
Journal Pre-proof

Autonomous flying IoT: A synergy of machine learning, digital elevation,
and 3D structure change detection

Faris A. Almalki, Marios C. Angelides

PII: S0140-3664(22)00097-4
DOI: https://doi.org/10.1016/j.comcom.2022.03.022
Reference: COMCOM 7076

To appear in: Computer Communications

Received date : 18 December 2021
Revised date : 26 March 2022
Accepted date : 29 March 2022

Please cite this article as: F.A. Almalki and M.C. Angelides, Autonomous flying IoT: A synergy of
machine learning, digital elevation, and 3D structure change detection, Computer Communications
(2022), doi: https://doi.org/10.1016/j.comcom.2022.03.022.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.comcom.2022.03.022
https://doi.org/10.1016/j.comcom.2022.03.022
http://creativecommons.org/licenses/by/4.0/


Journal Pre-proof
 

 

Abstract —
funded by a 
Unmanned A
a Digital Ele
terrain chang
(3D SCDM)
both models i
terrain chang
demonstrated
in areas wher
e.g., inside go
it can detect 
as standing w
watershed de

Index Te
Machine Lea
Detection Mo

The applica
drivers of th
Things dev
fueling the 
machine lea
an autonom
From a com
alternative t
and mainte
flexibility, r
(LoS) conn
may capture
cost and ris
which may 
perspective,
terrain chan
Such an aut
for smart f
ecological r
From a com
traditional v

trial close-
om space 
naccessible 
aintenance 
ites [5-6]. 
equires the 
or Digital 
ndscape of 
relation to 

ires that the 
e terrain it 
enabling a 
ns over the 
tect terrain 
ch a flying 

that rely on 
le, of water 
d which are 
in imagery. 
e learning 
l Network 
eras to fly 
anges over 
spectively. 
 resulting 
ions aimed 
ire the use 
ill help the 
ater signs. 

other areas 
AV narrow 

 II reviews 
utonomous 
ework that 

V presents 

1Department o .edu.sa)  
2Brunel Desi  Kingdom 
(marios.angeli

A e 
L  
Jo
ur

na
l P

re
-p

ro
of

 The research work presented in this paper has been 
national research project whose aims are to enable an 
erial Vehicle (UAV) to fly autonomously with the use of 
vation Model (DEM) of the target area and to detect 
es with the use of a 3D Structure Change Detection Model 
. A Convolutional Neural Network (CNN) works with 
n training the UAV in autonomous flying and in detecting 
es. The usability of such an autonomous flying IoT is 
 through its deployment in the search for water resources 
e a satellite would not normally be able to retrieve images, 
rges, ravines, or caves. Our experiment results show that 

water flows by considering different surface shapes such 
ater polygons, watersheds, water channel incisions, and 

lineations with a 99.6% level of accuracy. 

rms—Internet of Things; Unmanned Aerial Vehicles; 
rning; Digital Elevation Model; 3D Structure Change 
del; Aerial Imaging; Remote Sensing 

I. INTRODUCTION 
tion of Artificial Intelligent (AI) is one of the main 
e Fourth Industrial Revolution’s (4IR) Internet of 

ices and unmanned Aerial Vehicles (UAVs) is 
revolution. Equipping a UAV with sensors and 
rning capabilities will turn the eye-in-the sky into 
ous flying IoT with immediate benefits. 

munications perspective, UAVs may act as an 
o satellites, but without the distance penalty, launch 
nance cost and complexities, and offering more 
apid deployment and portability, and Line of Sight 
ectivity. From a remote sensing perspective, UAV 
, for example, high resolution data rapidly, at low 

k and importantly whilst flying near the target area 
normally be inaccessible to satellites. From an IoT 
 a UAV may be trained in autonomous flying and 
ge detection using a machine learning approach. 
onomous flying IoT, would be useful, for instance, 
arming, terrain monitoring, emergency response, 
esearch [1-4]. 
bined perspective, UAVs are now challenging the 
iew that aerial reconnaissance and photogrammetry 

is a job primarily for satellites. UAVs offer terres
range, in contrast to satellites’ remote fr
photogrammetry, access to areas that are normally i
to satellites, and without the distance, launch and m
cost, and deployment time penalties of satell
Deploying a UAV to recognise terrain morphology r
use of a DEM or Digital terrain model (DTM), 
surface model (DSM) [7-8]. Figure 1 presents the la
geomatics techniques, sensors, and platforms in 
scene size and complexity [5]. 
However, enabling a UAV to fly autonomously requ
UAV is trained to recognize the morphology of th
flies over, using the terrain’s DEM. Furthermore, 
UAV to carry out continuous reconnaissance missio
same terrain requires that the UAV is trained to de
morphology changes with the use of a 3D SCDM. Su
IoT will be very useful for reconnaissance missions 
detecting terrain changes as the first signs, for examp
resources, in areas that cannot sustain human life, an
not normally accessible by a satellite to retrieve terra
The aim of this paper is to present a machin
framework that enables a Convolutional Neura
(CNN) to train a UAV loaded with spectral cam
autonomously over a terrain and detect terrain ch
several missions using a DEM and a 3D SCDM re
The paper demonstrates the usability of the
autonomous flying IoT during reconnaissance miss
at searching for water resources. This will also requ
of a specialist Water Detection Model (WDM) that w
CNN train the UAV narrow its search to detecting w
Naturally the resulting framework can be applied to 
where a model like WDM exists that will help the U
its search as it is the case with WDM. 
The rest of this paper is organized as follows: Section
related research; section III presents the proposed a
flying IoT UAV along with the intelligent CNN fram
supports its reconnaissance operations; section I
simulation results; section V concludes. 
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Figure 1: UAV photogrammetry against other approaches 

II. RELATED RESEARCH 
 criteria for sourcing related research works to 
de types of UAV platforms, low altitude missions, 
 flying, types of aerial imaging, standalone 
change detection, and intelligent frameworks with 
or works that broadly fit our application area. The 
ludes with a research windup table, followed by a 
 of the research gaps identified, and our own 
tivations for prototyping the proposed autonomous 

atform for Marine Ecosystem Restoration (MER) is 
 [9], which aims at monitoring water quality within 
acted area before and after restoration. Results infer 

aging via UAV can deliver flexibility in temporal 
resolution, especially in enabling access to hard-to-
 with little to no disturbance.  
a DEM for terrain mapping, e.g., soil and water, is 
 [10]. This is achieved with remote sensing images 

 plateau. Remote sensing may also be used for soil 
conservation for sustainable farming. The cost-
s of using a UAV and DEM for spatial and temporal 
ion in hydrological modeling and water resource 
t is emphasized in [11]. 
mance for flood estimation using experimental 
 UAVs is evaluated in [12] by taking aerial imaging 
e of 325m and using a DEM and Light Detection 
g (LiDAR). The results reveal that aerial imaging 
ssessment applications are reasonable within a 
l size. 
Italy on the use of UAV and DEM for watershed 
m an altitude of 100m is presented in [13].  Results 

esolution and accuracy between 15 and 30cm with 

low surveying cost and time in contrast to LiDAR. 
support small basin flood mapping.  
A UAV aimed at recognizing objects using DSM aer
at altitudes of 300m and 500m is simulated in [14]
covers an area of 0.51 km2 in the center of 
Technology Malaysia. The simulated results show th
recognize different land features including water bo
applying a structure from motion (SFM) app
photogrammetric processing accuracy rises to aroun
An aerial photogrammetry study for observing wat
in a small stream in Denmark using UAV and DEM i
in [15]. The experiment was conducted at 30m and 
ground level and results show that the UAV-DEM c
highly accurate water surface elevation (WSE) obse
Monitoring river morphology and bank erosion in r
using UAV and DEM to retrieve imagery is discuss
At around an altitude of 130m, the spatial resolutio
images is of sufficient quality to survey small chang
10 and 20cm. The results suggest an ability to 
monitor rivers efficiently, at a minimum cost, comple
cover and logistical problems in comparison to satel
Empirical evaluation of a photogrammetry streamf
taken in rural Wisconsin using UAV and DTM is in
[17]. Taken from an altitude of 80m, the hydrolo
structure serves as good case on how UAV data can
at low-cost but serve equally decision making. 
The UAV and DSM utility for monitoring marsh
Central California is evaluated in [18]. Workin
altitude of 30m is found to be ideal for taking aerial i
high spatial variation of areas that are otherwise 
access on foot. 
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ental study that compares the performance of two 
aches over North Carolina is presented in [19]. The 
ch aims at 3D Water Surface Reconstruction using 
om motion (SFM) and CNN whereas the second 
ms at 3D Water Reconstruction using DEM and 
root mean squared error (RMSE) assessment tool 
 compute the floodwater depth error. The RMSEs 
 and 0.26m respectively. 
g UAV with DTM for analyzing the quality and 

f geomorphology photogrammetry that includes 
s is proposed in [20]. The work highlights the need 
tion through several variables that would affect the 
e of the aerial DTM survey, including UAV altitude 
orientation of the flight lines, image overlap, and 
figuration, e.g., shutter speed, frame rate, focal 
ults confirm that the RMSE performance indictor 
r DTMs with high accuracy when the 
etry variables are optimized. It has been observed 
AV altitude increases from 70m upto 150m so does 
hich affects accuracy. The RMSE remains almost 

ow 70m. 
ith LiDAR and DEM that detects pipe-related 
 in rural Poland is presented in [21]. Using area 
 the study reports a rate of success between 76 and 
rops down to a rate between 45 and 50% depending 
morphology. 
h a digital orthophoto map (DOM) photogrammetry 
g landslide behavior in China is introduced in [22]. 
arning image recognition technique of RetinaNet is 
feature extraction. Results show a notable influence 
nguishability index for landslide cracks, and these 
d using a receiver operating characteristic (ROC) 
eflects the relation between the true positive rate 
he false positive rate (FPR). 
f a UAV building a DSM of hyperspectral data on 
acteristics including water signs from an altitude of 
the ground in China is presented in [23]. The study 
ifferent intelligent object classification schemes 
 classification and regression tree (CART), and 
indices (VIs). The results indicate an overall 
 88% and a kappa coefficient of 0.87 with aerial 
tification. 
nsing in hard-to-reach regions highlights the 
of UAVs over satellites and access on foot. The use 
ith a thermal camera for remote mapping of 

d caves and rockslides from an altitude of 100m is 
 [24]. The UAV’s DSM data help with detection of 
from images retrieved. A multifunctional UAV with 
era and Synthetic Aperture Radar (SAR) deployed 
ch and rescue operations of missing persons in 
vironments is presented in [25]. Experimental 
cate improved connectivity between the UAV and 
rol station through implementation efficiencies.  
ith DSM for geological spatial modelling of 

d caves from an altitude of 170m in Indonesia all in 

support of local tourist attractions such as caving
rafting is reported in [26]. Initial experimental resu
the usability of the aerial imagery from such a high
UAV with a DTM that uses a multi-spectral came
altitude of 300m for AGB estimation of tropica
forests including ravines is reported in [27]. T
showcase how effective UAVs can be in mapping
inaccessible regions to fill in gaps in existing image
A UAV that uses a DEM model and Structure fro
(SfM) software to estimate the ice volume and th
riverbeds and riverbanks from an altitude range of
above ground is proposed in [28]. The results obtain
flight missions yield acceptable manual measuremen
that uses a DEM model to collect spatial high-reso
on coastal line vulnerability from an altitude of 4
ground is presented in [29]. The aim is assessment of
morphological and topographic changes on water bo
coastal lines. 
A UAV that uses an agrometeorological DSM fo
water consumption and ensuring sustainability in ag
introduced in [30]. The UAV collects a wide rang
and thermal image data that showcase the efficienc
imaging for irrigation management. 
A UAV that uses a DEM to identify water erosi
mining zones from an altitude of 115m is proposed i
imagery the UAV collects autonomously helps with 
the volume and speed of erosion and identifying wa
UAV that uses a Neural Network with a DEM mod
modeling in a dense urban environment from 
ranging to 100m is presented in [32]. A study that m
a UAV with DEM, SfM, Multi-View Stereo (M
photogrammetry and remote sensing to determin
waterbodies is presented in [33]. Initial results in
accuracy in depth measurements. 

2.1 Research motivation and contribution  

TABLE 1 summarises the findings from our rev
literature in terms of issues being addressed and thos
remain the latter of which have motivated our ow
work. The research review reveals several app
response to on-going challenges that still need addre
motivated by what related studies reveal, the propo
not only aims to address on-going challenges, but 
added value. The key difference between the propo
against what is reported in the literature is, prim
combined use of: 
 A DEM for autonomous flying over target area, 
 A 3D SCDM for detection of terrain changes, 
 CNNs for initiating autonomous flying and terr

detection, 
and, secondarily, testing the usability of such a
flying IoTs in addressing a life-critical problem
recently become much more than just a pastime, i.e.
for water resources using a WDM in those regions
world where water resources are scarce.
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TABLE 1: Related review wind up against the search criteria 

rs UAV Type  Altitude (m) 
Autonomous 

Flying 
Aerial Imaging 

Type 
Standalone 
Topology 

Change 
Detection  

Intel
Fram

 UAV x x DEM √ √ 

 Fixed-wing UAV 325 x DEM  √ x 

 UAV 100 x DEM √ x 

 UAV 300 - 500 x DSM √ x 

 UAV 30 - 70 x DEM √ x 

 UAV 130 x DEM √ √ 

 UAV 80 x DTM √ x 

 UAV 30 x DSM √ x 

 UAV x x DEM √ x 

 Fixed-wing UAV 70 - 150 x DTM √ x 

 UAV 35 - 50 x DEM √ x 

 UAV 80 x DSM √ x 

 UAV 100 x Thermal with DSM √ x 

 UAV 15 x Thermal with SAR √ x 

 UAV 170 x DSM √ x 

 UAV 300 x DTM √ x 

 UAV 25 - 50 x DEM √ x 

 UAV 40 x DEM √ √ 

 Fixed-wing UAV 30 √ DSM √ √ 

 UAV 115 √ DEM √ x 

 UAV 100 x DEM √ x 

 UAV 50 - 100 x DEM √ x 

ed UAV 100 √ DEM √ √ 

x denotes presence; √ denotes absence 
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III. PROPOSED WORK  
vantage of loading a UAV with both a DEM and a 

arises from the need to have an eye-in-the-sky but 
ground as possible to detect terrain changes over 
e areas that are inaccessible by satellites for image 
., a gorge, a ravine, or inside caves. Therefore, the 
ain-of-function model is threefold: First, to enable 
ly autonomously over a target terrain, second, to 
n surface changes in the target terrain and third, to 
r case, possible water flows as a proof of concept. 

 the first aim of enabling an autonomous flying 
ain a Reinforcement Learning (RL) Network with a 
blish both a precision aerial imagery and the flight-

 UAV over the target terrain. To achieve the second 
ecting terrain surface changes, we train a deep 
N with a 3D SCDM to recognize such changes. In 
e third and more specific aim of detecting changes 
ossible water flows, we also train the deep learning 
a Water Detection Model (WDM) of water flow 
ns, including standing water polygons, watersheds, 
el incisions, and watershed delineation. Regions of 
 areas void of people because of lack of water 
at will sustain human life. 

3.1 The autonomous flying IoT framework  

Figure 2 shows a flowchart of the proposed autonom
IoT framework for water detection. The developm
projection matrices for DEM and WDM with whic
are initially trained are discrete events, wh
development of the projection matrix for the 3D S
continuous event as this may evolve after each fligh
Figure 3 offers a birds-eye-view of the entire 
architecture at the core of which is the CNN which i
fly autonomously using a DEM and to recognize ch
terrain surface, in our case for signs of water, using a
and a WDM. This is a notable shift from wha
previously reported in the literature and this is the
this work, i.e., an autonomous flying IoT aiming a
water resources in remote areas in which the lack
sustain human live and where neither satellites nor 
penetrate and retrieve imagery at ground level. 

 

 

 

 

Figure 2: Flowchart of the proposed autonomous flying IoT framework for water detection 
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Figure 3: The autonomous flying IoT framework architecture
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onomous flying IoT framework architecture 
ents 

tion discusses in detail each component of the 
 flying IoT architecture. 
mponent 1: The DEM of the target area 
ows two types of camera configurations, one for 
 the other for oblique imagery which are necessary 
the precision and model texture quality whilst 

 model deformity. Further, the combination between 
 oblique aerial imagery would help with capturing 
overhanging watershed topography obscured by 
.g., treetop cover, overhanding rocks, blocking 
ater surface reflection, which may hinder the 
nning and timing of a flight mission. 
EM of the target area for input to the RL network 

d on previously known topography and this will be 
through aerial reconnaissance images and then 
ese for structure processing which includes feature 

iangulation, and bundle adjustment, followed by 
information, and dense matching of 3D point cloud 
d concluding with a validation. Pipelining is vital in 
a projection matrix for images taken, feature 
nhancing the ground structure spatial resolution, 
noisy data, and interpolating the dense point cloud 
esh-grid generator. The DEM detail and precision 

effect on flight planning. Figure 5 illustrates part of 
al method for fine-tuning the initial DEM. The 
t of the DEM is a discrete event from the point of 
bling autonomous flying as once fine-tuned from 
opography, the DEM will not change over time 
nificant major event has taken place, such as an 
or landslide, that may result in a change of 
[34-35]. 

 
 

4. UAV camera vertical and oblique configurations 

Figure 5: Fine-tuning of a DEM 

The DEM is represented as equations (1) and (2). 

𝑑𝑑ℎ ≈ 𝑑𝑑𝑥𝑥 ℎ
𝑏𝑏
                 

ℎ =  𝑍𝑍01 −  𝑍𝑍𝐷𝐷𝐷𝐷𝐷𝐷              
where 𝑑𝑑ℎ denotes height errors used as corrections, 
parallax between two images, ℎ denotes point heigh
𝑍𝑍01 denotes elevation of left image projection ce
denotes elevation of DEM point, 𝑏𝑏 denotes photo ba
3.2.2 Component 2: A WDM representative of th

terrain morphology 

A WDM with detailed classifications of spectral 
data which are representative of the target terrain m
is used to train the Deep learning CNN to detect sig
flows, standing water polygons, watersheds, wat
incisions, and watershed delineations. The architec
NN consists of several connected layers such as c
pooling and fully connected. To achieve gain-o
additional layers of batch normalization, dropout a
and a dense layer with sigmoid activation have
included in this model to give the NN its learning
batch normalization and dropout layers are used 
normalization, rescaling, and shifting off the offs
values, as well as to prevent overfitting in the model.
layer converts the entire pooled feature map matri
dimensional array which is then input to the dense l
The logistic sigmoid regression is used since this 
classification problem of identifying natural wat
incisions. The fully connected NN constructs fea
through convolutional filters that can learn to ide
level features from image properties and then predic
of each image pixel. The development of WDM
discrete event from the point of view of detection of 
as the classifications of water signs that comprise the
not normally evolve unless new classifications come
[36]. The WDM is represented as equations (3) to (7

X′ = (X/max)−μ
σ
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enotes normalized data, max denotes maximum 
in the image, μ and σ denote mean and standard 

f X/max, respectively. The normalization is vital 
maging have integer values, and initial weights are 
lected between 0 and 1, thus, normalization to pixel 
e orthophotos prevents abnormal gradients.  
sed deep learning CNN is trained with a 
ation algorithm and stochastic gradient descent 
s utilizes a minibatch’s backpropagation error to 
 the error of all training samples, which accelerate 
 weight update through a smaller back propagation 
speeds up the model convergence. The optimization 
uce the loss function (J) as equation (4). 

) = − 1
N
�∑ ∑ 1K

j=1  {yi = t}ytiN
i=1 �      (4) 

t
Tc)
(θt
Tc)

                 (5) 

− λ Vt − α∇W             (6) 
λ Ut − α∇b              (7) 
d b are parameters of the NN, θ is a parameter for 
 classifier, N denotes the number of samples, K 
number of land cover classes, yi = (yi1, … . yik) is 
n vector geo by the Sigmoid classifier, yti denotes 

ity of the ith sample label being t and is represented 

ckpropagation, (6) and (7) are adapted to update 
every layer, where λ denotes the momentum which 
ate SGD by adding a fraction of the update value of 
s time step to the recent updated value, α denotes 
e, ∇W and ∇b are the gradients of  J, and t denotes 
of epochs during SGD. 
mponent 3: The 3D SCDM of the target area  

M may evolve continuously over the course of 
ch flights until either a water resource has been 
the search is called off. Therefore, the development 
el is a continuous event from the point of view of 
 a terrain change as the model may evolve after 
h cycle if a terrain change has been detected. 
etection accuracy requires an unsupervised CNN 
e ability of feature learning and uses a latent change 

ap. This allows the network to learn of features from 
ta and regularization parameters. When a change is 
he target area the 3D SCDM is updated to help with 
h missions [37]. The modelling of imagery at two 
es i and j where i < j is given as equations (8) and 

) =𝑥𝑥′,𝑦𝑦′
𝑚𝑚𝑚𝑚𝑚𝑚 ((𝐷𝐷1(𝑥𝑥,𝑦𝑦) − 𝐷𝐷2(𝑥𝑥′,𝑦𝑦′)) ≥ 0)   (8) 

) =𝑥𝑥′,𝑦𝑦′
𝑚𝑚𝑚𝑚𝑚𝑚 ((𝐷𝐷1(𝑥𝑥,𝑦𝑦) − 𝐷𝐷2(𝑥𝑥′,𝑦𝑦′)) ≤ 0)   (9) 

and 𝐷𝐷2 are images, 𝑥𝑥′ ∈ [𝑥𝑥 − 𝑤𝑤, 𝑥𝑥 + 𝑤𝑤], 𝑦𝑦′ ∈
𝑤𝑤] and (w) is window around a set of pixels. 

mponent 4a: RL network for autonomous flying 
 over terrain 

k uses a Double Deep Q-Network (DDQN), a type 

its environment at each state. DDQN uses a Marko
Process (MDP) to plan a path. The MDP is descri
tuple (Ѕ, A, R, P), where S is a set of possible states
of possible actions, R is the reward function, a
deterministic state transition function [30]. In an N×
state space S is defined as: 
S = Map x Coverage x Position x Movement Budg
Flag 
and represented as equation 10. 
𝑆𝑆 = 𝔹𝔹𝑁𝑁×𝑁𝑁×3 × 𝔹𝔹𝑁𝑁×𝑁𝑁 × ℝ2 × ℕ × 𝔹𝔹       
where 𝔹𝔹 denotes the Boolean domain {0, 1}. The a
A contains five actions (North; East; South; West; 
state transition function is defined as: 𝑃𝑃: 𝑆𝑆 × 𝐴𝐴
reward function which is defined as: 𝑅𝑅: 𝑆𝑆 × 𝐴𝐴 → ℝ
current state 𝑠𝑠 ∈ 𝑆𝑆 and current action 𝑎𝑎 ∈ 𝐴𝐴 to a 
reward and consists of four components: 
 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐 (positive) coverage reward for each target p
covered by the UAV for the first time 
 𝑟𝑟𝑠𝑠𝑠𝑠 (negative) safety penalty in case the safety con
rejects the agent’s proposed action 
 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 (negative) constant movement penalty applie
unit of the movement budget used 
 𝑟𝑟crash (negative) penalty in case the UAV ru
movement budget without having safely landed in
zone. 
Q-learning updates iteratively the present state 
function. When the optimum Q-function is id
constructs an optimum strategy by taking actions tha
the Q-function. The target value is given as equation
the corresponding loss function is given as equation
𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑠𝑠,𝑎𝑎, 𝑠𝑠′) = 𝑟𝑟(𝑠𝑠,𝑎𝑎) + 𝛾𝛾𝑄𝑄𝜃𝜃′ (𝑠𝑠′,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑄𝑄𝜃𝜃(𝑠𝑠
𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜃𝜃) = 𝔼𝔼𝑠𝑠,   𝑎𝑎,   𝑠𝑠′~𝐷𝐷 [𝑄𝑄𝜃𝜃 (𝑠𝑠,𝑎𝑎) − 𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑠𝑠,𝑎𝑎, 𝑠𝑠′

where (𝑠𝑠,𝑎𝑎, 𝑟𝑟, 𝑠𝑠′) stores experience tuples that 
collected by the agent during each interaction
environment, 𝜃𝜃 refers to the number of trainable par
refers to the parameters of the target network wh
updated as a periodic hard copy of 𝜃𝜃 or as a soft u
(1 − Γ)𝜃𝜃′ + Γ𝜃𝜃. The back-propagating gradient is 
𝑌𝑌𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑠𝑠,𝑎𝑎, 𝑠𝑠′). 𝛾𝛾 refers to the discount factor for
value, and Γ refers to the target network update fact
All DDQN layers are zero-padded for all channels,
the first layer’s no-fly zone channel which is reser
no-fly zone surrounding the mission grid. The rect
unit (ReLU) is the activation function for the co
layers, whilst the last layer is flattened and concate
the movement budget input. Fully connected laye
ReLU activation are attached to this flattened layer
the argmax of the Q-values through a greedy policy
equation (13), which reflects the agent’s learning pr
𝜋𝜋(𝑠𝑠) =  𝑄𝑄𝜃𝜃 𝑎𝑎∈𝐴𝐴    

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑠𝑠,𝑎𝑎)            
During training, the sampled softmax policy for exp
the state and action space is given as equation (14). 

𝜋𝜋(𝑎𝑎𝑖𝑖|𝑠𝑠𝑠𝑠) =  𝑒𝑒  𝑄𝑄𝜃𝜃 (𝑠𝑠,   𝑎𝑎𝑖𝑖)/𝛽𝛽

∑∀𝑎𝑎𝑗𝑗∈𝐴𝐴𝑒𝑒
 𝑄𝑄𝜃𝜃 (𝑠𝑠,   𝑎𝑎𝑖𝑖)/𝛽𝛽

         

ng with a cycle of interactions between an agent and 
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𝐹𝐹𝑖𝑖,𝑗𝑗 = 1
2

 𝐹𝐹𝑆𝑆𝑆𝑆
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ers to a temperature parameter. 
 RL network commences with resetting the state, 

 random UAV starting position and a random 
udget. Training continues if the movement budget 
an zero and the UAV has not landed and finishes 
 the UAV lands or the movement budget decreases 
en, another round of training starts unless the 
umber of training rounds 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 has been met. 
mponent 4b: Deep Learning CNN for terrain 
nge and water resources detection 

earning CNN uses both the WDM and the evolving 
for feature extraction and classification therefore a 
nnected unsupervised CNN is needed, one that 

of a latent change detection map and comprise of 
es: feature learning, a single-stream feature fusion, 
rvised noise modeling. This is represented as 
5) through to (20) [39-41]. Convolution is a basic 
ing component represented as equation (15). 

𝑠𝑠𝑠𝑠 + 𝛿𝛿𝑖𝑖,𝑆𝑆𝑗𝑗 + 𝛿𝛿𝑗𝑗� , 0 ≤ 𝛿𝛿𝑗𝑗 , 𝛿𝛿𝑗𝑗 ≤ 𝑘𝑘)      (15) 

enotes the convolution output, which is also used as 
 next layer, 𝑓𝑓1 denotes a specific operation for the 
, 𝑥𝑥𝑠𝑠𝑠𝑠 denotes input data, 𝑖𝑖, 𝑗𝑗 denote a spatial 
𝑠𝑠 denotes the convolution stride, and 𝑘𝑘 denotes the 
. When loading the convolution layers, high 
vel features are extracted, whereby if 𝑠𝑠 is set to 2 
tial size of the output will be half of the input size 
olution layer. However, since deconvolution is a 
onvolution type which is used to enlarge the output 

 the output spatial size will be twice the size of input. 
ected convolution network detects a terrain change 
g the deep features of a target terrain at different 
is is represented as equations (16) and (17). 

𝑑𝑑𝑑𝑑𝑑𝑑�𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)�, 𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  ∈  ℝ{𝑁𝑁,𝐶𝐶,𝐻𝐻,𝑊𝑊}  (16) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)�, 𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  ∈  ℝ{𝑁𝑁,𝐶𝐶,𝐻𝐻,𝑊𝑊}  (17) 

𝑆𝑆𝑆𝑆 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 are the terrain structure changes 
m search mission i to j respectively, 𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
coder, 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 denotes encoder,  𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  ∈
and  𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  ∈  ℝ{𝑁𝑁,𝐶𝐶,𝐻𝐻,𝑊𝑊} denote the final 

 feature maps which will be used to update the 
 the changes detected and 𝑁𝑁,𝐶𝐶,𝐻𝐻, 𝑊𝑊 denote batch 
l size, height, and width of the final feature maps, 
. 

 change is established when a significant number of 
ge from mission i to j with reference to the 
ns included in WDM. A feature-level fusion is 
pdate the SCDM. Generating a change detection 
sented as equations (18) to (20). 
𝑐𝑐𝑐𝑐 (𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ,𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)           (18) 

𝑆𝑆𝑆𝑆𝑆𝑆 + 1
2

 𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆             (19) 

 − 𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆              (20) 

 and 𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  represent the final feature maps at the 
tial resolution and abstract level, 𝐹𝐹𝑖𝑖,𝑗𝑗 in (11) uses 

concatenation to fuse multiple features, 𝐹𝐹𝑖𝑖,𝑗𝑗 in 
element-wise summation to fuse two feature maps, 
uses element-wise subtraction for feature fusion. 
feature fusion functions conclude, the feature maps o
used in the following noise module to update t
detection map.  
The change detection in the 3D SCDM does no
ground truth labels since we use an unsupervis
detection method to train the fully connected c
network. The training dataset 𝑌𝑌𝑝𝑝 is represented as equ

𝑌𝑌𝑝𝑝 = {𝑦𝑦𝑖𝑖 ∈ ℝ(𝐻𝐻,𝑊𝑊), 𝑖𝑖 = 1, … … , 𝑘𝑘}        

The network learns the latent change detection map
which should be trained to generate the actual chang
map with the training dataset 𝑌𝑌𝑝𝑝 and 𝑘𝑘 which deno
change detection maps. Therefore, the noise 
represented as equations (22) to (24). 
𝑦𝑦𝑖𝑖 = 𝑓𝑓(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀,Θ) + 𝑛𝑛𝑖𝑖         
𝑛𝑛𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖                
𝑦𝑦�𝑖𝑖 ∈(𝐻𝐻,𝑊𝑊)= 𝑓𝑓𝑑𝑑(𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)            
where 𝑓𝑓 denotes the whole network, Θ denotes c
network parameter, 𝑛𝑛𝑖𝑖 denotes noise map which is s
zero-mean Gaussian distribution, 𝑦𝑦�𝑖𝑖 denotes estima
map, 𝑦𝑦�𝑖𝑖 ∈(𝐻𝐻,𝑊𝑊) denotes the actual change detection m
denotes the decoder network. 
To enforce the computed noise map to follow
Gaussian distribution, Kullback–Leibler (KL) dive
is used. Hence, the loss function is represented as equ
𝐿𝐿𝐾𝐾𝐾𝐾(Θ,∑)  = KL (p(∑) ∥ q(∑�)         

where p(∑) denotes the corresponding distribution
denotes the prior Gaussian distribution. This form
since the noise is separating the training dataset fr
detection. Performance is improved in an unsupervis
3.2.6 Component 5: Projection Matrices 

The flowchart on Figure 6 below depicts the part of 
involving the three projection matrices. This comm
generating a DEM for the first brain to train the U
autonomously over a target terrain without human in
A WDM is generated from existing imagery on wate
watersheds, water channel incisions, and 
delineations for the second brain to train the autono
to detect signs of water resources over the target t
reference to this model.  
A 3D SCDM is continuously updated with terra
imagery for the second brain to train the autonomo
detecting terrain surface changes across flights tha
suggest the presence of water resources with refer
WDM. After each flight there are three possible ou
changes, terrain change but no water resources detec
changes and water resources detected. Image reso
altitude, latitude, and longitude of images taken by
flying time of the UAV, wind speed and direction a
data set that populates the projection matrixes. 
continues until either a maximum number of fligh

resources have been detected.  
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Figure 6: Projection Matrices

IV. SIMULATION 
AV, and camera settings are input to a Mission 

l before the first mission flight. Developing a UAV 
ncludes take-off and landing sites, altitude, speed, 
, path-plan which are all necessary for aerial 

d watershed detection. Figure 7 demonstrates the 
nner tool calibrated with these parameters including 
ods such as: Strip, Line, and Grid. Stripe and Grid 
line search which is effective but time consuming. 
e line search which is efficient for outdoors. In the 
ater resources over the Snake gorge and ravine in 

 Peninsula, we use Google Maps for aerial imaging, 
shows footage over and inside the Snake gorge.  

 
Figure 7: The Mission Planner tool calibrated 

 

 

Figure 8: Footages of over and inside the Snake 

4.1 Training the two-brains 

The first brain relates to the RL network 
autonomous flying over the terrain. Training the R
commences with resetting the state, choosing a ran
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ition and a random movement budget. It continues 
ment budget is greater than zero and the UAV has 
and finishes either when the UAV lands or the 
budget decreases to zero. Then another round of 

mences unless the maximum number of training 
𝑚𝑚 has been met. TABLE 2 shows the parameter 
the RL network. Figure 9 shows a sample of a DEM 
 from inside the Snake gorge by the UAV. Deciding 
lation parameters set broadly follows the examples 
and on the number of iterations is based on past 
perimentation and experience, and with the steps 
 approximately 1% of the total number.  

TABLE 2: RL network parameter settings 

Parameter Value 
f Images 1000 
 50 
 size 30 
ing rate 0.0001 
ra linear velocity 2 m/s 
ing iteration 6000 
unt factor 0.99 
t factor 0.01 
ration Constant 0.9 
n time interval 0.4 s 
 Altitude 10-40 m 
average distance 3 km 
average width 47 m 

 

: Sample of a DEM image from inside the Snake gorge 

hows the training results with 6000 iterations and 
 rewards. Training ends when simulation reaches 

ons, each of which is 50 steps. At the end of each 
e UAV resets to its initial state and receives 

 feedback. In each iteration, the UAV seeks to make 
number of steps to achieve a high reward point. 
denotes the actual reward value for the iteration, 
blue denotes the mean rewards after 50 steps. All 
cision making and action taking during each step is 
inst a level of reward on the way to a maximum 
l. 
ows that at the start of training, when the UAV is 

o establish its correct flying behavior, rewards are 
 The lowest reward on the line chart denotes a UAV 

crash, which is an expected outcome during training
or incorrect flying behaviour decreases over time 
values are gradually increasing towards positiv
Training iterations stop when the UAV either meets
goals, or its level of reward values become stable, or 
of iterations reach the set maximum. UAV crash epis
regularly over the first 1487 steps but, thereafter
corrects its flying behaviour over the training enviro
no further crash episodes occur over the next 250
approximately step 4000, the UAV has its first crash
it learns to avoid obstacles in its flight path, but, the
mean reward values increase as the UAV has lea
autonomously and avoid crashing on obstacles alon
path. Noticeably, before reaching the end of training
does not crash with any obstacles along its flight
during its last iteration cycle of 6000.  

Figure 10: Training results for autonomous flying ove

The second brain is used to train the autonomous UA
changes over the terrain with reference to the 3DS
then determine if any of these are new signs of wate
since the last reconnaissance mission with refere
WDM. Figure 11 shows a reconnaissance image ta
the Snake gorge where in the green square a wa
detected with reference to the WDM, but none are 
the red square. The CNN can expect to detect wate
errors are also expected to occur. Superpixel segmen
place to resolve by considering adjacent image b
alike color and brightness features as Figure 12 show
The WDM dataset has been sourced from “Kag
includes 500 images of water bodies taken from 
training and 500 images for testing and validation [
13 shows the line chart for training and validation ac
loss with the use of WDM with both charts in syn
and validation accuracy tracks the performance of th
during training with the dataset and validation accu
results.  Training and validation loss tracks fitting o
with the dataset, and validation loss indicates fit
model with new data. These two are key performanc
in our proposed framework. 
Figure 13 shows an increase in accuracy and a decr
over time which highlights the usefulness of the
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image pixels into different class labels. The 
art line indicates that the model can classify nearly 
ith relatively high level of accuracy. Training and 
ccuracy is in synchronization with training and 

oss with a value near 0.94. It is significant that no 
as accrued from utilizing a dropout layer to prevent 

ising. The dropout layer deactivates neurons during 
reduce dependency on the training set and hence 
network from maintaining a memory of the dataset.   

 
re 11: Images of water signs inside the Snake gorge 

 
 12: Matching aerial images to water signs in WDM 

Figure 13: Training and validation with the W

Figure 14 showcases training with reference to the 3
(a) reveals no changes, and (b) reveals some cha
comparing images taken of the same location but 
times. Using both the 3D SCDM and WDM, the se
trains in feature extraction and classification to dete
that may have occurred since the last reconnaissan
with reference to the former and determine if these c
water-related with reference to the latter. The dee
CNN that uses the 3D SCDM is a fully connected un
CNN that relies on a latent change detection map
whether there are changes or not. 
Figure 15 plots loss against iterations during trainin
image dataset. During an iteration, the loss function
the loss on a subset of the entire dataset. The loss is 
as the squared difference between the output of the
the ground truth, and it is inversely proportional to
robustness. The loss function is regularly appl
training to find the best parameter values for the ove
e.g., weights. Due to the size of the dataset and 
detection function, the loss function requires betwe
8000 iterations to converge. After 3500 iterations, the
shows a gradual decline in comparison to the period
where it clearly shows a steep decline. Overall, the l
the loss indicates that the training results are congrue
training dataset accuracy. 
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Figure 14: Training with the 3D SCDM 

 
Figure 15: Training loss with the 3D SCDM 

lidation of the autonomous flying IoT framework 

Overall Accuracy (OA) and Kappa Coefficient to 
cess with change detection. The Kappa Coefficient 
consistency test for to the accuracy of classification 
 is used as a consistency test to the accuracy of 

n. Kappa indicates the level of consistency between 
detection and the ground-truth map, with the kappa 
directly proportional to the performance of the 
ng method. OA and the Kappa Coefficient are 
 as equations (26) to (28). 

𝑂𝑂𝑂𝑂 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

              

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 = 𝑂𝑂𝑂𝑂−𝑃𝑃
1−𝑃𝑃

               

𝑃𝑃 = (𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)
(𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹)2

+ (𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇)(𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇)
(𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹)2

      

where True Positives (TP) and True Negatives (TN)
number of changed and unchanged pixels accurate
respectively, and False Positives (FP) and False Neg
refer to the number of unchanged and changed pix
detected as changed and unchanged respectively. 
Figure 16 shows an aerial DEM over the Snake g
Arabian Peninsula, where the UAV acts as an ey
ground in those narrow or covered areas where a sate
not normally be able to retrieve images. With the fo
work being the detection of water bodies inside na
like gorges or caves using an intelligent framework
UAV, a normalized confusion matrix is presented in
which is obtained from the two-brains optimization f

Figure 16: Aerial DEM over the Snake gorg

Figure 17: Normalized confusion matrix 

The confusion matrix of Figure 17 shows the accura
the proposed 3DSCDM and WDM. Rows depict t
truth and columns depict predictions. The confus

reveals that a UAV on a remote sensing mission and flying at a 
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 can distinguish between water bodies and other 
h a high level of accuracy. The maximum accuracy 
r body class comes very close to 1.0, whereas the 

ccuracy goes to grass and shadow classes at around 
boundary evaluation over the study area shows that 
adows raise complexities as these two classes are 

 sometimes overlap with water bodies and/or marks. 
 classification level evaluation over the study area 
t the performance of the two-brains optimization 
in relation to change detection and object 
achieves a high level of accuracy that ranges 

.3 and 99.6%.  
shows a summary of classification accuracies of 
ures inside the Snake gorge using the two-brains 
 framework. The table presents the two parameters 

nce and validation indicators, OA and Kappa. The 
entify all classes with high degree of accuracy. 
Classification accuracies for various features inside the 

Snake gorge 

ategory 
Performance and Validation Indicators 

𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲 𝑶𝑶𝑶𝑶 % 
body 0.983 99.6% 
/Bird 0.967 98.1% 
k 0.917 94.9% 
e 0.962 98% 
ss 0.818 91.3% 
ow 0.818 91.3% 

 the proposed framework further, primarily the 
plexity analysis of its execution time against that 
 DTM has been carried out. Figure 18 depicts the 

e analysis and shows an exponential increase in time 
 size rises. The overall complexity of the proposed 
is lower than that of DSM and DTM and the main 
hat is that the DEM uses raster grids to represent 
ees, or other types of vegetation in the fly zone as 
m. This yields a smooth DEM which reduces the 

of detecting water flows. 

 
omplexity analysis of the proposed framework against 

DSM, and DTM 

. CONCLUSION AND FUTURE DIRECTION 
ly, UAVs are becoming part of the fabric in 
es. The technology has matured and is considered 
ent method, perhaps the only one, for delivering 
lications and services timely and efficiently. This 

research has exploited the UAV’s primary fu
retrieving imagery, over those areas whose morpho
problems for satellites, to search for water bodi
combination of a DEM, 3DSCDM and WDM wit
learning framework. In assessing the feasibility and
a photogrammetrically derived 3DSCDM with ref
DEM and a WDM, the combination has retrieved ex
invaluable temporal and spatial geomorphic an
information whilst searching for water bodies. Thi
be useful not only for national and local govern
associations in safe searching for those natural res
are essential in sustaining human life, but also in 
safety and security with underground tourist activiti
The research and practical facets of this work have 
several challenges addressing of which will 
opportunities: 
 Power management on site (battery recharging

mandatory return to base when energy levels redu
level of safe return, 
 Decision making mid-fly (conflict resolutio

human intervention when two or more compet
yield an impasse. 

With regards to on-site power management, approa
considered include deploying a charging station UA
of harvesting renewable energy. With regards 
decision making, approaches currently being pursu
among other, serious gaming. 
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