
ISBN: 978-1-6654-4502-3 

Part Number: CFP21DTW-USB 

2021 IEEE East-West Design & Test 
Symposium (EWDTS)

Proceedings 

Batumi, Georgia, September 10 – 13, 2021 

IEEE EWDTS 2021, September, 10-13, Batumi, Georgia I



Optimizing Components of Finite State Machines 
Composition Based on Don’t Care Input Sequences

in Hardware Implementation
Ekaterina Shirokova 

Tomsk State University 
Tomsk, Russia 

k@shir.su

Larisa Evtushenko 
Eiigher School of Economics 

Moscow, Russia 
evtlarisa@mail.ru

Audrey Laputenko 
Tomsk State University 

Tomsk, Russia 
laputenko.av@gmail.com

Abstract—The paper is devoted to the problem of 
optimization of discrete multi-module systems. The proposed 
optimization is based on iterative component-wise optimization. 
This approach has established itself as a promising approach 
due to its good scalability. We consider a technique that is based 
on the use of the so-called "don’t care" input sequences of the 
component, i.e. sequences that cannot appear at the input of a 
component under optimization in the composition and for this 
purpose, windows with sequential networks are selected. 
Preliminary experimental results illustrate that a proposed 
approach for the component-wise iterative optimization is 
effective for FSM networks when components are optimized for 
the further FPGA implementation.

Keywords—Finite State Machine (FSM), Synchronous 
composition of FSMs, FSM equation, FPGA

I. Introduction

The optimization of multi-module systems always 
attracted a lot of attention and one of promising approaches is 
the component-wise composition. In this paper, we assume 
that the behavior of each component is described by a finite 
state machine (FSM) and the interaction of the subsystems can 
be described using the operation of synchronous composition 
of FSMs [1] that corresponds to the instantaneous composition 
between component FSMs.

In the general case, to optimize an FSM component В in 
the composition, an FSM equation of the form A • X  = A • В 
[2] has to be solved where U represents the combined behavior 
of all other composition parts. But the procedure of finding a 
general solution to such an equation from which an optimal В 
implementation can be extracted, has high complexity, which 
is exponential [1]. Also, there is a possibility of selection of 
the “window” and optimization of the component of interest 
in this window [2]. It is known that the complexity of FSM 
equation solving is lower for special topologies, in particular, 
for the case when the window contains the sequential 
composition and then the tail component of this sequential 
composition is under optimization.

In [3], an approach based on the selection of “windows” is 
also considered. However, in the [3], more complex 
“windows” are considered, where the composition is not 
necessarily sequential. Moreover, in [3], the optimization is 
discussed with respect to such criteria as communication lines, 
fault tolerance with respect to certain malfunctions, and 
others. The authors do not consider optimization with respect 
to the complexity of further Field Programmable Gate Array 
(FPGA) implementation. FPGA technology [4] is often used 
to implement modem algorithms, including the
implementation of machine learning models. In [5], the

optimization of networks of stmctural machines using internal 
“don’t care” sequences based on solving the satisfiability 
problem for Boolean formulas is proposed. The authors of [6], 
in addition to input “don’t care” sequences, consider output 
“don’t care” sequences but the complexity immediately 
becomes higher. In [7], the authors show that in some cases, 
when optimizing systems, it is more effective to solve a system 
of FSM equations, but not a set of them.

This work is a continuation of [8, 9]. Work [8] discusses 
the optimization of FPGA components of sequential 
composition with respect to the number of adaptive logic 
modules (ATMs). In our previous work [9], we considered 
various topologies of binary loop-free FSM composition and 
proposed ways of their optimization based on “don’t care” 
input sequences. Proposed approaches are based on 
constructing the network equivalent for the tail component of 
the loop-free composition of two FSMs. This paper describes 
an approach for optimizing binary composition with feedback 
using “don’t care” input sequences. The purpose of this work 
is to establish the effectiveness of the described approach for 
FSMs implementation in FPGA. This paper also presents 
experiments comparing the implementations of the tail 
component and its partial network equivalent on the FPGA in 
terms of the number of adaptive logic modules (ALM) and the 
maximum frequency of the circuit.

In Section II, we give basic notions and definitions. 
Section III contains the problem statement and description of 
the approach for constmcting the network equivalent of the 
tail component for different topologies of a binary FSM 
composition. Section IV presents some preliminary 
experimental results.

II. Preliminaries

A. Finite State Machines
A  Finite State Machine (FSM) is a 4-tuple S = (S, /, O, Ts) 

[10], where S' is a nonempty finite set of states; /  is a non­
empty finite set of input symbols (the input alphabet); О is a 
non-empty finite set of output symbols (the output alphabet); 
Ts £  S' X /  X (9 X 5” is a set of transitions. In the state v 6 S' the 
FSM S  can transform the input symbol / into the output symbol 
о and go to the next state s' if the 4-tuple (s, i, o, s') 6 Ts, i.e. if 
the 4-tuple (s, i, o, s') is a transition in the FSM S. An FSM S  
with a highlighted initial state so is called an initial FSM, that 
is, the initial FSM is the 5-tuple S = (S, /, O, Ts, so). An FSM 
S  is called complete if for each pair (/, v) 6 /  x S there is at least 
one pair (o, s') e О x S  such that (/, v, s', o) 6 Ts. Otherwise, 
the FSM S  is called partial. An FSM S  is called deterministic 
if for any pair (/, s ) e l  x S  there is at most one 
pair (o, s ' ) e O  X S  such that (/, v, s', o) 6 Ts, otherwise the
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FSM is called non-deterministic. The language, or the 
behavior, of the FSM S  in state s (written, LS(s)) [2], is the set 
of sequences of input-output pairs in the alphabet I  x O 
obtained by successive transitions from state s.

B. Relations between FSMs
The states si and sj of complete deterministic FSMs Si and 

S2 are equivalent if the state machine Si in the state st and the 
state machine S2 in state sj generate the same reaction under 
each stimulus [10, 12]. If reactions are different, the states s,- 
and sj are distinguishable. If two initialized deterministic 
complete FSMs has equivalent initial states, then such FSMs 
are called equivalent. If any two different states of FSM are 
distinguishable, then FSM is called reduced (minimal). A 
(state) reduced form (minimal form) of S  is a reduced FSM 
equivalent to S .

The notion of equivalence can’t be introduced for partial 
FSMs, because the behavior of FSM may not be defined for 
some input sequences. In this case, the concept of quasi­
equivalence is introduced. Two states a and b of the FSMs A 
and B , respectively, are quasi-equivalent if the responses of 
the FSMs in these states are the same under all inputs that are 
defined. Two initialized FSMs are quasi-equivalent if their 
initial states are quasi-equivalent. The initialized, possibly 
partial, reduced FSM A  is a reduced form  of the partial FSM 
B  if the FSM A  is quasi-equivalent to the FSM B. There could 
be more than one reduced form for partial FSM, which are not 
isomorphic to each other.

It should be noted that there exist efficient techniques how 
to construct the minimal form of a deterministic complete 
FSM. However, there are still many works devoted to the 
problem of constructing a minimal form for a deterministic 
partial FSM (for example [10, 13]).

C. Synchronous composition o f  FSMs
Usually multi-module complex systems (for example, 

digital circuits) are represented as a composition of interacting 
components and thus, the next step is to define the 
composition operator. In our work, we consider the 
synchronous composition of initialized complete deterministic 
FSMs [1], in which every input signal is processed in one 
clock cycle. Such composition is good for description of 
behavior of hardware modules.

The general topology of the composition of the FSMs A 
and B  is presented in Figure 1.

Fig. 1. The synchronous composition o f  the FSMs A and B

For the FSM A  an input alphabet is the set I  x V  and an 
output alphabet is the set U x Z; for the FSM B  the set Y x U 
is the input alphabet and the set V  x O is the output alphabet. 
The synchronous composition [3] of the FSMs A  and B  (or 
simply composition A  • B) has an input alphabet I  x Y and an 
output alphabet Z x O. An input/output symbol 
(iyzo) 6 I  x Y x Z  x O belongs to the composition language if 
and only if there exists a matching pair of internal symbols 
uv 6 U x V  such that (ivuz) 6 La  and (yuvo) 6 Lb . In our work, 
we consider a special case of composition, namely, the 
sequential composition of FSMs A  and B  over alphabets 
I , U, O.

III. Co m p o n e n t  w i s e  o p t i m iz a t i o n  o f  s y n c h r o n o u s  
COMPOSITION OF FSMs

For component-wise optimization of the synchronous 
composition of FSMs two approaches can be considered. In 
the first case, the components are optimized as “independent” 
machines independently of other components; in this case, the 
FSM component with minimal number of sates is usually 
derived, because, as shown by the experiments in [8], for the 
reduced form of the FSM, the number of ALMs of the 
corresponding FPGA implementation usually decreases. In 
the second case, the components are optimized depending on 
the behavior of other components. The authors of work [2] 
show that the behavior of an FSM network is preserved even 
if the FSM component changed to another nonequivalent 
FSM. Generally, in this case an explicit or implicit FSM 
equations’ solving is involved.

A. Optimization o f  the tail component o f  a sequential
binary composition
In the Figure 2, the sequential composition of complete 

FSMs A  and B  is shown. For the tail component one can 
construct a partial FSM B ' whose behavior is determined only 
for the output sequences of the head component; moreover, for 
such sequences the behavior of the FSMs B  and B ' is the same.

The network equivalent [14] of the tail component FSM B 
is the partial FSM B ' that is defined only over output sequences 
of the head component FSM, and B  is quasi-equivalent to B '.

Fig. 2. The sequential composition o f  the FSMs A  and B

Given an FSM S  = (S, Is , Os, Ts, so), a "“reverse"” FSM for 
S  is an FSM S* = (S, Os, Is , T*s, so), T*s  £  S  x Os x Is  x S, that 
is an FSM where the inputs and outputs are interchanged [14].

w e use the following steps for constructing the network 
equivalent of the tail component [14]. At the first step we 
construct a “reverse” FSM for the head component A  and 
delete inputs at all transitions. We obtain an automaton A*, 
which has the same alphabet as the output alphabet of the 
original FSM and the set of traces is the set of output 
sequences that can be produced by the FSM A .

At the next step, if necessary, determinize the resulting 
automaton A* and obtain Det(A*).

At the final step, we construct the intersection of the 
obtained deterministic automaton Det(A *) and the tail 
component B: construct all pairs of states of the automaton 
Det(A *) and tail component B, then determine the transitions 
between these pairs in the following way. If for Det(A *) there 
is a transition (a, u, a') and for B  there is a transition 
(b, u, o, b'), then the transition (ab, u, o, a'b') is defined in the 
intersection. The intersection states which cannot be reached 
from the initial state (a0, b0) are excluded. The resulting partial 
FSM B' is the network equivalent for the tail component B.

Proposition 1 [14]. The tail component FSM B  is quasi­
equivalent to the B' constructed by the above steps. In addition, 
the behavior of the FSM B' is defined on those and only on 
those sequences that are output sequences of the head 
component A .

According to the above proposition, the tail component B 
can be changed by any reduced form of B' without changing 
the external behavior of the sequential network.
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Figure 3 shows an example of a sequential composition of 
two FSMs A  and B.

At the first step, a reverse automaton A* for the head 
component A  is constructed (Figure 4a). Next, it is necessary 
to determinize the automaton A*, i.e., to obtain Det(A *). In 
order to obtain the network equivalent B  of the tail component 
B, we then intersect the obtained automaton Det(A *) and the 
FSM B. FSM B' is partial and a reduced form of B' is shown 
in Figure 4b.

Fig. 4. (a) The reverse automaton A*, (b) The network equivalent B'

Comparing the obtained network equivalent B' with the 
original FSM B, one can see that the FSM B' has a smaller 
number of transitions and states than the FSM B . Those 
undefined transitions are in fact, don’t care transitions and can 
be augmented in any way in B  hardware implementation.

B. Optimization o f  the tail component o f  a binary loop-free
composition
In [9], we considered two cases of a binary loop-free 

composition, when the tail component has additional inputs. 
When constructing the network equivalent of the tail 
component, these inputs must be taken into account.

In the first case the FSM A  has a set of inputs I  and set of 
outputs U, while the FSM B  has a set of inputs I  x U and a set 
of outputs O (Figure 5a). The reverse automaton A* for the 
FSM A  has the alphabet I  x U (it is necessary to escape the 
character “ / ” at each transition). To obtain the network 
equivalent B' of the tail component B, it is necessary to 
construct the intersection of the automaton A* and the FSM B 
and minimize the resulting FSM.

In the second case, we added the input V  to the FSM B 
(Figure 5b). The reverse automaton A* for the FSM A  is 
constructed in the same way as in the first case. To obtain the 
network equivalent B' of the tail component B, it is necessary 
to construct the intersection of the automaton A* and the FSM
B . Next, it is necessary to minimize the resulting FSM and 
extend each of its transitions to the alphabet V.

C. Optimization o f  the tail component o f  a binary
composition with feedback
A binary composition with feedback is shown in 

Figure 6a. Let the f Sm A  (Figure 6b) have a set of inputs I  x O 
and a set of outputs U. The FSM B  (Figure 6c) has a set of 
inputs U and a set of outputs O.

Fig. 5. The synchronous composition o f  A  and B: (a) the first case, (b) the 
second case

Fig. 6. (a) The synchronous composition with feedback o f  the FSMs A  and 
B , (b) The FSM A , (c) The FSM B

To build a reverse automaton A * for the FSM A , one has 
to follow several steps. Firstly, at all transitions of the FSM A, 
it is necessary to remove symbols from the alphabet I . Further, 
at each transition, delete the symbol “ / ” and swap the symbol 
from the alphabet O and the symbol from the alphabet U. 
Thus, the resulting automaton A* has the alphabet U x O 
(Figure 7a). Next, we determinize the automaton A* and 
obtain an automaton Det(A *).

Fig. 7. (a) The reverse automaton A*, (b) The network equivalent B'

In order to obtain the network equivalent B' (Figure 7b) of 
the component B, we intersect the automaton Det(A *) and the 
FSM B.
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D. Optimization o f  components o f  multi-module
synchronous composition based on iterative selection o f  
"windows"
As it is known, the behavior of a FSM network is not 

necessary changed if the FSM component is replaced by a 
FSM that is not equivalent to it; accordingly, components can 
be optimized depending on the behavior of other (neighbor) 
components, and explicit or implicit FSM equations’ solving 
is usually involved for such optimization. The general solution 
of the f Sm  equation of the form A  • X  =  A  • B  [2], where the 
FSM A  describes the joint behavior of all components except 
B , can be considered as a reservoir for choosing the optimal 
solution (with respect to a given optimization criterion).

In compositions with several components, we can choose 
a “window” with two FSMs components A  and B  (Figure 8). 
Reactions of component B  are essential for the overall 
composition only on a subset of input sequences that may 
come from component A .

Fig. 8. The network o f  three FSMs

Thus, in multi-module systems it seems helpful to select 
iteratively the sequence of "windows", i.e. select the 
“window”, optimize the tail component, and then select 
another “window”.

IV. Ex p e r i m e n t a l  r e s u l t s

In this paper, we evaluated hardware FSM 
implementations on FPGA. The number of adaptive logic 
modules and the maximum operating frequency of the circuit 
were chosen as the estimated parameters. The values of the 
selected parameters were taken from the compilation report in 
Quartus II software [15]. A Cyclone V device with a 
5CGXFC5C6F27C7 FPGA chip was chosen as the target 
device. One ALM of the Cyclone V platform has an 8-input 
truth table (Lookup Table), 2 full adders and 4 registers.

At the first stage, random FSMs were generated [16] for 
the head component with the number of states from 4 to 6 and 
the number of inputs from 4 to 6 and the number of outputs 
from 2 to 16. The FSMs of the tail components had the number 
of states from 4 to 8 and the number of inputs from 2 to 16.

According to the described approach, a partial network 
equivalent of the tail component of the sequential composition 
was constructed. The SiS [17] tool was utilized to minimize 
the partial equivalent, represented in KISS format. After the 
state encoding procedure made by SIS, an FSM was converted 
to BLIF [18] format. Using the Ab C tool [19], a BLIF file was 
converted to a description in the Verilog language. Further, the 
system was synthesized using Quartus II. From the Quartus II 
report we can see the parameters of the synthesized circuit: the 
number of ALMs and the maximum frequency of the circuit. 
During experiments 90 sequential compositions were 
generated. According to the results, the largest reduction in the 
number of ALMs was 66,7 % for the tail component with 5 
states and 2 input symbols. The maximum increase in the 
frequency of the circuit was 42,6 % for the tail component 
with 6 states and 4 input symbols. A decrease in the number 
of ALMs occurs in 30% of cases, an increase of frequency in

55% of cases. About 30 FSM compositions (topology as in 
Figure 5a) were generated, tail FSM has the number of inputs 
from 6 to 32, both head and tail components has from 5 to 6 
states. The number of ALMs was reduced by a maximum of 
72,3%. The maximum increase in frequency was 71,7%. A 
decrease in the number of ALMs occurred in 55,6% of cases, 
and an increase in frequency in 61,1% of cases.

V. CONCLUSION

In this paper we have considered the problem of 
optimization of discrete multi-module systems, namely an 
approach for optimizing binary composition with feedback.

The results of the performed experiments demonstrate the 
effectiveness of the proposed approach for optimizing the 
further FPGA implementation of the FSM composition.

As a part of our further research, we plan to study the 
influence of the FSM components’ properties on the 
complexity of their hardware implementations; to consider 
various types of compositions and the effect of the 
composition topology on the proposed method for the 
component-wise optimization.
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