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Overview

1 Monday: Context and Examples
2 Tuesday: Properties and Criteria (1)
3 Wednesday: Properties and Criteria (2)
4 Thursday: Algorithmic Proofs of Algebraicity
5 Friday: Transcendence in Lattice Path Combinatorics
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Part I: Context and Examples
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Context

Alin Bostan Algebraicity and transcendence of power series



4 / 30

This book will probably be ignored by pure mathematicians. It will
appeal only to those applied mathematicians who are willing to share
the author’s idée fixe. The subject is as quaint and improbable as the
title of the book itself, and the author pursues it armed only with the
most ordinary of weapons and a relentless preoccupation with detail.

[From a 1967 math book review]
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Algebraic and transcendental numbers

. Fundamental question in mathematics: arithmetic nature of numbers;
motivated by old problems, e.g., squaring a circle (compass & straightedge).

A complex number α is called algebraic if it is a root of some algebraic
equation P(α) = 0, where P(x) ∈ Z[x] \ {0} Notation: Q

A complex number that is not algebraic is called transcendental.

. Given some particular constant (e.g., obtained by some limiting process), it
is usually very hard to determine whether it is algebraic or transcendental.
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A bit of history

• Liouville (1844): transcendental numbers do exist
(algebraic irrationals cannot be approximated “too well” by rationals)

• Eisenstein (1850): the set of algebraic numbers forms a field

• Cantor (1874): “almost all” numbers are transcendental

First explicit examples of transcendental numbers:

Liouville (1844): ∑
n≥0

1
10n! = 0.110001000000000000000001000 . . .

Hermite (1873): e = ∑
n≥0

1
n!

= 2.7182818284590452354 . . .

Lindemann (1882): π = 4× ∑
n≥0

(−1)n

2n + 1
= 3.1415926535897932385 . . .

Mahler (1937): Champernowne’s number 0.123456789101112131415 . . .
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Advanced transcendence results

• Hermite-Lindemann (1882): If α ∈ Q \ {0}, then eα is transcendental.

E.g.: e, π, log(2), e
√

2 are transcendental.

• Lindemann-Weierstrass (1885): If α1, . . . , αn ∈ Q are distinct, then the
exponentials eα1 , . . . , eαn are Q-linearly independent.

E.g.: sin(1), cos(
√

2), tan( 1+
√

5
2 ) are transcendental.

• Gel’fond-Schneider (1934): If a ∈ Q \ {0, 1} and b ∈ Q \Q, then ab /∈ Q.

E.g.: 2
√

2, eπ , ii, log2(3) are transcendental.
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Advanced transcendence results

• Baker (1966): If log α1, . . . , log αn are Q-linearly independent, with
α1, . . . , αn ∈ Q, then they are also Q-linearly independent.

E.g.: α log(2) + β log(3) + γ log(5) is transcendental for α, β, γ ∈ Q \ {0}.

• Schneider (1940): Let a, b ∈ Q \Z be such that a + b /∈ Z. Then

B(a, b) =
Γ(a)Γ(b)
Γ(a + b)

=
∫ 1

0
ta−1(1− t)b−1 dt is transcendental.

• Chudnovsky (1976): Γ(1/3), Γ(1/4) and Γ(1/6) are transcendental.
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A few constants whose transcendence is not known yet

π + e = 5.859874 . . ., π × e = 8.539734 . . . and πe = 22.459158 . . .

log(2)× log(3) = 0.761500 . . .

Euler’s constant γ = lim
n→∞

(
n

∑
k=1

1
k
− log n

)
= 0.577215 . . .

Catalan’s constant G = ∑
n≥0

(−1)n

(2n + 1)2 = 0.915966 . . .

Apéry’s constant ζ(3) = ∑
n≥1

1
n3 = 1.202057 . . .

Chudnovsky’s constant Γ(1/5) =
∫ ∞

0
t−4/5e−t dt = 4.590844 . . .
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More puzzling examples

∑ 2−n!

is transcendental by Liouville (1844)

∑ 2−n2

is transcendental by Nesterenko-Bertrand (1996)

∑ 2−n3

is very probably transcendental, but no proof is known yet
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Algebraic and transcendental power series

In contrast with the “hard” theory of arithmetic transcendence, it is
usually “easy” to establish transcendence of functions.

[Flajolet, Sedgewick, 2009]

A power series f in Q[[t]] is called algebraic if it is a root of some
algebraic equation P(t, f (t)) = 0, where P(x, y) ∈ Z[x, y] \ {0}.
A power series that is not algebraic is called transcendental.

. Task: Given a power series, either in explicit or in implicit form, determine
whether it is algebraic or transcendental.
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Motivations

Number theory: first step towards proving the transcendence of a
complex number is to prove that a power series is transcendental

Combinatorics: a generating series is algebraic if the counted objects
have strong underlying structures

Computer science: are algebraic power series (intrinsically) easier to
manipulate?
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Examples

Alin Bostan Algebraicity and transcendence of power series



14 / 30

One of the author’s most wearisome idiosyncrasies is to work from the
special case to the more general, which only serves to emphasize the

caprice with which the material was selected.

[From a 1967 math book review]
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First examples

∑
n

tn, ∑
n

n2016tn ∑n poly(n) tn

∑
n

1
n

tn, ∑
n

1
n2 + 1

tn ∑n rational(n) tn

∑
n

2ntn, ∑
n

Fntn ∑n rec. seq. ct. coeffs(n) tn

∑
n

1
2n tn, ∑

n

1
Fn

tn ∑n
1

rec. seq. ct. coeffs(n) tn

Alin Bostan Algebraicity and transcendence of power series



16 / 30

First examples

∑
n

1
n!

tn, ∑
n

(2n)!
4n(n!)2(2n + 1)

tn exp-trig

∑
n

Hntn, ∑
n

(
2n
n

)
Hntn harmonic sums

∑
n

(
2n
n

)2016
tn, ∑

n

1
(2015 n + 1)

(
2016 n

n

)
tn binomial series

∑
n

n

∑
k=0

(
n
k

)3
tn, ∑

n

n

∑
k=0

(
n
k

)2(n + k
k

)2
tn binomial sums series
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Power series from the hypergeometric world

∑
n

(2n)!(5n)!2

(3n)!4
tn, ∑

n

(30n)!n!
(15n)!(10n)!(6n)!

tn integer ratios of factorials

2F1

(
a b

c

∣∣∣∣ t
)
= ∑

n

tn

n!

n−1

∏
i=0

(a + i)(b + i)
c + i

Gaussian hypergeometric series

2F1

( 1
12

5
12

1

∣∣∣∣ 1728 t
)
= 1 + 60 t + 39780 t2 + 38454000 t3 + · · ·

3F2

( 1
3

2
3 1

3
2 2

∣∣∣∣ 27 t
)
=

∞

∑
n=0

4n(3n
n )

(n + 1)(2n + 1)
tn hypergeometric series
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Power series from the hypergeometric world

(1− t)−a = 2F1

(
a 1

1

∣∣∣∣ t
)

1
2t

log
1 + t
1− t

= 2F1

( 1
2 1

3
2

∣∣∣∣ t2
)

arcsin(t)
t

= 2F1

( 1
2

1
2

3
2

∣∣∣∣ t2
)

Pn(t) = 2n
2F1

(
−n n + 1

1

∣∣∣∣ 1 + t
2

)
Legendre polynomials

Tn(cosa) = cos(na) Tn(cosa) = cos(na), 1234 Pn(t) = 1
n! (d/dt)n(1− t2)n

Tn(t) = (−1)n
2F1

(
−n n

1
2

∣∣∣∣ 1 + t
2

)
Chebyshev polynomials

Tn(cosa) = cos(na) Tn(cosa) = cos(na), 123456789 Tn(cosa) = cos(na)
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Lacunary series

∑ tn! = 2t + t2 + t6 + t24 + t120 + · · · Liouville

∑ t2n
= t + t2 + t4 + t8 + t16 + t32 + t64 + t128 + · · · Mahler

Θ = ∑
n

tn2
= 1 + t + t4 + t9 + t16 + t25 + t36 + t49 + · · · Jacobi

∑ tFn = 1 + 2t + t2 + t3 + t5 + t8 + t13 + t21 + t34 + t55 + · · ·

∑ tpn = t2 + t3 + t5 + t7 + t11 + t13 + t17 + · · ·
xxxxxxxx where pn is the nth prime number
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Exotic series

∑ pntn = 2t + 3t2 + 5t3 + 7t4 + 11t5 + 13t6 + 17t7 + 19t8 + 23t10 + · · ·

∑ antn = 4 + t + 4t2 + 2t3 + t4 + 3t5 + 5t6 + 6t7 + 2t8 + · · ·,
xxxxxxxxxxxxxxxxxxxxxxxxxwhere an is the nth decimal digit of

√
2

∑btan(n)ctn = t− 3t2 − t3 + t4 − 4t5 − t6 − 7t8 − t9 − 226t11 − t12 + · · ·

∑bn tanh(π)ctn = t2 + 2t3 + 3t4 + · · ·+ 267t268

+267t269 + 268t270 + · · · = t2

(t− 1)2 − t269 − t270 − · · ·

∑
n
bn
√

2ctn = t + 2t2 + 4t3 + 5t4 + 7t5 + 8t6 + 9t7 + 11t8 + 12t9 + · · ·
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Number theoretic sequences, and their power series

Euler’s totient function ϕ(n) = #{1 ≤ k ≤ n : gcd(n, k) = 1}

the Möbius function µ(n) = parity of the number of prime factors of n,
if n is square-free; 0 if not

the divisor function σk(n) = ∑d|n dk

σ0(n) = d(n) = number of positive divisors of n
σ1(n) = σ(n) = sum of positive divisors of n

ω(n) = number of distinct prime factors of n

Ω(n) = number of distinct prime factors of n, counted with multiplicity

the Liouville function λ(n) = (−1)Ω(n)

ρ(n) = 2ω(n) = number of squarefree positive divisors of n

r2(n) = #{(a, b) ∈ Z2 : a2 + b2 = n} ∑ r2(n)tn = Θ(t)2
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Power series from the elliptic world

Perimeter of an ellipse of eccentricity e, semi-major axis 1 [Euler, 1733]

p(e) = 4
∫ 1

0

√
1− e2x2

1− x2 dx = 2π−π

2
e2−3π

32
e4−· · · − 5

256
e6 − 175

16384
e8 − 441

65536
e10

Complete elliptic integrals

of the first kind K(e) =
∫ 1

0

√
1

(1− x2)(1− e2x2)
dx =

π

2 2F1

(
1
2

1
2

1

∣∣∣∣ e2
)

of the second kind E(e) =
π

2

∞

∑
n=0

[
(2n)!

22n(n!)2

]2 k2n

1− 2e
=

π

2 2F1

(
1
2 −

1
2

1

∣∣∣∣ e2
)

Elliptic integrals f (t) =
∫

R
(

t,
√

P(t)
)

dt, where R is a bivariate
rational function, P a squarefree polynomial of degree 3 or 4

Weierstrass elliptic function: inverse y = ℘(t) of the elliptic integral

t =
∫ ∞

y

ds√
4s3 − g2s− g3

℘(t) =
1
t2 +

g2
20

t2 +
g3
28

t4 +
g2

2
1200

t6 +
3g2g3
6160

t8 +
49g3

2 + 750g2
3

7644000
t10 · · ·
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Power series from the modular world

Eisenstein modular series

E4 = 1 + 240 ∑
n

σ3(n)qn = 1 + 240 q + 2160 q2 + 6720 q3 + · · ·

E6 = 1− 504 ∑
n

σ5(n)qn = 1− 504 q− 16632 q2 − 122976 q3 + · · ·

Ramanujan’s modular discriminant

∆ =
E3

4−E2
6

1728
= q∏

n≥1
(1−qn)24 = q− 24 q2 + 252 q3 + · · · − 1472 q4 + 4830

Klein’s modular invariant

J =
E3

4
∆

=
1
q
+ 744 + 196884 q + 21493760 q2 + 864299970 q3 + · · ·

. [Fricke, Klein, 1897] ∆ = 1
J · 2F1

( 1
12

5
12

1

∣∣∣∣ 1728
J

)12

,

E4 = 2F1

( 1
12

5
12

1

∣∣∣∣ 1728
J

)4

, E6 =
√

1− 1728
J · 2F1

( 1
12

5
12

1

∣∣∣∣ 1728
J

)6

.
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Power series from the automatic world

Thue-Morse: ∑ s(n)tn = t + t2 + t4 + t7 + t8 + t11 + t13 + t14 + · · · ,
where s(n) is the parity of number of 1s in the base-2 expansion of n

Baum–Sweet: ∑ bntn = 1 + t + t3 + t4 + t7 + t9 + t12 + t15 + · · · , where
bn = 1 if the base-2 expansion of n contains no block of consecutive 0s
of odd length, and bn = 0 otherwise

Rudin-Shapiro: ∑(−1)an tn = 1 + t + t2 − t3 + t4 + t5 − t6 + t7 + · · ·
an = the number of pairs of consecutive 1’s in the base-2 expansion of n

Stern:
∑ fntn = t + t2 + 2t3 + t4 + 3t5 + 2t6 + 3t7 + t8 + 4t9 + · · ·
with f2n+1 = fn + fn+1, f2n = fn,
f0 = 0, f1 = 1
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Power series from the combinatorial world

Partitions
∞

∑
n=0

p(n)tn =
∞

∏
k=1

(
1

1− tk

)
= 1 + t + 2t2 + 3t3 + 5t4 + 7t5 + 11t6 + 15t7 + · · ·

5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1

Permutations in Sn containing 3 subsequences of type 132 [Bóna, 1997]
∑n s3(n)tn = 1t4 + 14t5 + 82t5 + 410t6 + 1918t7 + · · · (s3(4) = 1: 1432)

Alternating permutations [André, 1881]

∑
n

an

n!
tn = tan(t) + sec(t) = 1 + t +

1
2!

t2 +
2
3!

t3 +
5
4!

t4 +
16
5!

t5 + · · ·

a4 = 5 : {1, 3, 2, 4}, {1, 4, 2, 3}, {2, 3, 1, 4}, {2, 4, 1, 3}, {3, 4, 1, 2}

Labeled trees [Borchardt, 1860], [Cayley, 1889]

∑
n≥2

nn−2tn = 1t2 + 3t3 + 16t4 + 125t5 + 1296t6 + 6807t7 + · · ·

Planar maps with n edges ∑
n

2 · 3n

(n + 1)(n + 2)

(
2n
n

)
tn [Tutte, 1968]
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A last family of exotic power series

Syracuse problem [Collatz, 1937]

T : N+ →N+

T(n) =

{
n/2 if n ≡ 0 (mod 2)
3n + 1 if n ≡ 1 (mod 2).

O(m) = {n : T◦j(n) = m for some j}

. Open: O(1) = N+

fm(t) = ∑
n∈O(m)

tn

Theorem [Bell, Lagarias, 2015]
fm is transcendental for m /∈ {1, 2, 4, 8, 16}
fm is rational for m ∈ {1, 2, 4, 8, 16} iff
the Collatz conjecture is true
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Power series, and their values

The problem whether a given power series
is algebraic or transcendental at a given algebraic point

may be very deep and involved

[Mahler, 1976]

. Easy: Algebraic series take algebraic values at algebraic points and
transcendental values at transcendental points

. Intuition: Transcendental series tend to take transcendental values at
algebraic points −→ finitely many exceptions?

Theorem [Stäckel 1895, 1902]
There exists a transcendental f ∈ Q[[t]] such that f (Q) ⊂ Q.

Theorem [Mahler 1965]
There exists a transcendental f ∈ Q[[t]] with f (

√
2) ∈ Q and f (−

√
2) /∈ Q.
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Power series, and their values

The problem whether a given power series
is algebraic or transcendental at a given algebraic point

may be very deep and involved

[Mahler, 1976]

. Easy: Algebraic series take algebraic values at algebraic points and
transcendental values at transcendental points

. Intuition: Transcendental series tend to take transcendental values at
algebraic points −→ false in general, more structure needed

Theorem [Stäckel 1895, 1902]
There exists a transcendental f ∈ Q[[t]] such that f (Q) ⊂ Q.

Theorem [Mahler 1965]
There exists a transcendental f ∈ Q[[t]] with f (

√
2) ∈ Q and f (−

√
2) /∈ Q.
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Power series, and their values

. [Siegel, 1949], [Shidlovski, 1962] For special classes of power series (e.g.,
E-functions), transcendental power series can take algebraic values at only
finitely many algebraic points.

. Includes et and the Bessel function J0 = ∑
n

(−t2/4)n

n!2

. False for G-functions, e.g. for many 2F1

(
a b

c

∣∣∣∣ t
)

’s.

Theorem [Beukers, Wolfart, 1988]
Let z ∈ C, |z| < 1. Then:

2F1

( 1
12

5
12

1
2

∣∣∣∣ z
)
∈ Q if and only if z = 1− 1728

J(τ) for some τ ∈ Q(i), Imτ > 0.

. Example:

2F1

( 1
12

5
12

1
2

∣∣∣∣ 1323
1331

)
=

3
4

4
√

11
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Two High Precision Frauds

[Borwein, Borwein, 1992]:

If e(n) and o(n) are the number of even and odd decimal digits of n,
then

∞

∑
n=1

o(2n)

2n =
1
9

, but
∞

∑
n=1

e(2n)

2n ≈ 3166
3069

± 10−30 is transcendental

If α = eπ
√

163/9, then

∞

∑
n=1

bnαc
2n ≈ 1280640 (to half a billion digits!) is transcendental
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End of Part I

Thanks for your attention!
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