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1. Introduction
Estuaries are of major significance for organic matter (OM) production, cycling, and export to the coastal ocean 
(Canuel & Hardison,  2016; McCallister et  al.,  2006; Raymond & Bauer,  2001a). Accumulation and decom-
position of OM in the bottom deep trench are closely related to hypoxia and thus impact the health of aquatic 
ecosystems. The OM that fuels the oxygen consumption may originate from the watershed, that is, allochthonous 
source, such as vascular plant detritus, soil leaching and erosion, and agriculture runoff, or from the settled 
phytoplankton production within the system, that is, autochthonous source (Autoc-OM), such as senescent cells, 
zooplankton fecal pellets, and marine aggregates (Rabalais et al., 2010).

The amount of consumption and transformation of OM in an estuary increases with the residence time. For exam-
ple, the long residence time (∼180 days; Du & Shen, 2016) associated with the bathymetry-induced strong water 
reflux (Xiong et al., 2021a) can result in high retention of nutrients and OM in the middle reach of the Chesa-
peake Bay (CB), promoting high rates of internal Autoc-OM production (Fennel & Testa, 2019) and respiration 

Abstract Accumulation and remineralization of surface-produced particulate organic matter (POM) in 
the water column and seabed link closely to hypoxia and the health of aquatic ecosystems. The POM retention 
time provides a key timescale to interpret biochemical reaction processes. In this study, we investigated the 
spatiotemporal variations in the vertical particulate age (VPA) of surface-produced POM, which is the mean 
time elapsed since the particulates last contact the surface, by incorporating major physical processes including 
sinking, resuspension, and deposition in the Chesapeake Bay. It was found that the vertical transport time 
for the particulates (i.e., VPA) is much longer than the dissolved counterparts as the former consists of new 
material from the surface and the resuspended aged material that has elongated resting on the seabed after 
deposition. The VPA is sensitive to settling velocity, especially in low-frequent resuspension environments, 
and varies over 2 orders of magnitude with settling velocity from 0 to 10 m/day. Slow-sinking material can 
remain in suspension and seldom settle to the seabed, thus mainly contribute to pelagic processes, while the 
fast-sinking material connects closely with benthic processes. The seasonality of VPA decreases as the settling 
velocity increases. No significant difference in VPA was found between wet and dry years, yet the episodic 
strong flood events entrain old materials from the depositional lateral shoals to increase VPA in the channel. 
The transport age bridges cross disciplinaries by providing the fourth-dimensional age information as a 
common currency to compare the physical transport timescale with the timescales for biochemical reactions.

Plain Language Summary The Chesapeake Bay is a highly productive estuary, characterized 
by spring phytoplankton blooms and subsequent accumulations of particulate organic matter (POM) in the 
bottom layer, which fuels summertime hypoxia. The retention time of POM provides an important timescale 
to interpret biochemical reactions in estuaries. In this study, we applied the vertical particulate age (VPA), the 
average time elapsed since the POM leaving the surface, to estimate the downward-transport time. The VPA 
accounts for all possible trajectories, including direct sinking and interactions with the seabed via resuspension 
and deposition. It was found that the VPA is much longer than the vertical transport time for dissolved material 
due to the elongated resting of particulates on the seabed and contributions from the resuspended old material. 
The VPA is sensitive to the settling velocity and increases 2 orders of magnitude with the settling velocity from 
0 to 10 m/day in less dynamic environments. The slow-sinking material can remain in suspension while the 
fast-sinking material mostly stays on the seabed. No significant difference in the VPA was found between wet 
and dry years except during the episodic freshwater pulse, which brought aged materials from the depositional 
shoals to increase the VPA in the channel.
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(Du & Shen, 2015; Kemp et al., 1992), and further developing the recurring summertime hypoxia and anoxia in 
the deep central basin (Murphy et al., 2011). Accumulating evidence suggests the connection between the depo-
sition of springtime OM to sediments and the summertime oxygen depletion in the bottom of CB (Cerco, 2000; 
Malone et al., 1988; Zheng & DiGiacomo, 2020), yet the specific transport time for the surface-produced OM 
from the spring phytoplankton blooms to reach the bottom has not been quantified. The transport time is one of 
the key timescales to interpret the biochemical reaction processes and provides an important linkage between the 
physical and biochemical processes by placing them in a comparable currency (Lucas & Deleersnijder, 2020; 
Lucas et al., 2009).

As the phytoplankton species typically shift from the springtime larger diatoms with relatively high sinking 
rates to the summertime smaller diatoms and other taxa including dinoflagellate, cyanobacteria, chlorophytes, 
and picophytoplankton (Brush et al., 2020; Malone & Chervin, 1979; Marshal et al., 2006), the organisms with 
different sinking rates may experience diverse transport pathways and travel times from the surface to the bottom, 
thus contribute differently to the pelagic and benthic biochemical processes. It is suggested that the springtime 
diatoms can sink to the benthic layer and probably join the benthic food chains before the formation of the sum-
mer thermocline, while the summertime nanoplankton is more vulnerable to grazing thus enters the pelagic food 
chains before sinking from the surface layer (Malone & Chervin, 1979). Previous investigations indicate that the 
accumulation of labile OM deposited on the seabed can carry over to the following spring due to low temperature, 
contributing to the elevated sediment oxygen demand (SOD) and the reduced oxygen concentration in the water 
column (Brady et al., 2013; Officer et al., 1984; Taft et al., 1980). The content of sedimentary OM also depends 
on the source and the potential retention efficiency in different environments. For example, the sedimentary OM 
content is high in the oligohaline and mesohaline CB, as the former receives the fluvial OM while the latter is 
supported by the sinking of spring phytoplankton blooms (Boynton et al., 2018; Testa et al., 2020). It is, therefore, 
of interest to estimate the duration for the surface-produced OM to remain in the sediments at different locations 
with diverse dynamics.

Recently, J. Wang and Hood (2020) implemented a backward Lagrangian particle tracking model to trace the 
origin of the bottom particulate organic matter (POM) that fuels deep channel hypoxia in the mesohaline CB. 
The model results suggest that the locally originated POM with high sinking rates is most important in driving 
oxygen depletion. Nevertheless, the potential interactions between particles and bottom sediments, for exam-
ple, resuspension and deposition which can elongate the travel distance of the particles, were neglected in their 
particle tracking model. The benthic-pelagic coupling in shallow coastal environments can regulate the transfer, 
retention, and recycling of OM and influence the recovery time of eutrophic ecosystems (Boynton et al., 2018; 
Brady et al., 2013; Testa et al., 2020). The downward transport of OM is a primary mechanism that connects ben-
thic and pelagic habitats (Brady et al., 2013; Z. Wang et al., 2020). Cerco et al. (2010) suggest that deposition of 
spring diatom blooms to the sediments can provide a significant carbon source to the SOD. The degree to which 
sediment resuspension and transport affect estuarine biochemistry was quantified by Moriarty et al. (2020). Be-
sides the recognized significance of resuspension and deposition processes on the water column biochemistry, the 
transport timescale affected by these processes has not been well studied yet.

As the POM leaves the surface layer, it would take multiple trajectories to the bottom and fuel the deep-water ox-
ygen depletion, including direct sinking from the overlying water column (Hagy et al., 2005; Kemp et al., 1997) 
and indirect sources from the shallow flanks via lateral circulation (Cerco et al., 2013; Malone et al., 1986; Testa 
& Kemp, 2008; H. Wang, 2020) and from the downstream via gravitational circulation (Malone et al., 1988; Of-
ficer et al., 1984). Despite the various pathways, the vertical particulate age (VPA) quantifies the overall time for 
the downward transport of the surface layer POM to a target location such as the bottom water layer. VPA is de-
fined as the mean time elapsed since the particulates under consideration last contact the surface where the VPA 
is zero. The general theory of the age for dissolved substances is developed by Delhez et al. (1999) and is widely 
applied to quantify the transport timescale of water mass, pollutants, and dissolved nutrients in major coastal 
waterbodies (e.g., de Brye et al., 2012; Deleersnijder et al., 2001; Gustafsson & Bendtsen, 2007; Lucas & Deleer-
snijder, 2020; Shen & Haas, 2004; Shen & Wang, 2007; Sun et al., 2020; Zhang et al., 2010). Age is defined 
as the time elapsed since the particle last contacts with its source region (Delhez et al., 1999; Takeoka, 1984). 
The original Constituent-oriented Age and Residence time Theory (CART; www.climate.be/cart) formulated for 
dissolved tracer (Delhez et al., 1999) was extended by Mercier and Delhez (2007) to calculate the age of sinking 
material, featuring settling and interactions with the seabed via resuspension and deposition. The transport age of 

http://www.climate.be/cart
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particulate material has been successfully used to investigate the river-borne sediment transport in the York River 
(Gong & Shen, 2010), Hudson River (Ralston & Geyer, 2017), and Pearl River Estuary (Zhu et al., 2020, 2021).

To date, the quantifications of the particulate material transport age are all with sources from the watershed, 
seldom focusing on the surface-originated sinking material. In the current study, we applied the CART approach 
to quantify the vertical transport timescale of the surface-produced particulate material (i.e., the VPA) in CB, 
a large productive estuary on the eastern coast of the United States. The particulates are some combinations of 
dead or dying phytoplankton, zooplankton remains, fecal pellets, and organic aggregates including the adsorbed 
dissolved OM (Officer et al., 1984). We mainly place the VPA in an ecological perspective. It measures the mean 
transport time of particulate material from the surface to a target location as the material may experience different 
trajectories. As a first step toward the understanding of the vertical transport timescale of particulate material, 
this study focuses on the influence of physical processes (e.g., advection, settling, resuspension, and deposition), 
which would differentiate the particulate material transport greatly from the dissolved counterpart. The full cou-
pling of the complicated biochemical reactions associated with the POM and the physical transport into the age 
algorithms and the potential significance merit further efforts.

This paper is organized as follows. Section 2 described the hydrodynamic model and diagnostic transport age. 
The results of the VPA and the respective total time spent in the water column and on the seabed for material with 
various settling velocities were presented in Section 3. The influence of settling velocity, resuspension process, 
and freshwater discharge on the VPA were discussed in Section 4, with the conclusions were given in Section 5.

2. Methodology
2.1. Hydrodynamic Model

The Environmental Fluid Dynamics Code (EFDC, Hamrick, 1992) was applied to simulate the hydrodynamics 
and to calculate the transport timescale of particulate material. The present model application in CB has been 
well-calibrated and reproduces reliable stratification and de-stratification in both wet and dry years (Hong & 
Shen, 2012). It utilizes a 112 by 224 curvilinear grid in the horizontal dimension with 20 evenly spaced sigma 
coordinates in the vertical dimension. The model domain includes the major tributaries and the adjacent shelf 
region (Figure 1a). It is forced by river discharges from USGS observations at nine large tributaries, tides inter-
polated from three monitoring stations (Lewes, Delaware; CBBT, Virginia; Duck, North Carolina), and winds 
from the North America Regional Reanalysis. The salinity boundary condition was interpolated from the monthly 
climatology of World Ocean Atlas 2001 (Boyer et al., 2005). The model is initialized with the long-term mean 
conditions from the observations by the Chesapeake Bay Program.

The transport equation for a tracer in the water column with settling implemented in the model is similar to that 
for the suspended sediment and is expressed as

𝜕𝜕𝜕𝜕
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 (1)

where, C [gm−3] is a numerical tracer in the present age study. ws is the settling velocity [ms−1], which is zero for 
dissolved material. Kh and Kz are horizontal and vertical diffusivities [m2s−1], respectively. The velocity field (u, 
v, w) and the diffusion coefficients are provided by the hydrodynamic module.

At the surface water, no material flux is allowed and the boundary condition is

𝑤𝑤𝑠𝑠𝐶𝐶 +
𝜕𝜕

𝜕𝜕𝜕𝜕
(𝐾𝐾𝜕𝜕𝐶𝐶) = 0 (2)

The material in the bottom water layer exchanges with the seabed through deposition and resuspension processes,

𝑤𝑤𝑠𝑠𝐶𝐶 +
𝜕𝜕

𝜕𝜕𝜕𝜕
(𝐾𝐾𝜕𝜕𝐶𝐶) = 𝐷𝐷 − 𝐸𝐸 (3)

where, D and E are the corresponding deposition and resuspension (or erosion) rates. The erosion rate E is cal-
culated as
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 (4)

where, M is an empirical constant with the same unit as E and τe is the critical shear stress for erosion. τb is the bed 
shear stress. In this study, constant values of empirical parameters of M = 3 × 10−3 gm−2s−1 and τe = 0.05 Nm−2 
were used within the model domain (Feng et al., 2015; Moriarty et al., 2020). Assuming all particulate material 
with different settling velocities will be mixed together on the seabed, the critical shear stress was set as the same 
for all case studies to evaluate the influence of settling velocity.

The deposition rate is calculated as (Cerco et al., 2013)

𝐷𝐷 =

⎧

⎪

⎨

⎪

⎩
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 (5)

where, Cb is the material concentration at the bottom water layer. τd [= 0.035 Nm−2] is the critical shear stress for 
deposition (Gong & Shen, 2010), below which the material settles to the bottom sediments.

At the seabed, the particulate material is allowed to settle and be re-entrained into suspension. For simplicity, only 
one sediment layer and no decay or burial were considered in the model. Ignoring bedload transport, the mass per 
unit area on the seabed Cs varies according to

𝜕𝜕𝜕𝜕𝑠𝑠

𝜕𝜕𝜕𝜕
= 𝐷𝐷 − 𝐸𝐸 (6)

Figure 1. (a) Model grid covering the Chesapeake Bay (CB) and the adjacent continental shelf, with the black dots denoting the location of the main channel and the 
white line denoting the selected cross-bay section in the upper bay. The mainstem of CB is divided into lower (37–38°N), middle (38–39°N), and upper bay (>39°N). 
(b) and (c) Daily discharge from all major tributaries of the typical wet (1996) and dry years (2001).
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For dissolved material, the deposition rate, erosion rate, and settling velocity are zero.

2.2. Transport Age

To characterize the timescale of particulate material transport, we modified the age calculation in EFDC that was 
previously used to track the chronology of water parcels (Hong & Shen, 2013) by incorporating settling, resus-
pension, and deposition (Figure 2). The CART framework introduces an age concentration that is treated exactly 
as the tracer concentration, but with a source term (“C” in Equation 7 given below), indicating the coupling with 
the tracer concentration and accounting for the aging process (Delhez & Wolk, 2013). The age concentration in 
the water column is

𝜕𝜕𝜕𝜕
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𝜕𝜕(𝜕𝜕𝛼𝛼)

𝜕𝜕𝜕𝜕
+

𝜕𝜕(𝜕𝜕𝛼𝛼)

𝜕𝜕𝜕𝜕
+

𝜕𝜕𝜕𝜕 (𝑤𝑤 −𝑤𝑤𝑠𝑠)

𝜕𝜕𝜕𝜕
=

𝜕𝜕

𝜕𝜕𝜕𝜕

(

𝐾𝐾ℎ
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)

+
𝜕𝜕

𝜕𝜕𝜕𝜕

(

𝐾𝐾ℎ
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)

+
𝜕𝜕

𝜕𝜕𝜕𝜕

(
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𝜕𝜕𝜕𝜕

)

+ 𝐶𝐶 (7)

where, α is the age concentration and C is the tracer concentration in Equation 1. The mean age A can be estimat-
ed as the ratio of the age concentration to the tracer concentration

𝐴𝐴 =
𝛼𝛼

𝐶𝐶
 (8)

On the seabed, the age concentration is

𝜕𝜕𝜕𝜕𝑠𝑠

𝜕𝜕𝜕𝜕
= 𝐶𝐶𝑠𝑠 +𝐷𝐷𝜕𝜕 − 𝐸𝐸𝜕𝜕 (9)

where, Dα and Eα in the above budget equation denote the deposition and erosion fluxes of age concentration. 
These fluxes account for the exchange of age content between the water column and the seabed. The material 
settles on the seabed with its age and is resuspended with the mean age of the material on the seabed (Ralston & 
Geyer, 2017),

𝐷𝐷𝛼𝛼 = 𝐴𝐴𝑏𝑏𝐷𝐷 =
𝛼𝛼𝑏𝑏

𝐶𝐶𝑏𝑏

𝐷𝐷 (10)

Figure 2. Schematic illustration of the vertical particulate age (the black lines, which equals to in-suspension age + on-seabed age) and the net deposition age (blue 
lines). The red cross mark denotes no resuspension from the seabed for the net deposition age. The gray shadows denote the “in-suspension age,” while the orange 
shadows denote the “on-seabed age.” Several processes influence the transport pathways of particulate material, including advection, settling, diffusion, resuspension, 
and deposition. Symbols courtesy of the Integration and Application of Maryland Center for Environmental Science (https://ian.umces.edu/media-library/symbols/).
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𝐸𝐸𝛼𝛼 = 𝐴𝐴𝑠𝑠𝐸𝐸 =
𝛼𝛼𝑠𝑠

𝐶𝐶𝑠𝑠

𝐸𝐸 (11)

where, Ab (αb), As (αs) are the age (age concentration) at the bottom water layer and on the seabed, respectively. 
The bottom boundary condition that couples Equations 7–11 is

𝑤𝑤𝑠𝑠𝛼𝛼 +𝐾𝐾𝑧𝑧
𝜕𝜕𝛼𝛼

𝜕𝜕𝑧𝑧
= 𝐷𝐷𝛼𝛼 − 𝐸𝐸𝛼𝛼 (12)

To compute the vertical transport age, conservative tracers were continuously released throughout the entire 
surface layer of the bay (i.e., source region), excluding the grid cells outside the bay mouth (Figure 1a). At the 
surface, the boundary conditions are specified as C(t, x, y, z) = 1 and α(t, x, y, z) = 0, and thus the VPA was reset 
to zero at the source region and continued aging with each model time step both in the water column and on the 
seabed after deposition. To further understand the dynamics of particulate material transport, the concept of age 
is adapted to quantify specifically (a) the time spent in the water column (“in-suspension age”, gray-shaded black 
lines in Figure 2) and (b) the time spent on the seabed (“on-seabed age”, orange-shaded black lines in Figure 2; 
Delhez & Wolk, 2013). Age can be understood as the time recorded by a virtual clock attached to a particle that 
starts running when the particle enters the domain of interest. To quantify the on-seabed age, the clock starts 
only when the particle deposits to the sediments and stops when the particle is resuspended, that is, keeping Cs 
in Equation 9 but setting C = 0 in Equation 7. In contrast, the in-suspension age, ignoring the resting phases 
on the seabed, can be quantified by starting the clock only when the particle is suspended, that is, keeping C in 
Equation 7 but setting Cs = 0 in Equation 9. Theoretically, the time elapsed since the particulates leave the surface 
layer where the VPA = 0 is the sum of the time spent in the water column (in-suspension age) and the time spent 
in the sediments (on-seabed age). The calculation of in-suspension age and on-seabed age by means of the virtual 
age clock is similar to partial age (Mouchet et al., 2016).

Additional sensitivity studies of no resuspension (E = 0 in Equations 3, 4, 6, and 11 and Eα = 0 in Equations 9, 11, 
and 12; Table 1) were performed to investigate the influence of the resuspension process on the vertical transport 
age. This age is called “net deposition age,” which only tracks the time elapsed within the water column since the 
particulates leave the surface and deposit to the seabed for the first time (blue lines in Figure 2).

2.3. Model Setup

This study aims to evaluate the vertical transport timescale of the surface-originated particulate material under 
different settling velocities and freshwater discharge conditions. The years of 1996 and 2001, the typical high 
flow and low flow years, respectively (Harding et al., 2016, Figure 1) were chosen to investigate the impact of 
freshwater on the VPA. The settling velocities used in the biochemical models in CB range from 0.1 m/day to 
20 m/day, with material size varying from small phytoplankton to large detritus and aggregates (Feng et al., 2015; 
Moriarty et al., 2020; J. Wang & Hood, 2020). The effective sinking velocity for phytoplankton in CB based 
on observed Chl-a concentration is 1.0–1.5 m/day (Hagy et  al., 2005). Therefore, four representative settling 

Terms Definition Notes

Vertical particulate age (VPA) Time elapsed since the particulates last contact the surface layer. The transport process includes 
settling, deposition, and resuspension.

VPA = In-suspension age + On-
seabed age

In-suspension age Total time for the particulates spent in the water column since leaving the surface layer. Cs = 0 in Equation 9

On-seabed age Total time for the particulates spent in the sediments since leaving the surface layer. C = 0 in Equation 7

Net deposition age Time elapsed within the water column since the particulates leave the surface and deposit to the 
sediments for the first time.

E = 0 in Equations 3, 4, 6, and 11
Eα = 0 in Equations 9, 11, and 12

Vertical dissolved age (VDA) Time elapsed since the dissolved material last contacts the surface layer; No settling, 
deposition, and resuspension is included.

ws = 0 in Equations 1–3, 5, and 12
E = 0 in Equations 3, 4, 6, and 11
D = 0 in Equations 3, 5, 6, and 10
Eα = 0 in Equations 9, 11, and 12
Dα = 0 in Equations 9, 10, and 12

Table 1 
Definitions of All Transport Age
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velocities (0, 1, 3, and 10 m/day) were applied in the present model to characterize the common groups of par-
ticulate material produced in CB. The zero settling velocity represents the dissolved material and the associated 
vertical transport timescale is “vertical dissolved age (VDA)” in contrast to the VPA (Table 1).

We assumed that initially no material was presented in the water column and on the seabed as we are more 
interested in the transport process of the newly produced POM from the primary production. The clock started 
once the tracer was released from the surface layer. The erosion rate E was limited by the available material on 
the seabed at each time step. A 60-s time step was used for both hydrodynamic and tracer simulations. The tracer 
concentration and age concentration were averaged daily for further analysis. Each case was cyclically run for 
10 years (Shen & Wang, 2007). Specifically, the model was first run starting with the initial conditions from 1 
January 1996, until 31 December 1996. The simulated age concentration and tracer concentration in the water 
column and on the seabed from 31 December 1996 were then used to restart the model on 1 January 1996, and the 
model was run until the end of 1996 again. The restart file was updated every year. In total, this one-year run was 
conducted ten times to ensure the model has spun up adequately. The in-suspension age can reach the equilibrium 
within 2–3 recycle runs, yet the on-seabed age will continue to grow as the model runs but the increasing trend 
gradually decreases to approach the dynamic equilibrium. Thus, all case studies were stopped at the tenth year 
and the results at the last year were used for diagnostic study of the VPA for particulate material in CB.

3. Results
3.1. Vertical Transport Age for Dissolved and Particulate Material

The representative results from the case with ws = 1 m/day in the wet year was presented here to illustrate the 
marked differences in the vertical transport age between the dissolved (i.e., VDA) and particulate material (i.e., 
VPA; Figure 3). The potential influence of settling velocity and freshwater discharge will be addressed below. 
The VDA is characterized by distinct seasonality (Figures 3a–3d, and Figures 4a and 4b), with the greatest val-
ue of 28–29 days during the most stratified summer and autumn in the deep channel of the mid-bay, where the 
phytoplankton productivity and biomass are the highest and the summer oxygen depletion is the most extensive 
(Malone et al., 1988).

The horizontal distributions of the VDA and VPA share similar patterns in the regions from the bay mouth to 
the Rappahannock River mouth (Figure 3, location of the Rappahannock River is shown in Figure 1a), which is 
generally characterized by strong wave and current-induced shear stress (Moriarty et al., 2020) and vigorous wa-
ter efflux and reflux (Xiong et al., 2021a). Yet a considerable increase in the VPA can be observed in the middle 
to the upper bay after incorporating settling and the instantaneous resuspension and deposition processes into 
the downward transport of particulate material (Figures 3e–3h). The horizontal pattern of the VPA also reverses 
between the shallow and deep water compared to the VDA in these regions. In particular, the shallow flanks have 
much higher VPA than the deep channel, which has fast tidal currents (Xiong et al., 2021b) and strong shear. The 
higher VPA over the shallow flanks corresponds to the low resuspension frequency (regions shown in Moriarty 
et al., 2020), resulting in the lengthy material retention on the seabed. Once the deposited material was resuspend-
ed, it provides a source of old material contributing to the increased VPA in the water column.

Moreover, a surge in the VPA was found in the upper bay (Figure 4c) following a large flood event (Figure 1b, 
Days 20–30 since the start of 1996), associated with the increased bottom shear stress (Figure  4e). Such an 
enormous flood event resulted from a record snowfall followed by a drenching rain (Sanford et al., 2001). It 
delivered ∼9 × 109 m3 of freshwater entering the bay from the Susquehanna River in approximately two weeks 
(Zynjuk & Majedi, 1996). Some other flood events also occurred this year, for example, the second freshwater 
pulse around Day 250 (Figure 1b), yet only the strong long-lasting one can cause a detectable response in the 
VPA. The surge of VPA in the upper bay in response to the spring freshwater pulse was also observed in the dry 
year of 2001 (Figure 4d). Instead, the freshwater pulse induces little variations in the VDA (Figures 4a and 4b), 
which is demonstrated by the sensitivity experiments in Hong and Shen (2013). Generally, the VPA is similar 
in both wet and dry years (Figures 4a–4d) but highly depends on the settling and resuspension process. As will 
be shown below, the VPA becomes less responsive to the freshwater discharge (i.e., reduced seasonality) as the 
settling velocity increases.
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3.2. Total Time Spent in the Water Column and on the Seabed

Though sinking faster than the dissolved material, the much higher VPA for the particulate material at the bottom 
water layer, as shown above, encourages further analysis on the causes of the differences, which can be under-
stood by partitioning the VPA into in-suspension age and on-seabed age (Figures 5 and 6). As the wet and dry 
years share very similar spatiotemporal patterns in the VPA, only the results of the wet year were shown hereinaf-
ter. It can be seen that the slow-sinking material (ws = 1 m/day) was suspended for the longest time in the middle 
channel during summer and autumn due to the persistent stratification (Figures 5a–5d). The slow-sinking mate-
rial stays in suspension (e.g., ∼25 days in the middle bay for ws = 1 m/day) longer than the fast-sinking material 
(e.g., ∼20 days for ws = 3 m/day) as is commonly expected. The in-suspension age decreases and the seasonality 
diminishes as the sinking rate increases (Figures 5, 6a, and 6b). It is noted that a center with high in-suspension 
age was located in the upper bay around 38.9–39.1°N (Figures 5e–5h) within the estuarine turbidity maximum 
(ETM) zone, indicating the localized efficient particle trapping capacity (Geyer, 1993; Lee et al., 2012; Sanford 
et al., 2001). The physical-induced entrapment of particles and aggregation of foods in ETM tend to enhance 
the biomass and production potential of plankton and fish (Boynton et al., 1997; North et al., 2005; North & 
Houde, 2001).

The longitudinal distributions of the yearly mean in-suspension age and on-seabed age were shown in Figures 6c 
and 6d. The distinct increase in the VPA for ws = 1 m/day induced by the large flood event is also indicated as the 
peak in the upstream around 39.1–39.2°N in Figure 6c. Interestedly, the freshwater pulse has a weak impact on 
the in-suspension age (the same phenomenon observed for the VDA, Figure 4a). Instead, it induces an obvious 

Figure 3. Seasonal variations of (a)–(d) the vertical dissolved age (days) and (e)–(h) the vertical particulate age (days) at the bottom water layer in the wet year 1996. 
Spring covers March to May, while summer covers June to August, autumn covers September to November, and winter covers December to February.
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increase in the on-seabed age. The in-suspension age mainly depends on the intensity of stratification and the 
properties of the material, for example, settling velocity and erodibility. As the bay is already buffered with a 
large amount of freshwater, the effects of springtime discharge pulse tend to diminish after several months of 
adjustment (Hong & Shen, 2013), thus the freshwater pulse has a minor influence on the in-suspension age on 
an annual scale.

For the on-seabed age, the clock turns on when the particulate material reaches the bottom sediments and turns 
off when it is resuspended. As age is a mass-weighted average of the newly settled material and the material 
deposited earlier on the seabed, the distinct increase in the on-seabed age during the strong freshwater pulse is 
postulated to be induced by the delivery of the much older material resuspended from the lateral depositional 
shallow shoals (Figure S1 in Supporting Information S1). For the case of ws = 3 m/day, the annual-averaged 
on-seabed age in the middle bay is about 120 days (Figure 6d), suggesting that the POM deposited after the spring 
phytoplankton blooms contributes to the SOD and supports the phytoplankton growth in summer via the recycled 
nutrients (Testa & Kemp, 2008). Note that the age calculations only quantify the new material input from the 
surface, independent of the material on the seabed before the start of the simulation which may be much older 
(Ralston & Geyer, 2017). For our simulation, the maximum material age in the sediment should be smaller than 
the total simulation period, that is, 10 years.

In the high shear stress regions along the mainstem bay, such as downstream of the Rappahannock River mouth 
(Figure 1a), material may retain in the sediments shortly at the slack tides but then is resuspended without much 
long-term deposition. Therefore, the percentage of in-suspension age to the VPA can reach up to 99% in the lower 
bay especially for the slow-sinking material (Figures 6c and 6e). In contrast, the fast-sinking material can remain 
on the seabed and the on-seabed age accounts for 90% of the VPA in the mid-bay (Figures 6d and 6e), contribut-
ing to the high sedimentary OM content in this region besides the locally high production of OM from the spring 

Figure 4. Time series of the daily (a)–(b) vertical dissolved age (days) and (c)–(d) vertical particulate age (days) at the bottom water layer. (e)–(f) Daily averaged 
current-induced bottom shear stress. All variables were averaged over the lower, middle, and upper reach of the main channel (Figure 1a).
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phytoplankton bloom (Testa et al., 2020). Moreover, the reported limited nitrogen and carbon accumulation in 
the sediments in the polyhaline reach of CB could also be explained by the short retention time for particulate 
material in the sediments in the dynamic lower bay besides the locally low phytoplankton biomass and distant 
fluvial sources (Testa et al., 2020).

4. Discussion
4.1. Influence of Settling Velocity on Vertical Transport Age

Settling velocity is an important property for both inorganic and organic particles. For example, the rapid-settled 
large particles were more effectively trapped in the ETM (Sanford et al., 2001). Small algae species enter the 
pelagic food chains more easily than the large species, which sink faster to the bottom and more likely enter the 
benthic food chains (Malone & Chervin, 1979). The process of surface OM settling to the bottom can effectively 
lengthen the material retention time in a system, allowing decomposition or sequestration before it might oth-
erwise be flushed out (Hopkinson & Vallino, 1995). The settling velocity of the POM in the ocean features a 
wide range, from <1 m/day to >100 m/day based on field measurements (Stemmann et al., 2004; Turner, 2015). 
The reported algal settling velocity typically ranges from 0.1 to 5 m/day (Cerco, 2000), as a function of the algal 
size, shape, density, behavior, flocculation processes (Heaney & Eppley,  1981; Hutchinson,  1967; Moore & 
Villareal, 1996), and the algal buoyancy regulated by nutritional status and light intensity (Bienfang et al., 1982; 
Richardson & Cullen, 1995; Waite et al., 1992).

In this study, the settling velocities of 0, 1, 3, and 10 m/day were selected to characterize the vertical transport 
time for different classes of dissolved and particulate material. It is found that the VPA is rather sensitive to the 
variations of settling velocity. As the settling velocity increases from 0 to 10 m/day, the VPA at the bottom water 

Figure 5. Seasonal variations of the in-suspension age (days) at the bottom water layer for the wet year 1996, (a)–(d) ws = 1 m/day and (e)–(h) ws = 3 m/day.
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layer increased ∼2 orders of magnitude in the middle bay (Figures 7 and 8) due to the low resuspension frequency 
(Moriarty et al., 2020), the elongated retention time on the seabed, and the contributions from the resuspended 
aged seabed material (Figure S1 in Supporting Information S1). In the dynamic lower bay, the sensitivity of the 
VPA to ws decreases as the patterns of VPA are close among these cases (Figures 7 and 8). Modeling studies in 
the York River (Gong & Shen, 2010) and the Hudson River (Ralston & Geyer, 2017) also found that the sediment 

Figure 6. (a) and (b) Time series of regional-averaged daily in-suspension age (days) at the bottom water layer for ws = 1 m/day and ws = 3 m/day in the wet year 1996. 
(c) and (d) Longitudinal distributions of the yearly mean vertical particulate age (VPA; days), in-suspension age (days), and on-seabed age (days) at the bottom water 
layer. (e) Longitudinal variations of the percentage of in-suspension age to the VPA.

Figure 7. Yearly mean vertical dissolved or particulate age (days) at the bottom water layer for the cases with different settling velocities in the wet year 1996. The 
values are scaled by logarithm base 2 for better visualization.
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transport age with sources from the watershed is sensitive to the settling ve-
locity, with increased transport time for sediment to travel from the upstream 
to the mouth when settling velocity is large as faster sinking leads to higher 
rates of deposition and slower rates of transport outward.

For the vertical transport, the fast-sinking material settles to the seabed 
quicker than the slow-sinking counterpart and has elongated total deposition 
time on the seabed. Material with the fastest sinking rate (10 m/day) in the 
present case studies has a VPA of over 500 days in the bottom water layer 
of the middle bay (Figure 8d), much longer than the in-suspension age that 
excluding the time spent on the seabed (∼10  days in Figures  11c below). 
Given such a long period of resting on the seabed and the quick settling, the 
fast-sinking particulate material is more closely associated with the localized 
(less downstream or upstream transport) benthic biochemical cycles against 
the slow-sinking material that can be suspended in the water column for a 
lengthy duration and is more prone to grazing, entering the pelagic food chain 
potentially over a wider spatial extent, and contributing to the pelagic bio-
chemical cycles. Additionally, the fast-sinking particulate material may have 
higher critical shear stress for erosion (although we assume all sinking mate-
rials will be well mixed on the seabed and used the same critical shear stress 
to focus on the influence of settling velocity), requiring stronger shear for 
erosion and allowing more time to stay on the seabed. Higher critical stress 
also indicates less frequent interactions between the water column material 
and the aged seabed material.

Moreover, previous studies suggest the connection of summertime hypoxia 
and the accumulation of OM in the bottom water during the springtime (Cer-
co, 2000; Kemp & Boynton, 1984; Malone et al., 1988; Zheng & DiGiaco-
mo, 2020; Zimmerman & Canuel, 2001). Synthesizing the satellite-derived 
and field measurement data, Zheng and DiGiacomo  (2020) argue that the 
bottom DO in May–July is optimally correlated with the Chl-a which was 
averaged covering 12–17  weeks before the present DO sampling, indicat-
ing the cumulative effects of the surface Chl-a on the bottom DO depletion. 
Substantial phytoplankton biomass accumulations from the winter-spring 
bloom are associated with low grazing rates (White & Roman, 1992) and 
high deposition rates of fresh OM (Kemp et al., 1999). Large pools of POM 
from spring blooms and the elevated temperatures in summer can enhance 
the water column respiration. In the sediment flux model, the rapidly reactive 
or labile carbon had a decay rate of 0.035 day−1 at 20°C, indicating a 20-day 

half-life and 90% of the labile carbon being remineralized in 65 days (Brady et al., 2013; Cerco, 2000; Z. Wang 
et al., 2020). The estimated VPA (Figures 8b and 8c) and on-seabed age (Figures 6c and 6d) in the present study 
for the surface-originated particulate material is about 1–3 months for ws = 1–3 m/day in the deep channel of the 
middle bay, close to the time lag between the spring blooms and the summer hypoxia. For the particulates with 
larger settling velocity and much longer VPA, it suggests that these materials either have been totally decomposed 
or are refractory which contribute little to the water column hypoxia even they are resuspended. Therefore, the 
transport timescale provides useful information to evaluate biochemical reactions. However, the exact number 
of the VPA must be interpolated with caution due to the simplifications assumed in the model and the varying 
hydrodynamic conditions.

Note that the VPA is different from the rather old radiocarbon age (Ralston & Geyer, 2017). The VPA calculated 
here represents the transport time of dissolved or particulate material generated at the surface in the estuary, 
rather than the much older age of organic carbon (e.g., hundreds to thousands of years B.P. in CB, Canuel & 
Hardison, 2016) as measured by the natural radioactive and stable isotopes of carbon (Raymond & Bauer, 2001a). 
Such an old age of organic carbon mainly depends on the characteristics of various carbon pools and the transport 
processes (Bao et al., 2019; Canuel & Hardison, 2016; Marwick et al., 2015; Raymond et al., 2004).

Figure 8. Along-channel contour plots of vertical dissolved or particulate age 
(days) for different settling velocities in summer (June–August 1996).
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4.2. Important Control of Resuspension Process on the Vertical Particulate Age

Seabed resuspension processes affect water quality by altering light attenuation, primary productivity, and OM 
remineralization. Moriarty et al.  (2020) quantify the degree to which sediment resuspension affects estuarine 
biochemistry in CB. They found that resuspension decreased oxygen by ∼25% and increased ammonium by 
∼50% for the bottom water layer over the channel. Net settling velocity (or net deposition without instantaneous 
resuspension) is commonly used in the water quality models to represent the long-term difference between set-
tling and resuspension processes (Cerco et al., 2010). For such application, the material will stay in the sediment 
permanently once settled. However, it is suggested that the net settling potentially overestimated the benefits of 
solids load reductions, which might be negated by continuous resuspension of particulate material already in the 
bay (Cerco et al., 2010).

To diagnose the impact of resuspension process on the VPA, the resuspension was turned off to represent the net 
deposition (blue lines in Figure 2). Figures 9 and 10 show the horizontal and along-channel distributions of the 
net deposition age, respectively. It can be seen that without resuspension, the net deposition age decreases greatly 
compared to the VPA (Figure 7) or the in-suspension age (Figures 11a–11c). The net deposition age could be 
regarded as a part of the in-suspension age that only accounts for the transport time before the material reaches the 
seabed for the first time. If the material never settles to the seabed, the net deposition age equals the in-suspension 
age. For instance, the minor differences between the net deposition age and the in-suspension age in the region 
from the bay mouth to ∼37.5°N for the slow-sinking cases (Figures 11a and 11b) suggest that the VPA is less 
influenced by the settling and resuspension processes over this dynamic region.

In addition, the even lower net deposition age for the particulate material than the dissolved counterpart is due to 
less downstream transport but more locally downward transport of particulate material determined by the settling 
(Figure 10). The slowest sinking material (ws = 1 m/day) behaves more like the dissolved one and features the 
greatest net deposition age in the summer and autumn due to the strongest stratification (Figures 9a–9d). The 
seasonality diminishes gradually as the importance of settling velocity enhances (Figure 9). The fastest sinking 
material (ws = 10 m/day) reaches the bottom water for the first time within 4 days (Figures 9i–9l, 10d). At the 
along-channel dimension, the estimated location of the contour with the value of H/ws (e.g., H/ws = 1 day when 
ws = 10 m/day and H = 10 m) is congruent with the depth of the long-term mean pycnocline (Figure 10; Yu 
et al., 2020) particularly in the middle to upper bay. Although the net deposition is often utilized in the water 
quality model (Cerco et al., 2010), the associated net deposition age estimated here only accounts for the time 
before the particulate material reaches the seabed for the first time and ignores the subsequent resuspension and 
deposition. Therefore, the VPA, in-suspension age and on-seabed age that fully incorporate the resuspension and 
deposition are recommended to interpret the realistic water quality problems.

It is also noted that the location of the maximum net deposition age shifts downstream and the along-channel gra-
dients in the net deposition age decrease with the increased settling velocity (Figure 10). For example, the max-
imum VDA for ws = 0 m/day is around 38.5°–39°N and the peak net deposition age moved toward 37.5°–38°N 
for the fastest-sinking material (ws = 10 m/day) as the downward transport is less controlled by the water column 
stratification but more by the settling velocity and likely the strong water reflux and the vigorous vertical water 
exchange associated with the shoaling of the deep channel (Xiong et al., 2021a). A non-dimensional coefficient 
(R = 1−net deposition age/in-suspension age) was estimated to specify the resuspension ratio in the water column 
(Figures 11d–11f). Net deposition age indicates no exchange with the sediments, thus, the difference between the 
in-suspension age and the net deposition age can be regarded as the total resuspension time. The magnitude of the 
resuspension ratio indicates the degree to which the resuspended material can be kept in the water column. For the 
slow-sinking scenarios (ws = 1 and 3 m/day, Figures 11d and 11e), small resuspension ratio dominates the lower 
bay and the near-surface region, indicating low retention capacity of the resuspended material. In contrast, the 
ETM zone features high trapping efficiency of the resuspended material. The resuspension ratio increases and the 
high value expands to the whole bay (mostly confined below the pycnocline; Figures 11f) as the settling velocity 
increases to 10 m/day since the resuspended high-sinking material is less prone to be transported outside but more 
likely to be kept inside the bay. The distribution of high resuspension ratio can reach to the surface over the Rap-
pahannock Shoal (37.2°–37.5°N), consistent with the localized vigorous vertical exchange (Xiong et al., 2021a).
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4.3. Variations of Vertical Transport Age in Wet and Dry Years

Many previous studies have examined the response of transport timescales, for example, flushing time, residence 
time, and water age to the various river discharge conditions. It is commonly expected that less time is required 
for the material (either in dissolved, particulate, or adsorbed phases) to be transported downstream under high 
freshwater discharge (e.g., Delhez & Wolk, 2013; Du & Shen, 2016; Gong & Shen, 2010; Shen & Haas, 2004; 
Zhu et  al.,  2020). In contrast, the VPA for the downward transport of surface-produced particulate material 
is less sensitive to the freshwater discharge (Figures 12c and 12d) despite that the mean flow in the wet year 
(≈3.14 × 103 m3/s) is about 3 times the flow in the dry year (≈1.04 × 103 m3/s, Figures 1b and 1c). It is mainly 
because the VPA is dominated by the long resting phase on the seabed as regulated by the bottom shear stress, 
which is close in both wet and dry years except for the higher stress in the upper bay induced by the strong dis-
charge pulse in the wet year (Figure 12b). The along-channel stratification intensity, quantified as the maximum 
value of the square of Brunt Väisälä Frequency (N2 = g/ρi∂ρ/∂z, where ρi is the water density at the depth zi, 

Figure 9. Horizontal distributions of the net deposition age (days) at the bottom water layer for cases with different settling 
velocities: (a)–(d) ws = 1 m/day; (e)–(h) ws = 3 m/day; (i)–(l) ws = 10 m/day in the wet year 1996.
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Knauss & Garfield, 2016), is higher in the wet year particularly in the lower 
bay (Figure 12a), coinciding with the slightly larger net deposition age (Fig-
ure 12c) that is not subject to the controls of the seabed process. Addition-
ally, the effect of river discharge on the VDA was discussed by Hong and 
Shen (2013), which shows that the pulse of river discharge has minor impacts 
on the summer VDA because CB is already buffered by a large amount of 
freshwater. The impact of the spring river discharge is also confounded by 
the interannual variations of the wind field (Du & Shen, 2015). Compared to 
the freshwater discharge, wind forcing modulates the vertical mixing more 
directly and rapidly, and the southerly wind strength is found to be negatively 
correlated with the VDA (Du & Shen, 2015). Overall, the vertical transport 
timescale for particulate material in CB is insensitive to the total freshwater 
discharge because of the large buffer of freshwater and the minor interannual 
variations in the bottom shear stress.

On the contrary, the episodic flood events can cause a marked increase 
in the VPA, for example, the VPA peak responding to the events for 
ws = 1 m/day in both the time series in Figures 4c and 4d and the along-chan-
nel distribution in Figure 12d. Specifically, the freshwater pulse would not 
influence the in-suspension age but increase the on-seabed age in the main 
channel (Figure 6c). The on-seabed age is the weighted average of the newly 
delivered material and the material deposited before. The marked increase in 
the on-seabed age following the strong flood event is associated with the lat-
eral transport of the much older material resuspended from the depositional 
shallow shoals to the deep channel as shown in Figure 13 for ws = 1 m/day, 
Figure S2 in Supporting Information S1 for ws = 3 m/day in the wet year, and 
Figure S3 in Supporting Information S1 for the dry year.

4.4. Limitations and Generalities

Although as the initial efforts to quantify the vertical transport age for the 
surface-produced particulate material in CB and to investigate its sensitiv-
ity to the important physical drivers, that is, settling velocity, resuspension 
process, and freshwater discharge, there are several limitations in the present 
model study that could be further explored. First and foremost, the possible 
production, decay, and transformation for POM were ignored in the age al-

gorithms. We assumed that POM is generated everywhere in the surface layer without being limited by nutrients 
or light, whereas the seasonal phytoplankton blooms in CB are usually patchy and the maximum Chl-a location 
often shifts along the mainstem (Brush et al., 2020; Harding et al., 2016). It is derived that if the decay rate of 
POM is constant and is independent of the transport age since it was “born” from the source region, this type 
of decay will not modify the age results (Deleersnijder et al., 2001). Yet it was reported that the reactivity of 
OM decreases with the increasing timescale as the most reactive components will be gradually lost during the 
transport (Catalan et al., 2016; Middelburg & Meysman, 2007). Therefore, for non-constant decay rates (e.g., the 
preferential utilization of the younger OM, Raymond & Bauer, 2001b) and processes associated with biochemical 
transformations, the transport-age based decay rates worth further efforts to be coupled with the biochemical or 
ecosystem models (Delhez et al., 2004). For instance, the mean age distributions of reactive inorganic soil-nitro-
gen were simulated by Woo and Kumar (2016, 2017) via taking into account a series of complex gain and loss 
processes within the nitrogen cycles.

Second, the settling velocity is spatiotemporally constant for each case study but it can change due to the size 
variations during the transport via biochemical reactions. For example, grazing can package small phytoplankton 
into large fecal pellets (Ko et al., 2003; Prahl & Carpenter, 1979). The formation of “marine snow” and large 
mucilaginous aggregates can also enhance the sinking rate of OM (Testa et al., 2020). The present case studies 
indicate the high sensitivity of the VPA to the sinking rate, thus, the potential variations in settling velocity of 

Figure 10. Along-channel distributions of (a) the yearly mean vertical 
dissolved age (days) and (b)–(d) the yearly mean net deposition age (days) for 
material with different settling velocities in the wet year 1996. The multi-year 
averaged pycnocline depth is denoted by the red dashed line marked with 
white squares.
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particulate material during its transport might induce great differences to the estimated VPA. However, since 
many factors determine the sinking rate, it would be challenging and introduces large uncertainties to apply the 
spatiotemporally varied settling velocity.

Figure 11. (a)–(c) Along-channel distributions of the yearly mean in-suspension age (days) and net deposition age (days) at the bottom water layer for different settling 
velocities in the wet year 1996. The light blue shadows represent the total resuspension time (= in-suspension age – net deposition age). (d)–(f) Resuspension ratio 
(R = 1−net deposition age/in-suspension age).

Figure 12. Along-channel distributions of (a) stratification, (b) current-induced shear stress, (c) net deposition age, and (d) vertical particulate age in wet (1996) and 
dry (2000) years.
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Other limitations include the ignorance of waves and using constant critical shear stresses for erosion and depo-
sition in the model configurations. Wave-induced shear stress and the critical shear can regulate the erosion and 
deposition rate and subsequently the in-suspension and on-seabed age. Waves usually play a small part in bed 
stresses over most CB besides during storm and wind events, especially in shallow areas (Harris et al., 2013). 
The critical shear stress, similar to the settling velocities, is also determined by a number of interrelated physical, 
biological, and chemical factors, such as grain size, sorting, density, organic composition, consolidation, and dep-
osition history (Kimiaghalam et al., 2016; Salehi & Strom, 2012; Schaaff et al., 2002; Wiberg & Smith, 1987). As 
a diagnostic study to distill the first-order characteristics, we utilized the commonly used critical shear for POM 
in CB (Feng et al., 2015) to avoid unnecessary complexity. Furthermore, this study did not examine the mul-
ti-layer sediment model, which might affect the vertical distribution of newly deposited material and thus result 
in different transport time for a given size class. While the wave, critical shear stress, and the vertical distribution 
of material on the seabed could modulate the spatial distribution, they are unlikely to shift the overall patterns of 
the VPA. Although the biochemical reactions are not directly addressed in the current study, the VPA provides 
a common currency by which the biochemical reaction rate and physical transport timescale can be compared 
(Lucas & Deleersnijder, 2020; Lucas et al., 2009; Shen et al., 2013).

Figure 13. Evolution of the cross-bay vertical particulate age (days) for ws = 1 m/day following the strong freshwater pulse of the wet year 1996. The location of the 
cross-bay section is shown in Figure 1.
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5. Conclusions
Accumulation and remineralization of the surface-produced POM in the bottom water layer and seabed are close-
ly linked to hypoxia and impact the health of the aquatic ecosystems. In this study, the concept of the water age 
is extended to investigate the spatiotemporal variations in the vertical transport age (i.e., VPA) for particulate 
material originating from the surface layer. To understand the influence of settling, resuspension, and freshwater 
discharge on the VPA, and compare the physical transport timescales with the biochemical reactions in the water 
column and on the seabed, three types of age categories were calculated by controlling the virtual age clock: 
in-suspension age, on-seabed age, and net deposition age, to represent the transport timescale exclusively in the 
water column, on the seabed, and before the particulates touching the seabed for the first time, respectively. The 
sum of the in-suspension age and the on-seabed age is the VPA.

It was found that the VPA is much older than the VDA as the former is characterized by a long resting phase 
on the seabed and contributions from the resuspended aged seabed material. The VPA is rather sensitive to the 
settling velocity, and it varies over 2 orders of magnitude in the less-frequent resuspension environments as the 
settling velocity increases from 0 to 10 m/day. The ratio of the in-suspension age to the VPA decreases as the 
sinking rates increase. The slow-sinking material can remain in suspension for a long time especially in dynamic 
environments with strong bottom shear stress, thus connects more closely with the pelagic biochemical processes, 
while the fast-sinking material is more related to the benthic processes. The seasonality of the VPA diminishes 
gradually for fast-sinking material, which is mainly governed by the bottom resuspension and deposition process. 
The total freshwater discharge (e.g., wet and dry years) has minor impacts on the VPA, yet the long-lasting strong 
flood event will entrain older material from the lateral depositional shallow areas to increase the VPA in the deep 
channel.

The age concept provides a quantitative insight to diagnose the influence of physical processes (e.g., advection, 
diffusion, settling, resuspension, and deposition) on the material transport and bridges cross disciplinaries as the 
physical transport timescale and the biochemical reaction rates can be compared as a common currency (Lucas & 
Deleersnijder, 2020). By controlling the virtual clock, the respective time spent in different sub-domains (i.e., wa-
ter column and seabed in the present study) could be estimated to further diagnose the material transport process 
in detail. Future improvements, such as incorporating biochemical decay or production, could be implemented to 
the age governing equations to better quantify the combined biophysical controls on material transport.

Data Availability Statement
Original data used for figures are available at http://doi.org/10.5281/zenodo.4774271.
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