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ABSTRACT
Complex networks usually expose community structure with
groups of nodes sharing many links with the other nodes in
the same group and relatively few with the nodes of the
rest. This feature captures valuable information about the
organization and even the evolution of the network. Over
the last decade, a great number of algorithms for community
detection have been proposed to deal with the increasingly
complex networks. However, the problem of doing this in a
private manner is rarely considered.

In this paper, we solve this problem under differential pri-
vacy, a prominent privacy concept for releasing private data.
We analyze the major challenges behind the problem and
propose several schemes to tackle them from two perspec-
tives: input perturbation and algorithm perturbation. We
choose Louvain method as the back-end community detec-
tion for input perturbation schemes and propose the method
LouvainDP which runs Louvain algorithm on a noisy super-
graph. For algorithm perturbation, we design ModDivi-
sive using exponential mechanism with the modularity as
the score. We have thoroughly evaluated our techniques on
real graphs of different sizes and verified that ModDivisive
steadily gives the best modularity and avg.F1Score on large
graphs while LouvainDP outperforms the remaining input
perturbation competitors in certain settings.

Keywords
Differential privacy; Community detection; LouvainDP;
ModDivisive

1. INTRODUCTION
Graphs represent a rich class of data observed in daily life

where entities are described by nodes and their connections
are characterized by edges. Apart from microscopic (node
level) and macroscopic (graph level) configurations, many
complex networks display a mesoscopic structure, i.e. they
appear as a combination of components fairly independent
of each other. These components are called communities,
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modules or clusters and the problem of how to reveal them
plays a significant role in understanding the organization
and function of complex networks. Over the last decade, a
great number of algorithms for community detection (CD)
have been proposed to address the problem in a variety of
settings, such as undirected/directed, unweighted/weighted
networks and non-overlapping/overlapping communities (for
a comprehensive survey, see [10]).

These approaches, however, are adopted in a non-private
manner, i.e. a data collector (such as Facebook) knows all
the contributing users and their relationships before running
CD algorithms. The output of such a CD, in the simplest
form, is a clustering of nodes. Even in this case, i.e. where
only a node clustering (not the whole graph) is revealed, con-
tributing users privacy may still be put at risk. For example,
thirteen nodes in Fig. 1 are clustered in four communities
[{0, 1, 2}, {3, 4}, {5, 6, 11, 12}, {7, 8, 9, 10}]. Assuming that a
new edge (0,3) is added, the new clustering of nodes may
become [{0, 1, 2, 3}, {4, 5, 6, 11, 12}, {7, 8, 9, 10}]. By observ-
ing the clusterings before and after the addition of the edge
(0,3), an attacker infers that there might have been new
edge(s) between 3 and the nodes in the community {0,1,2}.

In this paper, we address the problem of CD from the per-
spective of differential privacy [8]. This privacy model offers
a formal definition of privacy with a lot of interesting proper-
ties: no computational/informational assumptions about at-
tackers, data type-agnosticity, composability and so on [16].
By differential privacy, we want to ensure the existence of
connections between users to be hidden in the output clus-
tering while keeping the low distortion of clusters compared
to the ones generated by the corresponding non-private al-
gorithms.

As far as we know, the problem is quite new and only men-
tioned in the recent work [18] where Mülle et al. use a ran-
domized response technique [9] to perturb the input graph
so that it satisfies differential privacy before running con-
ventional CD algorithms. This scheme (we call it EdgeFlip
afterwards) is classified as input perturbation in differential
privacy literature (the other two categories are algorithm
perturbation and output perturbation). Similarly, TmF ap-
proach [20] can apply to the true graph to get noisy output
graphs as in the work of Mülle et al. Earlier, 1k-Series [28],
Density Explore Reconstruct (DER) [4] and HRG-MCMC
[29] are the best known methods for graph structure release
under differential privacy. These methods can be followed
by any exact CD algorithm to get a noisy clustering satis-
fying differential privacy. We choose Louvain method [2] as
such a CD algorithm. However, as we will see in the exper-



iments, the output clusterings by the aforementioned meth-
ods have very low modularity scores. This fact necessitates
new methods for CD problem under differential privacy.

Our main contributions are the new schemes LouvainDP
(input perturbation) and ModDivisive (algorithm pertur-
bation) which perform much better than the state-of-the-
art. LouvainDP is a high-pass filtering method that ran-
domly groups nodes into supernodes of equal size to build
a weighted supergraph. LouvainDP is guaranteed to run in
linear time. ModDivisive is a top-down approach which pri-
vately divides the node set into the k-ary tree guided by the
modularity score at each level. The main technique used
in ModDivisive is the Markov Chain Monte Carlo (MCMC)
to realize the exponential mechanism [15]. We show that
ModDivisive’s runtime is linear in the number of nodes, the
height of the binary tree and the burn-in factor of MCMC.
The linear complexity enables us to examine million-scale
graphs in a few minutes. The experiments show the high
modularity and low distortion of the output clusters by Lou-
vainDP and ModDivisive.

Our contributions are summarized as follows:

• We analyze the major challenges of community detec-
tion under differential privacy ( Section 3). We explain
why techniques borrowed from k-Means fail and how
the difficulty of ǫ-DP recommender systems justifies a
relaxation of ǫ.

• We design an input perturbation scheme LouvainDP
(Section 4) that runs in linear time using the high-pass
filtering technique from [7] and Louvain method [2].

• We propose an algorithm perturbation scheme Mod-
Divisive (Section 5) as a divisive approach by using
the modularity-based score function in the exponen-
tial mechanism. We prove that modularity has small
global sensitivity and ModDivisive also runs in linear
time.

• We conduct a thorough evaluation on real graphs
of different sizes and show the outperformance of
LouvainDP and ModDivisive over the state-of-the-art
(Section 6).

Table 1 summarizes the key notations used in this paper.

2. RELATED WORK

2.1 Community Detection in Graphs
There is a vast literature on community detection in

graphs. For a recent comprehensive survey, we refer to [10].
In this section, we discuss several classes of techniques.

Newman and Girvan [19] propose modularity as a qual-
ity of network clustering. It is based on the idea that a
random graph is not expected to have a modular structure,
so the possible existence of clusters is revealed by the com-
parison between the actual density of edges in a subgraph
and the density one would expect to have in the subgraph
if the nodes of the graph were connected randomly (the null
model). The modularity Q is defined as

Q =

nc
∑

c=1

[

lc
m

−
(

dc
2m

)2
]

(1)

Table 1: List of notations

Symbol Definition

G = (V, EG) true graph with n = |V | and m = |EG|
G′ = (V, EG′ ) neighboring graph of G

G̃ = (V, EG̃) sample noisy output graph
G1 = (V1, E1) supergraph generated by LouvainDP

k fan-out of the tree in ModDivisive
K burn-in factor in MCMC-based algorithms
λ common ratio to distribute the privacy budget
C a clustering of nodes in G

Q(G,C) modularity of the clustering C on graph G

where nc is the number of clusters, lc is the total number
of edges joining nodes in community c and dc is the sum of
the degrees of the nodes of c.

Many methods for optimizing the modularity have been
proposed over the last ten years, such as agglomerative
greedy [6], simulated annealing [17], random walks [22], sta-
tistical mechanics [25], label propagation [24] or InfoMap
[26], just to name a few. The recent multilevel approach,
also called Louvain method, by Blondel et al. [2] is a top
performance scheme. It scales very well to graphs with hun-
dreds of millions of nodes. This is the chosen method for
the input perturbation schemes considered in this paper (see
Sections 3.2 and 4 for more detail). By maximizing the mod-
ularity, Louvain method is based on edge counting metrics,
so it fits well with the concept of edge differential privacy
(Section 3.1). One of the most recent methods SCD [23] is
not chosen because it is about maximizing Weighted Com-
munity Clustering (WCC) instead of the modularity. WCC
is based on triangle counting which has high global sensi-
tivity (up to O(n)) [31]. Moreover, SCD pre-processes the
graph by removing all edges that do not close any triangle.
This means all 1-degree nodes are excluded and form single-
ton clusters. The number of output clusters is empirically
up to O(n).

2.2 Graph Release via Differential Privacy
In principle, after releasing a graph satisfying ǫ-DP, we

can do any mining operations on it, including community
detection. The research community, therefore, expresses a
strong interest in the problem of graph release via differ-
ential privacy. Differentially private algorithms relate the
amount of noise to the computation sensitivity. Lower sen-
sitivity implies smaller added noise. Because the edges in
simple undirected graphs are usually assumed to be inde-
pendent, the standard Laplace mechanism [8] is applicable
(e.g. adding Laplace noise to each cell of the adjacency
matrix). However, this approach severely deteriorates the
graph structure.

The state-of-the-art [4, 29] try to reduce the sensitivity
of the graph in different ways. Density Explore Reconstruct
(DER)[4] employs a data-dependent quadtree to summarize
the adjacency matrix into a counting tree and then recon-
structs noisy sample graphs. DER is an instance of input
perturbation. Xiao et al. [29] propose to use Hierarchi-
cal Random Graph (HRG) [5] to encode graph structural
information in terms of edge probabilities. Their scheme
HRG-MCMC is argued to be able to sample good HRG
models which reflect the community structure in the original
graph. HRG-MCMC is classified as an algorithm perturba-
tion scheme. A common disadvantage of the state-of-the-



art DER and HRG-MCMC is the scalability issue. Both of
them incur quadratic complexity O(n2), limiting themselves
to medium-sized graphs.

Recently, Nguyen et al. [20] proposed TmF that utilizes a
filtering technique to keep the runtime linear in the number
of edges. TmF also proves the upper bound O(lnn) for
the privacy budget ǫ. At the same time, Mülle et al. [18]
devised the scheme EdgeFlip using a randomized response
technique. However, EdgeFlip costs O(n2) and is runnable
only on graphs of tens of thousands of nodes.

3. PRELIMINARIES
In this section, we review key concepts and mechanisms

of differential privacy.

3.1 Differential Privacy
Essentially, ǫ-differential privacy (ǫ-DP) [8] is proposed

to quantify the notion of indistinguishability of neighbor-
ing databases. In the context of graph release, two graphs
G1 = (V1, E1) and G2 = (V2, E2) are neighbors if V1 = V2,
E1 ⊂ E2 and |E2| = |E1| + 1. Note that this notion of
neighborhood is called edge differential privacy in contrast
with the notion of node differential privacy which allows the
addition of one node and its adjacent edges. Our work fol-
lows the common use of edge differential privacy. The formal
definition of ǫ-DP for graph data is as follows.

Definition 3.1. A mechanism A is ǫ-differentially pri-
vate if for any two neighboring graphs G1 and G2, and for
any output O ∈ Range(A),

Pr[A(G1) ∈ O] ≤ eǫPr[A(G2) ∈ O]

Laplace mechanism [8] and Exponential mechanism [16]
are two standard techniques in differential privacy. The lat-
ter is a generalization of the former. Laplace mechanism
is based on the concept of global sensitivity of a function f
which is defined as ∆f = maxG1,G2

||f(G1)−f(G2)||1 where
the maximum is taken over all pairs of neighboring G1, G2.
Given a function f and a privacy budget ǫ, the noise is drawn
from a Laplace distribution Lap(λ) : p(x|λ) = 1

2λ
e−|x|/λ

where λ = ∆f/ǫ.

Theorem 3.1. (Laplace mechanism [8]) For any function
f : G → R

d, the mechanism A

A(G) = f(G) + 〈Lap1(∆f

ǫ
), ..., Lapd(

∆f

ǫ
)〉 (2)

satisfies ǫ-differential privacy, where Lapi(
∆f
ǫ
) are i.i.d

Laplace variables with scale parameter ∆f
ǫ
. 2

Geometric mechanism [11] is a discrete variant of Laplace
mechanism with integral output range Z and random
noise ∆ generated from a two-sided geometric distribution
Geom(α) : Pr[∆ = δ|α] = 1−α

1+α
α|δ|. To satisfy ǫ-DP, we

set α = exp(−ǫ). We use geometric mechanism in our Lou-
vainDP scheme.

For non-numeric data, the exponential mechanism is a
better choice [15]. Its main idea is based on sampling an
output O from the output space O using a score function
u. This function assigns exponentially higher probabilities
to outputs of higher scores. Let the global sensitivity of u
be ∆u = maxO,G1,G2

|u(G1, O) − u(G2, O)|.

Figure 1: Louvain method

Theorem 3.2. (Exponential mechanism [15]) Given a
score function u : (G×O) → R for a graph G, the mechanism
A that samples an output O with probability proportional to

exp( ǫ.u(G,O)
2∆u

) satisfies ǫ-differential privacy. 2

Composability is a nice property of differential privacy
which is not satisfied by other privacy models such as k-
anonymity.

Theorem 3.3. (Sequential and parallel compositions
[16]) Let each Ai provide ǫi-differential privacy. A sequence
of Ai(D) over the dataset D provides Σn

i=1ǫi-differential pri-
vacy.

Let each Ai provide ǫi-differential privacy. Let Di be ar-
bitrary disjoint subsets of the dataset D. The sequence of
Ai(Di) provides maxn

i=1 ǫi-differential privacy. 2

3.2 Louvain Method
Since its introduction in 2008, Louvain method [2] be-

comes one of the most cited methods for the community
detection task. It optimizes the modularity by a bottom-up
folding process. The algorithm is divided in passes each of
which is composed of two phases that are repeated itera-
tively. Initially, each node is assigned to a different commu-
nity. So, there will be as many communities as there are
nodes in the first phase. Then, for each node i, the method
considers the gain of modularity if we move i from its com-
munity to the community of a neighbor j (a local change).
The node i is then placed in the community for which this
gain is maximum and positive (if any), otherwise it stays in
its original community. This process is applied repeatedly
and sequentially for all nodes until no further improvement
can be achieved and the first pass is then complete.

We demonstrate Louvain method in Fig.1 by a graph of
13 nodes and 20 edges. If each node forms its own singleton
community, the modularity Q will be -0.0825. In the first
pass of Louvain method, each node moves to the best com-
munity selected from its neighbors’ communities. We get
the partition [{0, 1, 2}, {3, 4}, {5, 6, 11, 12}, {7, 8, 9, 10}] with
modularity 0.46375. The second phase of first pass builds
a weighted graph corresponding to the partition by aggre-
gating communities. The second pass repeats the folding
process on this weighted graphs to reach the final parti-
tion [{0, 1, 2}, {3, 4, 5, 6, 11, 12}, {7, 8, 9, 10}] with modular-
ity 0.47.

This simple agglomerative algorithm has several advan-
tages as stated in [2]. First, its steps are intuitive and easy
to implement, and the outcome is unsupervised. Second,
the algorithm is extremely fast, i.e. computer simulations
on large modular networks suggest that its complexity is
linear on typical and sparse data. This is due to the fact
that the possible gains in modularity are easy to compute



and the number of communities decreases drastically after
just a few passes so that most of the running time is concen-
trated on the first iterations. Third, the multi-level nature of
the method produces a hierarchical structure of communities
which allows multi-resolution analysis, i.e the user can zoom
in the graph to observe its structure with the desired resolu-
tion. In addition, Louvain method is runnable on weighted
graphs. This fact supports naturally our scheme LouvainDP
as described in Section 4.1.

3.3 Challenges of Community Detection un-
der Differential Privacy

In this section, we explain why community detection un-
der differential privacy is challenging. We show how tech-
niques borrowed from related problems fail. We also advo-
cate the choice of ǫ as a function of the graph size n.

The problem of differentially private community detec-
tion is closely related to ǫ-DP k-Means clustering and rec-
ommender systems. The ǫ-DP k-Means is thoroughly dis-
cussed in [27]. However, techniques from ǫ-DP k-Means are
not suitable to ǫ-DP community detection. First, items in
k-Means are in low-dimensional spaces and the number of
clusters k is usually small. This contrast to the case of com-
munity detection where nodes lie in a n-dimensional space
and the number of communities varies from tens to tens of
thousands, not to say the communities may overlap or be
nested (multi-scale). Second, items in ǫ-DP k-Means are

normalized to [−1, 1]d while the same preprocessing seems
invalid in ǫ-DP community detection. Moreover, the out-
put of k-Means usually consists of equal-sized balls while
this is not true for communities in graphs. Considering the
graph as a high-dimensional dataset, we tried the private
projection technique in [14] which is followed by spectral
clustering, but the modularity scores of the output are not
better than random clustering.

Recent papers on ǫ-DP recommender systems [12, 1] show
that privately learning the clustering of items from user
ratings is hard unless we relax the value of ǫ up to log n.
Banerjee et al. [1] model differentially private mechanisms
as noisy channels and bound the mutual information be-
tween the generative sources and the privatized sketches.
They show that in the information-rich regime (each user
rates O(n) items), their Pairwise-Preference succeeds if the
number of users is Ω(n log n/ǫ). Compared to ǫ-DP com-
munity detection where the number of users is n, we should
have ǫ = Ω(log n). Similarly, in D2P scheme, Guerraoui et
al. [12] draw a formula for ǫ as

ǫ
(p,0,λ)
D2P = ln(1 +

(1− p).NE

p.|Gλ|
) (3)

where λ is the distance used to conceal the user profiles
(λ = 0 reduces to the classic notion of differential privacy).
NE is the number of items which is exactly n in commu-
nity detection. |Gλ| is the minimum size of user profiles at
distance λ over all users (|Gλ| = o(NE) except at unreason-
ably large λ). Clearly, at p = 0.5 (as used in [12]), we have

ǫ
(0.5,0,λ)
D2P ≈ lnn. The randomized technique in D2P is very
similar to EdgeFlip [18] which is shown ineffective in ǫ-DP
community detection for ǫ ∈ (0, 0.5 lnn) (Section 6). Note
that ǫ-DP community detection is unique in the sense that
the set of items and the set of users are the same. Graphs for
community detection are more general than bipartite graphs
in recommender systems. In addition, modularity Q (c.f.

(a) Input perturbation

(b) Algorithm perturbation

Figure 2: Two categories of ǫ-DP community detection

Formula 1) is non-monotone, i.e. for two disjoint sets of
nodes A and B, Q(A ∪ B) may be larger, smaller than or
equal to Q(A) +Q(B).

To further emphasize the difficulty of ǫ-DP community
detection, we found that IDC scheme [13] using Sparse Vec-
tor Technique [9, Section 3.6] is hardly feasible. As shown
in Algorithm 1 of [13], to publish a noisy graph that can
approximately answer all cut queries with bounded error
m0.25n/ǫ0.5, IDC must have B(α) “yes” queries among all k
queries. B(α) may be as low as

√
m but k = 22n. In the

average case, IDC incurs exponential time to complete.
The typical epsilon in the literature is 1.0 or less. How-

ever, this value is only applicable to graph metrics of low
sensitivity O(1) such as the number of edges, the degree
sequence. The global sensitivity of other metrics like the
diameter, the number of triangles, 2K-series etc. is O(n),
calling for smooth sensitivity analysis (e.g. [21]). For count-
ing queries, Laplace/Geometric mechanisms are straightfor-
ward on real/integral (metric) spaces. However, direct noise
adding mechanisms on the space P of all ways to partition
the nodeset V are non-trivial because |P| ≈ nn and P is non-
metric. Compared to ǫ-DP recommender systems discussed
above which use ǫ = lnn for the super-exponential spaces of
size O(2n(n−1)/2), ǫ-DP community detection clearly needs
lower privacy budget.

To conclude, ǫ-DP community detection is challenging and
requires new techniques. In this paper, we evaluate the
schemes for ǫ up to 0.5 lnn. At ǫ = 0.5 lnn, the multi-
plicative ratio (c.f. Definition 3.1) is eǫ = e0.5 lnn =

√
n. We

believe it is a reasonable threshold for privacy protection
compared to ǫ = lnn (i.e. eǫ = n) in ǫ-DP graph release
and ǫ-DP recommender systems.

4. INPUT PERTURBATION
In this section, we propose the linear scheme LouvainDP

that uses a filtering technique to build a noisy weighted su-
pergraph and calls the exact Louvain method subsequently.
Then we discuss several recent ǫ-DP schemes that can be
classified as input perturbation. Fig.2a sketches the basic
steps of the input perturbation paradigm.

4.1 LouvainDP: Louvain Method on Noisy
Supergraphs

The basic idea of LouvainDP is to create a noisy weighted
supergraph G1 from G by grouping nodes into supernodes
of equal size k. We then apply the filtering technique of
Cormode et al. [7] to ensure that there are only O(m) noisy
weighted edges in G1. Finally, we run the exact community
detection on G1.



In [7], Cormode et al. propose several summarization
techniques for sparse data under differential privacy. Let
M be a contingency table having the domain size m0 and
m1 non-zero entries (m1 ≪ m0 for sparse data), the conven-
tional publication of a noisy table M ′ from M that satisfies
ǫ-DP requires the addition of Laplace/geometric noise to
m0 entries. The entries in M ′ could be filtered (e.g. remov-
ing negative ones) and/or sampled to get a noisy summary
M ′′. This direct approach would be infeasible for huge do-
main sizes m0. Techniques in [7] avoid materializing the vast
noisy data by computing the summary M ′′ directly from M
using filtering and sampling techniques.

In our LouvainDP, the supergraph G1 is an instance of

sparse data with the domain size m0 = n1(n1+1)
2

where n1 is
the number of supernodes and m1 is the number of non-zero
entries corresponding to non-zero superedges. We use the
one-sided filtering [7] to efficiently compute G1 with O(m)
edges in linear time.

4.1.1 Algorithm
LouvainDP can run with either geometric or Laplace

noise. We describe the version with geometric noise in Al-
gorithm 1.

Algorithm 1 LouvainDP(G, s)

Input: undirected graph G, group size k, privacy budget ǫ
Output: noisy partition C̃

1: G1 ← ∅, n1 = ⌊
|V |
k
⌋ − 1, V1 ← {0, 1, .., n1}

2: ǫ2 = 0.01, ǫ1 = ǫ− ǫ2, α = exp(−ǫ1)
3: get a random permutation Vp of V
4: compute the mapping M : Vp → V1

5: compute superedges of G1: E1 = {e1(i, j)} where i, j ∈ V1

6: m1 = |E1|+ Lap(1/ǫ2), m0 = n1(n1+1)
2

7: θ = ⌈logα
(1+α)m1

m0−m1
⌉

8: s = (m0 −m1)
αθ

1+α

9: for e1(i, j) in E1 do

10: e1(i, j) = e1(i, j) +Geom(α)
11: if e1(i, j) ≥ θ then
12: add e1(i, j) to G1

13: for s edges e0(i, j) /∈ E1 sampled uniformly at random do
14: draw w from the distribution Pr[X ≤ x] = 1− αx−θ+1

15: if w > 0 then

16: add edge e0(i, j) with weight w to G1

17: run Louvain method on G1 to get C̃1

18: compute C̃ from C̃1 using the mapping M
19: return C̃

Given the group size k, LouvainDP starts with a super-

graph G1 having ⌊ |V |
k
⌋ nodes by randomly permuting the

nodeset V and grouping every k consecutive nodes into a
supernode (lines 1-4). The permutation prevents the possi-
ble bias of node ordering in G. The set of superedges E1

is easily computed from G. Note that m1 = |E1| ≤ m due
to the fact that each edge of G appears in one and only

one superedge. The domain size is m0 = n1(n1+1)
2

(i.e. we
consider all selfloops in G1). The noisy number of non-zero
superedges is m1 = |E1|+Lap(1/ǫ2). Then by one-sided fil-
tering [7], we estimate the threshold θ (line 7) and the num-
ber of passing zero superedges s (line 8). For each non-zero
superedge, we add a geometric noise and add the superedge
to G1 if the noisy value is not smaller than θ. For s zero
superedges e1(i, j) /∈ E1, we draw an integral weight w from

the distribution Pr[X ≤ x] = 1 − αx−θ+1 and add e1(i, j)
with weight w to G1 if w > 0.

4.1.2 Complexity
LouvainDP runs in O(m) because the loops to compute

superedges (Line 5) and to add geometric noises (lines 9-12)

cost O(m). We have s = (m0−m1)
αθ

1+α
≤ m0−m1

1+α
(1+α)m1

m0−m1
=

m1 (see Line 7). So the processing of s zero-superedges costs
O(m). Moreover, Louvain method (line 17) is empirically
linear in m1 [2]. We come up with the following theorem.

Theorem 4.1. The number of edges in G1 is not larger
than 2m. LouvainDP’s runtime is O(m).

4.1.3 Privacy Analysis
In LouvainDP, we use a small privacy budget ǫ2 = 0.01

to compute the noisy number of non-zero superedges m1.
The remaining privacy budget ǫ1 is used for the geometric
mechanism Geom(α). Note that getting a random permu-
tation Vp (line 3) costs no privacy budget. The number of
nodes n is public and given the group size k, the number of
supernodes n1 is also public. The high-pass filtering tech-
nique (Lines 6-16) inherits the privacy guarantee by [7]. By
setting ǫ1 = ǫ−ǫ2, LouvainDP satisfies ǫ-differential privacy
(see the sequential composition (Theorem 3.3)).

4.2 Alternative Input Perturbation Schemes
1K-series [28], DER [4], TmF [20] and EdgeFlip [18] are

the most recent differentially private schemes for graph re-
lease that can be classified as input perturbation. While
1K-series and TmF run in linear time, DER and EdgeFlip
incur a quadratic complexity. DER and EdgeFlip are there-
fore tested only on two medium-sized graphs in Section 6.

The expected number of edges by EdgeFlip is |EG̃| =

(1 − s)m + n(n−1)
4

s (see [18]) where s = 2
eǫ+1

is the flip-

ping probability. Substitute s into |EG̃|, we get |EG̃| =

m + (n(n−1)
4

− m) 2
eǫ+1

. The number of edges in the noisy

graph G̃ generated by EdgeFlip increases exponentially as ǫ
decreases. To ensure the linear complexity for million-scale
graphs, we propose a simple extension of EdgeFlip, called
EdgeFlipShrink (see Appendix A.1).

5. ALGORITHM PERTURBATION
The schemes in the algorithm perturbation category pri-

vately sample a node clustering from the input graph with-
out generating noisy sample graphs as in the input per-
turbation. This can be done via the exponential mecha-
nism. We introduce our main scheme ModDivisive in Sec-
tion 5.1 followed by HRG-Fixed, a variant of HRG-MCMC
[29] runnable on large graphs (Section 5.2). Fig.2b sketches
the basic steps of the algorithm perturbation paradigm.

5.1 ModDivisive: Top-down Exploration of
Cohesive Groups

5.1.1 Overview
In contrast with the agglomerative approaches (e.g. Lou-

vain method) in which small communities are iteratively
merged if doing so increases the modularity, our ModDi-
visive scheme is a divisive algorithm in which communities
at each level are iteratively split into smaller ones. Our
goal is to heuristically detect cohesive groups of nodes in a



Figure 3: Example of ModDivisive with k = 3. A cut C is
shown by the dot-dashed line

private manner. There are several technical challenges in
this process. The first one is how to efficiently find a good
split of nodes that induces a high modularity and satisfies
ǫ-DP at the same time. The second one is how to merge the
small groups to larger ones. We cope with the first challenge
by realizing an exponential mechanism via MCMC (Markov
Chain Monte-Carlo) sampling with the modularity as the
score function (see Theorem 3.2). The second challenge is
solved by dynamic programming. We design ModDivisive
as a k-ary tree (Fig.3), i.e. each internal node has no more
than k child nodes. The root node (level 0) contains all
nodes in V and assigns arbitrarily each node to one of the
k groups. Then we run the MCMC over the space of all
partitions of V into no more than k nonempty subsets. The
resulting subsets are initialized as the child nodes (level 1)
of the root. The process is repeated for each child node at
level 1 and stops at level maxL. Fig.3 illustrates the idea
with k = 3 for the graph in Fig.1.

5.1.2 Algorithm
Algorithm 2 sketches the main steps in our schemeModDi-

visive. It comprises two phases: differentially private sam-
pling a k-ary tree of depth maxL which uses the privacy
budget ǫ1 and finding the best cut across the tree to get a
good clustering of nodes which consumes a budgetmaxL·ǫm.

The first phase (lines 1-14) begins with the creation of eA,
the array of privacy budgets allocated to levels of the tree.
We use the parameter λ ≥ 1 as the common ratio to form a
geometric sequence. The rationale behind the common ratio
is to give higher priority to the levels near the root which
have larger node sets. By sequential composition (Theorem
3.3), we must have

∑

i eA[i] = ǫ1. All internal nodes at level
i do the MCMC sampling on disjoint subsets of nodes, so the
parallel composition holds (Theorem 3.3). Subsection 5.1.4
analyzes the privacy of ModDivisive in more detail. We use
a queue to do a level-by-level exploration. Each dequeued
node r’s level will be checked. If its level is not larger than
maxL, we will run ModMCMC (Algorithm 3) on it (line 9)
to get a partition r.part of its nodeset r.S (Fig.3). Each
subset in r.part forms a child node and is pushed to the
queue. The second phase (line 15) calls BestCut to find a
highly modular partition across the tree.

Differentially Private Nodeset Partitioning Let P be
the space of all ways P to partition a nodeset A to no more
than k disjoint subsets, the direct application of exponential
mechanism needs the enumeration of P . The probability of
a partition P being sampled is

exp(
ǫp

2∆Q
Q(P,G))

∑

P ′∈P exp(
ǫp

2∆Q
Q(P ′, G))

(4)

Algorithm 2 ModDivisive

Input: graph G, group size k, privacy budget ǫ, max level maxL,
ratio λ, BestCut privacy at each level ǫm

Output: noisy partition C̃
1: compute the array eA[0..maxL − 1] s.t.

∑
i eA[i] = ǫ1,

eA[i] = eA[i+ 1] ∗ λ where ǫ1 = ǫ−maxL.ǫm
2: initialize the root node with nodeset V
3: root = NodeSet(G,V, k)
4: root.level = 0
5: queue Q← root
6: while Q is not empty do

7: r ← Q.dequeue()
8: if r.level < maxL then

9: r.part = ModMCMC(G, r.S, k, eA[r.level])
10: for subset Si in r.part do
11: Pi = NodeSet(G,Si, k)
12: Pi.level = r.level+ 1
13: r.childi ← Pi

14: Q.enqueue(Pi)

15: C̃ ← BestCut(root, ǫm)

16: return C̃

However, |P| =
∑k

i=1 S(|A|, i) where S(|A|, i) is the Stir-

ling number of the second kind, S(n, k) ≈ kn

k!
. This sum

is exponential in |A|, so enumerating P is computationally
infeasible. Fortunately, MCMC can help us simulate the ex-
ponential mechanism by a sequence of local transitions in
P .

The space P is connected. It is straightforward to verify
that the transitions performed in line 3 of ModMCMC are
reversible and ergodic (i.e. any pair of nodeset partitions
can be connected by a sequence of such transitions). Hence,
ModMCMC has a unique stationary distribution in equilib-
rium. By empirical evaluation, we observe that ModMCMC
converges after K|r.S| steps for K = 50 (see Section 6.3).

Each node r in the tree is of type NodeSet. This structure
consists of an array r.part where r.part[u] ∈ {0..k−1} is the
group id of u. To make sure that ModMCMC runs in linear
time, we must have a constant time computation of modu-
larity Q(P ) (line 4 of Algorithm 3). This can be done with
two helper arrays: the number of intra-edges r.lc[0..k − 1]
and the total degree of nodes r.dc[0..k − 1] in each group.
The modularity Q is computed in O(k) (Formula 1) using
r.lc, r.dc. When moving node u from group i to group j,
r.lc and r.dc are updated accordingly by checking the neigh-
bors of u in G. The average degree d̄ is a constant, so the
complexity of ModMCMC is linear in the number of MCMC
steps.

Algorithm 3 ModMCMC

Input: graph G, nodeset r.S, group size k, privacy budget ǫp
Output: sampled partition r.part
1: initialize r.part with a random partition P0 of k groups
2: for each step i in the Markov chain do

3: pick a neighboring partition P ′ of Pi−1 by randomly se-
lecting node u ∈ r.S and moving u to another group.

4: accept the transition and set Pi = P ′ with probability

min(1,
exp(

ǫp
2∆Q

Q(P ′,G))

exp(
ǫp

2∆Q
Q(Pi−1,G))

)

5: // until equilibrium is reached
6: return a sampled partition r.part = Pi

Finding the Best Cut Given the output k-ary tree R
with the root node root, our next step is to find the best cut



across the tree. A cut C is a set of nodes in R that cover
all nodes in V . As an example, a cut C in Fig.3 returns the
clustering [{0,1,2,3}, {4}, {5,6,11}, {8,9,10,7,12}]. Any cut
has a modularity score. Our goal is to find the best cut, i.e.
the cut with highest modularity, in a private manner.

We solve this problem by a dynamic programming tech-
nique. Remember that modularity is an additive quantity
(c.f. Formula 1). By denoting opt(r) as the optimal modu-
larity for the subtree rooted at node r, the optimal value is
opt(root). The recurrence relation is straightforward

opt(r) = max{Q(r),
∑

t∈r.children

opt(t)}

This idea is realized in three steps. The pseudo-code is
provided in Appendix A.2. The first step uses a queue to
fill a stack S. The stack ensures any internal node to be
considered after its child nodes. The second step solves the
recurrence relation. Because all modularity values are sen-
sitive, we add Laplace noise Laplace(∆Q/ǫm). The global
sensitivity ∆Q = 3/m (see Theorem 5.2), so we need only
a small privacy budget for each level (ǫm = 0.01 is enough
in our experiments). The noisy modularity modn is used to
decide whether the optimal modularity at node r is by itself
or by the sum over its children. The final step backtracks
the best cut from the root node.

5.1.3 Complexity
ModDivisive creates a k-ary tree of height maxL. At each

node r of the tree other than the leaf nodes, ModMCMC is
run once. The run time of ModMCMC is O(K · |r.S|) thanks
to the constant time for updating the modularity (line 4 of
ModMCMC). Because the union of nodesets at one level is
V , the total runtime is O(K · |V | · maxL). BestCut only
incurs a sublinear runtime because the size of tree is always
much smaller than |V |. The following theorem states this
result

Theorem 5.1. The time complexity of ModDivisive is
linear in the number of nodes n, the maximum level maxL
and the burn-in factor K.

5.1.4 Privacy Analysis
We show that ModMCMC satisfies differential privacy.

The goal of MCMC is to draw a random sample from the
desired distribution. Similarly, exponential mechanism is
also a method to sample an output x ∈ X from the tar-

get distribution with probability proportional to exp( ǫu(x)
2∆u

)
where u(x) is the score function (x with higher score has
bigger chance to be sampled) and ∆u is its sensitivity. The
idea of using MCMC to realize exponential mechanism is
first proposed in [3] and applied to ǫ-DP graph release in
[29].

In our ModMCMC, the modularity Q(P,G) is used di-
rectly as the score function. We need to quantify the global
sensitivity of Q. From Section 3.1, we have the following
definition

Definition 5.1. (Global Sensitivity ∆Q)

∆Q = max
P,G,G′

|Q(P,G)−Q(P,G′)| (5)

We prove that ∆Q = O(1/m) in the following theorem
whose proof is provided in Appendix A.3.

Theorem 5.2. The global sensitivity of modularity, ∆Q,
is smaller than 3

m

Figure 4: HRG-Fixed

5.2 A Variant of HRG-MCMC
Similar to DER and EdgeFlip, HRG-MCMC [29] runs in

quadratic time due to its costly MCMC steps. Each MCMC
step in HRG-MCMC takes O(n) to update the tree. To
make it runnable on million-scale graphs, we describe briefly
a variant of HRG-MCMC called HRG-Fixed (see Fig.4). In-
stead of exploring the whole space of HRG trees as in HRG-
MCMC, HRG-Fixed selects a fixed binary tree beforehand.
We choose a balanced tree in our HRG-Fixed. Then HRG-
Fixed realizes the exponential mechanism by sampling a per-
mutation of n leaf nodes (note that each leaf node represents
a graph node). The next permutation is constructed from
the current one by randomly choosing a pair of nodes and
swap them. The bottom of Fig.4 illustrates the swap of
two nodes a and d. The log-likelihood L still has the sensi-
tivity ∆L = 2 lnn as in HRG-MCMC [29]. Each sampling
(MCMC) operation is designed to run in O(d̄·log n). By run-
ning K ·n MCMC steps, the total runtime of HRG-Fixed is
O(K ·m · log n), feasible on large graphs. The burn-in factor
K of HRG-Fixed is set to 1,000 in our evaluation.

6. EXPERIMENTS AND RESULTS
In this section, our evaluation aims to compare the per-

formance of the competitors by clustering quality and effi-
ciency. The clustering quality is measured by the modularity
Q and the average F1-score in which the modularity is the
most important metric as we aim at highly modular cluster-
ings. The efficiency is measured by the running time. All
algorithms are implemented in Java and run on a desktop
PC with Intelr Core i7-4770@ 3.4Ghz, 16GB memory.

Table 2: Characteristics of the test graphs

as20graph ca-AstroPh amazon youtube
Nodes 6,474 17,903 334,863 1,134,890
Edges 12,572 196,972 925,872 2,987,624
Com 30 37 257 13,485
Mod 0.623 0.624 0.926 0.710
0.5ln n 4.4 4.9 6.4 7.0

Two medium-sized and two large real graphs are used in
our experiments 1. as20graph is the graph of routers com-
prising the internet. ca-AstroPh is a co-authorship network
where two authors are connected if they publish at least
one paper together. amazon is a product co-purchasing net-
work where the graph contains an undirected edge from i
to j if a product i is frequently co-purchased with product

1http://snap.stanford.edu/data/index.html



j. youtube is a video-sharing web site that includes a social
network. Table 2 shows the characteristics of the graphs.
The rows Com(munities) and Mod(ularity) are the output
of Louvain method. The row 0.5ln n is the largest privacy
budget ǫ considered in the experiments. The number of
samples in each test case is 20.

The schemes are abbreviated as 1K-series (1K), EdgeFlip
(EF), Top-m-Filter (TmF), DER, LouvainDP (LDP), Mod-
Divisive (MD), HRG-MCMC and HRG-Fixed.

6.1 Quality Metrics
Apart from modularityQ, we use F̄1, the average F1-score,

following the benchmarks in [30]. The F1 score of a set A
with respect to a set B is defined as the harmonic mean H
of the precision and the recall of A against B. We define

prec(A,B) = |A∩B|
|A|

, recall(A,B) = |A∩B|
|B|

F1(A,B) =
2.prec(A,B).recall(A,B)

prec(A,B) + recall(A,B)

Then the average F1 score of two sets of communities C
and C′ is defined as

F1(A,C) = max
i

F1(A, ci), ci ∈ C = {c1, .., cn}

F̄1(C,C
′) =

1

2|C|
∑

ci∈C

F1(ci, C
′) +

1

2|C′|
∑

ci∈C′

F1(ci, C)

We choose the output clustering of Louvain method as the
ground truth for two reasons. First, the evaluation on the
real ground truth is already done in [23] and Louvain method
is proven to provide high quality communities. Second, the
real ground truth is a set of overlap communities whereas the
schemes in this paper output only non-overlap communities.
The chosen values of ǫ are {0.1ln n, 0.2lnn, 0.3ln n, 0.4ln n,
0.5ln n}.

Note that there is a well-known resolution limit of mod-
ularity [10, Section VI.C]. This phenomenon may occur
in top-down community detection approaches in which the
modularity of a clustering of large communities is not much
different from that of a clustering of many smaller commu-
nities. Similarly, the F1-score may not be consistent with
modularity. For example, on amazon graph, non-private
Louvain method returns a clustering of 52,655 small com-
munities with modularity 0.678 after first round. In the
final round, it returns a clustering of 257 large communities
with modularity 0.926. The F1-score between 52,655 small
communities and 257 large communities (as ground truth) is
0.01. On youtube graph, the first round and the last round
of non-private Louvain return 147,361 and 13,485 commu-
nities with modularity 0.644 and 0.710 respectively. The
F1-score between the two clusterings is 0.14. These results
confirm the inherent limitations of modularity and F1-score
for community detection.

6.2 Performance of LouvainDP
We test LouvainDP for the group size k ∈ {4, 8, 16, 32, 64}.

The results on youtube are displayed in Fig. 5. We observe
a clear separation of two groups k = 4, 8 and k = 16, 32, 64.
As k increases, the modularity increases faster but also satu-
rates sooner. Similar separations appear in avg.F1Score and
the number of communities. Non-trivial modularity scores
in several settings of (k, ǫ) indicate that randomly grouping
of nodes and high-pass filtering superedges do not destroy
all community information of the original graph.
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Figure 5: LouvainDP on youtube
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Figure 6: ModDivisive on youtube with λ = 2.0, K = 50

At ǫ = 0.5 lnn and k = 4, 8, the total edge weight in G1 is
very low ( < 0.05m), so many supernodes of G1 are discon-
nected and Louvain method outputs a large number of com-
munities. The reason is that the threshold θ in LouvainDP
is an integral value, so causing abnormal leaps in the total
edge weight of G1. We pick k = 8, 64 for the comparative
evaluation (Section 6.4).

6.3 Performance of ModDivisive
The effectiveness of ModDivisive is illustrated in Fig. 6 for

graph youtube and λ = 2.0, K = 50. We select six pairs of
(k,maxL) by the set {(2,10),(3,7),(4,5), (5,4),(6,4),(10,3)}.
Modularity increases steadily with ǫ while it is not always
the case for avg.F1Score.

We choose λ = 2.0 to obtain a good allocation of ǫ among
the levels. Fig. 7a shows the modularity for different values
of λ. Note that λ = 1.0 means ǫ is equally allocated to the
maxL levels. By building a k-ary tree, we reduce consider-
ably the size of the state space P for MCMC. As a result,
we need only a small burn-in factor K. Looking at Fig. 7b,
we see that larger K = 100 results in only tiny increase of
modularity in comparison with that of K = 50.

6.4 Comparative Evaluation
In this section, we report a comparative evaluation of Lou-

vainDP and ModDivisive against the competitors in Fig. 9.
The dashed lines in subfigures 9i, 9j, 9k and 9l represent the
ground-truth number of communities by Louvain method.
ModDivisive performs best in most of the cases.

On as20graph and ca-AstroPh, HRG-MCMC outputs the
whole nodeset V with the zero modularity while 1K-series,
TmF, DER also give useless clusterings. EdgeFlip produces
good quality metrics exclusively on ca-AstroPh while Lou-
vainDP returns the highest modularity scores on as20graph.
However, the inherent quadratic complexity of EdgeFlip
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Figure 7: ModDivisive: modularity vs. λ and K on amazon
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Figure 8: Runtime (in second)

makes Louvain method fail at ǫ = 0.1 lnn and 0.2 lnn for
ca-AstroPh graph.

On the two large graphs, ModDivisive dominates the other
schemes by a large margin in modularity and avg.F1Score.
LouvainDP is the second best in modularity at k = 64. Our
proposed HRG-Fixed is consistent with ǫ and has good per-
formance on youtube. Note that HRG-MCMC is infeasi-
ble on the two large graphs due to its quadratic complex-
ity. Again, 1K-series, TmF and EdgeFlipShrink provide
the worst quality scores with the exception of 1K-series’s
avg.F1Score on youtube.

The runtime of the linear schemes is reported in Fig.
8. EdgeFlipShrink, 1K-series, TmF and LouvainDP ben-
efit greatly by running Louvain method on the noisy output
graph G̃. ModDivisive and HRG-Fixed also finish their work
quickly in O(K ·n ·maxL) and O(K ·m · log n) respectively.

7. CONCLUSION
We have given a big picture of the problem ǫ-DP com-

munity detection within the two categories: input and al-
gorithm perturbation. We analyzed the major challenges
of community detection under differential privacy. We ex-
plained why techniques borrowed from k-Means fail and how
the difficulty of ǫ-DP recommender systems enables a re-
laxation of privacy budget. We proposed LouvainDP and
ModDivisive as the representatives of input and algorithm
perturbations respectively. By conducting a comprehen-
sive evaluation, we revealed the advantages of our meth-
ods. ModDivisive steadily gives the best modularity and
avg.F1Score on large graphs while LouvainDP outperforms
the remaining input perturbation competitors in certain set-
tings. HRG-MCMC/HRG-Fixed give low modularity clus-
terings, indicating the limitation of the HRG model in di-
visive CD. The input perturbation schemes DER, EF, 1K-

series and TmF hardly deliver any good node clustering ex-
cept EF on the two medium-sized graphs.

For future work, we plan to develop an ǫ-DP agglomera-
tive scheme based on Louvain method and extend our work
for directed graphs and overlapping community detection
under differential privacy.
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Figure 9: Quality metrics and the number of communities on four graphs
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APPENDIX

A. ALGORITHMS AND PROOFS

A.1 EdgeFlipShrink
Instead of outputting G̃, EdgeFlipShrink computes Ĝ that

has the expected number of edges m by shrinking EG̃. First,
the algorithm compute the private number of edges m̃ using
a small budget ǫ2 (Lines 2-3 ). The new flipping probability
s̃ is updated (Line 5). The noisy expected number of edges
in the original EdgeFlip is shown in Line 6. We obtain the
shrinking factor p = m̃

m0
(Line 7). Using p, every 1-edge is

sampled with probability 1−s̃
2

p instead of 1−s
2

as in [18]. The
remaining 0-edges are randomly picked from EG as long as
they do not exist in Ĝ (Lines 14-19).

The expected edges of Ĝ is E[Ĝ] = E[m̃] = m and the
running time of EdgeFlipShrink is O(m).

Algorithm 4 EdgeFlipShrink(G, s)

Input: undirected graph G, flipping probability s

Output: anonymized graph Ĝ

1: Ĝ← ∅

2: ǫ2 = 0.01
3: m̃ = m+ Lap(1/ǫ2)

4: ǫ = ln( 2
s
− 1) − ǫ2

5: s̃ = 2
eǫ+1

6: m0 = (1− s̃)m̃ +
n(n−1)

4
s̃

7: p = m̃
m0

8: // process 1-edges
9: n1 = 0
10: for edge (i, j) ∈ EG do

11: add edge (i, j) to Ĝ with prob. 1−s̃
2

p
12: n1 ++

13: // process 0-edges
14: n0 = m̃− n1

15: while n0 > 0 do

16: random pick an edge (i, j) /∈ EG

17: if Ĝ does not contain (i, j) then

18: add edge (i, j) to Ĝ
19: n0- -

20: return Ĝ′

A.2 BestCut Algorithm
Algorithm 5 outlines the steps of BestCut (Section 5.1.2).

A.3 Proof of Theorem 5.2
Proof. Given the graph G and a partition P of a nodeset

Vp ⊆ V (for any node of the k-ary tree other than the root
node, its nodeset Vp is a strict subset of V ), the neighboring
graph G′ has EG′ = EG ∪ e. We have two cases

Case 1. The new edge e is an intra-edge within the

community s. The modularity Q(P,G) is
∑k

c (
lc
m

− d2c
4m2 ).

The modularity Q(P,G′) is
∑k

c 6=s(
lc

m+1
− d2c

4(m+1)2
)+( ls+1

m+1
−

(ds+2)2

4(m+1)2
).

The difference d1 = Q(P,G′) − Q(P,G) = 1
m+1

−
1

m(m+1)

∑k
c lc +

2m+1
4m2(m+1)2

∑k
c d

2
c − ds+1

(m+1)2

Because ∆Q is the absolute value of d1, we consider the
most positive and the most negative values of d1. Re-
member that

∑k
c dc ≤ 2m, so the positive bound d1 <

1
m+1

+ (2m+1)4m2

4m2(m+1)2
< 3

m+1
. For the negative bound, we

Algorithm 5 BestCut

Input: undirected graph G, root node root, privacy budget at
each level ǫm

Output: best cut C
1: stack S ← ∅, queue Q← root
2: while Q is not empty do

3: r ← Q.dequeue()
4: S.push(r)
5: for child node ri in r.children do
6: Q.enqueue(ri)

7: dictionary sol← ∅

8: while S is not empty do

9: r ← S.pop(), r.modn = r.mod+ Laplace(∆Q/ǫm)
10: if r is a leaf node then

11: sol.put(r.id, (val = r.modn, self = True))
12: else

13: sm =
∑

ri∈r.children sol[ri.id].modn
14: if r.modn < sm then
15: sol.put(r.id, (val = sm, self = False))
16: else

17: sol.put(r.id, (val = r.modn, self = True))

18: list C ← ∅, queue Q← root
19: while Q is not empty do

20: r ← Q.dequeue()
21: if sol[r.id].self == True then

22: C = C ∪ {r}
23: else
24: for child node ri in r.children do

25: Q.enqueue(ri)
return C

use the constraints
∑k

c lc ≤ m and ds ≤ 2m, so d1 >
1

m+1
− m

m(m+1)
− 2m+1

(m+1)2
> −2

m+1
. As a result, ∆Q = |d1| <

3
m+1

< 3
m
.

Case 2. The new edge e is an inter-edge between the
communities s and t. Similarly, we have Q(P,G) =

∑k
c (

lc
m
−

d2c
4m2 ) while Q(P,G′) =

∑k
c 6=s,t(

lc
m+1

− d2c
4(m+1)2

) + ( ls
m+1

−
(ds+1)2

4(m+1)2
) + ( lt

m+1
− (dt+1)2

4(m+1)2
).

The difference d2 = Q(P,G′) − Q(P,G) =

− 1
m(m+1)

∑k
c lc +

2m+1
4m2(m+1)2

∑k
c d

2
c − 2ds+2dt+2

4(m+1)2
. Again, we

consider the most positive and the most negative values
of d2, using the constraint

∑k
c dc ≤ 2m, the positive

bound d2 < (2m+1)4m2

4m2(m+1)2
< 2

m+1
. For the negative bound,

we use the constraints
∑k

c lc ≤ m and ds + dt ≤ 2m,
so d2 > − m

m(m+1)
− 4m+2

4(m+1)2
> −2

m+1
. As a result,

∆Q = |d2| < 2
m+1

< 2
m
.

To recap, in both cases ∆Q < 3
m
.


