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S1: Stability analysis of the long-term equilibrium
For Group 2 viruses, it can be easily seen that the equilibrium is stable using the linear
stability analysis. Setting V = Z—Z, it is shown that Z—Z = - (%"f + c), which is always below

zero, i.e., Z—Z < 0. This suggests that any small perturbation from the equilibrium vV*, (V — V™),

- - ﬁ V
decays with time so that V* = gf l

v (equation 20) is always stable, and V with any initial

ag

condition will approach this equilibrium.

For Group 1 viruses, studies on the stability have been conducted for viral dynamics in a
closed system. Our model collapses to a closed system if there are no oyster filtration behaviors

that exchange viruses between the oyster inner environment and the surrounding water (i.e.,

%fVl = %"fV = 0). For a closed system, it has been suggested that whether the equilibrium V*

is stable depends on the basic reproduction number R, (e.g., 1-3). If R, > 1, V* is positive and
asymptotically stable (i.e., leading to chronic infections); If R, < 1, there is no positive V* and V
decreases to zero (i.e., virus is totally removed). When a can be neglected, the expression of R,
for equations 1-3 is (4):
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When the filtration behaviors are included, the system becomes an open system and it is

more complicated to analyze the stability of the long-term equilibrium V* in equation 5 or 19.

It is expected that if the filter-in virus is much less than the in-host production during the

long period after the acute infection phase, the dynamics of the open system may be similar to



that of the closed system, and we may neglect the term %fVl. In this case, the equilibrium V* is

close to

x4 &
V"= _g(;,—fﬂ, asq >» mel.

In this case, the stability analysis for the open system with weak exchange resembles that for the
closed system, and there exists a R, to determine whether VV* is stable. If a is further neglected,
then R, is close to that for the closed system shown above. If R, > 1, V approaches V* that is
asymptotically stable. If R, < 1, oyster has the ability to remove all of the in-host viruses,
however, due to the existence of the filter-in process, V remains low but cannot become vanished

unless I; = 0.

If the filter-in is the dominant process for increasing the in-host viral concentrations after
the acute infection phase, then the dynamics of Group 1 viruses after the acute phase is similar to

that of Group 2 viruses and the equilibrium V* is close to
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as q < %fvl.

This indicates the equilibrium V* for Group 1 viruses in this case is positive and stable.

More studies are needed for evaluating the stability of the long-term equilibrium for
Group 1 viruses, especially for the conditions that filter-in and in-host production are both

important after the acute phase.



Original model: Eqgs. 7-9
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Normalized model: Egs. 21-23 Eqgs. 25-27

(Used for fitting lab data)

Fig S1. The in-host model and its transformed forms in this study. T, I, and ¥V have the units of
cells/oyster, cells/oyster, and virus copies/oyster, respectively. 8 and w the conversion factors to
convert the units of copies/oyster and cells/oyster to the targeted units, respectively. m is the
weight of the total target cells in one oyster and has the units of g/oyster. T, is the total target

cells if the oyster is not infected, and T’ and I’ (unitless) are normalized T and I, respectively.
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