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ABSTRACT.—The West Coast Rock Lobster Managed 
Fishery (WCRLMF) moved from input to output controls 
in 2010. This change affected the relativity of fishery-based 
data sources (e.g., catch rates and landed size composition), 
making the assessment of the fishery problematic. A novel 
examination of the stock dynamics was required to ensure 
the robustness of the stock assessment and associated 
management arrangements. This study derived estimates 
of current biomass levels and harvest rates from the release 
of over 60,000 tagged western rock lobsters (Panulirus 
cygnus). A Brownie tag-recapture (BTR) model was initially 
implemented to provide an assessment on a fishery-wide 
basis. Estimates from this were compared to those derived 
from a novel purpose-built tag-recapture individual-based 
model (IBM) that accounted for sex, size, month, and 
location-specific changes in catchability. The two models 
produced similar estimates on a fishery-wide scale—harvest 
rate (HR 0.26 vs 0.30, respectively) and legal-sized biomass 
(about 24,500 vs 20,735 t, respectively)—while the IBM 
also provided estimates on a far finer spatial and temporal 
scale. Both models indicate that the WCRLMF is currently 
in a very sustainable condition and is being fished at a rate 
below maximum economic yield (HRmey is about 0.39). These 
findings were in concert with estimates derived for this fishery 
based on two separate catch-rate based population models, 
an integrated population model and a biomass-dynamics 
model. Such strong agreement among all models provides 
great certainty in the current assessment and management of 
this important marine resource.

The West Coast Rock Lobster Managed Fishery (WCRLMF) has been managed for 
over 40 years by ensuring breeding stock levels remain above limit reference points 
using a range of effort controls such as limited pot numbers, temporal closures, and 
biological controls (e.g., protection of breeding females and minimum and maximum 
size limits; de Lestang et al. 2016). The effectiveness of this harvest control system 
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relied heavily on the consistency between fishery-dependent catch rates and lobster 
abundance. Between 2009 and 2013 the fishery progressively altered its management 
regime from effort-controls to individual-transferable quotas (Penn et al. 2015). This 
change in management dramatically altered the behavior of the catching sector, as 
they moved away from competing with each other for catch under effort controls to 
maximizing profits through fishing in high beach price periods and reducing their 
costs (de Lestang et al. 2018). Fishers have now increased pot soak times, are using 
less bait, and are not moving great distances in search of small increases in catch, all 
of which have affected their catch rates.

These marked changes in fishing behavior affected the relativity of the long-stand-
ing empirical fishery-dependent catch rate indices that were a major component of 
the assessment of the lobster stocks [e.g., catch rates of legal, undersize, and breeding 
lobsters (de Lestang et al. 2018)]. A recent study examined the possibility of using al-
ternative data sources unbiased by effort to monitor biomass levels and harvest rates 
using change-in-ratio techniques (de Lestang et al. 2012). The project concluded that: 
(1) the current data sources available to the fishery had too many unknowns includ-
ing size and sex specific timing of growth and movement to enable the assessment of 
harvest rates using these techniques; and (2) a robust tag-recapture study with multi-
ple releases across different fishing seasons could generate independent assessments 
of legal biomass and harvest rates. A comprehensive tag-recapture study would also 
provide increased resolution of the movement dynamics of lobsters, especially the 
rate of migration between management zones that is likely to have been impacted by 
altered fishing patterns following a move to output controls (de Lestang and Caputi 
2015). Such information is vital to the industry in their discussions of the potential 
benefits of voluntarily reducing quotas to generate increased localized catch rates 
(Cooke and Beddington 1984, de Lestang et al. 2012).

In 2008 the Department of Primary Industries and Regional Development (DPIRD) 
began to develop a stock assessment model that integrated fishery-independent data 
into the assessment process. With the recent breakdown in the relativity of fishery-
dependent catch rates between years, this stock assessment process has been forced 
to rely heavily on fishery-independent data. Fishery-independent data, however, is 
currently limited both spatially and temporally and to increase these surveys to 
collect additional data is both expensive and time consuming (Caputi et al. 2021). 
Tagging studies have proven to be a good alternative to additional fishery-indepen-
dent surveys, as they utilize fishing fleets for capture, tagging, release, and recapture 
which reduces costs dramatically, while their results can remain unaffected by fish-
ers’ behavior (Maunder 1998, Pollock et al. 2004, Leroy et al. 2015). The Brownie 
tag-recapture (BTR) tagging design is especially valuable in this circumstance. This 
technique utilizes multiple releases of animals separated by relatively short temporal 
periods (months to years), with the contrast in recaptures between release groups 
shown to provide accurate and timely estimates of catchability, mortality, and stock 
size (Hoenig et al. 1998, Ley-Cooper et al. 2013). A limitation of the BTR is its gen-
eralized nature, as all tagged animals examined within its structure are treated with 
common parameters for catchability, tag loss, and tag reporting. For example, to ex-
amine the recapture rates of both males and females, they must either be grouped 
together and examined in one model, with all parameters being an average between 
the sexes, or must be separated and examined in two separate models, thus reducing 
the sample size (robustness) of the models. Further reductions in power then occur 
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if animal size or location is to be incorporated into the assessment. An alternative to 
the BTR is to develop an individual-based tag-recapture model (IBM) that is capable 
of tracking individual animals throughout the life of the study and treating each 
animal uniquely yet within a common framework (Pine et al. 2003, Frank and Baret 
2013, Senina et al. 2020). The movement of individuals into discrete size-specific spa-
tiotemporal “bins” allows for the catchability of an animal to vary as it grows, moves, 
matures, and experiences different levels of harvest while maintaining other com-
mon parameters across groups (such as reporting rate; Phillips et al. 2018). This abil-
ity to allow for individualistic catchability within the integrated model framework, 
whilst allowing for observations from different groups to collectively inform certain 
common characteristics, can increase the accuracy and robustness of parameter es-
timates (Maunder and Punt 2013, Goethel et al. 2019, Senina et al. 2020).

Tag-recapture data is often used in integrated models for the purpose of informing 
on a subject’s movement and growth dynamics (Maunder and Punt 2013), and less 
often used to inform on survival (Ziegler 2013, Raabe et al. 2014). This is primar-
ily due to the increase in complexity that the addition of such data requires in the 
structure of many integrated models. This study aims to derive estimates of current 
biomass levels and harvest rates throughout the WCRLMF based on the multiple 
release and recapture of tagged lobsters in a spatially and temporally dynamic inte-
grated model framework. A BTR will first be applied, utilizing previous information 
from tag-loss and tag-reporting experiments, to assess tag-recaptures on a fishery-
wide basis. This will produce broad estimates of harvest rate and biomass levels for 
the fishery, independent of biases associated with fisher behavior. An IBM will then 
be used to produce similar estimates on the same scale for comparison with the BTR, 
as well as estimates on a far finer spatial scale, in addition to estimates of migra-
tion and growth. The IBM will be developed using the same framework [spatial and 
temporal scale and on the TMB platform (Kristensen et al. 2016) as the WCRLMF 
integrated population model (IPM) currently used for assessing this resource]. If the 
IBM proves reliable in its assessment of the fishery—based only on tag-recaptures—
the incorporation of this data into the IPM, in a framework like that of the IBM, will 
provide additional robustness to the annual fishery assessment.

Methods

Two models were used to estimate harvest rate and legal-sized [≥76 mm carapace 
length (CL)] biomass: a Brownie Tag-Recapture model (BTR; Brownie et al. 1986) and 
a novel individual-based population model (IBM). Data inputs differed for the two 
models (Table 1), with the IBM not requiring previous estimates of tag loss and re-
porting rate. When estimates were required as inputs (e.g., tag-loss rate in the BTR), 
estimates and their associated variances reported in de Lestang et al. (2016) were 
used. The BTR was developed on the R platform, whereas the IBM was developed 
on the TMB platform due to its greater number of estimatable parameters (13 vs 53 
parameters, respectively). Estimated legal biomass and harvest rate levels from these 
two models were compared to estimates from a biodynamics model (BMD; Online 
Supplementary Material) and an individual-based population model (de Lestang et 
al. 2016), neither of which use tag-recapture data for biomass estimation (they are 
based primarily on catch and effort, with size composition used in the later model).
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Tag Release.—Tagging of lobsters was conducted by Department of Primary 
Industries and Regional Development (DPIRD) staff using standard HallprintTM 
T-Bar anchor tags. Tags were inserted ventrally as described by Melville-Smith and 
Chubb (1997). Only lobsters without obvious damage (e.g., missing appendages) were 
tagged (Brown and Caputi 1983). Lobsters were released individually, immediately 
post tagging to the water at the site of their capture, from June 2014 to November 
2018 off both commercial and research vessels throughout the fishery (Fig. 1A). 
Releases from commercial vessels were limited to nonretained lobsters [e.g., those 
high-graded (legal lobsters released due to their lower value) or protected], whereas 
those from research vessels consisted of all captured lobsters. This limitation on lob-
sters available for tagging on commercial vessels was not considered too restrictive 
as, due to rapid changes in the relationship between lobster size and value (beach 
price), those lobsters high graded one week became the targeted lobsters the follow-
ing, thus generally allowing a full-size range of lobsters to be tagged from commer-
cial vessels (35–152 mm CL). For estimating fishing mortality, the data have been 
limited to only those lobsters released with CL ≥ 76 mm (lobsters below this have 
a substantially reduced catchability due to the use of escape gaps in lobster pots). 
All lobsters tagged (irrespective of release size) were used in the determination of 
growth and movement in the IBM.

Additional tagging was conducted to aid in the assessment of tag loss rates (Hearn 
et al. 2003), in the form of two separate trials, double tagging with the two T-bar 
tags (TT) or tagging with one T-bar tag and the application of a permanent month-
specific mark (TP). The TT data consisted of releasing lobsters tagged with two stan-
dard T-Bar anchor tags inserted ventrally on either side of the lateral line into the 
abdomen. A total of 1032 TT lobsters were released across the fishery from 2014 to 
2016. All releases occurred in water depths >40 m with most lobsters being mature 
and larger than 76 mm CL. The tag-mark trial (TP) consisted of the release of lobsters 
tagged with a single T-Bar tag and the marking of a month-specific pleopod via snip-
ping with scissors. Each month a different pleopod was marked allowing its release 
month to be determined upon recapture. For the TP trials a total of 7946 lobsters 
were released between 2014 and 2016 and all recaptures were conducted via research 
surveys since the marked pleopod had to be examined. All pleopods which had been 
previously marked were recorded and re-snipped to ensure they remained obvious. 
Since the pleopod would be fully regrown after two molts and therefore the mark 
undistinguishable, the data was limited to liberties of 13 mo.

Table 1. Data or estimate input requirements of the two models Brownie Tag-Recapture model 
(BTR) and individual-based population model (IBM).

Data/estimate inputs BTR IBM
Double tag release and recapture data - - - Y
Commercial catch and effort data Y Y
Commercial monitoring data - - - Y
Independent Survey Data (IBSS) - - - Y
Annual level of high-grading Y Y
Tag loss rate estimate Y - - -
Reporting rate estimate Y - - -
Natural mortality - - - Y
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Tag Recaptures.—Information from recaptured lobsters was provided by 
commercial and recreational fishers as well as research staff during research trips. 
Information requested included recapture location (GPS), recapture date, sex, size, 
and condition (color, maturity state, and appendage damage). All tag-release and re-
capture data were stored on a DPIRD-owned SQL database. Prior to analysis, the 
tagging database was examined for obvious erroneous information. Records were 
excluded from analysis if the tagged lobster was reported to have changed sex be-
tween release and recapture or was reported to have been released or recaptured on 
land (<1% observations).

Figure 1A. Release (light grey points) and recapture (dark grey points) locations of lobsters 
tagged in the three management zones of the fishery (A, B, or C), separated by solid black lines, 
which in combination with the 40 m and 200 m isobaths (light grey dotted lines) delineate the 
various areas used in the individual-based model (areas identified by values 1–8). 

A
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Commercial Catch and Effort Data.—It is a mandatory requirement for 
catch and effort data to be completed by all fishers at the conclusion of each fishing 
trip via a Catch Disposal Record (CDR) recording the weight (kg) of retained lobster 
and the number of pot lifts within a 10 × 10 nm block. The number of legal lobsters 
caught and returned (high-graded) was also recorded. For further information, see 
de Lestang et al. (2016).

Commercial Monitoring Data.—Research staff undertake monthly fishery-
dependent monitoring of size, sex, reproductive state, and color (indicative of mi-
gratory phase) of lobsters at six locations (Fremantle, Lancelin, Jurien, Dongara, 

Figure 1B. Map has been delineated into 10 × 10 nm blocks, showing areas for research moni-
toring (black border square), research tag returns (black dot), and commercial tag returns (grey 
shaded) within the West Coast Rock Lobster Managed Fishery. Ports from where monitoring are 
conducted are denoted by small black dots and associated location over the land.

B
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Kalbarri, and Abrolhos Islands) throughout the fishery (Fig. 1B) in four depth catego-
ries (<10, 10–20, 20–30, and >30 fathoms). For more details on the catch monitoring 
program, see de Lestang et al. (2016).

Independent Survey Data.—DPIRD conducts annual independent breeding 
stock surveys (IBSS) at six deepwater locations throughout the fishery in September–
November each year. These surveys are standardized for changes in fishing behavior 
and are staffed by DPIRD staff on commercial vessels. Every lobster captured during 
these trips is examined closely, therefore all those with a tag would be expected to be 
discovered (would have a reporting rate of 100%). For more details on the IBSS, see 
de Lestang et al. (2016).

Brownie Tag-Recapture Model.—A fishery-wide harvest rate and legal bio-
mass estimate was determined using a BTR model (Brownie et al. 1986, Lauretta and 
Goethel 2017), which required lobster tag and recapture data, commercial catch and 
effort data, and prior estimates of tag loss and tag reporting (Table 1).

The BTR estimates the month-specific catchability of an average lobster (qm), i.e., 
the probability of capturing a lobster with one unit of effort. The BTR was built on 
a monthly time scale spanning August 2014 to December 2018 (53 mo) and treated 
the entire WCRLMF (Fremantle to Kalbarri; Fig. 1) as a single stock unit. The BTR 
was fitted to all tagged lobster (CL ≥ 76 mm) released during this period (35,661), of 
which a total of 1972 tagged lobsters were reported to the Department that fitted 
the requirements of use in this model. For example, a recaptured lobster could still 
be used in the model if it had an unknown recapture CL, or unknown recapture 
location. The size composition of tagged lobsters was assumed to be proportional 
to lobster sizes within the commercially caught population (as tagged lobsters were 
randomly sampled from commercial catches). Released lobsters were also assumed 
to have mixed within the population within the first month at liberty (i.e., there was 
not a period of concentrated tags in any area). The model equation was:

,

where λ1 is the log-likelihood associated with the number of observed reported lob-
sters (Ol,r) that were released in month/year (l), recaptured in month/year (r) and 
t is a specific month/year. Tr−l is the observed proportion of lobsters still retaining 
their tag after a specific time at liberty (recapture month − release month), ςr is the 
reporting rate in a month/year combination (both predetermined; see IBM) and M is 
the monthly instantaneous rate of natural mortality (estimated parameter). Fr is the 
fishing mortality in a specific month of a year based on the equation:

,

where Er is the observed effort in pot lifts in the recapture month/year combination 
and qm is the estimated catchability of lobsters in that recapture month (m; qm does 
not differ between years, only months).

A second log-likelihood component (λ2) was derived using the lobsters that were 
not recaught/reported (Ql,r):
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.

The sum of the two log-likelihood components was then maximized in R using the 
“nlminb” routine to estimate the 13 parameters (R Core Team 2019).

Estimates produced by the model included the annual harvest rate (HR), which is 
derived from annual estimates of Fa, and legal biomass (derived from the estimated 
HR and the known commercial catch). The equation used to derive these estimates 
was:

,

where the estimates of monthly fishing mortality (Fm) are averaged for each month and 
then summed across a fishing season to derive annual estimates of F [ ] 
(Huusko and Hyvärinen 2005, Wiedenmann and Jensen 2018). κ is the proportion of the 
legal catch retained [not high graded, currently set to 0.75; based on the average level 
of high grading recorded over the study period (see de Lestang et al. 2016 for further 
details on high grading)]. The legal biomass estimate is based on the average landed 
commercial catch from the 2015 to 2018 fishing seasons (6400 t) divided by the HR.

The model was initialized with the 12 (unique for each month) catchability pa-
rameters set to 1.0e−7 and natural monthly mortality set to 0.0125 (Online Table 
S1). Estimates of uncertainty were derived from 20,000 bootstrap runs of the mod-
el whereby the observations used in the log-likelihood functions were randomly 
sampled.

Individual-Based Model.—Fishery-wide harvest rates and legal biomass esti-
mates for each fishing season 2014 to 2018 were determined using an IBM. Inputs to 
the model were lobster release and recapture data, double-tagging data, commercial 
catch and effort data, fishery-dependent monitoring data, high-grading and discard 
(return of nonlegal lobster) data, and fishery-independent survey data (Table 1). The 
model did not require the input of any previously determined parameter estimates ex-
cept for an estimate of natural mortality and was assumed to be 0.15 yr−1 (de Lestang 
et al. 2016). The model dealt with each tag-released lobster individually, adding it to 
the model framework when tagged and then using its time at liberty, release size, sex, 
and the level of fishing exploitation in each cell as well as average sex-specific migra-
tion behavior to adjust the likelihood of it being in a specific area on the date when 
it was recaptured (as well as being in all other areas). As such the model tracks each 
individual lobster through its biological processes (growth, natural mortality, and 
movement) and exposes it to spatiotemporal-specific commercial and survey harvest 
for its period at liberty if it was reported to have been caught, or for the timespan of 
the model if it had not been recaptured (until the end of the 2018 fishing season). The 
IBM is built on the same temporal and spatial scale as that used by a stock assess-
ment model currently used in the fishery (Table 2, Fig. 1). The IBM was fitted to all 
tags released during the 2014–2018 fishing seasons (51,563) that had a known sex, a 
CL > 40 mm, and were at liberty for at least 2 mo. Of the released lobsters 33,661 were 
used in the model to determine catchability of the commercial sector as they had a 
CL ≥ 76 mm and were not recaptured during a survey or the recreational sector. Of 
the 1972 recaptured lobsters only a subset could be used for estimating growth (1612) 
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and movement patterns (1947), as these lobsters had records of their release and re-
capture size or location, respectively. The model contained two main components, a 
tag loss (produced one likelihood value) and a population component (produced two 
likelihood values: growth and migration/survival). The three likelihood values were 
summed to allow the model to fit each aspect of the observed data simultaneously.

Tag Loss Component.—The methodology of Myers and Barrowman (1996) was 
used to estimate the rate of tag loss. This technique breaks tag loss down into two 
separate components, initial tag shedding (ρ; instant loss due to poor technique or 
mortality) and chronic tag loss (φ), which is a constant rate of loss over time (t). The 
negative log-likelihood produced by the TT and TP trials were combined (e.g., λL = 
λTT + λTP) to produce a single tag-loss likelihood component (λL). For more details on 
this method, see Online Supplementary Material.

Population Component.—The population component of the model tracked 
the probability of each tagged lobster over the time-steps corresponding to that 
lobster’s liberty, or until the end of the 2018 fishing season if the lobster was not 
recaptured. Within each time-step the survival probability of a lobster was subjected 
to the processes outlined for that time-step (Table 2), which included migration (½ 
probability), growth, mortality (natural and fishing), and migration (½ probability), 
in that order. The timing of the various processes was based on previously reported 
Panulirus cygnus biology (de Lestang et al. 2016).

Migration.—For the western rock lobster, migration begins in shallow water ar-
eas in late November/early December each year, with a movement directly offshore, 
which then changes to a northward deepwater migration in January/February (de 
Lestang 2014). Since the first IBM time-step spans 15 January–28 February (Table 2), 

Table 2. Temporal scale of the individual-based population model (IBM) and associated processes.

Time Step Time Step (Months of Growth) Model Activity
1 15 Jan–Feb (1 mo) ½ migration north

Growth
Mature females protected
M and F mortality and tag loss
½ migration north

2 Mar–Apr (2 mo) Growth
M and F mortality and tag loss

3 May–June (2 mo) Growth
M and F mortality and tag loss

4 July–14 Sep (3 mo) Growth
M and F mortality and tag loss

5 15 Sep–14 Nov (2 mo) Growth
Mature females protected
M and F mortality and tag loss

6 15 Nov– 4 Dec (1 mo) Growth
Mature females protected
M and F mortality and tag loss

7 15 Dec–14 Jan (1 mo) ½ migration offshore
Growth
Mature females protected
M and F mortality and tag loss
½ migration offshore
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migration occurs northwards during this time-step, with the subsequent year’s mi-
gration starting in shallow water and moving offshore in the last model time-step 
of each fishing season (15 December–14 January). The probability (Gd) of a lobster 
migrating into an area from another is determined by four factors: (1) the lobster’s es-
timated CL for that time-step (Li); (2) a normal distribution, scaled to a maximum of 
1.0 (when Li = αf) where αf is an area-specific mean CL of migration from area f (seven 
parameters for areas 1–7) and one of two standard deviation parameters common 
for all shallow- or deepwater areas, respectively (σg

m, where g represents depth); (3) 
a second area-specific parameter [βf, (seven parameters for areas 1–7)] representing 
the proportion of the scaled normal distribution that migrates; and (4) a predefined 
movement matrix (Kdft; Table 3) that identifies during each time-step (t) which source 
area ( f ) lobsters move to which sink area (d). The movement equation was:

.

Growth.—In western rock lobster, growth declines with increasing size/age, and 
although it is almost continuous in small/younger lobsters, it becomes intermittent 
and synchronous throughout that sex of the population in later life (Chittleborough 
1976, de Lestang 2018). Although growth is not constant in invertebrates (occurs 
stepwise due to molting), previous work has shown that growth can be well repli-
cated by growing individuals intermittently either on a short time scale (monthly) 
or longer time scale (biannually; Punt et al. 2013, de Lestang 2018). The IBM applied 
growth on a time-step scale, i.e., increasing the length of a lobster during every time-
step based on the temporal length of that time step (Table 3). If a time step contained 
part months (e.g., 1.5 mo) only whole months of growth were applied. This resulted 
in some time-steps being applied slightly too much growth (e.g., time-step 4) and 
others too little (time-step 1), as described in Table 2. This was not considered to have 
an impact on the modelling as the growth of lobsters was only used for those at lib-
erty for over 6 mo and the expected change in CL over ½ month is less than much of 
the error produced when measuring a lobster. The IBM used a four parameter inverse 
logistic equation to describe the relationship between body size and increase in body 
size over a period of 1 mo. If 2 mo of growth was needed to be applied to a lobster, the 
equation was applied twice. The equation used was:

Table 3. Predetermined movement matrix identifying which model areas lobsters can move be-
tween (based on de Lestang 2014). O denotes offshore movement (in time-step 7) and N denotes 
north-wards movement (in time-step 1).

To From
1 2 3 4 5 6 7

1 - - - - - - - - - - - - - - - - - - - - -
2 O - - - - - - - - - - - - - - - - - -
3 - - - - - - - - - - - - - - - - - - - - -
4 - - - N O - - - - - - - - - - - -
5 - - - - - - - - - - - - - - - - - - - - -
6 - - - N - - - N O - - - - - -
7 - - - - - - - - - - - - - - - - - - - - -
8 - - - N - - - N - - - N O
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 ,

where the CL (La,s,n+1) of a lobster after 1 mo (n) is based on the area (a) and sex (s) 
specific parameters for maximum growth rate (δa,s), minimum growth rate (ηa,s), an 
inflection point (γa,s) and a rate of change in growth (κa,s). The log-likelihood (λg) of a 
lobster having been grown to the length of when it was recaptured was determined 
using the equation:

,

where Ki and Li are the observed and model estimated lengths of the ith lobster, and σg 
is a standard deviation growth parameter, common for all areas and sexes.

Tag Reporting Component.—Commercial fishing effort data was divided into two 
groups based on the presence of government staff on the fishing trip as part of the 
commercial monitoring program (see de Lestang et al. 2016), to account for differ-
ential tag reporting rate. During commercial monitoring, government staff exam-
ine every lobster carefully and are assumed to detect and report all tag-recaptured 
lobsters. Commercial operators have a different focus and have been found to miss 
tagged lobsters as they do not always examine the underside of every animal landed. 
The IBM uses the contrast between tag recaptures from these two groups in each 
model region and time-step to estimate commercial tag reporting rate (see below).

Model Structure.—After applying ½ migration and the time-steps’ growth, the 
probability of a lobster being in that area in that timestep (Pa,t) was used to calculate 
the probability of it being caught (г~g ) by each commercial group (monitoring or not: 
g) based on their level of fishing mortality (F g) in that model area (a) and time-step 
(t) using the equations:

 ,

 ,

,

with catchability (qt) being unique for each time-step (common across years), T is the 
natural log monthly rate of tag loss, M represents monthly natural mortality (set at 
0.0125 mo−1), τ is the temporal length of the time-step in months, and Eg

a,t being the 
effort in pot lifts for each commercial group. If a lobster was recaptured by a vessel 
without a government observer, its probability of being caught was further adjusted 
by the model estimated reporting rate (ς, common across all areas and time-steps).

If a lobster remained at liberty in a time-step its probability of being in that model 
area was reduced by the product of the probability of being caught and not reported, 
natural mortality, and tag loss using the equation:

.
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The log-likelihood (λc) of a lobster having been caught in a model area and time-
step and not caught in other model areas and time-steps was determined using the 
equation:

,

where h and l represent all captured and nonrecaptured lobsters, respectively, in each 
area and time-step and ς is set to 1 if government staff are on-board (otherwise it is 
estimated and constrained to be between 0 and 1). The parameters used to initialize 
the model are listed in Online Table S1. The total log-likelihood of the observations 
given the model parameters was:

.

The primary objective of the model was to produce estimates of commercial har-
vest rates [HRI: proportion of available (legal) lobsters extracted from the fishery, 
i.e., retained after discards/high-grading has occurred], and legal biomass (LBI: all 
lobster ≥76 mm CL) in the fishery. These were estimated on a fishery-wide fishing-
season basis (2014–2018) using the following equations:

 ,

where the total fishing mortality (F0) is derived from the fishing mortality estimates 
of the two commercial fishing groups (g), i.e., with and without departmental moni-
toring staff. The harvest rate was then determined by the equation:

,

which is adjusted for average discards/high-grading (H) in that model time-step and 
year and legal biomass is calculated by the equation:

,

where C represents the commercial catch in year y.

Results

A total of 64,623 lobsters ranging in size from 29 to 158 mm CL were released 
between 2014 and 2018, and when limited to those lobsters of an exploitable size 
(≥76 mm CL) for estimating harvest rates and legal biomass, this reduced the total 
number of lobsters for this analysis to 35,661.
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Brownie Tag-Recapture Model.—

Diagnostics.—Two diagnostics were produced to assess the fit of the BTR model 
to the observed data: the residuals associated with reported lobsters and those with 
un-reported lobsters (Fig. 2). Although the model failed to replicate some of the high 
recapture rates, there were no obvious patterns across the residual plot that would 
have indicated a missing component in the model (Fig. 2). There were four areas 
of increased residual size (late 2014/early 2015, late 2015/early 2016, late 2016/early 
2017, and late 2017/early 2018), and these were relatively well split between positive 
and negative residuals. The increased size of the residuals in these four time periods 
are likely related to the increased number of tags released during these periods. The 
annual Independent Breeding Stock Surveys (IBSS) occurs at the end of each year 
(surveys are conducted annually in September–November) and was an opportunity 
for releasing and recapturing large numbers of tags.

Outputs (Harvest Rate and Biomass).—Monthly catchability was estimated to in-
crease from 1.5e−5 in January to peak of 4.1e−5 in April before declining to low levels in 

Figure 2. Residual plot from Brownie tag-recapture model (BTR) of observed and estimated 
tag-returns from each release pulse in each recapture year/month in decimal form (e.g., 15.0 = 
January 2015 and 15.5 = July 2015). Positive and negative residuals are identified by light and 
dark grey shading, respectively, with the symbol’s size indicating the relative magnitude of the 
residual. Numbers at the top show the number of tags released during that month. Missed tags 
represent the tags that were not reported and are presented on a different scale to the reported 
tags [symbol size is not comparable between groups (recaptured vs missed), only within groups]. 
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June and July (1.2e−5 and 1.3e−5, respectively). Estimated catchability then increased 
again slightly to reach a smaller peak in September (1.8e−5) before declining through 
until a low of 1.1e−5 in December. Monthly natural mortality (95% CI) was estimated 
to be 0.010 (2.8e−3) per month which equates to an annual rate of 0.129 (0.034).

The BTR model estimated the average (95% CI) harvest rate (HRB) for tagged lob-
sters during the period 2014 to 2018 (the time span of the model) to have been 35% 
(14%). This estimate is based on all captured lobsters over legal size and hence in-
cludes those which are protected from capture (e.g., reproductively active females) as 
well as those high-graded (about 25% of the legal catch was high graded over this pe-
riod). As a result, it does not represent the true harvest rate, i.e., the proportion of the 
legal catch landed. The true exploitation rate was estimated by adjusting the harvest 
rate by the high grading rate (25%), resulting in a harvest rate estimate of 26% (11%). 
Based on this harvest rate estimate and the average landings of about 6400 t over the 
past four fishing seasons, the estimated average biomass of legal lobsters over these 
three seasons is 24,500 t (6300 t).

Individual-Based Model.—Of the 1032 lobsters released with two T-Bar tags 
(TT), 134 were recaptured with either both tags present (96) or only one tag present 
(38). Of the 7946 TP lobsters released, 841 were recaptured with one T-bar tag and 
one marked pleopod, while only 66 were caught with a missing T-Bar tag (as identi-
fied by the marking of their month-specific pleopod).

Diagnostics.—Residuals between the observed and estimated tag loss component 
of the IBM showed no progressive patterns across liberties or between the two tag 
loss trials (TT or TP) which indicated there was no major missing components in 
the model (Fig. 3A). Observations with large sample sizes generally displayed smaller 
residuals (better fit) than those with much smaller sample sizes. As such overall the 
model fits better to the TP (Fig. 3C) data than TT data (Fig. 3B), as the TT data has a 
greater variability between successive temporal observations.

Residuals between observed and estimated CL of recaptured lobsters showed no 
progressive trends or patterns when plotted against different characteristics that ex-
isted in the data, namely release CL, recapture source (who reported the lobster), 
sex of lobster, release location, or the time at liberty (Fig. 4). This indicates that the 
model was sufficiently capable of replicating the tag-recapture growth of lobsters. 
The residual plots also highlighted low samples for lobsters released with a CL > 120 
mm, returned by commercial monitoring, females and males in area 7 and at liberty 
for more than 24 mo (although a good sample size does exist for lobsters at liberty 
for 36 mo).

Migration was well replicated by the model as indicated by the high concordance 
correlation coefficient (ρc) in each release location (Fig 5A–H). These plots also high-
light a lack of recaptures that occurred for tagged lobsters released in locations 5 
and 7 in their directly offshore model location (6 and 8, respectively). This is partly 
explained by the small release sample sizes within these two areas, but also indicates 
a relatively lower rate of migration from these areas.

Outputs (Harvest Rate and Biomass).—The IBM estimated the proportion (95% CI) 
of lobsters retaining a tag following release (i.e., 1- instantaneous tag loss) was 0.94 
(6.7e−3) and a constant monthly tag loss (i.e., chronic tag loss) of 7.6e−3 (1.3e−3). Based 
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on the contrast in returns of tagged lobsters between commercial vessels with and 
without observers onboard, the model estimated the average tag reporting rate of 
commercial fishers across the study period (e.g., throughout the fishery and across 
the four years) to be 47.9% (11.2%).

Tagged lobster catchability was estimated to have increased slightly from late 
January/February period (3.1e−7) to peak in March/April (4.3e−7) before progres-
sively declining to the lowest catchability (1.3e−7) in late November/early December 
(Fig. 6A). Catchability then started to increase again in late December/early January 
(2.4e−7). This temporal pattern of estimated catchability was very similar (albeit on a 
slightly different temporal scale) to that produced by the BTR model with catchabil-
ity cycling from a peak in March/April to a minimum in November.

The harvest rate (95% CI) of tagged lobsters estimated by the model declined mar-
ginally from 0.34 (0.06) in 2015 to 0.29 (0.06) in 2017 and then increased slightly in 
2018 [0.31 (0.05); Fig. 6B]. Lobster biomass, as represented by the tagged lobsters 
(which were considered representative of all lobsters with a CL ≥ 76 mm), was 

Figure 3. (A) Residual plot from the individual-based model (IBM) combined TT/TP component 
with the diameter of the light and dark grey circles representing the relative square root number 
of lobsters for that observation from the TT and TP datasets, respectively. The largest diameter 
represents 308 lobsters, and the smallest represents 1 lobster. (B) Observed (bars) proportion 
of lobsters caught with two T-Bar tags (light grey) or only one T-Bar tag (dark grey) across the 
range and liberties with model estimated proportions shown as solid points with associated 95% 
CI (translucent zones). (C) Observed (bars) proportion of lobsters caught with one T-Bar tag and 
one snipped pleopod (light grey) or only a snipped pleopod (dark grey) across the range and liber-
ties with model estimated proportions shown as solid points with associated 95% CI (translucent 
zones).
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estimated to have increased over the study period from about 18,428 t in 2015 to 
about 22,361 t in 2017 before declining slightly in 2018 to about 21,552 t (Fig. 6C).

On a finer spatial scale, the model estimated markedly different biomass levels in the 
various model areas (Fig. 7). The southern model areas (1 and 2), representing the entire 
management of Zone C, were estimated to have the largest legal (≥76 mm) biomass 
levels (4000–8000 t, depending on the fishing season). In contrast, the most northern 
model areas (7 and 8), which represent part of management Zone B, had the lowest 
legal biomass levels (250–600 t, depending on fishing season). All deepwater areas (2, 
4, 6, and 8) generally showed a progressive increase in biomass levels over the study 
period, whereas shallow-water locations generally remained constant (Fig. 7).

Figure 4. Standardized residuals plots between observed and estimated CL of recaptured lobsters 
against (A) release CL, (B) recapture source, (C) lobster sex and release area, and (D) time at 
liberty. The horizontal solid black line represents zero and the white line represents a lowess 
smoothed line of the residuals. 
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Discussion

This study produced contemporary tagging estimates of harvest rates and legal 
biomass for the West Coast Rock Lobster Managed Fishery using two different mod-
elling approaches, the well-tested BTR and a novel model development (IBM), ca-
pable of replicating the finer temporal and spatial scale attributes of this resource. 
Both models produced very similar estimates for fishery-wide exploitation rate (0.26 
vs 0.29–0.33) and legal (≥76 mm) biomass (about 24,500 vs 18,428–22,361 t). These 
estimates indicate that the western rock lobster resource is currently in a sustainable 
condition and is being fished at a harvest rate below that considered to represent 
maximum economic yield (HRMEY about 0.39; Caputi et al. 2018) and well below that 
representing maximum sustainable yield (HRMSY about 0.7; Caputi et al. 2018). These 
findings are in concert with estimates derived for this fishery during recent annual 
stock assessments, based on two separate population models, Integrated Population 

Figure 5.  Proportion of lobsters released in each model area showing the square root of the ob-
served and estimated proportions recaptured in each model location (identified by the numeric). 
The dotted line shows the line of concordance, ρc the concordance correlation coefficient, and n 
the sample size of lobsters released in the model region and recaptured in any region.
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Model (IPM) and Biomass-Dynamics model (BDM; Online Supplementary Material). 
For example, over the years 2014–2018, the BDM estimated the fishery-wide harvest 
rate to have a mean of about 0.26 and a legal biomass of about 26,000 t (Online Fig. 
S2A), values very close to those estimated by the two tagging models. Such strong 
agreement between all four models provides a greater certainty in the current assess-
ment and management of this important fish resource.

The BTR model used in this study has a proven formulation and is considered 
robust and appropriate for estimating exploitation rates and biomass levels from 
tag-recapture animals (Hoenig et al. 1998, Ley-Cooper et al. 2013). This is in direct 
contrast to the IBM, a newly formulated model that was untested. The BTR model 
produced a robust global estimate and served as a good cross check of the untested 
finer-scale estimates derived by the IBM. The IBM has several advantages over the 
BTR which was not easily adaptable to a highly dynamic system, wherein animals 
move and experience different levels of catchability and retention depending on their 
size, sex, and spatial location.

Both models highlight the value of tag-recapture data for examining exploitation 
levels and biomass in a wild capture fishery, essential information required for their 
sustainable management. However, due to the complex nature of tag-recapture data 
and the requirement to have a good understanding of tag loss and reporting rate, 
it is rarely incorporated into integrated population models for any purpose other 
than estimating movement or growth (Punt et al. 2013, 2016, de Lestang et al. 2019). 
The IBM developed in this study was based on the same spatial and temporal scales 
used in DPIRD’s new IPM being developed for western rock lobster. This was inten-
tional, with a view that tag-recapture data can be utilized in this new model for the 

Figure 6. Model estimated (95% CI) (A) relative catchability of tagged lobsters, (B) commercial 
harvest rate, and (C) biomass of all legal-sized lobsters (carapace length ≥ 76 mm). 
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estimation of fishing mortality, increasing the new model’s comprehensiveness and 
robustness for producing appropriate management advice.

Legal (≥76 mm CL) biomass levels estimated in this study showed a gradual in-
crease over the course of the study. With the advantage of its spatially explicit esti-
mates, the IBM was capable of showing that this increase was driven by the offshore 
deepwater locations (Fig. 7). Juvenile western rock lobster settle in the nearshore 
environment, but move offshore to deeper areas at the age of about 4 yrs postsettle-
ment (de Lestang 2014). With relatively low fishing levels (i.e., HR below those at 
HRMEY) and a stock that has an ontogenetic offshore migration, any stock build-up 
would be expected to occur in the offshore areas (Jennings 2000). Of the model loca-
tions, the two southern locations were estimated to have the largest biomass levels, 
while those in the very north of the fishery have the lowest. These estimates need 
to be considered in the context of their relative spatial size, with the two southern 
locations being far bigger spatially than any other locations within the model and as 
such they would have the greatest habitat for lobsters (Fig. 1). Furthermore, this study 
commenced three years following the 2011 extreme marine heat wave, an event that 
significantly affected the habitat and stock levels of some fisheries in the northern 
half of the WCRLMF (Pearce and Feng 2013). Specifically, this heat wave event was 
shown to have impacted the survival of juvenile lobster in northern model locations 
(area 7 and possibly area 3), with this impact only starting to dissipate almost 10 
years later (Caputi et al. 2019). As such, it is possible that biomass levels within this 
part of the fishery would have been negatively affected to a much greater extent than 

Figure 7. Model estimated (95% CI) spatial-specific biomasses of all legal-sized lobsters (cara-
pace length ≥ 76 mm) in each area of the individual-based model (IBM).
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those in more southern areas of the fishery leading to the lower estimates of biomass 
in these regions.

This study examined tag loss and reporting rate within the IBM, which has the 
advantage that variances associated their estimation were incorporated into the esti-
mates of harvest rate and biomass levels. Tag loss was found to be relatively low in 
western rock lobster [6% and 0.7%, for instantaneous and chronic (monthly) tag loss, 
respectively], which results in many marked animals remaining within the system 
for many years. This permits a robust estimate of population dynamics parameters 
such as survival, movement, and growth. This extended tag retention is supported 
by the fact that some tagged western rock lobsters have been returned after being at 
liberty for over 15 yrs. This level of tag loss was lower than that reported for a similar 
lobster (Panulirus argus) with a similar tag type (T-bar), although only combina-
tions of instantaneous and chronic tag loss have been reported and were between 
4% and 14% mo−1 (Davis 1978, Ley-Cooper et al. 2013, Olsen et al. 2017). A much 
closer estimate was produced by González-Vicente et al. (2012), who showed an in-
stantaneous tag loss almost identical to this study for the spiny lobster Palinurus 
elephas based on a double tagging trial (7% for males and 5% for females). It should 
be noted however that tag loss, especially instantaneous tag loss, has been shown to 
be strongly influenced by the molt stage of the tagged animal, with pre-molt lobsters 
having much higher rates than those in intermolt (Comeau and Mallet 2003). As the 
estimate produced in this study was based on double tagging in multiple months and 
across a range of lobster sizes and both sexes, it can be considered an average of the 
two sexes and would have been based on intermolt lobsters.

The release of double tags proved to be a very efficient method for examining tag 
loss, as it was not affected by the recapturing party, e.g., commercial or independent 
survey. In most cases when a fisher noticed a tag they also saw and reported the 
second tag if it was present. The ability to have double and single tags reported by all 
fishers allowed for a greater range of lobsters in more areas to be examined for tag 
loss. By contrast the TP trials required trained survey staff to examine all captured 
lobsters for a marked pleopod. The TP trials also had a finite duration due to pleopods 
regrowing over successive molts. It is therefore not surprising that the TT method 
has been used in other fisheries previously (e.g., Frusher and Hoenig 2001, González-
Vicente et al. 2012), whereas the TP trial was unique to this study. However, com-
bining the data from the two techniques (TT and TP) allowed the advantages from 
each method to be incorporated into the overall estimate of tag loss, producing more 
robust estimates of both instantaneous and chronic tag loss. The TP trial was staff 
intensive but provided numerous samples over a relatively short liberty of releases, 
enabling the combined model to produce a good estimate of instantaneous tag loss. 
The TT trial, by contrast, produced a smaller sample size in the short term but pro-
vided data on tag loss up to 44 mo after release, which was considerably longer than 
the TP trial (about 12 mo). This long time series was invaluable for examining the 
rate of chronic tag loss. Therefore, future studies of tag loss should examine the utili-
zation of both techniques to get a robust estimate of all components of tag loss.

The IBM estimated an overall tag reporting rate of the commercial fleet to be about 
50%, thus only half of the available data was collected during this study. It is impor-
tant to highlight that this estimate does not represent a proportion of fishers who 
return tags, rather it is a proportion of pots pulled and is therefore more equivalent 
to the proportion of fishers reporting tags, weighted by the relative number of pots 
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fished by each fisher over the fishing season. This estimate shows that the reporting 
of tags in the WCRLMF was well below optimal and that there are many fishers with-
in the fishery that simply do not return tags. A preliminary examination of fishers 
that do and do not return tags shows a very skewed distribution, with some fishers 
having never returned any tags and others that consistently report tagged animals. 
DPIRD provided five options for fishers to report tags, many of which require very 
little effort. In addition, the importance of the study and benefits associated with a 
high reporting rate were publicized ad nauseam in flyers to fishers and at industry 
meetings throughout the life of the project. Even the use of a high value annual lot-
tery of $3000 USD did not alter some fisher’s behavior, an incentive that has been 
beneficial in other fisheries (Green et al. 1983). There may be advantages for future 
studies to first conduct a survey of fishers to ascertain what drives participation in 
such a trial (e.g., reporting tags) and what activities may be undertaken to increase 
future participation.

A potential driver which may have historically reduced reporting rate was the 
introduction of a particular fishery management arrangement in 1993. This ar-
rangement prohibited the retention of lobsters <77 mm CL from 15 November to 1 
February each season. The intent of the arrangement was to reduce effort on migrat-
ing lobsters (migration starts in November). This led to a view amongst fishers that 
increased numbers of lobsters would be able to move from one inshore management 
zone (Zone B) into another zone further offshore (Zone A) without being available 
for capture and thus those fishing in Zone B would miss their opportunity to cap-
ture this stock. As such, many fishers within Zone A were concerned that reporting 
tagged lobsters would add credence to this perception of in-equitability and force 
authorities into altering this management arrangement. This resulted in a marked 
bias in tag reporting between fishers in different fishing zones and to some “interest-
ing” movement patterns being displayed by tagged lobsters, as they appeared to stop 
at the boundary between Zone A and B (de Lestang 2014). In 2014, one year before 
this study was to commence, the management arrangements surrounding 76 mm 
lobster were reversed, and the perceived in-equitability between zones was no longer 
an issue. There is the potential that legacies of this management measure and the 
resultant differential reporting of tagged lobsters may have persisted. Preliminary 
examination of tag returns by area during this study did not find a significant differ-
ence in return rates between any of the fishing zones.

This study successfully developed an IBM that produced fine spatial and temporal 
scale estimates of harvest rate and biomass within a large commercial lobster fishery. 
Estimates from this model agreed with those derived from another well tested tag-
recapture model (BTR) as well as two other models which are based on different data 
(e.g., legal catch rate, undersize catch rate, and size composition). A major benefit 
of the IBM was its independence from fishing behavior and the changes that have 
occurred in fishing efficiency, catch composition, and catch rates of the commercial 
fleet since the fisheries moved to quotas in 2010. As such, the inclusion of this model 
form into the already developed IPM for this fishery will increase the subsequent 
model’s ability to robustly estimate key stock dynamics and inform the management 
of this marine resource.
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