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Abstract—In this paper, we consider single server queueing
system with multiple semi-Markov inputs and buffers. Each
request of the flows brings to the system some random amount
of information. According to the bandwidth sharing discipline,
each buffer has its own part of the throughput and the server
transmits the information from buffers simultaneously. The aim
of the current research is to derive the probability distribution
of the amount of information in single buffer.

Index Terms—queueing system, semi-Markov flow, bandwidth
sharing discipline

I. INTRODUCTION

Stochastic models of schedulers are divided by two groups:
loss models and delay models. In both groups server (transmis-
sion node) deals with multiple inputs. Loss models are used to
solve the problem of bandwidth allocation in cellular networks
[1], [2]. In this paper, we focus on delay models, which reflect
the structure and performance of systems with buffer(s) [3],
[4], [5].

The majority of mathematical models of transmission nodes
use Poisson process for modeling packets arrivals [6], [7].
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On the other hand, models with sophisticated input processes
allow to study the system mostly in terms of means [3].
Moreover, the generalization of the traffic model usually leads
to the fact that analytical results can be obtained only for an
exponential distribution of the service time.

In the current paper, we consider the queueing system with
multiple inputs and buffers as a model of scheduler. The input
process is semi-Markov flow of packets arrivals. We take into
account the size of packets and model it as arbitrary distributed
variables. Bandwidth sharing discipline allows to transmit the
information from all buffers at the same time. For this end,
the scheduler allocates the virtual communication channel for
each buffer with constant rate of transmission as a part of
the throughput of the system. Thus, the service time linearly
depends on the packet length and is also arbitrary distributed
variable. We use asymptotic analysis method to derive the
approximation of the probability distribution of the amount
of information in the buffers under the limit condition of high
load.

The rest of the paper is organized as follows. In section
2, we build mathematical model of the system with multiple
inputs and derive preliminary formulas. Section 3 is devoted
to the analysis of processes accompanying the system state,
which in our case is the amount of information in the buffers.
In section 4, we obtain asymptotic characteristic function
of the amount of information in the buffers and derive the
approximation of its cumulative distribution function. Section
5 contains the numerical example. Section 6 is dedicated to
the concluding remarks.

II. MODEL DESCRIPTION AND PRELIMINARIES

We consider single server queueing system with N buffers
and inputs as a mathematical model of scheduler. Each request
of n-th flow brings to the system random amount of infor-
mation, whose cumulative distribution function is Bn(x). We
assume that the service in the system has the meaning of the
transmission of the information through the communication
channel.

We consider queueing system with bandwidth sharing ser-
vice discipline, which allows servicing all buffers at the same
time. Values vn characterize the part of throughput, which
is allotted to the service of n-th input. These values define
the speed of data transmission as follows: the amount of
transmitted information is vn∆t per time ∆t for n-th input
flow.

Let Sn(t) denote the total amount of information collected
in n-th buffer until moment t. Assuming that inputs are
independent and values vn are constant and do not depend
on the system state, we obtain that the total amounts of
information in different buffers Sn(t) are independent pro-
cesses. Therefore, we can make a decomposition of the system
with N inputs to the system with single input. Without loss
of generality, we consider the system with only first input
denoting S1(t) = S(t), B1(x) = B(x). In this part of the
study, we consider the traffic model in a form of semi-Markov

flow defined by semi-Markov matrix A(x). Elements Akν(x)
of the matrix A(x) are given by

Akν(x) = P{ξ(n+ 1) = ν, τ(n+ 1) < x|ξ(n) = k}. (1)

We take into account that

P = A(∞), (2)

where P is a matrix of transition probabilities of embedded
Markov chain ξ(n). Moments tn of arrivals in semi-Markov
flow are given by formulas tn+1 = tn + τ(n + 1). In
further investigation, we use semi-Markov random process
k(t), which is defined as

k(t) = ξ(n+ 1), if tn < t ≤ tn+1 = tn + τ(n+ 1). (3)

Value v1 is determined as v1 = v/ρ and value v is given
by the equality v = λb1, where λ is the intensity of input
flow, b1 is the first raw moment of the distribution B(x) and
value ρ determines the system load. We note that ρ satisfies
the stability condition ρ < 1.

Let z(t) denote the residual time of the next arrival in
semi-Markov flow, S(t) denote the total amount of informa-
tion accumulated in the buffer until moment t. The notation
for the probability distribution of three-dimensional process
{k(t), S(t), z(t)} is given by

Pk(s, z, t) = P{k(t) = k, S(t) < s, z(t) < z}. (4)

For the analysis of the model, we derive the balance equality

Pk

(
s− v

ρ
, z −∆t, t+ ∆t

)
=

= Pk(s, z, t)− Pk(s,∆t, t)+

+

K∑
v=1

s∫
0

Pν(s− x,∆t, t)dB(x)Aνk(z) + o(∆t),

from which we obtain the equation for steady state probability
distribution Pk(s, z)

v
∂Pk(s, z)

∂s
+ ρ

∂Pk(s, z)

∂z
− ρ∂Pk(s, 0)

∂z
+

+ρ
K∑
ν=1

s∫
0

∂Pν(s− x, 0)

∂z
dB(x)Aνk(z) = 0, (5)

where
∂Pk(s, 0)

∂z
=
∂Pk(s, z)

∂z

∣∣∣
z=0

.
Denoting partial characteristic functions Hk(u, z) and char-

acteristic function β(u)

Hk(u, z) =

∞∫
0

ejusdPk(s, z), β(u) =

∞∫
0

ejuxdB(x), (6)

we transform (6) to the equation for the partial characteristic

functions. Since the derivative
∂Pk(s, z)

∂s
has the gap in point

s = 0, we introduce the Fourier transforms of it as follows:
∞∫
0

ejusd
∂Pk(s, z)

∂s
= ju


+0∫
0

ejusdPk(s, z)−Hk(u, z)

 .
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We denote probabilities

+0∫
0

ejusdPk(s, z) = Pk(+0, z) = Vk(z)

of that the buffer is empty, process k(t) is in k-th state and
the value of process z(t) is less than z. We also denote vector
characteristic function

H(u, z) = {H1(u, z), H2(u, z), ...,HK(u, z)},

vector
V(z) = {V1(z), V2(z), ..., VK(z)},

identity matrix I and vector of ones e. We rewrite (6) together
with the additional equation obtained taking the limit by z →
∞ as follows:

ρ
∂H(u, z)

∂z
+ ρ

∂H(u, 0)

∂z
(β(u)A(z)− I)− juvH(u, z) =

= −juvV(z),

ρ(1− β(u))
∂H(u, 0)

∂z
e + juvH(u)e = juvVe, (7)

where H(u) = H(u,∞), V = V(∞).

III. STEADY STATE PROBABILITY DISTRIBUTION OF
SEMI-MARKOV PROCESS AND RESIDUAL TIME OF

ARRIVAL

Denoting H(0, z) = R(z), where R(z) is a stationary
probability distribution of process {k(t), z(t)}, we set u = 0
in the first equation of system (7) and obtain

R′(z) = R′(0)(I−A(z)). (8)

The solution of (8) can be written as follows:

R(z) =

z∫
0

R′(0)(I−A(x))dx. (9)

In (9), the integrand goes to zero as z → ∞, then we can
write

R′(0) = R′(0)P.

The last linear system of algebraic equations for elements
of vector R′(0) is the same as the system for steady state
probability distribution r of the embedded Markov chain

r = rP, re = 1. (10)

Thus, we present vector R′(0) as

R′(0) = Cr. (11)

In (9), we take the limit by z →∞ and obtain

R = CrA1, (12)

where R is a vector of steady state probability distribution
of semi-Markov process k(t) and matrix A1 is determined

as A1 =
∞∫
0

(P − A(x))dx. We obtain constant C from the

normalization condition

C =
1

rA1e
.

Thus, we present (11) as

R′(0) =
r

rA1e
,

which we substitute into (9) and obtain

R(z) =
r

rA1e

z∫
0

(P−A(x))dx. (13)

IV. ASYMPTOTIC ANALYSIS OF THE MODEL

To derive the approximation of cumulative distribution
function F (s) = P{S(t) < s}, we apply asymptotic analysis
method to system (7) under limit condition of high load ρ→ 1.

Theorem. Asymptotic characteristic function of the amount
of information in the buffer in considered queueing system
with semi-Markov flow under the limit condition of high load
has the following form:

h(u) =
(1− ρ)γ

(1− ρ)γ − ju
, (14)

where

γ =
2b1(rA1e)−1

b2(rA1e)−1 + 2b1g′(0)e
, (15)

b1 and b2 are the first and second raw moments of the amount
of information in one request of the flow. Vector g′(0) is the
solution of inhomogeneous system of equations

g′(0)(I−P) = b1(rA1e)−1(r−R),

g′(0)A1e =
b1
2

rA2e

(rA1e)2
− b1, (16)

where matrix A2 is determined by

A2 =

∞∫
0

x2dA(x).

Asymptotic probability distribution in the limit by ρ → 1
of the amount of information in the buffer is exponential with
parameter (1–ρ)γ, then the approximation can be written as
follows:

F (s) = P{S(t) < s} ≈ 1− ρe−(1−ρ)γs, (17)

where γ is given by (15).
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V. NUMERICAL EXAMPLE

We set semi-Markov matrix as follows:

A(x) = P ◦G(x),

where P is the transition matrix of the embedded Markov
chain ξ(n) and G(x) is the matrix of conditional distributions
of the process τ(n), operation ◦ is Hadamard product of
matrices.

Matrix P is presented as follows:

P =

[
0.95 0.05
0.8 0.2

]
.

The elements of matrix G(x) are gamma distribution functions
with shape parameters α11 = 0.001, α12 = 0.05, α21 = 0.1,
α22 = 1.5 and scale parameter β = 1. We assume that
the amount of information in one packet is deterministic and
equals to b1 = 1.255.

Figures 1-4 show the probability distribution of the amount
of information in a single buffer of considered system obtained
via simulation (solid line) compared with asymptotic results
(dash line) for system load values ρ = 0.5, ρ = 0.7, ρ = 0.9
and ρ = 0.95.

Fig. 1. The probability distribution of the amount of information in the buffer
and its asymptotic approximation for system load ρ = 0.5

Table 1 contains the values of Kolmogorov distance
∆ = max

0≤s<∞

∣∣∣Fsim(s)− F (s)
∣∣∣ between empirical distribution

function obtained via simulation Fsim(s) and asymptotic
cumulative distribution function F (s) of the amount of in-
formation in the buffer given by (17).

TABLE I
KOLMOGOROV DISTANCE BETWEEN EMPIRICAL DISTRIBUTION FUNCTION
OF THE AMOUNT OF INFORMATION IN THE BUFFER AND ITS ASYMPTOTIC

APPROXIMATION

ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.95
∆ 0.0212 0.0188 0.0145 0.0141

As we can see, the asymptotic results accurately approxi-
mate prelimit distribution function of the amount of informa-
tion in the buffer. The approximation is accurate enough even
for small values of system load ρ.

Fig. 2. The probability distribution of the amount of information in the buffer
and its asymptotic approximation for system load ρ = 0.7

Fig. 3. The probability distribution of the amount of information in the buffer
and its asymptotic approximation for system load ρ = 0.9

Fig. 4. The probability distribution of the amount of information in the buffer
and its asymptotic approximation for system load ρ = 0.95
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VI. CONCLUSION

We have considered the mathematical model of scheduler
with multiple semi-Markov inputs, which perform in following
mode: the scheduler allocates the bandwidth between buffers
and sets to each of them the virtual communication channel.
For the amount of information in each buffer of the system,
we have obtained the limiting distribution under the limit
condition of high load.
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