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ABSTRACT
Objective: Cross-national studies provide inconclusive
results as to the effectiveness of foreign health aid. We
highlight a novel application of using subnational data
to evaluate aid impacts, using Malawi as a case study.
Design: We employ two rounds of nationally
representative household surveys (2004/2005 and
2010/2011) and geo-referenced foreign aid data.
We examine the determinants of Malawi’s traditional
authorities receiving aid according to health,
environmental risk, socioeconomic and political
factors. We use two approaches to estimate the impact
of aid on reducing malaria prevalence and increasing
healthcare quality: difference-in-difference models,
which include traditional authority and month-of-
interview fixed effects and control for individual and
household level time-varying factors, and entropy
balancing, where models balance on health-related and
socioeconomic baseline characteristics. General health
aid and four specific health aid sectors are examined.
Results: Traditional authorities with greater
proportions of individuals living in urban areas, more
health facilities and greater proportions of those in
major ethnic groups were more likely to receive aid.
Difference-in-difference models show health
infrastructure and parasitic disease control aid reduced
malaria prevalence by 1.20 (95% CI −0.36 to 2.76)
and 2.20 (95% CI 0.43 to 3.96) percentage points,
respectively, and increased the likelihood of individuals
reporting healthcare as more than adequate by 12.1
(95% CI 1.51 to 22.68) and 14.0 (95% CI 0.11 to
28.11) percentage points. Entropy balancing shows
similar results.
Conclusions: Aid was targeted to areas with greater
existing health infrastructure rather than areas most in
need, but still effectively reduced malaria prevalence
and enhanced self-reported healthcare quality.

INTRODUCTION
In the past two decades, health aid quin-
tupled from US$7 billion in 1990 to US$36
billion in 2015 (2015 dollars).1 At the same
time, health outcomes across developing
countries have improved; estimates suggest
that malaria death rates declined by 57%

from 2000 to 2015 across sub-Saharan
Africa.2 The growing commitment to address
health challenges abroad alongside regis-
tered progress has been matched by an

Key questions

What is already known about this topic?
▸ Several studies have examined the association

between health aid and health outcomes using
cross-national data, where recent literature has
come to conflicting results: some find significant
associations between aid and key health out-
comes, while others find no relation.

▸ Evidence on aid impacts in Malawi remains
limited, but suggests possible aid inefficiencies
and attenuated impacts. Donor reports note inef-
ficiencies in the health sector and that some
funds have gone unaccounted for. Reports do
note that, despite inefficiencies, health aid has
had beneficial impacts, although conclusions
were not based on empirically driven impact
evaluations. One paper empirically examined
how donor-financed expanded coverage of
malaria interventions was associated with
malaria infection rates at four hospitals in
Malawi, finding no declines in malaria admission
rates from 2000 to 2010.

▸ There is a large literature examining determi-
nants of aid allocation cross-nationally, although
the literature on subnational aid allocation is
limited. No study has examined the subnational
allocation of health aid, specifically.

What are the new findings?
▸ Using subnational data, this study finds that, in

Malawi, health aid contributed to reducing
malaria prevalence and improving self-reported
healthcare quality. In particular, aid projects allo-
cated towards improving basic health infrastruc-
ture and parasitic and infectious disease control
had the most notable impacts.

▸ Health aid was preferentially allocated to urban
areas and areas with more existing health facil-
ities; however, aid was not preferentially allocated
to areas with the worst health conditions.
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argument about the role development assistance has
played in bolstering health outcomes in recipient
countries. Advocates argue that health aid has reduced
preventable diseases, particularly in light of cheap and
readily available medical technologies.3 Even some aid
critics argue that well-implemented health programmes
can have beneficial impacts; for example, Deaton
(2013) argues that aid undermines government
accountability to citizens, but notes that health aid has
caused measurable improvements in health outcomes.4

Aid critics, though, emphasise the frequency of poor
implementation, pointing to projects failing to account
for local conditions, poor donor coordination leading
to duplicate efforts and corruption causing aid funds to
disappear,5 6 suggesting that other factors—such as
domestic health expenditures, economic growth and
quality of governance—have driven gains in health out-
comes.7–9

Aid effectiveness debates are largely informed by cross-
national studies, where studies range from showing posi-
tive to no aid impacts. A number of studies fail to find
health aid significantly improving key health indicators
and suggest health aid is an ineffective policy tool.10 11

Other scholars find significant relations between health
aid and health outcomes, particularly on reducing
infant mortality and increasing life expectancy.12 13

Within nations, evidence highlights the effectiveness of
specific interventions, such as insecticide-treated mos-
quito nets and indoor residual spraying;14 however,
there is limited understanding of the impact of donor
dollars allocated to these efforts.10

Conflicting evidence within aid effectiveness research
suggests that alternate approaches are needed to analyse
aid impacts. This paper employs a novel, subnational
data set that allows for analysing aid in reference to the
geographic location where it was allocated. By delineat-
ing areas that did and did not receive aid, these data
readily allow for quasi-experimental approaches to esti-
mating aid impacts. Moreover, a subnational approach
allows for mitigating omitted variable bias inherent in
estimating aid impacts with cross-national data.
With the emergence of geo-referenced data, scholars

have begun to examine subnational aid dynamics.
Existing findings suggest that aid is not consistently allo-
cated to the poorest areas and that political motivations
may drive aid allocation, especially in countries with
weak political institutions.15 16 Additionally, a subna-
tional approach has highlighted the effectiveness of the

President’s Emergency Plan for AIDS Relief (PEPFAR)
in Tanzania and Rwanda.17 However, subnational data
have not been used to examine aid impacts beyond tar-
geted programmes, nor have scholars examined health
aid allocation specifically. Despite the lack of empirical
evidence, scholars have hypothesised about the subna-
tional allocation of health aid, arguing that more accur-
ate data about the distribution of disease may have led
to improved targeting of aid, which in turn may have
enhanced aid effectiveness.12

Using Malawi as a case study, we ask two questions that
contribute to the discussion on the effectiveness of inter-
national development assistance. First, how is health aid
allocated according to malaria prevalence, health infra-
structure, ecological conditions that increase risk of
disease, socioeconomic status and political affiliation?
Second, what is the impact of aid on reducing malaria
prevalence and improving health infrastructure?
Malawi provides a useful case study to investigate

health aid impacts due to poor health conditions, signifi-
cant donor attention and possible evidence of aid ineffi-
ciencies. In the 2000s, Malawi saw worsening
socioeconomic and health conditions; for example,
malaria incidence increased from 295 cases per 1000
people in 2005 to 458 in 2009.18 Deteriorating condi-
tions led to increased attention from donors;19 estimates
from AidData indicate that up to US$50 to US$200
million in health aid have been allocated annually in the
past decade (see online supplementary appendix A).
Broadly, Malawi remains highly donor dependent, with
foreign aid making up about 40% of the national
budget.20 Donor reports claim that development efforts
have improved health outcomes, but note some aid
funds have been unaccounted for and poorly documen-
ted, and that inefficiencies in the health sector, such as
inefficient resource flows to health centres, have attenu-
ated aid impacts.21 In addition, government officials
have been accused of siphoning off funds into their own
pockets, causing donors to question aid effectiveness
and freeze aid at times.20 Empirical evidence examining
the impact of donor dollars remains limited. One empir-
ical study examined donor-financed expanded coverage
of malaria interventions in four hospitals in Malawi, only
to find malaria admission rates increasing or remaining
unchanged between 2000 and 2010.22

Malawi is also uniquely suited for a subnational evalu-
ation of foreign aid. Geographically referenced surveys
were administered near the beginning of a large surge
in foreign aid in the mid-2000s and near the peak of
these aid flows in the early 2010s, providing a strong
context for evaluations of aid (see online supplementary
appendix A for trends of health aid disbursements).
Malawi also contains ∼250 tertiary administrative divi-
sions (traditional authorities), enabling a highly targeted
subnational analysis. Moreover, the government of
Malawi had very limited capacity during the 2000s,23

resulting in little chance that aid crowded out any gov-
ernment efforts.

Key questions

Recommendations for policy
▸ Subnational data can assist policymakers and practitioners in

evaluating donor-funded health interventions and guiding allo-
cation decisions.

▸ In Malawi, refined aid targeting at the subnational scale may
help to further bolster health outcomes.
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METHODS
Data sources
This analysis is based on five data sources: (1) AidData’s
Malawi Aid Management Platform (AMP) data set,
which includes data on the locations of aid projects
recorded by the Government of Malawi’s AMP and
includes roughly 80% of all aid reported to the Ministry
of Finance since 2000;24 (2) Malawi’s 2010/2011
Integrated Household Survey (IHS), which surveyed
12 271 households representing 56 218 individuals;25 (3)
Malawi’s 2004/05 IHS, which surveyed 11 280 house-
holds representing 51 292 individuals;25 (4) the locations
of health facilities acquired from the Malawi Ministry of
Health, which specified 783 health facilities constructed
up to 199826 and (5) Malawi’s 2008 census data.27

Online supplementary appendix B indicates the vari-
ables that were used from each data source.
Data in Malawi’s AMP are hierarchically coded, where

purpose codes represent the overarching purpose of aid
projects and activity codes are subcategories of purpose
codes indicating specific project activities. We restrict
our analysis to projects that could feasibly have local
impacts on disease burdens and health infrastructure,
including any project with a purpose or activity code
from the following aid sectors: medical services, basic
healthcare, basic health infrastructure and infectious
and parasitic disease control. Subsequent allocation and
impact analyses examine the aid sectors separately and
collectively.
Medical services aid includes projects directed towards

specialised medical services and equipment, such as a US
$7 million European Union blood transfusion service
programme. Basic healthcare aid includes projects direc-
ted towards primary healthcare programmes and towards
supplying basic medications, such as a US$3 million
German Development Bank (KFW) project to bolster
health services in the Chitipa district, which included
rehabilitating six health centers.28 Basic health infrastruc-
ture aid includes projects directed towards enhancing or
providing basic medical equipment to hospitals, clinics
and dispensaries, such as a US$1.5 million Icelandic
International Development Agency (ICEIDA) project
supporting the Kamuzu Central Hospital in Lilongwe.
Infectious and parasitic disease control aid includes pre-
vention and control activities directed towards infectious
diseases such as malaria, such as a US$33 million World
Bank education support project that included US$3
million targeted towards enhancing school health pro-
grammes, including de-worming and treatment of
malaria and fever.29 Online supplementary appendix C
provides further descriptions of aid sector categories,
and online supplementary appendix D lists all aid pro-
jects included in allocation and impact analyses.

Joining aid data with survey data
Each aid project carries a precision code that indicates
the spatial certainty of where the project was allocated.
Spatial precision ranges from a precise location to the

entire country. We include all projects with a spatial pre-
cision at a specific location and at the district-level,
excluding all projects with spatial precision at the region
and country-level as these are too coarse for the analysis
(of all project locations, 19% were excluded). Of the
projects omitted from this study, a number were
government-wide reform programmes, such as grants to
the Ministry of Health and general support to health
reform. Projects allocated to a specific location are
coded as being allocated to a traditional authority, which
is Malawi’s third administrative division. In household
surveys, we code individuals as receiving aid if they lived
in a traditional authority where aid disbursements were
above zero.
Despite the granularity of the aid data, it is difficult to

distinguish which individuals in the survey data were
beneficiaries of aid. For example, KFW’s efforts to
rehabilitate six health centres in the Chitipa district
likely primarily benefited individuals that the health
centres serviced, not everyone in the district. Rather
than delineating individual beneficiaries of aid, our data
should be viewed as delineating individuals who resided
in areas that received aid. On average, individuals living
in areas that received aid should exhibit improved
health outcomes if aid is effective.

Aid allocation
Aid allocation is examined using traditional authorities
as the unit of analysis. To incorporate the variation in
where aid was allocated across time, we disaggregate aid
into separate years. Years for aid projects are based on
the agreement date of the project which extend from
2004 to 2011. We rely on the agreement date rather
than the completion date of the project as aid allocation
models are intended to examine where donors choose
to allocate aid given current conditions in a country.
The resulting data set includes 29 discrete projects from
9 different donors allocated across 317 project locations,
totaling in US$170.3 million disbursed (online
supplementary appendix D describes projects). We use
logistic models to understand the determinants of
whether a traditional authority received aid, and ordin-
ary least squares models to understand the drivers of per
capita aid among traditional authorities that received
aid (population data to calculate per capita aid come
from Malawi’s 2008 census). In the aid data set, aid
dollar amounts are provided at the project level; in
imputing aid dollars to project locations, we assume aid
was allocated equally across project locations. When pro-
jects cover multiple traditional authorities (eg,
district-level projects), we assume aid was allocated
equally across traditional authorities.
We examine how four categories of covariates are asso-

ciated with receiving aid: malaria prevalence, health
infrastructure, disease ecological risk factors, socio-
economic status and political affiliation (online
supplementary appendix B provides further variable
descriptions). Malaria prevalence is the percentage of
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individuals that reported falling ill with malaria/fever
but no other symptoms in the two weeks prior to being
surveyed; excluding illnesses with other symptoms is per-
formed to distinguish malaria from other causes of fever.
Health infrastructure includes perceptions of healthcare
quality, percentage of households that use mosquito nets
and the number of health facilities per 1000 people in a
traditional authority. Disease ecological risk factors
include temperature and precipitation, as higher tem-
peratures and precipitation are associated with an
increased risk of vector-borne diseases.30 Ecological risk
factors may be used in aid allocation decisions because
disease burden data are often scarce in sub-Saharan
Africa; weak surveillance systems capture only about
10% of malaria cases.31 Wealth perception and whether
an individual lived in a rural or urban area serve as
socioeconomic variables. Scholars have hypothesised
that health aid may be preferentially allocated to urban
areas; however, this question has not been empirically
examined.32 Covariates from household surveys are mea-
sured before any aid interventions were introduced (ie,
at baseline levels).
Political variables include proportions of the popula-

tion in traditional authorities that belong to certain
ethnic groups and a variable indicating whether a trad-
itional authority is in the president’s birth district. Bingu
wa Mutharika served as the president throughout the
time period in this analysis—from 2004 to 2012.20 We
include the four largest ethnic groups in Malawi: the
Chewa (32.6% of the population), Lomwe (17.6%), Yao
(13.5%) and the Ngoni (11.5%), of which the Lomwe is
the ethnic group of the president.33 Political variables
are examined as aid could be preferentially allocated to
areas in support of or with close ties to the president or
other government leaders.34 Political motivations can
play a role in aid allocation as donors often cooperate
with government agencies in order to allocate aid, and
donors often delegate responsibility of aid management
because recipient governments have greater information
on local conditions.35

Aid impacts
We employ a repeated cross-section difference-in-
difference approach to examine the causal impact of aid,
using individual-level survey data from 2004/2005 and
2010/2011. Despite the two surveys not tracking the same
individuals over time, a repeated cross-section approach is
appropriate in this context as both surveys are nationally
representative. We examine the impact of health aid on
malaria prevalence and perceptions of healthcare quality.
Malaria prevalence, specifically, is examined due to the
particularly high prevalence of malaria in Malawi; out of a
population of 15 million, up to 6 million cases of malaria
are reported annually, and 34% of outpatient visits result
from malaria.18 Healthcare quality, measured as indivi-
duals rating healthcare as more than adequate, is exam-
ined to understand whether aid caused individuals to view
their healthcare as having improved.

Aid projects are included if their projected comple-
tion date fell between household survey years (2005–
2009). Relying on completion dates of aid projects
ensures all aid dollars are disbursed before the end-line
survey (2010/2011), allowing time for projects to impact
health outcomes. The resulting data set includes 13 dis-
crete projects from 9 donors allocated across 103 project
locations, totaling in US$113.8 million disbursed (online
supplementary appendix D describes projects; online
supplementary appendix E shows the spatial distribution
of aid disbursements). In aid impact models, we use aid
as a binary variable, indicating whether a traditional
authority received aid or not. Doing so ignores the
amount of aid that was allocated, where more donor
dollars allocated may lead aid to have larger impacts;
however, leaving aid as a binary variable avoids assump-
tions involved with imputing aid dollars from projects to
project locations to individuals. Future work is needed to
incorporate uncertainties involved in imputing aid down
to smaller spatial scales in analyses.
The difference-in-difference model used for estima-

tion is described in equation 1:

logit ðyÞ ¼ b0 þ b1Aidþ b2Yearþ b3Aid� Year

þ
XK

k

bkxk þ
XTA�1

ta

dta þ
XM�1

m

gm ð1Þ

where y is the binary outcome variable—in one set of
models y indicates whether an individual fell sick with
malaria or fever (and reported no other symptoms) in
the two weeks prior to being surveyed, and in another
set of models y indicates whether an individual rated
their healthcare quality as more than adequate. Aid is a
binary variable indicating whether an individual lived in
a traditional authority that received aid, Year indicates
the time period (either 2004/2005 or 2010/2011),
Aid×Year is the treatment effect, xk…xK are a vector of
socioeconomic and health controls, δta are traditional
authority fixed effects and γm are month fixed effects,
where month refers to the month in which the individ-
ual was interviewed.
The controls include time-varying socioeconomic and

health factors that may influence malaria burden and
healthcare quality where data were available for both
time periods. The covariates help to control for time-
varying factors that impact health conditions indepen-
dent of aid, including compositional changes from sur-
veying different people across the two cross-sections.
Variables include mosquito net ownership, the wealth
index (individuals rating how poor/rich they are on a
6 unit scale), whether an individual lived in an urban
area, age, education level of the household head, health-
care quality (for models explaining malaria prevalence),
malaria prevalence (for models explaining healthcare
quality) and a set of asset variables which gauge socio-
economic conditions, including the toilet type in house-
holds, wall material of households, floor material of

4 Marty R, et al. BMJ Glob Health 2017;2:e000129. doi:10.1136/bmjgh-2016-000129

BMJ Global Health



households and drinking water source (see online
supplementary appendix B for further covariate descrip-
tions). In sector-specific models, we include a dummy
variable indicating whether an individual lived in a trad-
itional authority that received other types of health aid.
Traditional authority fixed effects control for time-
invariant factors across traditional authorities. Month
fixed effects control for seasonal variation in disease
prevalence.
We examine how aid impacts vary across Malawi by

interacting the impact of aid with relevant covariates.
The model used for estimation adds an
Aid×Year×Covariate interaction term to equation 1,
where Covariate is either an indicator variable indicating
whether the individual lived in an urban area, the wealth
index, or a variable indicating the number of health
facilities per 1000 people in a traditional authority.
We perform a series of robustness checks to check the

stability of difference-in-difference results. First, to check
the sensitivity of results to model specifications we report
models without health-related covariates (malaria preva-
lence, healthcare quality and number of mosquito nets)
—which could be endogenous with health aid—and
models without any socioeconomic and health covariates
(see online supplementary appendix F). Second, as a
further check on model specification we report models
using placebo outcomes as dependent variables (ie, vari-
ables one would not expect to be influenced by health
aid) to ensure aid is not correlated with these variables
(see online supplementary appendix G). Third, we
report models excluding urban areas to check whether
results are driven by urban dynamics (see online
supplementary appendix H). Fourth, we report
difference-in-difference models with survey weights (see
online supplementary appendix I). In some cases, the
inclusion of survey weights when estimating causal
effects can impact the precision of estimates, which has
led to debate about the appropriateness of including
survey weights.36 However, to ascertain potential bias
from this source we report models that include survey
weights as a point of comparison to those that do not
include them.
Difference-in-differences models rely on assuming that

areas that did and did not receive aid would have experi-
enced similar trends in the outcome variable absent of
aid. We cannot check this assumption without pre-
treatment data. Consequently, we use an alternative
quasi-experimental strategy—entropy balancing—as a
further robustness check on the results (see online
supplementary appendix J). Entropy balancing does not
assume parallel trends between treatment and control
areas absent of treatment; however, entropy balancing
requires specifying all potentially relevant covariates,
while difference-in-differences allows for controlling for
unobserved time-invariant factors among traditional
authorities.
To better understand health aid impacts, we estimate

the number of malaria cases in 2010 that aid prevented

and the number of days people could carry out product-
ive activities as a result of not being sick. For
difference-in-difference models, estimates of cases pre-
vented are calculated by multiplying the average treat-
ment effect against the estimated number of people in
treated areas. Average days individuals could not carry
out productive activities are then multiplied against
these values. Calculations are further discussed in online
supplementary appendix K.

RESULTS
Aid allocation
Poor health conditions do not drive aid allocation
among most health aid sectors (see tables 1 and 2).
High rates of malaria and low measurements of health-
care quality were not associated with receiving most
sectors of aid. Having malaria was associated with a 24
percentage point decrease in the likelihood of receiving
basic healthcare aid (p<0.10), but a 56 percentage point
increase in the likelihood of receiving basic infrastruc-
ture aid (p<0.01). Among areas that did receive aid,
having malaria was associated with a 3.1% decrease in
per capita disbursements. Additionally, greater environ-
mental disease risk did not increase the likelihood of
receiving aid.
Despite aid not preferentially allocated to areas with

worse health conditions, poorer traditional authorities
were more likely to receive aid, particularly basic
healthcare aid. A 1 unit decrease in the wealth index
(where the index is based on a 6 unit scale) was asso-
ciated with a 5.9 percentage point increase in the likeli-
hood of a traditional authority receiving aid.
Consequently, the poorest areas (ie, those with a wealth
index of 1) had a 35.4 percentage point greater likeli-
hood of receiving aid compared to the richest areas
(ie, those with a wealth index of 6). However, among
areas that received aid, aid was not preferentially allo-
cated to poorer areas.
Traditional authorities that had greater existing infra-

structure—in particular, urban areas and areas with
more health facilities per capita—had a higher likeli-
hood of receiving aid. Living in an urban area and an
additional health facility per 1000 people were asso-
ciated with a 19 and 61 percentage point increase in the
likelihood of receiving aid, respectively (p<0.01).
Moreover, among areas that did receive aid, areas with
more health facilities per capita tended to receive more
aid disbursements.
Traditional authorities with greater proportions of

major ethnic groups tended to have a higher likelihood
of receiving aid. Across all sectors, being in the Lomwe
(the ethnic group of the president during the time,
Bingu wa Mutharika), Yao or Chewa ethnic groups was
associated with a 39, 37, and 16 percentage point increase
in the likelihood of receiving aid, respectively (p<0.01).
However, traditional authorities with higher proportions
of those in the Lomwe group received less aid per capita
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among areas that received aid. Traditional authorities in
the president’s birth district were less likely to receive aid,
particularly for medical services and parasitic disease
control aid; however, among areas that received aid, areas
in the president’s birth district received greater medical
services and basic healthcare aid.

Aid impacts
Figure 1 shows changes in malaria prevalence and
healthcare quality across traditional authorities between
2004 and 2010. On average, areas that received aid
experienced reductions in malaria prevalence, while
areas that did not receive aid experienced increases in
malaria prevalence. Most traditional authorities saw
increases in perceptions of healthcare quality; however,
areas that received aid experienced slightly larger
increases.

Difference-in-difference models show that basic health
infrastructure and parasitic control aid were associated
with reducing malaria prevalence (table 3) and bolster-
ing perceptions of healthcare quality (table 4). Average
marginal effects show that basic infrastructure aid was
marginally associated with reducing malaria prevalence
by 1.2 percentage points (p<0.10) but increased the like-
lihood of an individual reporting above average health-
care by 12.1 percentage points (p<0.05). Parasitic and
disease control aid was associated with reducing malaria
prevalence by 2.2 percentage points (p<0.05) and was
marginally associated with increasing the likelihood of
an individual reporting above average healthcare quality
by 14 percentage points (p<0.10).
Interaction terms on the impact of health aid are

insignificant in models explaining malaria prevalence.
However, the impact of health infrastructure and

Table 1 Allocation of health aid according to traditional authorities receiving aid

Dependent variable: traditional authority received aid

All health aid

Medical

services aid

Basic health

care aid

Basic health

infrastructure aid

Parasitic disease

control aid

Malaria 0.460 0.234 −0.243* 0.566*** −0.022
(0.250) (0.169) (0.216) (0.173) (0.184)

Healthcare quality 0.074* 0.018 0.046 0.002 0.023

(0.038) (0.024) (0.032) (0.033) (0.026)

Mosquito net 0.079 0.033 0.063 0.054 0.025

(0.057) (0.033) (0.049) (0.040) (0.038)

Wealth index −0.090*** −0.006 −0.059** −0.013 −0.004
(0.029) (0.017) (0.025) (0.021) (0.019)

Urban 0.196*** 0.065* 0.049** 0.129*** 0.019

(0.037) (0.032) (0.033) (0.029) (0.028)

Number of health facilities (PC) 0.613*** 0.235 0.621*** 0.083 0.340**

(0.249) (0.155) (0.221) (0.178) (0.149)

Temperature −0.001 0.007 0.002 0.006 0.017

(0.015) (0.008) (0.013) (0.011) (0.011)

Precipitation −0.056*** −0.012 −0.036** −0.028** −0.021**
(0.016) (0.008) (0.014) (0.012) (0.009)

Per cent Lomwe 0.393*** 0.096* 0.195** 0.228*** 0.101

(0.077) (0.048) (0.067) (0.056) (0.047)

Per cent Chewa 0.161*** 0.054** 0.101** 0.065** 0.029

(0.044) (0.023) (0.038) (0.031) (0.026)

Per cent Yao 0.372*** 0.059 0.305** 0.086** 0.109***

(0.069) (0.034) (0.060) (0.040) (0.038)

Per cent Ngoni 0.065 −0.038 0.113*** −0.157*** −0.139***
(0.059) (0.028) (0.049) (0.057) (0.042)

President birth district −0.024 −0.058** −0.003 −0.026 −0.194***
(0.050) (0.024) (0.046) (0.029) (0.008)

Year fixed effects Yes Yes Yes Yes Yes

Observations 1376 1376 1376 1376 1376

Note: Average marginal effects reported with robust SEs in parentheses. Covariates from household surveys are measured at baseline levels.
PC, per capita; specifically, per 1000 individuals.
*p<0.1; **p<0.05; ***p<0.01.
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parasitic control aid on increasing perceptions of health-
care quality diminishes in more wealthy areas, and the
impact of health infrastructure aid is smaller in urban
areas. In models that include an interaction of health
aid impacts with urban areas, medical services aid
appears marginally significant in bolstering perceptions
of healthcare quality (p<0.10); however—like with
health infrastructure aid—the effect is smaller in urban
areas. Across all models, the number of health facilities
(per capita) interacted with health aid impacts is
insignificant.
Entropy balancing shows all sectors of aid strongly asso-

ciated with reducing malaria prevalence, with coefficients
ranging from aid causing a 9% to 21% reduction in
malaria prevalence (p<0.05; see online supplementary

appendix J). In addition, entropy balancing shows health
infrastructure and parasitic control aid associated with
increasing individuals’ perceptions of healthcare quality
by 5% and 10%, respectively (p<0.05), while medical ser-
vices and basic healthcare aid are not associated with per-
ceptions of healthcare quality.
Results are generally robust to sensitivity analyses. One

concern is that models excluding all covariates and
models including survey weights show basic healthcare
aid associated with decreasing the likelihood of indivi-
duals’ reporting above average healthcare quality.
However, models including survey weights show that as
the number of health facilities per 1000 individuals
increases by one the impact of basic healthcare aid on
improving healthcare perceptions increases by 92

Table 2 Aid allocation according to per capita health aid disbursements

Dependent variable: log (per capita health aid disbursement)

All health aid

Medical

services aid

Basic health

care aid

Basic health

Infrastructure aid

Parasitic disease

control aid

Malaria −3.143** −2.727 −5.741*** −3.743*** −2.167
(1.538) (2.871) (1.461) (1.446) (2.175)

Healthcare quality −0.114 −0.213 −0.485*** −0.076 −0.378
(0.192) (0.295) (0.183) (0.222) (0.272)

Mosquito net 0.508 0.486 0.594* 0.135 0.713

(0.334) (0.528) (0.343) (0.418) (0.509)

Wealth index −0.085 −0.096 −0.098 0.015 0.083

(0.179) (0.237) (0.182) (0.185) (0.225)

Urban 0.283 −0.056 0.007 0.151 0.520

(0.215) (0.319) (0.195) (0.233) (0.318)

Number of health facilities (PC) 6.380*** 5.885*** 5.286*** 4.852*** 5.489**

(1.457) (1.275) (0.977) (1.036) (2.147)

Temperature −0.089 −0.087 −0.009 −0.013 −0.256*
(0.096) (0.140) (0.083) (0.105) (0.148)

Precipitation 0.452*** 0.400*** 0.522*** 0.377*** 0.391***

(0.085) (0.112) (0.081) (0.081) (0.092)

Per cent Lomwe −1.908*** −1.828*** −1.620*** −1.427*** −2.791***
(0.372) (0.561) (0.346) (0.356) (0.456)

Per cent Chewa −0.347 −0.609 −0.510* −0.417 −0.485
(0.288) (0.420) (0.266) (0.296) (0.357)

Per cent Yao 0.007 0.796* −0.045 0.303 −0.183
(0.303) (0.483) (0.266) (0.356) (0.389)

Per cent Ngoni 0.391 0.116 0.682** 0.294 0.388

(0.312) (0.433) (0.286) (0.335) (0.356)

President birth district 0.522** 0.845* 0.647** −0.516
(0.264) (0.477) (0.275) (0.380)

Year fixed effects Yes Yes Yes Yes Yes

Observations 556 221 435 290 249

Adjusted R2 0.472 0.359 0.511 0.359 0.283

Note: Coefficients reported with robust SEs in parentheses. No estimates for presidential birth district obtained for parasitic control aid because
no parasitic control aid was allocated to the president's birth district. Covariates from household surveys are measured at baseline levels.
Traditional authorities that did not receive aid are excluded from models.
*p<0.1; **p<0.05; ***p<0.01.
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percentage points. Overall, results are unclear on the
effect of basic healthcare aid, although models suggest
that basic healthcare aid appears primarily effective at
bolstering perceptions of healthcare quality in areas with
existing health facilities.
Owing to using spatial data, spatial autocorrelation

could be present in models. We cluster SEs on trad-
itional authorities, which allows dependence among
individuals within traditional authorities; however,
spatial autocorrelation could still exist between trad-
itional authorities. To test whether spatial autocorrel-
ation exists between traditional authorities, we add
residuals within each traditional authority and calculate
Moran’s I—a metric of spatial autocorrelation—across
these summed residuals. Spatial autocorrelation appears
insignificant across all models (p>0.10, see tables 3
and 4).

DISCUSSION
This research provides evidence that foreign health aid
effectively reduced malaria and enhanced perceptions
of healthcare quality in Malawi. Aid effectiveness results
vary according to the specific sector of health aid exam-
ined; the most robust results point to the effectiveness of
parasitic control and basic infrastructure aid. Aid effect-
iveness results are economically substantial, with aid pre-
venting a conservatively estimated 85 000 cases of
malaria in 2010 alone, enabling people able to engage
in up to a collective 535 000 additional days of product-
ive activities due to not being sick (see online
supplementary appendix K).
Strong determinants of whether a traditional authority

received aid were existing levels of infrastructure, exhib-
ited by greater levels of urbanisation and a higher
number of health facilities per capita. However, despite
aid allocated to areas with greater infrastructure, donors
showed a preference towards allocating aid to poorer

areas for only one sector of aid: basic healthcare aid.
These results suggest that existing infrastructure was an
important factor for donors; however, among areas with
similar infrastructure, donors tended to allocate basic
healthcare aid to poorer areas. However, other aid
sectors were not targeted to poorer areas and, among
areas that received aid, donors did not preferentially
allocate aid to poorer areas or areas with high levels of
malaria prevalence.
Even if aid was not targeted to the most destitute

areas, pervasive poverty across Malawi (∼62% of
Malawi’s population lives below US$1.25/day)37 suggests
even relatively better-off areas would benefit from aid.
To this point, aid appeared more effective in less wealthy
areas; however, results still showed aid having significant
effects in wealthier areas. Consequently, while results
indicate that aid was effective across areas with different
socioeconomic levels, donors better targeting aid
towards areas where it is most needed would likely
enhance aid effectiveness.
Results indicate possible evidence of political factors

driving aid allocation. Areas with greater proportions of
major ethnic groups, including the ethnic group of the
president, tended to have a higher likelihood of receiv-
ing aid compared to other areas. Further, areas in the
president’s birth district tended to receive more aid per
capita among areas that received aid. These trends are
consistent with Malawi’s political situation. For example,
President Bingu wa Mutharika’s second term (2009–
2012) was plagued by corruption as he gave leaders in
his ethnic group power throughout all branches and dif-
ferent levels of government.38 While this research does
not provide conclusive evidence of such corruption, it
does suggest that further inquiry may be warranted.
In total, US$113.8 million was allocated in aid for pro-

jects used in aid impact analyses. Directly comparing aid
flows to cases of malaria averted yields US$1300 per case
averted; however, true costs per case averted will be

Figure 1 Trends in outcomes

across time. Note: Thin lines

denote individual traditional

authorities, and thick lines denote

averages.
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Table 3 Impact of aid on malaria prevalence

Dependent variable: individual reporting falling ill with malaria/fever

All health aid

Medical

services aid

Basic health

care aid

Basic health

infrastructure aid

Parasitic disease

control aid

No interaction term

Health Aid×Year –0.008 –0.002 0.001 −0.012* −0.022**
(0.007) (0.009) (0.009) (0.008) (0.009)

Observations 68 719 68 719 68 719 68 719 68 719

Moran’s I (p value) 0.492 0.448 0.446 0.433 0.512

Socioeconomic and health controls Yes Yes Yes Yes Yes

Other health aid control NA Yes Yes Yes Yes

TA fixed effects Yes Yes Yes Yes Yes

Month fixed effects Yes Yes Yes Yes Yes

Health aid impact interacted with wealth

Health Aid×Year −0.008 −0.003 −0.001 −0.014 −0.014
(0.008) (0.012) (0.010) (0.009) (0.012)

Health Aid×Year×Wealth index 0.000318 0.001 0.001 0.002 −0.003
(0.003) (0.005) (0.003) (0.004) (0.006)

Observations 68 719 68 719 68 719 68 719 68 719

Moran’s I (p value) 0.561 0.547 0.528 0.498 0.514

Socioeconomic and health controls Yes Yes Yes Yes Yes

Other health aid control NA Yes Yes Yes Yes

TA fixed effects Yes Yes Yes Yes Yes

Month fixed effects Yes Yes Yes Yes Yes

Health aid impact interacted with number of health facilities

Health Aid×Year −0.005 −0.007 0.003 −0.005 −0.003
(0.010) (0.016) (0.012) (0.012) (0.023)

Health Aid×Year×Health facilities −0.052 −0.130 −0.015 −0.157 −0.503
(0.099) (0.195) (0.125) (0.210) (0.393)

Observations 68 719 68 719 68 719 68 719 68 719

Moran’s I (p value) 0.54 0.475 0.505 0.466 0.449

Socioeconomic and health controls Yes Yes Yes Yes Yes

Other health aid control NA Yes Yes Yes Yes

TA fixed effects Yes Yes Yes Yes Yes

Month fixed effects Yes Yes Yes Yes Yes

Health aid impact interacted with urban

Health Aid×Year −0.008 0.005 −0.001 −0.009 −0.024**
(0.007) (0.010) (0.009) (0.009) (0.010)

Health Aid×Year×Urban 0.009 −0.023* 0.021 −0.009 0.025

(0.011) (0.014) (0.015) (0.013) (0.027)

Observations 68 719 68 719 68 719 68 719 68 719

Moran’s I (p value) 0.607 0.373 0.564 0.418 0.548

Socioeconomic and health controls Yes Yes Yes Yes Yes

Other health aid control NA Yes Yes Yes Yes

TA fixed effects Yes Yes Yes Yes Yes

Month fixed effects Yes Yes Yes Yes Yes

Note: Average marginal effects reported with SEs in parentheses. SEs clustered on traditional authorities. NA refers to not applicable. TA refers
to traditional authorities. The health aid variable reflects the aid sector listed in the column heading.
*p<0.1; **p<0.05; ***p<0.01.
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Table 4 Impact of aid on healthcare quality

Dependent variable: individual reporting above average healthcare quality

All health aid

Medical

services aid

Basic health

care aid

Basic health

infrastructure aid

Parasitic disease

control aid

No interaction term

Health Aid×Year 0.009 0.034 −0.024 0.121** 0.140*

(0.027) (0.057) (0.021) (0.054) (0.072)

Observations 68 719 68 719 68 719 68 719 68 719

Moran’s I (p value) 0.609 0.634 0.848 0.570 0.834

Socioeconomic and health controls Yes Yes Yes Yes Yes

Other health aid control NA Yes Yes Yes Yes

TA fixed effects Yes Yes Yes Yes Yes

Month fixed effects Yes Yes Yes Yes Yes

Health aid impact interacted with wealth

Health Aid×Year 0.037 0.000027 −0.030 0.222*** 0.321***

(0.034) (0.031) (0.023) (0.070) (0.091)

Health Aid×Year×Wealth index −0.011* 0.011 0.003 −0.019** −0.031***
(0.006) (0.010) (0.006) (0.009) (0.009)

Observations 68 719 68 719 68 719 68 719 68 719

Moran’s I (p value) 0.692 0.554 0.852 0.669 0.912

Socioeconomic and health controls Yes Yes Yes Yes Yes

Other health aid control NA Yes Yes Yes Yes

TA fixed effects Yes Yes Yes Yes Yes

Month fixed effects Yes Yes Yes Yes Yes

Health aid impact interacted with number of health facilities

Health Aid×Year 0.011 0.204 −0.054* 0.246** 0.136*

(0.037) (0.179) (0.030) (0.124) (0.078)

Health Aid×Year×Health Facilities −0.044 −0.778 0.798 −0.748 −0.002
(0.412) (0.722) (0.519) (0.643) (0.303)

Observations 68 719 68 719 68 719 68 719 68 719

Moran’s I (p value) 0.559 0.66 0.701 0.546 0.762

Socioeconomic and health controls Yes Yes Yes Yes Yes

Other health aid control NA Yes Yes Yes Yes

TA fixed effects Yes Yes Yes Yes Yes

Month fixed effects Yes Yes Yes Yes Yes

Health aid impact interacted with urban

Health Aid×Year 0.007 0.126* −0.027 0.191*** 0.201*

(0.027) (0.065) (0.021) (0.067) (0.106)

Health Aid×Year×Urban 0.018 −0.052*** 0.034 −0.042*** −0.034
(0.029) (0.013) (0.050) (0.016) (0.023)

Observations 68 719 68 719 68 719 68 719 68 719

Moran’s I (p value) 0.590 0.544 0.861 0.778 0.957

Socioeconomic and health controls Yes Yes Yes Yes Yes

Other health aid control NA Yes Yes Yes Yes

TA fixed effects Yes Yes Yes Yes Yes

Month fixed effects Yes Yes Yes Yes Yes

Note: Average marginal effects reported with SEs in parentheses. SEs clustered on traditional authorities. NA refers to not applicable. TA refers
to traditional authorities. The health aid variable reflects the aid sector listed in the column heading.
*p<0.1; **p<0.05; ***p<0.01.
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lower as not all aid dollars were directly targeted towards
malaria projects. For example, a number of projects
were not exclusively focused on reducing malaria (eg,
projects directed towards strengthening local health
systems or clinics) and health initiatives were sometimes
secondary efforts in aid projects; of the World Bank’s US
$33.8 million Education Sector Support project, US$3
million was directly targeted towards health efforts.
Owing to difficulties in ascribing costs specifically tar-
geted for combatting malaria, caution should be taken
in making judgements about cost-effectiveness of aid
based solely on these results.
While our research highlights aid effectiveness, it is

important to note limitations of the data. First, the
AidData data set does not include data from donors
without an in-country office, which represents ∼10% of
total aid.39 Second, non-governmental organisations
(NGOs) are not required to report data to the AMP;
however, NGO data are captured if donors that report to
the AMP fund the NGO. Consequently, the true amount
of total aid used in this analysis is likely a conservative
underestimate. To this point, the AidData data set
underestimates health aid flows compared to data from
the Institute for Health Metrics and Evaluation; however,
aid disbursements are roughly comparable to the
Creditor Reporting System database (see online
supplementary appendix L for comparisons of AidData
to other data sources). Third, we do not incorporate the
timing of projects in the aid impact analyses (ie, we col-
lapse projects completed anytime from 2005 to 2009
into one variable instead of treating projects completed
in different years separately). Treating aid as timeless
between 2005 and 2009 is carried out due to only having
two years of survey data; however, future research would
be useful in exploring the timing of aid and changes in
outcome variables. Fourth, while the evidence presented
in this paper does not suggest that there is a substantial
population of individuals travelling outside of their trad-
itional authority of residence to receive healthcare (ie,
no spatial autocorrelation in difference-in-difference
models), such patterns were not the focus of this analysis
and bias from these movements could exist in our
results. This provides an important path for future
research. Fifth, we do not explicitly control for govern-
ment and private investments in health that are not
funded by foreign donors, which could bias impact esti-
mates. However, the Malawi government’s contribution
to health expenditure is small compared to donors. In
2005/2006, foreign donors contributed US$15 per
capita to Malawi’s health expenditure, while the govern-
ment contributed US$5 per capita.40 Moreover, ∼90% of
medicine costs are covered by donors.41 Consequently,
any biases from exclusively government-funded interven-
tions should be minimal.
Beyond data concerns, aid impact analyses across

sensitivity analyses were less consistent for basic
healthcare aid compared to other aid sectors. In
particular, difference-in-difference models excluding

socioeconomic and health covariates and models using
survey weights show basic healthcare aid having a nega-
tive impact on healthcare perceptions, although results
show basic healthcare aid having beneficial impacts in
areas with greater numbers of health facilities per capita,
and no negative effect is found in difference-in-
difference models without survey weights and in entropy
balancing models. Taken together, the results are not
clear on the impact of basic healthcare aid; future work
investigating aid projects in this sector would be useful.
Despite issues in models for basic healthcare aid, benefi-
cial effects of health infrastructure and parasitic control
aid are more robust across sensitivity analyses.

Handling editor Seye Abimbola.
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