

UML Representation of Object-Oriented Design
Antipatterns

Lidiya S. Ivanova
Higher IT School

National Research Tomsk State
University

Tomsk, Russia
lidiya.ivanova@persona.tsu.ru

Danila A. Sokolov
Higher IT School

National Research Tomsk State
University

Tomsk, Russia
danila.a.sokolov@gmail.com

Oleg A. Zmeev
Higher IT School

National Research Tomsk State
University

Tomsk, Russia
ozmeyev@gmail.com

Abstract—Nowadays the ability to apply, implement and
modify patterns of design and architecture has become a one of
primary skills for software engineers. Competence of pattern
design and implementation involves detecting and correcting
inefficient solutions known as antipatterns. However, unlike
patterns, very few antipatterns have a graphical representation
so that an inefficient solution to a specific problem can be
detected visually and refactored. Detecting antipatterns is not
simple even with full set of technical documentation. This paper
proposes a graphical UML representation of antipatterns to
detect them at various stages of the software lifecycle. It
proposes a method to refactor described antipatterns to improve
software design quality and avoid software development process
risks. UML diagrams modeling of 18 antipatterns is presented
and refactoring method for all of them was described. Most of
antipatterns were diagrammed using information from text
descriptions and additional notes about arguable properties of
antipatterns were included.

Keywords— antipattern, class diagram, object-oriented
programming (OOP), sequence diagram, refactoring, Unified
Modeling Language (UML)

I. INTRODUCTION
The evolution of software development leads to the

necessity to detect common inefficient solutions for typical
problems, called antipatterns. Who coined the term is still an
arguable question. Some researchers [1, 2] consider Michael
Akroyd [3] the creator of the term; Neill and Laplante [4]
believe that Andrew Koenig [5] and Brown et al. [1] are worth
mentioning. Identifying and eliminating antipatterns can
significantly reduce the risks and improve the quality of the
software produced. Сlear definitions of antipatterns are
required for correct identification.

Unified Modeling Language (UML) [6] is a popular
modeling language used to describe a system visually. Visual
descriptions of patterns and antipatterns allow repeatedly
simplifying the study and understanding of the information.
Furthermore, UML descriptions do not depend on the target
programming language. However, the literature devoted to
antipattern issues [1, 2, 7, 8] does not contain such
descriptions, apart from design patterns literature [9]. We aim
to develop UML diagrams for antipatterns in this paper.

In the literature [1], antipatterns are divided into the
following categories: software development antipatterns,
software architecture antipatterns, software project
management antipatterns, and environmental antipatterns [4].
A programming paradigm can be also used as a criterion for
further categorization. We focus on object-oriented
programming (OOP) as the target paradigm. Antipatterns in
OOP software development can be divided into design

antipatterns and source code antipatterns. We selected design
antipatterns for OOP as the object of our study.

UML descriptions for antipatterns can help to find bad
solutions in a system that were included in the design stage.
Clearly written description raises the level of the development
and reduces the possibilities for errors in design and
implementation.

In this paper, we propose our version of UML diagrams
for OOP design antipatterns. Class diagrams are used to
describe the structural aspects, whereas sequence diagrams are
used to describe the behavioral aspects. Each antipattern
description includes a refactoring approach. As an option, a
design antipattern classification approach is offered.

Some of the antipatterns are known as an incorrect
implementation of existing OOP patterns. This fact allows to
discuss applicability of risky patterns to different systems and
safety means for their implementation. Proposed refactoring
methods make possible to test them in software development
practices.

Related works are considered in the second section. A
classification approach to antipatterns is presented in the third
section. The fourth section describes the structural antipatterns
and shows the corresponding UML diagrams. The fifth
section lists behavioral antipatterns. The sixth section is
devoted to creational antipatterns.

II. RELATED WORK
The lack of UML descriptions for antipatterns has already

been studied. In "UML Specification and Correction of
Object-Oriented Anti-patterns", Llano and Pooley [10]
propose their own version of the UML diagrams for two
antipatterns, God Object and Poltergeist. They used class
diagrams to describe the structural features and state diagrams
for behavior.

AntiPatterns: Refactoring Software, Architectures, and
Project in Crisis [1] is important research in the area of code
and design deficiencies that contains an extensive list of
antipatterns with a detailed description of the symptoms and
methods of solving problems. There are design problems,
source code problems, project architecture problems, and
project management problems. But this book does not contain
UML diagrams of antipatterns.

Refactoring: Improving the Design of Existing Code [7] is
a significant contribution to antipattern research. It contains a
large list of code deficiencies, which the authors call the “code
smell”, and detailed descriptions of the various refactoring
methods. We assume that design defects discussed in the book
such as Long Parameter List and Message Chains can also be
attributed to antipatterns.

2021 International Conference on Information Technology (ICIT)

978-1-6654-2870-5/21/$31.00 ©2021 IEEE 98

20
21

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

fo
rm

at
io

n
Te

ch
no

lo
gy

 (I
C

IT
) |

 9
78

-1
-6

65
4-

28
70

-5
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

IT
52

68
2.

20
21

.9
49

16
60

Authorized licensed use limited to: Tomsk State University. Downloaded on August 16,2021 at 15:08:06 UTC from IEEE Xplore. Restrictions apply.

Antipattern detection in the source code has also drawn
research attention. Din, AL-Badareen and Jusoh [2] provide
an overview of literature on this issue, as well as a rich
inventory of 22 existing antipatterns with brief descriptions.
Additionally, one of the most recent works on antipattern
detection [8] contains a fairly comprehensive literature review
and detailed descriptions of antipatterns; however, fewer (11)
antipatterns are named.

The above article by Llano and Pooley [10] contains
diagrams of only two antipatterns, but diagrams of other
antipatterns were not included. Thus, the problem of lack of
UML diagrams for antipatterns has not yet been solved.

In our work, we propose UML diagrams for design
antipatterns, as well as create the most extensive list of known
antipatterns described in the literature to date.

III. СLASSIFYING DESIGN ANTIPATTERNS
Recently, more than 20 antipatterns have been described

[1, 2, 7, 8]. We propose to classify antipatterns based on the
“goal” criterion: what problem the solution tries to solve, the
same criterion as in [9]:

1) Structural antipatterns are antipatterns that determine
the structural organization of objects and classes (for
example, God Object, Sequential Coupling, and others). To
describe such antipatterns with UML, we propose using a
class diagram. For a more accurate description of some
antipatterns (for example, Yo-yo Problem), a sequence
diagram is added.

2) Behavioral antipatterns are antipatterns that determine
the interaction between objects (for example, Poltergeists,
Call Super, and others). To describe them, we propose using
a class diagram and a sequence diagram.

3) Creational antipatterns are antipatterns that are an
abstraction of the process of object creation. Singletonitis
belongs to this group. We propose using class diagrams to
describe solutions for this type.

IV. STRUCTURAL DESIGN ANTIPATTERNS
Structural antipatterns describe the unsuccessful use of

inheritance and unsuccessful composition of classes and
objects. This antipattern’s subset may include the following:

A. Anemic Domain Model [11].
The domain class contains attributes and attribute access

operations, rather than business logic operations. Martin
Fowler defines the problem that arises when using this
antipattern: “The fundamental horror of this anti-pattern is that
it's so contrary to the basic idea of object-oriented design;
which is to combine data and process together” [11].

This antipattern is quite controversial. For instance, in
“The Anemic Domain Model is no Anti-Pattern, it’s a SOLID
design” [12], the author states:

If adherence to the SOLID principles is a property of well-
engineered Object-Oriented programs, and an ADM adheres
better to these principles than an RDM (Rich Domain Model),
the ADM cannot be an antipattern, and should be considered
a viable choice of architecture for domain modelling. [12]

We propose adding operations with business logic
associated with this class. This modification should eliminate
the problem described above.

Fig. 1. Anemic Domain Model class diagram (left) and its
refactoring (right)

B. God Object, (other name Blob) [1]
This class has a large number of attributes and operations

that are not semantically related. It frequently interacts with
Anemic Domain Model (God Object class contains business
logic implementation associated with ADM classes). There
are two forms, according to [1]:

1) God Object as a result of procedural design: a class
with a large number of attributes and operations

This design eliminates all the advantages of OOP, because
a large number of attributes and operations make it difficult to
support and modify the system.

To resolve this problem, we can divide a class into
multiple, more cohesive classes. This will simplify the
understanding, support, and modification of the system
fragment.

Fig. 2. God Object (B1) class diagram (left) and its refactoring (right).

2) God Object is associated with the so-called “data
classes” (in fact, the data class is an antipattern, Anemic
Domain Model)

In this case, the God Object acts as a processor class that
processes the data. Such implementation does not correspond
to the definition of the object as a collection of state and
behaviour.

This implementation method is discussed by Llano and
Pooley [10], who proposed the presentation of this antipattern
on the state diagram.

We offer our version using a class diagram, because it is
more appropriate to present the features of this architectural
solution in a static diagram. This problem can be corrected by
transferring methods that are semantically related to Anemic
classes. This will both reduce the complexity of the God
Object and correct the Anemic Domain models.

2021 International Conference on Information Technology (ICIT)

99

Authorized licensed use limited to: Tomsk State University. Downloaded on August 16,2021 at 15:08:06 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. God Object (B2) class diagram (left) and its refactoring (right)

C. Constant Interface [2]
This uses the interface as storage for constants only. Such

use is contrary to the definition of the interface, which should
describe the contract for objects implementing it. To correct
the situation, it is necessary to add appropriate semantic
operations to the interface.

Fig. 4. Constant Interface class diagram (left) and its refactoring (right)

D. Functional Decomposition [1]
This is when a separate class is allocated to perform every

new subtask in the system. It is the result of applying
procedural design to OOP. Such design uses algorithms, rather
than objects, as the main elements of constructing the system.
This design contradicts the definition of OOP.

The method chosen for correcting this depends on the
semantics. Fig. 5 presents a variant with the merger of all the
subtask classes into one. This makes the object the main
logical element of the system.

Fig. 5. Functional Decomposition class diagram (left) and its refactoring
(right)

E. Sequential Coupling [2]
Sequential coupling refers to a class that requires its

methods to be called in a particular sequence. This situation is
the implementation of a certain behavior, the violation of
which leads to errors that are difficult to detect. To eliminate
the antipattern, we can combine methods from a sequence into
one method.

Fig. 6. Sequential Coupling class diagram (left) and its refactoring (right)

Fig. 7. Sequential Coupling sequence diagram (left) and its refactoring
(right)

F. Yo-yo Problem [2]
Methods of different classes from the same hierarchy of

inheritance are called in one control flow. This makes it very
difficult to modify and search for errors. As a solution,
changing the class hierarchy is suggested.

Fig. 8. Yo-yo Problem class diagram (left) and its refactoring (right)

Fig. 9. Yo-yo Problem sequence diagram (left) and its refactoring (right)

G. Swiss Army Knife [1]
The class implements all possible use cases, which leads

to a very complex interface. This antipattern is similar to the
antipattern God Object (B1), so as an illustration, we can use
a diagram (Fig. 2). The difference between these antipatterns
is that the Swiss Knife class contains operations and attributes
that will possibly be used, whereas all the attributes and
operations of the God Object are used in the system. For
refactoring, we can apply the method proposed for the God
Object.

2021 International Conference on Information Technology (ICIT)

100

Authorized licensed use limited to: Tomsk State University. Downloaded on August 16,2021 at 15:08:06 UTC from IEEE Xplore. Restrictions apply.

H. Long Parameter List [7]
This is a method that requires a large number of

parameters. Fowler, Beck, Brant, Opdyke and Roberts [7]
claim:

It is hard to understand such lists, which become
contradictory and hard to use as they grow longer. Instead of
a long list of parameters, a method can use the data of its own
object. If the current object does not contain all necessary data,
another object (which will get the necessary data) can be
passed as a method parameter. (p. 65)

As a solution we can transfer the list of parameters to a
separate class, but it can generate a new antipattern, Anemic
Domain Model.

Fig. 10. Long Parameter List class diagram (left) and its refactoring (right)

I. Refused Bequest [7]
This class improperly implements inheritance. If the

subclass, from the point of view of domain semantics, does
not inherit the superclass and does not use part or all of the
inherited functional methods, an antipattern Refused Bequest
arises.

To eliminate the antipattern, we can transfer unused
methods from the superclass. This structure of class hierarchy
does not violate the principles of OOP.

Fig. 11. Refused Bequest class diagram (left) and its refactoring (right)

J. Shotgun Surgery [7]
Changes in this class entail cascading changes in related

classes. This situation significantly complicates the support
and modification of the code, destroying all the benefits of
using OOP.

To solve this problem, we need to eliminate redundant
dependencies between classes, which will reduce the number
of necessary changes. Fig. 12 presents an ideal version of
refactoring, which eliminates all dependencies.

Fowler et al. [7] mention a particular case of this
antipattern, Parallel Inheritance Hierarchies, which occurs
when subclass creation of one class requires creating a
subclass of another class.

Fig. 12. Shotgun Surgery class diagram (left) and its refactoring (right)

V. BEHAVIORAL DESIGN ANTIPATTERNS

A. Base Bean [2]
Base Bean is using inheritance to get access to

functionality. This shortcoming violates the inheritance
principle of OOP. To eliminate it, we suggest replacing the
inheritance with dependence.

Fig. 13. Base Bean class diagram (left) and its refactoring (right)

Fig. 14. Base Bean sequence diagram (left) and its refactoring (right)

B. Call Super [2]
Calling the method of the superclass is mandatory for

overridden methods of subclasses. This greatly complicates
the use and modification of those methods and can cause
various errors. The solution to the problem can be the use of
the Template Method pattern [9].

Fig. 15. Call Super class diagram (left) and its refactoring (right)

2021 International Conference on Information Technology (ICIT)

101

Authorized licensed use limited to: Tomsk State University. Downloaded on August 16,2021 at 15:08:06 UTC from IEEE Xplore. Restrictions apply.

Fig. 16. Call Super sequence diagram (left) and its refactoring (right)

C. Poltergeist [1]
Poltergeist is a class with a very limited role and a short

life cycle. This class is used as an auxiliary and does not reflect
any essence of the business process, that is, it does not carry a
state, which contradicts the principles of OOP. This
antipattern is considered in detail by Llano and Pooley [10].
They offer five variants of antipattern implementation,
refactoring methods, and corresponding activity and class
diagrams. It should be added that the implementation called
Irrelevant Classes essentially corresponds to the Anemic
Domain Model antipattern.

D. Middle Man [7]
Using the delegation pattern [9] (transfer of part of the

functional to the delegate class) where it is not necessary
creates this antipattern. This complicates the understanding
and support of code, and it can also generate classes that
delegate absolutely all of their functionality to other classes,
which contradicts the definition of the object of the system as
a collection of state and behavior. The presence in each case
of a pattern or antipattern is a problem of semantics that can
only be solved by the developer.

Fowler et al. [7] proposed several refactoring methods to
eliminate the antipattern. For example, if the role of the class
delegator is negligible, we can eliminate the mediation class
and access the delegate class directly. This structure is more
obvious and amenable to modification.

Fig. 17. Middle Man class diagram (Delegation pattern)

Fig. 18. Middle Man sequence diagram (left) and its refactoring (right).

E. Feature Envy [7]
This method makes a sequence of method calls of another

class to get data and functionality. Because the application of
the object-oriented approach implies the unification of the
state and behaviour within a single object, it is necessary to

perform refactoring. To correct the situation, we can transfer
the logic to a class containing the state.

Fig. 19. Feature Envy sequence diagram (left) and its refactoring (right)

VI. CREATIONAL DESIGN ANTIPATTERNS

A. Singletonitis [15]
Inappropriate use of the Singleton pattern leads to

antipatterns. The creational pattern described in Design
Patterns: Elements of Reusable Object-Oriented Software [9]
has shortcomings. First, its implementation in many
programming languages is not a guarantee of the uniqueness
of the object created due to the peculiarities of implementing
the work of parallel flows [15]. In addition, there are a number
of difficulties in accessing a singleton object from parallel
flows where its uniqueness is guaranteed.

From the point of view of OOP, the use of the Singleton
creates a high coupling between parts of the Singleton class,
which complicates the modification of the system. In the
opinion of the author of “Singletonitis” [15], we should
abstain from the use of the Singleton pattern as much as
possible and apply it only where it is vital.

Fig. 20. Singletonitis class diagram (Singleton pattern)

B. Service Locator [16]
At the moment, there are disputes in the sphere of

information technology about the nature of Service Locator:
Fowler calls it a pattern [17], whereas Seemann [16] and
McLean Hall [14] call it an antipattern. According to
Seemann [16], the use of Service Locator makes it difficult
to reuse the system and adds redundant dependencies
(Class1 is dependent on ServiceLocator on Fig. 21).

Fig. 21. Service Locator class diagram (left) and its refactoring (right)

2021 International Conference on Information Technology (ICIT)

102

Authorized licensed use limited to: Tomsk State University. Downloaded on August 16,2021 at 15:08:06 UTC from IEEE Xplore. Restrictions apply.

To fix the problem, we can completely abandon the use of
the Service Locator solution, or replace it with some other
method of implementation of the Dependency Injection
approach [16].

C. Control Freak [16]
This class has the “create” stereotype dependency. The

presence in the system of such dependencies adversely affects
the possibility of reuse and the testability of the system, and
also contradicts one of the principles of OOP, low coupling
[18].

Fig. 22. Control Freak class diagram (left) and its refactoring (right)

To solve the problem, Seemann [16] proposes delegating
the responsibilities for creating objects to a separate
subsystem (or class), taking into account the peculiarities of
the Dependency Injection approach. This solution will create
dependencies between the factory subsystem and the other
classes, but the coupling between the main classes of the
system will weaken.

VII. RESULTS AND DISCUSSION
A deep examination of the antipatterns reviewed showed

that the reason for some of them (Middle Man, Singletonitis,
and Service Locator) is the incorrect use of design patterns
(Delegation, Singleton, and Service Locator, respectively).
The OOP principles violated by the antipattern are clearly
indicated for each antipattern considered.

In addition to discussed above, the following antipatterns
were analysed: Boat Anchor [1], Circular Dependency [2],
Object Orgy [2], Circle-ellipse Problem [2], Interface Soup
[14] and Message Chains [7]. But they were not included in
this paper due to number of pages limit.

Representing antipatterns with UML not only greatly
simplifies the process of assimilating new information in the
study of antipatterns, but it can also serve as a guide for
manually searching for antipatterns in class and sequence
diagrams at the design stage of the system. Since UML is a
universal representation language and does not impose
restrictions on the choice of the system development
language, UML representation of antipatterns is a universal
tool for checking the correctness of the architecture of
systems, including those already implemented.

Early flaws detection in the design stage of software
development lifecycle will significantly reduce the cost of
fixing flaws compared to detection during implementation or
testing.

We believe that most of the described antipatterns cannot
cause global problems in the developed system, however, they
can negatively affect the cost of support and adding new
features.

UML is an open standard and is constantly evolving, so
we do not claim uniqueness for the proposed solutions. The
results of the work will be applied to developing a new method
for detecting design antipatterns on UML diagrams.

ACKNOWLEDGEMENTS
The authors like to thank Ms. Jean Kollantai and Ms. Lidia

Artamonova at Tomsk State University for their valuable help
in language editing.

REFERENCES
[1] AntiPatterns: Refactoring Software, Architectures, and Projects in

Crisis / Brown, W.J., Malveau, R.C., McCormic III, H.W., Mowbray,
T.J. , - New York: John Wiley & Sons, 1998.

[2] Din, J., AL-Badareen, A.B., Jusoh, Y.Y. Antipatterns detection
approaches in Object-Oriented Design: A literature review. //
Computing and Convergence Technology (ICCCT), 2012 7th
International Conference on, Seoul, Rep. of Korea. 2012. - P. 926-931.

[3] Akroyd, M. AntiPatterns: Vaccinations against Object Misuse. - San
Francisco: Object World West, 1996.

[4] Neill, C.J., Laplante, P.A. Antipatterns: Identification, Refactoring, and
Management. - Boca Raton: CRC Press, 2005.

[5] Koenig, A. Patterns and Antipatterns // Journal of Object-Oriented
Programming. - 1995. – Vol. 8, № 1. - P. 46-48.

[6] What is UML // Introduction to OMG’s Unified Modeling Language
(UML) URL: http://www.uml.org/what-is-uml.htm (access date:
01.02.2021).

[7] Refactoring: Improving the Design of Existing Code / Fowler, M.,
Beck, K., Brant, J., Opdyke, W., Roberts, D. - Boston: Addison-Wesley
Professional, 1999.

[8] Palomba, F., De Lucia, A., Bavota, G., Oliveto, R. Anti-Pattern
Detection: Methods, Challenges, and Open Issues // Advances in
Computers. - 2014. - №95. - P. 201-238.

[9] Design Patterns: Elements of Reusable Object-Oriented Software /
Gamma, E., Helm, R., Johnson, R., Vlissides, J. - Boston: Addison-
Wesley, 1995.

[10] Llano, M.T., Pooley, R. UML specification and correction of object-
oriented anti-patterns // Proceedings of Fourth International
Conference on Software Engineering Advances. - Los Alamitos: IEEE
Computer Society, 2009. - P. 39-44.

[11] AnemicDomainModel // MartinFowler.com URL:
http://www.martinfowler.com/bliki/AnemicDomainModel.html
(access date: 01.02.2021).

[12] The Anaemic Domain Model is no Anti-Pattern, it’s a SOLID design //
SAPM: Course Blog URL:
https://blog.inf.ed.ac.uk/sapm/2014/02/04/the-anaemic-domain-
model-is-no-anti-pattern-its-a-solid-design/ (access date: 01.02.2021).

[13] Martin R. Design principles and design patterns. // web.archive.org
URL:
https://web.archive.org/web/20150906155800/http://www.objectment
or.com/resources/articles/Principles_and_Patterns.pdf (access date:
01.02.2021).

[14] McLean Hall, G. Adaptive Code via C#: Agile coding with design
patterns and SOLID principles. - Redmond: Microsoft Press, 2014.

[15] Singletonitis(2006) // Antonio's $HOME URL:
http://www.antonioshome.net/blog/2006/20060906-1.php (access
date: 01.02.2021).

[16] Seemann, M. Dependency Injection in .NET. - Greenwich: Manning
Publications, 2011.

[17] Inversion of Control Containers and the Dependency Injection Pattern
// MartinFowler.com URL:
https://www.martinfowler.com/articles/injection.html (access date:
01.02.2021).

[18] Larman, C. Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development . - 3 edit. -
Upper Saddle River: Prentice Hall, 2004.

2021 International Conference on Information Technology (ICIT)

103

Authorized licensed use limited to: Tomsk State University. Downloaded on August 16,2021 at 15:08:06 UTC from IEEE Xplore. Restrictions apply.

		2021-07-24T07:50:27-0400
	Preflight Ticket Signature

