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ARTICLE

Rangewide Population Structure of the Clearnose Skate

Lindsey Noel Nelson*
Virginia Institute of Marine Science, William & Mary, 1375 Greate Road, Gloucester Point, Virginia 23062, USA

Christian M. Jones
Southeast Fisheries Science Center, 3209 Frederic Street, Pascagoula, Mississippi 39567, USA

Jan R. McDowell
Virginia Institute of Marine Science, William & Mary, 1375 Greate Road, Gloucester Point, Virginia 23062, USA

Abstract
Skates (family Rajidae) are benthic elasmobranchs that are highly vulnerable to incidental fishery bycatch, are dis-

carded at sea, and are poorly accounted for in catch records. Many aspects of skate life history, such as population
structure, are not well understood. Without this knowledge, indiscriminate removal may have deleterious effects on
scientific, conservation, and management efforts. The Clearnose Skate Rostroraja eglanteria is seasonally migratory
and widely distributed in the coastal waters of the eastern United States and in the northeastern Gulf of Mexico. This
study used molecular techniques to assess the population structure of Clearnose Skate for use as a biological reference
point for further research and management. Specimens were collected from 2014 to 2019 by fisheries-independent sur-
veys. High-throughput genotyping-by-sequencing was used to identify single nucleotide polymorphisms, resulting in
two data sets: one consisting of 8,914 loci (outlier and neutral) and the other comprised of 30 outlier loci. Results
from all analyses and using both data sets indicated a high level of genetic differentiation between specimens from the
Gulf of Mexico and specimens from the U.S East Coast. Using the outlier data set, a low but significant level of
genetic differentiation was also found among specimens from the U.S. East Coast, with a subtle break near the North
Carolina and South Carolina border. Genetic differences along the U.S. East Coast were spatially autocorrelated,
indicating a latitudinal genetic gradient. The level of observed genetic differentiation between the Gulf of Mexico and
the U.S. East Coast is likely due to physical barriers such as Florida and the Gulf Stream current, while the subtle
structure along the U.S. East Coast is likely attributable to isolation caused by dispersal limitations and local temper-
ature preferences. The results from this investigation of Clearnose Skate population structure can be used to better
monitor and manage this vulnerable elasmobranch.

Historically, batoid fishes (the skates and rays; class
Chondrichthyes, superorder Batoidea) have been of little
economic value to commercial or recreational fishers and
are therefore understudied, underprioritized, and globally
undermanaged (Bonfil 1994; Gallagher et al. 2012). Skates

(family Rajidae) are particularly vulnerable to removal as
bycatch due to their demersal lifestyle. Unfortunately,
both bycatch and targeted harvest of skates are poorly
accounted for in multispecies groundfish fisheries, which
has led to a reduction in skate populations worldwide
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(Bonfil 1994; Dulvy et al. 2014). In instances when harvest
is tracked, skates are often placed into nonspecific skate
groups (e.g., “skate unidentified”) instead of species-
specific listings. This method is problematic as grouped
abundance may remain stable over many years when, in
fact, local depletion of one or more species may be
masked by the increased abundance of another (Dulvy
et al. 2000). This can have deleterious effects on scientific,
conservation, and management efforts (Marandel et al.
2018).

Similarly, understanding population structure is vital
for characterizing other aspects of life history that are
important for appropriate management, including demo-
graphic connectivity, reproductive patterns, segregation,
migration, local adaptation, and phenotypic variation.
Understanding each of these specifics is key for assessing
biodiversity, conservation and risk assessment (Bräutigam
et al. 2015; Domingues et al. 2017), biomass and harvest
limits (Palsbøll et al. 2006; Dulvy et al. 2008; Ying et al.
2011), and phylogeny (Palumbi 1994; Natoli et al. 2003).
Falsely assuming a single, panmictic population and mis-
managing fishing pressure could result in unequal harvest
rates, loss of genetic diversity, or stock collapse (Dulvy
et al. 2000; Hueter et al. 2004; Laikre et al. 2005; Ying
et al. 2011; Spies and Punt 2015).

Clearnose Skate Rostroraja eglanteria are flat, benthic,
elasmobranchs and members of the family Rajidae
(McEachran 2002). Clearnose Skate are distributed in the
coastal waters of the western North Atlantic Ocean from
Massachusetts to Florida and in the northeastern Gulf of
Mexico. This species’ wide latitudinal distribution is made
possible by their range of temperature, salinity, oxygen
concentration, and depth tolerances (Fitz and Daiber
1963; Schwartz 1996, 2000; Packer et al. 2003; Hogan
et al. 2013; Schwieterman et al. 2019). There is evidence
to suggest that their growth follows Bergmann’s rule
(Mayr 1956; Lindsey 1966). The reported maximum total
length of Clearnose Skate from Massachusetts, North Car-
olina, and South Carolina typically ranges from 700 to
745mm, 570 to 687 mm, and 568 to 640 mm, respectively
(Bigelow and Schroeder 1953; Schwartz 1996). The length
at maturity is estimated to be between 560 and 650 mm
from New England skates (Sosebee 2004) and between
535 and 568 mm from South Carolina and northern Flor-
ida skates. Aging Clearnose Skate by counting vertebral
bands has been challenging, but age–length calculations
estimate maximum age to be 6–8 years (Fitz and Daiber
1963; Schwartz 1996; Gelsleichter 1998) and age at matu-
rity to be 5–6 years (Northeast Fisheries Science Center
2000).

Clearnose Skate exhibit seasonal inshore–offshore
migrations and are not present in all areas of their range
during all seasons. Clearnose Skate in the Gulf of Mexico
overwinter inshore and migrate offshore in the spring

(Luer and Gilbert 1985), whereas Clearnose Skate between
North Carolina and Delaware exhibit the opposite behav-
ior by overwintering offshore and migrating inshore and
northward during the spring (Packer et al. 2003). Some
individuals visit Cape Fear River, North Carolina,
between February and November, with an occasional
absence in June and July when temperatures are highest
(Schwartz 2000). It has been noted that Clearnose Skate
between South Carolina and eastern Florida remain in
coastal waters year-round (Bigelow and Schroeder 1953).

The reproductive patterns of Clearnose Skate are not
well understood. Like other rajids, Clearnose Skate are
oviparous and deposit numerous egg cases (colloquially
referred to as mermaid’s purses), each containing a single
embryo (Last et al. 2016). The timing of reproduction and
egg deposition coincide with regional migration patterns
and temperature cues (Carrier et al. 2010). Clearnose
Skate in the Gulf of Mexico mate in the winter and
deposit eggs in the spring (Luer and Gilbert 1985; Ras-
mussen et al. 1999). For Clearnose Skate between Dela-
ware and New York, egg deposition also occurs in the
spring, although it is unknown where or when mating
takes place (Breder and Nichols 1937; Breder and Atz
1938; Fitz and Daiber 1963). To add further uncertainty,
female Clearnose Skate have been documented to store
sperm in the shell gland of the oviduct for at least 3
months (Luer and Gilbert 1985). Some skate species have
been observed to repeatedly utilize specific habitats as
nurseries for depositing eggs, termed "regional philopatry,"
which may include their own place of emergence, termed
"natal philopatry" (Mayr 1963; Quattrini et al. 2009; Hoff
2010; Hunt et al. 2011; Amsler et al. 2015; Chapman
et al. 2015; Flowers et al. 2021), but it is unknown
whether Clearnose Skate exhibit philopatry of any kind.

Efforts to manage Clearnose Skate have been sparse.
They are not currently managed by the Southeast Fishery
Management Council or the Gulf States Fishery Manage-
ment Council but are managed by the New England Fish-
ery Management Council (NEFMC) as part of a single
management unit that spans from Maine to Cape Hat-
teras, North Carolina. This management unit includes six
other co-occurring species of skate as a species complex.
Inaccurate species identification prohibits the collection of
accurate discard or landings records and biological data.
The most recent stock assessment indicated that Clearnose
Skate are not overfished and overfishing is not occurring
(Northeast Fisheries Science Center 2007). The primary
source of mortality comes as bycatch in the United States
bottom trawl and dredge fisheries (Northeast Fisheries
Science Center 2007) to which they are most susceptible
during seasonal migration and congregation. It is assumed
by the NEFMC that Clearnose Skate consist of a panmic-
tic population, though lack of information regarding pop-
ulation structure has been consistently noted as a research
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need and impediment to accurate management (Bonfil
1994; Northeast Fisheries Science Center 2007; Northeast
Fisheries Management Council 2018; Anderson et al.
2020). Understanding this species’ population structure
would allow for subsequent delineation of management
units, which is essential for preserving genetic diversity and
abundance when faced with discard mortality and unequal
fishing pressure across management councils. Additionally,
if Clearnose Skate could be managed within the NEFMC
skate complex more precisely, targeted skate species would
potentially benefit from an increased total allowable catch
(Hogan et al. 2013), thus ensuring the economic viability of
skate fisheries in the United States (Northeast Fisheries
Management Council 2020).

The observed regional differences in Clearnose Skate
growth, migration, and reproduction suggest some level of
divergence from panmixia. The purpose of this study was
to use genotyping-by-sequencing and single nucleotide
polymorphisms (SNPs) to investigate the population struc-
ture and genetic diversity of the Clearnose Skate, thereby
testing the null hypothesis that this species consists of a
single, panmictic population. Specimens collected from
throughout the Clearnose Skate range were examined
along both broadscale and small-scale geographic delimi-
tations.

METHODS

Specimen Collection, DNA Extraction, and Filtering
Specimen collection.— Specimens were collected from

2014 to 2019 on the following fishery-independent surveys:
the Northeast Area Monitoring and Assessment Program
(NEAMAP) trawl survey, the Virginia Institute of Marine
Science (VIMS) Sea Scallop Research Program, and the
Southeast Area Monitoring and Assessment Program
(SEAMAP) Coastal Trawl Survey, the latter of which is
operated by the Marine Resources Research Institute of
South Carolina Department of Natural Resources, the
Florida Fish and Wildlife Conservation Commission, and
the National Marine Fisheries Service Southeast Fisheries
Science Center. The VIMS sea scallop survey sampled
with a scallop dredge, while all other surveys sampled
with an otter trawl. The area covered by these surveys
was hierarchically stratified using two geographic scales.
For broadscale analysis, the range of specimen collection
was delimited into three study regions bounded by biogeo-
graphic barriers (Figure 1): (1) a “northern range” study
region (NOR) consisted of the NEAMAP and VIMS sea
scallop surveys, which begin at Cape Hatteras and extend
northward, (2) a “southern range” study region (SOU)
consisted of South Carolina Department of Natural

FIGURE 1. Clearnose Skate specimen collection summary. The bubble plot indicates specimen collection coordinates. The size of the points are
proportional to the number of specimens at each location (number of specimens binned for clarity), the color represents the study region (NOR =
northern, SOU = southern, GOM = Gulf of Mexico), and black dashed lines delimit state boundaries. States are abbreviated as follows: Rhode Island
(RI), New York (NY), New Jersey (NJ), Delaware (DE), Maryland (MD), Virginia (VA), North Carolina north of Cape Hatteras (NCN), North
Carolina south of Cape Hatteras (NCS), South Carolina, Georgia, and Florida (SCGAFL), and Florida’s Gulf of Mexico coast (GOM). The table
shows a summary of specimen collection for both geographic scales (study region and state). Each asterisk specifies removal of one specimen from the
data set.
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Resources SEAMAP trawl surveys in the coastal Atlantic
Ocean between Cape Hatteras and the Florida Peninsula,
and (3) a “Gulf of Mexico range” study region (GOM)
consisted of Florida Fish and Wildlife Conservation Com-
mission and Southeast Fisheries Science Center SEAMAP
surveys in the Gulf of Mexico. For small-scale analysis,
specimen latitude and longitude were used to further cate-
gorize specimens according to the state waters off which
they were caught and were abbreviated as follows: Rhode
Island (RI), New York (NY), New Jersey (NJ), Delaware
(DE), Maryland (MD), Virginia (VA), North Carolina
north of Cape Hatteras (NCN), North Carolina south of
Cape Hatteras (NCS), South Carolina, Georgia, and Flor-
ida (SCGAFL), and Gulf of Mexico (GOM) (Supplemen-
tary Table 1 available in the online version of this article).
Fin, muscle, or heart tissues were collected from skate
specimens either at sea by survey crews or from frozen
survey specimens that were shipped to VIMS, and the tis-
sue was stored in 95% solution of ethanol at −20°C until
processing.

Extraction of DNA.—All tissues were first soaked in
Longmire lysis buffer between 2 and 12 h at room tem-
perature (Longmire et al. 1997) followed by DNA
extraction using either Qiagen DNeasy Blood and Tissue
kit (Qiagen Sciences, Germantown, Maryland) or Pura-
mag carboxylated magnetic beads (MCLAB, South San
Francisco, California) using standard protocols with
minor modifications. To achieve increased DNA concen-
tration for a subset of specimens with poor quality tis-
sue, two, three, or four extractions per specimen were
performed, eluted in 50 μL of elution buffer (Qiagen),
and subsequently combined and concentrated using the
Zymo Research DNA Clean & Concentrator kit (Zymo
Research, Irvine California). The DNA quality was
assessed on 1% agarose gels that included GelRed
Nucleic Acid Stain (Biotum, Fremont, California) and a
1Kb Plus ladder (Invitrogen, Carlsbad, California). The
DNA concentration and purity were evaluated using a
NanoDrop 2000 spectrophotometer (Thermo Fisher Sci-
entific, Waltham, Massachusetts).

Next generation sequencing.— Extractions yielding high-
molecular-weight DNA and a concentration of at least 50
ng/µL were sent to Diversity Arrays Technology (DArT
Pty, Canberra, Australia) for high-throughput genotyping-
by-sequencing using DArTseq (Sansaloni et al. 2011).
Briefly, restriction endonucleases were used to reduce the
complexity of the genome followed by hybridization to
microarrays and sequencing on an Illumina HiSeq 2500
(Illumina, San Diego, California). Then, SNPs were iden-
tified using a proprietary data pipeline developed by
DArT PL (DArTsoft14), where fragments were aligned to
the Little Skate Leucoraja erinacea reference genome
(Wang et al. 2012; http://www.diversityarrays.com).

Filtering of SNPs.— The resulting matrix of identified
SNPs and corresponding metrics for each specimen were
downloaded from the Diversity Arrays Website and subse-
quently underwent further quality control filtering steps.
We used the “dartR” package (version 1.3.5; Gruber et al.
2019) in R 3.6.1 (R Core Team 2019) to remove low-
quality loci and individuals as follows: (1) monomorphic
loci, (2) read depth using a lower bound of 5 and upper
bound of 30, (3) reproducibility average of 1.00 across
technical replicates, (4) a call rate by locus threshold of
0.98, (5) a minor allele frequency threshold of 0.01, (6)
hamming distances with a threshold of 0.25, (7) the R
package “radiator” (version 1.1.6; Gosselin et al. 2020)
used to identify loci out of conformance to the expecta-
tions of Hardy–Weinberg equilibrium in at least two pop-
ulations and with a P<0.05, (8) secondary SNPs, and (9)
call rate by individual using a threshold of 0.95. This
resulting data set is hereby referred to as the “full data
set.”

Genetic Variation and Population Structure
Principal component analysis, heterozygosity, and

relatedness.— Principal component analysis (PCA) plots
were created to visually examine genetic variation and
clustering patterns among all sampled individuals in the R
package “adegenet” (version 2.3.1; Jombart et al. 2008;
Jombart and Ahmed 2011). Individuals that were plotted
far from their respective clusters as outliers were examined
for evidence of relatedness, improper species identifica-
tions, or cross contamination resulting from errors in lab-
oratory procedures by estimating individual heterozygosity
levels in “radiator.” Outlier individuals were also exam-
ined for potential familial relationships using relatedness
values (r). The r-values were calculated in the Coancestry
software (Wang 2011) using the triadic likelihood estima-
tor (Wang 2007) and were then compared with values of
four simulated relationship categories (full sibling, half-
sibling, parent–offspring, and unrelated). Ten simulations
were conducted using the R package “related” (Pew et al.
2015), each with an allele frequency matrix calculated
using 100 randomly selected loci and 100 simulated rela-
tionship pairs. The resulting simulated genotypes were
analyzed using the triadic likelihood estimator with an
error rate of 0.001 and were used to create box plots to
illustrate the range of expected relatedness values recov-
ered for each family relationship category. Calculated r-
values for each specimen were compared with the simu-
lated results and specimens with relatedness values consis-
tent with parent–offspring, full sibling, or half-sibling.
Specimens with values similar to or above these categories
were removed to remove potential bias.

Values of FST.—We estimated the relative levels of
differentiation, using Wright’s F-statistics (Weir and
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Cockerham 1984), among samples at both broad (study
region) and small (state) geographic scales in the program
GenoDive version 3.03 (Meirmans 2020). Significance was
assessed using an initial α = 0.05, and false discovery rate
(FDR) corrections were applied to provide more conserva-
tive estimates of significance (Benjamini and Hochberg
1995).

Analysis of molecular variance.—Hierarchical groupings
of the genetic data were explored by conducting an analy-
sis of molecular variance (AMOVA; Excoffier and Lischer
2010), which tests grouping scenario hypotheses based on
results from the PCA and FST results. Tests were run in
Genodive using the infinite allele model, and significance
was assessed using 10,000 permutations of the data.

Identification of population clusters.— Identification of
the number of population clusters (i.e., population groups)
and an individual’s cluster assignment was examined using
two methods. First, discriminant analysis of principal
components (DAPC; Jombart et al. 2010) was conducted
using “adegenet.” The number of retained principal com-
ponents was determined using two approaches: a visual
assessment of the graphs showing the variance explained
by the PCA and by the function “xvalDapc” that uses
cross-validation procedures to optimize the number of
principal components retained. The optimal number of
clusters, K, was determined using the Bayesian informa-
tion criterion (BIC), and individuals were probabilistically
assigned to each of the identified clusters. The second
method used Bayesian clustering implemented in the pro-
gram STRUCTURE (Pritchard et al. 2000). The likelihood of
each K was estimated using the admixture model, sam-
pling locations as prior information, and correlated allele
frequencies. Five replicates of simulations of K = 1–5 were
run using a burn-in of 250,000 Markov chain−Monte
Carlo (MCMC) iterations followed by an additional
500,000 MCMC iterations. Results from each simulation
were imported in the R package POPHELPER version 2.3.0
(Francis 2017), tabulated, and visualized using bar plots,
and the likely K was determined using ΔK and maximum
likelihood criteria based on the Evanno method (Evanno
et al. 2005). The program STRUCTURE has a tendency to
fail to detect subtle population differentiation in cases of
hierarchical population structure or when the data is
obscured by strong genetic differentiation (Evanno et al.
2005; Janes et al. 2017; Roycroft et al. 2019); therefore, a
second data set without the GOM samples was used to
determine K for the NOR and SOU samples as above.
After the optimal K was selected for each data set (with
and without the GOM samples), individual assignment to
each K was determined by running STRUCTURE with only
the selected optimal K, a 500,000 MCMC iteration burn-
in, and subsequent 2,000,000 MCMC iterations. All
results were imported in POPHELPER, and individual popu-
lation assignment was visualized as STRUCTURE bar plots.

Spatial Autocorrelation
Spatial patterns of genetic variation were assessed using

spatial principal component analysis (sPCA; Jombart
et al. 2008) in “adegenet.” The sPCA method is similar to
that of a PCA in that it identifies genetic variation, but it
additionally calculates and incorporates Moran’s index, I,
a measure of spatial autocorrelation (Moran 1948, 1950).
An individual’s genotype was compared with that of its
neighbors and examined for whether the genotype was
more similar or more dissimilar than what would be
expected in a random spatial distribution of the allele fre-
quencies. Neighbors were determined using a Euclidean
distance-based network with a minimum distance of zero
and a maximum distance of six. Missing allele frequencies
were replaced with the mean allele frequency, and the
presence of global structure (i.e., spatially autocorrelated)
and local structure (i.e., ecologically driven) was tested
using 999 permutations of the data.

Genetic Diversity and Ne within Identified Populations
Once putative genetic populations were identified, sum-

mary statistics including expected heterozygosity (He) and
observed heterozygosity (Ho) were calculated in GenoD-
ive. Additionally, an inbreeding coefficient, FIT, was calcu-
lated for each specimen in Coancestry. For each putative
population, contemporary effective population size, Ne

(Wright 1931), was calculated using NeEstimator version
2.1 (Do et al. 2014) with the linkage disequilibrium
method and for three allele frequency thresholds: 0.01,
0.02, and 0.05.

Outlier Loci
Outlier loci are markers that exhibit patterns of varia-

tion that are divergent from the rest of the genome and
can be used to identify population structure related to
local adaptation (Luikart et al. 2003; Russello et al. 2012).
Outlier loci were identified using the dartR wrapper Out-
FLANK (Whitlock and Lotterhos 2015) with a q-value
threshold of 0.05, left and right trim fractions of 0.05, and
minimum heterozygosity at 0.10. The identified outlier loci
were saved as a separate data set and were used to evalu-
ate population structure using PCA, FST, DAPC, STRUC-

TURE, AMOVA, and sPCA methods as described above.

RESULTS

Specimen Collection and Data Filtering
Clearnose Skate DNA was extracted from a total of

197 specimens across the three, broadscale sample regions
(NOR = 128, SOU = 45, GOM = 24) and the small-scale
state delimitations (RI= 5, NY= 16, NJ = 31, DE= 8,
MD= 12, VA= 42, NCN = 14, NCS= 16, SCGAFL = 29,
GOM= 24; Figure 1). All samples were successfully
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sequenced by Diversity Arrays Technology, resulting in an
initial data set of 178,623 SNP loci. The number of
remaining loci after each filtering step was as follows:
monomorphic loci, 112,899; read depth, 99,507; repro-
ducibility average, 78,305; call rate by locus, 20,728;
minor allele frequency, 11,695; Hamming distance, 9,510;
Hardy–Weinberg equilibrium, 8,914; secondary SNPs,
8,914; and call rate by individuals, 8,914.

Population Structure
Principal component analysis, heterozygosity, and

relatedness.—An initial PCA plot was used to visually
explore the genetic differentiation among Clearnose Skate
samples using the full data set (Supplementary Figure 1
available in the online version of this article). Using
broadscale groupings, the NOR and SOU specimens
formed a single large cluster and the GOM specimens
formed a second cluster. The two clusters were highly sep-
arated from each other along PC1, which suggested a high
level of genetic differentiation. The PCA plots also showed
three pairs of individuals, two from the GOM region and
one from the NOR region, that were plotted as outliers.
Individual heterozygosity was calculated and examined for
evidence that these outliers were the result of cross con-
tamination. The range of individual heterozygosity among
all samples (0.111–0.253) was not consistent with evidence
of cross contamination or laboratory procedure errors,
and no observed individual heterozygosity was anoma-
lously high. To discriminate whether these outliers repre-
sented duplicated, misidentified, or related samples,
relatedness values were calculated and compared to simu-
lated values. Based on the genetic differentiation evident
in the PCA plots, r-values were calculated for GOM indi-
viduals separately from the NOR and SOU individuals
(Supplementary Figure 2). The estimated means and
interquartile ranges of each family relationship category
for NOR and SOU specimens were as follows: siblings=
0.5603 (0.4791–0.6518), half siblings= 0.3023 (0.1949–
0.4113), parent–offspring = 0.5688 (0.5000–0.6341), and
unrelated = 0.0777 (0.0–0.1250). The estimated means and
interquartile ranges for the GOM specimens were as fol-
lows: full sibling= 0.5677 (0.4735–0.6644), half siblings=
0.3131 (0.1741–0.4361), parent–offspring = 0.5888 (0.5017–
0.6704), and unrelated= 0.01036 (0.0–0.1607). The esti-
mated r-values of the two GOM–GOM sample pairs were
0.79 and 0.72, which is greater than the third quartile of
simulated values for any relationship category but less
than values that would be expected if samples were dupli-
cates. The relatedness value of one NOR–NOR sample
pair was estimated to be 0.47, consistent with either a full
sibling or a parent–offspring pair. To avoid bias that may
result from the sampling of family members or duplicated
samples, one individual from each of those three pairs was
deleted from the data set, thereby reducing the final

number of individuals to 194 (NOR= 127, SOU = 45,
GOM= 22; Figure 1). The PCA was recalculated using
the final data set, and outlier specimens were no longer
visible. For this, PC1 explained 4.73% of the variation in
the data, and PC2 explained 0.74% of the variation in the
data (Figure 2A). To further examine patterns among the
NOR and SOU specimens, the GOM specimens were
removed from the data set and the PCA was recalculated.
For this subset, PC1 explained 0.85% and PC2 explained
0.84% of the variation of the data (Figure 2B). Specimens
from both study regions formed a single cluster in the
PCA plot, and there was no suggestion of differentiation.
To look for evidence of clustering of individuals by the
state in which they were recovered, the PCA was recalcu-
lated and plotted again, but no clustering patterns were
evident (data not shown).

Values of FST.— Population differentiation was quanti-
fied using pairwise FST values calculated among both
broadscale study regions and among states. Among study
regions, the pairwise FST value after the FDR correction
between the GOM and NOR samples was significant (FST

= 0.108, P≤ 0.001) and values between the GOM and
SOU samples was also significant (FST= 0.107, P≤ 0.001).
The FST value between the NOR and SOU regions was
low but significant (FST= 0.001, P≤ 0.001). At the state
level, FST values were highest between the GOM speci-
mens and specimens from all other states (0.109–0.131;
Table 1), and all values were significant after the FDR
correction. Pairwise comparisons among samples from
U.S. East Coast states had low FST values (0.000–0.003),
and the magnitude of estimates did not change with
increasing geographic distance. Comparisons that were
statistically significant after the FDR correction were
between SCGAFL and six other states: RI (0.003, P=
0.013), NY (0.002, P= 0.001), NJ (0.002, P < 0.001), DE
(0.003, P= 0.007), VA (0.002, P< 0.001), and NCN
(0.002, P = 0.002).

Analysis of molecular variance.—An AMOVA was used
to identify the most optimal grouping of specimens by
testing three hypotheses (Table 2). The first hypothesis,
AMOVA 1, was the null hypothesis and had no grouping
scheme and maintained state-level delimitation. The sec-
ond hypothesis, AMOVA 2, partitioned samples into three
groups to test whether Cape Hatteras is a strong barrier
to gene flow: RI–NCN, NCS–SCGAFL, and GOM. The
third hypothesis, AMOVA 3, also placed states into three
groups, but these groups corresponded to the results from
the pairwise FST values: RI–NCS, SCGAFL, and GOM.
The results indicated that the best-supported scenario was
AMOVA 3, which maximized variance among groups
(FCT= 0.055, P< 0.001) and minimized variance within
groups (FSC= 0.002, P< 0.001; FST= 0.090, P < 0.001).

Cluster delimitation.— The clustering methods in the
DAPC and STRUCTURE analyses were used to explore the
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FIGURE 2. Principal component (PC) analysis plots of (A), (B) the full 8,914 loci data set and (C), (D) the 30 outlier loci data set. Subplots also
indicate whether Gulf of Mexico Clearnose Skate specimens were (A), (C) included or (B), (D) excluded from analysis. The three study regions are
divided into north (NOR), south (SOU), and Gulf of Mexico (GOM).

TABLE 1. Pairwise FST values among study regions using the full data set of 8,914 loci (below diagonal) and among states using the outlier data set
of 30 loci (above diagonal). Bold italics indicate a P-value < 0.05, and an asterisk indicates statistical significance after false discovery rate correction.
States are abbreviated as follows: RI = Rhode Island, NY = New York, NJ = New Jersey, DE = Delaware, MD = Maryland, VA = Virginia, NCN
= North Carolina north of Cape Hatteras, NCS = North Carolina south of Cape Hatteras, SCGAFL = South Carolina, Georgia, and Florida, and
GOM = Gulf of Mexico.

States RI NY NJ DE MD VA NCN NCS SCGAFL GOM

RI 0.044 −0.023 −0.039 −0.018 −0.029 −0.033 −0.027 0.045 0.756*
NY 0.001 0.017 0.071* −0.010 0.018 0.029 0.073* 0.195* 0.802*
NJ 0.003 0.002* −0.006 −0.006 −0.008 −0.012 0.009 0.109* 0.780*
DE 0.001 0.001 0.003 0.030 −0.014 −0.026 −0.025 0.033 0.747*
MD 0.003 0.001 0.002 0.001 −0.004 0.005 0.031 0.139* 0.780*
VA 0.001 0.000 0.001 0.001 0.001 −0.017 0.003 0.098* 0.767*
NCN 0.001 0.001 0.002 0.002 0.000 0.001 −0.013 0.074* 0.754*
NCS 0.002 0.001 0.001 0.002 0.001 0.000 0.001 0.032 0.731*
SCGAFL 0.003* 0.002* 0.002* 0.003* 0.002 0.002* 0.002* 0.000 0.685*
GOM 0.131* 0.119* 0.121* 0.130* 0.129* 0.110* 0.120* 0.114* 0.109*
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most likely number of population clusters and individual
sample assignment to each cluster. Attempts to retain
principal components for the DAPC using the “xvalDapc”
cross-validation function were unsuccessful as the function
estimated retaining a low number of principal compo-
nents, which corresponded with low percentages of the
variance explained. Therefore, only visual assessments of
the graphs were used to select the number of retained
principal components. For DAPC, the lowest BIC value
indicated that the most likely number of clusters was K=
2 (BIC= 1,128.1; Supplementary Figure 3), and the plots
suggested that one cluster was comprised of the NOR and
SOU specimens and the second cluster was comprised of
the GOM specimens (Figure 3A). Cluster delimitation
using STRUCTURE also indicated that two clusters were
most optimal according to the largest ΔK and mean log-
likelihood values (Supplementary Figure 3), and the pat-
tern of assigning the NOR and SOU specimens into one
cluster and the GOM specimens into the second cluster
was consistent among runs (Figure 3B). An attempt was

made to look for structuring patterns among the NOR
and SOU specimens only, but the results identified K= 1
as the most optimal, which is consistent with a single
genetic population.

Spatial Autocorrelation
Evidence of spatially autocorrelated allele frequencies

was tested using an sPCA. The global test for spatial auto-
correlation using the full data set indicated that the proba-
bility of global structure was significant (score = 0.028,
P≤ 0.001), but the probability of local structure was not
significant (score= 0.718, P= 0.082). The first principal
component, PC1, explained the majority of the genetic
variance and a high degree of spatial autocorrelation
(variance= 149.390, I= 0.917), and PC2 explained a mod-
est amount of genetic variance but a substantial amount
of spatial autocorrelation (variance= 18.348, I= 0.422).
These two principal components were retained for plot-
ting. The plot of spatial principal component 1 (sPC1)
revealed two distinct clusters: one comprised of the GOM

TABLE 2. Results of AMOVA, showing sources of variation (within individual [FIT], among individuals within state [FIS], within group [FSC], and
among group [FCT]), percent variation, F-statistics, and P-values. The AMOVA 3 grouping maximizes FCT and minimizes FSC and is the most opti-
mal. See Table 1 for state abbreviations.

Grouping Source of variation % variation F-statistic P-value

AMOVA 1
(none)

Within individual 0.884 FIT = 0.116
Among individuals within state 0.087 FIS = 0.090 <0.001
Among states 0.029 FST = 0.029 <0.001

AMOVA 2
(RI–NCN, NCS–SCGAFL, GOM)

Within individual 0.868 FIT = 0.132
Among individuals within state 0.085 FIS = 0.090 <0.001
Among states within groups 0.002 FSC = 0.002 <0.001
Among groups 0.045 FCT = 0.045 <0.001

AMOVA 3
(RI–NCS, SCGAFL, GOM)

Within individual 0.859 FIT = 0.141
Among individuals within state 0.085 FIS = 0.090 <0.001
Among states within groups 0.002 FSC = 0.002 <0.001
Among groups 0.055 FCT = 0.055 <0.001

FIGURE 3. Bar plots of individual Clearnose Skate cluster assignments according to (A) discriminant analysis of principal components and (B)
STRUCTURE analyses using the full 8,914 loci data set. State and study region are shown below the bar plots (see Figure 1 for abbreviations), and color
represents the probability of assignment to cluster 1 or 2. In both instances, K= 2, shown here, is the most supported scenario.
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specimens and the second of the NOR and SOU speci-
mens (Figure 4A). The plot of sPC2 revealed a weak
genetic cline along the geographic range of the NOR and
SOU specimens (Figure 4B).

Genetic Diversity and Ne within Identified Populations
Observed heterozygosity (Ho), expected heterozygosity

(He), and inbreeding coefficient (FIT) values were calcu-
lated for each state individually and for the three putative
populations identified by previous analyses (hereafter,

referred to as RI–NCS, SCGAFL, and GOM, according
to the associated states). The genetic diversity of the
GOM population (He= 0.132) was lower than both the
SCGAFL (He= 0.159) and RI–NCS populations (He=
0.161; Table 3). Within each population, Ho was less than
He. The significance of this observed heterozygote defi-
ciency within each population was tested using a paired t-
test, and results were significant for all three populations
(RI–NCS: t=−44.84, P < 0.001; SCGAFL: t= −23.146,
P≤ 0.001; GOM: t=−8.910, P< 0.001) and overall

FIGURE 4. Spatial principal component analysis plots using a single spatial principal component (sPC) for one of the two data sets, showing (A) the
full 8,914 loci data set with sPC1, (B) the full data set with sPC2, (C) the outlier loci data set with sPC1, and (D) the outlier loci and sPC1 using only
northern and southern Clearnose Skate specimens. The size of the squares represents the magnitude of genetic variance, and the black or white fill
represents similar or different groups.
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(t=−58.22, P< 0.001). The estimate of FIT was greatest
for the RI–NCS population (0.109), followed by the
SCGAFL (0.101) and GOM (0.060) populations. Within
each state, Ho estimates ranged from 0.124 to 0.149, He

ranged from 0.132 to 0.163, and FIT ranged from 0.060 to
0.136. In general, there was no apparent increasing or
decreasing trend in He, Ho, or FIT along the north–south
gradient of the U.S. East Coast states.

Effective population size, Ne, was also estimated for
each putative population. For the tested allele frequencies
(0.01, 0.02, 0.05), the Ne estimate and range for the RI–
NCS population was 11,859.0 (5,501.6–infinite), 13,018.0
(5,371.4–infinite), and 14,863.6 (6,426.3–infinite), respec-
tively, the Ne estimate and range for the SCGAFL popula-
tion was infinite (infinite–infinite), 18,381.4 (4,415.1–
infinite), and 10,459.3 (3,653.1–infinite), respectively, and
the Ne estimate and range for the GOM population was
8,167.6 (1,578.4–infinite), 8,167.6 (1,578.4–infinite), and
2,005.8 (819.6–infinite), respectively (Table 4). In addition,
Ne was also estimated for a metapopulation that combined
both the RI–NCS and SCGAFL populations, which were
16,359.8 (7,485.9–infinite), 19,992.5 (7,735.4–infinite), and
21,157.0 (8,976.2–infinite) for each of the allele frequencies,
respectively.

Outlier Data Set
Principal component analysis and FST.—An outlier loci

data set was identified and used to test for genetic differ-
entiation that may be indicative of selection. Using the
OutFlank command, 30 outlier SNPs were identified from

the full data set and used in subsequent analyses. In the
PCA plot of outlier loci, PC1 explained 60.70% of the
variation in the data and PC2 explained 9.65% (Figure
2C). Similar to the PCA plot using the full data set, the
NOR and SOU specimens clustered together, while the
GOM specimens formed a second cluster, with the two
clusters separating along PC1. However, when the GOM
specimens were removed and the PCA was recalculated,
there appeared to be two clusters (Figure 2D). One tightly
clustered group consisted of mostly NOR and a few SOU
specimens and a second, diffusely clustered group with
roughly equal proportions of NOR and SOU specimens
intermingled.

Similar to the data set using all loci, the FST values
between samples collected from the GOM region and
those collected from all other states were the highest (FST

= 0.685–0.802; Table 1) and were significant after FDR
correction (P< 0.001). Pairwise comparisons among the
U.S. East Coast states had FST values ranging from
−0.039 (RI versus DE, P= 0.834) to 0.195 (NY versus
SCGAFL, P < 0.001). Comparisons between specimens
from the SCGAFL state and specimens from the follow-
ing five states were significant after FDR correction: NY
(FST= 0.195, P< 0.001), NJ (FST = 0.109, P< 0.001), MD
(FST= 0.139, P= 0.001), VA (FST= 0.098, P< 0.001), and
NCN (FST = 0.074, P= 0.007). Two additional pairwise
comparisons were statistically significant: DE versus
NY (FST = 0.071, P = 0.011) and NCS versus NY

TABLE 3. Genetic indices for each identified population and state.
Abbreviations are as follows: Ho = observed heterozygosity, He =
expected heterozygosity, and FIT = average inbreeding coefficient. See
Table 1 for population and state abbreviations.

Population and state Ho He FIT

Population
RI–NCS 0.146 0.161 0.109
SCGAFL 0.144 0.159 0.101
GOM 0.124 0.132 0.060
Overall 0.138 0.151 0.090

State
RI 0.144 0.161 0.108
NY 0.142 0.161 0.136
NJ 0.145 0.158 0.115
DE 0.142 0.160 0.117
MD 0.139 0.159 0.121
VA 0.149 0.163 0.095
NCN 0.147 0.162 0.108
NCS 0.145 0.160 0.103
SCGAFL 0.144 0.159 0.101
GOM 0.124 0.132 0.060

TABLE 4. Summary of effective population size (Ne) calculated for three
different allele frequencies (0.01, 0.02, 0.05) for each of the three detected
populations, as well as a metapopulation consisting of RI–SCGAFL
specimens. Abbreviations are as follows: r2 = magnitude of linkage dise-
quilibrium and m = number of monomorphic loci. See Table 1 for popu-
lation abbreviations.

Population r2 m Ne 95% CI

RI–NCS 0.007 82
0.01 11,859.0 5,501.6–infinite
0.02 13,018.0 5,371.4–infinite
0.05 14,863.6 6,426.3–infinite

SCGAFL 0.042 1,777
0.01 Infinite Infinite–infinite
0.02 18,381.4 4,415.1–infinite
0.05 10,459.3 3,653.1–infinite

GOM 0.053 4,348
0.01 8,167.6 1,578.4–infinite
0.02 8,167.6 1,578.4–infinite
0.05 2,005.8 819.6–infinite

RI–SCGAFL 0.006 56
0.01 16,359.8 7,485.9–infinite
0.02 19.992.5 7,735.4–infinite
0.05 21.157.0 8,976.2–infinite
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(FST = 0.073, P = 0.004). The magnitude of FST values did
not increase with geographic distance between states.

Analysis of molecular variance.— Three AMOVA
groupings identical to the analysis using the full data set
were used to identify populations. The results indicated
that when samples were grouped as RI–NCS, SCGAFL,
and GOM populations, the variance among groups was
maximized (FCT= 0.631, P< 0.001) and the variance
within groups was minimized (FSC= 0.002, P< 0.001; FST
= 0.001, P < 0.001), consistent with the results from the
full data set.

Cluster delimitation.—Using the DAPC method, the
most likely number of clusters was either K = 2 (BIC =
5.41) or K= 3 (BIC=−73.3) (Supplementary Figure 4).
Using K= 2, the DAPC assigned the GOM specimens to
one cluster and the NOR and SOU specimens to the sec-
ond cluster (data not shown). Using K = 3, the GOM
specimens were assigned to one cluster and the NOR and
SOU specimens were assigned to one of the remaining
clusters, but there was no evident pattern to the assign-
ment of individuals by study region or state. To examine
cluster assignment for just the NOR and SOU specimens,
the GOM specimens were removed and the DAPC was
recalculated. The most likely number of clusters was pos-
sibly K= 2, 3, or 4 (BIC= −55.8, −72.6, −83.7, respec-
tively; Supplementary Figure 4). The DAPC bar plots
were made for each possible value of K (Figure 5A),
from which there were no clear patterns of assignment to
clusters for any value of K.

For assignment tests using STRUCTURE, K= 2 was most
optimal (Supplementary Figure 4), where the GOM speci-
mens were assigned into one cluster and the NOR and
SOU specimens were assigned into the second cluster
(data not shown). Again, the GOM specimens were

removed to more closely examine cluster assignment using
just the NOR and SOU specimens. According to ΔK val-
ues, K = 2 was most optimal but maximum log-likelihood
values suggested that K= 3 and K= 4 were possible sce-
narios and were therefore also examined (Supplementary
Figure 4). Cluster assignment did not reveal any discern-
able pattern in the bar plots of K = 2–4 (Figure 5B).

Spatial autocorrelation.—Analysis using the outlier data
set indicated that the probability of global structure was
significant (score = 0.585, P≤ 0.001), but the probability
of local structure was not significant (score = 0.014, P=
1.00). The sPC1 (variance= 15.78, I= 0.877) revealed
strong separation between the GOM population and both
RI–NCS and SCGAFL populations except for the two
southernmost U.S. East Coast specimens (Figure 4C).
When only the RI–NCS and SCGAFL specimens were
examined, global structure remained significant (score =
0.40, P = 0.001) and local structure was not significant
(score = 0.014, P= 0.962). The sPCA plot revealed a
genetic cline among the RI–NCS and SCGAFL specimens
that was weakly spatially autocorrelated (variance= 3.473,
I= 0.096; Figure 4D).

DISCUSSION
Few studies have examined the genetic structure of

skates, and as of this writing, only one other study has uti-
lized genotyping-by-sequencing methods to examine popu-
lation structure in rajids (Wang et al. 2012). The present
study was also the first to examine the rangewide popula-
tion structure and genetic diversity of the Clearnose Skate,
and we posit that they are comprised of three populations
based on the genetic data. All analyses supported a signifi-
cant level of genetic differentiation between samples

FIGURE 5. Bar plots of individual Clearnose Skate cluster assignments according to (A) discriminant analysis of principal components and (B)
STRUCTURE analyses using the 30 outlier loci data set. State and study region are shown below the bar plots (see Figure 1 for abbreviations), and color
represents the probability of assignment to each of the cluster scenarios (K= 2, 3, and 4).
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collected from the Gulf of Mexico (GOM) and those col-
lected in other locations. The data also suggest weak
genetic separation between samples collected from off
Rhode Island to North Carolina (RI–NCS) and samples
collected from off South Carolina, Georgia, and Florida
(SCGAFL), though this may be confounded by the distri-
bution of specimens throughout the study area.

Evidence of a Distinct Gulf of Mexico Population
The mechanisms driving the observed separation of

Gulf of Mexico and Atlantic Clearnose Skate may include
both historical geologic patterns and present-day condi-
tions. During periods of glacial minima in the Pleistocene
(1.8 million to 12,000 years ago; Holmes 2001), the com-
bined effects of ice retreat, ice melt, and isostatic changes
produced eustatic sea level rise and shallow connections
across peninsular Florida. However, at the time of the last
glacial maximum about 20,000 years ago, eustatic sea level
was estimated to be 120 m below current levels, exposing
Florida and the gulf-side continental shelf, thereby sepa-
rating the ocean basins (Briggs 1974; Avise 1992; Holmes
2001). Historical Clearnose Skate populations may have
been subject to a series of range contraction and range
expansion events caused by fluctuations in sea level. The
identification of Florida as a biogeographic break for this
species is concordant with results from studies of many
taxa, including elasmobranchs, teleosts, marine mammals,
and bivalves (Briggs 1974; Avise 1992; Natoli et al. 2003;
Hemond and Wilbur 2011; Anderson et al. 2012; Portnoy
et al. 2015).

We hypothesize that the present-day isolation of Clear-
nose Skate in the Gulf of Mexico may be maintained by
the geography and hydrodynamics around Florida. First,
the continental shelf between Cape Canaveral and the Flor-
ida Keys essentially vanishes, thereby reducing habitat
availability. This area might be too steep or too deep to
pass through or may not host suitable benthic prey items.
Second, suitable habitat around peninsular Florida is fur-
ther reduced by warm water temperatures that are outside
the Clearnose Skate’s preferred range (9–30°C). This ther-
mal gradient is also hypothesized to prevent Atlantic angel
sharks (family Squatinidae) from migrating from their U.S.
East Coast range into their Gulf of Mexico range (Driggers
et al. 2018). Lastly, the velocity of the Gulf Stream may be
strong enough to prevent or deter individuals from passing
through, particularly in a countercurrent direction from the
U.S. East Coast into the Gulf of Mexico.

Two Populations along the U.S. East Coast
This study found evidence to suggest a low but signifi-

cant level of genetic structure between two populations
along the U.S. East Coast, RI–NCS and SCGAFL, delim-
ited near the North Carolina and South Carolina border.
Although the results were not unanimous, this

differentiation was evident from the AMOVA and pair-
wise FST results and from both the full and outlier data
sets. The ability to accurately determine the number of
populations, K, and individual sample assignments using
DAPC and STRUCTURE with the outlier data set were
likely hindered by the low levels of genetic differentiation
(Miller et al. 2020). The results from the sPCA using the
outlier data set showed increasing genetic differentiation
with increasing distance, which suggests that Cape Hat-
teras is not a barrier to gene flow for the Clearnose Skate
and that other factors are responsible for the observed dis-
tribution of genetic variation.

Estimated FST values for marine fishes are typically
lower than values for freshwater and anadromous fishes,
often owing to the lack of physical barriers that would
otherwise separate populations (Ward et al. 1994).
Although the reported FST values using the full data set
were low, there was a statistically significant level of dif-
ferentiation in pairwise comparisons between the
SCGAFL samples and those from six other and more
northern states, a pattern that was also seen using the out-
lier data set. Similarly low yet significant pairwise FST val-
ues have been reported in other fish population studies,
including Nassau Grouper Epinephelus striatus (FST=
0.0023, P = 0.0039 and FST= 0.002, P= 0.0140; Jackson
et al. 2014), Leopard Sharks Triakis semifasciata (FST=
0.003, P = 0.026; Barker et al. 2015), and South Pacific
Albacore Thunnus alalunga using both neutral loci (FST=
0.0027–0.0031, P < 0.0004) and outlier loci (FST= 0.0157–
0.0203, P < 0.0012) (Anderson et al. 2019). We feel confi-
dent that the number of loci used in this study was suffi-
cient to overcome the high signal-to-noise ratio often seen
in marine organism FST estimates but acknowledge that
sample size and distribution may bias estimates (Waples
1998; Willing et al. 2012).

The pattern observed between the RI–NCS and
SCGAFL populations could be described as having “crin-
kled connectivity” driven primarily by demographic life
history differences (Ovenden 2013) rather than physical
barriers, as seen in other fish species (Briggs 1974; Avise
et al. 1987b; McCartney et al. 2013; Leidig et al. 2015).
Despite continuous distribution along the U.S. East Coast,
the dispersal capabilities of the Clearnose Skate may be
responsible for the observed heterogeneity (Ovenden
2013). Like other elasmobranchs, skates produce relatively
few young and disperse as juveniles or adults, which must
then survive, assimilate into, and reproduce with a differ-
ent population to maintain genetic connectivity. This is in
stark contrast to many teleost fishes that reproduce by
spawning thousands to millions of eggs, which may be
subject to transport through currents or waves and lead to
high genetic connectivity. Temperature preferences may
also reduce connectivity. Throughout most of their range,
Clearnose Skate undergo temperature-driven inshore–
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offshore migrations, except for skates from the SCGAFL
area, which exhibit year-round inshore residency, which
may act as a barrier to gene flow. Angel sharks also exhi-
bit discontinuous distribution patterns along the U.S. East
Coast, which has been attributed to temperature prefer-
ences (5.5°C to 26.7°C) and the bottom temperature pro-
files in that region. (Driggers et al. 2018). The Gulf
Stream current carries warm water from Florida north-
ward to Cape Hatteras, North Carolina, thereby making
offshore bottom temperatures warmer and more preferable
than the cold inshore bottom waters during winter
months. Clearnose Skate likely maintain a similar rela-
tionship between thermal tolerances (9°C to 30°C) and
seasonal water temperature fluctuations, but investigation
of environmental variables associated with Clearnose
Skate catch data and habitat modeling is needed to con-
firm this hypothesis. The complex combination of local-
ized site fidelity, broad seasonal inshore–offshore
migration, limited dispersal capabilities, and wide geo-
graphic range likely explain the low but significant level of
genetic differentiation.

Genetic Diversity and Ne within Identified Populations
Estimates of allelic diversity and Ne suggest that the

GOM population is more susceptible to the effects of
genetic drift than the other two populations. The GOM
population had the lowest gene diversity (He) values, the
highest number of monomorphic loci (nearly half of all
loci in the data set), and smaller estimates of contempo-
rary Ne as compared with the RI–NCS and SCGAFL
populations. Nonetheless, estimates for the GOM popula-
tion reported here are larger than contemporary Ne esti-
mates based on nuclear markers that have been reported
for other elasmobranchs, including the oviparous, season-
ally aggregating, and threatened Zebra Shark Stegostoma
fasciatum (Ne= 377; Dudgeon and Ovenden 2015) and the
near-threatened and migratory Spotted Eagle Ray Aetoba-
tus narinari (Ne= 1,893; Newby et al. 2014).

When specimens from the RI–NCS and SCGAFL pop-
ulations were examined as a single metapopulation (RI–
SCGAFL), Ne estimates were smaller than the combina-
tion of each population’s individual Ne estimates. If the
two populations conformed to an island model, where
local populations do not exchange migrants, it is expected
that the Ne of the combined metapopulation would be
greater than the sum of each population’s independent Ne

(Waples 2010). Cases when an Ne estimate for a metapop-
ulation is similar to the Ne estimate of a local population,
as indicated by the current study, can be caused by weak
genetic differentiation and high migration rates (Waples
and Do 2010), the first of which has been demonstrated
here. Calculations of Ne assume discrete generations, no
migration, random mating, no mutation, and no natural
selection, and violations of these assumptions, as well as

low sample size, can bias estimates of Ne and result in “in-
finite” estimates (Waples and Do 2010; Waples et al.
2016; Marandel et al. 2019). The first and second assump-
tions are known to be violated; Clearnose Skate may have
historic or contemporary migration between populations
and have overlapping generations (sexually mature
between age 3 and age 4 and live to be at least 6 years
old; Daiber 1960; Fitz and Daiber 1963).

Limitations and Future Work
More research is needed to verify the existence and

characteristics of these Clearnose Skate populations. Popu-
lation structure and biogeography could also be detailed
using mitochondrial DNA markers (Avise et al. 1987a;
Toews and Brelsford 2012). Population structure can be
further assessed using a thorough morphological examina-
tion, the results of which could serve as diagnostic tools
for identifying an individual skate’s population of origin
(Byrkjedal et al. 2007; Santos and Capellari 2009). More-
over, investigating whether the genetic patterns presented
here correlate with environmental factors, such as bottom
temperature, could either confirm or refute the posited
hypothesis that Clearnose Skate demographics are partly
driven by temperature preferences. In addition, tagging
and tracking studies are recommended to clarify our
understanding of individual Clearnose Skate migration
patterns and dispersal capabilities. This would aid in esti-
mating connectivity between the RI–NCS and SCGAFL
populations, as well as inform appropriate sampling
strategies (Marandel et al. 2018; Siskey et al. 2018).
Finally, rangewide studies of Clearnose Skate life history,
such as fecundity, age and growth, and mortality, would
identify whether differences in these aspects exist through-
out their range as well as ensure consistent methodology.

Specimens for the current study were collected opportunis-
tically by fisheries-independent surveys. Although generally
abundant, there may be differences in the relative abundance
of Clearnose Skate throughout their range, but this remains
unclear. Thus, sample sizes among the study regions and
states were unequal and were unevenly distributed within
them. Future specimen collection for molecular-based studies
should strategically target areas that were underrepresented in
this study to allow more robust comparisons. Equalizing the
male to female ratio throughout each sample region would
aid in determining whether genetic indices differ between
sexes, that is, whether gene flow is mediated by one or both
sexes, and potentially elucidate reproductive patterns. It is
also important to sample the same areas throughout the year
as this can address unknowns such as temporal and spatial
variation of sex ratios or genetic structure related to seasonal
separation or congregations for feeding or migration periods
(Wearmouth and Sims 2010).

The results from this investigation of Clearnose Skate
population structure can be used to better monitor and
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manage this vulnerable elasmobranch, thereby ensuring
the sustainability of U.S. fisheries. Regional management
council recognition that Clearnose Skate are not panmic-
tic and that local depletion of one population may or
may not be replenished by migrants from another popu-
lation is imperative. The NEFMC, which maintains the
only fishery management plan for Clearnose Skate, could
incorporate population structure in developing more
accurate estimates of abundance and catch limits. These
findings could also be foundational to drafting manage-
ment plans by the Southeast Fishery Management Coun-
cil and Gulf States Fishery Management Council. Lastly,
all councils should avoid incorporating existing life his-
tory literature in which specimens from a different region
were examined into their management plans. Instead,
councils should urge research into the life history traits
of Clearnose Skate specific to their respective population
(Siskey et al. 2018).
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