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S1: Stability analysis of the long-term equilibrium 

For Group 2 viruses, it can be easily seen that the equilibrium is stable using the linear 

stability analysis. Setting �̇� =
𝑑𝑉

𝑑𝑡
, it is shown that 

𝑑�̇�

𝑑𝑉
= − (

𝜀𝑜

𝜎
𝑓 + 𝑐), which is always below 

zero, i.e., 
𝑑�̇�

𝑑𝑉
< 0. This suggests that any small perturbation from the equilibrium 𝑉∗, (𝑉 − 𝑉∗), 

decays with time so that 𝑉∗ =
𝜀𝑖
𝑚

𝑓𝑉𝑙
𝜀𝑜
𝜎

𝑓+𝑐
 (equation 20) is always stable, and 𝑉 with any initial 

condition will approach this equilibrium.  

For Group 1 viruses, studies on the stability have been conducted for viral dynamics in a 

closed system. Our model collapses to a closed system if there are no oyster filtration behaviors 

that exchange viruses between the oyster inner environment and the surrounding water (i.e., 

𝜀𝑖

𝑚
𝑓𝑉𝑙 =

𝜀𝑜

𝜎
𝑓𝑉 = 0). For a closed system, it has been suggested that whether the equilibrium 𝑉∗ 

is stable depends on the basic reproduction number 𝑅0 (e.g., 1-3). If 𝑅0 > 1, 𝑉∗ is positive and 

asymptotically stable (i.e., leading to chronic infections); If 𝑅0 < 1, there is no positive 𝑉∗ and V 

decreases to zero (i.e., virus is totally removed). When 𝑎 can be neglected, the expression of 𝑅0 

for equations 1-3 is (4):  

𝑅0 =
𝑝𝛽𝑠𝑇

𝑚𝑐𝛿𝛿𝑇
=

𝑝𝛽𝑇𝑎

𝑚𝑐𝛿
 

When the filtration behaviors are included, the system becomes an open system and it is 

more complicated to analyze the stability of the long-term equilibrium 𝑉∗ in equation 5 or 19.  

It is expected that if the filter-in virus is much less than the in-host production during the 

long period after the acute infection phase, the dynamics of the open system may be similar to 
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that of the closed system, and we may neglect the term 
𝜀𝑖

𝑚
𝑓𝑉𝑙. In this case, the equilibrium 𝑉∗ is 

close to  

𝑉∗ ≈
𝑞

𝜀𝑜
𝜎

𝑓+𝑐
, as 𝑞 ≫

𝜀𝑖

𝑚
𝑓𝑉𝑙. 

In this case, the stability analysis for the open system with weak exchange resembles that for the 

closed system, and there exists a 𝑅0 to determine whether 𝑉∗ is stable. If 𝑎 is further neglected, 

then 𝑅0 is close to that for the closed system shown above. If 𝑅0 > 1, V approaches 𝑉∗ that is 

asymptotically stable. If 𝑅0 < 1, oyster has the ability to remove all of the in-host viruses, 

however, due to the existence of the filter-in process, V remains low but cannot become vanished 

unless 𝑉𝑙 = 0.  

If the filter-in is the dominant process for increasing the in-host viral concentrations after 

the acute infection phase, then the dynamics of Group 1 viruses after the acute phase is similar to 

that of Group 2 viruses and the equilibrium 𝑉∗ is close to  

𝑉∗ ≈
𝜀𝑖
𝑚

𝑓𝑉𝑙
𝜀𝑜
𝜎

𝑓+𝑐
, as 𝑞 ≪

𝜀𝑖

𝑚
𝑓𝑉𝑙. 

This indicates the equilibrium 𝑉∗ for Group 1 viruses in this case is positive and stable.  

More studies are needed for evaluating the stability of the long-term equilibrium for 

Group 1 viruses, especially for the conditions that filter-in and in-host production are both 

important after the acute phase.  
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Fig S1. The in-host model and its transformed forms in this study. �̂�, 𝐼, and �̂� have the units of 

cells/oyster, cells/oyster, and virus copies/oyster, respectively. 𝜃 and 𝜔 the conversion factors to 

convert the units of copies/oyster and cells/oyster to the targeted units, respectively. m is the 

weight of the total target cells in one oyster and has the units of g/oyster. 𝑇𝑎 is the total target 

cells if the oyster is not infected, and 𝑇′ and 𝐼′ (unitless) are normalized 𝑇 and 𝐼, respectively.  
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