

Reports

3-1975

Final report on effects of low oxygen tensions and high levels of hydrogen sulfide on benthic marine animals

Dexter S. Haven

Robert E. Bendl

Follow this and additional works at: https://scholarworks.wm.edu/reports

VIMS QL 430.7 09 4342 1975

Final Report

on

Effects of Low Oxygen Tensions and High Levels of Hydrogen Sulfide on Benthic Marine Animals.

by

LIBRARY
of the
VIRGINIA INSTITUTE
of
MARINE SCIENCE

Dexter S. Haven and Robert E. Bendl

A research project completed for the National Science Foundation as part of the Chesapeake Research Consortium, Incorporated.

Period of Grant:

1 June 1973 - November 1974

Name of Principal Investigator:

Dexter S. Haven

Social Security Number:

036-20-4497

Title:

Senior Marine Scientist

Date Submitted:

March, 1975

ABSTRACT

This study investigated effects of low levels of dissolved oxygen (D.O.) and low levels of D.O. in combination with hydrogen sulfide (H₂S) on the larvae and adults of oysters <u>Crassostrea virginica</u> and on adults of hard clams <u>Mercenaria mercenaria</u>. The purpose of this study was to investigate how low D.O. and low D.O. plus H₂S, which might be associated with discharges from sewerage treatment plants, could adversely influence populations of molluscs.

Field studies in Chesapeake Bay over many years have shown that low levels of oxygen may naturally be found in bay waters and values ranging between 0.0 to 0.3 ml/L commonly occur during late summer. This study indicates that these levels may be lethal to oyster larvae, adult oysters and to hard clams.

D.O. levels of 0.7 ml/L or lower in standing water cause oyster larvae to stop swimming and inhibit setting; a partial mortality occurred below 0.49 ml/L. Exposure to about 0.3 ml/L for 72 hours in flowing water resulted in 84% mortality; at 0.2 ml/L there was 100% in the same period. When $\rm H_2S$ was present at zero oxygen level, there was a 100% mortality in 24 hours.

Adult oysters held at 0.1 to about 0.4 ml/L for 7 to 8 days show 50% mortality; by 10 to 13 days the mortality was 100%. Low D.O. inhibits ingestion of food; at 0.3 ml/L only minimal quantities of feces are voided. Oysters exposed to zero D.O. plus $\rm H_2S$ ranging from 1.7 to 3.4 ml/L showed 100% mortality in 8 to 9 days.

Adult hard clams are less sensitive to low D.O. than oysters, but below about 1.7 ml/L clams begin to loose their ability to regulate oxygen consumption. Small clams survived over 38 days at D.O. levels about 0.1 ml/L with less than 5% mortality. When $\rm H_2S$ was present, however, (1.7 to 5.4 ml/L) 96% of the population died in 38 days.

It is concluded that if discharges from sewerage treatment plants enter estuarine systems where D.O. levels are already approaching critical levels, then the combined organic load might easily bring about levels of D.O. or H₂S which could cause extensive mortality in estuarine populations of molluscs.

INTRODUCTION

In siting sewerage discharge systems, it is important to locate them where the added organic load will not cause dissolved oxygen values (D.O) to fall to levels which will adversely effect populations of animals especially those vulnerable to low D.O. or H₂S.

Low D.O. values (0.0 to 0.3 ml/L) often occur in the deeper waters of Chesapeake Bay and in tributary creeks in summer (Hires, Stroup and Sietz, 1966). Available evidence indicates that in recent years the problem has become more pronounced. In the lower Potomac, for example, in September 1973, oyxgen became deficient at 18 feet and deeper. This resulted in a mortality of 18% of oysters in shallow water (Haven, unpublished). Other studies further indicate that in 1972, 1973 and 1974 oxygen values in the Great Wicomico River in Virginia approached 0.2 ml/L and that setting of oysters was far below average.

The literature clearly shows that low D.O. values kill or adversely influence many species of molluscs, but that the long term sub-lethal effect are poorly known (Von Brand, 1946; Morrison, 1971; Hamwi and Haskin, 1969; Hewatt, 1945-47; MacInnes and Thurberg, 1972).

H2S is associated with anaerobic conditions and an abundance of organic material. Sulfide and hydrogen sulfide are the direct result of: 1) the putrefaction of proteins under anoxic conditions, and;
2) the reduction of nitrates and nitrites in connection with the breakdown of organic materials. When nitrates and nitrites have been reduced, the reduction of sulfates occur leading to the formation

of sulfides and hydrogen sulfides (Lyche, 1956 and Gardner, 1971).

H₂S is toxic to many estuarine benthic inhabitants and can cause mass mortalities especially of those organisms which are immoble (Von Brand, 1946). Two of these organisms, the American oyster Crassostrea virginica and the hard clam Mercenaria mercenaria are of economic importance and were chosen as the subjects of this study.

This project began 1 June 1972 and ended November 1974. During this period the following aspects were studied.

- I. The Effects of Low D.O. and Low D.O. Plus ${\rm H_2S}$ on Survival and Biodeposition Rates of Small Oysters.
- II. Effects of Low D.O. and Low D.O. Plus H₂S on Swimming and Survival of Oyster Larvae.
- III. The Effects of Low D.O. and Low D.O. Plus ${\rm H_2S}$ on Survival of Hard Clams.
- IV. Effects of Low D.O. on Pumping Rates, Filtration Efficiency and Oxygen Consumption of Hard Clams.

I. The Effects of Low D.O. and Low D.O. Plus ${\rm H_2S}$ on Survival and Biodeposition Rates of Small Oysters.

MATERIALS AND METHODS

Three experiments were conducted in this phase of the study. Sea water from the York River was drawn from the trough regulated by stop cock (C) to a nitrogen purging column (D), Figure 1. the water was stripped of oxygen to varying levels by controlling the flow of pre-purified nitrogen with regulator (F). After being stripped, the water left the bottom of the column and was fed into flow meter (G). The oxygen regulating technique was similar to that developed by Silvers, Warren and Doudoroff (1963). Flow through the meter was controlled by stop cock (H) from which it flowed into chamber (I). The water was then siphoned from the tray into D.O. bottle (J). Samples were taken for temperature, salinity and oxygen; 5 to 8 measurements were taken daily (8 a.m. to 5 p.m.); mean values were recorded. Temperature and oxygen were measured with a YSI Model 54 oxygen meter; salinities were measured by a Beckman induction salinometer (Table 1).

During each of these studies D.O. was regulated so that four levels were run simultaneously. Mean values differed slightly in each study, but the ranges were kept within the limits shown in Table 1.

The four trays (Figure 2) were modified from a design developed by P. R. Walne (1966). These trays used baffles for flow control, and worked well since two stratified layers were created.

Twenty-one small oysters per tray (\overline{x} length 20 mm) from beak to hinge) were placed in plexi-glas "inserts" (Figure 3) that were provided with dividers. These prevented feces mixing with pseudofeces. Specimens were placed on a grooved stand and the "bill end" faced into the current. Every 72 hours, feces and pseudofeces were pipetted from the dividers, washed with distilled water, dried and weighed to the nearest 0.1 mg. These weights, for each D.O. level, were then corrected for natural sediment, collected from a control trough containing no oysters. Later calculations gave the mean weight of feces and pseudofeces produced per oyster during each study (Table 2).

H₂S Studies

H₂S experiments were carried out in a closed system where the water was recycled. Sea water that was prepared as described below was forced into the chambers containing the specimens. After the chambers were completely filled and all air bubbles removed the three chambers were connected in series with tygon tubing. The tubing was placed in a peristaltic pump which circulated the water through the chambers (Figure 4).

Water with high H₂S levels was prepared several days in advance. Large 18 liter bottles were filled with anoxic sea water, then anaerobic sediments from the York River were added to cover the bottom of the bottle to a depth of 5 to 6 cm. During the holding period H₂S developed in the water at levels ranging from 1.7 to 3.4 ml/L; D.O. levels were 0.0 or in one instance 0.1 ml/L. Water used for D.O studies was

stored in 18 liter bottles for the same period, but no sediments were added.

Water was changed and dead specimens removed every five days.

During the change, measurements were taken for pH, S\(^{9}\)oo, D.O. and

H2S. These measurements were taken for old water being discarded as

well as for water being replaced from the supply bottle. Measurements

are referred to as "before and after" measurements (Table 3). This

demonstrated that when the water was changed the test animals were

not subject to any great change in D.O. or H2S levels.

Feces and pseudofeces measurements were not made in the H_2S studies because they were conducted in a closed system where there were few if any particles to be removed by the oyster.

D.O. concentrations and temperature for all oxygen experiments were measured with a YSI polarigraphic probe. Salinities were measured on a Beckman induction salinometer. H₂S measurements were taken as described by Strickland and Parsons (1968). D.O. concentrations for H₂S experiments were measured with a modified Winkler method. Hydrogen-ion concentration was monitored with a Coleman pH meter with glass reference electrode.

RESULTS

Low D.O.

The percent mortality is expressed as the ratio of live to dead oysters; oysters were removed as dead when they gaped and would not

respond to tactile stimulation (Table 1). Data for experiments 1,

2 and 3 showed that at D.O. levels ranging from 0.1 to 0.4 ml/L

about half of the oysters died in about 8 days and 100% mortality

occurred between 10 and 13 days. At D.O. levels ranging from a mean of

0.3 - 0.4 ml/L survival time was much longer and mortality ranged from

0 to 14% by the 10th day. Controls kept in well oxygenated water

showed zero mortality. The data shown in Table 1 for each of the

low D.O. values in experiments 1, 2 and 3 are shown graphically in

Figure 5.

While levels of 0.3 - 0.4 to 0.9 ml/L caused zero or only minor mortalities, these levels or lower had a decided influence on biodeposition rates. At about 0.8 ml/L fecal production was less than half of that shown by controls, in contrast, pseudofeces production was not influenced until levels of about 0.3 ml/L were reached (Table 2). At 0.3 ml/L fecal production was zero or just measurable; pseudofeces was produced at about 10% of the level shown by controls.

High H₂S

Studies on effects of low D.O. plus H₂S were done in recycled water in contrast to those involving low D.O. alone where water was continuously changed; therefore, the results of the two studies are not strickly comparable.

When H S was present at D.O. values of 0.0, mortality was rapid. Two studies conducted at a H_2S range from 1.7 to 3.4 mg/L showed 100%

mortality in 8 to 9 days; a third study showed 98% mortality in 8 days. In contrast, oysters held at 0.0 to 0.2 mg/L showed low mortalities at 8 days ranging from 17 to 22%. These mortalities are much lower than those obtained in the preceding study conducted in a flow through system. The reason for this lowered mortality may be associated with the fact that in the recycled system oysters were not open as often as in the flow through study (Tables 1 and 3).

II. The Effects of Low D.O. and Low D.O. Plus $\rm H_2S$ on Swimming and Survival of Oyster Larvae.

INTRODUCTION

These experiments determined: 1) the physiological response of larvae to low D.O. values; and, 2) mortality patterns in respect to low D.O. or low D.O. plus H₂S. These aspects are covered below in three sections: 1) standing water studies testing effects of low D.O.; 2) flow through studies utilizing various D.O. levels; and, 3) studies using recycled water in which larvae were subject to low D.O. plus H₂S.

D.O., pH, salinity and H_2S were measured as outlined in Section I.

Standing Water Studies

I. Immature Larvae

Two similar studies were conducted with immature larvae. One exposed immature larvae for 24 hours to D.O. at 4 levels (Table 4).

Larvae were held in glass containers each holding about 2 liters;

jars were fitted with gas tight lids. Larval density was about 10 per ml. Each oxygen level, except the control, was made in triplicate.

After 24 hours exposure to various D.O. concentrations a strong beam of light was directed against the side of the jars to determine if larvae were swimming in the water. Those swimming in the water showed up as specks of light. To confirm the presence or absence

8

of swimming larvae, water was collected from 5 locations above the bottom. The larvae in suspension were counted with a Coulter Electronic Particle Counter. Next, samples of larvae were collected with a pipette from the bottom of each jar (live and dead), placed under a compound microscope, and 100 examined. They were classed as those showing movement of the swimming organ (the vellum) or those showing no movement. After the initial 24 hour examination all larvae were sieved from the jars and placed in aerated sea water. All samples were again examined after 24 hours. Oyster larvae which showed no movement of the vellum or those with no tissue in the shell after this second holding period were considered dead.

The second study involving immature larvae duplicated the first except that the initial holding period was for 48 hours and not 24.

The results of both studies showed that low D.O. had an adverse effect on larvae.

During the initial 24 and 48 hour holding period there was only a slight decline in D.O. from the initial 0.21 and 0.35 ml/L levels (about 0.1 ml/L). However, values which were initially 0.70 ml/L declined by about half (0.35 to 0.42 ml/L), Table 4. Therefore, in evaluating the results of this study, exposure levels are based on those observed at the end of each experiment.

The 24 and 48 hour study showed that with one exception, D.O. values below 0.42 inhibited swimming of larvae; the exception being in the 24 hour study (0.70 ml/L initial D.O. level) when larvae were observed all swimming at the surface. These visual observations

were confirmed by counts with a Coulter Electronic Particle Counter which showed that the water in the jars above the bottom contained about the same number of particles as did filtered sea water (Table 4).

The final 24 hour examination (24 hours in aerated water) indicates that 24 hour exposure to 0.21 or 0.49 ml/L produced only light mortalities ranging from 0 to 16%. In contrast, 48 hour exposure to values below 0.28 ml/L resulted in 42 to 96% mortality. Final values ranging from 0.35 to 0.42 ml/L gave mortalities ranging from only 16 to 27%.

-II. Mature-Larvae-

Effects of low D.O. were evaluated on mature larvae (ready to set). The technique of holding the larvae, levels of exposure, and time intervals were the same as those for the immature larvae. However, in these experiments there was no estimate of mortality based on microscopic examination and a Coulter Counter was not used to evaluate larval density. Instead effects were evaluated on the basis of numbers of larvae setting on shell placed in the containers.

Again as in the preceding study there was a slight drop in D.O. during the 24 and 48 hour holding period from the original levels of 0.21 and 0.35 ml/L levels. Those originally established at 0.70 ml/L showed a similar concentration at 24 hours; at 48 hours, levels declined to about half (Table 5).

This study confirmed the one conducted with immature larvae in respect to effects of low D.O. on swimming ability of oyster larvae. Values below 0.35 ml/L inhibited swimming; moreover, the 24 hour study

indicated that values as high as 0.70 ml/L also inhibited swimming. In all cases only a very few of the mature larvae set in the 24 or 48 hours they were held in water with D.O. values less than 0.70 ml/L.

While values lower than 0.70 ml/L inhibited swimming and setting and caused a partial mortality of larvae, many survived and set. That is, numbers of spat per shell after 24 hours aeration was about as high on shells exposed to low D.O. as it was for the controls.

We conclude that D.O. values less than about 0.70 ml/L inhibit swimming and setting and may cause partial mortalities. It is suggested, however, that if larvae in the natural environment were to settle to the bottom as they did in the glass jars that few would survive since they would be preyed on by many species of invertebrates.

Flow Through System - D.O. Studies

Studies conducted in standing water were not conclusive in respect to mortality since larvae were not fed during the study and there was the probability that accumulated metabolites may have influenced the results. Therefore, additional studies were conducted. In one series, larvae were held in a system which allowed the water to be changed constantly and where larvae were exposed to several D.O. levels.

Larvae were retained inside gas tight plexiglas chambers in nitex screen bags. Incurrent water was fed into the bag through a glass

tube, and exited through a second tube into a small bottle where D.O., salinity, temperature and other measurements made. Three separate studies were made. During each, 3 test and 3 control chambers were established, and similar numbers of straight hinged larvae placed in the nitex bag. Oysters were subjected to 0.2, 0.3, 0.8 ml/L and the controls. Fluctuations from the means, shown in the tabular material were of the same order of magnitude as that outlined in Section I. Later, at intervals of 24, 48 and 72 hours, the chambers were opened, and larvae examined. After these initial exposure periods the larvae were placed in aerated water for 24 hours and re-examined.

Mortalities of straight hinged larvae after 24 hours aeration were based on numbers of the larvae showing empty shells plus those showing no movement of the vellum or those filled with protozoans as contrasted to those shells showing movement of the vellum (Table 6).

Levels of 0.8 ml/L of D.O. produced only 14% mortality by 48 hours, but by 72 hours, 54% had died. At 0.3 ml/L 84% died by 72 hours; at 0.2 ml/L there was 100% mortality by 72 hours (Table 6 and Figure 6).

Cycled System - D.O. Plus H_2S

Tests were run to determine the lethality of low D.O. plus H_2S on oyster larvae. In this study the same apparatus was used for holding larvae as in the previous test, but the water was recycled through the chambers with a perastaltic pump (Harvard Apparatus Co.).

A source of water high in H_2S was prepared several days in advance of each study by filling 18 liter bottles with anoxic sea water and anaerobic estuarine sediments as previously described.

Controls were maintained under 0 to 0.1 ml/L D.O. Each study ran for 24 hours. Larvae were examined at the end of this period as outlined for those in the preceding studies. They were then placed in aerated water for 24 hours and re-examined.

When H_2S was present at zero D.O. levels the combination was highly lethal to larvae. Concentrations of H_2S ranging from 5.2 to 7.0 mg/L caused 100% mortality in 24 hours (Table 7; Figure 6). In contrast mortalities ranged from 7 to 14% in controls held at D.O. levels of 5.2 to 5.8 ml/L, and from 20 to 29% in groups held at zero D.O. levels.

III. The Effects of Low D.O. and Low D.O. Plus H₂S on Survival of Hard Clams.

INTRODUCTION

Three studies were conducted to determine the chronic effects of low D.O. and low D.O. plus H_2S on hard clams.

MATERIALS AND METHODS

Small hard clams ranging in width from 20 to 25 mm were subjected to low D.O. and low D.O. plus H₂S for periods ranging up to 38 days. Mean values used for D.O. alone ranged from 0.0 to 0.2 ml/L. In studies for D.O. plus H₂S, D.O. was 0 ml/L; H₂S ranged from a mean of 1.8 to 5.4 ml/L (Table 9). Techniques to hold small hard clams and measurements of temperature, salinity, pH, D.O. and H₂S were the same as outlined in Section I. Variation in D.O. about the mean values shown were also the same as was outlined in the first section.

RESULTS

The three experiments indicated that hard clams have a much higher tolerance to low D.O. and D.O. plus ${\rm H_2S}$ than oysters.

In the groups subject to a mean D.O. range from 0.0 to 0.1 ml/L, mortality in the 5 day study was 1%; in the 11 day study 5% died; in the 38 day experiment mortalities were zero (Table 8).

In contrast, the clams exposed to 0.0 ml/L D.O. and a range of H₂S from 1.8 to 5.4 ml/L showed much higher mortalities. In the 5 day study mortality was 1%; in the 11 day study 3% died. In the experiment which ran 38 days, mortality was only 4% by 27 days, but by 38 days 96% had died.

During the H₂S study over the first 27 days, up to 44% of the hard clams gaped with the siphons extended. They responded readily to stimuli; many retracted their siphons or closed when the chambers were jarred (Figure 7). After 27 days opening was erratic and the clams began to die.

IV. Effects of Low Oxygen on Pumping Rates, Filtration Efficiency and Oxygen Consumption of Hard Clams.

INTRODUCTION

There follows a summary of the MS thesis written by Mr. Dennis Walsh. These studies showed that D.O. levels below about 1.7 ml/L adversely influence hard clams.

The oxygen consumption, pumping rate and filtration efficiency of Mercenaria mercenaria, from the York River, Virginia, were measured at low oxygen tensions and compared to the same measurements taken at high oxygen tensions. All experiments were conducted under naturally fluctuating conditions of salinity, temperature, turbidity, and food levels. Analysis of results from 30 clams indicated Mercenaria could maintain a constant oxygen consumption in declining oxygen tension, but the critical oxygen tension (P_c) at which this respiratory regulation ceased appeared to depend on the clam's size and sex. Gravid females, dry tissue weight 1.20 - 5.03 g, displayed a $P_{\rm C}$ near an oxygen tension of 40 mm Hg (25% sat. or about 1.7 ml/L*). Male clams with gametes, whose dry tissue weight was less than 3.0 g had a $P_{\rm C}$ near 80 mm Hg oxygen tension (50% sat. or 2.8 ml/L^*). Some evidence is offered that larger males have a P_C similar to females. Three modes of respiratory regulation were observed. In the first, oxygen utilization and pumping rate remained unchanged at all oxygen levels above $\mathbf{P}_{\mathbf{C}}$ such that the

^{*} Assumes $16^{\circ}/00$ and $23^{\circ}C$.

oxygen consumption, the product of these two variables, remained unchanged. In the second mode a decrease in pumping rate was compensated by a sufficient increase in oxygen utilization to give a constant oxygen consumption. In an anomalous third mode, an increase in pumping rate was not fully compensated by a decrease in oxygen utilization, but exygen consumption remained constant. The efficiency with which the gill's cilia were able to remove particles in the 3-20 m range was found to be independent of the pumping rate, oxygen consumption and the oxygen tensions. Multiple linear regression analysis showed that the observed values of turbidity and food level showed little effect on either male or female Mercenaria at high or low oxygen tensions. Sexual differences were again evident at high versus low oxygen tensions when size of the clam was analyzed by MLR analysis.

CONCLUSIONS

Sections I - IV

This study has shown that low D.O. values similar to those which occur naturally in Chesapeake Bay may adversely influence populations of oysters and hard clams.

A major adverse effect would be on larvae of oysters which are planktonic for about two weeks before they attach to shell substrate. During this period the larvae may be transported by tidal currents many miles from their point of origin (Wood and Hargis, 1971). Often, this transport occurs in the lower regions of the estuarines, similar

to Chesapeake Bay, where D.O. levels are lowest. If during this transport, the water becomes deficient in D.O., or if the larvae (during periods of vertical migration) enter layers where D.O. levels are critical, there will be a good probability that many will die.

The adults of oysters and hard clams are especially vulnerable to low D.O. levels since they are sedentary. In Chesapeake Bay both species of molluscs occur in regions where D.O. values may become low each summer due to natural causes.

It is clear that if sewerage with its high BOD levels were added to a system which was only slightly above the critical level that the added impact on the ecosystem might have extremely adverse effects on molluscan populations.

BIBLIOGRAPHY

- Galtsoff, P. S. 1964. The American Oyster. Fish. Bull. 64: 1-480.
- Gardner, L. 1971. Chemical models for sulfate reduction in closed anaerobic marine environments. Geochimica et Cosmochimica Acta, 1973. Vol. 37: 53-68.
- Hamwi, A. and H. Haskin. 1969. Oxygen consumption and pumping rate in the hard clam Mercenaria mercenaria: A direct method. Science, 163: 823-824.
- Haven, D.S. and R. Morales-Alamo. 1970. Filtration of particles from suspension by the American oyster <u>Crassostrea</u> <u>virginica</u>. Biol. Bull. 139(2): 248-264.
- Hewatt, W.G. 1945-47. An oyster mortality study in lower Barataria Bay, Louisiana. Texas A&M Res. Foundation, Project 9: 1-11.
- Hires, R.I., E.D. Stroup, and R.C. Sietz. 1966. Atlas of the Distribution of Dissolved Oxygen and pH in Chesapeake Bay. 1949-1961. Grayshead Summary Report 3. CBI, Reference: 63-4.
- Lyche, H.T. 1956. A simple method for quantitative determinations of H₂S in sea water. Universitetet I Bergen Arbok, 1956. Nr: 12.
- MacInnes, J.R. and Thurberg, F.P. 1972. Oxygen consumption rate of larvae of the American oyster. NOAA.
- Morrison, G. 1971. Dissolved oxygen requirements for embryonic and larval development of the hard shell clam, Mercenaria mercenaria. J. Fish. Res. Bd. Canada 28: 379-381.
- Rivera, J.A. 1962. Cilia, Ciliated Epithelium and Ciliary Activity. Pergamon Press. 1-167.
- Silver, S.J., C.E. Warren and P. Doudoroff. 1963. Dissolved Oxygen Requirements of Developing Steelhead Trout and Chinook Salmon Embryos at Different Water Velocities. Trans. Am. Fish. Soc. 92(4): 327-355.
- Strickland, J.D.H., and T.R. Parsons. 1968. A practical handbook of sea water analysis. Bull. 167: 41-44.
- Von Brand, Theodor. 1946. Anaerobiosis in Invertebrates. Biodynamica Monograph No. 4. (Missouri: Biodynamica): 328 pp.
- Walsh, D. 1974. The response of the bivalve Mercenaria mercenaria to declining oxygen tensions. MS Thesis, VIMS.

- Walne, P.R. 1966. Experiments in the large scale culture of the larvae of Ostrea edulis. L. Fish. Invest., Lond., ser. 2., vol. 25, no. 4: 1-53.
- Wood, J.L. and W.J. Hargis, Jr. 1971. Transport of bivalve larvae in a tidal estuary. Fourth European Biological Symposiam.

Table 1
Mortality of oysters exposed to varying levels of D.O.

EXPERIMENT 1

······································	2 =1 m1/L	nl/L	<u>o</u>		Open	Daily Mortalities	Cumulative % Mortality
Days	× 02 Level	O ₂ ml Range	so/os	O _C	% O	Dai. Mort	Cumi % Me
1	0.2 0.3 0.6 4.3	0.1 - 0.3 0.1 - 0.3 0.3 - 1.0 3.6 - 4.6	16.8 16.8 16.8	23 23 23 23	7 40 52 80	0 0 0 0	0 0 0
2	0.1 0.3 0.8 4.4		17.2 17.2 17.2 17.2	23 23 23 23	9 44 39 57	0 0 0 0	0 0 0
3	0.1 0.3 0.8 4.4		17.2 17.2 17.2 17.2	23 23 23 23	0 28 91 83	0 0 0 0	0 0 0
4	0.1 0.3 0.8 4.4	ABOVE	17.3 17.3 17.3 17.3	24 24 24 24	4 20 90 91	1 0 0 0	5 0 0
5	0.2 0.3 0.9 4.7	SAME AS	17.3 17.3 17.3 17.3	23 23 23 23	21 35 42 52	2 0 0 0	14 0 0 0
7	0.2 0.3 0.9 4.7		16.8 16.8 16.8	24 24 24 24	0 0 0 33	4 0 0 0	33 0 0 0
8	0.2 0.3 0.9 4.7		16.8 16.8 16.8 16.8	24 24 24 24	37 69 41 64	4 0 0 0	52 0 0 0
9	0.2 0.3 0.9 4.7		18.9 18.9 18.9	23 23 23 23	44 29 55 30	3 0 0 0	66 0 0 0

Experiment 1 (Contd.)

Days	x O ₂ Level ml/L	O ₂ m1/L Range	s%oo	$ m T^{O}_{C}$	% Open	Daily Mortalities	Cumulative % Mortality
10	0.2		18.6	23	44	2	71
	0.3		18.6	23	29	0	0
	0.6		 18.6	-23	55	0	0
	4.4	Above	18.6	23	70	0	0
11	0.2		18.9	23	52	3	90
	0.3	AS	18.9	23	26	0	
	0.7	60	18.9	23	61	0	0 0 0
	4.3	SAME	18.9 18.9	23	70	0	0
12	0.2		18.7	23		2	100
	0.4		18.7	23	28	0	0
	0.7		18.7	23	68	0	0
	4.6		18.7	23	70	0	0

EXPERIMENT 2

÷.	Days	× O ₂ Level ml/L	O2 ml/L Range	8%00	т ^о с	% Open	Daily Mortalities	Cumulative % Mortality
	1	0.4 0.5 1.1 4.6	0.1 - 0.5 0.3 - 0.7 0.3 - 1.2 3.1 - 5.8	15.5 15.5 15.5 15.5	22 22 22 22	0 26 57 49	0 0 0 0	0 0 0
	2	0.2 0.4 0.7 5.3		14.0 14.0 14.0	22 22 22 22	52 40 55 80	0 0 0	0 0 0
	3	0.2 0.4 0.8 4.3		14.4 14.4 14.4 14.4	22 22 22 22	57 71 75 85	0 0 0 0	0 0 0 0
	4	0.2 0.4 0.8 4.1	ABOVE	13.5 13.5 13.5	21 21 21 21	61 66 55 55	0 0 0	0 0 0
	5	0.2 0.4 0.8 4.8	SAME AS	13.7 13.7 13.7	22 22 22 22	59 61 50 71	2 0 0 1	9 0 0
•	7	0.2 0.4 0.8 4.0		13.0 13.0 13.0 13.0	22 22 22 22	62 47 47 71	3 0 0 0	22 0 0 0
Ģ	8	0.2 0.7 1.0 5.8		12.1 12.1 12.1 12.1	22 22 22 22	83 65 75 66	5 1 0 0	47 4 0 0
	9	0.2 0.4 0.7 4.4		12.8 12.8 12.8 12.8	22 22 22 22 22	60 34 65 80	6 0 0 0	76 4 0 0
	10	0.4 0.4 0.9 4.1		14.5 14.5 14.5 14.5	22 22 22 22	21 36 47	5 1 0 0	100 8 0 0

		m1/L	į	EXPERIMENT	3		ies	ve ity	
,	Days	x O ₂ Level ml	O ₂ ml/L Range	s%s	${ m T}^{ m O}_{ m C}$	% Open	Daily Mortalities	Cumulative % Mortality	
	1 .	0.2 0.4 0.9 4.3	0.1 - 0.5 0.3 - 0.5 0.5 - 1.0 2.7 - 5.3	21.2 21.2 21.2 21.2	23 23 23 23	19 23 38 47	0 0 0	0 0 0 0	
		0.1 0.4 0.9 4.3		21.5 21.5 21.5 21.5	23 23 23 23	14 33 28 42	0 0 0	0 0 0	
	3	0.1 0.4 0.8 4.4		21.6 21.6 21.6 21.6	23 23 23 23	57 0 23 47	0 0 0	0 0 0 - 0 =	
	4	0.2 0.4 0.9 4.3	WE	21.0 21.0 21.0 21.0	23 23 23 23	14 18 22 23	1 0 0 0	4 0 0 0	
	5	0.1 0.3 0.8 4.2	SAME AS ABOVE	21.2 21.2 21.2 21.2	23 23 23 23	20 22 33 47	5 1 0 0	28 4 0 0	
	6	0.1 0.3 0.8 4.4	g.	22.3 22.3 22.3 22.3	22 22 22 22	20 14 34 48	0 0 0	28 4 0 0	
•	7	0.1 0.3 0.8 4.6		22.5 22.5 22.5 22.5	23 23 23 23	10 20 23 36	1 0 0 0	33 4 0 0	
•	8	0.1 0.3 0.8		21.3 21.3 21.3	23 23 23	5 10 13	1 0 0	38 4 0	
	9	4.6 0.1 0.3 0.9 4.6		21.3 20.0 20.0 20.0 20.0	23 22 22 22 22	46 7 20 15 48	0 0 1 0 0	0 38 8 0 0	
	10	0.1 0.3 0.9 4.3		20.1 20.1 20.1 20.1	22 22 22 22	4 15 16 36	3 0 0 0	52 14 0 0	

Experiment 3 (Contd.)

Days	x o Levêl ml/L	O, ml/L Rånge	s%so	o ^{El}	% Open	Daily Mortalities	Cumulative % Mortality
11	0.1		20.3	22	5	3	66 <u>1</u> 4
	0.3	~	20.3	-22	9	0	0
	0.9	Œ	20.3	22	12		0
•	4.3	ABOVE	20.3	22	40	0	U
12	0.1		22.5	23	10	5	90
12	0.3	AS	22.5	23	25	0	14
	0.8		22.5	23	21	0	0
	4.3	SAME	22.5	23	48	0	0
17	0.7		22.2	22		2	100
13	0.1 0.4		22.2	22	10	1	14
	0.4		22.2	22	15	0	0
	0.9		22.2	22	48	Ŏ	0 0
	4.3		22.2	22	70	U	•

Table 2

Effect of Various Dissolved Oxygen Concentrations on Production of Feces and Pseudofeces (Biodeposition Rates) by Oysters Quantity shown is mg dry weight per oyster for 72 hours.

Mean O2* Level		Ho	Exp. # 1 ours Expose	ed		Exp. # 2 urs Expos	ed		Exp. # 3 urs Expos	ed
ml/L			144	216	72	144	.216	_72	144	216
4.3	Feces	58.6	69.4	55.5	16.7	42.3	32.6	22.4	16.2	19.6
	P/Feces	96.4	124.6	95.8	29.6	28.8	28.8	25.4	37.3	22.8
0.8	Feces	23.6	62.0	11.9	3.4	3.0	2.9	12.5	6.1	13.5
	P/Fece s	78.5	124.9	72.8	24.7	25.8	24.5	15.6	9.9	14.2
0.3	Feces	0	14.0	0	0	0	0	8.8	2.8	4.5
	P/Feces	15.1	46.5	38.9	5.4	19.2	8.5	6.2	11.4	8.3
0.2	Feces	0	0	1.3	0	0	0	0.8	0	0
	P/Feces	3.7	15.0	27.9	3.8	2.5	2.5	3.2	1.2	1.4

^{*} Values for individual experiments are shown in Table 1.

			1	EXPERIM	ENT 1								1	experime	ENT 2				
r Days	Lear Contract	72	99/6S 18.4	ቼ 7.9	8 ByS m1/L (mp)	7 ng -at S/L	O 02 #1/L	A Cpen	o % Mortality	s Days	Tees Chamber	J 24	% % 18.2	E.	HyS ml/L (MTP)	ug -at S/L	02 m1/L	z Cpen	% Mortality
	Control	12	18.4	7.6	0.0	0	0.2	ě۷		•	Control	24	18.2	7.G	1.7	78 0	0.5	6 15	0
3	Test Control	73	10.4 10.4				4-4	2 3	Ü	2	Test Control	24 24	18.2 18.2	***	-	***		12 12	5 0
3	Test Cont roi	3	18.4	***	***			3 10	5 (1	3	Test Control	24 24	18.2 18.2	*		***		3 6	25 1
4	Test Cont rol	21	18.4 1.8.4	•••		***		6 12	25 0	4	Test Cont rol	24 24	10.2 10.2			***		10	38 5
				BEFOR										BEFOR	E				
5	Test Control	23	18.4 18.4	7.2 7.5	2.9 0.0	130	0. n 0. o	2 6	38 13	5	Test Control	24 24	18.2	7.3 7.6	1.9	86 0.0	0.0	4 15	46 8
				after	l									AFTER					
	Test Control	7	19.9 18.8	7.2 7.6	3.3	148 (1	0.0	8	***		Test Control	24 24	10.5 18.5	7.3 7.5	2.4	110 0.0	0.5 p.u	***	***
6	Test Cont rol	23	10.8 19.0	***	***	244		12	68 14	6	Test Control	24 24	18.5	**-	-			? 15	6 2 10
7	Test Control	2.3	18.8 18.8	***	***		•	5 15	76 16	7	Test Control	24 24	18.5 18.5	***	===		***	0 20	78 15
8	Test Control	28 28	18.8	7.3	3.4	156 0	0.0	6 10	100	8	Test Control	24 24	18.5 18.5	***	=			10	85 20
										3	Test Control	24 24	18.5 18.5	7.2 7.6	2 5	115 0.0	0.0	n 15	100 22

.

TENNO PEN

EXPERIMENT 3

Shan	Chamber	ပို့	5 }00	8	9 ₂ S 82/l. (NTP)	फु न्बर S/L	O ₂ m1/L	Open	Mortality
1	Test Control	24 24	17.8 17.8	7.2	3.n	136	0.0	3	94
8 .	Test Control	24 24	17.8 17.8	han	***	***	0.1	10 0 12	5 0
3	Teat Cont rol	24 24	17.8 17.8	***	***			0 16	28
4	Test Cont rol	24 2 4	17.8 17.8	***	***	***	***	1 B	42 8
5	Test Control	24 24	17.8 17.8	7.2 7.6	3.2 0.0	146 0.0	0.0	0	58 B
	Test Control	24 84	18.0 18.0	7.4 7.8	3.0 0.0	138	0.0	***	***
6	Test Con trol	24 24	18.0 18.0	***	***	***	***	0	76 10
7	Test Con trol	24 84	18.0 18.0	***	***	***	***	2	85 12
8	Test Control	24 24	18.0 18.0	7.4 7.8	3.1	142 0.0	0.0	0	98 17

Table 4
(Standing Water)

Effects of Low Oxygen on Oyster Larvae (Straight Hinge)

Initial O ₂ Level MI/Liter	1°C		Final 02 Level Ml/Liter	Toc	Swimming with Light	Coulter Counts Larvae/ Ml	% Vellum Moving		0 ₂ M1/L	$\mathbf{r}^{\mathbf{d}}\mathbf{c}$	Swimming with Light	% Vellum Moving	% Mortality
0.21	19		0.21	19	None	0.62	82		5.46	19	Yes	84	16
0.21	19		0.21	19	None	0.87	94		5.53	19	Yes	98	
0.21	19		0.21	19	None	0.62	94		5.46	19	Yes	98	2 2
0.35	19	S	0.28	19	None	0.68	94		5.04	19	Yes	96	4
0.35	19	Hours	0.49	19	None	0.75	96		5.46	19	Yes	100	0 2
0.35	19		0.35	19	None	0.63	90		5.32	19	Yes	98	2
0.70	19	24	0.35	19	At	-	96		5.60	19	Yes	100	0
0.70	19		0.35	19	Top		100	g	5.04	19	Yes	100	Ŏ
0.70	19		0.35	19	-		96	Aeration	5.04	19	Yes	98	2
5.04	19		4.76	19	A11	10.3	100	Aer	4.80	19	Yes	100	0
NAT	TURAL BA		ROUND COUNT							;			
	FILTE	RED	SEA WATER (1u))		0.70		Hours					
0.21	19		0.28	19	None	1 /	E 2	E G	r //	10		4.0	
0.21	19		0.28	19	None	1.4 1.2	52	54	5.46	19	Yes	42	58
0.21	19		0.28	19	None	1.6	0 41	7	5.04	19	Yes	4	96
0.21	1,9		0.20	19	Notic	1.0	41		5.32	19	Yes	58	42
0.35	19		0.28	19	None	2.6	30		5.04	19	None	51	49
0.35	19	Ø	0.21	19	None	0.1	0	,	5.60	19	Slight		74
0.35	19	Hours	0.28	19	None	1.8	50		5.30	19	Yes	38	72
0.70	19	48 H	0.35	19	None	1.8	66	1	5.32	19	Yes	84	16
0.70	19	4	0.42	19	None	1.8	32		5.04	19	Yes	63	27
0.70	19		0.35	19	None	1.3	78		5.32	19	Yes	84	16
5.11	19		3.9	19	Yes	12.1	100		4.0	19	Yes	100	0

NATURAL BACKGROUND COUNT FILTERED SEA WATER (1u)

s^o/oo 16.90 1.2

Table 5
(Standing Water)

Effects of Low Oxygen on Oyster Setting (Mature Larvae)

4.55 21 4.02 21 Yes 83 4.41 21 Yes 0.14 21 0.14 21 None 0 4.55 21 Yes 0.21 21 0.21 21 None 0 4.34 21 Yes 0.21 21 None 0 4.34 21 Yes 0.35 21 H 0.35 21 None 0 4.34 21 Yes 0.35 21	0.70 0.70 0.70 0.70 0.70	21 21 21 21 21 21 21	24 Hours	0.70 0.70 0.70 0.70 0.70	20 digat 21 21 21 21 21 21 21	anow anow anow anow anow anow anow anow	Spat 000 000 Strikes	24 Hours Aeration	100 Higher 100 Tevel 100 Milliter 100 Millit	21 21 21 21 21 21 21 21 21	se X Swimming Swimming Swimming Se S S S S S S S S S S S S S S S S S S	Spat Set 0001 0001 0007 0007 0007 0007 0007 000
0.21 21	4.55	21		4.02	21	Yes	83		4.41	21	Yes	500
4.50 21 Yes 500 4.55 21 Yes	0.21 0.21 0.35 0.35 0.35 0.70	21 21 21 21 21 21 21		0.21 0.21 0.35 0.35 0.35	21 21 21 21 21 21 21 21	None None None None None	0 0 0 0 0	24 Hours Aeration	4.34 3.85 4.34 4.55 3.71 3.85 3.71	21 21 21 21 21 21 21 21	Yes Yes Yes Yes Yes Yes	203 750 800 250 1500 150 600 500 150

^{*} To the me arest 100

Table 6 Physiological Characteristics of Oyster Larvae at Varied ${\rm O_2}$ Levels (Straight Hinge)

		1							(30	raign	chinge	,									*>
		Exposed	ტ. ()	X % m1/L	°5/00	% Velum Extended	% Velum Not Extended	% Velum Moving	% Velum Stopped	% Shell Full	% Shell Empty	% Shell Protoza		% Velum Extended	% Velum Not Extended	% Velum Moving	% Velum Stopped	% Shell Full	% Shell Empty	% Shell Protoza	% Mortality*
11 7	Test Control	24 24	26 26	0.2 4.2	18.6 18.6	21 56	79 44	12 86	88 14	100 100	0	0		74 58	16 42	93 94	7	100 100	0	0	7 6
Experiment	Test Cont rol	48 48	26 26	0.2 4.5	18.6 18.6	4 30	96 70	4 90	96 10	100 100	0	0		28 40	72 60	30 90	70 10	100 100	0	0	70 10
ă	Test (outrol	72 72	26 26	0.2 4.3	18.2 18.2	12 52	88 48	0 86	100 14	100 100	0	0		0 47	30 53	9 2	30 8	30 100	38 0	32 0	100
	Test	24	26	0.3	18.1	33	67	15	85	100	0	0	F	67	37	89	11	100	0	•	
2	Control	24	26	4.2	18.1	68	32	92	8	100	ŏ	ő	lati	63 72	28	93	7	100	ő	0	11 7
Dxperinanc	Test Cont rol	48 48	26 26	0.3 4.3	19.1 18.1	21 84	79 16	38 100	62 0	100 100	0	0	s Aeriation	32 28	48 72	50 96	3.0 4	80 100	20 0	0	50 4
ZY.	Test Control	72 72	26 26	0.3 4.4	18.1 18.1	4 35	78 65	0 84	82 16	82 100	14 0	4 0	24 Hrs	14 50	22 44	16 84	20 10	36 94	40 4	24 2	84 16
nt 3	Test Control	24 24	26 26	0.8 4.2	18.1 18.1	52 64	4 0 36	84 92	16 8	100 100	0	0		64 72	36 28	86 90	14 10	100 100	0	0	14 10
Experiment	Test Control	48 48	26 26	0.8 4.0	18.2 18.2	36 43	64 57	90 80	10 20	100 100	0	0		20 26	80 70	86 80	16	90 96	8 4	2 0	14 20
Ä	Test Cont rol	72 72	26 26	0.8 4.4	18.8 18.8	14 56	86 44	24 46	76 54	100 100	0	0		26 38	74 62	46 87	54 13	100 100	0 0	0	54 13

^{* %} shell with protozoan + % shells empty + % vellum stopped

, ,

POZNACALI TIPUS % Anderi TIPUS % Anderi TIPUS % POZNACALI						
TIPES % TIPES (CONTROL OF CONTROL OF CONTRO	A COMMENTAL OF THE COMMENT OF THE CO	43 8 24 8 24 4 24 4 25 4	2 8 8 2 8 8 8 8			
LICHS % PRINCIPAL S ENTARM UNITED S ENTARM UNITED S ENTARM UNITED S ENTARM AND S ENTARM ENTARM AND S ENTARM ENTARM AND S ENTARM ENTARM AND S ENTARM ENTARM ENTARM EN	2 के कि	25 m 25 m 25 m 25 m 25 m 25 m 25 m 25 m	0 a 8 1 7 8 1 7 9 1 7 9 0 a 2			
Eurach Direct a Direct a		A SAR TOP A SAR A	15. 3 148 149 144			
EDETIONS FORTING A TOTAL A	24 A	AMA Tigg Own High II Own High High High High High High High High	2 4 8 12 4 14 4 14 4			
unter % Depus Las entra % Entra % Treus % Aning Treus % Treus % Define Treus % De		क्षिकु (कार क्षा ्ड्रे (क्षा (क्षा (क्षा (क्षा (क्षा)	(14명 이유보			
BOCTORE TENUT & ADDITION ADDITION TO SERVICE	e e e e e e e e e e e e e e e e e e e	्राज्यस्य सम्बद्धाः स्टब्स्यः सम्बद्धः सम्बद्धाः	er sa tr			
As for State of State	.π.√•	2 84 S				
As for State of State	∵ # √• •1	29 a				
ELEMS (A DESIGNAL ELEMENT A ELEMENT A	.,	2 %- ±				
pertug His Are	, 4 .		·			
- 1	7					
			•			
			. 7			
	4 1 2	, - 2,	e, et e			
papiasang Lengan ig		en en en es est	rg Sh Handa	期 初 第		
, g 27 - \$%		;	0 10 [₹] . c. 1 1			
L		• • •	:	i J		
H ā	# : #			2		
ుప ్ద క	2.00 2.00 2.00 2.00	0.04 M 0.04 M	្នៈ» គំគំគំ			
7/I= *:			# _*	•		
24. 4	NW LS all	Cu	g	÷ .		
	Sate in Sate i	Sur-in Su	\$25.00 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$25-45 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1	1

The state of

Table 8

Three Studies Showing Effects of Low Dissolved Oxygen and Low Dissolved Oxygen Plus Hydrogen Sulfide on Hard Clams.

				Experi	ment 1				
	ber				-at S/L	ML (H ₂ S)/L (NTP)		Open	Mortality
Days	Chamber	T^{O}_{C}	8/00	Нď	e gu	ML (F	02	o I×	W W
1	Test Control	23 23	17.0 17.0	7.3 7.8	91 0.0	2.0 0.0	0.0 0.1	3 10	0
2	Test Control	22 22	17.0 17.0					2 8	0 0
3	Test Control	22 22	17.0 17.0					1 13	1
4	Test Control	22 22	17.0 17.0					4 34	1
5	Test Control	22 22	17.0 17.0	7.1 7.6	86 0.0	1.8 0.0	0.0	2 6	1
				Experi	ment 2				>
Days	Chamber	$ m T^{O}_{C}$	00/S	Нq	ug -at S/L	ML (H2S)/L (NTP)	02	x Open	% Mortality
1	Test Control	22 22	17.6 17.6	7.2 7.8	1 79.2 0.0	3.9 0.0	0.0	9 10	0 0
2	Test Control	22 22	17.6 17.6					3 7	0
3	Test Control	22 22	17.6 17.6					6 13	0 0
4	Test Control	22 22	17.6 17.6					2 12	0 3
5									

Experiment	2	(Contd.)
------------	---	---------	---

Days	Chamber	${ m T}^{\rm O}_{ m C}$	S/00	변 BEF	aac ng -at S/L	ML $(H_2S)/L$ (NTP)	02	× Open	% Mortality			
7	Test Control	22 22	17.6 17.6	7.0 7.6	125.0 0.0	2.8 0.0	0.0	3	3			
	AFTER											
	Test Control	22 22	18.1 18.1	7.2 7.7	139.5 0.0	3.1 0.0	0.0		1 			
8	Test Control	22 22	18.1 18.1					6 10	1 4			
9	Test Control	22 22	18.1 18.1					3 4	1 4			
10	Test Control	22 22	18.1 18.1					3 5	3 5			
11	Test Control	22 22	18.1 18.1	7.1 7.6	129.6 0.0	2.9 0.0	0.0	3 6	3 5			

Experiment 3

Days	Chamber	$ m T^{O}_{C}$	00/S	Ηď	ug -at S/L	ML (H ₂ S)/L (NTP)	02	× Open	% Mortality
1	Test Control	24 24	18.0 18.0	7.2 7.6	17.79 0.0	3.9 0.0	0.0	3 13	0
2	Test Control	24 24	18.0 18.0					1 3	0
3	Test Control	23 23	18.0 18.0					1	0

Experiment 3 (Contd.)

A Days	t Chamber	O _P I 23	00/s 18.0	Hď -	ug –at $\mathrm{S/L}$	ML (H2S)/L (NTP)	02	uedo x	o % Mortality		
7	Control	23	18.0					2	Ö		
•				BEFO	DRE						
5	Test Control	23 23	18.0 18.0		161.0	3.6 0.0	0.0	8 5	0 0		
AFTER											
	Test Control	23 23	17.8 17.8	7.1 7.7	110.0	2.4 0.0	0.0 0.1				
Ó	Test Control	24 24	17.8 17.8					2 3	2 0		
9	Test Control	24 24	17.8 17.8					8 10	2 0		
				BEFO	RE						
10	Test Control	24 24	17.8 17.8	7.2 7.7	93.6 0.0	2.0	0.0	7 6	2 0		
				AFTE	CR						
	Test Control	24 24	18.0 18.0	7.1 7.6	245 0.0	5.4 0.0	0.0				
11	Test Control	23 23	18.0 18.0					0	0		
7.0											
12	Test Control	23 23	18.0 18.0					4 5	2 0		
13	Test Control	23 23	18.0 18.0					7 6	2 0		

Exper	iment	3 (Contd.)	ļ

Days	Chamber	ToC	00/ ₀ S	ЬН	ug -at $\mathrm{S/L}$	ML (H ₂ S)/L (NTP)	05	× Open	% Mortality		
14	Test Control	23 23	18.0 18.0					14 21	4 0		
•				BEFO	RE						
15	Test Control	23 23	18.0 18.5	7.1	220	4.9 	0.0	0 30	4 0		
AFTER											
	Test Control	23 23	18.5 18.5	7.2 7.7	156 0.0	3.4	0.0				
18	Test Control	23 23	18.5 18.5					24 16	4 0		
19	Test Control	23 23	18.5 18.5					44 30	4 0		
				BEFO	RE						
20	Test Control	23 23	18.5 18.5	7.1 7.5	125 0.0	38 0.0	0.0	3 0	4 0		
				AFTE	R						
	Test Control	23 23	18.8 18.8	7.2 7.5	136 0.0	3.0 0.0	0.0				
21	Test Control	23 23	18.8 18.8					4 0	4 0		
22	Test Control	23 23	18.8					12 0	4		
23	Test Control	23 23	18.3 18.8					11 3	4 9		
24	Test Control	23 23	18.8 18.8					1	4 0		

Ģ

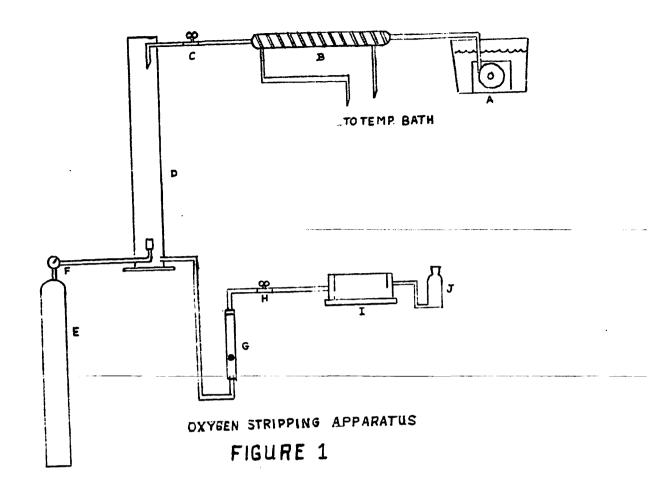
38

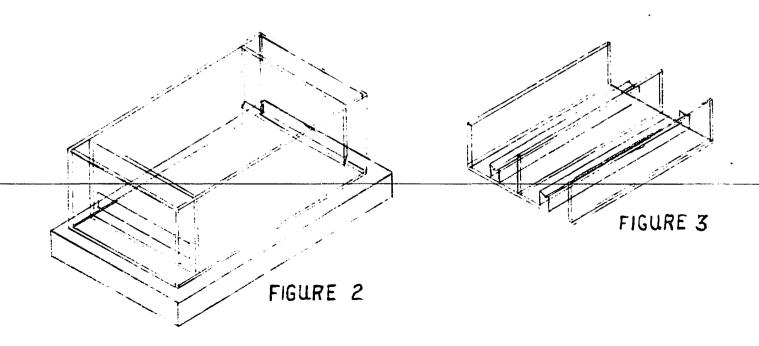
	Experiment 3 (Contd.)									
Days	Chamber	10 C	s/00	hф	ug -at $\mathrm{S/L}$	ML (H ₂ S)/L (NTP)	02	× Open	% Mortality	
25	Test Control	23 23	18.8 18.8	7.3 7.8	110 0.0	2.4 0.0	0.0	10 4	4 0	
26	Test Control	23 23	17.9 17.9					10 5	4	
27	Test Control	23 23	17.9 17.9					12 4	4 0	
30	Test Control	24 24	17.9 17.9	7.2 7.2	140 0.0	3.1 0.0	0.0	6 4	11	
	Test Control	24 24	18.4 18.4	7.3 7.8	165 0.0	3.6 0.0	0.0			
31	Test Control	24 24	18.4 18.4					12 12	11 0	
32	Test Control	24 24	18.4 18.4					19 15	11 0	
33	Test Control	24 24	18.4 18.4					8 4	22 0	
34	Test Control	24 24	18.4 18.4					13 17	32 0	
				BEFO	RE					
35	Test Control	24 24	18.4 18.4	7.2 7.7	145 0.0	3.2 0.0	0.0 0.0	1 5 9	35 0	
	Test Control	24 24	18.4 18.4	7.3 7.8	229 0.0	5.1 0.0	0.0	 		
36	Test Control	24 24	18.4 18.4					2 1	61 	
37	Test Control	24 24	18.4 18.4					1 0	73 0	

Test 24 18.4 7.2 211 4.7 0.0 0 96 Control 24 18.4 7.6 0.0 0.0 0.0 0 0

Figure 1.

Shows basic design of apparatus used to hold oysters, oyster larvae and hard clams.


- A. Submerged pump
- B. Constant temperature coil
- C. Stop cock
- D. No purging column
- E. N₂ cylinder
- F. Valve to regulate N_2 flow
- G. Flow-meter
- H. Stop cock to regulate flows
- I. Chamber to hold test animals
- J. Sample D.O. bottle


Figure 2.

Details of holding chamber (I) which could be fitted with a gas tight cover. This was used for larval studies and for $\rm H_2S$ experiments.

Figure 3.

Details of plexiglas inserts used to test chronic effects of low D.O. on hard clams and oysters.

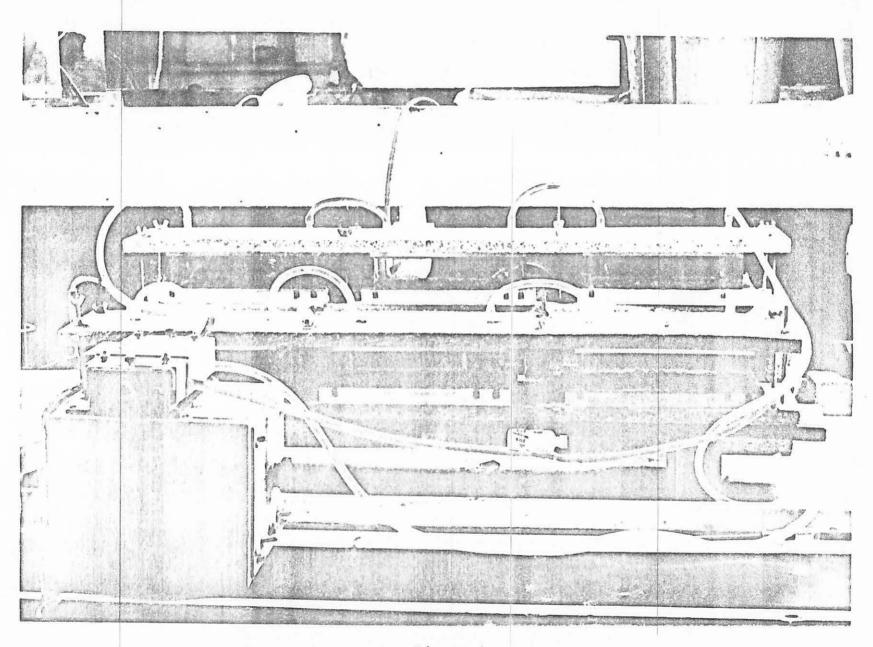
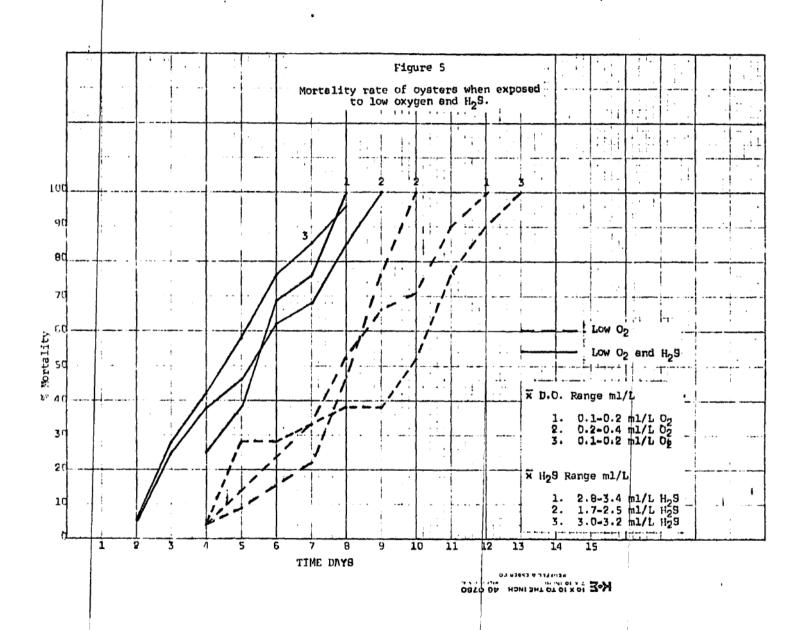
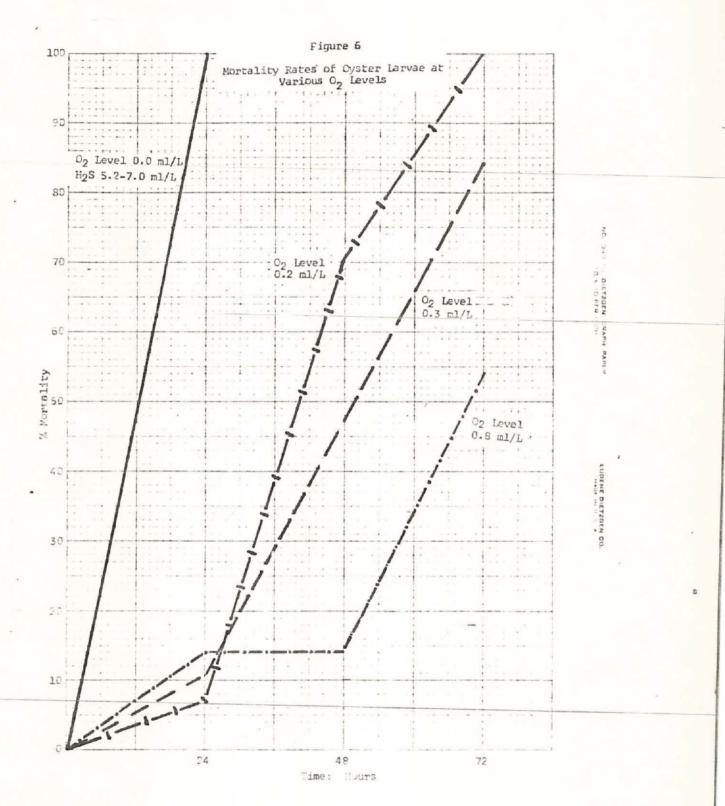
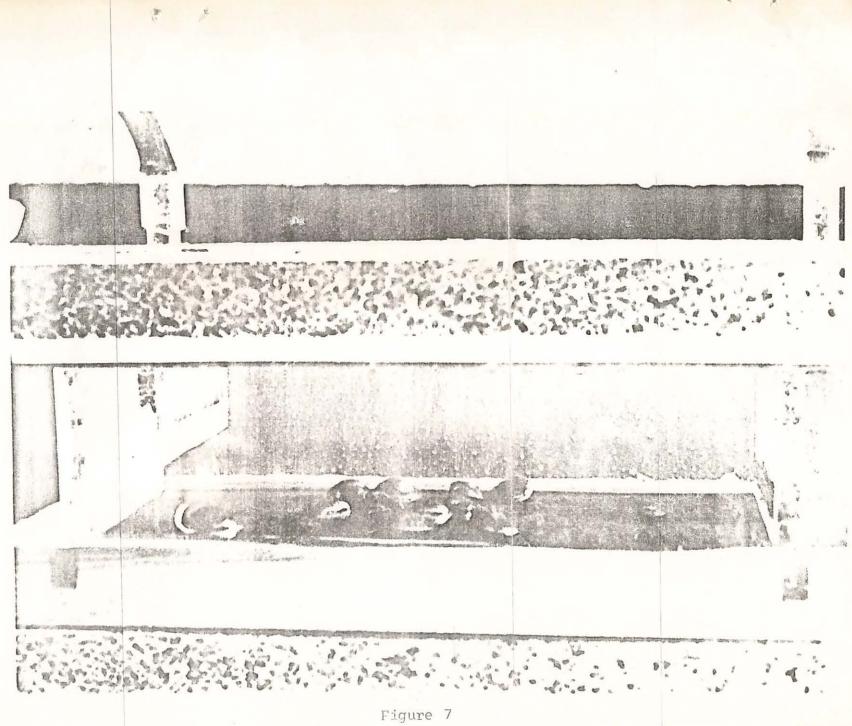





Figure 4
Hydrogen sulfide apparatus in series with peristaltic pump.

Clams being subjected to low oxygen and hydrogen sulfide.