
ISBN: 978-1-6654-4502-3

Part Number: CFP21DTW-USB

2021 IEEE East-West Design & Test
Symposium (EWDTS)

Proceedings

Batumi, Georgia, September 10 – 13, 2021

IEEE EWDTS 2021, September, 10-13, Batumi, Georgia I

Optimizing Components of Finite State Machines
Composition Based on Don’t Care Input Sequences

in Hardware Implementation
Ekaterina Shirokova

Tomsk State University
Tomsk, Russia

k@shir.su

Larisa Evtushenko
Eiigher School of Economics

Moscow, Russia
evtlarisa@mail.ru

Audrey Laputenko
Tomsk State University

Tomsk, Russia
laputenko.av@gmail.com

Abstract—The paper is devoted to the problem of
optimization of discrete multi-module systems. The proposed
optimization is based on iterative component-wise optimization.
This approach has established itself as a promising approach
due to its good scalability. We consider a technique that is based
on the use of the so-called "don’t care" input sequences of the
component, i.e. sequences that cannot appear at the input of a
component under optimization in the composition and for this
purpose, windows with sequential networks are selected.
Preliminary experimental results illustrate that a proposed
approach for the component-wise iterative optimization is
effective for FSM networks when components are optimized for
the further FPGA implementation.

Keywords—Finite State Machine (FSM), Synchronous
composition of FSMs, FSM equation, FPGA

I. Introduction

The optimization of multi-module systems always
attracted a lot of attention and one of promising approaches is
the component-wise composition. In this paper, we assume
that the behavior of each component is described by a finite
state machine (FSM) and the interaction of the subsystems can
be described using the operation of synchronous composition
of FSMs [1] that corresponds to the instantaneous composition
between component FSMs.

In the general case, to optimize an FSM component В in
the composition, an FSM equation of the form A • X = A • В
[2] has to be solved where U represents the combined behavior
of all other composition parts. But the procedure of finding a
general solution to such an equation from which an optimal В
implementation can be extracted, has high complexity, which
is exponential [1]. Also, there is a possibility of selection of
the “window” and optimization of the component of interest
in this window [2]. It is known that the complexity of FSM
equation solving is lower for special topologies, in particular,
for the case when the window contains the sequential
composition and then the tail component of this sequential
composition is under optimization.

In [3], an approach based on the selection of “windows” is
also considered. However, in the [3], more complex
“windows” are considered, where the composition is not
necessarily sequential. Moreover, in [3], the optimization is
discussed with respect to such criteria as communication lines,
fault tolerance with respect to certain malfunctions, and
others. The authors do not consider optimization with respect
to the complexity of further Field Programmable Gate Array
(FPGA) implementation. FPGA technology [4] is often used
to implement modem algorithms, including the
implementation of machine learning models. In [5], the

optimization of networks of stmctural machines using internal
“don’t care” sequences based on solving the satisfiability
problem for Boolean formulas is proposed. The authors of [6],
in addition to input “don’t care” sequences, consider output
“don’t care” sequences but the complexity immediately
becomes higher. In [7], the authors show that in some cases,
when optimizing systems, it is more effective to solve a system
of FSM equations, but not a set of them.

This work is a continuation of [8, 9]. Work [8] discusses
the optimization of FPGA components of sequential
composition with respect to the number of adaptive logic
modules (ATMs). In our previous work [9], we considered
various topologies of binary loop-free FSM composition and
proposed ways of their optimization based on “don’t care”
input sequences. Proposed approaches are based on
constructing the network equivalent for the tail component of
the loop-free composition of two FSMs. This paper describes
an approach for optimizing binary composition with feedback
using “don’t care” input sequences. The purpose of this work
is to establish the effectiveness of the described approach for
FSMs implementation in FPGA. This paper also presents
experiments comparing the implementations of the tail
component and its partial network equivalent on the FPGA in
terms of the number of adaptive logic modules (ALM) and the
maximum frequency of the circuit.

In Section II, we give basic notions and definitions.
Section III contains the problem statement and description of
the approach for constmcting the network equivalent of the
tail component for different topologies of a binary FSM
composition. Section IV presents some preliminary
experimental results.

II. Preliminaries

A. Finite State Machines
A Finite State Machine (FSM) is a 4-tuple S = (S, /, O, Ts)

[10], where S' is a nonempty finite set of states; / is a non­
empty finite set of input symbols (the input alphabet); О is a
non-empty finite set of output symbols (the output alphabet);
Ts £ S' X / X (9 X 5” is a set of transitions. In the state v 6 S' the
FSM S can transform the input symbol / into the output symbol
о and go to the next state s' if the 4-tuple (s, i, o, s') 6 Ts, i.e. if
the 4-tuple (s, i, o, s') is a transition in the FSM S. An FSM S
with a highlighted initial state so is called an initial FSM, that
is, the initial FSM is the 5-tuple S = (S, /, O, Ts, so). An FSM
S is called complete if for each pair (/, v) 6 / x S there is at least
one pair (o, s') e О x S such that (/, v, s', o) 6 Ts. Otherwise,
the FSM S is called partial. An FSM S is called deterministic
if for any pair (/, s) e l x S there is at most one
pair (o, s ') e O X S such that (/, v, s', o) 6 Ts, otherwise the

978-I-6654-4503-0/2I/$3I.00 ©2021 IEEE

mailto:k@shir.su
mailto:evtlarisa@mail.ru
mailto:laputenko.av@gmail.com

FSM is called non-deterministic. The language, or the
behavior, of the FSM S in state s (written, LS(s)) [2], is the set
of sequences of input-output pairs in the alphabet I x O
obtained by successive transitions from state s.

B. Relations between FSMs
The states si and sj of complete deterministic FSMs Si and

S2 are equivalent if the state machine Si in the state st and the
state machine S2 in state sj generate the same reaction under
each stimulus [10, 12]. If reactions are different, the states s,-
and sj are distinguishable. If two initialized deterministic
complete FSMs has equivalent initial states, then such FSMs
are called equivalent. If any two different states of FSM are
distinguishable, then FSM is called reduced (minimal). A
(state) reduced form (minimal form) of S is a reduced FSM
equivalent to S .

The notion of equivalence can’t be introduced for partial
FSMs, because the behavior of FSM may not be defined for
some input sequences. In this case, the concept of quasi­
equivalence is introduced. Two states a and b of the FSMs A
and B , respectively, are quasi-equivalent if the responses of
the FSMs in these states are the same under all inputs that are
defined. Two initialized FSMs are quasi-equivalent if their
initial states are quasi-equivalent. The initialized, possibly
partial, reduced FSM A is a reduced form of the partial FSM
B if the FSM A is quasi-equivalent to the FSM B. There could
be more than one reduced form for partial FSM, which are not
isomorphic to each other.

It should be noted that there exist efficient techniques how
to construct the minimal form of a deterministic complete
FSM. However, there are still many works devoted to the
problem of constructing a minimal form for a deterministic
partial FSM (for example [10, 13]).

C. Synchronous composition o f FSMs
Usually multi-module complex systems (for example,

digital circuits) are represented as a composition of interacting
components and thus, the next step is to define the
composition operator. In our work, we consider the
synchronous composition of initialized complete deterministic
FSMs [1], in which every input signal is processed in one
clock cycle. Such composition is good for description of
behavior of hardware modules.

The general topology of the composition of the FSMs A
and B is presented in Figure 1.

Fig. 1. The synchronous composition o f the FSMs A and B

For the FSM A an input alphabet is the set I x V and an
output alphabet is the set U x Z; for the FSM B the set Y x U
is the input alphabet and the set V x O is the output alphabet.
The synchronous composition [3] of the FSMs A and B (or
simply composition A • B) has an input alphabet I x Y and an
output alphabet Z x O. An input/output symbol
(iyzo) 6 I x Y x Z x O belongs to the composition language if
and only if there exists a matching pair of internal symbols
uv 6 U x V such that (ivuz) 6 La and (yuvo) 6 Lb . In our work,
we consider a special case of composition, namely, the
sequential composition of FSMs A and B over alphabets
I , U, O.

III. Co m p o n e n t w i s e o p t i m iz a t i o n o f s y n c h r o n o u s
COMPOSITION OF FSMs

For component-wise optimization of the synchronous
composition of FSMs two approaches can be considered. In
the first case, the components are optimized as “independent”
machines independently of other components; in this case, the
FSM component with minimal number of sates is usually
derived, because, as shown by the experiments in [8], for the
reduced form of the FSM, the number of ALMs of the
corresponding FPGA implementation usually decreases. In
the second case, the components are optimized depending on
the behavior of other components. The authors of work [2]
show that the behavior of an FSM network is preserved even
if the FSM component changed to another nonequivalent
FSM. Generally, in this case an explicit or implicit FSM
equations’ solving is involved.

A. Optimization o f the tail component o f a sequential
binary composition
In the Figure 2, the sequential composition of complete

FSMs A and B is shown. For the tail component one can
construct a partial FSM B ' whose behavior is determined only
for the output sequences of the head component; moreover, for
such sequences the behavior of the FSMs B and B ' is the same.

The network equivalent [14] of the tail component FSM B
is the partial FSM B ' that is defined only over output sequences
of the head component FSM, and B is quasi-equivalent to B '.

Fig. 2. The sequential composition o f the FSMs A and B

Given an FSM S = (S, Is , Os, Ts, so), a "“reverse"” FSM for
S is an FSM S* = (S, Os, Is , T*s, so), T*s £ S x Os x Is x S, that
is an FSM where the inputs and outputs are interchanged [14].

w e use the following steps for constructing the network
equivalent of the tail component [14]. At the first step we
construct a “reverse” FSM for the head component A and
delete inputs at all transitions. We obtain an automaton A*,
which has the same alphabet as the output alphabet of the
original FSM and the set of traces is the set of output
sequences that can be produced by the FSM A .

At the next step, if necessary, determinize the resulting
automaton A* and obtain Det(A*).

At the final step, we construct the intersection of the
obtained deterministic automaton Det(A *) and the tail
component B: construct all pairs of states of the automaton
Det(A *) and tail component B, then determine the transitions
between these pairs in the following way. If for Det(A *) there
is a transition (a, u, a') and for B there is a transition
(b, u, o, b'), then the transition (ab, u, o, a'b') is defined in the
intersection. The intersection states which cannot be reached
from the initial state (a0, b0) are excluded. The resulting partial
FSM B' is the network equivalent for the tail component B.

Proposition 1 [14]. The tail component FSM B is quasi­
equivalent to the B' constructed by the above steps. In addition,
the behavior of the FSM B' is defined on those and only on
those sequences that are output sequences of the head
component A .

According to the above proposition, the tail component B
can be changed by any reduced form of B' without changing
the external behavior of the sequential network.

Authorized licensed use limited to: Tomsk State University. Downloaded on February 02,2022 at 07:45:05 UTC from IEEE Xplore. Restrictions apply.

Figure 3 shows an example of a sequential composition of
two FSMs A and B.

At the first step, a reverse automaton A* for the head
component A is constructed (Figure 4a). Next, it is necessary
to determinize the automaton A*, i.e., to obtain Det(A *). In
order to obtain the network equivalent B of the tail component
B, we then intersect the obtained automaton Det(A *) and the
FSM B. FSM B' is partial and a reduced form of B' is shown
in Figure 4b.

Fig. 4. (a) The reverse automaton A*, (b) The network equivalent B'

Comparing the obtained network equivalent B' with the
original FSM B, one can see that the FSM B' has a smaller
number of transitions and states than the FSM B . Those
undefined transitions are in fact, don’t care transitions and can
be augmented in any way in B hardware implementation.

B. Optimization o f the tail component o f a binary loop-free
composition
In [9], we considered two cases of a binary loop-free

composition, when the tail component has additional inputs.
When constructing the network equivalent of the tail
component, these inputs must be taken into account.

In the first case the FSM A has a set of inputs I and set of
outputs U, while the FSM B has a set of inputs I x U and a set
of outputs O (Figure 5a). The reverse automaton A* for the
FSM A has the alphabet I x U (it is necessary to escape the
character “ / ” at each transition). To obtain the network
equivalent B' of the tail component B, it is necessary to
construct the intersection of the automaton A* and the FSM B
and minimize the resulting FSM.

In the second case, we added the input V to the FSM B
(Figure 5b). The reverse automaton A* for the FSM A is
constructed in the same way as in the first case. To obtain the
network equivalent B' of the tail component B, it is necessary
to construct the intersection of the automaton A* and the FSM
B . Next, it is necessary to minimize the resulting FSM and
extend each of its transitions to the alphabet V.

C. Optimization o f the tail component o f a binary
composition with feedback
A binary composition with feedback is shown in

Figure 6a. Let the f Sm A (Figure 6b) have a set of inputs I x O
and a set of outputs U. The FSM B (Figure 6c) has a set of
inputs U and a set of outputs O.

Fig. 5. The synchronous composition o f A and B: (a) the first case, (b) the
second case

Fig. 6. (a) The synchronous composition with feedback o f the FSMs A and
B , (b) The FSM A , (c) The FSM B

To build a reverse automaton A * for the FSM A , one has
to follow several steps. Firstly, at all transitions of the FSM A,
it is necessary to remove symbols from the alphabet I . Further,
at each transition, delete the symbol “ / ” and swap the symbol
from the alphabet O and the symbol from the alphabet U.
Thus, the resulting automaton A* has the alphabet U x O
(Figure 7a). Next, we determinize the automaton A* and
obtain an automaton Det(A *).

Fig. 7. (a) The reverse automaton A*, (b) The network equivalent B'

In order to obtain the network equivalent B' (Figure 7b) of
the component B, we intersect the automaton Det(A *) and the
FSM B.

Authorized licensed use limited to: Tomsk State University. Downloaded on February 02,2022 at 07:45:05 UTC from IEEE Xplore. Restrictions apply.

D. Optimization o f components o f multi-module
synchronous composition based on iterative selection o f
"windows"
As it is known, the behavior of a FSM network is not

necessary changed if the FSM component is replaced by a
FSM that is not equivalent to it; accordingly, components can
be optimized depending on the behavior of other (neighbor)
components, and explicit or implicit FSM equations’ solving
is usually involved for such optimization. The general solution
of the f Sm equation of the form A • X = A • B [2], where the
FSM A describes the joint behavior of all components except
B , can be considered as a reservoir for choosing the optimal
solution (with respect to a given optimization criterion).

In compositions with several components, we can choose
a “window” with two FSMs components A and B (Figure 8).
Reactions of component B are essential for the overall
composition only on a subset of input sequences that may
come from component A .

Fig. 8. The network o f three FSMs

Thus, in multi-module systems it seems helpful to select
iteratively the sequence of "windows", i.e. select the
“window”, optimize the tail component, and then select
another “window”.

IV. Ex p e r i m e n t a l r e s u l t s

In this paper, we evaluated hardware FSM
implementations on FPGA. The number of adaptive logic
modules and the maximum operating frequency of the circuit
were chosen as the estimated parameters. The values of the
selected parameters were taken from the compilation report in
Quartus II software [15]. A Cyclone V device with a
5CGXFC5C6F27C7 FPGA chip was chosen as the target
device. One ALM of the Cyclone V platform has an 8-input
truth table (Lookup Table), 2 full adders and 4 registers.

At the first stage, random FSMs were generated [16] for
the head component with the number of states from 4 to 6 and
the number of inputs from 4 to 6 and the number of outputs
from 2 to 16. The FSMs of the tail components had the number
of states from 4 to 8 and the number of inputs from 2 to 16.

According to the described approach, a partial network
equivalent of the tail component of the sequential composition
was constructed. The SiS [17] tool was utilized to minimize
the partial equivalent, represented in KISS format. After the
state encoding procedure made by SIS, an FSM was converted
to BLIF [18] format. Using the Ab C tool [19], a BLIF file was
converted to a description in the Verilog language. Further, the
system was synthesized using Quartus II. From the Quartus II
report we can see the parameters of the synthesized circuit: the
number of ALMs and the maximum frequency of the circuit.
During experiments 90 sequential compositions were
generated. According to the results, the largest reduction in the
number of ALMs was 66,7 % for the tail component with 5
states and 2 input symbols. The maximum increase in the
frequency of the circuit was 42,6 % for the tail component
with 6 states and 4 input symbols. A decrease in the number
of ALMs occurs in 30% of cases, an increase of frequency in

55% of cases. About 30 FSM compositions (topology as in
Figure 5a) were generated, tail FSM has the number of inputs
from 6 to 32, both head and tail components has from 5 to 6
states. The number of ALMs was reduced by a maximum of
72,3%. The maximum increase in frequency was 71,7%. A
decrease in the number of ALMs occurred in 55,6% of cases,
and an increase in frequency in 61,1% of cases.

V. CONCLUSION

In this paper we have considered the problem of
optimization of discrete multi-module systems, namely an
approach for optimizing binary composition with feedback.

The results of the performed experiments demonstrate the
effectiveness of the proposed approach for optimizing the
further FPGA implementation of the FSM composition.

As a part of our further research, we plan to study the
influence of the FSM components’ properties on the
complexity of their hardware implementations; to consider
various types of compositions and the effect of the
composition topology on the proposed method for the
component-wise optimization.

REFERENCES

1. T. Villa, N. Yevtushenko, R.K. Brayton, A. Mishchenko, A. Petrenko,
A.L. Sangiovanni-Vincentelli, “The Unknown Component Problem:
Theory and Applications,” Springer, p. 323, 2011.

2. N.V. Yevtushenko, M.V. Rekun and S.V. Tihomirova, “Non­
deterministic FSMs: analysis and synthesis. Part 2. Solving FSM
Equations,” Tomsk, Tomsk State University, p. 111, 2009.
(In Russian).

3. S.V. Tikhomirova, “Optimization o f multicomponent discrete systems
based on the solution o f FSM equations,” The dissertation for the
degree o f candidate o f technical sciences, Tomsk, Tomsk State
University, 2008. (In Russian).

4. Zhao, Ritchie, et al. "Accelerating binarized convolutional neural
networks with software-programmable FPGAs." Proceedings o f the
2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 2017.

5. A. Mishchenko, R.K. Brayton, “SAT-based complete don’t-care
computation for network optimization,” The Proceedings o f the
Design, Automation and Test in Europe Conference, Volume 01,
pp. 412-417, March 2005.

6. J.-K. Rho, F. Somenzi, Don’t care sequences and the optimization o f
interacting finite state machines,” IEEE Trans. Comp. Aided Des.,
Volume 13, No. 7, pp. 865-874, 1994.

7. N. Yevtushenko, S. Zharikova, M. Vetrova, “Multi component digital
circuit optimization by solving FSM equations,” Proceedings o f the
Euromicro Symposium on Digital Systems Design, DSD ’03, pp. 62­
68, 2003.

8. V.A. Schwarzkop, “Optimization o f components o f
multimodularsystems based on the solution o f automaton equations,”
Master's thesis, Tomsk, Tomsk State University, 2019. (In Russian).

9. E. Shirokova, L. Evtushenko, A. Laputenko and N. Yevtushenko,
"Optimizing Components o f Multi-Module Systems Based on don’t
Care Input Sequences," IEEE East-West Design & Test Symposium
(EWDTS), Varna, Bulgaria, pp. 1-5, 2020.

10. G.P. Agibalov, A.M. Oranov, “Lectures on the theory o f FSMs,”
Tomsk, Tomsk Publishing House. Univ., p. 186, 1984. (In Russian).

11. N.V. Yevtushenko, A.F. Petrenko, M.V. Vetrova, “Non-deterministic
FSMs: analysis and synthesis. Part 1. Relations and operations:
Textbook,” Tomsk: Tomsk State University, p. 142, 2006.
(In Russian).

12. A. Gill, “Introduction to the theory o f finite-state machines,” Moscow,
Nauka, p. 272, 1966.

13. A.D. Zakrevsky, Yu.V. Pottosin, L.D. Cheremisinova, “Logical
principles o f designing discrete devices,” Moscow, Fizmatlit, p. 592,
2007. (In Russian).

14. M.V. Vetrova, “Development o f synthesis and testing algorithms for
finite-automaton compensators,” The dissertation for the degree o f

Authorized licensed use limited to: Tomsk State University. Downloaded on February 02,2022 at 07:45:05 UTC from IEEE Xplore. Restrictions apply.

candidate o f technical sciences, Tomsk, Tomsk State University, 2003. 17.
(In Russian).

15. Quartus II Handbook website [Electronic resource], URL: 18.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/lit
erature/hb/qts/quartusii_handbook.pdf 19

16. Test generation for Finite State Machine. URL: http://fsmtestonline.ru/

Sentovich, Ellen M., et al. "SIS: A system for sequential circuit
synthesis.", 1992
Berkeley logic interchange format (BLIF) [Electronic resource],
URL:https://www.cse.iitb.ac.in/~supratik/courses/cs226/spr16/blif.pdf
Berkeley University website [Electronic resource] “ABC: A System for
Sequential Synthesis and Verification,”
URL: https://people.eecs.berkeley.edu/~alanmi/abc

Authorized licensed use limited to: Tomsk State University. Downloaded on February 02,2022 at 07:45:05 UTC from IEEE Xplore. Restrictions apply.

http://fsmtestonline.ru/
https://www.cse.iitb.ac.in/~supratik/courses/cs226/spr16/blif.pdf
https://people.eecs.berkeley.edu/~alanmi/abc

