

W&M ScholarWorks

Reports

2001

Approach channel analysis : field report, Belle Isle State Park and Deep Creek, Lancaster County, Virginia

C. Scott Hardaway Jr. Virginia Institute of Marine Science

Donna A. Milligan Virginia Institute of Marine Science

et al

Follow this and additional works at: https://scholarworks.wm.edu/reports

Part of the Natural Resources and Conservation Commons

Recommended Citation

Hardaway, C., Milligan, D. A., & et al. (2001) Approach channel analysis : field report, Belle Isle State Park and Deep Creek, Lancaster County, Virginia. Virginia Institute of Marine Science, William & Mary. https://scholarworks.wm.edu/reports/2615

This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

Approach Channel Analysis

Belle Isle State Park and Deep Creek Lancaster County, Virginia

Shoreline Studies Program Department of Physical Sciences Virginia Institute of Marine Science College of William & Mary

ĉ

5

2

July 2001

HARGIS LIBRARY Virginia Institute of Marine Science

Field Report

٤

2

Belle Isle State Park/Deep Creek Lancaster County, Virginia

Approach Channel Analysis

by

C.S. Hardaway, Jr. D.A. Milligan L. M. Meneghini G.R. Thomas R.H. Brindley

Shoreline Studies Program Department of Physical Sciences Virginia Institute of Marine Science College of William & Mary

for

Virginia Department of Conservation and Recreation Division of State Parks

July 2001

Archives VIMS 6B 1339.8 V8 1136 2001

Table of Contents

.

-

4

Table of	of Cont	ents <i>i</i>
List of	Figures	i ii
List of	Tables	
1.0	Introd	uction
	1.1 1.2 1.3	Site Setting1Purpose and Scope1Data Collection Methods11.3.1Supplemental Channel Survey4
	1.4	1.3.2 Sub-bottom Analysis 4 Laboratory Testing 6
2.0	Result	s7
	2.1 2.2	Subsurface Conditions 7 Channel Survey 8
3.0	Concl	usions
Ackno	wledgr	nents
Apper Apper	ndix B. ndix C.	Benchmark Information Core Logs Core Photos Core Sediment Sample Analysis Results

List of Figures

4)

-

0

5

10

Figure 1.	Location of Belle Isle State Park and Deep Creek on the Rappahannock River 2
Figure 2.	Aerial photo of Belle Isle and Deep Creek on June 9, 1997 3
Figure 3.	Location of Belle Isle cores and cross-sections
Figure 4.	Typical bathymetric cross-sections indicating sub-bottom material volume
	calculations

List of Tables

Table 1.	Location of benchmark and channel markers. Location of "A", "B", and the channel markers were determined by VIMS site survey
Table 2.	Location, length, and penetration depth of cores taken in the Deep
	Creek Channel
Table 3.	Overall sample analysis results. Percent Coarse includes the gravel and sand
	fraction of the sample
Table 4.	Calculation of amount and type of material to be dredged at each
	cross-section
Table 5.	Calculation of types of material to be dredged from the length of the
	channel

1.0 Introduction

1.1 Site Setting

3

Belle Isle State Park is located at the confluence of Deep Creek and the Rappahannock River in Lancaster County, Virginia (Figure 1). The 733 acre site has seven miles of frontage on the north shore of the Rappahannock, and it borders both Deep Creek and Mulberry Creek. It features diverse tidal and nontidal wetlands, lowland marshes, tidal coves and upland forests. It is a relatively new state park with a new boat ramp, picnic amenities, and restrooms. The park is slated for further recreational and historic development including a "deep" water access from the Rappahannock River into the mouth of Deep Creek and then to the boat ramp area.

1.2 Purpose and Scope

The Department of Conservation and Recreation (DCR) and the Kilmarnock-Irvington-White Stone Rotary Foundation are in the planning stages to deepen the approach channel in Deep Creek to -6 ft MLW by dredging. If the dredge material is beach quality sand, it could be used as nourishment along the adjacent eroding shoreline on the Rappahannock River. When dredging a new channel through a creek entrance, it is recommended that the design channel depth be limited to the same depth contour both inside and outside the creek. The 6-foot depth contour in Deep Creek, if there, would be connected to the 6-foot depth contour in the Rappahannock River. A one foot over-dredge (to -7 ft MLW) is generally acceptable.

In order to determine the suitability of sand for beach nourishment and the overall nature of the proposed dredge material, personnel from VIMS performed the following tasks:

- located and surveyed the existing tidal channel in Deep Creek to the boat ramp
- vibra-cored the subsurface of the channel and analyzed sediment samples from the cores

1.3 Data Collection Methods

A bathymetric survey of the Deep Creek channel was performed by Waterway Surveys & Engineering, Ltd. in 1997 was used to locate the channel for the initial effort. Four channel markers designate the natural channel. Aerial imagery (Figure 2) and the VIMS survey confirms that the position of the channel is approximately in the same location as the 1997 survey.

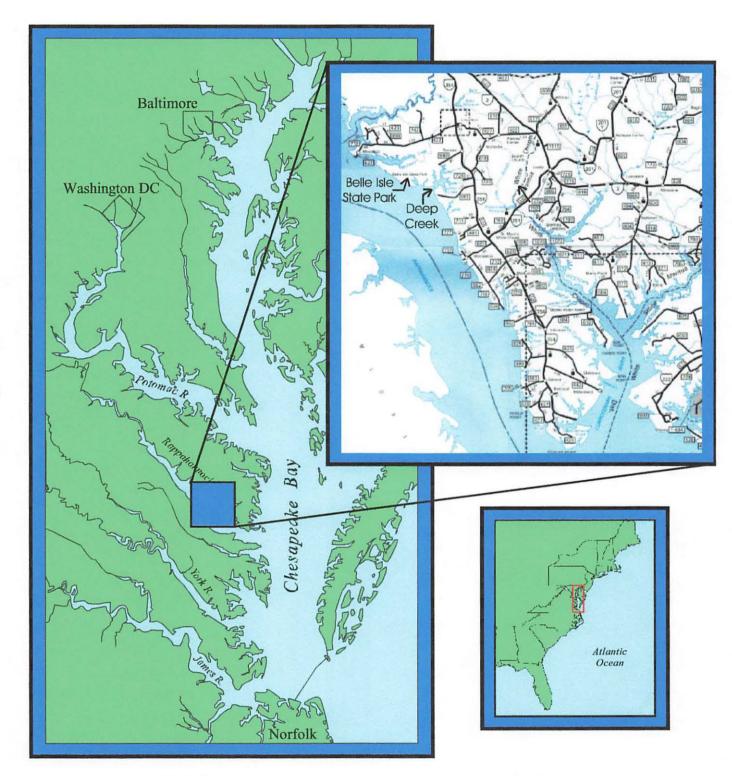


Figure 1. Location of Belle Isle State Park and Deep Creek on the Rappahannock River.

Figure 2. Aerial photo of Belle Isle and Deep Creek on June 9, 1997. Scale app. 1"=500 ft.

")

1.3.1 Supplemental Channel Survey

1

The existing channel was surveyed by cross-sections using a Topcon infrared total station from fixed land benchmarks to "dead stick" positions across the channel. The survey was tied to the MLW datum as determined by VIMS for vertical control utilizing National Ocean Service data from Urbanna and Bay Port to establish the tide range at Deep Creek (1.5 ft) and tide gage data from Windmill Point to determine tidal elevations on the survey date for time of tide calculations. For horizontal control, the survey was tied into existing nearby Park survey monuments (Table 1). In addition, VIMS established two temporary benchmarks for the survey. The benchmark information is shown in Appendix A. A new base map was created showing the proposed channel limits using our bathymetry and 1997 aerial photos (Figure 2). In order to plot our cross-sections with the proposed channel cut, a mid-channel baseline was drawn on the base map from the boat ramp (0+00) to the -6 ft MLW contour (31+10) in the Rappahannock River (Figure 3). The cross-section stations are measured in feet along this line. Surveyor designation of feet is used (*i.e.* 31+10 = 3,110 ft)

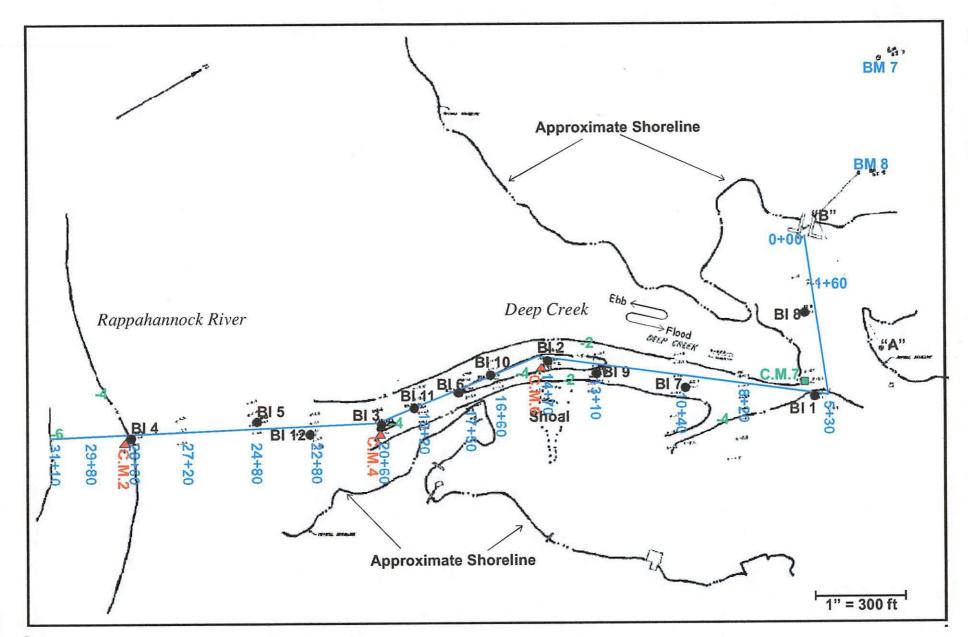

Benchmark	Date	Туре	State Plane Coordinates*				
			Northing	Easting			
"A"	13 June 2001	Temporary	3,811,019.58	12,037,118.84			
"B"	13 June 2001	Temporary	3,811,029.33	12,036,642.70			
"7"	22 November 1997	Permanent	3,811,460.60	12,036,304.16			
"8 "	22 November 1997	Permanent	3,811,222.90	12,036,595.32			
C.M. 7		Permanent	3,810,750.81	12,037,088.28			
C.M. 6		Permanent	3,810,024.45	12,036,630.52			
C.M. 4		Permanent	3,809,461.33	12,036,563.84			
C.M. 2		Permanent	3,808,718.96 12,036,194				

Table 1. Location of benchmarks and channel markers. Location of "A", "B", and the channel markers were determined by VIMS site survey.

*Virginia grid south zone NAD 83(93) U.S. survey foot units

1.3.2 Sub-bottom Analysis

Twelve cores were obtained using a vibra-core that drives a 3-inch aluminum tube into the bottom. The work was performed from a 20-foot power skiff with hydraulic davit for core removal. Eight cores were taken on 13 June 2001. After they were opened, it was decided that more cores were necessary to further evaluate the channel sub-bottom material particularly beach quality sand. On 27 June 2001, four more cores were taken to complete the sub-bottom data acquisition. Depth of penetration into the sub-bottom for the cores ranged from 2 to 5 ft to depths of almost -9 ft MLW. The locations of the cores are listed in Table 2 and shown in Figure 3.

11

S)

Figure 3. Location of Belle Isle cores and cross-sections.

Core	Date	State Plane Co	ordinates*	Core				
Name		Northing	Easting	Length (ft)	Penetration (ft MLW)			
BI 1	13 June 2001	3,810,754.68	12,037,137.28	4.7	-8.8			
BI 2	13 June 2001	3,810,045.71	12,036,628.62	2.3	-7.3			
BI 3	13 June 2001	3,809,475.64	12,036,547.12	3.3	-7.4			
BI 4	13 June 2001	3,808,743.46	12,036,186.75	4.2	-8.3			
BI 5	13 June 2001	3,809,129.42	12,036,342.83	3.9	-7.1			
BI 6	13 June 2001	3,809,744.71	12,036,570.27	4.1	-8.0			
BI 7	13 June 2001	3,810,403.89	12,036,917.10	5.1	-7.8			
BI 8	13 June 2001	3,810,849.19	12,036,894.24	4.0	-7.4			
BI 9	27 June 2001	3,810,170.58	12,036,736.17	3.3	-6.8			
BI 10	27 June 2001	3,809,852.77	12,036,578.05	3.6	-7.6			
BI 11	27 June 2001	3,809,595.69	12,036,542.39	5.4	-8.4			
BI 12	27 June 2001	3,809,254.64	12,036,446.35	3.4	-7.1			

Table 2. Location, length, and penetration depth of cores taken in the Deep Creek Channel.

*Virginia grid south zone NAD 83(93), U.S. survey foot units

1.4 Laboratory Testing

2

The cores were split in two, logged, photographed, and sampled. One half of each core was placed in a plastic sleeve and archived. The description of the core used the Unified Soil Classification System (USCS). Individual samples were taken at several locations within selected cores to determine changes in sand composition down the core. Overall samples were taken from the length of the sand portion of the core in order to describe the quality of the sand for beach nourishment. Where the overlying sand did not extend to -7 ft MLW (Cores BI 5 and BI 12), a second overall sample (5a and 12a) included both sand and clay to indicate the type of material that would be dredged. Cores 1, 3, 4, and 8 were not analyzed because they were determined by visual inspection to be mostly silts and clays with less than 50% sand. Individual and overall samples were subjected to grain-size distribution. Samples were analyzed for percent gravel, sand, silt, clay. The sand fraction was analyzed using the Rapid Sand Analyzer (RSA). Core logs are in Appendix B, core photos are in Appendix C, and sediment grain size analysis results are in Appendix D.

2.0 Results

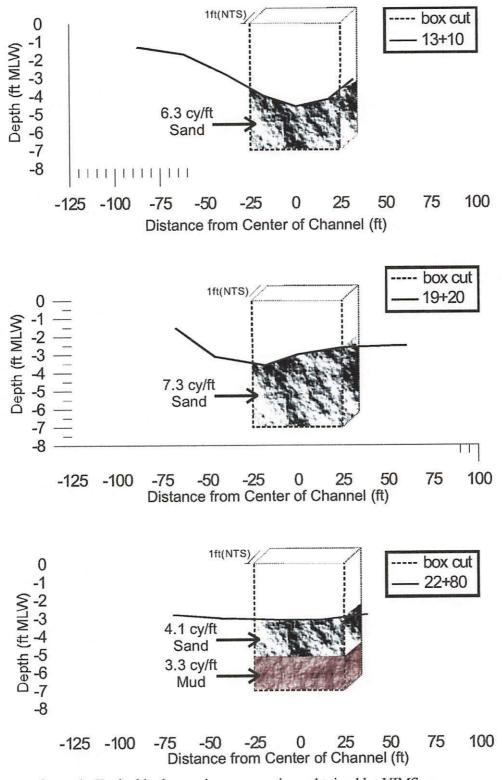
2.1 Subsurface Conditions

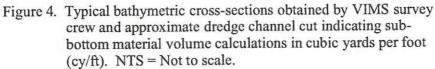
4

Sediment in the subsurface of the study area varies by location. Utilizing information from the cores, we concluded that the entrance channel from the Rappahannock River generally is a sandy layer overlaying a muddy layer (BI 4, 5, and 12). As the channel enters Deep Creek, the substrate is mostly clean sand (BI 6, 10, 2, 9). Farther along the channel to the boat ramp, mud occurs (BI 1 and 8). Cores BI 11 and 7 are transitional with sand overlaying a deep layer of clay (deeper than -7 ft MLW). Core 3 is an isolated area of mud along the channel. The average mean grain size of the samples taken along the full length of the sand portion of the cores is 0.9 mm (Table 3). The median grain size of these same samples is 0.4 mm.

Table 3. Overall sample analysis results. Percent coarse includes the gravel and sand fraction of the sample (greater than 0.0625 mm). Samples from cores containing mostly mud were not analyzed for grain size.

Core Number	Material Sampled	% Coarse	Mean (mm)	Median (mm)
1	Mud*			
2	Sand	95	1.0	0.5
3	Mud*			
4	Mud*			
5	Sand Only	100	1.0	0.5
5a	Sand&Mud	90	2.5	0.5
6	Sand	93	0.4	0.3
7	Sand	100	0.7	0.5
8	Mud*			
9	Sand	100	0.8	0.5
10	Sand	100	0.6	0.4
11	Sand	100	0.4	0.3
12	Sand Only	100	0.7	0.4
12a	Sand&Mud	65	0.4	0.3
AVERAGE			0.9	0.4


*mostly mud as determined by visual inspection of the core (see Appendix C).


2.2 Channel Survey

2

The entrance channel into Deep Creek was evaluated to determine the nature of the subbottom material and the present dimensions of the channel. The supplemental channel survey showed that the present channel is properly marked by the channel markers. However, between channel marker 7 and cross-section 8+20, the -2 ft MLW contour must be crossed when traveling directly between channel marker 7 and channel marker 6. At the time of the 2001 survey, a PVC pipe marked the location of this shallow area. Overall, the channel has similar dimensions as shown in the 1997 survey by Waterway.

Cross-sections of the channel were plotted and used in conjunction with the cores to calculate the amount and type of material that would be dredged to -7 ft MLW (Figure 4). Table 4 lists the approximate amount of dredge cut and type of material for each cross-section as shown on Figure 3. In order to determine the total dredge cut volume, assumptions are made regarding the transitional areas between sand and mud substrates. When calculating total volume, the cross-sectional volume is multiplied by the distance along the mid-channel baseline. The type of sub-bottom material is confirmed at the core locations; the type of material is inferred between cores. Table 5 indicates the total amount of material that would be dredged in the proposed project.

Name	Mid-Channel Distance from Boat Ramp (ft)	Amount of Material that will be dredged to -7 ft MLW (cy/ft)^	Type of Material that will be dredged to -7 ft MLW	Depth of Sand (ft MLW)	C=Core Site X=Cross-section only
BI 8	1+60	6.1	mud		С
BI 1	5+30	5.2	mud		С
BI 7.5	8+20	8.6	Assumed mix		Х
BI 7	10+40	7.7	sand	- 7 ft	C
BI 9	13+10	6.3	sand	*BOC -6.8 ft	С
BI 2	14+70	5.1	sand	BOC -7.3 ft	С
BI 10	16+60	7.2	sand	BOC -7.6 ft	С
BI 6	17+50	5.9	sand	BOC -8.0 ft	С
BI 11	19+20	7.3	sand	-7.5 ft	С
BI 3	20+60	6.6	mud		С
BI 12	22+80	7.4	mix	stiff clay below -5.2 ft	С
BI 5	24+80	7.0	mix	soft clay below -5.8 ft	С
BI 4.5	27+20	6.9	Assumed mud		х
BI 4	28+60	5.4	mud		С
5 ft contour	29+80	3.7	Assumed mud		from Waterway survey
6 ft contour	31+10	1.9	Assumed mud		from Waterway survey

Table 4. Calculation of amount and type of material to be dredged at each cross-section.

*BOC = Bottom of Core (*i.e.* sand extends to the bottom of the core)

 $^(cy/ft) = cubic yards per foot$

2

2

Location along Channel	Amount of Sand (cy)	Amount of Mud (cy)	Amount of Mixed Material Sand & Mud (cy)
0+00 to 1+60		980	
1+60 to 5+30		2,090	··· <u>······</u> ·····
5+30 to 8+20		(Assumed) 2,000	
8+20 to 10+40	(Assumed) 1,790		
10+40 to 13+10	1,890		
13+10 to 14+70	910		
14+70 to 16+60	2,340		
16+60 to 17+50	590		
17+50 to 19+20	1,120		
19+20 to 19+90	(Assumed) 510		
19+90 to 20+60		460	
20+60 to 21+60		660	
21+60 to 22+80			890
22+80 to 24+80			1,440
24+80 to 27+20			1,680
27+20 to 28+60		860	
28+60 to 29+80		(Assumed) 550	· · · · · · · · · · · · · · · · · · ·
29+80 to 31+10		(Assumed) 360	
Total	9,150	7,960	4,010

Table 5. Calculation of types of material to be dredged from the length of the channel.

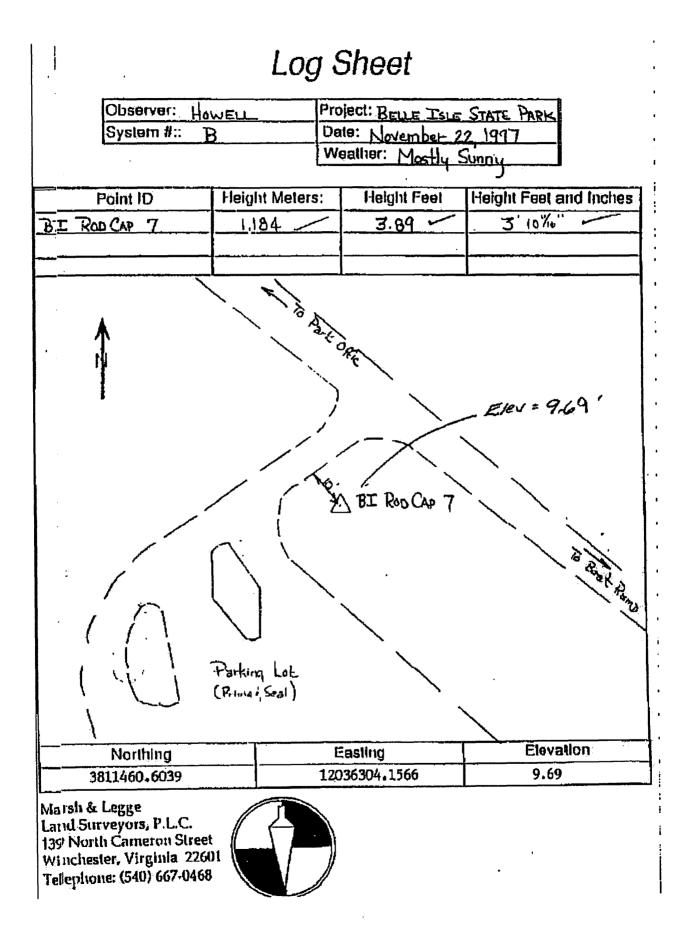
2

Å

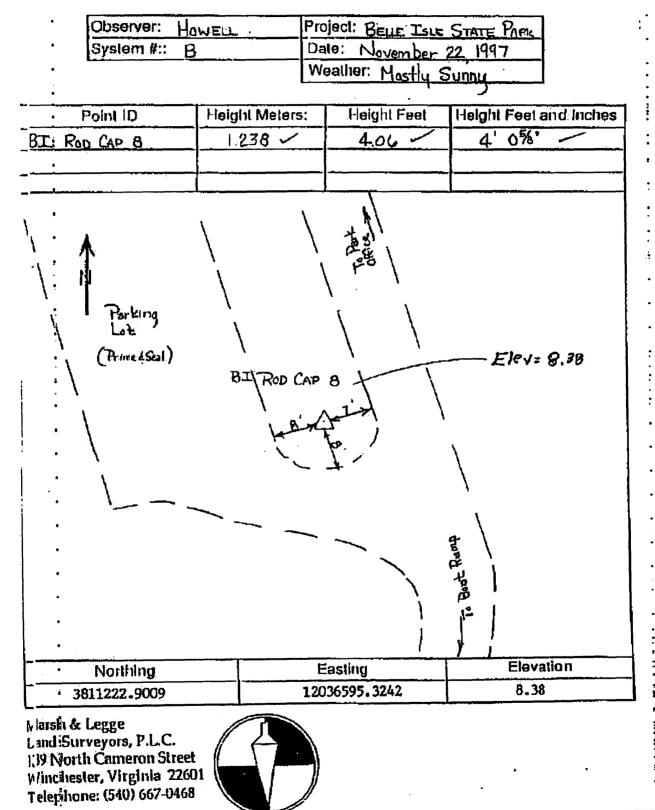
3.0 Conclusions

The entrance channel into Deep Creek was evaluated to determine the nature of the subbottom material and the present dimensions of the channel. The type of sub-bottom material is confirmed at the core locations; the type of material is inferred between cores. The sub-bottom down to -7 ft MLW is mostly mud from 0+00 to about 8+20, and there is about 5,000 cubic yards (cy) of material. From 8+20 to about 19+90 the potential channel cut material is predominantly sand, approximately 9,150 cy. Mud exists in the channel and sub-bottom between 19+90 and 21+60, a cut volume of about 1,120 cy. Between 21+60 and 27+20, sand overlies finer silts and clays, a total cut volume of approximately 4,000 cy. The outboard section from 27+20 to 31+10 with 1,770 cy of cut material is assumed to be predominantly mud.

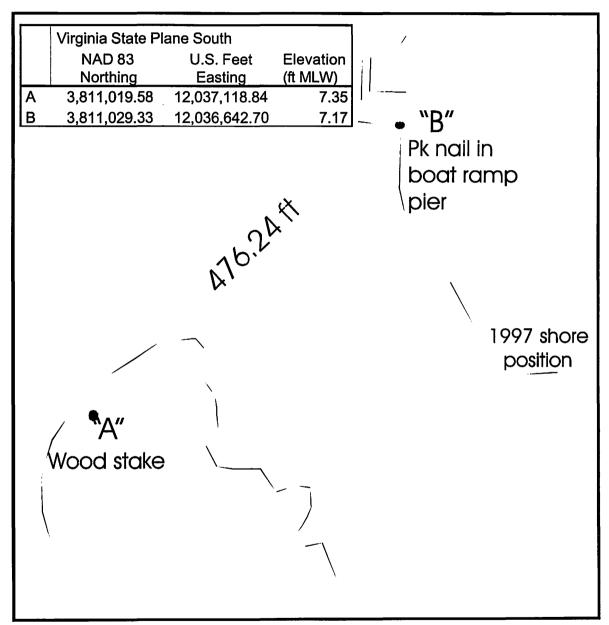
Using the core data, we determined that beach quality material resides primarily between section 10+40 and 19+20 and can be dredged to -7 ft MLW for a total sand volume of 6,850 cy. The main areas of mud are from section 0+00 to 5+30, 20+60, and from 28+60 to 31+10. Once again this material can be expected down to -7 ft MLW. Areas of mixed sand and mud occur from 22+80 to 24+80 in this subreach. The upper core material is still beach quality sand, but the lower mud unit causes a dredge cut to -7 ft MLW to have finer material. Core 5 is actually at 10% mud which makes this material marginal for beach placement. Core 12 is 35% mud to -7 MLW. The mixed material and the mud material generally are not considered appropriate for beach nourishment.


2

Acknowledgments


Thanks to Wayne Reisner for his help with the field work associated with this project. Thanks also to Carl H. Hobbs, C. Lee Hill, and Thomas A. Barnard, Jr. for their editorial review. Appendix A Benchmark Information

ş



Log Sheet

ł

¢

Established 13 June 2001. State plane coordinates are based on BI rod cap 7 & 8 from Marsh & Legge Land Surveyors.

Appendix B Core Logs

9

\$

e

.

CLIENT: Be	lle Isle State Pa	rk		DATE	E: 13	June	2001
		Ramp Approach					
BORING #:	BI-1 Total Depth	-8.8 ft MLW E	ev: -4.1 ft MLW	Locati	on: D	eep (Creek
Type of Boring: V	oracore	Started:	Completed:	Sample	Driller	Moisture	
Elevation Depth		Description of Ma (classification		Blows	Depth (ft)	Content (%)	Remarks
							_
_4.1 0	mmh					┝──┨	
<u>-4.6</u> -0.5		it fines with little I frags (ML)	fine sand				
<u>-5.1</u> -1.0 							
 6.12.0 	Dark oliv	e spongy fines (ML)				
<u>-6.6</u> -2.5	Olive so	ft fines with little	fine sand (ML)				
<u>-7.1 -3.0</u> 	Olive so	ft fines with shel	frags (ML)				
<u>-9.1 -5.0</u>		End					
\neg							

•

.

:

	elle Isle	State	Park	· · · · · · · · · · · · · · · · · · ·				DATE	: 13	June	€ 2001	
SUBJECT: [BORING #:	Deep C BI-2	17	Total		proach (Crock	
BORING #: BI-2 Total Depth -7.3 ft MLW Elev: -5.0 ft MLW Location: Deep C rype of Boring: Vibracore Started: Completed: Driller:									CIEEK			
Elevation Depth	1		(Descriptio	on of Mate	erials	u.	Sample Blows	Samala	Moisture Content (%)	Ren	narks
 		Light Fine	trace :	with da arse Sa s	rk olive i and (SP)	mottling					Ove San	
<u>-7.4</u> _2.4					End							

		_	_		State Park								e 2001
				re	Total	amp Approa	ich C		Dredgi	ng P	roje		Creak
				<u>```</u>	Depth		Elev:	T		Locatio			Сгеек
				-			Mate	· ·		Sample			
Depth				2						Blows	Depth (ft)	Content (%)	Remarks
0													
-0.5									1				
-1.0		╢											
-1.5													
-2.0					Olive soft	fines (ML)							
-2.5													
-3.0													
-3.5		I	L			End							
						LIU							
	IG #: pring: Vi Depth 0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0	IG #: BI pring: Vibra Depth -0.5 -1.0 -1.5 -2.0 -2.5 -3.0	IG #: BI-3 pring: Vibrac Depth -0.5 -1.0 -1.5 -2.0 -2.5 -3.0	IG #: BI-3 pring: Vibracor Depth -0.5 -1.0 -1.5 -2.0 -2.5 -3.0	IG #: BI-3 pring: Vibracore Depth -0.5 -1.0 -1.5 -2.0 -2.5 -3.0	IG #: BI-3 Total Depth 0 -0.5 -1.0 -2.0 -3.0 IG #: BI-3 Med olive and shells Olive soft Total Depth Med olive and shells Olive soft Total Depth Depth Olive soft Total Depth Depth Olive soft Total Depth Depth Olive soft Total Depth Depth Olive soft Total Depth Depth Olive soft Total Depth Depth Olive soft Total Depth Depth Olive soft Total Depth Olive soft Total Depth Depth Olive soft Total Depth Depth Olive soft Depth Depth Olive soft Depth De	IG #: BI-3 Total Depth -7.4 ft MLW poring: Vibracore Started: Depth Description of (classifical) 0 Med olive fines with tr and shells and shell fr -1.0 Olive soft fines (ML) -2.0 Olive soft fines (ML)	IG #: BI-3 Total Depth -7.4 ft MLW Elev: boring: Vibracore Started: Description of Mate (classification) 0	IG #: BI-3 Total Depth -7.4 ft MLW Elev: -4.1 ft I pring: Vibracore Started: Completed: Depth Description of Materials (classification) 0	IG #: BI-3 Total Depth -7.4 ft MLW Elev: -4.1 ft MLW oring: Vibracore Started: Completed: Depth Description of Materials (classification) 0 Med olive fines with trace fine sand and shells and shell frags (ML) -1.0 Olive soft fines (ML) -2.0 Olive soft fines (ML)	IG #: BI-3 Total Depth -7.4 ft MLW Elev: -4.1 ft MLW Location bring: Vibracore Started: Completed: Completed: Sample Blows Depth	IG #: BI-3 Total Depth -7.4 ft MLW Elev: -4.1 ft MLW Location: Depth pring: Vibracore Started: Completed: Driller Depth Description of Materials (classification) Sample Bows Sample Bows 0	Oring: Vibracore Started: Completed: Driller: Depth Description of Materials (classification) Sample Blowe Sample Depth Sample Depth Sample Depth Neteure Depth 0

•

CLIEN	T: Be	elle Isle	State Park	DATE	E: 13	June	e 2001
			Total - 8 3 ft MI W Flow - 4 1 ft MI W				
BORIN		BI-4		Locati	1		Creek
Type of Bo		Dracor	Completed: Description of Materials	Sample	Driller Semple		
Elevation MLW	Depth		(classification)	Blows	Depth (ft)	Moisture Content (%)	Remarks
-4.1	0	L E P &		-			
-4.6	-0.5		Gray with orange mottling Fine Sand and silt (SM)				
-5.1	-1.0						
-5.6	-1.5		Gray to olive silt with some fine sand (ML)				
-6.1	-2.0			-			
-6.6	-2.5						
 -7.1	-3.0		Med gray fines with wood and shell				:
	-3.5		frags (ML)				
-8.1	-4.0						
-8.6	-4.5		End				
							_

7

•

 $\overline{}$

CLIEN			State Park							e 2001
					ach Channe					
BORIN	<u> </u>	BI-5	Depth	-7.1 ft MLV	V Elev: -3.2 fl		Locatio		•	Creek
ype of Bo	oring: VI	bracore		Started:	Complete	d:	Sample	Driller:	Moisture	r
levation MLW	Depth			Description o			Blows	Depth (ft)	Content (%)	Remarks
-3.2	0	2 ⁶ 842 7 7226/222								
-3.7	0.5	<u>.5-1</u>	Light gray Fine to M	-yellowish (ed Sand (S						
-3.7	<u>-0.5</u> - <u>1</u> .0				mottling ace Gravel (S	SW)				
-4.7	-1.5	5-2	Light gray Fine to Co (SW)	with olive barse Sand	mottling with trace G	iravel				Overall Sample
-5.2	-2.0			th alive mett						
-5.7	-2.5		Light gray wi Layered fine Dark olive w Fine to Med	sand, fine gi ith light gray	avel, med sand	1 (SP)				
-6.2	-3.0									Overa Sample
-6.7	-3.5		Dark olive fine sand (Clay mixed w	ith				5a
-7.2	-4.0			En						\

ž

			State Park							2001
SUBJE		Deep Ci Bl-6	reek and R			annel Dree -3.9 ft MLV				Creek
	<u> </u>	ibracore	Depth	Started:	r	completed:	Locau	Driller	.	
	Depth			Description			Sample		Moisture Content	Demerike
MLW	Deptin				fication)		Blows	Ueptn (ft)	Content (%)	Remarks
2.0										
-3.9	0		Light gray	-yellowish	orange					↑
-4.4	-0.5			d with trac		P)				
			Peat with W Light gray	-						
-4.9	-1.0	-6-1	with trace							
										Overall
-5.4	-1.5					ome silt (S				Sample
			Light to ol	ive arav F	ine to M	ed Sand				
-5.9	-2.0		with trace							
		6-2								
-6.4	<u>-2.5</u>		Dark olive	Fine San	d (SP)					
-6.9	<u>-3.0</u>	6-3	Olive to d	ark olive F	Fine San	d				
			with trace							
7.4	<u>-3.5</u>									
-7.9	<u>-4.0</u>					_				↓
				E	ind					
-8.4	<u>-4.5</u>									
·										
								:		
		1								
_										
									<u> </u>	

لللم

•

CLIEN		elle Isle	State Park				DATE	: 13	June	2001
SUBJE				amp Approa						
BORIN		BI-7	Depth	-7.8 ft MLW	1		Locatio		•	Creek
		ibracoro		Started: Description of		pleted:	Sample	Driller Sample		
Elevation MLW	Depth			classifica			Blows	Depth (ft)	Moisture Content (%)	Remarks
-3.9	0			<u> </u>						•
	0.5									
-4.4	-0.5		Light gray	to olive gray	/					
-4.9	-1.0			d Sand with		ilt (SW)				
										Overall
-5.4	-1.5									Sample
				ark gray Fine silt and oys						
-5.9	-2.0									
			Olive Fine	Sand with I	ittle silt (SP)				
-6.4	-2.5									
-6.9	-3.0		l ight grav	and olive m	ottled					
			Fine to Me		ollieu					
-7.4	-3.5		with trace	silt (SW)						
7.9	-4.0									
			Greenish-lig	ht gray Fine Sa	and with l	ttle silt (SP)				↓
-8.4	-4.5									
	E 0		Dark olive	gray very se	oft clay ((CL)				
-8.9	-5.0									
				End						
		1								
							1			
							<u> </u>			

<u>e</u>

•

5

CLIEN SUBJE		eep Cr	eek and I	Ramp App	roach C	hannel	Dredgi	DATE			
BORIN	IG #:	BI-8	Total Depth	-7.4 ft ML							Creek
Type of B	_{oring:} Vi	bracore)	Started:		Completed	J:		Driller		
Elevation MLW	Depth			Description (classi	of Mater fication)	ials		Sample Blows	Sample Depth (ft)	Moisture Content (%)	Remarks
-3.4	0										
-3.9	-0.5										
-4.4	-1.0										
-4.9	1.5										
-5.4	-2.0		Olive ver	y soft Clay	/ (CL)						
-5.9	-2.5										
-6.4	-3.0										
-6.9	-3.5										
-7.4	-4.0										
-7.9	-4.5			E	ind						

÷

CLIEN SUBJE		elle Isle Deen Ci					h Chan	nel Dred				2001		
BORIN		BI-9		Total Depth				5 ft MLW				Creek		
Type of Bo	oring: V	ibracore						•	Driller:					
Elevation MLW	Depth		Description of Materials (classification)						Sample Blows	Sample Depth (ft)	Moisture Content (%)	Ren	narks	
-3.5	0	0 Light gray to yellowish orange -0.5 Jene Sand (SP)											<u> </u>	
<u>-4.5</u>	-1.0									1				
		9-2			olive Med ne to Med				-			Ove	erall	
-5.0	-1.5		Med with	gray wi little me	ith olive s ed sand a	striping l and trac	⁻ ine Sano e shell fra	i ıg (SP)		1		Sar	nple	
-5.5	-2.0	9-3	Ligi (SF		ed gray	/ Fine f	o med s	Sand						
-6.0	-2.5		·	•	Fine S	and wi	th a sm	all	-					
-6.5	-3.0				ment (S				-					
	0.0		Ligl	nt to m	ed gray	Fine f	o Med S	Sand (SF	?)			•	r	
7.0	-3.5					End								

ŝ

CLIEN SUBJE			State Park		oob Channa					2001
BORIN		BI-10			each Channe V Elev: -4.0 f					Creek
Type of B	oring: Vi	bracore		Started:	Complete	ed:		Driller	:	
Elevation MLW	Depth			Description c (classific			Sample Blows	Sample Depth (ft)	Moisture Content (%)	Remarks
-4.0 -4.5 -5.0 -5.5 -6.0 -6.5		10- 9	Fine Sand Olive with Fine Sand Dark olive Med gray Sand with	d (SP) light gray ((SP) Fine Sand and olive n shell and v	batches of with trace s nottled Fine twood frags (S	o Med SW)				Overall Sample
-7.0	<u>-3.0</u> -3.5			and stripes	1 (SP)					
-8.0	-4.0			LI	u					

ê

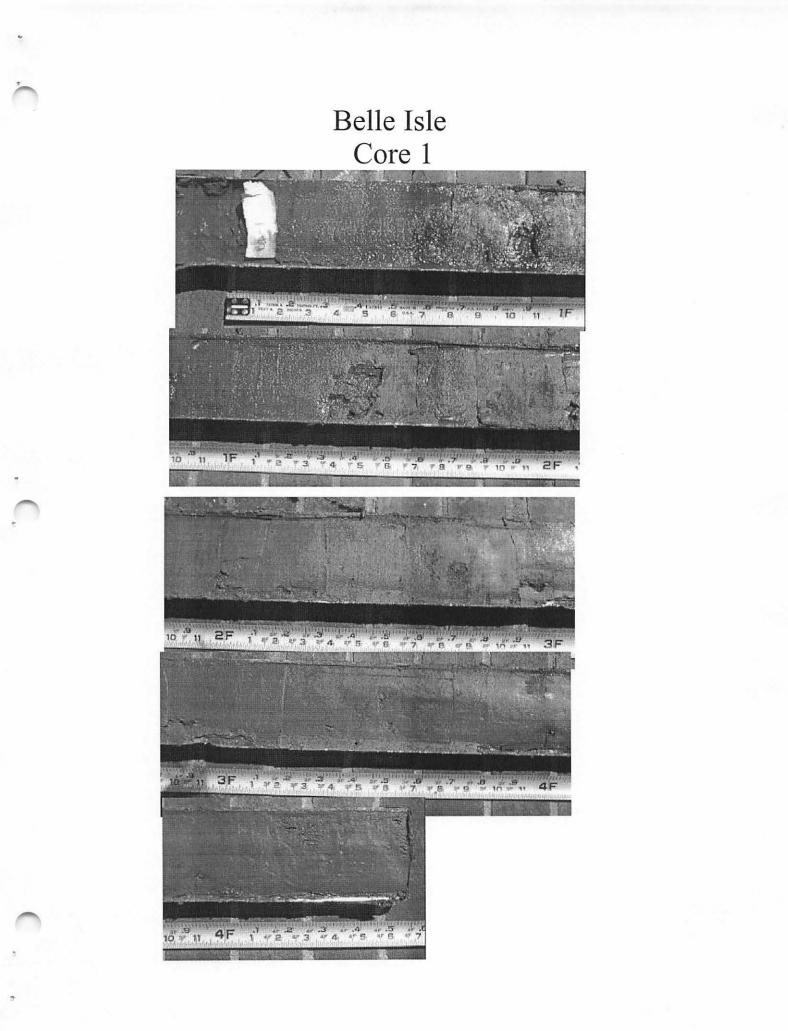
<u>–</u>

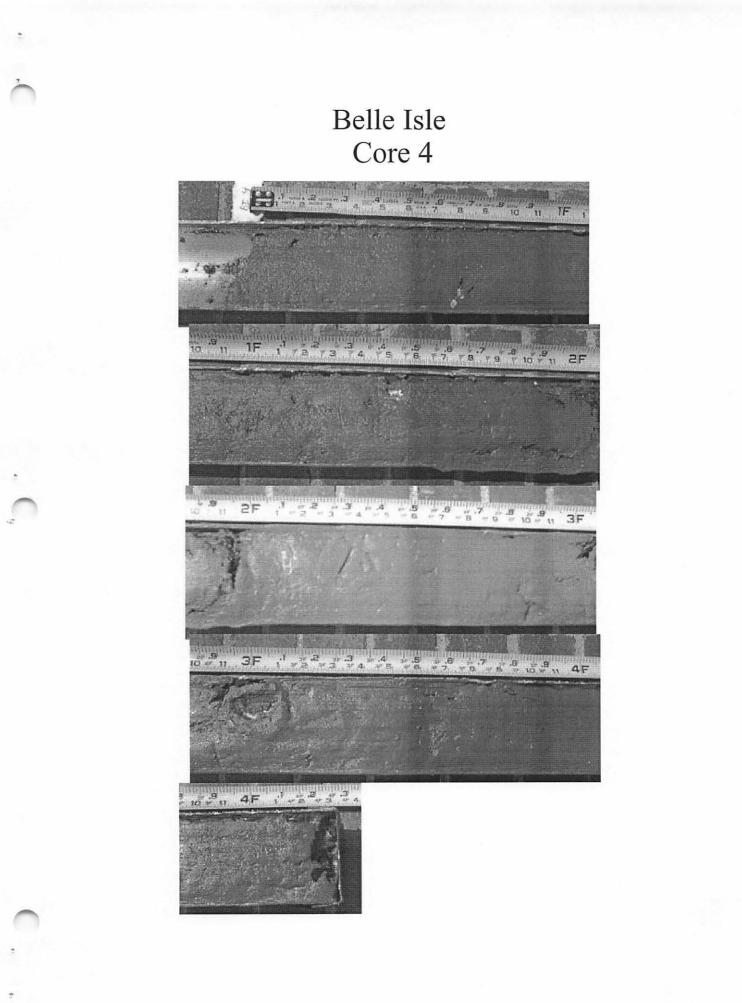
÷

 \sum_{i}

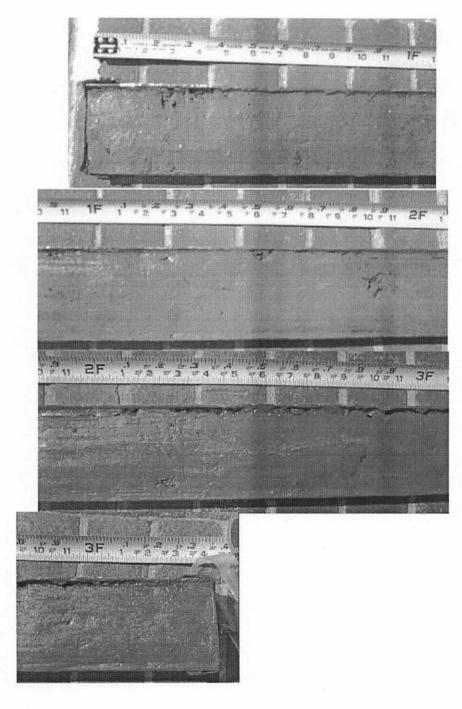
•

CLIEN			State Park					-		2001
SUBJE	·····	Deep Ci Bl-11	reek and Ra	amp Approa -8.4 ft MLW	_			-		Crock
BORIN		bracore	Depth	r		r		Locatio	 ·	Creek
		Diacore		Started:		Completed:		Sample	Moisture	
Elevation MLW	Depth		·	classifica				Blows	Content (%)	Remarks
-3.0			Light gray to oli	ve mottled FineS		 	·			
-3.5	-0.5	11-1								
-3.5	-0.5		Dark olive	to med gra	y Fin	e Sand				
-4.0	-1.0		with little s	ilt (SP)	-					
			Dark olive	with light g	rav m	ottled Fin	e to			Overall
-4.5	-1.5			with trace						Sample
			Shell layer	• • • • • • • • • • • • • • • • • • • •						
-5.0	-2.0	311 -2	Dark olive	with light a	rav m	ottled Fin	e to			
			Med Sand	with trace s	silt (S	P)				
-5.5	-2.5									
-6.0	-3.0		Light gray	with olive a	irav s	triping Fir	ne			
		11-2	to Med Sa	nd with a 1	cm s	hell layer	(SP)			
-6.5	-3.5									
-7.0	<u>-4.0</u>		Olive fine	sand and si	ilt (SF	2)				
7.5	4.5					,				→
-7.5	-4.5	$\langle / / \rangle$								
-8.0	-5.0			ark olive me	ed stif	f Clay wit	h			
0.0_			little silt (C	E)						
-8.5	-5.5	////		En	h					
					-					
							:			

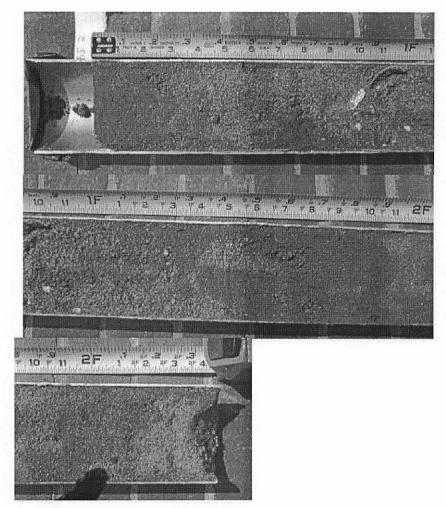

9

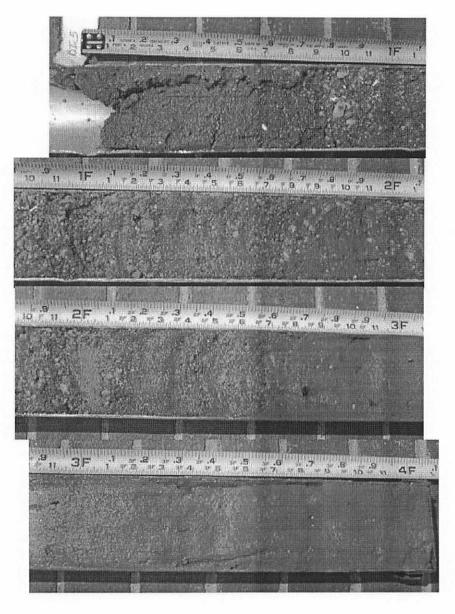

, ,

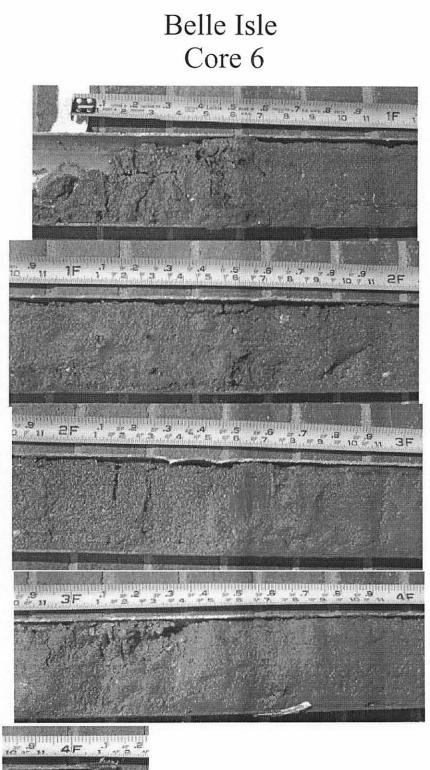
			State Park							_	e 2001	
SUBJE BORIN		Deep Ci BI-12	reek and Ra	amp Approa -7.1 ft MLW							Creek	
		ibracore		Started:		Completed:		LUCau	Driller	_ ·	Oreek	
Elevation				Description of				Sample Blows	Samole	Moisture Content	Remarks	
_MLW	Deptin		(classification)						(ft)	Content (%)	Remarks	
-3.2	0											
			Shell and lig	ht gray Fine S	Sand	Olive Fine	Sand				^	↑
-3.7	-0.5					th trace silt						
			Med olive	with dark ol	live m	ottled Fir	ne to					
-4.2	-1.0	12-1		with trace								
		2									Overall	
-4.7	-1.5	A PARTY OF THE OWNER	Eight onvo which nght gray of ourou i no								Sample	
		12-2	to Med Sa	nd with trac	e silt	(SP)						
-5.2	-2.0				·						↓ ↓	╀
											Ove	ra ra
-5.7	-2.5										Sam	p
			Greenish-o	gray with ye	ellowis	sh orange					12	a
6.2	-3.0			iff - very stil								
-6.7	-3.5											
0.7	-3.5											
-7.2	-4.0				-1							↓
				End	a							
_												
											1	
										1		
<u> </u>		1										
	1											


 $\widehat{}$

Appendix C Core Photos

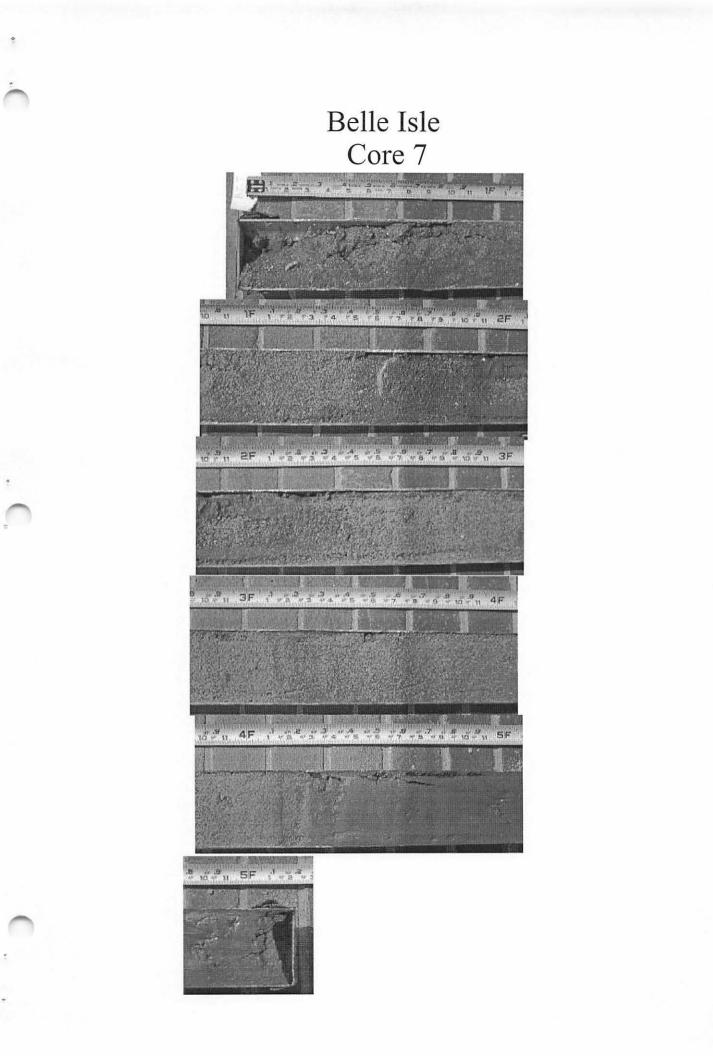


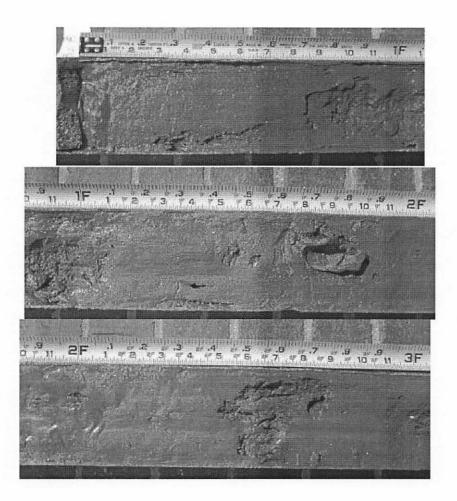

A

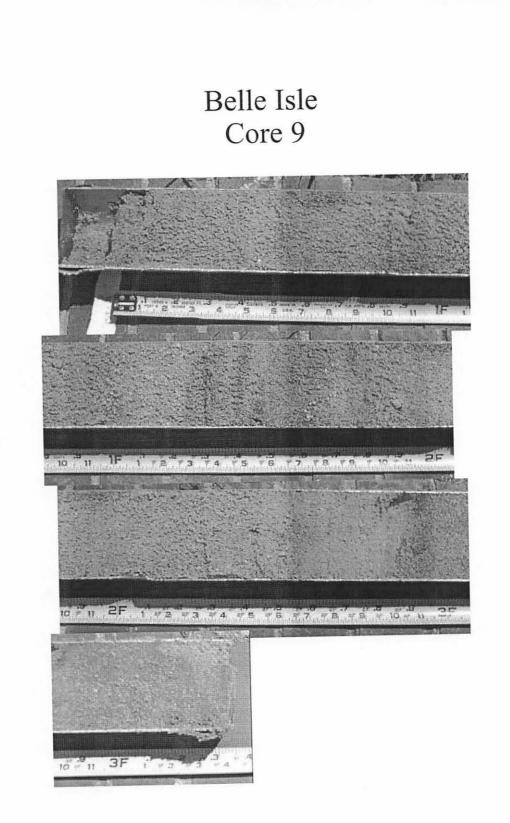


8

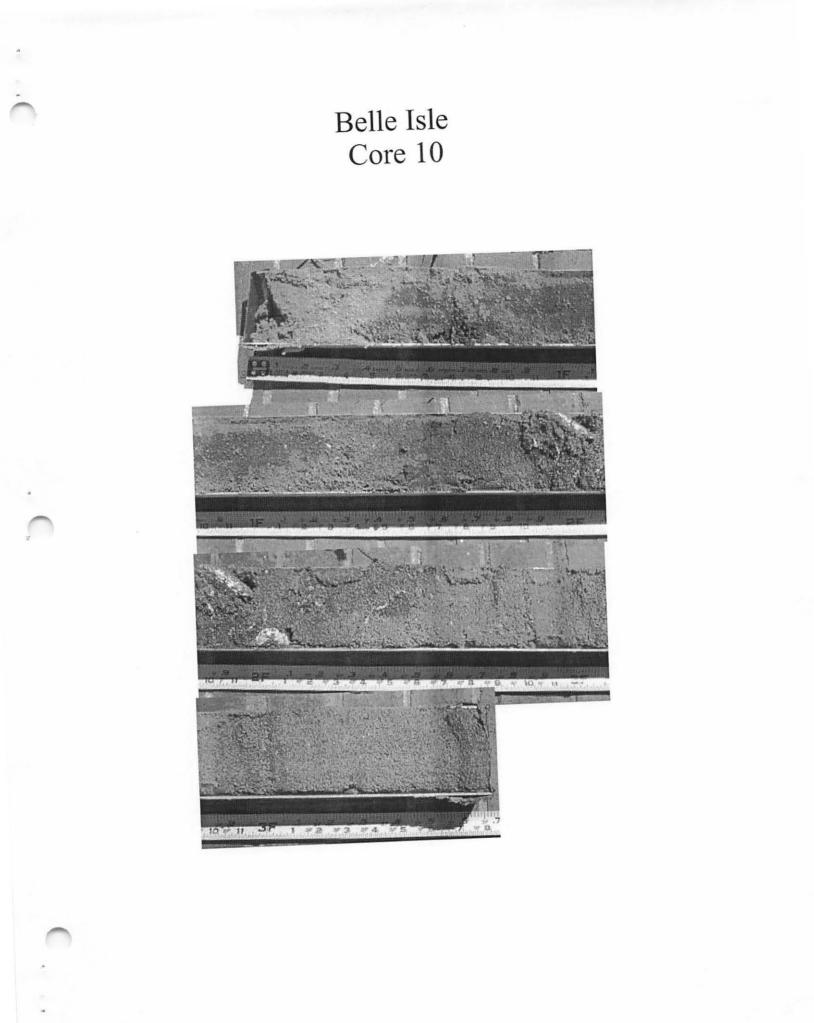
β

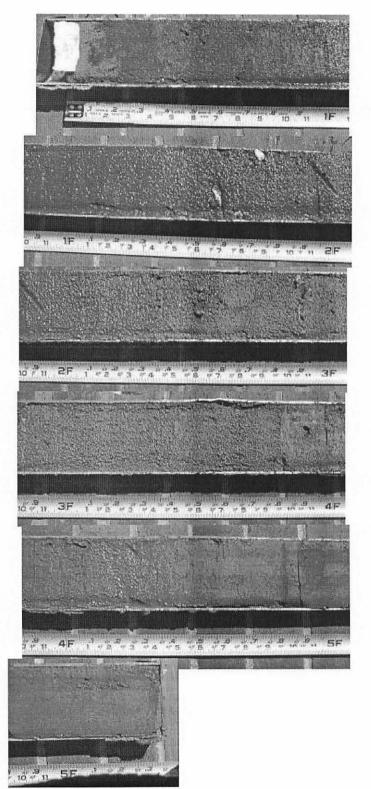


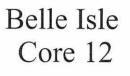



 \circ

4


a




 $\mathbf{\hat{\mathbf{O}}}$

.

.

•

Appendix D Core Sediment Sample Analysis Results

5

7

¢

.

												Total San	mple Statistics		
													Graphic Measures		
					Sample Depth			% Gravel		% Sand	% Silt	% Clay	Mean	Median	
					from top of core		Caught on	Sieve No.	•	Caught on			(mm)	(mm)	
Location	Date	Туре	Core #	Name	(ft)	>0.5 in.	4	10	Total	Sieve #230					
Belle Isle	13-Jun-2001	Core	2	overall	to 2.3 ft	0.00	1.19		4.76	90.53	2.47	2.23	1.02	0.52	
Belle Isle	13-Jun-2001	Core	5	overall	to 2.6 ft	0.00	9.76		22.36	77.64	0.00	0.00	1.04	0.48	
Belle Isle	13-Jun-2001	Core	5	overall 5a	to 3.9 ft	0.00	8.77	11.32	20.09	69.76	6.48	3.67	2.48	0.52	
Belle Isle	13-Jun-2001	Core	5		0.4 ft	0.00	0.00		0.58	99.42	0.00	0.00	0.36	0.20	
Belle Isle	13-Jun-2001	Core	5		1.3 ft	0.00	0.00	5.76	5.76	94.24	0.00	0.00	1.05	0.48	
Belle Isle	13-Jun-2001	Core	6	overall	to 4.2 ft	0.00	0.00	0.60	0.60	92.51	4.63	2.27	0.42	0.31	
Belle Isle	13-Jun-2001	Core	6		0.8 ft	0.00	0.00		0.00	99.74	0.26	0.00	0.31	0.24	
Belle Isle	13-Jun-2001	Core	6	6-2	2.2 ft	0.00	0.00		1.09	98.91	0.00	0.00	0.83		
Belle Isle	13-Jun-2001		6	6-3	3.0 ft	0.00	0.00		0.00	97.53	0.00	2.47	0.24	0.20	
Belle Isle	13-Jun-2001	Core	7	overall	to 4.3 ft	0.00	0.00		1.22	98.78	0.00	0.00	0.73	0.52	
Belle Isle	27-Jun-2001	Core	9		to 3.3 ft	0.00	0.00		2.95	97.05	0.00			0.52	
Belle Isle	27-Jun-2001	Core	9	9-1	0.3 ft	0.00	0.00		1.84	98.16	0.00	0.00	0.82	0.57	
Belle Isle	27-Jun-2001	Core	9		1.2 ft	0.00	0.63		5.06	94.94	0.00	0.00	1.22	0.81	
Belle Isle	27-Jun-2001		9		2.3 ft	0.00	0.00	3.12	3.12	96.87	0.00	0.00	0.96	0.62	
Belle Isle	27-Jun-2001	Core	10		to 3.6 ft	0.00	0.00		1.14	98.86	0.00	0.00	0.64	0.40	
Belle Isle	27-Jun-2001		10	10-1	0.2 ft	0.00	0.00	0.00	0.00	100.00	0.00	0.00	0.37	0.34	
Belle Isle	27-Jun-2001	Core	10		0.9 ft	0.00	0.00		0.00	96.33	2.47	1.20	0.31	0.28	
Belle Isle	27-Jun-2001		10		1.5 ft	0.00	0.00	0.00	0.00	94.89	3.34	1.77	0.32	0.26	
Belle Isle	27-Jun-2001		10	10-4	2.7 ft	0.00	0.00	2.16	2.16	97.84	0.00	0.00	0.86	0.57	
Belle Isle	27-Jun-2001		11	overall	to 4.5 ft	0.00	0.00		0.48	99.52	0.00	0.00	0.41	0.34	
Belle Isle	27-Jun-2001	Core	11	11-1	0.4 ft	0.00	0.00		0.00	97.97	0.00	2.03	0.18	0.14	
Belle Isle	27-Jun-2001	Core	11	11-2	2.0 ft	0.00	0.00		0.00	96.80	0.00	3.20	0.41	0.34	
Belle Isle	27-Jun-2001	Core	11	11-3	3.1 ft	0.00	0.00		0.00	100.00	0.00	0.00	0.41	0.37	
Belle Isle	27-Jun-2001	Core	12	overall	to 2.0 ft	0.00	0.00		0.63	99.37	0.00	0.00	0.67	0.44	
Belle Isle	27-Jun-2001		12	overall 12a	to 3.9 ft	0.00	0.00		0.41	64.21	9.47	25.91	0.44	0.28	
Belle Isle	27-Jun-2001	Core	12	12-1	0.7 ft	0.00	10.19		11.96	81.97	0.00	6.07	1.75	0.34	
Belle Isle	27-Jun-2001	Core	12	12-2	1.7 ft	0.00	5.45	1.82	7.27	90.25	0.00	2.48	1.10	0.26	
						*Sieve #	>0.5 in	4							
							equals	equals	equals	equals					
						Phi	-3.64	-2.25	-1.00	4					
						mm	12.5	4.75	2	0.0625					
						inch	0.50	0.19	0.08	0.0025					

`**`)**``

•••••

·

)•••••

NOTE:

TO: Carol Hartgen Chief Division of International Activities and Marine Minerals

(INTERMAR)

FROM: John Rowland, Geologist, INTERMAR SUBJECT: Meeting Summary and Comments

Sandbridge Shoal and Regional Beach Restoration Projects

Meeting at the U.S. Army Corps of Engineers (USACE) Norfolk District (NAO) in Norfolk, Virginia on August 1, 2001 from 0900 to 1130 AM. The meeting was convened to discuss mutual interests and inter-related topics related to sand resources and beach nourishment and hurricane protection projects along the coast of southeastern Virginia. The Minerals Management Service (MMS) has management responsibilities pertinent to the sand resource and environment of Sandbridge Shoal located in Federal waters off the coast of southeastern Virginia. Approximately 800,000 cubic yards (cy) of the Sandbridge Shoal shoal sand for the 1996 berm construction and hurricane protection at the U.S. Navy (USN) Damneck Training Facility. The USN facility is located along the coast adjacent to Sandbridge Beach, Virginia. In 1998, Sandbridge Shoal was used as source of 1,100,000 cy of sand to restore of the Sandbridge Beach portion of Virginia Beach. In 2002, the USACE NAO has requested the MMS for access to the Sandbridge Shoal to obtain use of approximately 1,500,000 cy of sand for the second application to the beach along the 5- mile reach of Sandbridge Beach. Consequently, the MMS and others at the meeting are interested in the future of Sandbridge Shoal as a source of sand for subsequent projects. In 2004, the City of Virginia Beach and the USACE NAO are also planning to use 1,500,000 cy in a subsequent cycle of beach nourishment on Sandbridge Beach. The USN expects to request the MMS for access and use of additional Sandbridge Shoal sand for another cycle of renourishment along the beach of the USN Damneck Training Facility located adjacent to Sandbridge Beach. The sand volume request by the USN is anticipated to be within the range of 600,000 to 1,500,000 cy. The sand source for the U.S. Navy is also Sandbridge Shoal. However, initial indications are that the USACE and the USN will attempt to synchronize the schedules of the anticipated 2004 operations. Such cooperation would be expected to generate cost savings for the sponsors related to mobilization, the operations, and administration.

Hobbs (personal communication, 2000) estimated that the Sandbridge Shoal contains about 40,000,000 cy of sand and discussed the shoals' physiography and offered an explanation for its' probable origin. However, the estimate is based on sand body geometry, dimensions and a limited number of cores. Consequently, the estimate was not intended to be a volumetric estimate of usable sand for local beach nourishment projects. Based on subsequent survey work, the USACE NAO states that a reasonable estimate for the volume of usable sand remaining is 7,000,000 cy. This sand volume is located on the northern portion of the shoal (defined by the USACE NAO as Section B) from the surface to the -50 ft isopach. The southern portion of the shoal could be expected to contain a similar volume. If Section BB is included the volume of usable sand may increase to about 9, 000,000 cy. The most recent map developed by the USACE NAO showing the shoal surface is available from the USACE NAO and the MMS. The renourishment cycles for Damneck and Sandbridge Beach projects is about 4 years assuming no instances of catastrophic damage incurred from impacts of nor'easters or hurricanes between planned cycles. Based on that cycle frequency (~4 years) and volume estimates (3,000,000 cy), Sandbridge Shoal Section B & BB could be the sand source for those sites until about 2016. The sand for future beach nourishment along the Virginia Beach resort strip will probably be

with the Office of Naval Research obtained 10 vibracores and high-resolution shallow seismic data from the area offshore False Capes, Virginia. Analyses of the vibra-core material will be accomplished during 2001/2002 at George Mason University. The results and related interpretation can be expected to be helpful determining the quality and the quantity of beach quality sand located offshore False Cape, Virginia.

The USACE stated that administrative work is proceeding on schedule for the 2002 Beach Replenishment Project at the Sandbridge Beach. The 2002 and 1998 Sandbridge Beach Projects Designs are essentially identical. The USACE inquired the MMS about the status of the proposed Memorandum of Agreement (MOA) with the MMS. The proposed MOA forwarded by MMS was forward to the U.S. Department of the Interior Solicitor's Office for review in early 2001. The USACE indicated that another copy of the MOA would be sent to assist in the process. The MOA along with a lease agreement, an Environmental Assessment, and Project Cooperation Agreement (PCA) are crucial segments of the multi-agency administrative process for projects such as for beach restoration and hurricane protection.

The USACE and the MMS discussed the progress of the Environmental Assessment (EA) underway by MMS Headquarters. The MMS anticipates that the EA will be completed as scheduled on or before October 1, 2001. The USACE indicated that a Virginia Marine Resource Commission (VMRC) permit was obtained for the Sandbridge Beach Restoration & Hurricane Protection Project. The VMRC, USACE, and City of Virginia Beach worked cooperatively to formulate the permit that would be effective and valid for a 5-year period. The 5- year duration covers an anticipated beach replenishment at Sandbridge Beach and is designed to reduce the efforts associated with VMRC repetitive permitting for repetitive projects while maintaining the high standards of marine resource management standards. Informal discussion continued about the potential to explore a more regional approach to the cyclic renourishment of Sandbridge Beach and the Damneck Facility beaches. The MMS would examine a more regional approach to the Sandbridge Shoal sand resource management and the USACE, City of Virginia Beach, USN, and MMS would increase planning and coordination related to the beach renourishment project cycles at the USN Damneck Facility and at Sandbridge Beach. Significant benefits would be realized by coordination of these adjacent beach restoration projects. Benefits would include efficiencies gained economies of scale; mobilization costs, and streamlined administrative and planning and designs tasks. Attendees agreed to explore the potential within their agencies for developing and implementing a regional approach to marine sand resource and coastal restoration along the coast of southeastern Virginia. Further discussion relating to a regional approach is anticipated to be an agenda item at another meeting in early 2002.

After the meeting adjourned, Carol Hartgen, John Rowland accompanied Tom Felvey, Virginia's Department of Environmental Quality to the resort strip oceanfront in vicinity of 25th Street to observe the beach nourishment operations by Weeks Marine Inc., dredging contractor for the City of Virginia Beach. The operation is part of the federally funded Beach Nourishment and Hurricane Protection project for the City. Sand for the beach widening operation is obtained by Weeks Marine from the Chesapeake Bay Shipping channel offshore of Cape Henry and extending into the Chesapeake Bay. The sand source is about 3- miles north of the present widening area at 25th Street.

In summary, the meeting provided opportunity for Federal, State and local agencies involved with the regional beach restoration and hurricane protection projects along the southeastern coast of Virginia to review their past, present and anticipated activities. The meeting further provided opportunities for the represented agencies to ensure and increase coordination with future projects.

The sand in cy required for beach nourishment projects and the dates of the projects are projected values and are subject to change. The values are intended only as projections for internal planning exercises. Below is the list of the participants and their phone numbers:

Brian Rheinhart, USACE NAO (757/425-6503) Phil Roehrs, City of Virginia Beach, (757/427-4167) Carol Hartgen, MMS (703/787-1300) John Rowland, MMS (703/787-1297) Woody Hobbs, VIMS (804/684/7271) Andy Porter, US Navy Oceana/Damneck (757/433-226) Jim Haluska, US Navy LANT DIV Norfolk (757/322-4889) Michele Cleland, USACE NAO (757/441-7766) Tom Felvey, Commonwealth of Virginia DEQ (804/698-4315) Jerry Swean, USACE NAO (757/441-7101) Jim Creighton, USACE NAO (757/441-7724) Larry Holland, USACE NAO (757/441-7774) Mike Petro, USACE NAO (757/441-7152)

Ð