N−1∑
n=1

Yn. (5)

The turbulent terms are given by:

𝝉L =
(
𝜇 + 𝜌g𝜈r

){
∇v +

(
∇v

)T − 2∕3
(
∇ ⋅ v

)
1
}
, (6)

qL
e
= −

(
k
cp

+
𝜌g𝜈r

𝜎T
h

)
∇hs, (7)

qL
y
= −

(
𝜌gDn +

𝜌g𝜈r

𝜎T
sc

)
∇Yn, (8)
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where 𝜇 is the molecular dynamic viscosity of the gas mixture, n is the molecular thermal conductivity coefficient of
the gas mixture, Dn is an approximation for the mass diffusion coefficient of species n, cp is the specific heat at constant
pressure of the gas mixture, 𝜎T

h is the turbulent Prandtl number, 𝜎T
sc is the turbulent Schmidt number and 𝜈r is the turbulent

viscosity. The turbulent Prandtl and Schmidt numbers are usually adopted as the constants 0.5 and 1.0, respectively.17,41

The turbulent viscosity is computed by the wall adapting local eddy viscosity (WALE) model.42 Cw is a constant assuming
values between 0.325 − 0.6 and Δf is the LES filter width, taken as the cubic root of the cell volume. The WALE model is
given by the following equations, in index notation:

𝜈r =
(

CwΔf
)2

(
Sd

ijS
d
ij

)3∕2

(
SijSij

)5∕2 +
(

Sd
ijS

d
ij

)5∕4 ,

Sd
ij =

1
2

(
g2

ij + g2
ji

)
− 1

3
g2

kk𝛿ij,

g2
ij = gikgkj,

gij = 𝜕jvi,

Sij =
1
2
(
𝜕jvi + 𝜕ivj

)
. (9)

The physical properties of the gas mixture cp, 𝜇, and k, as well as the mass fraction Dn of each species n, are computed
as functions of the mass fractions Y = [Y1,Y2, … ,YN]T and the temperature T of the gas mixture:

cp (Y,T) =
N∑

n=1
Ykcp

n, (10)

𝜇
(

Y, T̃
)
=

N∑
n=1

Xn𝜇n

Xn +
∑N

j=1,j≠nXj𝜙nj
, (11)

k (Y,T) =
N∑

n=1

Xnkn

Xn +
∑N

j=1,j≠nXj𝜙
′
nj

, (12)

Dn (Y,T) =
1 − Yn∑N
j≠nXj∕Djn

. (13)

In the above equations, cp
n is the specific heat at constant pressure, 𝜇n is the molecular viscosity, kn is the molecular

thermal conductivity and Xn is the molar fraction, where the subindex n refers to species n. Djn is the binary symmet-
ric mass diffusion coefficient of species j in species n. The coefficients 𝜙nj and 𝜙′

nj, relating species n to species j are
given by:

𝜙nj =
1√
8

(
1 + Wn

Wj

)−1∕2
(

1 +
(
𝜇n

𝜇j

)1∕2( Wj

Wn

)1∕4
)2

, (14)

𝜙′
nj =

1√
8

(
1 + Wn

Wj

)−1∕2
(

1 +
(

kn

kj

)1∕2( Wj

Wn

)1∕4
)2

, (15)

where Wn and Wj are the molar masses of species n and j. The molar masses are straightforwardly calculated through
the atomic mass and the chemical formula of the species. The temperature variation of 𝜇n, kn, and Djn is given by
Chapman–Enskog’s theory.26 The specific heat cp

n is given by NASA43 or Shomate,44 both lower order polynomials.
The state equations are given by:

𝜌g =
PthWg

R T
, (16)

hs = ∫
T

Tref

cp (T) dT, (17)
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in which Pth is the thermodynamic pressure (usually atmospheric pressure), Wg is the molar mass of the mixture, R is the
gas universal constant and Tref is the reference temperature, usually 298.15 K. Wg is given by:

1
Wg

=
N∑

n=1

Yn

Wk
. (18)

Finally, the chemical reactions complete the mathematical model. For a one-step irreversible chemical reaction, the
mass source term of species n is given by:

𝜔̇n = (𝜐′′n − 𝜐′n)Wn
𝜌g

𝜏mix

Rea
min
n=1

(
Yn

𝜐′nWn

)
Aedm, (19)

where 𝜐′′n is the stoichiometric coefficient of species n on the right hand side of the chemical reaction (product), 𝜐′n is the
stoichiometric coefficient of species n in the left hand side of the chemical reaction (reagent), 𝜏mix is the time scale, Rea
is the set of species in the left side of the chemical reaction equation, and Aedm is a model constant, usually assuming the
value of 4. This model is known as EDM.

The time scale 𝜏mix is given by the expression below:

𝜏mix = min

(
1√

2SijSij
,

cpΔ2∕3

k

)
, (20)

where Sij is defined in Equation (9).
The heat energy released by the chemical reactions is calculated by,

𝜔̇T = −
N∑

n=1
Δh0

f ,n𝜔̇n, (21)

where Δh0
f ,n is the enthalpy of formation of species n. This enthalpy is usually calculated using the reference

temperature Tref .

3 NUMERICAL MODEL

The conservation equations can be written in the following integral form,

∫Ω
𝜕t (𝜌𝜙) + ∇ ⋅

[
𝜌v𝜙

]
dV = ∫Ω

∇ ⋅
[
Γ𝜙∇𝜙

]
+ Q(𝜙, t)dV , (22)

where Ω is the domain, 𝜌 is the resident fluid density, 𝜙 is the quantity being transported, Q(𝜙, t) is a generic source, v is
the velocity of the resident fluid and Γ𝜙 is the diffusion coefficient of 𝜙. The fluid density 𝜌g will be written as 𝜌, for the
sake of simplicity. The integrals over the whole domain can be obtained as a sum of integrals over all the finite volumes
and hence the conservation equation for a single control volume (cell) can be written as,

∫ΩC

𝜕t (𝜌𝜙) dV + ∫𝜕ΩC

𝜌
(

v ⋅ n
)
𝜙dΓ = ∫𝜕ΩC

Γ𝜙
(
∇𝜙 ⋅ n

)
dΓ + ∫ΩC

Q(𝜙, t)dV , (23)

where ΩC is the volume of the cell and 𝜕ΩC its boundary. The external unit normal to the face of the cell is denoted by n.
Figure 1 shows a schematic representation of a typical 3D cell and its neighbors in a nonorthogonal mesh. Point P

is the centroid of the central cell, points A, B, and C are the centroids of the neighboring cells, points MPA, MPB, MPC
are the centroids of the adjacent faces and points FPA, FPB, FPC are the intersection points at the faces given by the lines
connecting points A, B, and C to P. For each central cell we can write,

a𝜙P𝜙P =
N(P)∑

f
a𝜙f 𝜙f + b𝜙p , (24)



6 ANDRADE et al.

F I G U R E 1 Central cell and its neighbors

where the coefficients a𝜙P , a𝜙f , and b𝜙p are given by,

a𝜙P = c1𝜌
i+1
P VP +

(N(P)∑
f

ṁPf +
N(P)∑

f
D𝜙

Pf

)i+1

, (25)

a𝜙f =
(

D𝜙

Pf − min(ṁPf , 0)
)i+1

, (26)

b𝜙p = c2VP(𝜌𝜙)i
P − c3VP(𝜌𝜙)i−1

P + VPSP

+

(N(P)∑
f

SCD
Pf −

N(P)∑
f

SDC
Pf

)i+1

. (27)

In the above, 𝜙 is the unknown, VP is the volume of the central cell, i is the time step, f indicates the neighboring cells
of cell P, N(P) represents the set of all neighbors of P, 𝜌i+1

P is the density, ṁPf is the mass flow through the cell face,
D𝜙

Pf is the discretization of the diffusive term, SP is the source term, SCD
Pf is the correction of the advective term (deferred

correction-DC), and SCD
Pf is the diffusion correction term due to the nonorthogonality of the mesh (cross diffusion-CD).

Considering all the cells in Equation (24), we obtain a sparse nonlinear system of equations of the form,

A(𝜙)𝜙 = b. (28)

The terms c1, c2, and c3 stem directly from the time discretization:

c1 = 1
Δti +

1
Δti + Δti−1 ,

c2 = 1
Δti +

1
Δti−1 ,

c3 = Δti

Δti−1
(
Δti + Δti−1

) . (29)

The above expressions represent the Adams–Moulton technique, also known as second order Euler (SOUE–second order
upwind Euler).16 This time discretization requires the time interval Δti for the current time step i and the time interval
Δti−1 used in the previous time step i − 1. The time intervals are calculated according to the Courant–Friedrichs–Lewy
(CFL) condition, |v|Δt

L
≤ 1, (30)

where L is the characteristic length of the cell, here taken as the cubic root of the cell volume.
The diffusive terms for orthogonal meshes are approximated by the decomposition of the gradients into orthogonal

gradients and a deferred nonorthogonal correction (cross diffusion-CD). This approximation is given by the expressions:
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D𝜙

Pf = Γ𝜙Pf

EPf

dPf
, (31)

SCD
Pf = Γ𝜙Pf

(
∇𝜙Pf ⋅ SPf − ∇𝜙Pf ⋅ EPf

)
= Γ𝜙Pf∇𝜙Pf ⋅ kPf , (32)

where Γ𝜙Pf is the diffusion coefficient at the face of the cell, dPf is the distance between two centroids, and ∇𝜙Pf is the
value of the gradient at the faces. The vectors SPf , EPf , and kPf are represented in Figure 2 considering only the central
cell P and its neighbor A. The vector SPf is the product of the area of the face by its external unit normal, EPf is the vector
defined by the centroids of the central cell and its neighbor, and kPf is the difference between SPf and EPf . Considering
the central cell P and its neighbor A, the vector EPf is equal to:

EPA =
SPA ⋅ SPA

𝝃
PA

⋅ SPA
𝝃

PA
= EPA𝝃PA

, (33)

where 𝝃
PA

is the unit vector in the direction of EPA.
The mass flux on the face ṁPf is given by,

ṁPf = 𝜌Pf (vPf ⋅ SPf )𝜙Pf . (34)

Here 𝜌Pf is the density, vPf is the velocity and 𝜙Pf is the value of 𝜙, computed at the cell faces. The variables 𝜌Pf and vPf
are determined by a linear interpolation, which can be weighted by the distance between the centroids or the volumes
of the cells. We use the distance between the centroids of the cells. The variable 𝜙Pf is given by upwind schemes as
follows.

Figure 3 illustrates the upwind technique, where C, D, and U are, respectively, the upstream (upwind), downstream
(downwind) and far upstream (far upwind) points. G indicates a dummy node, which does not necessarily coincide with
a centroid or vertex of a cell. Figure 3 also shows the two possible scenarios: v ⋅ n < 0 and v ⋅ n > 0. As it can be observed,
each of these scenarios generate different configurations of C, D, and U.

For each face f , 𝜙Pf is calculated by the expression,

𝜙Pf = 𝜙C + SDC
Pf . (35)

The above equation results from the application of the upwind technique with deferred correction. The term SDC
f reduces

the numerical diffusion given by the standard upwind technique. Using the TVD approach,

SDC
Pf = 1

2
𝜓
(

rPf
)
(𝜙D − 𝜙C) (36)

with,

rPf =
𝜙C − 𝜙D + 2∇𝜙C ⋅ dCD

𝜙C − 𝜙D + 10−14 . (37)

F I G U R E 2 Decomposition of the gradients into orthogonal gradients and a deferred nonorthogonal correction



8 ANDRADE et al.

F I G U R E 3 Discretization of advective terms for nonorthogonal meshes

In the above equation, dCD is the vector that connects point C to point D. The scalar function 𝜓
(

rPf
)

defines the TVD
technique to be used. In this article, we use the MINMOD technique, which is given by,

𝜓(rPf ) = max(0,min(1, rPf )). (38)

Furthermore, Equation (35) allows for the use of other techniques, such as the linear-upwind stabilized transport (LUST)
and the second order upwind (SOUP). For the SOUP technique, the term SDC

Pf is calculated as,

SDC
Pf = ∇𝜙C ⋅ dCD. (39)

In this article, the TVD with MINMOD limiter1,16 technique is used in the conservation equations for the species and also
in the conservation of energy. The SOUP approach is used for the conservation of linear momentum.

The set of differential equations that govern the reactive fluid flow is solved in a segregated form, where the cou-
pling pressure-velocity is given by the SIMPLE/SIMPLEC algorithm. One advantage of using a segregated solver is that
the whole system can be split into smaller systems, leading to faster iterative solutions with less memory requirements.
The pressure-velocity coupling gives origin to oscillations in the pressure field (checker-board), which are treated by an
interpolation of the Rhie–Chow family.16

All conservation equations can be solved directly by applying Equation (24). The only exception is the pressure
equation, which corresponds to the Poisson equation. The solution of this equation gives the correction pressure of the
SIMPLE/SIMPLEC method. The first step to arrive to this equation is to split the velocity in two parcels,

v = vc + ve, (40)

where vc is the correction velocity, and ve is the best estimate for the velocity obtained by the Navier–Stokes equation. The
correction velocity is given by,

vc = Dv∇pc, (41)

where Dv is a 3 × 3 matrix that indicates the pressure-velocity coupling method.
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Introducing vc in Equation (1), we obtain the correction pressure pc,

∇ ⋅
[
𝜌Dv∇pc

]
= −

(
𝜕t𝜌 + ∇ ⋅

[
𝜌ve

])
. (42)

The matrix Dv is not a physical diffusion tensor. It depends on the discretization and the pressure-velocity coupling
method. In the SIMPLE method, and considering a central cell P, Dv

P is given by,

Dv
P = VP

⎡⎢⎢⎢⎢⎣
1

av1
P

0 0

0 1
av2

P
0

0 0 1
av3

P

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣
D

v1
P 0 0

0 D
v2
P 0

0 0 D
v3
P

⎤⎥⎥⎥⎦ , (43)

where av1
P , av2

P , av3
P are the coefficients of the left-hand side of the three linear momentum equations given by Equation (24),

replacing the generic unknown 𝜙 by v1, v2, and v3, which are the three velocity components.
Applying the FVM to Equation (42), we obtain for each cell P the equation below,

apc

P 𝜙P =
N(P)∑

f
apc

f 𝜙f + bpc

P , (44)

where the coefficients apc

P , apc

f , and bpc

P are given by,

apc

P =
N(P)∑

f
apc

f , (45)

apc

f = 𝜌Pf Dpc

Pf , (46)

bpc

P = −
N(P)∑

f
ṁe

f − VP (𝜕t𝜌)DF . (47)

Here, (𝜕t𝜌)DF is a finite difference temporal operator, and ṁg
f is the mass flux calculated with ve. Dpc

Pf is related to the
anisotropic diffusion tensor. For a central cell P and its neighbor A, Dpc

PA is given by,

Dpc

PA = EPA

dPD
, (48)

where

EPA =
Sa

PA ⋅ Sa
PA

𝝃
PA

⋅ Sa
PA

(49)

with Sa
PA being defined by the matrix product,

Sa
PA = Dv

PASPA. (50)

The coefficients of the tensor Dv
PA are calculated as the average values of Dv

P and Dv
A, which are the diffusion tensors of a

central cell P and its neighbor cell A, respectively.
Equation (44) does not need a correction due to the nonorthogonality of the mesh, as it would affect only the

convergence rate.
Finally, the pressure p is corrected by,

p = p + 𝛼ppc, (51)

where 𝛼p is the under-relaxation factor.
The nonlinear iterative process may present convergence difficulties. To overcome this problem, all dependent

variables must have an under-relaxation factor ranging in the interval (0, 1].
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Algorithm 1 summarizes the segregated method used to solve the whole set of equations. Steps 7, 9, 17, and 21
correspond to the solution of the following systems:

Avv = bv, (52)

Apc pc = bpc , (53)

AYn Yn = bYn , (54)

Ahs hs = bhs . (55)

From the above systems, we obtain the velocities v (Equation 52), the pressure field pc (Equation 53), the
mass fractions Yn (Equation 54) and the sensible enthalpy hs (Equation 55). Except for the pressure equation,
all other systems are nonsymmetric. Systems (52) and (54) are solved in a segregated form. The sparse matri-
ces obtained by the FVM discretization are stored in the compressed sparse row column format (CSRC).30

The conjugate gradients method CG is used for the symmetric systems, whilst the stabilized biconjugate gra-
dients method BICGSTAB is employed for the nonsymmetric systems. For both methods we use a diagonal
preconditioner.

Supressing lines 14–23 of Algorithm 1, we obtain the steps for solving incompressible laminar/turbulent flows, shown
in Algorithm 2.

Algorithm 1. Main solution steps for reactive flows

1: set t0 = 0
2: for i = 0, 1,… do
3: ti+1 = ti + Δt
4: for j = 0, 1,… , until convergence do
5: compute gradients of v and p
6: compute coefficients in Av, bv, and the tensor field Dv

7: solve system Avv = bv

8: compute coefficients in Apc and bpc

9: solve system Apc pc = bpc

10: compute gradients of pc
11: perform correction for v
12: compute gradients of v
13: compute the eddy viscosity 𝜈r
14: compute the source term 𝜔̇n of chemical reactions
15: compute gradients of Y1, Y2, …, YN
16: compute coefficients in AYn and bYn

17: solve system AYn Yn = bYn

18: compute the energy release 𝜔̇T
19: compute gradients of hs
20: compute coefficients in Ahs and bhs

21: solve system Ahs hs = bhs

22: compute the temperature T
23: update 𝜌g, k, D, 𝜇 and cp
24: perform correction for pressure p
25: end for
26: compute new Δt
27: end for
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Algorithm 2. Main solution steps for incompressible flows

1: set t0 = 0
2: for i = 0, 1,… do
3: ti+1 = ti + Δt
4: for j = 0, 1,… , until convergence do
5: compute gradients of v and p
6: compute coefficients in Av, bv, and the tensor field Dv

7: solve system Avv = bv

8: compute coefficients in Apc and bpc

9: solve system Apc pc = bpc

10: compute gradients of pc
11: perform correction for v
12: compute gradients of v
13: compute the eddy viscosity 𝜈r
14: perform correction for pressure p
15: end for
16: compute new Δt
17: end for

T A B L E 1 Node specifications

Processor Intel Xeon E5-2630 v4

Processors 2

Cores 2 × 10

Cache size (L3) 25 MB

Clock 2.2 GHz

QPI 8 GT/s

Memory 256 GB RAM (DDR4–2.134 MHz)

Motherboard Intel S2600CWR

LAN Ethernet (2 × 10 Gb)

OS CentOS 7

4 PARALLEL IMPLEMENTATION

Algorithm 1 shows the sequential solution of the problem. We used three different parallel schemes to solve this problem:
shared memory using OpenMP directives, distributed memory using the MPI library and a hybrid implementation, which
is a combination of these two paradigms. Although the MPI library was designed for distributed memory platforms in its
strict sense, that is, each node possessing its own private memory, it behaves very well on multicore platforms, simulating
a distributed architecture where the communication between processor and memory is performed internally. Therefore,
the MPI implementation can run on both systems, multicore platforms and on clusters with each node having its own
memory, connected through a local network. While the bottleneck in multicore platforms is the internal communica-
tion bandwidth, the efficiency of the implementation on clusters is highly dependent on the speed of the local network.
Another potential disadvantage of running MPI based implementations on multicore machines is that the code is repli-
cated in memory for each process. On the other hand, the OpenMP paradigm is based on threads opened in a single code,
and the main drawback is how to avoid the problem of memory race condition.

In this article, we test the possibilities discussed above on a cluster with four nodes connected by a local Ethernet
network of 10 Gb/s. Each node has two processors, with a cache coherent nonuniform memory access (cc-NUMA). Table 1
shows the hardware specifications of each node, and Figure 4 shows a schematic representation of two nodes of the
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F I G U R E 4 Schematic representation of two nodes of the computational platform

cluster. As can be seen, each processor has 10 cores and its own memory bank. Both memory banks are visible by the
two processors. Communication between nodes is performed by a local network, whilst a quick path inter-connect (QPI)
circuit is responsible for the communication between the two processors within a same node. Although processor 0 can
use memory bank 1, and vice-versa, communication between one processor and its own memory bank is faster.45 Each
processor has three levels of intermediate cache memory, that is, L1, L2, and L3. The cache memories L1 and L2 are
exclusive for each core, whilst L3 is a common level for all cores of a processor. Concerning the software, we used the
Intel C/C++ compiler version 18.0.3, which has both the MPI library and the OpenMP directives.

In what follows we describe the parallelization of Algorithm 1. All steps between lines 5–24 involve a loop over
the cells, except steps 7, 9, 17, and 21, which correspond to the solution of linear systems. The FVM matrices possess
a higher degree of sparsity than the finite element method. Figure 5 shows the example of a 2D orthogonal mesh of
quadrilaterals, where the resulting matrix has the maximum of five nonzero coefficients per line. This is also true for non-
structured/nonorthogonal meshes. For all types of meshes, the discretization by a cell centered FVM results in matrices
having a maximum number of nonzero coefficients equal to the number of faces of the cell plus 1. Although the number
of nonzero coefficients per line is constant (except for boundary cells), it is important to renumber the cells in such a way
that these coefficients are clustered to the main diagonal as much as possible, for the sake of data locality.37

The data structure used to store these matrices is CSRC, due to its high efficiency in both symmetric and nonsymmetric
systems. With this data structure, the algorithm to perform matrix-vector products (matvec) is the same for both types of
system.

Examining Algorithms 1 and 2, we observe that the two main tasks to be parallelized are the loop over the cells and the
solvers. It is important to note that, differently from the finite element method, the assembly of the matrices performed
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F I G U R E 5 Mesh of nine cells and its resulting system of equations

in a loop over the cells does not involve accumulation of coefficients, which means that there is no coupling between the
cells. On the other hand, the solvers are strongly coupled. In the case of iterative solvers, three main operations must be
parallelized: vector updates, internal products, and matvec operations, as can be seen in Algorithms 3 and 4, which show
the implementations of the CG and the BICGSTAB.

As described in Reference 30, the CSRC format consists of three real and second integer arrays: ad(nEq) for the diag-
onal coefficients, al(nAd) for the lower triangular part, au(nAd) for the upper triangular part, ia(nEq + 1), which is the
position in al of the first nonzero coefficient of each line, and ja(nAd), which tells the column of each coefficient in al.
nEq is the number of equations, and nAd is the number of nonzero coefficients in each triangular part of the matrix. Due
to the symmetric topology of the matrix, ia also indicates the position in au of the first nonzero coefficient in each col-
umn, and ja also indicates the line of each coefficient in au. Note that the total number of nonzero coefficients is equal
to nEq + 2 ∗ nAd. Therefore, taking advantage of the topological symmetry, we can write the matvec product shown in
Algorithm 5, which can be used for both symmetric and nonsymmetric systems. In what follows, we discuss these points
in detail.

4.1 OpenMP parallelization

The loop over the cells can be easily parallelized with the OpenMP directives, as all the operations can be performed
without causing the problem of memory race. Algorithm 6 is a typical example of a parallel loop over the cells. A single
parallel region is opened for the entire loop. The variables i, rho1, and rho2 are declared as private and the variables rho,

Algorithm 3. CG

1: r = b − Ax
2: p = z = M−1r
3: d = (r, z)
4: for j = 0, 1,… , until convergence do
5: z = Ap
6: 𝛼 = d∕(z, p)
7: x = x + 𝛼 ⋅ p
8: r = r − 𝛼 ⋅ z
9: z = M−1r

10: di = (r, z)
11: 𝛽 = di∕d
12: p = r + 𝛽 ⋅ p
13: d = di
14: end for
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Algorithm 4. BICGSTAB

1: r0 = b − Ax
2: p = r = r0
3: z = M−1p
4: for j = 0, 1,… , until convergence do
5: v = Az
6: rr0 = (r, r0)
7: 𝛼 = rr0

(v,r0)
8: x = x + 𝛼 ⋅ z
9: r = r − 𝛼 ⋅ v

10: z = M−1r
11: t = Az
12: w = (t,r)

(t,t)
13: x = x + w ⋅ z
14: r = r − w ⋅ t
15: 𝛽 =

(
(r,r0)

rr0

)
⋅
(
𝛼

w

)
16: p = r + 𝛽 ⋅ (p − w ⋅ v)
17: z = M−1r
18: end for

Algorithm 5. Matvec product (sequential version)

1: for i = 1, nEq do
2: xi = x(i)
3: t = ad(i) ∗ xi
4: for k = ia(i), ia(i + 1) do
5: jk = ja(k)
6: t = t + al(k) ∗ x(jk)
7: y(jk) = y(jk) + au(k) ∗ xi
8: end for
9: y(i) = t

10: end for

Algorithm 6. Parallel loop over the cells to compute the densities

1: $omp parallel for private(i, rho1, rho2) shared(rho, T, alpha, nCell) numthreads(4)
2: for i = 1, nCells do
3: rho1 = rho(i)
4: rho2 = density(T(i))
5: rho(i) = alpha ∗ rho2 + (1 − alpha) ∗ rho1
6: end for
7: $end omp parallel
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T, alpha, and nCells are shared. In line 5, the thread safe function density(T(i)) computes the density as a function of
temperature T(i). All other loops over the cells follow these same rules.

The efficiency of an OpenMP parallelization depends on the number of parallel regions, due to the overhead to open
a thread. The lower is the number of parallel regions, the more efficient is the code. Fortunately, both Algorithms 3 and
4 can be entirely implemented with just one parallel region. Vector update operations are implemented according to
Algorithm 7. Algorithm 8 shows the parallel code for inner products. In this code, the variable dot is shared and can be
initialized in just one thread, using the directive single. The directive reduction tells the compiler that the shared variable
dot accumulates the results, preventing memory conflicts.46-48

Algorithms 7 and 8 can be implemented in parallel without any major difficulty. However, the same is not true for the
matvec operation described by Algorithm 5. The problem with this algorithm is the memory race that happens in line 7,
when accumulating the contributions of the upper triangular part. To resolve this issue, we create a buffer thY (nEq ∗ nTh)
to store the product results in each thread, for a number of threads equal to nTh. Each thread has three key integer
variables, thBegin(nTh), thEnd(nTh), and thHeight(nTh). The variables thHeight(i) and thEnd(i) represent the range in
the result vector y(nEq) addressed by thread i. The variables thBegin(nTh) and thEnd(nTh) are previously calculated in
order to balance the loads between the threads, in a way that each thread works approximately over the same number of
nonzero coefficients. The variable thBegin(i) indicates the first line with a nonzero coefficient in the lower triangular part
addressed by thread i.

The first step in Algorithm 9 is to initialize the buffers thY (i) with zeros between thHeight(i) and thBegin(i), in
lines 3–10. The second step is to compute the matvec product, in lines 13–24. The third and last step, lines 27–34,
starts after a barrier directive, and accumulates the results stored in all buffers in the final result vector y(nEq). An
alternative to the creation of these memory consuming buffers is to use a coloring algorithm to distribute the lines
between threads in a way that the memory conflict is avoided. However, this latter approach has proven to be less
efficient than the use of buffers, in terms of speedups.38 Figure 6 schematically illustrates the buffers for a system
of nine equations, parallelized with three threads. Colors red, green and blue stand, respectively, for threads 0, 1,
and 2.

4.2 MPI parallelization

Our shared memory parallel implementation is performed using calls to the MPI standard functions. It is based on an
adaptation of a subdomain-by-subdomain approach, previously designed for finite element codes.30 Unlike the shared
memory parallelization paradigm, which is based on the concept of threads opened within the same code, the distributed

Algorithm 7. Parallel vector update (OpenMP version)

1: $omp for
2: for i = 1, nEq do
3: x(i) = x(i) + alpha ∗ p(i)
4: end for
5: $end omp for

Algorithm 8. Parallel inner product (OpenMP version)

1: $omp single
2: dot = 0.0
3: $end omp single
4: $omp for reduction(+:dot)
5: for i = 1, nEq do
6: dot = dot + x1(i) ∗ x2(i)
7: end for
8: $end omp for
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Algorithm 9. Matrix vector product (OpenMP version)

1: id = omp_get_thread_num()
2: /*Step 1 - buffer initialization:*/
3: for i = 1, nTh do
4: inc = (i − 1) ∗ nEq
5: $omp for
6: for k = thHeight(i) + inc, thBegin(i) − 1 do
7: thY (k) = 0.0
8: end for
9: $end omp for

10: end for
11: inc = id ∗ nEq
12: /*Step 2 - Matrix vector product:*/
13: for i = thBegin(id), thEnd(id) do
14: y(i) = 0.0
15: xi = x(i)
16: t = ad(i) ∗ xi
17: for k = ia(i), ia(i + 1) do
18: jk = ja(k)
19: t = al(k) ∗ x(jk)
20: jk = ja(k) + inc
21: thY (jk) = thY (jk) + au(k) ∗ xi
22: end for
23: thY (i + inc) = t
24: end for
25: $omp barrier
26: /*Step 3 - Accumulation in y:*/
27: for i = 1, nTh do
28: inc = (i − 1) ∗ nEq
29: $omp for
30: for k = thHeight(i), thEnd(i) do
31: y(k) = y(k) + thY (k + inc)
32: end for
33: $end omp for
34: end for

memory programming paradigm is completely different, and implies that each process works over its own set of data.
This means that each process executes Algorithms 1 and 2 for its own mesh partition. These partitions can be obtained
by a graph partitioner for unstructured meshes, thus balancing the loads assigned for each process. A good choice for
this is the METIS software.49,50 In our subdomain-by-subdomain approach, the sequential code is identical to its parallel
version, with the addition of calls to the MPI library, whenever needed. Small modifications are necessary in the matvec
product, with some adjustments in the data structure.

The efficiency of the parallelization depends on the optimization of communication between processes. This can be
achieved by creating a communication mapping designed for point to point nonblocking communication. Most of the
communication in the code is performed using this mapping, except in a few cases where a collective communication
cannot be avoided. For example, in the case of inner product operations.

To clarify these ideas, let us consider the mesh of Figure 7. This mesh, with 16 cells, is divided into four overlap-
ping partitions, as shown in Figure 8. In this figure, it can be seen that for each partition (solid lines), all cells on the
internal boundaries are replicated (dashed lines), forming an overlapping partition. These overlapping cells are necessary
in order to compute the contributions between neighboring cells. The cell labels in black refer to the local number-
ing of each partition, whilst the ones in red refer to the global numbering of the unpartitioned mesh (Figure 7). A
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F I G U R E 6 Use of the buffer in a system of nine equations, with three threads (red, green, and blue)

F I G U R E 7 Original unpartitioned mesh with 16 cells

reverse Cuthill Mckee reordering40 is applied to the local numbering of each partition. Only the nonoverlapping cells are
renumbered.

Figures 9 and 10 show the global matrix referred to the original unpartitioned mesh and the corresponding rectan-
gular local matrices of each partition. The colors in Figure 9 refer to each partition. In Figure 10, subscripts refer to
the local numbering, and superscripts refer to the global numbering of the original unpartitioned mesh. Each rectangu-
lar matrix is divided into a square matrix and a rectangular part, as shown in Figure 10. The coefficients of the square
matrix are related to the nonoverlapping cells, and a rectangular part includes coefficients belonging to the overlapping
cells.

The loops over the cells do not require communication, except for when computing the gradients, where a single point
to point communication instruction is required. As well as in the case of shared memory models, the MPI parallelization
of the solvers requires special attention to three operations: vector updates, inner products and matvec operations, which
will be described next.

Algorithm 10 presents the parallel code for inner product operation. The loop in lines 1–3 is performed over the
equations of each partition (nEq1), without the overlapping cells. The sum of the contribution of each partition is
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F I G U R E 8 Mesh divided into four overlapping partitions

F I G U R E 9 Coefficients matrix for the mesh of Figure 7. The colors red, green, blue, and purple refer, respectively, to partitions 1, 2, 3,
and 4
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F I G U R E 10 Coefficients rectangular matrix for each partition

Algorithm 10. Inner product (MPI version)

1: for i = 1, nEq1 do
2: tmp = tmp + x1(i) ∗ x2(i)
3: end for
4: MPI_ALLREDUCE(tmp, dot, 1, MPI_DOUBLE, MPI_SUM)

computed in line 4, with a call to the collective function MPI_ALLREDUCE. Vector updates can be straightforwardly
implemented, with a loop over nEq1, requiring no communication.

Figure 11 shows schematically the matvec product y = Ax to be computed in each partition. As mentioned before,
matrix A is rectangular, and is divided into a square matrix (in blue) and a rectangular part (in red). The red color refers to
the coefficients of the overlapping cells. Matrix A has dimensions (nEq1, nEq1 + nEq2), vector x has dimension (nEq1 +
nEq2) and the resulting vector y has dimension (nEq1). nEq2 is the number of equations corresponding to overlapping
cells. In most real applications, nEq1 ≫ nEq2.

To compute the matvec operation, the first step is to guarantee that all partitions have a copy of the entire vector x,
including all nEq1 + nEq2 positions. This requires point to point communication between interface nonoverlapping and
overlapping cells. Algorithm 11 presents the matvec operation code. In line 2, the function com(x, fMap) uses a commu-
nication mapping to perform the necessary communication in a way that all partitions have their entire copy of x. The
matvec product is performed in lines 4–19, where the main loop acts over the equations nEq1. The inner loop in lines
8–12 is responsible for the square matrix, stored in the CSRC format. Lines 14–17 compute the product corresponding
to the rectangular part of the matrix, stored in the traditional CSR format, that makes use of the arrays iar, jar, and ar,
similarly to the CRSC format.

Figure 12 presents the data structure corresponding to the communication traffic shown in Figure 13. The field R
stands for receive operation, whilst the field S indicates a send operation. The first part of the array fMap of partition i
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F I G U R E 11 Matvec product computed in each partition

Algorithm 11. Matrix vector product (MPI version)

1: /*Communication:*/
2: com(x, fMap)
3: /*Matrix vector product:*/
4: for i = 1, nEq1 do
5: xi = x(i)
6: t = ad(i) ∗ xi
7: /*Square part:*/
8: for k = ia(i), ia(i + 1) do
9: jk = ja(k)

10: t = al(k) ∗ x(jk)
11: y(jk) = y(jk) + au(k) ∗ xi
12: end for
13: /*Rectangular part:*/
14: for k = iar(i), iar(i + 1) do
15: jk = jar(k)
16: t = ar(k) ∗ x(jk)
17: end for
18: y(i) = t
19: end for

contains all cells from other partitions that send information to partition i. The second part indicates the cells in partition
i that send information to other partition cells. The cells in fMap are ordered in an ascending order, within an ascending
order of partitions. At this stage, the global cell numbering is used. After reordering, each array fMap stores the cells in
local numbering for partition i.

Figure 14 shows the array fMap, referred to the local numbering of partition i. Each array fMap has 3 integer
auxiliary arrays: ngh, rcvs, and send. The array ngh stores the partitions involving communication for partition i. The
array rcvs is a pointer in fMap indicating a starting position of the information to be retrieved from partition i. The
array send is a pointer in fMap indicating the starting position of the information to be sent to each partition listed
in ngh.

Algorithm 12 shows the code of the function com(x, fMap), that performs all communication using the array fMap and
its auxiliary data structure. In input, the array x is the incomplete multiplier array in the product y = Ax of each partition,
still lacking information from other partitions. In output, the array x is completely updated for all partitions. In lines
2–5, a send/receive buffer xb retrieves, using fMap, the coefficients to be sent by each partition. Lines 7–17 perform all
necessary communication using the nonblocking point to point functions MPI_ISEND and MPI_IRECV. In lines 21–24,
the values in xb are recovered and stored in the multiplier vector x. A synchronization function must be invoked before
this recovering operation, in line 19.
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F I G U R E 12 Communication mapping in global cell numbering

4.3 Hybrid parallelization

In a hybrid parallelization, both paradigms for distributed and shared memory are used at the same time. Fortunately,
the MPI tool is built with support to multi-threaded codes, which allows for the simultaneous use of OpenMP direc-
tives. The MPI has an internal variable that defines the way threads can behave. By default, the MPI initializes with the
variable MPI_THREAD_SINGLE set, which means that only one thread can make calls to MPI routines. When the vari-
able MPI_THREAD_FUNNELED is set, only the master thread can make MPI calls. There are other possibilities, setting
the variables MPI_THREAD_SERIALIZED or MPI_THREAD_MULTIPLE, both allowing multiple threads to make MPI
calls. Our hybrid parallelization model is based on the MPI’s default model. Therefore, we need to rewrite the codes for
inner product and matvec operations in their hybrid versions, shown in Algorithms 13 and 14. As can be noted, these
algorithms are a combination of Algorithms 8–10 and Algorithms 9–11. In these hybrid versions, the directive omp single
must be used in order to guarantee that just one thread calls MPI routines. In this case, this thread is the first one reaching
that line of the code.

Therefore, our hybrid parallel model can run n MPI processes, each of these opening m threads. For each node, n ∗ m
must be less than or equal to the total number of cores.
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F I G U R E 13 Comunnication traffic between partitions

F I G U R E 14 Communication mapping data structure
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Algorithm 12. Function com

1: /*Gathering send information*/
2: for i = 1, nSends do
3: lCel = fMap(i)
4: xb(i) = x(lCel)
5: end for
6: /*Communication*/
7: for i = 1, nPart do
8: partID = ngb(i) − 1
9: /*Send:*/

10: k = send(i)
11: kk = send(i + 1) − send(i)
12: MPI_ISEND(xb(k), kk, MPI_DOUBLE, partId, myID)
13: /*Recv:*/
14: k = rcvs(i)
15: kk = rcvs(i + 1) − rcvs(i)
16: MPI_IRECV(xb(k), kk, MPI_DOUBLE, partId, partID)
17: end for
18: /*Wait for communications to finish*/
19: MPI_WAITALL()
20: /*Recovered and store recv information*/
21: for i = 1, nRvcs do
22: lCel = fMap(i)
23: x(lCel) = xb(i).
24: end for

Algorithm 13. Parallel inner product (hybrid version)

1: $omp single
2: dotPar = 0.0
3: $end omp single
4: $omp for reduction(+:dotPar)
5: for i = 1, nEq1 do
6: dotPar = dotPar + x1(i) ∗ x2(i)
7: end for
8: $end omp for
9: $omp single

10: MPI_ALLREDUCE(dotPar, dot, 1, MPI_DOUBLE, MPI_SUM)
11: $end omp single
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Algorithm 14. Matrix vector product (hybrid version)

1: $omp single
2: com(x, fMap)
3: $end omp single
4: id = omp_get_thread_num()
5: for i = 1, nTh do
6: inc = (i − 1) ∗ nEq1
7: $omp for
8: for k = thHeight(i) + inc, thBegin(i) − 1 do
9: thY (k) = 0.0

10: end for
11: $end omp for
12: end for
13: inc = id ∗ nEq1
14: for i = thBegin(id), thEnd(id) do
15: y(i) = 0.0
16: xi = x(i)
17: t = ad(i) ∗ xi
18: for k = ia(i), ia(i + 1) do
19: jk = ja(k)
20: t = al(k) ∗ x(jk)
21: jk = ja(k) + inc
22: thY (jk) = thY (jk) + au(k) ∗ xi
23: end for
24: for k = iar(i), iar(i + 1) do
25: jk = jar(k)
26: t = ar(k) ∗ x(jk)
27: end for
28: thY (i + inc) = t
29: end for
30: $omp barrier
31: for i = 1, nTh do
32: inc = (i − 1) ∗ nEq
33: $omp for
34: for k = thHeight(i), thEnd(i) do
35: y(k) = y(k) + thY (k + inc)
36: end for
37: $end omp for
38: end for

5 NUMERICAL EXAMPLES

In this section we run our tests using two 3D examples, the lid-driven cavity problem for pure incompressible flow
(test case 1) and other for reactive flow (test case 2). Figure 15 shows the geometry and boundary conditions. The
density is 𝜌 = 1.0 kg/m3, and the dynamic viscosity is 𝜇 = 10−3 Pa s. The pressure and velocity are set to 0, as initial
conditions.

The second test case is a reactive flow in the domain shown in Figure 16. The domain has two outlets and two inlet
surfaces. The other two surfaces are impermeable with no-slip conditions and are also adiabatic. A pure fuel (YCH4 = 1.0)
is injected in one inlet whilst a flow of air (YO2 = 0.23 and YN2 = 0.77) is prescribed at the opposite inlet surface. In both
inlets, the speed and temperature are, respectively, 0.1 m/s and 25◦C. The density is implicitly defined by the temperature
and the mass fractions. In the outlet, all normal derivatives are considered to be equal to 0, except for the pressure, which
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F I G U R E 15 Lid-driven cavity problem: boundary conditions are: |v| = 1 m/s at the top, and ∇p ⋅ n = 0 and v = 0 at all other faces

F I G U R E 16 Reactive flow: geometry and boundary conditions

T A B L E 2 Meshes for cases 1 and 2

Mesh Cells Nodes ndfi ndfr

A 125,000 132,651 530,604 1,125,000

B 571,787 592,704 2,287,148 5,146,083

C 1,000,000 1,003,301 4,000,000 9,000,000

D 2,352,637 2,406,104 9,410,548 21,173,733

F I G U R E 17 Typical mesh of hexahedrons with eight partitions
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F I G U R E 18 Time percentages in a sequential run for test case 1

F I G U R E 19 Time percentages in a sequential run for test case 2

F I G U R E 20 Velocity field at time t = 120 s for case 1, mesh A
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F I G U R E 21 Isosurfaces of the velocity field at time t = 120 s for case 1, mesh A

F I G U R E 22 Velocity field at time t = 120 s across a line passing through the center of the cube, parallel to x1. Comparison OpenFOAM
x our model, case 1, mesh A
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F I G U R E 23 Velocity field at time t = 120 s across a line passing through the center of the cube, parallel to x3. Comparison OpenFOAM
x our model, case 1, mesh A

F I G U R E 24 Total speedup curves for one node, case 1
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F I G U R E 25 Cell loop speedup curves for one node, case 1

is p = 0. As initial conditions, all variables are set to 0, except for YN2 = 1.0. The variation of the physical properties cp, 𝜇,
k, and Dn are given by Equations (10), (11), (12), and (13). The chemical reaction is given by the methane (CH4) global
combustion,

CH4 + 2O2 → CO2 + 2H2O. (56)

Both problems were discretized by four meshes, A, B, C, and D, composed by hexahedrons, as shown in Table 2. In
this table, ndfi is the number of degrees of freedom for test case 1 and ndfr is the number of degrees of freedom for test
case 2. Figure 17 shows a typical mesh with eight partitions.

Figures 18 and 19 present the time percentages of the solver, loop over the cells, and other operations, for test cases 1
and 2, in a sequential run. As it can be observed from these figures, the solver is predominant in test case 1 whilst the loop
over the cells is the most time consuming task in test case 2, for the chosen meshes. However, the solver time percentage
tends to increase as the mesh is refined, in both problems. In what follows, we discuss the results for both problems. The
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MPI function MPI_WTIME was used to perform time measurements. This function measures the overall time, rather
than the net CPU time.

5.1 Test case 1

The velocity field obtained at time t = 120 s is shown in Figures 20 and 21. Figures 22 and 23 compare our results
with those obtained by running the problem with the OpenFOAM software, for mesh A. As can be seen, the results are
practically identical across two lines passing through the center of the cube, one parallel to the axis x1, and the other
parallel to x3.

In order to compare the three implementations, MPI, OpenMP, and hybrid, we show the results in terms of speedups
for 1 node of the cluster (Figures 24–26). For the hybrid version, only two threads are opened for each MPI process. The
performance of the MPI and hybrid implementations are almost the same for the speedups of the loop over the cells. It
is also clear that the MPI overall results are better than the other two approaches. It is important to note that in this case
there is no network communication. These results were measured for one time step.

F I G U R E 26 Solver speedup curves for one node, case 1
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F I G U R E 27 Total speedup curves: MPI × hybrid, case 1

For a comparison MPI × hybrid, we can use all nodes of the cluster, reaching its maximum capacity with 80 cores.
This comparison is shown in Figures 27–29. The hybrid version presents a slightly superior performance considering the
loop over the cells, but the gain in the solver phase makes the MPI the best choice for all meshes, A, B, C, and D. Figure 30
presents the total solution times for one time step, using meshes A, B, C, and D. For mesh D (2,352,637 cells and 9,410,548
equations), considering 80 cores, the total solution times for one time step were equal to 45 s in the MPI implementation
and 70s for the hybrid approach.

Figures 31 and 32 compare the MPI results of our model to the OpenFOAM software (version 1906), in terms of total
speedups and the ratio OpenFOAM total solution time/our model total solution time. These graphs show a significant
difference in favor of our model, in all situations. For a fair comparison, these measurements were carried out consider-
ing the same number of solver and nonlinear iterations for both models, using the same solvers. Also, both codes were
compiled with the Intel C/C++ compiler. The optimization level is O3.
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F I G U R E 28 Cell loop speedup curves: MPI × hybrid, case 1

5.2 Test case 2

Figure 33 shows the heat energy release (𝜔̇T) by the chemical reaction between the gases CH4 and O2 at time t = 2 s.
Figures 34 and 35 present the velocity field and temperature for time t = 2 s obtained by using both our model and the
OpenFOAM software.

As in case 1, to compare the MPI, the pure OpenMP, and the hybrid parallel versions it is necessary to run the problem
in just a single machine. These results, in terms of speedups, are shown in Figures 36–38, for meshes A, B, C, and D.
As can be seen in these graphs, the results are very similar to the ones obtained for case 1, except for the solver, which
presents lower speedups. This is due to the fact that the CG is called 1 time and the BICGSTAB is called 8 times in
Algorithm 1, whilst Algorithm 2 has one call to the CG solver and 3 calls to the BICGSTAB solver. The BICGSTAB has 2
matvec operations per iteration, against 1 of the CG. This means that the amount of communication in the BICGSTAB
doubles the communication in the CG matvec product. The loss in the solver speedups is compensated by the fact that
in case 2 the most time consuming phase is the loop over the cells, thus leading to similar total speedups obtained
for case 1.

A comparison between the MPI and the hybrid versions using all nodes can be seen in Figures 39–41. Figure 42
presents the total solution times for one time step, using meshes A, B, C, and D. For mesh D (2,352,637 cells and 21,173,733
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F I G U R E 29 Solver speedup curves: MPI × hybrid, case 1

equations), considering 80 cores, the total solution times for one time step were equal to 16 s in the MPI implementation
and 18 s for the hybrid approach.

5.3 Scalability

One of the most important parameters for measuring the efficiency of a parallel implementation is its scalability. Scala-
bility is defined, for a fixed size problem, as being the rate in which the speedups increase as the number of processes or
threads increase. Finite volumes, as well as finite elements, are typically coarse grain applications, due to the strong cou-
pling of the solver. In both methods, the scalability is ruled by the ratio r = number of nonoverlapping/overlapping cells.
This ratio is also related to the ratio noninternal boundary cells/internal boundary cells. The scalability can be measured
by the efficiency, defined as the actual speedup divided by the ideal speedup. Figure 43 shows the ratio r, with an increas-
ing number of partitions. The average ratio r and its standard deviation, for meshes A, B, C, and D, can be seen in Table 3.
The standard deviation is an important parameter that measures the load balance between partitions. Figures 44 and 45
present the efficiency for test cases 1 and 2, considering the MPI implementation. We observe in these figures that the
points in the curves where there is a loss in efficiency correspond to points of higher standard deviations. This is clearly
the case of mesh D with 16 partitions.
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F I G U R E 30 Total times for one time step: MPI × hybrid, case 1
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F I G U R E 31 MPI total speedups, OpenFOAM × our model, case 1

F I G U R E 32 Ratio OpenFOAM total time/our model total time, case 1
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F I G U R E 33 Isosurfaces for the energy release at time t = 2 s, for case 2, mesh A

F I G U R E 34 Velocity fields at time t = 2 s for case 2, mesh A: (A) our model and (B) OpenFOAM
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F I G U R E 35 Temperature at time t = 2 s for case 2, mesh A

F I G U R E 36 Total speedup curves for one node, case 2
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F I G U R E 37 Solver speedup curves for one node, case 2
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F I G U R E 38 Cell loop speedup curves for one node, case 2
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F I G U R E 39 Total speedup curves: MPI × hybrid, case 2
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F I G U R E 40 Solver speedup curves: MPI × hybrid, case 2
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F I G U R E 41 Cell loop speedup curves: MPI × hybrid, case 2
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F I G U R E 42 Total times for one time step: MPI × hybrid, case 2

F I G U R E 43 Ratio r = number of nonoverlapping/overlapping cells
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T A B L E 3 Average ratios r and standard deviations for meshes A, B, C, and D

Avg Std Avg Std Avg Std Avg Std

No. of partitions Mesh A Mesh B Mesh C Mesh D

2 25.0 0.0 41.5 0.7 50.0 0.0 66.5 0.6

4 12.5 0.0 20.7 0.2 25.0 0.0 32.2 0.1

8 8.3 0.0 13.8 0.1 16.7 0.0 22.2 0.1

16 5.2 1.1 8.6 1.8 10.4 2.2 13.8 2.8

32 3.7 0.8 6.2 1.4 7.5 1.6 9.9 2.1

40 3.3 0.7 5.4 1.3 6.5 1.4 8.7 2.0

64 2.4 0.5 3.9 0.8 4.7 1.1 6.3 1.5

80 2.6 0.5 4.3 0.9 5.2 1.1 6.8 1.4

F I G U R E 44 Efficiency for test case 1 as function of r, MPI

F I G U R E 45 Efficiency for test case 2 as function of r, MPI
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6 CONCLUSIONS

We presented a parallel implementation of the finite volume method for incompressible and slightly compressible reac-
tive flows in this work. Three approaches were discussed for distributed/shared memory architectures: pure MPI, pure
OpenMP and a mix of these tools, resulting in a hybrid implementation. As it is well known, the bottleneck of finite
volume, as well as finite element methods, is the solver phase, due to the intrinsic coupling characteristic present in
the solution algorithms. Although the MPI library has been designed for distributed memory platforms, it is clear that
it works very well on multicore shared memory machines, simulating a distributed memory environment. The main
challenge in an MPI implementation is to minimize communication, whilst in an OpenMP code the problem is con-
cerned with the occurrence of memory conflicts. For minimizing communication, we developed a highly efficient method,
based on a communication mapping that uses point to point nonblocking functions. This mapping was designed for a
subdomain-by-subdomain strategy, where the sequential code is equal to the parallel code, apart from communication
calls and the algorithm that performs matvec operations. Using overlapping cells at the internal partition boundaries, the
resulting parallel code has the same number of floating point operations as the sequential code. Also, a special matvec
algorithm was presented for rectangular matrices, stemming from the overlapping partitioning method.

Our MPI implementation was compared to the OpenFOAM/MPI software, in test case 1. The results not only have a
reasonable match in terms of solution response but also presented better results, in terms of execution time and speedups,
in all situations. Furthermore, our model presented a better scalability.

Concerning the parallel model to be used, that is, the choice between pure MPI, pure OpenMP and hybrid, the first
conclusion that can be inferred from the results is that the MPI model is superior to the OpenMP implementation. The
hybrid implementation might present slightly better results in the cell loop, in a few cases, but the pure MPI is always
superior in an overall sense. It is important to note that a low band inter-connect network was used (Ethernet, 2 × 10 Gb/s).
However, the use of faster communications protocols would obviously improve speedups when communication between
nodes is necessary.

Finally, we believe that this article can be an important reference for researchers working in the field of high
performance computational fluid dynamics.
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