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Abstract: Time-reversible dynamical simulations of nonequilibrium systems exemplify both
Loschmidt’s and Zermélo’s paradoxes. That is, computational time-reversible simulations invariably
produce solutions consistent with the irreversible Second Law of Thermodynamics (Loschmidt’s)
as well as periodic in the time (Zermélo’s, illustrating Poincaré recurrence). Understanding these
paradoxical aspects of time-reversible systems is enhanced here by studying the simplest pair of such
model systems. The first is time-reversible, but nevertheless dissipative and periodic, the piecewise-
linear compressible Baker Map. The fractal properties of that two-dimensional map are mirrored
by an even simpler example, the one-dimensional random walk, confined to the unit interval. As a
further puzzle the two models yield ambiguities in determining the fractals’ information dimensions.
These puzzles, including the classical paradoxes, are reviewed and explored here.

Keywords: nonequilibrium simulations; time reversibility; fractals; baker maps; random walks

1. Introduction

Nonequilibrium molecular dynamics evolves according to time-reversible equations
of motions which govern the evolution of positions q and momenta p. However, the
time-reversible equations are at odds with observations, namely that entropy increases
because the real processes are not reversible. Loschmidt’s paradox is the observation that
this irreversible behavior emerges from these systems despite the time-reversible equations
describing their motion. The evolution of these systems can be thought of in terms of
phase space, a plot of the p against q coordinates for all 6N dimensions. A position in
phase space describes a unique configuration of the system, which changes as the system
evolves. After a long enough period of time, the Poincaré recurrence time, theoretically the
evolving system must return to its starting position in phase space. As a result, the entropy
of a system cannot grow if it is possible for the system to return to its initial conditions
in phase space. This is Zermélo’s paradox. Zermélo’s paradox, also known as Zermélo’s
recurrence objection or Wiederkehreinwand, was raised as an objection to the validity
of Boltzmann’s H-theorem. Simulations with nonequilibrium molecular dynamics show
that time-reversible systems generate multi-fractal attractor and repellor pairs in phase
space [1,2]. Understanding of these multi-fractal structures sheds light on both Loschmidt’s
(reversibility) Paradox and Zermélo’s (recurrence) Paradox. The Baker map is one of the
simplest models which can generate a similar fractal phase space, and these fractals can
be shown to have similar properties to the fractal dimensions exhibited by continuous
Nonequilibrium molecular dynamics flows in three or more dimensions [3,4]. The idea of
the present work is to use these maps as an even simpler way of studying the same fractal
formation and dissipation (in one and two dimensions). A version of the Baker map which
is dissipative and written in terms of (q, p) coordinates is used, as well as a simpler random
walk version which can be shown to give identical fractal phase-space attractors.

These maps allow a study of entropy growth by modelling a similar ergodic system.
The averages produced by molecular dynamics and Gibbs’ statistical mechanics agree
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for “ergodic” systems, systems with a dynamics able to access all of the (q, p) coordinate-
momentum states included in Gibbs’ statistical averages. Ergodicity is actually a purely
theoretical construct for manybody systems. The time required for a nearly complete
averaging over a many-dimensional phase space grows exponentially with system size,
and exceeds the age of the universe when the number of degrees of freedom is a dozen
or so. On the other hand the ergodicity of few-body models can be established and
studied. Two hard disks, with periodic boundary conditions is a simple example. The
eight-dimensional phase space can be reduced to three (enough for chaos) by imposing
symmetry and constant energy on the dynamics. A further simplification can be attained
by considering maps, in which the “next” system state is a function of the “current” state
of the system. The two simplest such maps are described here, the two-dimensional Baker
Map and a closely-related one-dimensional Confined Random Walk. We start by briefly
introducing the methodology for these maps in Section 2, for more background the reader
is referred to previous work [5,6]. The results and discussion are then presented in the next
Section 3, covering results from the two Baker maps including the change in phase volume,
Lyapunov growth, irreversibility, Poincaré recurrance, information dimension and parallel
implementation of the Baker map. Finally, conclusions are presented in Section 4.

2. Methodology

The original Hopf Baker map is discussed first, before explaining the link to time-
reversible molecular dynamics, the dissipative form of the Baker map and finally the
random walk version which gives similar behaviour.

2.1. Hopf’s Equilibrium Baker Map E(x,y)

Nearly a century ago Hopf introduced his Baker Map, reminiscent of a bread baker’s
dough-kneading action. We construct it here in the unit square, 0 < x, y < 1. See Figure 1.
The mapping at the top is based on two choices for subsequent points: For a current (green)
point with x < 1/2 we choose

xnew = 2x and ynew = (y + 1)/2 , (1)

while for a current (red) point with x > 1/2 we choose instead

xnew = 2x− 1 and ynew = y/2 . (2)

Hopf’s interest was “ergodic theory” and this Baker model can be proved ergodic most of
the time.

Here “most” of the time means choosing an irrational initial condition. Rational
beginnings or numerical finite-precision simulations lead promptly to fixed points instead.
The fixed-point mechanism is simply the repeated doubling of the fractional part of the x
coordinate. In fact Figure 1 shows the typical fate of a numerical implementation of Hopf’s
equilibrium map. The quadruple-precision simulation illustrated in the figure generates
112 (x, y) states, of which the last is a fixed point. Single and double-precision simulations
likewise come to fixed-point ends, after 23 and 52 iterations of Hopf’s map. If Hopf’s
evolution is instead described in terms of a rotated (q, p) coordinate system the result is a
relatively long periodic orbit rather than a fixed point. Even single precision gives a period
of hundreds of thousands of iterations. See again Figure 1.

In the summer of 1997 at the Eötvös University school/workshop meeting “Chaos and
Irreversibility” Hoover and Posch [3] introduced time-reversibility and dissipation into a
generalized Baker Map. Tasaki, Gilbert, and Dorfman [4] analyzed families of similar maps
at that same meeting. See as well George Kumiĉák’s related work [7] from 2004. Next, we
focus on the specific dissipative and time-reversible (q, p) map considered by Hoover and
Posch, and described in what follows.
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Figure 1. Hopf’s deterministic Baker Map E(x, y) maps the left/right sides of the unit square into the
top/bottom halves with each iteration. The continued doubling in the x direction eventually reaches
a fixed point. The Figure shows a series of 112 points generated with quadruple-precision arithmetic.
Evidently Hopf could not imagine a computational implementation of his map! The diamond-shaped
lower version of the map, 2× 2 rather than a unit square, produces a long periodic orbit and is, unlike
Hopf’s, time-reversible.

2.2. From Equilibrium to Nonequilibrium with Time-Reversible Maps

Molecular dynamics is “time-reversible” if the previous step can be recovered by a
three-step process: [1] At time t + dt change the signs of the momenta, { +p→ −p }; [2]
Propagate the resulting reversed (q,−p) state (backward) to time t; [3] Change the signs of
the momenta, matching the original (q,+p) state at time t. A time-reversible Baker Map
B(q, p) would obey the relation B−1 = T×B× T, where T is the (time reversal) mapping
that reverses the momenta. If we choose (q, p) coordinate-momenta variables in a 2× 2
rotated Baker map, the “equilibrium” (incompressible) map E, illustrated in Figure 1 has
the analytic form

if(q < p)
qnew = (5/4)q - (3/4)p + 3d
pnew = -(3/4)q + (5/4)p - d
else if(q > p)
qnew = (5/4)q - (3/4)p - 3d
pnew = -(3/4)q + (5/4)p + d
end

where d = sqrt(1/8). This “motion” is analogous to ordinary Hamiltonian mechanics,
where the phase volume dqdp is conserved by Hamilton’s motion equations. In nonequilib-
rium molecular dynamics the extraction of heat, corresponding to entropy loss, leads to a
continuous loss of phase volume. A mapping analogy can be illustrated by constructing a
compressible mapping, as shown in Figures 2 and 3.
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Figure 2. The deterministic Baker Map B doubles an area dqdp in the red region and halves an area in
the white. The time-reversal Map T changes the sign of the vertical “momentum-like” variable p. The
diamond-shaped domain of the map is | q± p | <

√
2. A counterclockwise circuit of the four states

follows if B is replaced by B−1 as T and T−1 are identical.

Figure 3. One million iterations of the Baker Map and the Confined Walk are compared. A scaling
and translation of the Baker Map solution at the left to the unit square replicates the solution of a
stochastic confined random walk problem where x and y are stochastic variables. The walk confined
to the unit interval 0 < y < 1 is generated with a random number relating the “next” value of y to the
“last”. The latter is either y/3 or (1+2y)/3, corresponding to steps to the bottom third or upper two
thirds of the green million-iteration solution at the right of Figure 3. The (q, p) Baker Map at the left
and the (x, y) Confined Walk at the right provide indistinguishable fractals when rotated 45 degrees
and scaled by a factor of two, as shown in the figure. The Confined Walk shown there occupies a unit
square, 0 < (x, y) < 1. We show a 2× 2 version, with |q± p| <

√
2↔ |x, y| < 1, here to clarify the

details of the fractal structure.

Nonequilibrium Molecular Dynamics has a half-century history of providing simula-
tions of viscous and heat-conducting flows driven by boundary differences in velocity and
temperature respectively [8,9]. Stationary state simulations are typically stabilized by time-
reversible thermostat forces, linear in momentum. These “thermostat forces” impose the
desired thermalized boundary conditions [10–12] to maintain nonequilibrium steady states.
Such simulations are irreversible despite their time-reversible motion equations. These
simulations invariably provide the positive viscosities and heat conductivities associated
with Loschmidt’s paradox.
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Phase-space analyses of small-scale steady-state nonequilibrium simulations indicate
stable periodic steady-state structures, “attractors” in phase space. The attraction is termed
“strange” because constrictive attractor dynamics simultaneously exhibits expansive Lya-
punov instability, with small perturbations growing exponentially in time. Despite this
expansive instability the phase volume comoving with a trajectory point is attractive,
shrinking with time as the computation settles onto a periodic, but Lyapunov unstable,
orbit. This periodicity illustrates Zermélo’s recurrence paradox and implies that the actual
dimensionality of computational nonequilibrium steady states is only unity. However, as
the computational precision is further refined the orbit lengthens, with the length soon
becoming too long to measure and with the one-dimensional trajectory defining a natural
measure (or coarse-grained probability density) with a fractal information dimension in
the phase space.

Thus precise long-time nonequilibrium trajectories in phase space come to define fractal
structures, still space-filling, but only sparsely. The dimensionality of these structures is
significantly less than that of the equilibrium phase space supporting their nonequilibrium
dynamics. The “information dimensions” of these fractals can be estimated by phase-space
binning, as we shall demonstrate. In fact such phase-space dimensionality descriptions
are not completely clearcut as their description with simple models like Baker’s reveals a
sobering nonuniform convergence. The simplest model flows exhibiting these interesting
fractal formations are one-particle systems with three-dimensional phase spaces [1,2]. Those
spaces include a single coordinate-momentum pair along with a time-reversible friction
coefficient ζ. The friction coefficients stabilize nonequilibrium steady states.

In the remainder of this work we discuss the two simplest models, a two-dimensional
Baker Map and a related one-dimensional confined random walk. Their study sheds light
on the coexistence of time reversibility with the dissipation typifying strange attractor
structures in model phase spaces.

2.3. The Time-Reversible Dissipative Baker Map

Maps, as opposed to flows, can exhibit similar time-reversible dissipation while
occupying only one or two phase-space dimensions. We consider here a compressible
version of the “Baker Map” [3,4,7]. It evolves a single coordinate-momentum pair of
variables (q, p) as is illustrated in Figure 2. A longtime solution appears at the left in
Figure 3. In the two-dimensional (q, p) coordinate-momentum phase space compressible
Baker-Map dynamics simply generates a new (q, p) pair from the old one, as described by
a linear map. At the top of Figure 2 the smaller red area with q− p <

√
(2/9) is expanded

twofold by the Baker Map B. The expanding map has the analytic form:

qnew = +(11q/6) - (7p/6) + 14d
pnew = -(7q/6) + (11p/6) - 10d

The constant d is
√
(1/72). Notice that the expanding map has a (q, p) Jacobian determinant

of (121− 49)/36 = 2, signalling a doubling of area with each iteration. In the larger white
region the map, likewise linear, contracts:

qnew = +(11q/12) - (7p/12) - 7d
pnew = -(7q/12) + (11p/12) - d

Here the determinant of the contracting map is (121− 49)/144 = 1/2 signifying twofold
compression. Figure 3 illustrates a million-iteration solution of the mapping equations.

Figure 2 illustrates the time-reversibility of the map. First, starting at the upper right
of the figure, change the sign of the vertical “momentum variable” p with the map “T”,
ending at lower right; next map forward with “B” to lower left; last reverse time again
with “T” returning (q, p) to its original top left pre-mapped location, demonstrating that
the inverse mapping is B−1 = TBT. This identity defines a time-reversible mapping.

Though the map looks even-handed compression invariably wins out over expansion.
It must! A little reflection identifies compression with stability and expansion with its
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opposite, instability. An unphysical hypothetical system in which expansion wins out over
compression would correspond to numerical instability with an exponential divergence
of the comoving phase volume. In numerical work only about ten percent of the simple
Baker-Map iterations are computationally reversible in the sense that applying the inverse
mapping undoes the most recent iteration precisely so that B−1B leaves (q, p) unchanged.

2.4. Random Walk Analog of the Baker Map

A random-walk analog for the progress of the Cartesian y variable on the unit interval
can be modelled given current values of x and y. A new value xnew can be chosen at
random, while ynew depends upon both a random number r where 0 < r < 1 and the
current value of y:

if(r.lt.1/3)
ynew = (1+2y)/3
else if(r.gt.1/3)
ynew = y/3
end

The righthand side of Figure 3 illustrates the strange-attractor character of numerical
solutions of this confined walk problem. The Confined Walk fractal at the right is related to
the Baker Map fractal at the left by a 45-degree counterlockwise rotation. Evidently, due to
the exponential growth in the walk’s horizontal x direction that distribution is random and
can be modelled by a good random-number generator. In the y direction the distribution is
a self-similar fractal, repeating in an infinite set of bands with each band smaller than its
predecessor by a factor of (2/3) and including one-third as many points.

3. Results and Discussion
3.1. Irreversibility through Shrinking Phase Volume

An understanding of the shrinking phase volume, which leads to an apparent fractal
(fractional dimensional) phase-space object is straightforward in the Baker Map example
of Figure 2. The map, whether in the red region or the white, always expands in the
northwest-southeast direction parallel to lines of constant q + p. This expansion character-
izes Lyapunov instability, the growth of microscopic perturbations to macroscopic scale.
In the perpendicular direction, parallel to lines of constant q− p, the map contracts to the
self-similar fractal structure displayed in Figure 3.

3.1.1. Lyapunov Instability and Exponential Growth

Figure 4 illustrates the exponential character of the expansive northwest-southeast
growth by displaying the offset between single- and double-precision simulations, the up-
permost of the three curves in the figure. Both simulation types begin at the (q, p) = (0, 0)
origin at the center of the diamonds shown in Figures 1–3. The initial separation imme-
diately reflects the roundoff error of the single-precision mapping, of order 10−10. The
single-double separation increases by ten orders of magnitude in about 40 iterations of
the map. Similarly, the double-quadruple separation likewise grows exponentially. In
that more-nearly-accurate more-precise case the growth rate is the same e+λ1t. λ1 is the
largest Lyapunov exponent. Its numerical value is 0.63651. The exponent and the blue
middle line in Figure 4 drawn with its slope corresponds to averaging the growth rates
in the red and white regions, ln(3) and ln(3/2) respectively, taking into account that the
white compressive region is twice as likely as the red. The result is the time-averaged
expansion rate:

〈 λ1 〉 = (1/3) ln(3) + (2/3) ln(3/2) = (1/3) ln(27/4) = 0.63651 . (3)
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Similarly, the compression perpendicular to the expansion gives the second Lyapunov
exponent:

〈 λ2 〉 = (1/3) ln(2/3) + (2/3) ln(1/3) = (1/3) ln(2/27) = −0.86756 . (4)

This analysis is in good agreement with the numerical data. With an initial double-precision
roundoff error of order 10−17 the exponential loss of accuracy expands to unity after about
60 iterations of the map: 10+17 ' e0.63651×60, as in the lower curve.

Figure 4. Comparison of the differences dr =
√

dq2 + dp2 between single and double precision
simulations (above) of the Baker Map and double and quadruple precision simulations (below) with
all three trajectories started at the origin. The straight blue line has a slope corresponding to the
largest Lyapunov exponent, λ1 = 0.63651.

3.1.2. Compression with Expansion Leads to Irreversibility

Despite the exponential growth of northwest-southeast separations the overall phase
volume shrinks. On average a white area is halved two thirds of the time while a red area
doubles one third of the time. Thus overall the comoving area decreases as 2(−t/3) with
t iterations. That area is soon reduced to a vanishingly-small fraction of its initial value.
That fraction is of order e−100 for a thousand iterations of the map. This contraction of
area accounts for the sparse appearance of the thousands of mapped points in the smallest-
scaled regions of Figure 3. The mean densities in the self-similar bands decrease with
increasing values of y:

〈 ρ(0 < y < 1
3 ) 〉 = 21 ; 〈 ρ( 3

9 < y < 5
9 ) 〉 = 20 ; 〈 ρ( 15

27 < y < 19
27 ) 〉 = 2−1 . . . . (5)

The expansive “strange” portion of the mapping is responsible for this decrease in density
even though it is unlikely relative to compression. Consider an initial point at the origin
(q, p) = (0, 0) and follow it forward in time, counting the net number of compression steps.
Figure 5 shows the results of three million iterations of the map in single, double, and
quadruple precision. As expected the net numbers of compressive iterations are “close to”
[within a thousand or so] one-third the total.

3.2. Poincaré Recurrence of the Baker Maps

A fringe benefit of the diamond-shaped Baker Map is the relatively long Poincaré
recurrence time. The computational “noise” contributing to this longevity can be traced to
the irrational square roots in the mapping. The single-precision mapping which we have
used in Figures 4 and 5 has a periodic orbit of length just over a million iterations, 1,042,249
to be precise. The double-precision mapping settles into a periodic orbit repeating after a
few trillion iterations [5]. The (x, y) Cartesian coordinate version of the map corresponding
to the orientation at the right in Figure 3 is not well suited to computation due to its many
short periodic orbits, many of which are stable (which we view as “unphysical”. A clear
and comprehensive analysis of the generalized Baker Map problem, with arbitrarily small
and large expansions and contractions, was presented by Kumiĉák in 2005 [7]).
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Figure 5. Excess of compressive over expansive iterations of the single-(red), double-(green), and
quadruple-(black) precision Baker maps. The differences between them are visible between 20 and
1000 iterations of the maps. The final values of the excess are 1,000,742, 1,000,250, and 998,236 for the
three sets of three million iterations beginning at (0, 0).

3.3. Characterizing Chaos in the Baker Map

Numerical solutions carry a fixed number of digits, 9, 17, and 36 for single-, double-,
and quadruple-precision numbers on the unit interval. Chaos is characterized by the
exponential growth of small perturbations. The Baker Map’s largest Lyapunov exponent is
0.63651, so that the differences seeded by roundoff between single- and double-precision,
and between double- and quadruple-precision solutions can be estimated from Figure 4 just
as easily as from the analytic growth rates. That figure illustrates the offsets and Figure 6 the
trajectory differences between 50 and 75 iterations of the double and quadruple-precision
maps. At 50 iterations, corresponding to multiplying by e32 ' 1014, roundoff error has
not yet amplified the difference between double and quadruple precision to visibility,
while 75 iterations are more than sufficient to lose any visible correlation between the two
solutions.

a) b)

Figure 6. Additional iterations, (a) 1 to 50 and (b) 50 to 75 in double (black) and quadruple (red)
precision for the two-dimensional (q, p) Baker Map B with the initial point at the origin (0, 0).
Lyapunov instability makes the difference between the two solutions visible after about 70 iterations,
as can be seen in (b).

The right side of Figure 3 shows that a stochastic view of the map, traceable to its
chaos, is quite proper. Before the mapping shown at the top of Figure 2 is executed we
note that the white southeastern area is twice that of the northwestern red area so that
compressive steps (into the highest-density lower third of the unit square) are twice as
likely as expansive steps (into the upper two-thirds). The preponderance of the excess,
lower–upper, is shown in Figure 5 and approaches, on average, t/3 as the number of
iterations t increases. We would expect the error in this statistical estimate to become
visually negligible, say one percent, once the number of iterations is of order 104. A look at
the figure shows that the statistical bumpiness away from a straight line becomes visually
negligible between 1000 and 10,000 iterations, just as one would expect for a stochastic,
rather than deterministic, process.
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It is an article of faith that the x motion of the (x, y) map is completely random [13].
This statistical view is consistent with our numerical work so that we believe it is fully
justified. It is easily checked by comparing bin populations for the Map and the Walk after
millions or billions or trillions of iterations. See Figure 7 for a million-iteration sampling of
2187 bins for both approaches. Let us consider the confined random walk problem in more
detail next [5,6,13].

Figure 7. Comparison of the y coordinate distribution of the Baker Map in the unit square converted
from (q, p) with the Confined Walk distribution obtained using the FORTRAN random-number
generator random−number(r). The Map and Walk data, one million points for each, have been
collected here and displayed in 2187 = 37 bins of width 3−7.

3.4. Results from the Random Walk Baker Map

Figures 3 and 7 compare the distributions from one million iterations of the two-
dimensional Baker Map with those from the same number of iterations applied to the
confined walk. In Figure 7 the unit-interval y values have been “binned” into 37 = 2187
bins of equal width, δ = 1/2187. Initially the doubling of density with steps to the bottom
third of the square and halving with steps to the upper two thirds gives rise to probability
density steps of factors of four. Later, in the steady state and visible in Figure 8 where the
bin probabilities are plotted on a logarithmic scale spanning 16 e-foldings, the regular steps
stand out in the lefthand 3-based binnings but are less distinct in the righthand 4-based ones.
This difference, along with the continual increase in e-foldings with iterations, suggests the
possibility of convergence difficulties in characterizing the resultant fractal.

Figure 8. Fractal probability densities for confined walks with bin sizes δ = 3−10 and 4−8. For both
bin sizes

∫ 1
0 ρ(y)dy = 1. For 108 iterations of the map were used for the point set that was analyzed

with both these choices of binning.
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The only singularity in the linear Baker Map is the border line separating the red and
white regions in Figure 2:

q− p = −
√
(2/9) Baker Map ←→ x = (1/3) Random Walk (6)

Evidently this measure-zero set of singular points is enough to generate the everywhere-
singular fractal distribution of the analytic “{ y }” and the computational “{ y }”. Let us
consider further details of the latter set next.

3.5. Nonuniform Convergence of the Information Dimensions

The definition of the information dimension DI(δ) for a set of points describes the
dependence of the probability density of points on the size of the sampling bins, δ. Although
other fractal dimensions can and have been defined and studied, the information dimension
is uniquely significant. Unlike the correlation dimension DI is unchanged by simple
coordinate transformations [14].

To seek uniqueness both the number of bins and the number of points per bin must
approach infinity in averaging the bin probabilities: DI = 〈 ln(prob) 〉/ ln(δ). To visualize
taking this limit we illustrate the result of iterating a set of one million equally-spaced initial
points on confined random walks: 0 < {yi(t)} < 1. We explore thirty iterations: 0 < t < 31.
The confined random-walk iterations are governed by the output of the FORTRAN random
number generator random−number(r). The dimensionality data are analyzed here using
3n bins, with n varying from 0 to 10. The finest grid has 310 = 59, 049 bins of equal width
δ = 1/59049. By combining the contents of 3, or 9, or 27, or. . .contiguous bins the entire set
of 30 stepwise information dimensions for the ten binning choices can be obtained from a
single run. The apparent information dimensions for the 300 problems (thirty iterations
with ten bin sizes) are plotted as the ten lines shown in Figure 9.

Figure 9. The information dimensions DI of the developing random-walk fractal as ten functions
of the number of iterations. The number of bins characterizing each curve varies from 31 to 310 for
each of thirty iterations. Each point corresponds to an averaged DI from one million equally-spaced
initial conditions on the unit interval 0 < y < 1. In the limiting special cases (shown as red squares)
that the number of iterations is equal to the logarithm, base-3, of the number of bins, the information
dimension follows from Farmer’s analysis [5], [(2/3) ln(2/3) + (1/3) ln(1/6)]/ ln(1/3) = 0.78967.
When the number of iterations approaches infinity ahead of the number of bins, the dimensionality
is substantially lower, DI ' 0.7415 rather than the Kaplan-Yorke conjectured value (based on the
Baker-Map Lyapunov exponents) 0.7337.

The Baker-Map function, y = [(q+ p)/
√

2+ 1]/2 provides the same fractal as does the
confined walk, penetrating, in both cases, to a scale smaller by a factor 3 with each iteration.
For this reason powers of (1/3) are the “natural” bin sizes for analyzing the Baker-Map
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function [5,13] and the confined walk 0 < y < 1. Although reciprocal bin widths which are
powers of 3 are “natural” for the Baker Map and its confined walk analog, an embarrassing
variety of choices is possible. As an example bin widths which are the first eight powers
of 4 (a subset of bin widths which are powers of 2) provide the information dimension
estimates shown in Figure 10. Similar behaviour and convergence is observed in the case
of 1/2, 1/4, 1/5 and 1/7 [15], so the 1/4 case is chosen as representative in the comparison
to the 1/3 case. For additional examples see Reference [14]. The totality of these results
is paradoxical because they indicate a limiting information dimension of 0.7415 from the
series of widths (1/3)n and a different limit, 0.7337, from the series of widths (1/4)n. This
difference suggests a persistent difference of distributions in the limiting case(s) δ → 0.
This nonuniform convergence caught us completely by surprise.

The lines in both Figures 9 and 10 appear to plateau to different fixed value depending
on bin resolution. This is a consequence of the increased ability to resolve the phase space
fractals as number of bins increases. For increasing numbers of bins, with enough iterations
the plateau values becomes similar but the actual convergence is very slow, only appearing
on logarithmic axes.

Figure 10. The information dimension DI of the developing random-walk fractal as a function of the
numbers of bins and iterations. The number of bins varies from 41 to 48 for thirty iterations. As in
Figure 7 each point corresponds to DI for one of the ten samples of one million initial conditions.

The dependence of the limiting information dimension on the bin-width power law,
giving either 0.7415 or 0.7337, suggests a look at the distributions themselves. As the
limiting case(s) are singular everywhere, we arbitrarily choose to compare probability
densities for both 310 and 48 bins in Figure 8. Both simulations include exactly the same set
of 100,000,000 iterations. The density steps with 310 bins are markedly sharper than those
with 48 and the details of the boundaries between vertical strips are likewise better defined
for the finer (65,536 rather than 59,049 bins) mesh.

A clearer picture of the binning dependence follows from the cumulative distributions
of density and information, shown for the same data used in Figure 8. Figure 11 shows both
the density and the information dimension as cumulative sums for two pairs of similar
binnings, (1/3)5 ∼ (1/2)8 and (1/3)7 ∼ (1/2)11. Because the underlying data are identical
the densities always agree, within one bin width. The information dimensions are quite
different with powers of 2 both giving DI = 0.745, significantly greater than DI = 0.715
and 0.725 for the “natural choice" of powers of three, 243 and 2187 bins. Numerical work
suggests that the difference persists even to infinitesimal bin widths.
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Figure 11. Cumulative densities and information dimensions are compared for bin widths (from
bottom to top at the right) of (1/3)5, (1/3)7, (1/2)11, (1/2)8. The information dimensions for much
narrower bins suggest different limiting dimensionalities for the two bin families.

3.6. Massively-Parallel Implementations of the Confined Walk

The Baker Map and Confined Walk problems appear to be ideally suited to parallel
computation. Both these information-dimension problems are “embarrassingly paral-
lel”. This means that during computation there is no need for communication between
parallel processors. For both problems ergodicity implies that the long-time-averaged
bin-dependent information dimensions,

DI(δ) = ∑
bins

p ln(p)/ ln(δ) = 〈 ln(p) 〉/ ln(δ) [ Map or Walk ] , (7)

are independent of the initial condition. The motivation for the current work was, in fact,
our desire to apply a parallel computer to these problems. As the Map and Walk problems
are equivalent in their fractal natures we will detail only the simpler case, the confined
random walk.

Consider a parallel computer with N processors, each with its own separate memory
storing an array of bin occupation numbers. Such a machine would reduce the computation
time for a given number of iterations by a factor of N, provided the N initial conditions
contain no duplicates and the streams of random numbers are unique on each processor.
This optimal N-fold “speedup” would not apply to problems requiring the alternative
“shared-memory” approach. Sharing a single memory, common to all processors, degrades
performance dramatically as the N processors compete for access to the global storage. To
take advantage of a parallel machine, it is necessary to note that N independent sets of bin
populations must be separately stored, only to be combined at the completion of all the
processors’ iterations.

Let us consider a numerical example to clarify the potential improvement in statistics
of a parallel implementation. We imagine a parallel machine with 100 processors applied
to the 729 = 36 bin problem. To determine an accurate answer to this problem we begin
by carrying out a single serial calculation of 50,000,000,000 iterations. This provides an
information dimension of DI(δ = 1/729) = 0.718582. The uncertainty in the last digit
is 0.000001 or 0.000002. Next, we consider 100 serial computations (mocking up a 100-
processor solution) of 1000, 10,000, and 100,000 iterations each, finding errors in DI of
0.0322, 0.0048, and 0.0005. Further numerical exploration shows that a plot of ln(error) as a
function of ln(iterations) has a straight-line slope near −1. Evidently for runs of reasonable
length the error varies inversely as the number of iterations. Figure 12 shows errors for
both the 729-bin case and the 531,441 = 312-bin case suggesting that the inverse relationship
is a good “rule of thumb”. For a slowly varying cumulative average twice the final value
less that at the halfway point is a reasonable best-guess choice for DI(δ).
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Figure 12. The logarithms of the errors in DI(δ) (due to insufficient iterations) are shown for two
different bin widths, δ = 3−6 = 1/729 at the left and δ = 3−12 = 1/531,441 at the right. For
both cases the slope is roughly −1 when plotted as a function of Logarithms of the number of
iterations. Thus the error for DI varies inversely with the number of total iterations included. The data
plotted were obtained from 100 successive samplings, corresponding to a parallel computation with
100 independent processors. The leftmost and rightmost points correspond to 1000 and 1010 iterations:
ln(1000) = 6.908 and ln(1010) = 23.026.

It is therefore clear that a parallel implementation can be used to improve statistics.
The result of scaling up to 1536 processors is shown in Figure 13 for a Confined Walk run
over 1010 iterations using 318 bins. The run time, approximately 600 s, is the calculation of
the walk itself. This is seen to be independent of the number of processes, as expected from
the embarrassingly parallel nature of the problem. The communication time covers the
summing of the value in each bin on each processor to a master set of 318 bins on the root
processor. The root processor then calculates the value of DI from the set of bins which will
contain N × 1010 samples. This communication occurs only once at the end of the run, so
despite taking more time as the number of processes N grows, it would still be expected to
be an insignificant part of a longer run time (e.g., a typical run of 48 h would spend less
than 0.1% on communication with 1536 processors).

However, the information dimension requires a process of increasing bin resolution,
which necessitates the number of bins be increased toward infinity. As a result, the problem
of finding the information dimension quickly becomes memory limited. In the example
given here, the 1536 processors are distributed on 24 core “nodes” (essentially a networked
computer with a 24 core Central Processing Unit or CPU), each of which has 100 GB
(GigaBytes) of random access memory (1011 bytes of Random-Access Memory or RAM).
The bins’ contents must be stored on each processor. This allows them to run in parallel,
which limits the number of bins to no more than 4 GB per processor. The choice here is of
318 bins ≈ 1.4 GB, where the count in each bin is stored as a 4 byte integer and is within
the limit of 100 GB of random access memory available for the 24 cores. The next power of
three, 319, would result in storage requirements greater than 4 GB per process. As a result,
the supercomputer has the potential to speed up the simulation but only for systems with
modest memory requirements. Generally smaller numbers of bins converge rapidly, so
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compute time are not the limiting step. As a result, this “memory-limited” problem is not
ideally suited for acceleration on a supercomputer.

A different approach would be needed if supercomputer speedup is to be possible
when collecting the information dimension for the case where number of bins tends to
infinity, for example using a dynamic data structure for binning (e.g., a binary tree) or some
other way of calculating the information dimension which does not require the allocation
of prohibitively large binning arrays. An alternative measure of the fractal dimension could
also provide a way forward.
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Figure 13. Timing for 1010 iterations of the Confined Walk using 318 bins run on varying numbers of
processors. The time is split into the Confined Walk calculation itself (Run), a process which requires
no communication between processes, and a communication step (Comm) where the collected bins
are accumulated on the root process before being used to calculate DI .

4. Conclusions

The finding that nonequilibrium steady states with time-reversible motion equations
generate repellor-attractor pairs in phase space has been explored here for two simple mod-
els, the Confined Walk and the Baker Map. These models, with one- and two-dimensional
phase spaces, are simpler than the continuous flows illustrating chaos [1,2]. The two model
systems reveal the details of the singular loss of phase volume resulting in these interesting
fractal distributions. Flows, with differential equations rather than maps, require three
phase-space dimensions for chaos.

The maps have shown us that nonequilibrium states are rare, occupying only fractional
dimensional portions of phase space. Although the time-symmetry of the motion equations
guarantees that there is a mirror-image p → −p solution of the motion equations our
investigation shows that the dissipative states form an attractor, with a negative Lyapunov-
exponent sum. The attractor is a fractional-dimensional stable sink relative to the two-
dimensional equilibrium phase space. The paradoxical time-reversed repellor states have
positive Lyapunov-exponent sums and are wholly unstable and irreversible. The fractal
nature of the non-equilibrium attractors means that their entropies are minus infinity. That
property is fundamental to the resolution of the Paradoxes mentioned in the abstract.

The structures of nonequilibrium steady-state phase space flows are qualitatively
different to those of Gibbs’ equilibrium ensembles. The steady state flows are directed
from repellors to attractors. The barrier to reversal is exponential. Loschmidt’s reversed
states are nearly unobservable, like the attractor states so rare that they never turn up for
long. Zermélo’s recurring states are simply typical non-paradoxical dissipative states on
stable attractors occupying a fractional-dimensional zero-volume portions of their phase
spaces. Thus nonequilibium systems are qualitatively different to Gibbs’ space-filling
distributions of points. It is interesting to note that the nonequilibrium fractals have the
form of periodic orbits which cannot be reversed. Even for the simple Baker Map only
about ten percent of the timesteps can be reversed precisely. The Lyapunov instability going
backward in time changes sign, from attractive to repulsive with the Lyapunov instability
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offset by convergence going forward but completely uncontrolled backward despite the
time-reversibility of the equations of motion.

Detailed characterizations of the fractals found in the Walk and Map problems have
revealed an unsettling nonuniformity of convergence. Different approaches to the informa-
tion dimensions of the models [ δ = (1/3)n and δ = (1/4)n, for instance ] give different
results [5]. However, use of a supercomputer to probe this convergence is found to be
limited by the high memory requirements as we increase numbers of bins. The memory
bound nature of the problem suggests an alternative approach is needed to reach the limit
of zero bin size.

A surprising finding from the one and two-dimensional maps is that the information
dimension of these simplest-possible fractals appears to be ill-defined, illustrating the
desirability of further work on these fractals. There are other illustrations of the failure of
the Kaplan-Yorke conjectured connection of the Lyapunov exponents to the information
dimension. Reference [14] is key as to why information dimension is the right property to
investigate, as the others are sensitive to minor coordinate-system changes.

We believe that further study of these fractals is warranted. The code to simulate
these problems serially, using shared memory and on a supercomputer are provided to
facilitate this study. In addition, the 2021 Snook Prize problem seeks to shed light on the
information dimension of the fractals, 1.7337 vs. 1.7415 for the Baker Map, equivalent to
0.7337 vs. 0.7415 for the Confined Walk problem. Straightforward binning calculations,
along the lines of Figures 9 and 10, give histogram probabilities { Prob(δ) } which can then
be analyzed for a bin-width dependent information dimension:

DI(δ) = 〈 ln(Prob[δ]) 〉/ ln(δ) . (8)

Computations of DI(δ) for small bin sizes appear to lead to three different estimates for the
δ→ 0 limiting “information dimension”! Evidently the information dimension [5,6,13,14] of
these maps (in the limit that the bin-width δ vanishes) is ill-defined,an interesting example
of nonuniform convergence.
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7. Kumiĉák, J. Irreversibility in a Simple Reversible Model. Phys. Rev. E 2005, 71, 016115. [CrossRef] [PubMed]
8. Hoover, W.G.; Hoover, C.G. Time Reversibility, Computer Simulation, Algorithms, Chaos, 2nd ed.; World Scientific: Singapore, 2012.
9. Hoover, W.G.; Hoover, C.G. Microscopic and Macroscopic Simulation Techniques: Kharagpur Lectures; World Scientific: Singapore, 2018.
10. Nosé, S. A Unified Formulation of the Constant Temperature Molecular Dynamics Methods. J. Chem. Phys. 1984, 81, 511–519.

[CrossRef]
11. Nosé, S. A Molecular Dynamics Method for Simulations in the Canonical Ensemble. Mol. Phys. 1984, 52, 255–268. [CrossRef]
12. Hoover, W.G. Canonical Dynamics. Equilibrium Phase-Space Distributions. Phys. Rev. A 1985, 31, 1695–1697. [CrossRef]

[PubMed]
13. Farmer, J.D. Information Dimension and the Probabilistic Structure of Chaos. Z. Naturforschung 1982, 37a, 1304–1325. [CrossRef]
14. Ott, E.; Withers, W.D.; Yorke, J.A. Is the Dimension of Chaotic Attractors Invariant Under Coordinate Changes? J. Statstical Phys.

1984, 36, 687–697. [CrossRef]
15. Hoover, W.G.; Hoover, C.G. From Hard Spheres and Cubes to Nonequilibrium Maps with Thirty-some Years of Thermostatted

Molecular Dynamics. J. Chem. Phys. 2020, 153, 070901. [CrossRef] [PubMed]

http://dx.doi.org/10.1103/PhysRevE.71.016115
http://www.ncbi.nlm.nih.gov/pubmed/15697666
http://dx.doi.org/10.1063/1.447334
http://dx.doi.org/10.1080/00268978400101201
http://dx.doi.org/10.1103/PhysRevA.31.1695
http://www.ncbi.nlm.nih.gov/pubmed/9895674
http://dx.doi.org/10.1515/zna-1982-1117
http://dx.doi.org/10.1007/BF01012932
http://dx.doi.org/10.1063/5.0019038
http://www.ncbi.nlm.nih.gov/pubmed/32828089

	Introduction
	Methodology
	Hopf's Equilibrium Baker Map E(x,y)
	From Equilibrium to Nonequilibrium with Time-Reversible Maps
	The Time-Reversible Dissipative Baker Map
	Random Walk Analog of the Baker Map

	Results and Discussion
	Irreversibility through Shrinking Phase Volume
	Lyapunov Instability and Exponential Growth
	Compression with Expansion Leads to Irreversibility

	Poincaré Recurrence of the Baker Maps
	Characterizing Chaos in the Baker Map
	Results from the Random Walk Baker Map
	Nonuniform Convergence of the Information Dimensions
	Massively-Parallel Implementations of the Confined Walk

	Conclusions
	References

