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ABSTRACT

The interpretation of (semi-)inclusive and certain exclusive scattering processes relies on

the factorization of hard parton level cross sections from long-range and non-perturbative

parton correlations. The familiar Parton Distribution Functions (PDFs) and Generalized

Parton Distributions quantify the non-perturbative dynamics in these situations and ad-

dress a number of key questions surrounding the structure of hadrons. A certain class

of matrix elements accessible in lattice QCD, so called Lattice Cross Sections, have been

shown to factorize into these collinear distributions in a manner akin to the factorization

of hadronic cross sections. In the short-distance regime, matrix elements of space-like sep-

arated two-current operators and parton bilinears can be expressed as the convolution of

perturbative coefficient functions and the PDFs. Matrix elements of this type are isolated

in the pion and nucleon, each offering a glimpse of the unpolarized valence quark content

of these phenomenologically important hadronic states. The calculations within the nu-

cleon represent the first application of the distillation spatial smearing paradigm to the

collinear structure of hadrons, and is found to offer higher precision data compared to sim-

ilar calculations in the literature. A novel method to obtain PDFs from these lattice data,

while simultaneously controlling systematic effects, is developed and applied to the nu-

cleon dataset. The coordinate space factorization of space-like separated parton bilinears

has also recently been extended to include Generalized Parton Distributions. Preliminary

results in off-forward nucleon matrix elements using distillation are explored.
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FORWARD & OFF-FORWARD PARTON DISTRIBUTIONS FROM LATTICE QCD



CHAPTER 1

Invitation

Astrophysical observations indicate the Cosmos is suffuse with so-called Dark Energy

and Dark Matter. Recent measurements from the Planck Collaboration of the European

Space Agency largely confirm previous measurements of the NASA/Wilkinson Microwave

Anisotropy Probe (WMAP) [1], indicating the mass-energy content of the Universe is

manifested nearly entirely (∼ 95.1%) within this dark sector [2]. The world with which

we interact, observe and are most familiar is then relegated to the remaining ∼ 4.9%.

With the exception of Gravity, three of Nature’s known fundamental forces, Electro-

magnetism and the Strong and Weak nuclear forces, have been successfully transcribed into

the language of relativistic quantum field theory. The modern and unified particle frame-

work for these three forces is the Standard Model of Particle Physics, or simply Standard

Model for short. The Standard Model is constructed from three continuous groups

SU(3)C ⊗ SU(2)L ⊗ U(1) (1.1)

representing the local gauge symmetries each quantum field must respect. Within the

confines of the Standard Model a paltry three generations of matter fields (fermions) and

2
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their interactions mediated by exchange of vector bosons charged under the local gauge

symmetries (1.1) conspire to give rise to nearly all phenomena from the femtoscale to the

exascale. The Standard Model provides remarkably accurate predictions of the physical

world, yet still only applies to the roughly 4.9% of the Universe encapsulated by ordinary

baryonic matter. Thanks to the Weak nuclear force, or the SU(2)L portion of the Standard

Model, the majority of known particles in the Universe ultimately decay into a combina-

tion of electromagnetic radiation (photons) and the lightest matter fields, including the

electron, the lightest quarks (up and down), and the nearly massless neutrinos. It is in this

sense that nearly all the mass of the visible Universe is found in the familiar protons and

neutrons, collectively nucleons, which are comprised of up and down quarks. Inspite of

the electromagnetic repulsion felt by pairs of protons and certain quark combinations, the

Strong nuclear force is able to bind quarks into nucleons, and nucleons into the composite

nuclei that are responsible for all complex structure in the Universe. The stellar fusion of

nuclei that pervades the Cosmos to the stablility of Life’s molecular blueprint all depend

on the fortuitous strength of the strong nuclear force.

Yet despite the ubiquity of the nucleon within the known Universe, many of its emer-

gent properties crucial to this extant structure evade a theoretical understanding. Two

principal examples include the mass and spin of the proton. The Quark Model describes

the proton as three quarks, two up and one down, bound together by the exchange of

gluons (the mediator of the strong nuclear force). The quark’s respective masses sum to

∼ 9 MeV, while the proton itself has a mass of ∼ 938 MeV. This implies nearly all of

the proton’s mass arises dynamically from the strong interaction. In a similar vein, the

proton’s spin is known to receive only a small fraction from its constituent quarks. A

quantitative understanding of these properties resides squarely within the low-energy or

strong-coupling regime of the strong interaction, thus lacking a perturbative or approxi-

mate description.
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Searches for physics Beyond the Standard Model (BSM) at the energy frontier are

spearheaded by the ATLAS and CMS experiments within the Large Hadron Collider

housed at the European Organization for Nucleon Research (CERN). The search for dark

matter candidates, new fundamental particles beyond the Higgs boson and even extra di-

mensions, also depend intimately on a knowledge of the low-energy dynamics governing

the internal structure of hadrons. Central to the interpretation of high-energy scattering

cross-sections are the collinear parton distributions. These distributions not only aid in

understanding and predicting these cross sections, but also provide a vehicle with which

some of the proton’s enigmatic features can be discerned.

This volume of work concerns the highly non-trivial strong nuclear force and the

efforts to elucidate its non-perturbative regime through numerical calculation. You the

reader are invited to join in this development.



CHAPTER 2

Quantum Chromodynamics

From the modern viewpoint, the principle of local gauge invariance is the central

tenet from which Quantum Field Theories (QFTs) can be derived. Consider the free

Dirac Lagrangian

LDirac =
∑

f

ψf
(
i/∂ −mf

)
ψf , (2.1)

where f denote distinct fermion flavors of massmf . Demanding the free theory be invariant

under local U(1) phase rotations ψ (x) → exp (iα (x))ψ (x) leads to the existence of a

vector field, or connection, Aµ (x). Together with a kinetic term for Aµ, the requirement

of renormalizability, and the postulates of parity and time-reversal invariance, one is led

uniquely1 to Quantum Electrodynamics (QED)

LQED =
∑

f

ψf
(
i /D −mf

)
ψf −

1

4
FµνF

µν , (2.2)

1Were we to lessen the requirement of parity and time reversal invariance, an additional dimension-4
operator εαβµνFαβFµν would appear. Operators of energy dimension greater than four can be constructed
from the fermion fields ψ, ψ̄ and their covariant derivatives, and Fµν and its derivatives. However, any
such term with dimension greater than four is nonrenormalizable.

5
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where Fµν = ∂µAν−∂νAµ is the electromagnetic field strength tensor, Dµ = ∂µ− ieAµ the

gauge covariant derivative, with e the modulus of the electron charge - simply the QED

coupling constant. The local phase rotations eiα(x) belong to the simple and compact,

Abelian Lie group U(1); QED is then said to be a QFT imbued with an Abelian gauge

symmetry, and happens to be the only Abelian constituent of the Standard Model.

The generalization of local gauge invariance under an Abelian group to generic Lie

groups was first considered by Chen Ning Yang and Robert Mills [3] in 1954. Their

efforts centered on the proton and neutron which, due to their small mass difference2,

were experimentally inferred to be approximately related to each other through contin-

uous rotations in SU(2) isospin, or isobaric, space. The observed (approximate) global

conservation of isospin in nuclear physics processes led Yang and Mills to consider the

physical consequences of demanding invariance of nuclear processes under local SU(2)

isospin transformations

ψ (x)→ ψ̃ (x) = exp

(
iαc (x)

σc

2

)
ψ (x) , (2.3)

where αc (x) is one of three spacetime dependent phases and σc are the usual Pauli sigma

matrices. The modification of the free Dirac theory proceeds analogously to the develop-

ment of QED, with the consequential difference that the gauge transformations instead

belong to a non-Abelian Lie group. In the interest of brevity, the reader is referred to

any standard QFT text for details of the derivation of the Nobel Prize winning Yang-Mills

Lagrangian3

LYM =
∑

f

ψ
i

f

(
iγµDij

µ −mfδ
ij
)
ψjf −

1

4
F a
µνF

aµν , (2.4)

2Attributed today to the small mass difference between u and d quarks.
3It is important to note the distinction of LYM with a pure Yang-Mills Lagrangian, which describes

the interaction of non-Abelian gauge fields in the absence of fermionic fields.
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where the field strength tensor and covariant derivative are modified to F a
µν = ∂µA

a
ν −

∂νA
a
µ − gfabcAbµAcν and Dij

µ = δij∂µ + igtcijA
c
µ, respectively, and Einstein summation con-

vention is implied. Relative to QED, the Yang-Mills Lagrangian includes generators tc of

the non-Abelian, simple and compact Lie group, and indices {i, j} and {a, b, c} denoting

the fundamental and adjoint representations of the group, respectively. The Lie group

structure constants fabc are defined via the commutator
[
ta, tb

]
= ifabctc. A dramatic

consequence of a non-Abelian gauge symmetry, even in the absence of matter fields, is

the emergence of an AbµA
c
ν term in the field strength tensor. The kinetic term of a non-

Abelian QFT evidently generates three and four particle vertices of the (self-interacting)

gauge field.

Quantum Chromodynamics (QCD) is the accepted QFT describing the strong nuclear

force, wherein fermionic fields called quarks interact through the exchange of mutually-

interacting force carriers called gluons

LQCD =
∑

f

ψ
i

f

(
i /D

ij −mfδ
ij
)
ψjf −

1

4
Ga
µνG

aµν . (2.5)

In certain contexts quarks and gluons in QCD are simply referred to as partons, where

partons are most easily thought of as being the (asymptotically free) particles rather

than the potentially collective QCD fields. QCD is a class of Yang-Mills theories imbued

with an SU(3)C symmetry, where C designates the local “color” or chromatic quantum

number, with members of the group conventionally written as 3 × 3 complex unitary

matrices; the generators ta of SU(3) are defined by the Gell-Mann matrices ta = λa/2

(see Appendix B). Found in six flavors f = u, d, c, s, t, b, the quarks transform under the

fundamental or 3 representation of SU(3), with each quark forming a color-triplet; anti-

quarks correspondingly transform under the conjugate or 3 representation of SU(3). The

strong force carrying gluons transform under the adjoint or 8 representation of SU(3),
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which places the gluons in a color-octet. Indeed there is no notion of color at the level of

fields; rather the term arose as a description for an unseen quark degree of freedom.

The Quark Model [4, 5] proposed by Gell-Mann and Zweig provided order to the

rapidly proliferating zoo of strongly-interacting particles discovered in the 1950s and 1960s.

Positing the existence of three constituent particles deemed quarks with fractional electric

charge and a flavor SU(3) symmetry, the Quark Model found phenomenological success by

matching the strongly-interacting states with representations of SU(3). Many identified

states however, such as the triply-strange Ω− or triply-up ∆++, were known to possess

fully symmetric wavefunctions - the starkest of contradictions to the Spin-Statistics The-

orem [6, 7], which states fermions must obey Fermi-Dirac statistics and thus be totally

antisymmetric in their wavefunctions. Color SU(3) emerged as a gauge quantum num-

ber of quarks which, when assembled totally anti-symmetrically, restored the required

anti-symmetry of the baryon wavefunctions.

QCD is characterized by ultraviolet divergences in perturbative calculations of pro-

cesses beyond tree-level. These infinities arise from Feynman diagram loops involving

integrals over unspecified momenta, and are managed by redefining a theory’s bare pa-

rameters (e.g. coupling and field masses) with respect to a regulator. Ensuring a QFT

then yields a finite result for a computed quantity involves introduction of counterterms,

which likewise depend on the regulator, to counterbalance the infinite shifts between the

theory’s bare and physically measured parameters. This process, referred to as renormal-

ization, has many profound consequences. One of particular significance, the physically

measured parameters of any renormalizable QFT depend on the resolving energy the the-

ory is probed at. This scale dependence, or running, equates to varied manifestations of a

theory across energy regimes. Unlike the Electro-Weak sector of the Standard Model, the

QCD coupling αs = g2/4π runs to small values at high energy scales. Quarks and gluons

within this regime may be treated as free entities of QCD, with perturbatively and sys-
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tematically computable weak interactions. This aspect of QCD, and indeed a great many

non-Abelian gauge theories, is referred to as asymptotic freedom - that is, the theory’s

fields become non-interacting in the limit of infinite probing energy [8, 9].

The low-energy regime of QCD, studied at experimental facilities for nearly the last

century, is dramatically different. The asymptotic states of QCD observed in detectors

are instead color-singlet objects or hadrons, of which the proton/neutron and pion triplet

are examples. Such three quark hadrons, or baryons, are but a sliver of a plethora of

color-singlet states in QCD. Other states include quark-antiquark pairs, or mesons, as

well as the hypothetical tetra-/penta-quarks and particles of purely gluonic excitation

(glueballs). This behavior of QCD is understood by the increase of αs as the resolving

energy is reduced; at hadronic energy scales the strong coupling is of O (1) and leads to the

confinement of quarks/gluons into hadrons [10]. As perturbative methods are predicated

on a small coupling constant, an order-by-order expansion of a low-energy QCD process

must confront a proliferation of important Feynman diagrams. For low-enough energies

this perturbative series fails to converge or is ill-defined entirely.

Although modeling can garner insight into the strong dynamics of QCD, the only

known method to rigorously study the non-perturbative regime of QCD with systematically

improvable results is through numerical solution of the theory itself. This paradigm is

Lattice QCD, and its application to parton distributions is the focus of this dissertation.

Before directing our attention to the formulation of Lattice QCD in Sec. 2.3, we introduce

parton distributions as key measures of the non-perturbative dynamics responsible for

hadronic structure.
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2.1 Hadron Structure and Parton Distributions

The soft dynamics of a composite hadron h are generically encoded in parton corre-

lations between initial and final hadronic states h via the parton correlation function

H[Γ;λ′λ]
ij/h (k, P,∆) =

∫
d4z

(2π)4 e
ik·z 〈h

(
P + ∆

2
, λ′
)
|ψi
(
z
2

)
ΓΦ(f)

(
{ z

2
,− z

2
}
)
ψj
(
− z

2

)
|h
(
P − ∆

2
, λ
)
〉 ,

(2.6)

where the incoming and outgoing hadron momenta are denoted by P − ∆
2

and P + ∆
2

, the

parton momenta is given by k, and helicity labels {λ′, λ} are made explicit. The Dirac

matrix Γ selects a particular polarization configuration for the flavor-i/j parton fields.

The gauge invariance of the parton bilinear is guaranteed by inclusion of a gauge link or

Wilson line

Φ(f)
({z

2
,−z

2

})
= P exp

(
ig

∫ z/2

−z/2
dηνAcν (η) tc

)
, (2.7)

built from a path-ordered (P) collection of su (3) algebra valued gauge fields in the fun-

damental (f) representation of SU(3),4 weighted by the gauge coupling g. Although the

Wilson line is shown here along a generic contour with differential line element dην , de-

pending on the observable and choice of gauge the character of the Wilson line will change

or reduce to unity entirely.

This generic correlation function, illustrated in Fig. 2.1, encapsulates all of the non-

perturbative QCD dynamics of hadrons, even nuclei, and is the starting point with which

the momentum and spatial distributions of partons and their mutual correlations can

be quantified. Distinct parton flavors {i, j} may in general be considered, but for the

entirety of this work we consider equal parton flavors and hence drop parton indices. These

correlations are probed experimentally in collider or fixed-target experiments, for which

4As given, this Wilson line is relevant for quark correlations, with tc denoting the generators of SU(3)
in the fundamental representation. Were gluons considered, the generators and the Wilson line as a whole
would then be in the adjoint representation of SU(3).
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HΓ
ij (k, P,∆)

P −∆/2 P + ∆/2

k
−

∆
/2

k
+

∆
/2

FIG. 2.1: A generic parton correlation function with momentum assignments.

the natural choice of coordinates are light-cone coordinates.5 The hadron’s momentum

is then denoted P µ =
(
P+,

M2
h

2P+ ,0T

)
, while a parton carrying fraction x of its parent

hadron’s P+ momentum is denoted kµ = (xP+, k−,kT ). Physical observables depend on

the momentum space correlation function (2.6) when integrated over different components

of the parton’s 4-momentum kµ, as well as what momenta ∆ is transferred to the hadron.

We now consider some of these integrated parton distributions and pause to highlight

the experimental processes sensitive to them; the developments closely follow those of

Diehl [11]. By adopting this reductionist perspective we will arrive quite naturally to the

forward and off-forward parton distributions that are this dissertation’s namesake.

In a high-energy hadron-hadron or hadron-lepton scattering process, the target hadron’s

P+ momentum is large and its P− component is highly suppressed. This leads to the

natural consideration of the k−-integrated correlator, for the parton k− momentum is sup-

pressed by ∼ 1/P+. Abbreviating the matrix element appearing in (2.6) as C[Γ;λ′λ]
j/h (P,∆, z)

and carrying out the k− integration

W [Γ;λ′λ]
j/h ≡

∫
dk−H[Γ;λ′λ]

j/h (k, P,∆) =

∫
d4z

(2π)3

∫
dk−

2π
eiz

+k−ei(z
−k+−zT ·kT )C[Γ;λ′λ]

j/h (P,∆, z)

=

∫
d4z

(2π)3 δ
(
z+
)
ei(z

−k+−zT ·kT )C[Γ;λ′λ]
j/h (P,∆, z) |z+=0

5Given some four-vector aµ, light-cone coordinates are defined by a± = 1√
2

(
a0 ± a3

)
and a⊥ =(

a1, a2
)
.
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=

∫
dz−d2zT

(2π)3 ei(z
−k+−zT ·kT )C[Γ;λ′λ]

j/h (P,∆, z) |z+=0, (2.8)

one finds the effect of the k−-integration is to restrict the parton fields at light-cone time

z+ = 0. An important consequence of this integration is partons lose any definite virtu-

ality and hence no longer satisfy their respective on-mass-shell conditions. When broken

down into its Lorentz structures, the k−-integrated parton distribution (2.8) is parame-

terized by sixteen Generalized Transverse Momentum-dependent Distributions (GTMDs)

at leading-twist [12]. Higher-twist distributions are suppressed by inverse powers of the

hard scale P+ of the process6. These distributions can be accessed in certain exclusive

Drell-Yan processes, such as πN → γ∗1γ
∗
2N
′ [13]. There are however several theoretical

issues pertaining to GTMDs, especially in the regularization of light-cone and rapidity

divergences. All of these issues are far beyond the scope of this work. GTMDs are merely

highlighted here as they serve as a waypoint in our reductionist development of the parton

distributions we will consider.

Integrating the generic parton correlator (2.6) over both the k− and transverse parton

momenta kT

∫
d2kT

∫
dk−H[Γ;λ′λ]

j/h (k, P,∆) =

∫
d2kT

∫
dz−d2zT

(2π)3 eiz
−k+e−izT ·kT C[Γ;λ′λ]

j/h (P,∆, z) |z+=0

=

∫
dz−

(2π)

∫
d2kT

∫
d2zT

(2π)2 e
−izT ·kT eiz

−k+C[Γ;λ′λ]
j/h (P,∆, z) |z+=0

=

∫
dz−

(2π)

∫
d2kT δ

2 (kT ) eiz
−k+C[Γ;λ′λ]

j/h (P,∆, z) |z+=0,zT=0

G [Γ;λ′λ]
j/h =

∫
dz−

(2π)
eiz
−k+C[Γ;λ′λ]

j/h (P,∆, z) |z+=0,zT=0, (2.9)

one finds the parton fields are now restricted purely along the light-cone with z− 6= 0.

6Twist, defined more rigorously in Sec. 2.2, is the difference between an operator’s energy dimension
and spin.
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This particular integrated parton correlation function G [Γ;λ′λ]
j/h is parameterized by so-called

collinear parton distributions, which are distributions appearing in physical observables

that are insensitive to the transverse motion of partons. The only parton momentum

dependence of a collinear distribution is then via k+, which is collinear to the parent

hadron’s P+ momentum. The kT -integration above seems straightforward, however the

z⊥-dependence of the correlator C[Γ;λ′λ]
j/h (P,∆, z) is especially subtle and leads to regions

of large-kT and parton virtuality (see e.g. [14]). These regions lead to ultraviolet (UV)

divergences in (2.9) that must be regulated and renormalized - typically using the modified

minimal subtraction or MS prescription [15, 16]. Any renormalized collinear parton distri-

bution hence acquires an explicit collinear scheme dependence on the UV renormalization

scale µ2. The dependence on the scale µ2 is described by the Renormalization Group (RG)

equations.

2.1.1 Generalized Parton Distributions

Consider the k−-,kT -integrated parton correlator G [γ+;λ′λ]
j/h for a helicity-conserving

flavor-q quark. Lorentz invariance implies G [γ+]
q/h can be parameterized, following Ji’s con-

ventions [17], according to

G [γ+]
q/h =

1

2

∫
dz−

2π
eixP

+z− 〈h (pf )| q
(
− z

2

)
γ+Φ

(f)

ẑ−

(
{− z

2
, z
z
}
)
q
(
z
2

)
|h (pi)〉 |z+=0,zT=0 (2.10)

=
1

2P+

[
Hq/h (x, ξ, t)u (pf ) γ

+u (pi) + Eq/h (x, ξ, t)u (pf )
iσ+ρ∆ρ

2mh

u (pi)

]
(2.11)

where P =
pf+pi

2
is the average hadron 4-momentum and ∆ = pf−pi the momentum trans-

fer.7 The Wilson line Φ
(f)

ẑ−

(
{− z

2
, z
z
}
)

manifests as a straight gauge connection along the

z−-direction. The parton correlator G [γ+]
q/h is parameterized by the unpolarized Generalized

7As pf 6= pi, ∆ 6= 0 and the parton correlator defining G[γ+]
q/h is often deemed an off-forward correlator.
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(a) (b)

FIG. 2.2: (a) The leading contribution to the DVCS process. (b) A representative diagram
contributing to the exclusive deeply virtual meson production channel. In each the blue/green
blob denotes the non-perturbative off-forward parton bilinear encapsulated by GPDs, and the
orange a meson distribution amplitude.

Parton Distributions (GPDs) Hq/h (x, ξ, t) and Eq/h (x, ξ, t) which depend on the Lorentz-

invariants: the longitudinal momentum fraction x, skewness ξ ≡ p+i −p
+
f

p+i +p+f
and momentum-

transfer t = (pf − pi)2. The Dirac structure Γ = γ+γ5 induces the quark helicity GPDs

H̃q/h, Ẽq/h. It is important to note these decompositions are merely in terms of the leading

GPDs. Additional GPDs associated with operators of different energy dimension relevant

to quarks, antiquarks and gluons can be found in Refs. [18, 12].

GPDs arise in the description of certain exclusive hard scattering processes. Examples

include Deeply Virtual Compton Scattering (DVCS) γ∗p → γp and exclusive meson pro-

duction γ∗p → Mp, shown in Fig. 2.2(a) and Fig. 2.2(b), as well as the related time-like

Compton scattering (TCS) process.8 As GPDs depend both on the parton momentum

fraction x and the momentum transfer t, GPDs unify the elastic form factors of local

currents and the collinear Parton Distribution Functions discussed in the next subsection.

The first x-Mellin moment of GPDs, or simply integrating the x-dependence,

∫ 1

−1

dx {Hq/h, Eq/h} (x, ξ, t) = {F q/h
1 , F

q/h
2 } (t) (2.12)

8The TCS process is the inverse process to DVCS, when the incoming photon is real and the outgoing
photon is virtual.
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is equivalent to localizing the quark bilinear9 in (2.10), which is parameterized by the Dirac

and Pauli form factors when embedded within a spin-1/2 baryon. For completeness, we

note the replacement of γ+ with γ+γ5 in Eq. 2.10 and repeating the x-integration reduces

H̃q/h and Ẽq/h to the axial and induced pseudoscalar form factors.

Higher Mellin moments in x reduce GPDs to so-called generalized form factors of

derivative-based operators featured in operator analyses of deep inelastic scattering (Ch. 4).

The allure of this reduction captured the interest of the broader nuclear physics commu-

nity [19] when Ji established that the low Mellin moments of the GPDs Ha/h (x, ξ, t) and

Ea/h (x, ξ, t) directly quantify the total orbital angular momentum contribution of a par-

tonic species to a hadron’s spin [20]. Ji’s sum rule reads

1

2

∫ 1

−1

dx x
[
Hq/h (x, ξ, t) + Eq/h (x, ξ, t)

] t=0−−→ Jq/h (2.13)

1

2

∫ 1

0

dx
[
Hg/h (x, ξ, t) + Eg/h (x, ξ, t)

] t=0−−→ Jg/h, (2.14)

where Ja/h is the total spin contribution of parton-a to some hadron. The low Mellin

moments of the unpolarized GPDs Ha/h (x, ξ, t) and Ea/h (x, ξ, t) thus offers a tantalizing

path for resolution of the proton spin puzzle [21]. Further details on GPDs are reserved

for Ch. 6.

2.1.2 Parton Distribution Functions

The off-forward integrated correlator (2.9) reduces in the forward-limit (∆ = 0) to

f
[Γ]
q/h =

1

2

∫
dz−

2π
eixP

+z− 〈h (p, λ′)| q
(
− z

2

)
ΓΦ

(f)

ẑ−

(
{− z

2
, z

2
}
)
q
(
z
2

)
|h (p, λ)〉 , (2.15)

9The relationship between Mellin moments in x of collinear distributions and local operators is estab-
lished at the outset of Ch. 4
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where the quark correlation is shown for specificity and the polarization dependence is

made explicit. Parameterization of this correlator is the starting point for the familiar

Parton Distribution Functions (PDFs). Specific choices of Γ define the unpolarized (γ+),

helicity (γ+γ5) and transversity (γ+γiγ5) PDFs. The reduction of GPDs to PDFs in the

forward limit is then obvious.

PDFs are generally introduced directly from (2.15) assuming the field operators have

been properly renormalized in QCD. As noted above Sec. 2.1.1, when dealing with bare op-

erators the collinear GPDs and PDFs require renormalization of the divergent k⊥-integral.

Bare parton densities renormalize multiplicatively through convolution with a factor Zjj′

that mixes parton flavors

fj/h (x) =
∑

j′

∫ 1

x

dz

z
Zjj′ (z, g, ε) f

(0)
j′/h (x/z) . (2.16)

Fortunately Zjj′ , which in MS depends on the renormalized coupling g and spacetime di-

mension ε, does not mix PDFs associated with different Dirac structures - namely, polarized

and unpolarized PDFs do not mix under renormalization. The RG equations describing

the scale dependence of the PDFs read

d

d ln (µ2)
fj/h

(
x, µ2

)
= 2

∑

j′

∫
dz

z
Pjj′

(
z, αs

(
µ2
))
fj′/h

(x
z
, µ2
)
. (2.17)

These particular evolution equations are the famous Dokshitzer-Gribov-Lipatov-Altarelli-

Parisi (DGLAP) [22, 23, 24], or simply Altarelli-Parisi, equations. The Pjj′ (z, αs (µ2)) are

one of four all-orders Altarelli-Parisi kernels, or splitting functions, computable order-by-

order in the strong coupling. Each kernel describes the emission of a flavor-j parton from

a flavor-j′ parton carrying momentum fraction z ≤ 1 of the momentum fraction x of the
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flavor-j′ parton. For example, the scale dependence of a quark PDF at O (αs) is given by

d

d ln (µ2)
fq/h

(
x, µ2

)
=
αs (µ2)

π

∫ 1

x

dz

z

[
Pqq (z) fq/h

(x
z
, µ2
)

+ Pqg (z) fg/h

(x
z
, µ2
)]

(2.18)

where Pqq (z) = 4
3

(
1+z2

(1−z)+ + 3
2
δ (1− z)

)
and Pqg (z) = 1

2

[
z2 + (1− z)2].10 Evidently at

O (αs) a quark PDF’s scale dependence is also driven by the gluonic PDF at the same

scale, and vice-versa for a gluonic PDF.

Unlike QED, the DGLAP evolution equations cannot be used to explicitly compute

PDFs, as the non-perturbative strong-coupling regime of QCD shrouds the initial condi-

tions needed to integrate these differential equations. DGLAP remains a powerful asset

however, as it relates physical observables dependent on PDFs across energy scales. Pro-

vided a measurement is made at some initial scale, DGLAP can be used to predict the

same observable at a different scale. We now further develop these ideas by focusing on the

chronologically first and quintessential hadronic scattering process sensitive to the collinear

PDFs.

2.2 Deep Inelastic Scattering

The elastic scattering of leptons from a hadronic target is described by various elastic

form factors, each quantifying the response of the target to varied external probes and

momentum transfers. The Fourier conjugate to these responses expose the transfer profile

of the target to be discerned and provide meaning to the size of a hadron. Form factor

measurements were some of the first indicators for the extended size of hadrons, and

continue to provide complementary information on the structure of hadrons.

10The notation 1/ (1− z)+ is an example of a plus prescription commonly encountered in calculations of
structure functions. For some kernel, the plus prescription is defined with respect to an arbitrary smooth

test function:
∫ 1

0
du G (u)+ f (ux) ≡

∫ 1

0
du G (u) [f (ux)− f (x)].
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(a) (b) (c)

FIG. 2.3: (a) The DIS amplitude to lowest-order in electromagnetism. (b) The leading parton
model approximation of DIS involves the highly virtual photon scattering from an individual
quark within the hadron. (c) A higher-order correction to the parton model ultimately respon-
sible for the scaling violations observed in the structure functions associated with the hadronic
tensor.

Finer resolution of the internal partonic content of hadrons is provided by the Deep

Inelastic Scattering (DIS) process `A → `′X, where the target A is obliterated into a

fully unresolved final state. The jargon inclusive scattering is assigned to such a process

where all possible final states are included in measurements of the process. To be concrete,

consider the scattering of a lepton of momentum `µ at tree-level in QED from a hadron h

of momentum P µ via the exchange of an off-shell photon and where in the final state the

lepton momentum is now `′µ and any remnant is unobserved:

`+ h (P )→ `′ +X. (2.19)

To lowest-order in electromagnetism the DIS amplitude is illustrated in Fig. 2.3. A number

of Lorentz invariants are useful in describing the process:

qµ = `µ − `′µ Q2 ≡ −q2 ≥ 0 (2.20)

xB =
Q2

2P · q =
Q2

2Mν
y =

P · q
P · l , (2.21)

with ν = P ·q
M

the energy transfer and where 0 ≤ y ≤ 1 represents the fractional energy
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lost of the scattered lepton in the hadron’s rest frame. Other common variables are the

invariant mass of the hadronic system after the scattering event W 2 = (P + q)2, the

center-of-mass energy of the entire process s = (`+ P )2 and the related {t, u}Mandelstam

variables. The Bjorken variable xB, or Bjorken-x, is bounded by Q2

Q2+s
≤ xB ≤ 1. The

conditions for DIS are Q2 � M2
h and W 2 � M2

h , where Mh is the target hadron mass.

Neglecting the masses of the lepton m` and hadron Mh relative to
√
s, as well as the

lepton and target helicities, the Lorentz-invariant inclusive cross section differential in the

outgoing lepton 4-momentum is given by [25]

E ′
dσ

d3`′
' πe4

2s

∑

X

δ(4) (pX − P − q)
∣∣q−2 〈`′| Jρ |`〉 〈X, out| J ρ |P 〉

∣∣2 =
2α2

QED

sQ4
LµνW

µν ,

(2.22)

where the Lorentz-invariant sum and integral over all hadronic final states is denoted by

the sum over X. The various kinematic factors and momentum-conserving delta function

follow from the Lorentz-invariant phase space factor relevant for an n-body decay11. The

two matrix elements appearing in (2.22) are the leptonic and hadronic matrix elements

of the probing current, which due to the modulus have been re-expressed in terms of the

leptonic and hadronic tensors. The leptonic tensor is given by the relevant QED Feynman

diagrams computed to an appropriate order in αQED - tree-level is sufficient at hadronic

energy scales. The leptonic tensor for purely electromagnetic DIS takes the form

Lµν =
1

2
Tr
[
γµ/̀γν /̀

′
]

= 2
(
`µ`
′
ν + `′µ`ν − ` · `′gµν

)
. (2.23)

For DIS involving a generic electroweak current, Lµν is modified to include the V − A

11The Lorentz-invariant phase space factor for decay of an initial state with momentum Pµ is given by

dn = δ4 (P −∑n
i=1 pfi)

∏n
i=1

d3~pfi
Ei

, with 4-momenta pµfi of any final states.
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FIG. 2.4: Cut-diagram notation for the hadronic tensor in deep inelastic scattering. The cut
through the hadronic blob denotes a sum and integral over final states.

structure of the charged/neutral weak currents [26]. The hadronic tensor is defined as

W µν (q, P ) ≡ 4π3
∑

X

δ4 (pX − P − q)
∑

λ′,λ

ρλ′λ 〈P, λ′| J µ (0) |X〉 〈X| J ν (0) |P, λ〉 (2.24)

=
1

4π

∫
d4z eiq·z 〈P, S| J µ (z)J ν (0) |P, S〉 , (2.25)

with the most general polarization state of a target of momentum P given in terms of a

spin density matrix ρλ′,λ with helicity labels λ′, λ. The final line makes the simplification

of a pure unpolarized state of spin-1
2
, where ρλ′,λ = δλ′λ/ (2S + 1) and S = 1

2
.12 The

form of the hadronic tensor is understood in terms of a cut-diagram exemplified for DIS

in Fig. 2.4. The rightmost matrix element in (2.24) is the DIS amplitude represented by

Feynman rules, with 〈P, λ′| J µ (0) |X〉 its conjugate. The vertical line in Fig. 2.4 is a final

state cut denoting this sum over a complete set of hadronic states and integration over

each respective phase space.

The hadronic tensor contains all information relevant to a hadron’s structure involved

in a DIS event. Whereas the leptonic tensor can be computed precisely because of the small

electroweak coupling constants, the hadronic tensor resides in the non-perturbative regime

of QCD and evades analytic calculation. To understand the information encoded in W µν

and how it is garnered from experiment, we consider the structure of W µν more closely.

The hadronic tensor depends on the momenta q and P and, if the target is polarized, also

12For a massive spin- 1
2 target (standard in DIS) with definite momentum P , the spin vector Sµ satisfies

S · P = 0 and is normalized such that S2 = −M2.
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on its spin four-vector Sµ. When expressed in terms of the invariants x and Q2 several

Lorentz-invariant functions, or structure functions, emerge.13 In electroweak DIS on a

polarized target this decomposition [25, 26, 27, 28, 29] reads

W µν =

(
−gµν +

qµqν

q2

)
F1

(
x,Q2

)
+
P̂ µP̂ ν

P · q F2

(
x,Q2

)

+ iεµναβ
qαSβ
P · q g1

(
x,Q2

)
+ iεµναβ

qα

(
Sβ − Pβ S·qP ·q

)

P · q g2

(
x,Q2

)

− iεµναβ qαPβ
2P · qF3

(
x,Q2

)
+

1

P · q

[
P̂ µŜν + ŜµP̂ ν

2
− S · q
P · q P̂

µP̂ ν

]
g3

(
x,Q2

)

+ P̂ µP̂ ν S · q
(P · q)2 g4

(
x,Q2

)
+

(
−gµν +

qµqν

q2

)
S · q
P · q g5

(
x,Q2

)
(2.26)

where the abbreviations

P̂ µ = P µ − P · q
q2

qµ Ŝµ = Sµ − S · q
q2

qµ (2.27)

have been used, and the totally antisymmetric tensor εµναβ satisfies ε0123 = −1 and ε0123 =

1. This exhaustive Lorentz decomposition encapsulates any (un)polarized electroweak DIS

process, including charged-current (lN → νlX) and neutral-current (lN → l′X) processes,

consistent with parity, the Ward identities implied by the conservation of electromagnetic

currents ∂µJ µ
EM = 0, and reflects the hermiticity (i.e. W µν = (W νµ)∗) of the hadronic ten-

sor. In the case of a strict electromagnetic probe, the DIS process is parity-conserving, and

thus the parity-violating unpolarized structure function F3 (x,Q2) and polarized structure

functions g3 (x,Q2) , g4 (x,Q2) , g5 (x,Q2) vanish. The parity-conserving polarized struc-

ture functions g1 (x,Q2) , g2 (x,Q2) are then only relevant for the deep inelastic scattering

of a photon off a polarized target.

13For brevity xB 7→ x.
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2.2.1 The Parton Model

Consider the simplified case of deep inelastic scattering of a photon from an unpolar-

ized target. The cross section for this process differential in {x, y} is given by

d2σ

dxdy
' 4πα2s

Q4

[
Q4

xs2
F1

(
x,Q2

)
+

(
1− Q2

xs
− Q2M2

s2

)
F2

(
x,Q2

)]
. (2.28)

This form illustrates that by varying the kinematic arrangements the unpolarized structure

functions F1 (x,Q2) and F2 (x,Q2) can be extracted from experimental data. At this stage

however, it is not exactly clear how F1, F2, and gi more generally, encode the partonic

makeup of hadrons. Before the advent of QCD, Feynman developed a heuristic to make

sense of the DIS data emerging from experiments in the late 1960s. His ideas are echoed

here for a self-contained discussion.

The conjugacy that exists between coordinate and momentum space implies that the

large DIS momentum transfers Q probe a hadron on a distance scale O (1/Q). Further-

more, on dimensional grounds it is reasonable to presume the constituents, or partons, of

the target hadron interact with each other on a time scale O (Rh/c) where Rh ∼ 1 fm is the

typical size of a hadron. In boosting from the hadron rest frame to the center-of-momentum

frame, the time scales over which parton interactions occur is greatly time-dilated. Not

only does this dilation imply interactions between partons occur long before the virtual

boson becomes relevant, but the lifetime of any particular configuration of partons be-

comes large. The boost of the target to large P+ likewise implies length contraction of the

target in the center-of-mass frame. The lepton then sees a hadron in a single virtual state.

For sufficiently large Q, the DIS process is then characterized to first approximation as

the scattering of a virtual gauge boson from a single quasi-free parton carrying a definite

fraction ξ of the hadron’s momentum P+.14 This is the essence of the (naive) Parton

14Where the momentum fraction ξ in this context should not be confused with skewness defined for
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Model (PM) initially put forward by Feynman [30, 31] and further formalized by Bjorken

and Paschos [32] and Drell [33].

Under the above assumptions, at the moment of scattering the hadron with large-P+

momentum is in a state of n partons whose fractional momenta sum to unity
∑

n ξn = 1.

The PDFs enter in the parton model as number distributions of a parton flavor, and

fa/h (ξ) dξ is the expected number of type-a partons in hadron h to carry fractional mo-

menta in the interval [ξ, ξ + dξ]. The deep inelastic lepton-hadron scattering simplifies

in the parton model into an incoherent sum of PDFs convolved with Born-level partonic

cross sections

dσ`h =
∑

a

∫
dξ fa/h (ξ) dσBorn

`a (ξ) . (2.29)

We note there is no distinction between Bjorken-x and the momentum fraction ξ in the

parton model, and they are often used interchangeably in the literature.

The connection between the parity-conserving DIS structure functions and PDFs in

the parton model is well-known [25]

F1 (x) =
1

2

∑

a

e2
afa/h (x) F2 (x) =

∑

a

e2
axfa/h (x) (2.30)

g1 (x) =
1

2

∑

a

e2
a∆fa/h (x) g2 (x) = 0, (2.31)

with each structure function a sum over partons with electromagnetic charge ea and un-

polarized (polarized) PDFs fa/h (∆fa/h). The parton model makes the striking prediction

that both the PDFs and the structure functions that depend on them are Q2-independent

in the deep inelastic, or Bjorken, limit Q2, ν → ∞ with x = Q2

2Mν
. This prediction is

deemed Bjorken-scaling [34]. The deep inelastic scattering from non-interacting partons

at high-Q2 and hence Bjorken-scaling in the parton model would seem to be at least par-

GPDs.
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tially correct, given the asymptotic freedom of QCD. Strict scaling is clearly subject to

violations, as αs is only asymptotically small at large-Q2.

2.2.2 PDFs from Structure Functions

The separation of scales assumed in the parton model are codified by the QCD factor-

ization theorems [35], providing rigor and a proper field-theoretic construction. The QCD

collinear factorization of the DIS hadronic tensor is given by

W µν (qµ, P µ) =
∑

a

∫ 1

x

dξ

ξ
fa/h

(
ξ, µ2

)
Hµν
a

(
qµ, ξP µ, µ2, αs

(
µ2
))

+O
(

Λ2
QCD

Q2
,
M2

h

Q2

)
.

(2.32)

The PDFs fa/h retain their intuitive parton model interpretations, with the factorization

scale µ2 typically set by the momentum transfer Q2.15 This scale demarcates which parton

fluctuations are to be included in the low-energy PDFs, and which are to be included in the

hard scattering coefficient function Hµν
a computable in perturbation theory. Corrections to

this factorized relationship are power-suppressed, and often called higher-twist corrections

- the leading contribution fa/h (ξ, µ2) is then deemed the leading-twist16 PDF. Projecting

onto the individual structure functions

Fi
(
x,Q2

)
=
∑

a=q,q̄,g

∫ 1

x

dξ

ξ
fa/h

(
ξ, µ2

)
Ha
i

(
x

ξ
,
Q2

µ2
, αs

(
µ2
))

+O
(

Λ2
QCD

Q2
,
M2

h

Q2

)
, (2.33)

we see that measurements of the structure functions together with the hard coefficient

functions enable the PDFs to be accessed.

15The scale of factorization can in general differ from the scale chosen to renormalize the field operators
defining the PDF. In most cases, and in this work, these scales are taken to be equal.

16Twist originates from early attempts to understand Wµν at the operator level. The contribution of

any particular operator with spin-s to Wµν scales according to
(
Q−1

)d−s−2
, with relative contribution

d− s ≡ twist and d the operator dimension. The dominant (leading-twist) operators can be related to the
PDFs, hence the notion of a leading-twist PDF. These points are further developed in Ch. 4.
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FIG. 2.5: The spread of experimental data used in a recent global analysis by the CT collabo-
ration [36].

PDFs are extracted in large part by analysis of DIS scattering data, and to a lesser

extent Drell-Yan scattering (e.g. hAhB → ``′ + X) which involves a similar factorized

relationship into PDFs. Measurements of the DIS structure functions are inherently dis-

crete in Bjorken-x and Q2. A representative example from the CT collaboration’s recent

global analysis is shown in Fig. 2.5. However, the numerous collider and fixed-target

experiments around the world provide coverage spanning several orders of magnitude in

both variables. For instance, the canonical inclusive DIS process l±p→ l±X accesses the

high-x regime x & 0.01, while photo-production of charm and bottom quark pairs (e.g.

e±p→ e±{cc̄, bb̄}X) helps to constrain the small-x domain 10−4 . x . 0.1 [29].

As PDFs and other parton distributions are universal functions that are indepen-

dent of the process in which they are probed, the most reliable determination of these

quantities follows from global analyses of compatible experimental datasets. A number

of collaborations, in the so-called global fitting community, have developed frameworks

of considerable sophistication to extract these distributions. The precise details of each



26

FIG. 2.6: Unpolarized proton PDFs determined by the MMHT collaboration via a global
analysis of lepton-hadron and hadron-hadron data, where the perturbative hard coefficient
functions and partonic cross sections are truncated at NNLO. The PDFs determined at Q2 =
10 GeV2 are shown at left, while those at Q2 = 104 GeV2 given at the right. Details of the
extraction are contained in Ref. [37].

analysis are beyond the scope of this work. It is important to highlight, however, the

standard formalism adopted by each. Equation 2.33 is applied by first specifying an order

in perturbation theory at which the perturbative kernels Ha
i should be computed - namely,

leading-order (LO), next-to-leading order (NLO), next-to-next-to-leading order (NNLO),

etc. Despite the large numbers of measurements of the DIS structure functions, the fac-

torization relationship (2.33) is ill-posed, as discrete Fi (x,Q
2) cannot fully constrain the

functionally continuous PDFs. The prevailing mindset is to include additional information

in the form of parametric PDFs that capture the x-dependence at an input scale Q2
0. In

the broadest terms, the convolution 2.33 is then numerically fit to experiment. Examples

of PDFs extracted by the MMHT and NNPDF global fitting collaborations are presented

respectively in Fig. 2.6 and Fig. 2.7. This paradigm will be expounded upon in Chapter 5.

The importance of PDFs in quantifying inclusive and semi-inclusive hadronic cross sec-

tions, especially in the search for BSM signals [39] and in processes involving challenging-
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FIG. 2.7: Unpolarized proton PDFs determined by the NNPDF collaboration via a global
analysis of lepton-hadron and hadron-hadron data, where the perturbative hard coefficient
functions and partonic cross sections are truncated at NNLO. The PDFs determined at Q2 =
10 GeV2 are shown at left, while those at Q2 = 104 GeV2 given at the right. Details of the
extraction are contained in Ref. [38].

to-access hadronic states (e.g. neutrons, kaons, etc.), makes their determination from

first-principles a high priority.

2.3 Lattice QCD

Quantum mechanics and indeed canonical quantization in quantum field theory is

formulated with respect to the Hamiltonian of the theory. Richard Feynman established

an equivalent formulation in terms of a functional integral or path integral [40]. The

principle of least action of classical fields, which states the trajectory between two times

is the unique path in configuration space for which the classical action is minimized, is

generalized by the path integral formulation to account for the infinitely many allowed

trajectories of a quantum mechanical system. By summing, or functionally integrating,

over these allowed trajectories the superposition principle is captured in a natural manner,

while utilizing the action instead of the Hamiltonian explicitly preserves the symmetries
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built into the Lagrangian L of a theory. In this language the amplitude for a non-relativistic

quantum to propagate between two points in one dimension is given by

〈xb| e−iHT |xa〉 = c

∫
Dx (t) eiS[x(t)] = c

∫
Dx (t) ei

∫ T
0 dtL[x(t)], (2.34)

where S is the action functionally dependent on all paths x (t),
∫
Dx (t) representing the

sum over paths, and c ∈ C a constant irrelevant at this stage.

The path integral formalism applied to quantum fields introduces the notion of a gen-

erating functional. For a generic collection of scalar field species, the generating functional

reads

Z [{Ji}] =

∫
D [{φi}] exp

[
i

∫
d4x

[
L+

∑

i

Ji (x)φi (x)

]]
, (2.35)

where the path integral now captures all possible configurations of the field operators

D [{φi}] =
∏

i

∏
x φi (x), with L the Lagrangian of the theory and Jiφi the sources.17

Functional methods allow the Green’s functions, or correlation functions, of a theory to be

computed directly from Z [{Ji}], as well as expectations of field operators. A representative

two-point Green’s function and vacuum expectation of an operator in a theory with a single

scalar field are given by

〈Ω|T {φ (x1)φ (x2)} |Ω〉 = Z−1

∫
D [φ]φ (x1)φ (x2) eiS[φ]

〈Ω| Ô |Ω〉 = Z−1

∫
D [φ]O [φ] eiS[φ],

where the functional dependence of O on φ is manifest, Z ≡ Z [{Ji = 0}], and |Ω〉 repre-

sents the interacting vacuum.

17The term sources here refers to the fact that functional derivatives of Z [{Ji}] with respect to Ji
will produce factors of φi in the path integral. This provides a convenient algorithm for isolating Green’s
functions of a theory by subsequently requiring Ji = 0. The reader is directed to standard QFT texts
(e.g. [41]) for further details.
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Lattice QCD was first proposed in 1974 by Kenneth Wilson [10] as a first-principles

scheme to numerically compute observables in QCD. The lattice regularization proposed

by Wilson considers a finite hypercubic volume of spacetime points x defined by

Λ =
{
x ∈ Rd | x = (n1, n2, · · · , nd)× a, ni ∈ ZNi

}
, (2.36)

with a the lattice spacing, ZNi = {0, · · · , Ni − 1} and Ni the number of spacetime points

in each dimension. For a generic quantum field theory, the finite volume and non-zero lat-

tice spacing impose strict infrared (IR) and ultraviolet (UV) cutoffs, respectively, thereby

rendering finite any formally divergent expressions.

In the small coupling regime, this lattice regularization is a perfectly viable method

to perturbatively compute quantities in QCD, and other QFTs more generally. Lattice

regularization is, however, favored less than other schemes such as Dimensional Regular-

ization, as lattice perturbation theory is often characterized by a cumbersome growth of

trigonometric functions and slow convergence in perturbative calculations. Among estab-

lished regularization schemes, the lattice regularization of Wilson is uniquely positioned

to compute observables in strongly interacting theories by recognizing the path integral in

a finite discretized volume reduces to a countable, albeit large, sum over the finite possible

field configurations. In contemporary LQCD calculations it is not uncommon for this finite

path integral to exceed dimension of O (108).

2.3.1 Euclidean Lattice Field Theory

The finiteness of the lattice path integral immediately suggests a numerical approach

for its evaluation. To develop this idea, we abandon toy scalar QFTs and turn our attention
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to QCD. The generating functional of QCD in Minkowski space

Z =

∫
D
[
ψi, ψi, Aµ

]
eiSQCD[ψi,ψi,Aµ] (2.37)

involves functional integration over all quark (ψi) and anti-quark (ψi) flavors and su (3)

algebra valued fields Aµ. The oscillatory phase containing the QCD action SQCD does not

lend itself well to numerical computation, as differing regions of the configuration space

tend to cancel. This colloquially embodies a so-called Sign Problem that is regulated by

performing a Wick rotation to imaginary time t 7→ −itE. Before determining the effect of

this mapping, we pause to consider how 4-vectors and the Dirac matrices are modified.

This rotation of time into the complex plane amounts to mapping quantities in

Minkowski space into Euclidean space, as seen by transformation of a Minkowski invariant

interval:

x2 = t2 − |~x|2 7→ −t2E − |~x|2 ≡ − |xE|2 = −xµExνEδµν (2.38)

In addition to modifying the temporal component of any 4-vector, the Dirac matrices

must also reflect the identity metric of Euclidean space. As the 4 × 4 Dirac matrices in

Minkowski space generate a matrix representation of the Clifford algebra Cl1,3 (R) defined

by the anticommutator {γµ, γν} = 2gµν , a matrix representation of the Euclidean Clifford

algebra Cl4 (R) generated by {γµ, γν} = 2δµν follows from

γ1 = −iγM1 γ2 = −iγM2 γ3 = −iγ3 γ4 = γM0 . (2.39)

Returning to the QCD generating functional, consider the free Dirac action in Minkowski

space S0
M =

∫
d4xL0 =

∫
d4xψ

(
i/∂ −m

)
ψ. Performing the Wick rotation to imaginary
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time, observe

S0
M =

∫
dx0d3xψ (igµνγ

µ∂ν −m)ψ

=

∫
dx0d3xψ

(
iγ0

∂

∂x0

+ iγj∇j −m
)
ψ

7→
∫
d (−itE) d3xEψ

(
iγ4
E · i

∂

∂tE
+ i · iγjE∇E

j −m
)
ψ

S0
E = −i

∫
d4xEψ

(
−γ4

E∂
4
E − γjE∂jE −m

)
ψ

= i

∫
d4xψ

(
γEµ ∂

E
µ +m

)
ψ.

Therefore the free Dirac action in Euclidean space18 is given by S0
E =

∫
d4xψ

(
γEµ ∂

E
µ +m

)
ψ,

and the Euclidean generating functional is

ZE =

∫
D
[
ψi, ψi, Aµ

]
e−SE[ψi,ψi,Aµ]. (2.40)

Instead of an oscillatory exponential factor, the Wick rotation has led to an exponential

factor that exactly corresponds to the Boltzmann weight of a statistical ensemble. This

guarantees not only a numerical implementation, but a strict probabilistic interpretation

of the Euclidean path integral.

The connection of lattice field theory with statistical mechanics and the numerical

arsenal that is brought to bear will be touched on in Sec. 2.3.5. We first continue with

Wilson’s construction of Lattice QCD by introducing fermion and gluon fields onto the

discrete lattice Λ, and establish correct discretized actions for each. We note the coupling

of a QFT is most conveniently introduced into a numerical lattice field theory calculation

18The distinction between contravariant and covariant indices is irrelevant since the Euclidean metric
is simply the identity.
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by rescaling the gauge fields Aµ (x) 7→ 1
g
Aµ (x). In the case of QCD this maps

Dµ 7→ ∂µ + iAaµt
a

Ga
µν 7→ g−1

(
∂µA

a
ν − ∂νAaµ − fabcAbµAcν

)

LQCD 7→
∑

f

ψ
i

f

(
i /D

ij −mfδ
ij
)
ψjf −

1

4g2
Ga
µνG

aµν . (2.41)

The reason for this choice will be elaborated on in Sec. 2.3.5.

2.3.2 Fermions on the Lattice

In Wilson’s original formulation, Dirac spinors ψ (x) and ψ (x) are assigned to each

lattice site x ∈ Λ. This assignment of these 12-component objects, four Dirac and three

color, represents all possible configurations of the quark and antiquark fields in a finite and

discretized volume. The free Euclidean lattice fermion action follows from discretization

of the continuum counterpart. The integral over an infinitesimal Euclidean spacetime

element simplifies to a discrete sum over lattice sites
∫
d4x→ a4

∑
n∈Λ, while the symmetric

difference approximates the kinetic term:

∂µψ →
ψ (x+ µ̂)− ψ (x− µ̂)

2a
. (2.42)

This direct discretization of the continuum Euclidean action

S0
F = a4

∑

n∈Λ

ψ (x)

{
4∑

µ=1

γµ
ψ (x+ µ̂)− ψ (x− µ̂)

2a
+mψ (x)

}
(2.43)

is however not gauge invariant. Analogous to the introduction of Lie algebra valued gauge

fields in the continuum, appropriate inclusion of gauge group valued elements Ω (x) ∈

SU(3) ∀x ∈ Λ will allow a gauge invariant action to be constructed.
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The lattice fermionic fields are modified under a gauge transformation according to

ψ (x) 7→ ψ′ (x) = Ω (x)ψ (x)

ψ (x) 7→ ψ
′
(x) = ψ (x) Ω† (x) .

It is easy to see these transformation properties, adopted from local gauge transforma-

tions in the continuum, are not sufficient to maintain gauge invariance in the discretized

action (2.43). The trouble arises from the discretized kinetic term, which following a

gauge transformation involves terms like ψ (x) Ω† (x) Ω (x+ µ̂)ψ (x+ µ̂). Provided a new

µ̂-oriented field Uµ (x) ∈ SU(3) that transforms as

Uµ (x) 7→ U ′µ (x) = Ω (x)Uµ (x) Ω† (x+ aµ̂) (2.44)

is introduced between neighboring lattice sites, the discretized kinetic term involving terms

ψ (x)Uµ (x)ψ (x+ aµ̂) can be made gauge-invariant. These link variables or gauge links

are thus attached between lattice sites. How the group-valued gauge links and algebra-

valued gauge fields Aµ of the continuum are related is seen by recalling the continuum

gauge transporter or Wilson line

U ([A] , C;x, y) = P
{

exp

(
i

∫ 1

0

ds
dyµ (s)

ds
Aµ (y (s))

)}
, (2.45)

defined as a path-ordered P{} exponential along a contour C, transforms under a gauge

transformation as U ([A] , C;x, y)′ = Ω (x)U ([A′] , C;x, y) Ω† (y). Comparing this transfor-

mation law with (2.44), we conclude the gauge links may be viewed as straight Wilson

lines between x and x+ aµ̂: Uµ (x) ≡ eiaAµ .
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The gauge links facilitate a naive gauge-invariant fermion action

S0
F = a4

∑

x∈Λ

ψ (x)

{
4∑

µ=1

γµ
Uµ (x)ψ (x+ aµ̂)− U−µ (x)ψ (x− aµ̂)

2a
+mψ (x)

}

≡ a4
∑

x,y∈Λ

ψ (x)DN
xyψ (y) , (2.46)

with the naive Dirac operator DN
xy = mδxy + 1

2a

∑4
µ=1 γµ{Uµ (x) δx+aµ̂,y − U−µ (x) δx−aµ̂,y}.

Important for the following discussion are the notion of quark propagators, which are the

Green’s functions satisfying the system of equations

a4
∑

x

D (y, x)G (x, z) = δ(4) (y − x) . (2.47)

In coordinate space, a propagatorG (x, z) describes the propagation of each quark color/spin

component between two spacetime points, pictorially represented in Fig. 2.8. Returning to

S0
F above, this action is deemed naive as the chiral (i.e. m = 0) propagator in momentum

space features spurious unphysical poles.

To isolate these unphysical poles, consider the discrete Fourier transform of DN
xy

D̃N
pq =

1

N3
LNT

∑

x,y∈Λ

e−i(ap)·xDN
xye

i(aq)·y

=
1

N3
LNT

∑

x,y∈Λ

e−i(p−q)·xa

(
4∑

µ=1

γµ
eiaqµ − e−iaqµ

2a
+m1

)

= δ (p− q)
(
m1 +

i

a

4∑

µ=1

γµ sin (pµa)

)
.

In the chiral limit, the free quark propagator reads

D̃N
pq ≡ G (p) =

−ia−1
∑

µ γµ sin (pµa)

a−2
∑

µ sin (pµa)2 =⇒ lim
a→0

G (p) = − i/p
p2

(2.48)
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As expected, the naive lattice fermion action correctly reproduces the p2 = 0 pole in the

continuum massless fermion propagator - up to an overall sign due to the difference in

metric. Evidently for non-zero lattice spacings, additional poles appear in G (p) ∀pµ with

non-trivial components equal to π/a. These fifteen additional poles are deemed fermion

doublers. As the spectrum of a theory is dictated by the locations of poles in its two-point

Green’s functions, these additional poles lead to a total of 16 “flavors” of a single quark,

15 of which are entirely unphysical.

Wilson’s solution to the doubler problem [10] is to include an additional term in the

momentum space representation of the free lattice propagator:

1
1

a

4∑

µ=1

(1− cos (pµa)) . (2.49)

This so called Wilson term has no effect for pµ = 0, but increases the doubler mass in a

d-dimensional Euclidean spacetime to md = m +
2(2d−1)

a
. It is then evident the doubler

effectively decouples from the theory as the lattice spacing is reduced. The coordinate

space representation of the Wilson term (2.49)

− a
4∑

µ=1

Uµ (x) δx+aµ̂,y − 2δx,y + U−µ (x) δx−aµ̂,y
2a2

, (2.50)

follows from an inverse Fourier transform, and corresponds to the discretized Laplacian

∇2.

At this stage we summarize with Wilson’s gauge-invariant lattice fermion action

SW = a2
∑

x

ψ (x)

{∑

µ

(1− γµ)
Uµ (x)ψ (x+ aµ̂)− U−µ (x)ψ (x− aµ̂)

2a

}

+

(
m+

4

a

)
ψ (x)ψ (x) . (2.51)
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Although Wilson’s fermion action is gauge-invariant and may be used to systematically

and correctly compute QCD observables, the Wilson term has introduced O (a) discretiza-

tion errors. For a continuum extrapolation of a computed quantity to then be reliable,

calculations with Wilson’s action must be performed on fine lattices, which are both com-

putationally expensive to generate and operate on. Improving the continuum extrapolation

of quantities computed on coarse lattice spacings mandates removal of these O (a) arti-

facts. A scheme to remove these effects, and thereby improve Wilson’s action to O (a2),

is formalized by the Symanzik improvement program [42, 43] and will be our focus in

subsection 2.3.4.

T = ti

T = tf

µ̂ν̂

x
x+ µ̂

Uµ (x)

y

y − µ̂
U−µ (y)

FIG. 2.8: Two dimensional time slices of a hypercubic Euclidean lattice. The coordinate space
propagation of a three quark interpolator is shown with the red/green/blue directional lines, a
plaquette with filled red, and a generic gauge invariant loop in orange. Directional gauge links
are also shown in cyan.
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2.3.3 Gluons & Wilson’s Gauge Action

An obvious requirement of a discretized gauge action is its invariance under gauge

transformations. The gauge links, introduced to maintain gauge invariance in the sym-

metrized derivative (2.43), are the only source of the continuum algebra-valued gauge

fields, and are thus the starting point for a gauge action.

Based on the gauge transformation properties of the gauge links (2.44), it is clear a

continuous path of gauge links

P [U ] ≡
∏

(x,µ)∈P

Uµ (x) (2.52)

transforms as P ′ [U ] = Ω (x0)P [U ] Ω† (xf ). This path of link variables then becomes

invariant under gauge transformations by either attaching fermionic fields {ψ, ψ} to the

origin/terminus of P [U ], or by constructing P [U ] to form a closed Wilson loop L [U ]

(c.f. Fig. 2.8). A gauge transformation of the latter represents a similarity transformation

within the group space - an overall trace enforces the invariance of L [U ]. Gauge actions

found in the literature are distinguished by different loop constructions comprising the

lattice gauge action; each are equally valid, provided the continuum action is correctly

recovered in the a→ 0 limit.

The simplest such Wilson loop one may consider is the plaquette

Pµν (x) ≡ Uµ (x)Uν (x+ aµ̂)U †µ (x+ aν̂)U †ν (x) . (2.53)

This smallest Wilson loop is the basis of the Wilson gauge action [10] - the reader is directed

to Fig. 2.8 for an illustration. Expanding the gauge links in terms of the algebra-valued
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fields to O (a3), we have

Pµν (x) = eiaAµ(x)eiaAν(x+aµ̂)e−iaAµ(x+aν̂)e−iaAν(x)

' exp
[
iaAµ (x) + iaAν (x+ aµ̂)− iaAµ (x+ aν̂)− iaAν (x)

−a
2

2
[Aµ (x) , Aν (x+ aµ̂)] +

a2

2
[Aµ (x) , Aµ (x+ aν̂)]

+
a2

2
[Aµ (x) , Aν (x)] +

a2

2
[Aν (x+ aµ̂) , Aµ (x+ aν̂)]

+
a2

2
[Aν (x+ aµ̂) , Aν (x)]− a2

2
[Aµ (x+ aν̂) , Aν (x)] +O

(
a3
)]
,

where the Baker-Campbell-Hausdorff relation19 has been applied. Approximating each

shifted field via a Taylor series to O (a), that is Aν (x+ aµ̂) ' Aν (x) + a∂µAν (x), one

finds many of the commutators above cancel or may be grouped into the neglected O (a3)

corrections. Substituting these truncated Taylor series and omitting the ensuing algebra

for brevity, we find the plaquette in the small-a limit reduces to

Pµν ' exp{ia2(∂µAν (x)− ∂νAµ (x) + i [Aµ (x) , Aν (x)]︸ ︷︷ ︸
Gµν(x)

) +O
(
a3
)
}.

The series of expansions above lead to Wilson’s gauge action [10]

SG [U ] =
2

g2

∑

x∈Λ

∑

µ<ν

Re Tr {1− Pµν (x)} , (2.54)

where all plaquettes are summed over, and the ordering µ < ν ensures each plaquette

is counted once. A common abbreviation found in the literature is the inverse coupling

β = 6
g2

, for which the prefactor of Wilson’s gauge action is 2
g2
→ β

3
. In the approach to

19Given noncommutative members X and Y in the Lie algebra of some Lie group, the Baker-Campbell-
Hausdorff formula provides the solution Z to the equation eXeY = eZ . The solution Z is a series in X,
Y , and iterated commutators of X and Y .
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the continuum

SG [U ]→ a4

4g2

∑

x∈Λ

∑

µ,ν

Ga
µνG

a
µν +O

(
a2
)
, (2.55)

the O (a2) corrections vanish and the discrete sum a4
∑

x∈Λ becomes a continuous space-

time integral, thereby agreeing with the continuum gauge action in Eq. 2.41. Alternative

lattice gauge actions naturally have the same continuum limit, but differ from Wilson’s

gauge action in the order at which finite lattice spacing errors arise.

Improved gauge actions generically include a larger class of Wilson loops in the action;

by carefully tuning these additional contributions, the gauge action can be improved to

O (a4). Such an action includes the Lüscher-Weisz gauge action [44, 45]

SLW =
2

g2

2∑

i=0

ci
∑

Li

ReTr [1− Li [U ]] (2.56)

which includes Wilson loops Li of Wilson’s gauge action (plaquettes), 1 × 2 rectangular

planar loops and non-planar analogs, with respective weights ci. Results presented in

this dissertation feature the tadpole improved Symanzik gauge action [46], which is the

Lüscher-Weisz gauge action SLW with weights {c0 = 5
3
, c1 = − 1

12
, c2 = 0} [44]. We note

another common choice includes the Iwasaki gauge action [47]. Even without improvement

different group representations of the plaquette yield distinct lattice gauge actions, such

as the fundamental plus adjoint gauge action [48].

2.3.4 Symanzik Improvement

As was seen in subsection 2.3.2, Wilson’s fermion action features O (a) discretization

effects that may skew the approach to the continuum if not properly controlled. Near the

continuum limit, K. Symanzik envisioned the lattice theory being described by an effective

continuum theory with the lattice spacing a serving as an expansion parameter [49]. The
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action of such an effective theory is then

Seff = S(0) + aS(1) + a2S(2) +O
(
a3
)
, (2.57)

where S(0) is the continuum action and S(j) ∀j > 1 are higher-dimensional operator in-

sertions. The Lagrangians L(j) of each correction to the action S(j) =
∫
d4xL(j) (x) are

built from the local fields of the lattice theory, and have energy dimension
[
L(j)

]
= [E]4+j.

Naturally each correction must be invariant under gauge and flavor rotations, and respect

the discrete symmetries of the lattice theory. Symanzik improvement and removal of O (a)

errors is then achieved by adding a suitable O (a) counterterm to Wilson’s fermion action

(Eq. 2.51), such that L(1) is canceled. We now summarize this process.

With the considerations above, the QCD lattice action admits five dimension-5 cor-

rections

O1 = ψσµνGµνψ

O2 = ψ
−→
Dµ

−→
Dµψ + ψ

←−
Dµ

←−
Dµψ

O3 = mTr [GµνGµν ]

O4 = m
(
ψ
−→
/Dψ − ψ

←−
/Dψ
)

O5 = m2ψψ, (2.58)

where the L(1) (x) effective Lagrangian is a linear combination of these local operators.20

The equations of motion (e.g.
(
/D +m

)
ψ = 0) for each quark flavor allow O2,O4 to be

removed in place of O1,3,5 [50]. As operators O3,5 already exist in S0, their role amounts

to a renormalization of the bare coupling g0 and masses mi,0. The remaining operator O1

20σµν = 1
2i [γµ, γν ]
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µ̂

ν̂

Cµν (x)

FIG. 2.9: Illustration of the plaquette sum appearing in the discretization of the field strength
tensor Ĝµν .

then yields the O (a)-improved Wilson fermion action21

Simpr
[
U, ψ, ψ

]
= SW

[
U, ψ, ψ

]
+ a5csw

∑

x∈Λ

ψ (x)σµνĜµν (x)ψ (x) , (2.59)

where Ĝµν is a standard discretization of the field strength tensor [50]

Ĝµν (x) ' − i

8a2
[Cµν (x)− Cνµ (x)] , (2.60)

with Cµν (x) =
∑

µ̂=±µ
ν̂=±ν

{
δsgn(µ̂),sgn(ν̂)Pµ̂ν̂ (x) + δsgn(−µ̂),sgn(ν̂)Pν̂µ̂ (x)

}
. As the shape of the

plaquette sum Cµν (x), illustrated in Fig. 2.9, resembles a clover, the O (a) correction to

Wilson’s fermion action is deemed the clover term; the improved action is also frequently

referred to as the Wilson clover or clover improved action. The coefficient csw appearing

in the clover term is the Sheikholeslami-Wohlert coefficient, named for the authors who

first wrote the counterterm that improves Wilson’s fermion action [51]. Determination

of csw may be done perturbatively [52] or non-perturbatively, typically by requiring the

partially conserved axial current (PCAC) relation hold [53]; the latter will ensure the O (a)

21The literature often features the oriented sum 1
2

∑
µ<ν in place of the implied contraction of each

Dirac index.
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discretization errors cancel exactly when recomputed on new lattice ensembles, while the

former will lessen these effects and may be reused on different ensembles.

The Symanzik improvement program may likewise be applied to operators appear-

ing in the Euclidean correlation functions computed in a Lattice Field Theory calcula-

tion [54]. Without this further step of improvement, a lattice calculation will not be fully

O (a)-improved. Some observables are inextricably linked with O (a) errors (see e.g. [55]),

however for the observables featured in this dissertation the Wilson clover action and

unimproved operators are sufficient.

2.3.5 Lattice Observables & the Equivalence with

Statistical Mechanics

To complete our discussion of this section, we return to the Wick rotated QCD gen-

erating functional (2.40). In this form, the Euclidean generating functional is structurally

identical to the partition function of a thermal system

Z =
∑

{c}

e−βthermalH[c], (2.61)

given as a sum over configurations weighted by a Gibbs probability measure βthermalH [c]

with inverse temperature βthermal = 1/kBT . Considering just the SU(3) lattice gauge sector

SG [U ] = a4

4g2

∑
x∈Λ

∑
µ,ν G

a
µνG

aµν given in Eq. 2.55, one can further push the similarity

between Lattice Field Theory and statistical mechanics by making the association

1/4g2 ←→ βthermal = 1/kBT. (2.62)

A low-temperature or large-βthermal expansion of a statistical system then corresponds to

a small-coupling expansion of QCD, or a numerical study in a regime where perturbative
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methods are viable. Conversely, the small-βthermal or T →∞ expansion is then associated

with the confining or strong-coupling regime of QCD.

By regularizing QCD in a finite and discretized Euclidean spacetime volume, an ob-

servable, such as a time-ordered product of operators, is obtained in a lattice QCD calcu-

lation by evaluating the finite path integral

〈
T

{∏

i

Oi
}〉

=
1

ZE

∫ ∏

j

D
[
ψj, ψ̄j

]
D [U ]

∏

i

Oi
[
ψj, ψj, U

]
e−SF [ψj ,ψj ,U]−SG[U ], (2.63)

where the measures over all fermion/gluon configurations are given by

D
[
ψj, ψj

]
=
∏

x∈Λ

∏

µ,c

dψj (x)µ
c
dψj (x)µ

c
D [U ] =

∏

x∈Λ

4∏

µ=1

dUµ (x) , (2.64)

with µ and c denoting the relevant Dirac and color components of each field. In this

manner, the quantum fields of QCD have been replaced in lattice QCD by a finite and

countable number of classical variables.

The appearance of the anticommuting degrees of freedom, namely the fermions in

QCD, prevent a naive application of Monte Carlo methods directly to the path inte-

gral (2.63) we have arrived at. It will be convenient to separate the gauge and fermion

path integrals accordingly:

〈
T

{∏

i

Oi
}〉

=
1

ZE

∫
D [U ] e−SG[U ]

∫ ∏

j

D
[
ψj, ψ̄j

]∏

i

Oi
[
ψj, ψj, U

]
e−SF [ψj ,ψ̄j ,U],

where ZE =
∫
D [U ] e−SG[U ]

∫ ∏
j D
[
ψj, ψ̄j

]
e−SF [ψj ,ψ̄j ,U]. The task at hand is to integrate

out the fermionic fields from the path integral, leaving the path integral purely in terms

of the bosonic gauge fields. Appendix C recapitulates these steps. The first key result is

the Matthews-Salam relation (C.14) which replaces the partition function for a flavor-j
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fermion by the determinant of its Dirac operator Dj:

ZF [U ]j =

∫
D
[
ψj, ψ̄j

]
e−SF [ψj ,ψ̄j ,U] = det (Dj [U ]) . (2.65)

The term fermion determinant is an often used alias for the fermionic path integral. A

generalized version of this relation (C.18) makes a convenient connection with Wick’s

Theorem which facilitates the reduction of Eq. 2.63 into

〈
T

{∏

i

Oi
}〉

=

∫
D [U ] e−SG[U ] Z−1

G

∏

j

det [Dj [U ]] 〈
∏

i

Oi〉F ≡
∫
D [U ] 〈

∏

i

Oi〉F P [U ] ,

(2.66)

where ZG =
∫
D [U ] e−SG[U ]

∏
j det [Dj [U ]] and P [U ] = Z−1

G

∏
j det [Dj [U ]] e−SG[U ] is the

probability distribution that must be sampled. The final step is to evaluate the Wick

contractions appearing in the fermionic expectation of the operators 〈∏iOi〉F per sampled

configuration. This will depend on the specific operator constructions, but in general will

be given by the Dirac trace over members Γ of the Dirac algebra and additional fermion

propagators D−1
j [U ].

The final form (2.66) is now amenable to evaluation by a computer. Given that the

Dirac operator Dj [U ] for each fermion flavor-j in modern lattice QCD calculations has

dimensionality in excess of O (107), brute force evaluation of the various determinants and

inverses is infeasible. Monte Carlo methods and importance sampling are thus routinely

brought to bear on this bosonic path integral. An ensemble of gauge fields of cardinality

N is sampled according to the distribution P [U ]. By computing the observable 〈∏iOi〉

on each configuration, a statistical estimate

〈
T

{∏

i

Oi
}〉
≈ 1

N

N∑

k=1

∏

i

Oi [Uk] (2.67)
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is obtained that is systematically improvable.

2.4 Numerical Techniques of Lattice QCD

Due to the confinement of partons within hadrons, the precise wavefunction of any

hadronic state is not known. Operators in any lattice calculation are thus constructed in

a manner that best reflects the properties of the targeted hadron, such as its parity and

spin/orbital angular momenta. Such operators, or rather interpolators, are functionals of

the lattice fields. Together with limited knowledge of a hadron’s wavefunction, the reduced

rotational symmetry of a cubic lattice ensures any interpolator Ô in LQCD will couple to

an infinite tower of states of the same quantum numbers.

A central demand of any lattice calculation thus is to optimize the interpolation of a

state from the QCD vacuum, while minimizing overlap onto unwanted neighboring states.

This section establishes several unavoidable theoretical challenges in LQCD that make

such an operational paradigm essential. To begin, we review the basic numerical LQCD

observables from which physical information may be garnered. A number of numerical

techniques are subsequently developed whose broad objectives are to optimize the con-

struction of LQCD interpolators.

Quantitative information pertaining to hadronic spectra and structure are obtained by

studying the correlations of quark-gluon operators, with quantum numbers of a particular

hadron, across Euclidean time. The fundamental components in any lattice calculation

are the correlations of operators {Oi} across spacetime. Those needed for the calculations

in this body of work are two-point and three-point correlation functions of the form

C2 (~y, tf ; ~x, ti) = 〈O (~y, tf )O† (~x, ti)〉 (2.68)

C3 (~y, tf ; ~z, τ ; ~x, ti) = 〈T{O (~y, tf )J (~z, τ)O† (~x, ti)}〉, (2.69)
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where {O} and J are generic hadron interpolators and external currents, respectively.

Spatial Smearing

Lattice QCD calculations of the spectrum and properties of hadrons are afflicted

by exponentially worsening signal-to-noise ratios as the Euclidean time extent between

operators grows. The argument, originally attributed to Lepage, centers on the leading

time dependence of the ratio of a two-point correlation function and its variance:

RS/N (T ) =
CH (T )√

var{CH (T )}
∼ |ZH |2 e−EH(~p)T

(
|ZM |2 e−mMT

)nq/2 ∝ e−(EH(~p)−nq
2
mM)T (2.70)

where Zj (~p) = 〈0| Ôj (~p) |h (~p)〉 are operator-state overlap factors, ~p is the hadron’s 3-

momentum, and mM is the lightest meson mass produceable with the lightest nq quark

flavors in the hadron interpolator. The case of a pure light-quark baryon (e.g. nucleon with

degenerate u/d quarks) is depicted in Fig. 2.10, where nq = 3 leads to three u/d mesons

(e.g. pions) in the variance of the baryon correlation function; a nucleon’s signal-to-noise

ratio evidently scales as Rnucleon
S/N (T ) ∝ e

−
(
EN (~p)−3

2
mπ
)
T

. The same exercise for meson

interpolators, assuming charge conjugation symmetry, reveals RM
S/N (T ) ∝ e−(EM (~p)−mM )T .

l l

CB (T ) = 〈OB (T )O†B (0)〉

l

l

l

l

σ2
CB(T ) ∼ 〈OB (T )O†B (0)OB (0)O†B (T )〉

l

l
l

l
l

l

l
l

l
l

l
l

FIG. 2.10: Wick contractions to realize a light-quark baryon two-point function (left) and the
square of its variance (right). The correlation function variance induces Wick contractions that
may be ordered into three light-quark mesons. Additional contraction permutations omitted
for brevity.
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The lightest pseudoscalar mesons at rest then do not suffer from an exponential increase

in noise as the Euclidean time T is increased.

A key demand of lattice calculations then is for the hadron of interest to saturate a

correlation function at as short a Euclidean time separation as possible. As a correlation

function receives contributions from an infinite tower of states of the same quantum num-

bers (excited-states), satisfying this saturation relies on the identification of an operator

whose overlap with the hadron of interest is maximized relative to those with other states:

〈0| Ô (~p) |h (~p)〉 � 〈0| Ô (~p) |h′ (~p)〉.

Interpolating operators constructed of point-like quark and gluonic fields couple to

hadronic states at all energy scales, and thus do not single out the hadronic energy scales

of QCD most desired in Lattice calculations. This is most easily noted by recalling the

uncertainty relationship between coordinate and momentum space. Spatial smearing al-

gorithms are employed ubiquitously in LQCD computations to increase the overlap of

interpolators onto the low-lying spectrum (i.e. confinement scale physics). Any such spa-

tial smearing procedure of quark fields ψ (~x, t) proceeds generically according to

ψ̃ (~x, t) =
∑

~y

S [U ] (~x, ~y)ψ (~y, t) , (2.71)

where S [U ] is a surjective, gauge-covariant mapping that is functionally dependent upon

equal-time gauge fields U . A realization frequently utilized in lattice calculations is that

of the Jacobi smearing kernel Jσ,nσ (t) = (1 + σ∇2 (t))
nσ [56], with σ a tunable parameter,

nσ the number of successive applications, and ∇2 the three-dimensional discretized gauge-

covariant Laplacian. With a single application of the Jacobi smearing kernel, quark fields
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ψ (~y) are then modified according to

ψ̃a (~x, t) = ψa (~x, t) (1 + 6σ)− σ
3∑

j=1

[
Ũj (~x, t)ab ψb (~x+ ̂, t) + Ũ †j (~x− ̂, t)ab ψb (~x− ̂, t)

]
,

(2.72)

with color indices made explicit, and ̂ a displacement of unity in the ĵ direction. In

the large-nσ limit, the kernel approaches a Gaussian profile of width ρ = σ/nσ, ideally

commensurate with the size of the desired hadronic state. Although simple to realize

numerically, the number of Jacobi smearing iterations must increase as the lattice spacing

is reduced in order to maintain the same physical width. This divergent behavior is

characteristic of all such iterative smearing schemes, and motivates more sophisticated

non-iterative approaches - especially as the continuum limit must be taken for all computed

quantities.

Optimizing State Interpolations

The non-perturbative dynamics of QCD at hadronic energy scales precludes an exact

solution for a hadron’s wavefunction. Although interpolating operators in lattice QCD are

constructed with definite quantum numbers, each is only a well-informed best guess and

necessarily overlaps onto other hadronic states of the same quantum numbers - notably,

excited and multi-particle states. The breaking of continuum rotational symmetry by the

hypercubic lattice compounds this difficulty, as continuum operators residing in distinct

irreducible representations (irreps) of the Lorentz group can mix under subduction to the

same lattice irrep. The net effect is an infinite number of continuum states contribute to

the signal of a correlator within some lattice irrep.

One way to improve the isolation of a particular energy eigenstate contribution to a
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correlation function is to consider a matrix of correlation functions

Cij (T ) = 〈0| Oi (T )O†j (0) |0〉 (2.73)

where each operator Oi,j belongs to a basis of interpolators of the same lattice irrep. The

optimal combination of operators to interpolate an energy eigenstate |n〉 can be formulated

with respect to a variational principle [57]. The variational method corresponds to the

solution of a generalized eigenvalue problem (GEVP) of the form

C (T ) vn (T, T0) = λn (T, T0)C (T0) vn (T, T0) . (2.74)

Optimal operators, in a variational sense, for energy eigenstates |n〉 are defined by
∑

i v
i
nO†i .

Associated with each eigenvector is a principal correlator λn (T, T0). The energy of each

state |n〉 is obtained by fitting its principal correlator according to

λn (T, T0) = (1− An) e−En(T−T0) + Ane
−E′n(T−T0). (2.75)

The inclusion of a second exponential serves to quantify the extent to which a single state

dominates the principal correlator; any deviation is encapsulated by the amplitude An and

“excited” energy E ′n.

The variational analysis of a matrix of correlation functions, or GEVP for short, is

especially advantageous as it leads to a more rapid relaxation of a correlator in Euclidean

time. As a result, spectral information can be reliably isolated at earlier Euclidean times

where the signal is exponentially more precise. This fact is demonstrated explicitly in

Sec. 3.1.3.
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Distillation

The low-mode filter that is the Jacobi smearing kernel, and in general other smearing

kernels, can be enforced more rigorously by forming an alternative smearing kernel com-

prised of only the leading eigenmodes of the smearing operator. Such an explicit low-rank

approximation is formulated by isolating eigenvectors of the discretized three-dimensional

gauge-covariant Laplacian

−∇2 (T ) ξ(k) (T ) = λ(k) (T ) ξ(k) (T ) . (2.76)

The outer product of equal-time eigenvectors ξ(k) (T ), ordered monotonically according to

decreasing22 eigenvalue magnitudes λ(k) (T ), defines the Distillation [58] smearing kernel

� (~x, ~y;T )ab =

RD∑

k=1

ξ(k)
a (~x, T ) ξ

(k)†
b (~y, T ) , (2.77)

where RD is the chosen rank of the distillation space with color indices {a, b}. The maximal

rank of the distillation kernel thus cannot exceed the dimension of the vector space V

of scalar fields, or time-local lattice sites, charged under SU(3). When RD = rk (V) the

distillation kernel reduces trivially to the identity map, while a spatial broadening of quark

fields is induced for RD < rk (V).

Beyond projecting out the dominant contribution to a correlation function signal,

distillation possess several convenient, yet powerful, side-effects. Consider a meson two-

point correlation function with quark fields smeared with distillation,

CM
2 (~p;Tf , T0) =

〈
d (Tf )

w
α
a
� (Tf )wz

ab
ΓB (Tf )

zy
αβ
bc

� (Tf )yx
cd
u (Tf )

x
β
d

22The Jacobi smearing kernel exp
(
α∇2

)
that distillation approximates leads to an exponential suppres-

sion of high eigenmodes of the discretized Laplacian. The low eigenmodes correspond to the low-energy
contributions and have the largest eigenvalues.
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×u (T0)x
′

β′

d′
� (T0)x′y′

d′c′
ΓA (T0)y

′z′

β′α′

c′b′
� (T0)z′w′

b′a′
d (T0)w

′

α′
a′

〉

F

(2.78)

where indices are made explicit, potentially distinct meson M constructions in coordinate,

spin, and color space are encoded with ΓA[B], and 〈· · · 〉F denotes a fermionic expectation.

Proceeding to carry out the relevant Wick contractions we have

CM
2 (~p;Tf , T0) = � (Tf )wz

ab
� (Tf )yx

cd
� (T0)x′y′

d′c′
� (T0)z′w′

b′a′
ΓB (Tf )

zy
αβ
bc

ΓA (T0)y
′z′

β′α′

c′b′

× d (Tf )
w
α
a
u (Tf )

x
β
d
u (T0)x

′

β′

d′
d (T0)w

′

α′
a′

= −� (Tf )wz
ab
� (Tf )yx

cd
� (T0)x′y′

d′c′
� (T0)z′w′

b′a′
ΓB (Tf )

zy
αβ
bc

ΓA (T0)y
′z′

β′α′

c′b′

×D−1
d (Tf | T0)w

′w
α′α
a′a

D−1
u (Tf | T0)xx

′

ββ′

dd′

= −Tr
[
� (Tf ) ΓB (Tf )� (Tf )D

−1
u (Tf | T0)� (T0) ΓA (T0)� (T0)D−1

d (Tf | T0)
]

= −Tr
[
ξ† (Tf ) ΓB (Tf ) ξ (Tf ) ξ

† (Tf )D
−1
u (Tf | T0) ξ (T0) ξ† (T0) ΓA (T0)

×ξ (T0) ξ† (T0)D−1
d (Tf | T0) ξ (Tf )

]

= −Tr
[
ΦB (Tf ) τ (Tf , T0) ΦA (T0) τ (T0, Tf )

]
, (2.79)

where in the final two lines the distillation kernels have been expressed in terms of con-

tributing eigenvectors, revealing that the meson two-point correlator can be obtained by

evaluating the trace of distinct objects within the distillation space. These objects

Elementals : Φ
(i,j)
αβ (T ) = ξ(i)† (T ) [Γ (T )]αβ ξ

(j) (T ) ≡ ξ(i)† (T )D (T ) ξ(j) (T )Sαβ

Perambulators : τ
(i,j)
αβ (T ′, T ) = ξ(i)† (T ′)D−1

αβ (T ′, T ) ξ(j) (T ) , (2.80)

respectively capture the source/sink interpolator constructions and quark propagation

within the distillation space. An analogous exercise performed for baryons, reveals a
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Tf T0

FIG. 2.11: Pictorial representation of the factorization of a baryon two-point correlation func-
tion. Perambulators are shown in green and elementals as gray ovals.

baryon two-point function factorizes into the same perambulators as for mesons, while the

elementals are modified according to

Φ
(i,j,k)
αβγ (T ) = εabc

(
D1ξ

(i)
)a (D2ξ

(j)
)b (D3ξ

(k)
)c

(T )Sαβγ. (2.81)

The factorization of a baryon two-point function with distillation is visualized in Fig. 2.11.

In the constructions above, Sαβ{γ} encode the Dirac structure of the elemental, while Di
are covariant derivatives enabling states of spin-J exceeding those possible with two or

three quark fields to be accessed. Each perambulator is built from a quark propagator, or

the inverse of the Dirac operator D−1 (T ′, T ) with the eigenvectors treated as sources.

Momentum Smearing

Coordinate-space correlation functions computed in LQCD (cf. Eqns. (2.68) & (2.69))

possess completely unspecified momenta, and are thus only reconcilable with experimen-

tal data, often measured with respect to energy and momentum dependence, following

a Fourier transform to momentum space. Projection to definite momentum involves a

discrete sum over the spatial sites of the lattice, and would naively appear to be free of

theoretical issues. However as pointed out by Bali et al. [59], the momentum projection

of a correlation function whose quark fields are Gaussian-smeared is in fact detrimental
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∀~p 6= ~0. This is seen by noting the Fourier transform of a Gaussian centered at the origin

in coordinate space is likewise a Gaussian centered at the origin in momentum space (i.e.

~p = ~0). Consequently, conventional spatial smearing will lead to a suppression of momen-

tum space overlaps Zj (~p) for ~p 6= ~0, and will make extraction of observables in boosted

frames exponentially more challenging as the hadron momentum is increased.

The remedy proposed by Bali et al., known now as momentum smearing, shifts a

quark’s momentum space distribution to some non-zero value by introducing appropriately

tuned phases onto a set of gauge links: Ũµ (x) = eiKµdµ(x)Uµ (x). In this scenario, a shift

in momentum space is induced along the directional vector dµ (x) by the phase factor

Kµ. As the phase eiKµdµ(x) does not operate on the Uµ (x) color indices, we are assured

Ũµ (x) ∈ SU(3). Furthermore, the phase factor need not be restricted to allowed lattice

momenta 2π
Ls
~n, with Ls the spatial lattice extent and ni ∈ Z.

Momentum smearing is implemented in practice by substituting the phase modified

gauge links into the iterative mapping (2.72). The choice of a smearing direction indeed

breaks the octahedral group Oh, or its double-cover OD
h in the case of fermions, potentially

complicating state identification. However, the phase Kµ is applied collinear to the mo-

mentum ~p to be optimized for, thereby ensuring the smearing operation resides in the A1

irrep of the Oh little group associated with ~p. This guarantees that momentum smearing

will leave the irrep construction of any interpolator unaffected.

The choice of a momentum smearing parameter will depend on whether a single

momentum or a range of momenta are targeted, and the additional computational cost

incurred. In the absence of gluons, one would naively expect two- and three-quark inter-

polators with momentum ~p to have their quark fields momentum smeared with ~K = ~p/2

and ~K = ~p/3, respectively. How the ideal smearing parameters in the presence of gluons
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deviate from these naive choices can be determined by deriving the effective energy

Eeff (~p, T + δt/2) =
1

δt
log

(
C2 (~p, T )

C2 (~p, T + δt)

)
(2.82)

of momentum-smeared two-point correlator. The ideal smearing values will yield minimal

statistical errors for the fitted energies of the correlator, and earlier plateaux relative to

alternate values.

The unavoidable degradation of signal-to-noise ratios (2.70) of boosted interpolators

in practice limits the usefulness of momentum smearing to momenta . 3 GeV. In order

to garner useful physics from such high momentum correlators, analysis of the correlation

function at earlier Euclidean times becomes a necessity. However, it is the early timeslices

of a correlator that are most susceptible to excited-state contamination. Hence any further

improvements of a momentum-smeared correlation function signal must then come with

refined control of excited-states.



CHAPTER 3

Nucleon Matrix Elements &

Excited-State Effects

As developed in Section 2.1, the structure of hadrons is studied experimentally via the

scattering of point-like leptons, and often other hadrons, from a hadronic target in both

collider and fixed-target configurations. As the proton is the only state of QCD stable

from decay within the Standard Model, its structure is readily probed with lepton-proton

DIS or Drell-Yan scattering. Free hadron targets of any other species, such as neutrons or

pions, do not exist and thus complicate the feasibility of directly quantifying the structural

properties of these hadrons from experiment. Scattering is instead performed on nuclear

targets, which require secondary processes and sophisticated models of nuclear structure

to reconstruct structural images of hadrons. A common example encountered for mesonic

structure is the Sullivan process [60], whereby the colliding particle interacts with a cloud

of mesons enveloping the target. Regardless of the experimental apparatus or theoretical

model, structural insight is formulated in terms of hadronic matrix elements of an external

current.

55
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Lattice QCD is uniquely positioned to directly study challenging to access hadronic

states, such as pions and kaons, as their partonic content can be excited from the QCD

vacuum and remain stable in the absence of the weak interaction. Crucial to the fidelity

of a quantity computed in lattice QCD is the degree to which systematic effects have been

mitigated or eliminated entirely. Apart from errors induced by the discretized spacetime

and unphysical quark masses often used to reduce the numerical cost of a calculation,

some of the largest sources of uncertainty in lattice calculations are excited-state contami-

nation and statistical precision. This chapter dives deeper into the role excited states play

in determining hadronic matrix elements accurately from lattice QCD. Whereas iterative

spatial smearing kernels are ubiquitous algorithms for excited-state reduction, only a few

matrix element calculations using distillation [61, 62, 63] exist in the literature. Motivated

by the success of distillation in identifying a plethora of excited and exotic hadronic spec-

tra [64, 65, 66, 67, 68, 69], the first structure calculations with distillation are reported

herein. We will find distillation affords a powerful and computationally efficient method of

taming excited-state contributions to hadronic matrix elements, especially when comple-

mented by a variational analysis of an extended operator basis which it cheaply facilitates.

The additional time-slice sampling provided by distillation furthermore leads to demon-

strably improved statistical precision of data relative to conventional smearing kernels.

These same conclusions are reached following an adjustment of distillation to high mo-

mentum observables, thus building a strong case for the use of distillation in future, more

elaborate, structure calculations.
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3.1 Excited-State Contributions to Nucleon Isovector

Charges

Certain experimentally measured quantities have long been considered “standard can-

dles” in lattice QCD. The axial charge of the nucleon is a quintessential example given

its high experimental precision gu−dA = 1.2756(13) [29], and broad phenomenological im-

pact, including quantifying the difference between u and d quark contributions to the

proton spin, and the neutron decay rate through the process n → pe−ν̄e. The nucleon

matrix element of the isovector axial current Au−dµ = ψγµγ5
τ3

2
ψ expressed in terms of its

Lorentz-invariant form factors reads

〈N |Aµ |N〉 = uN (pf )

[
γµγ5G

u−d
A

(
q2
)

+
qµ

2MN

γ5GP

(
q2
)]
uN (pi) , (3.1)

with MN the nucleon mass and q2 = (pf − pi)2. That gu−dA is taken as a standard can-

dle in lattice QCD is seen by noting the induced pseudoscalar form factor Gu−d
P does not

contribute in the forward limit (qµ = 0), leaving gu−dA ≡ Gu−d
A (0) as a local axial cur-

rent between nucleon states. Despite the simplicity, the bulk of lattice calculations have

systematically underdetermined gu−dA by ∼ 10 − 15% - only recently have lattice results

fallen to within ∼ 1% [70, 71, 72]. This apparent tension with experiment is often largely

attributed to excited-state effects. To attain sub-percent accuracy, a delicate control of

discretization, finite volume and quark mass effects is likewise required.

The ability to postdict from lattice QCD certain highly precise experimental measure-

ments is one method used to quantify and claim control of excited states. We will follow,

in part, this philosophy by computing gu−dA , but will extend our study of excited-state

effects with distillation to the nucleon’s scalar gu−dS and tensor gu−dT charges, which are less
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known experimentally and impact BSM searches at the TeV scale1 and dark matter direct

detection searches. The need for distillation will be illustrated by contrasting the same

charges computed using the standard Jacobi smearing kernel.

3.1.1 Computational Methodology

The proton and neutron are each JP = 1
2

+
baryons with leading Fock states |p〉 =

|uud〉 and |n〉 = |ddu〉, respectively. The SU(2) isospin symmetry introduced in the opening

remarks of Ch. 2 treat u and d quarks as the same entity, light quarks ` for our purposes,

each transmutable into the other via SU(2) transformations. Nature does not respect

isospin symmetry given the difference in the neutron and proton masses mn − mp '

1.2933 MeV [29]. This broken symmetry at O (0.1%) is so small in fact that the proton

and neutron are often treated as isospin projections Iz = ±1
2

of an I(JP ) = 1
2
(1

2

+
) state

called the nucleon. Isovector charges of the nucleon gu−dΓ are then measured experimentally

through neutron to proton transitions 〈p (k, s′)| ūΓd |n (k, s)〉 or proton/neutron charge

differences weighted by the light quark charges.

It is likewise commonplace in lattice QCD, and this calculation, to treat QCD as

having two flavors of mass degenerate light quarks (i.e. isospin symmetric). Isovector

quantities then only involve fully connected quark lines, a numerically cheaper arena than

the isoscalar sector which include expensive disconnected quantities. The isovector charges

of the nucleon are defined according to

〈N (p, s)| Ou−dΓ |N (p, s)〉 = gu−dΓ ūs (p) Γus (p) , (3.2)

with Ou−dΓ = ūΓu − d̄Γd and where
∑

s us (p) ūs (p) = −i/pE + mN is our prescribed nor-

1When combined with measurements of the neutron decay distribution, gu−dS and gu−dT can help
constrain novel scalar and tensor interactions at the TeV scale that are not present in the Standard
Model. The interested reader is directed to Refs. [73, 74].



59

malization for the Euclidean nucleon spinors.

The ground-state nucleon charges gu−dS , gu−dA , gu−dT are computed using four different

types of interpolating operators, three utilizing distillation and the other a common nucleon

interpolator found in the literature smeared with the Jacobi kernel. We explore the efficacy

of each to reduce excited-state contributions to the requisite matrix elements. As our

conclusions are unaffected by multiplicative renormalization constants, we present bare

(unrenormalized) charges g̊u−dS , g̊u−dA , g̊u−dT .

A 350 configuration ensemble of 323×64 isotropic lattices with 2⊕1 dynamical flavors

(two degenerate light quarks and one heavier strange quark) of stout-smeared (one-hit)

Wilson clover fermions and a tree-level tadpole-improved Symanzik gauge action [44, 46]

(c.f. Sec. 2.3.3) is utilized for this study. A consequence of this stout-smearing is the

tree-level tadpole-improved csw coefficient is near its non-perturbative value [75]. The

ensemble is characterized by an inverse coupling β = 6.3, with a lattice spacing of a =

0.094(1) fm determined by the Wilson-flow scale w0 [76] and a resultant pion mass of

mπ = 358(3) MeV [75]. The nucleon charges g̊u−dS , g̊u−dA , g̊u−dT are computed in the nucleon’s

rest frame, as this frame in lattice QCD is subject to smaller systematic effects, including

excited-state and unwanted mixings with other symmetry channels that arise for in-flight

calculations.

3.1.2 Interpolator Constructions

As a benchmark with which to compare to distillation, we begin with the simplest

nucleon interpolator consistent with the JPC quantum numbers of the nucleon

Nα (x) = εabc
[
ua> (x)C

(1± γ4)

2
γ5d

b (x)

]
ucα (x) (3.3)
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where u, d are the two flavors of (degenerate) light quarks, {a, b, c} color indices, C = γ2γ4

the charge conjugation matrix, and α an open Dirac index. The projector (1 + γ4) /2 is

included to select the non-relativistic forward propagating state, although in some calcu-

lations the backward propagating non-relativistic projector (1− γ4) /2 is likewise consid-

ered. In the interest of comparison with earlier works on this same ensemble [77, 78], Nα

is smeared with 60 applications of the Jacobi kernel with width σ = 5.0. The smeared

interpolator Nα is then referred to as Jacobi-SS to reflect smeared creation/annihilation

interpolators.

The distilled nucleon interpolators we consider are expressed generically as

Oi (t) = εabc (D1�u)αa (D2�d)βb (D3�u)γc (t)Sαβγi , (3.4)

where Di in general contain a Dirac structure and covariant derivatives, introduced to

probe the radial/angular structure of the nucleon, and Sαβγ encode the subduction of

the interpolator into OD
h irreps. A comprehensive construction of the interpolators we

introduce below is given in [69] - essential details for a contained discussion are presented

as follows. When expressed in a form exposing the permutational symmetry of the flavor

(F), spatial (D) and Dirac (S) structures, distilled baryon interpolators take the form

OB =
(
FP(F) ⊗ SP(S) ⊗DP(D)

)
{q1q2q3} (3.5)

where the symmetric (S), mixed-symmetric (M) and antisymmetric (A) character of each

structure is expressed by the permutation symbol P (· · · ). Explicitly the distilled interpo-

lators employed are

1. (NM ⊗ (1
2

+
)1
M ⊗D[0]

L=0,S)J
P= 1

2

+ ≡ N2SS
1
2

+

2. (NM ⊗ (1
2

+
)1
M ⊗D[2]

L=0,M)J
P= 1

2

+ ≡ N2SM
1
2

+
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3. (NM ⊗ (1
2

+
)1
M ⊗D[2]

L=0,S)J
P= 1

2

+ ≡ N2S ′S
1
2

+

4. (NM ⊗ (1
2

+
)1
M ⊗D[2]

L=1,A)J
P= 1

2

+ ≡ N2PA
1
2

+

5. (NM ⊗ (1
2

+
)1
M ⊗D[2]

L=1,M)J
P= 1

2

+ ≡ N2PM
1
2

+

6. (NM ⊗ (3
2

+
)1
S ⊗D[2]

L=1,M)J
P= 1

2

+ ≡ N4PM
1
2

+

7. (NM ⊗ (3
2

+
)1
S ⊗D[2]

L=2,M)J
P= 1

2

+ ≡ N4DM
1
2

+
.

This selection was based on a study [79] which found these seven, especially N2SS
1
2

+

and the hybrid N2PM
1
2

+
and N4PM

1
2

+
, had predominant overlap onto the ground-state

nucleon. These operators are projections onto the lattice irreps of discretized continuum-

like operators, which are classified according to the spectroscopic notation N (2S+1)LPJ
P ,

where S represents the Dirac spin, L the angular momentum introduced via derivatives,

P the permutational symmetry of such derivatives, and JP the total angular momentum

and parity of the nucleon-flavored interpolator N .

The construction of the nucleon operators follows the procedure developed in Refs. [69,

79]. Each interpolator is built from three quark fields and covariant derivatives, each re-

spectively combined into objects of definite half-integer and integer spin using SU(2) and

SO(3) Clebsch-Gordan coefficients. When combined into an overall JP = 1
2

+
operator

consistent with the ground-state nucleon, these interpolators subduce trivially into the

G1g irrep of OD
h . Recall from Sec. 2.4, the act of distillation applied to quark fields facil-

itates the factorization of a correlation function into perambulators and elementals. The

spectroscopic notations above are in practice expressed in terms of the baryon elementals

introduced in Eq. 2.81.

The first distilled interpolator we consider is N2SS
1
2

+
, which is the closest non-

relativistic analogue of (3.3). The two additional distilled interpolators follow from a
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variational analysis of a matrix of two-point correlation functions constructed from inter-

polators in the operator bases

B[3]

~p=~0
=
{
N2SS

1
2

+
, N2PM

1
2

+
, N4PM

1
2

+
}

(3.6)

B[7]

~p=~0
=
{
N2SS

1
2

+
, N2SM

1
2

+
, N2S ′S

1
2

+
, N2PA

1
2

+
, N2PM

1
2

+
, N4PM

1
2

+
, N4DM

1
2

+
}
. (3.7)

These bases admit flexible descriptions of the radial/orbital structures of the nucleon that

are resolved by the QCD dynamics and variational analyses. The variationally optimized

operators originating from B[3]

~p=~0
and B[7]

~p=~0
are denoted P̂3 and P̂7.

3.1.3 Correlator Behavior & Matrix Elements

The structure content of the nucleon, and indeed any hadronic state, is clarified by

two-point and three-point correlation functions. With generic momentum assignments,

these correlation functions for the nucleon read

C2pt
αβ (Tf , ~pf ;Ti, ~pi) =

∑

~x,~y

ei~pf ·~xe−i~pi·~y 〈Ω| Nα (~x, Tf )N β (~y, Ti) |Ω〉 (3.8)

C3pt
αβ (Tf , ~pf ; τ, ~q; ~pi, Ti) =

∑

~x,~y,~z

ei~pf ·~xe−i~q·~ye−i~pi·~z 〈Ω| Nα (~x, Tf )J (~y, τ)N β (~z, Ti) |Ω〉 , (3.9)

where J (~y, τ) is an external current introduced between the source and sink interpolator

for the time-ordering Ti ≤ τ ≤ Tf . Although expressed as generic correlation functions,

momentum conservation restricts the momentum combinations for which (3.8) and (3.9)

are non-vanishing (i.e. C2pt
αβ 6= 0 for ~pf = ~pi). In addition to elementals and perambulators,
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Γ

Tf T0

FIG. 3.1: Pictorial representation of the factorization of a baryon three-point correlation func-
tion with a local current insertion of Dirac structure Γ. Perambulators are shown in green,
elementals as gray ovals, and a generalized perambulator in red.

distillation breaks a connected three-point function into so-called generalized perambulators

Ξ
(i,j)
αβ (Tf , Ti; τ, ~q) =

∑

~z

ei~q·~zξ(i)† (Tf )D
−1
αµ (Tf ; ~z, τ) Γµν (τ)D−1

νβ (~z, τ ;Ti) ξ
(j) (Ti) . (3.10)

The generalized perambulators, or genprops for short, are analogs of perambulators, en-

coding quark propagation within the distillation space with the inclusion of a momentum

projected current. The factorization of a three-point function via the application of distil-

lation is illustrated in Fig. 3.1.

The correlators (3.8) and (3.9) are arbitrary in their current form, as information on

the nucleon spinors is absent. Projecting out a desired parity and polarization require the

additional operators {Γ2pt,Γ3pt}, engendering a form amenable to numerical computation.

In writing (3.8) and (3.9) it is assumed distillation is implemented, whereby the source

interpolator possesses a spatial dependence; enforcing overall 3-momentum conservation

will lead to a spatial volume prefactor V3. Conventionally this factor is absorbed into

the interpolator normalizations. This factor is absent however for standard point-smeared

interpolators.

A spectral representation of the two- and three-point correlation functions projected
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onto specific Dirac components exposes the competing effects from excited-states and any

kinematic contributions. The two-point spectral representation follows from the complete-

ness relation for finite-volume energy eigenstates (A.8) and the Euclidean time-evolution

operator:

C2pt (T, ~pf , ~pi) =
∑

~x,~y

ei~pf ·~xe−i~pi~y
∑

B,k,s

Γ2pt
βα 〈Ω| Nα (~x, T )

|B, k, s〉 〈B, k, s|
2EB (k)V3

N β (~x, 0) |Ω〉

=
∑

~x,~y

∑

B,k,s

ei~pf ·~xe−i~pi·~y

2EB (k)V3

Γ2pt
βα 〈Ω| eĤT−ip̂·~xNαeip̂·~x−ĤT |B, k, s〉 〈B, k, s| e−ip̂·~y N βe

ip̂·~y |Ω〉

=
∑

B,k,s

Γ2pt
βα

2EB (k)V3

e−EB(k)T
∑

~x,~y

ei(~pf+~k)·~xe−i(~pi+
~k)·~y 〈Ω| Nα |B, k, s〉 〈B, k, s| N β |Ω〉

=
∑

B,s

Γ2pt
βα

2EB (pi)
e−EB(pi)T

∑

~x

ei(~pf+~pi)·~x 〈Ω| Nα |B, pi, s〉 〈B, pi, s| N β |Ω〉

= V3

∑

B,s

Γ2pt
βα

2EB (pf )
e−EB(pf )T 〈Ω| Nα |B, pf , s〉 〈B, pf , s| N β |Ω〉

= V3

∑

s

|Z0 (p)|2
2E0 (p)

Γ2pt
βα uα (p, s)uβ (p, s) e−E0(p)T +O

(
e−E1(p)T

)

C2pt (T, ~p) = V3
|Z0 (p)|2
2E0 (p)

Tr
[
Γ2pt

(
−i/pE +m

)]
e−E0(p)T +O

(
e−E1(p)T

)
(3.11)

where the final spatial sum has enforced a momentum conserving delta function. As the

interpolators we employ are non-relativistic, the trace appearing in the two-point function

can be further reduced by applying the unpolarized, forward-propagating positive parity

projector Γ2pt = 1
2

(1 + γ4) in the Dirac-Pauli representation (c.f. Appendix A.1):

C2pt (T, ~p) = V3
|Z0 (p)|2
2E0 (p)

Tr

[
1

2
(1 + γ4)

(
−i/pE +m

)]
e−E0(p)T +O

(
e−E1(p)T

)

= V3
|Z0 (p)|2
2E0 (p)

1

2
Tr
[
−ipEµ γµ +m− ipEµ γ4γµ +mγ4

]
e−E0(p)T +O

(
e−E1(p)T

)

= V3
|Z0 (p)|2
E0 (p)

[E0 (p) +m] e−E0(p)T +O
(
e−E1(p)T

)
. (3.12)
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The three-point spectral representation proceeds in the same manner:

C3pt (T, ~pf ; τ, ~q; ~pi) =
∑

~x,~y,~z

∑

B,k,s

∑

B′,k′,s′

ei~pf ·~xe−i~q·~ye−i~pi·~zΓ3pt
βα 〈Ω| Nα (~x, T )

|B, k, s〉 〈B, k, s|
2EB (k)V3

× J (~y, τ)
|B′, k′, s′〉 〈B′, k′, s′|

2EB′ (k′)V3

N β (~z, 0) |Ω〉

=
∑

~x,~y,~z

∑

B,k,s

∑

B′,k′,s′

ei~pf ·~xe−i~q·~ye−i~pi·~z

4EB (k)EB′ (k′)V 2
3

Γ3pt
βα 〈Ω| eĤT−ip̂·~xNαeip̂·~x−ĤT |B, k, s〉

× 〈B, k, s| eĤτ−ip̂·~yJ eip̂·~y−Ĥτ |B′, k′, s′〉 〈B′, k′, s′| e−ip̂·~z N β (0) eip̂·~z |Ω〉

=
∑

B,k,s

∑

B′,k′,s′

Γ3pt
βα

4EB (k)EB′ (k′)V 2
3

∑

~x,~y,~z

ei(~pf+~k)·~xe−i(~q+
~k−~k′)·~ye−i(~pi+

~k′)·~ze−EB(k)(T−τ)e−EB′ (k
′)τ

× 〈Ω| Nα |B, k, s〉 〈B, k, s| J |B′, k′, s′〉 〈B′, k′, s′| N β |Ω〉

=
∑

B,k,s

∑

B′,s′

Γ3pt
βα

4EB (k)EB′ (pi)V3

∑

~x,~y

ei(~pf+~k)·~xe−i(~q+
~k−~pi)·~ye−EB(k)(T−τ)e−EB′ (pi)τ

× 〈Ω| Nα |B, k, s〉 〈B, k, s| J |B′, pi, s′〉 〈B′, pi, s′| N β |Ω〉

=
∑

B,s

∑

B′,s′

Γ3pt
βα

4EB (pf )EB′ (pi)

∑

~y

e−i(~q+~pf−~pi)·~ye−EB(pf)(T−τ)e−EB′ (pi)τ

× 〈Ω| Nα |B, pf , s〉 〈B, pf , s| J |B′, pi, s′〉 〈B′, pi, s′| N β |Ω〉

= V3

∑

B,s

∑

B′,s′

e−EB(pf)(T−τ)e−EB′ (pi)τ

4EB (pf )EB′ (pi)
ZB (pf )Z†B′ (pi) Γ3pt

βα u
B
α (pf , s)u

B′

β (pi, s
′)

× 〈B, pf , s| J |B′, pi, s′〉

= V3

∑

B,B′

e−EB(pf)(T−τ)e−EB′ (pi)τ

4EB (pf )EB′ (pi)
ZB (pf )Z†B′ (pi)

×
∑

s,s′

Γ3pt
βα u

B
α (pf , s)u

B
µ (pf , s)JµνuB

′

ν (pi, s
′)uB

′

β (pi, s
′)

= V3
Z0 (pf )Z†0 (pi)

4E0 (pf )E0 (pi)
Tr
[
Γ3pt

(
−i/pEf +m0

)
J
(
−i/pEi +m0

)]
e−E0(pf)(T−τ)e−E0(pi)τ

+ V3
Z0 (pf )Z†1 (pi)

4E0 (pf )E1 (pi)
Tr
[
Γ3pt

(
−i/pEf +m0

)
J
(
−i/pEi +m1

)]
e−E0(pf)(T−τ)e−E1(pi)τ
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+ (|0〉 7→ |1〉) +O
(
e−(E2(pi)−E0(pf))τ

)
, (3.13)

where the final line expands the spectral representation up to corrections from the second

excited-state. Charges of the nucleon are in general accessed by selecting a particular

spin component from a Dirac spinor using the Euclidean space spin projector (1± iγ5/s).

The combined action of the non-relativistic (positive parity) and spin projectors yields the

three-point projector Γ3pt = 1
2

(1± γ4) (1± iγ5/s) we implement. For instance, to project

out a forward-propagating positive parity state with spin oriented in the ±k-direction

Γ3pt = 1
2

(1 + γ4) (1± iγ5γk).

As the charges associated with a Dirac structure are defined as the q2 = 0 limit of

their parent form factors, the traces appearing in (3.13) are reduced by applying Γ3pt and

imposing momentum conservation: ~pf = ~pi ≡ ~p. We restrict our attention to the leading

time dependence of (3.13), whose trace contains the ground-state matrix element we seek

to extract. In the vector channel the trace reduces accordingly,

Tr
[
Γ3pt

(
−i/p+m

)
gV γµ

(
−i/p+m

)]
=
gV
2

Tr
[(

1 + iγ5γ3 + γ4 + iγ4γ5γ3

)

×
(
−/pγµ/p− im/pγµ − imγµ/p+m2γµ

)]

=
gV
2

Tr
[
−impαγαγµ − impαγµγα + ipαpβγ1γ2γ4γαγµγβ − im2γ1γ2γ4γµ

−pαpβγ4γαγµγβ +m2γ4γµ −mγ1γ2γνγµpν −mpαγ1γ2γµγα
]

=
gV
2

[−8impµ + ipαpβTr (γ1γ2γ4γαγµγβ)− 4pαpβ (δ4αδµβ − δ4µδαβ + δ4βδαµ)

+4m2δ4µ − 4mpν (−δ1νδ2µ + δ1µδ2ν)− 4mpα (−δ1µδ2α + δ1αδ2µ)
]

=
gV
2

[
−8impµ + ipαpβTr (γ1γ2γ4γαγµγβ)− 4p4pµ + 4p2δ4µ − 4pµp4 + 4m2δ4µ

]

=
gV
2

[−8impµ + ipαpβTr (γ1γ2γ4γαγµγβ)− 8p4pµ] . (3.14)
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Tr [· · · ][Γ] ~p 6= ~0 ~p = ~0

1 4gSm (E (~p) +m) 8m2gS

γj −4ig
[γj ]
V pj (E (~p) +m) 0

γ4 4g
[γ4]
V E (~p) (E (~p) +m) 8m2g

[γ4]
V

γ4γ5 −4g
[γ4γ5]
A p3 (E (~p) +m) 0

γjγ5 4ig
[γjγ5]
A p3pj 0

γ3γ5 4ig
[γ3γ5]
A [mE (~p) +m2 + p2

3] 8im2g
[γ3γ5]
A

γjγ4 (−1)j 4g
[γjγ4]
T p3−j (E (~p) +m) 0

γ3γ4 0 0

γ4γj (−1)j+1 4g
[γ4γj ]
T p3−j [E (~p) +m] 0

γ4γ3 0 0

γ1γ2 4ig
[γ1γ2]
T (m2 +mE (~p) + ~p 2

⊥ ) 8im2g
[γ1γ2]
T

γjγ3 (−1)j−1 4ig
[γjγ3]
T p3−jp3 0

TABLE 3.1: Kinematic factors arising from the traces appearing in the spectral representation
of the three-point function (3.13) in the forward-limit. Each factor is the result of applying Γ3pt

αβ

as described in the text for each possible Dirac structure of the external current.

For the time-like vector current, one finds

Tr [· · · ][γ4] =
g

[γ4]
V

2

[
−8imp4 + 2ipαpβδα4Tr (γ1γ2γ4γβ)− ipαpβTr (γ1γ2γαγβ)− 8p2

4

]

=
g

[γ4]
V

2

[
−8imp4 − 4ipαpβ (δ1βδ2α − δ1αδ2β)− 8p2

4

]

= 4g
[γ4]
V E (~p) [E (~p) +m] . (3.15)

The same tedious exercise when repeated for the remaining 15 Dirac structures yield

kinematic factors that are summarized in Tab. 3.1. It is then clear g̊u−dS , g̊u−dV , g̊u−dA , g̊u−dT

are accessible at rest only with the Dirac structures 1, γ4, γ3γ5, γ1γ2, respectively.

In order to study the asymptotic 0� τ � T behavior, we parameterize our two- and
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three-point correlation functions according to the two-state forms:

C2pt
fit (T, ~p) = e−E0T

(
a+ be−∆ET

)
(3.16)

C3pt
fit (T, τ ; ~p) = e−E0T

(
A+ Be−∆ET + Ce−∆E T

2 cosh

[
∆E

(
τ − T

2

)])
, (3.17)

where ∆E is the ground-/excited-state energy gap, B and C, respectively, contain the first-

excited and transition matrix elements and A contains the desired ground-state matrix

element. Constraints ensure the positivity of the overlap parameters {a, b} in the two-

point fit. Unless stated otherwise, all correlator fits (3.16) and (3.17) considering in this

dissertation will fit data only for T/a ≥ 2 to avoid contact terms induced by the Wilson-

clover action. The two- and three-point correlators are simultaneously fit with (3.16)

and (3.17), accounting for data correlation, to extract the unknown masses, overlap factors

and matrix elements. Since the two-point spectral representation (3.12) at rest reduces to

2V3 |Z0|2 e−m0T + O
(
e−m1T

)
, it follows the desired ground-state matrix element is given

by gΓ
00 = A/a in the large-T limit [80].

3.1.4 Results

The two-point functions for each interpolator are computed for T 2pt/a ∈ [0, 20]

and subsequently averaged over three temporal origins. The three-point functions are

computed with these same origins for T 3pt/a ∈ {8, 12, 16} and the currents inserted

∀τ/a ∈ [0, T 3pt − 1]. The quality of each interpolator is judged first by considering the

effective energy (mass) (2.82) shown in Fig. 3.2. The importance of a sufficient number

of distillation eigenvectors is evident in the higher statistical quality of the distilled data

with RD = 64 in Fig. 3.2(b) relative to RD = 32 in Fig. 3.2(a). For this reason we make

the following observations based on the RD = 64 results in Fig. 3.2(b). The lack of a
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(a) (b)

FIG. 3.2: Nucleon effective mass when using Jacobi-SS (purple) and distilled interpolators

constructed from 32 (left) and 64 (right) eigenvectors. The distilled interpolators 2SS
1
2

+
(blue),

P̂3 (green), and P̂7 (red) demonstrate a plateau in the effective mass as early as tsep = 6, but
the statistical uncertainty is comparable to that of the Jacobi-SS when 32 eigenvectors are used.
Considerable improvement in statistics is seen for the case of 64 eigenvectors.

plateau in the effective mass of the Jacobi-SS interpolator until T 2pt/a ∼ 10 is indicative

of excited-state contamination for source-sink separations of . 1 fm. Use of the N2SS
1
2

+

distilled interpolator leads to an earlier onset of a plateau in the effective mass, with sta-

tistical uncertainty that is at least 50% smaller than that of the Jacobi-SS interpolator.

This plateau is seen to begin for T 2pt/a ∼ 6, or ∼ 0.6 fm. The exponentially increasing

noise in the nucleon effective mass is also substantially suppressed at larger source-sink

separations when distillation is used in place of Jacobi smearing. The variationally im-

proved interpolators P̂3 and P̂7 lead to a more rapid relaxation of the two-point correlator

to the ground-state at early Euclidean times. The P̂3 and N2SS
1
2

+
effective masses exhibit

plateaux of commensurate statistical precision, yet the P̂3 excited-states are seen to decay

more rapidly for T 2pt/a < 5. Consistent with an expanded operator basis capturing and

removing higher excited-states [57], P̂7 leads to a sharper relaxation to the ground-state

for T 2pt/a < 5. The P̂7 effective mass plateau likewise begins around T 2pt/a = 6, but is

slightly lower than those of N2SS
1
2

+
and P̂3.
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In general, the statistical precision of all distilled interpolators appears to be com-

parable, except for large Euclidean times where the variationally improved interpolators

become increasingly unconstrained. This behavior is unsurprising and does not affect the

two-point fits, as elements of the correlator matrices (2.73), especially the multi-derivative

containing operators, are themselves dominated by noise at large-T/a.

The statements above are rigorously anchored by one- and two-state fits (3.16) applied

to the two-point correlation functions induced by each interpolator. The reader is directed

to [80] for the results of these fits. The most striking conclusion are the mass gaps, or energy

differences between the ground-state and first contributing excited-state, determined via

the two-state fits:

Jacobi-SS, 0.497(80) '

N2SS
1
2

+
, 0.714(30) '





a∆m = a (M1 −M0)





' 0.730(51), P̂3

' 0.895(80), P̂7

Since energy eigenstate contributions to a two-point correlator are of O
(
e−EnT

)
, a larger

mass gap translates into saturation of the correlation function by the ground-state at

earlier Euclidean times. Evidently distillation and the variational method lead to greater

elimination of excited-state contributions to the two-point correlators, where the mass

gap is ∼ 44%, ∼ 58%, and ∼ 80% larger for 2SS
1
2

+
, P̂3, and P̂7, respectively, relative

to the Jacobi-SS interpolator. Although increasing the smearing radius of the Jacobi-

SS interpolator certainly would have increased its mass gap, any potential gains would

still be less than distillation, as distillation explicitly and cheaply projects out the lowest-

lying contributions to a correlator signal. Moreover, a variational analysis of Jacobi-SS

interpolators of different radii would require repeated calculation of quark propagators, a

considerable increase in numerical cost that is avoided by distillation.



71

Unrenormalized Charges - Results

The unrenormalized charges are determined with simultaneous two- and three-point

fits in the temporal windows T 2pt
fit /a ∈ [2, 16] and τfit/a ∈ [2, T 3pt − 2]. To illustrate the

extracted isovector charges and to quantify the degree of excited-state contamination, we

plot an effective unrenormalized charge

g̊eff
Γ (T, τ) = C3pt

Γ (T, τ) /C2fit
fit (T ) (3.18)

defined as the ratio of a computed three-point function and the corresponding best fit

applied to the two-point function of the same interpolators and source-sink separation.

Errors are purely statistical, and estimated via a simultaneous jackknife resampling of the

correlators. Atop the effective unrenormalized charge data are the ratios of (3.17) to (3.16)

for each T 3pt/a ∈ {8, 12, 16}, which plateau to the respective charge (gray bands).

The effective and extracted g̊u−dA determined with each interpolator are shown in

Fig. 3.3 and the simultaneous fit results are given in Tab. 3.2. The Jacobi-SS interpolator

is seen to be plagued by poor statistics - near 10% error per datum. Although g̊eff
A (T, τ)

for T 3pt/a = 8, 12 is symmetric about the midpoint τ − T/2, indicative of equal excited-

state effects on source/sink sides, at this level of statistics the Jacobi smearing of the

standard nucleon interpolator (3.3) is simply insufficient to be of practical use. With

the same number of measurements, N2SS
1
2

+
leads to a dramatic reduction in statistical

uncertainty of g̊eff
A (T, τ). Furthermore, the extracted value of g̊u−dA increases by ∼ 7%. The

broader plateaux for each T/a imply the ground-excited state transition matrix element

(C of (3.17)) has been mitigated. This is confirmed in Tab. 3.2 where the ratio |C| / |A| is

more than 50% less with the N2SS
1
2

+
interpolator. The results following from P̂3 and P̂7

offer a statistically consistent description of g̊eff
A , yet the improvement over N2SS

1
2

+
is not

as pronounced.

The unrenormalized tensor charge is observed in Fig. 3.4 to be consistently determined



72

FIG. 3.3: Effective g̊u−dA using the Jacobi-SS (upper-left), N2SS
1
2

+
(upper-right), P̂3 (lower-

left), and P̂7 (lower-right) distilled interpolators with RD = 64. The bands are the ratio of
the simultaneous fits (3.17) & (3.16) with T 2pt

fit /a ∈ [2, 16] and τfit/a ∈
[
2, T 3pt − 2

]
, and error

estimated via jackknife resampling. The figure of merit for each simultaneous fit is also shown.

by each interpolator. However, as with the axial determination, the statistical quality of

the Jacobi-SS results would conventionally warrant more measurements on an expanded

gauge ensemble. Each distilled interpolator again reflects the additional volume average

for distilled correlators via the considerable reduction in statistical uncertainty. Each of

N2SS
1
2

+
, P̂3, P̂7 share a plateau in g̊eff

T for T/a = 12, 16. This suggests the excited-state

matrix element (B of (3.17)) is either small or its associated time-dependence is negligible

for these temporal separations. As documented in Tab. 3.3, the increased resolving power

of distillation has measured a non-zero excited-state matrix element, while the Jacobi-SS
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Ô A B C M0 M1 a b g̊u−dA

Jacobi-SS 5.00(33)e-08 3.23(7.15)e-08 -7.66(2.12)e-09 0.540(6) 1.010(67) 3.96(23)e-08 3.81(21)e-08 1.261(51)

N2SS
1
2

+
1.96(03)e-02 -3.03(5.78)e-02 -1.33(0.23)e-03 0.536(1) 1.244(28) 1.46(02)e-02 1.68(05)e-02 1.343(16)

P̂3 1.41(3)e+00 -1.86(5.26)e+00 -2.28(0.22)e-01 0.535(1) 1.263(43) 1.06(1)e+00 9.22(48)e-01 1.332(17)

P̂7 1.35(3)e+00 11.5(26.9)e+00 -2.87(0.38)e-01 0.535(2) 1.442(72) 9.99(12)e-01 1.10(12)e+00 1.347(22)

TABLE 3.2: Results of simultaneous fits to the two-point and three-point correlators with γ3γ5

insertion. The distilled interpolators were constructed from 64 eigenvectors.

Ô A B C M0 M1 a b g̊u−dT

Jacobi-SS 4.49(32)e-08 3.36(7.57)e-08 1.21(0.19)e-08 0.542(6) 1.043(73) 4.07(23)e-08 3.78(23)e-08 1.101(42)

N2SS
1
2

+
1.66(03)e-02 5.08(3.88)e-02 5.51(0.22)e-03 0.535(1) 1.225(26) 1.45(02)e-02 1.64(05)e-02 1.147(13)

P̂3 1.19(2)e+00 4.48(3.28)e+00 2.22(0.16)e-01 0.535(1) 1.232(40) 1.053(13)e+00 8.86(40)e-01 1.133(14)

P̂7 1.13(3)e+00 24.2(17.6)e+00 1.55(0.23)e-01 0.534(2) 1.387(70) 9.94(13)e-01 1.01(10)e+00 1.133(17)

TABLE 3.3: Results of simultaneous fits to the two-point and three-point correlators with γ1γ2

insertion. The distilled interpolators were constructed from 64 eigenvectors.

fit would indicate an excited-state matrix element consistent with zero. The consistent

plateaux for T/a = 12, 16 with each distilled interpolator reiterates the ability of distilla-

tion to increase the ground-excited state energy gap. In expanding from N2SS
1
2

+
to B[3]

~p=~0

and B[7]

~p=~0
, the variational method serves to remove the excited-to-ground transition matrix

element. This is seen visually in Fig 3.4 where each T/a plateau becomes broader as the

operator basis is increased; the effect is seen numerically by considering the ratio C/A for

each distilled interpolator. We are left with the remarkable conclusion that a variational

analysis of an expanded basis of distilled interpolators yields g̊eff
T that resembles the vector

charge - a matrix element that is constant in τ/a within minor statistical fluctuations.

A complete accounting of each unrenormalized charge determined from this analysis

and the sensitivity of the results on the rank of the distillation space can be found in [80].

Distillation clearly affords a considerable improvement in the statistical quality of the

data when compared to standard Jacobi smearing. The explicit low-rank projection of

the Jacobi kernel that forms the scaffolding of distillation is seen to reduce the impact of

excited-states in both two- and three-point functions. We turn now to an investigation of

distillation in boosted frames.
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FIG. 3.4: Effective g̊u−dT using the Jacobi-SS (upper-left), N2SS
1
2

+
(upper-right), P̂3 (lower-

left), and P̂7 (lower-right) distilled interpolators with RD = 64. The bands are the ratio of
the simultaneous fits (3.17) & (3.16) with T 2pt

fit /a ∈ [2, 16] and τfit/a ∈
[
2, T 3pt − 2

]
, and error

estimated via jackknife resampling. The figure of merit for each simultaneous fit is also shown.

3.2 High-Momentum Matrix Elements with

Distillation

Conventional spatial smearing schemes and momentum smearing work in concert to

enhance the overlap of interpolating operators onto low-lying boosted hadronic states.

The momentum smearing paradigm does not, however, address the increased overlap

of momentum-smeared interpolators onto neighboring single- and multi-particle excited
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states. This overlap onto unwanted neighboring energy eigenstates is exacerbated as the

discrete particle spectrum becomes dense for increasing spatial momenta. Moreover, the

reduced lattice symmetry of correlators at some non-zero spatial momentum further in-

crease the density of unwanted states. Distillation introduced in Sec. 2.4, when employed

with the extended basis of interpolators it facilitates, provides a powerful means of ad-

dressing these issues.

In the previous section it was established that distillation facilitates improved vol-

ume sampling and control of excited-state contributions relative to conventional smearing

paradigms. Nucleon charges extracted in the lab rest-frame are some of the simplest mea-

sures of nucleon structure, collectively representing the Q2 = 0 limit of the respective

form factors. This raises the prospect of distillation providing a similar benefit in more

sophisticated structure calculations, especially PDF and GPD calculations which demand

matrix elements across large kinematic windows.

Contemporary spectroscopic calculations employing distillation (e.g. [81, 82]), the

largest benefactor of distillation at the time of this writing, generically consider hadron

momenta ~p in the rather limited shell |as~p|2 . 4 (2π/Ls)
2, with as and Ls the spatial lat-

tice spacing and extent respectively. Single and multi-particle distilled interpolators with

these momenta have adequate momentum-space overlaps to not warrant modifications to

the distillation framework. The demand for a dramatic increase in interpolator momenta

will become apparent in Ch. 4. For now, our goal in this section is to construct a version of

momentum smearing within the distillation paradigm. Following simple theoretical argu-

ments and the modifications to distillation, we perform proof of principle calculations by

mapping the nucleon’s dispersion relation and subsequently isolate form factors (charges)

in highly boosted frames using the modified distillation space.
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3.2.1 A Modified Distillation Space

The original momentum smearing idea of Bali et. al. [59], shifts interpolator-state

overlaps in momentum-space by re-weighting gauge fields Uµ (x) prior to source creation

in a direction zµ with weight ζ = 2π
L
r according to

Ũµ (x) = ei
2π
L
rzµUµ (x) . (3.19)

The phase factors r ∈ R are not restricted to allowed lattice momenta, as an explicit

momentum projection is the only instance when translation invariance must be satisfied.

Bali et al. state the same arbitrary smearing can be applied to a gauge configuration prior

to computing distillation eigenvectors.

From a practical viewpoint, distillation is costly initially in both computational stor-

age and construction of its components. Important for the construction of correlation

functions with distillation are the number of distinct Wick contractions that must be eval-

uated. Mesons and baryons comprised purely of isospin symmetric light quarks require

Wick contractions that scale as R3
D and R4

D, respectively (cf. Fig. 3.5). These scalings

result from counting the matrix multiplications in the distillation space needed to evaluate

a correlation function. For instance, it was found in Eq. 2.79 that a meson two-point func-

tion smeared with distillation involves three distinct multiplications of perambulators and

meson elementals; as each are constructed from RD eigenvectors, the net scaling is R3
D.

It has furthermore been established that in order to maintain the same statistical quality,

or resolution, in correlation functions computed on different gauge ensembles, RD should

scale with the lattice spatial volume [58]. Implementing momentum smearing within the

distillation framework is then only computationally practical by minimizing the number

of additional eigenvector bases constructed. Rather than compute a distinct eigenvector

basis for each unique three-momentum desired, we set out to modify an already com-
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FIG. 3.5: Distinct Wick contraction topologies required to evaluate a light-quark baryon two-
point correlation function.

puted eigenvector basis. Any modifications will be minimal in number to reflect the above

considerations.

A series of potential modifications to a pre-computed eigenvector basis includes:

1. Single Phase

ξ̃(k)
a (~z, t) = ei

~ζ·~zξ(k)
a (~z, t) (3.20)

2. Opposing Phases

ξ̃(k)
a (~z, t) = 2 cos

(
~ζ · ~z

)
ξ(k)
a (~z, t) (3.21)

3. Identity and Opposing Phases

ξ̃(k)
a (~z, t) =

[
1 + 2 cos

(
~ζ · ~z

)]
ξ(k)
a (~z, t) (3.22)

4. Multiple Phases

ξ̃(k)
a (~z, t) =

[
ei
~ζ1·~z + ei

~ζ2·~z
]
~ζ1 6=~ζ2

ξ(k)
a (~z, t) , (3.23)

where ~ζj are the hadron momenta for which a momentum-projected elemental constructed

from the modified eigenvectors should maximally overlap with in a free-field calculation.

Since the eigenvectors entering either of these potential modifications already reflect the

spatial periodic boundary conditions of the lattice, the phase factors are restricted to

allowed lattice momenta contrary to the original momentum smearing formulation of Bali
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[1] [2]

[3] [4]

FIG. 3.6: Qualitative momentum space overlaps following modification of a computed eigen-
vector basis. Translation invariance is expressly violated for all but Panel 1, nullifying compu-
tational gains with Panels 2-4 were translation symmetry preserved.

et al. [59]. These modifications, qualitatively shown in Fig. 3.6, suggest naively several,

potentially opposing, hadron momenta could be improved simultaneously. Essential for

definite momentum projection of operators appearing in a lattice correlation function is

the translational invariance (on an ensemble average) of all components of said Green’s

function. By performing a spatial translation ~x→ ~x+ ~d of a Type-1 perambulator

τ̃ ijµν (t′, t) = ξ(i)† (~x, t′) e−i
~ζ·(~x+~d)M−1

µν (~x, t′; ~y, t) ei
~ζ·(~y+~d)ξ(j) (~y, t)

= ξ(i)† (~x, t′) e−i
~ζ·~xM−1

µν (~x, t′; ~y, t) ei
~ζ·~yξ(j) (~y, t) ,

we see translation symmetry is respected when a single phase is applied to the distillation

eigenvectors. Repeating this exercise for the Type-4 modification

τ̃ ijµν (t′, t) = ξ(i)† (~x, t′) {e−i ~ζ2·(~x+~d) + e−i
~ζ1·(~x+~d)}M−1

µν (~x, t′; ~y, t)

× {ei ~ζ1·(~y+~d) + ei
~ζ2·(~y+~d)}ξ(j) (~y, t)

= ξ(i)† (~x, t′) e−i
~ζ2·~xei(

~ζ1−~ζ2)·~dM−1
µν (~x, t′; ~y, t) ei

~ζ1·~yξ(j) (~y, t) + {~ζ1 ↔ ~ζ2}+ T .I.,
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the result includes a combination of translationally invariant (T .I.) and variant pieces for

~ζ1 6= ~ζ2. The same conclusion is reached for the proposed Type-2 and Type-3 modifications.

We are forced to conclude that momentum-space shifts introduced into a distillation space

are allowed only for multiples of allowed lattice momenta and in a single direction. For the

remainder of this dissertation when momentum smeared distillation is referenced, Type-1

is utilized and the modified (phased) bases considered are given by

~ζ1 =
2π

L
ẑ ~ζ2 = 2× 2π

L
ẑ. (3.24)

3.2.2 Demonstration of Efficacy

Having established that Type-1 phased distillation will preserve the translational sym-

metry required for definite momentum projections on a spatial lattice, we turn our atten-

tion to simple calculations to demonstrate that phased distillation indeed improves energy

and matrix element extractions in boosted frames. We will find ground-state nucleon en-

ergies can be extracted reliably for |~p| . 3 GeV and matrix elements featuring a large

momentum dependence can be resolved. It is important to keep in mind that each object

within the distillation space will need to be recomputed for every new eigenvector basis.

Nucleon Spectrum and Dispersion Relation

The excited and exotic spectra of mesonic [64, 65, 66, 67] and baryonic [68, 69] systems

has been thoroughly mapped via the use of distillation. Indeed phased distillation will

provide little novel insight for these systems at rest. Knowledge of a hadron’s spectrum is

important in non-stationary frames, especially in lattice QCD, as access to matrix elements

sensitive to the structural properties of a hadron depend on high fidelity energy extractions.

Whereas form factor studies at low-Q2 illuminate the radial charge distributions in a single



80

state and in state transitions (e.g. [61]), high-Q2 calculations of practical numerical cost

necessitate phased distillation.

With this backdrop in mind, the utility and efficacy of phased distillation is demon-

strated by mapping the ground-state nucleon’s dispersion relation on an ensemble of

323 × 64 lattices with 2 ⊕ 1 dynamical Wilson-clover fermions. This ensemble, denoted

a094m358, is the same one on which the nucleon isovector charges were computed at rest

in Sec. 3.1. The reader is referred to the previous section or Refs. [77, 78] for specifics,

however details of a094m358 relevant to this calculation are summarized in Tab. 3.4. A

relatively small number of measurements - four distinct (randomized) temporal source

origins on 100 configurations of a094m358, was sufficient to demonstrate the benefits of

phased distillation. We begin by highlighting the construction of our interpolators and the

analysis techniques used to extract the nucleon dispersion relation.

To best capture the non-relativistic2 ground-state JP = 1
2

+
nucleon at rest we recycle

the basis of interpolators B[7]

~p=~0
defined in Eq. 3.7. Projection of the lattice interpolating

fields to non-zero spatial momenta (~p 6= ~0) breaks the discrete parity symmetry, allowing

positive and negative parity states, even in the continuum, to mix. The boost ~p further-

more breaks the OD
h symmetry group to little groups dependent on the * (~p) [83] - the group

of rotations for which a momentum vector ~p is left invariant. The union of these broken

symmetries entails that additional states contribute to a correlator signal, a compounding

factor to a spectrum that becomes dense as the hadron momentum is increased.

To simplify the analysis of boosted (un)phased correlators, focus is given to Lorentz

boosts along a spatial axis. In this case, the lattice little group is the order-16 dicyclic

group or Dic4 and interpolators are now classified according to their patterns of helicity

subduction. Based on a rest-frame study of the JP = 1
2

±
, 3

2

±
, 5

2

±
, 7

2

±
nucleon spectrum [79],

2Non-relativistic in this context refers to the operator construction. Each quark field comprising the
interpolator is restricted to its upper two Dirac components.
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ID a [fm] mπ [MeV] L3 ×Nt Ncfg Nsrcs RD

a094m358 0.094(1) 358(3) 323 × 64 100 4 64
a094m278 0.094(1) 278(4) 323 × 64 259 4 64

TABLE 3.4: Lattice ensembles utilized in the phased distillation proof of principle calculations.
The rank of the distillation space RD and distinct source positions Nsrcs per configuration are
also indicated. The choice of RD = 64 in both cases is justified in the Appendix of [85].

we extend our interpolator basis to3

B[16]

~p 6=~0 = {N2SS
1
2

+
, N2SM

1
2

+
, N2PA

1
2

+
, N2PM

1
2

+
, N4PM

1
2

+
, N4DM

1
2

+
,

N4SM
3
2

+
, N2DS

5
2

+
, N2PM

1
2

−
, N4PM

1
2

−
, N2PM

3
2

−
,

N4PM
3
2

−
, N4PM

5
2

−
, N2DS

3
2

+
, N4DM

3
2

+
, N2DM

3
2

+}. (3.25)

These interpolators were found to have appreciable overlaps onto low-lying nucleon spectra

within each JP channel [79]. Although the spectroscopic notation for these interpolators

is maintained, each interpolator is assembled as a continuum operator of definite helicity

that is then subduced into the requisite little group. This process of helicity operator

constructions in lattice QCD was first developed for mesons in flight [84].

The standard implementation of distillation, without phasing, is used first to compute

the ground-state nucleon energies for ẑ-boosted momenta apz ≤ 4 (2π/L). In particular,

the spatially-local, non-relativistic interpolator N2SS
1
2

+
is used to benchmark variational

improvement, phasing, and their amalgam. Two-state fits (3.16) and the derived effective

energies are shown in Fig. 3.7(a), along with energies predicted from the continuum dis-

persion relation with the rest mass obtained in Sec. 3.1 and assuming a speed of light of

unity. The data for apz ≤ 2 (2π/L) exhibit a clear signal over the entire T/a range, being

3Note N2S′S
1
2

+
of the B[7]

~p=~0
basis has been removed.
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(a) (b)

FIG. 3.7: The left-hand (a) and right-hand (b) plots show the effective energies for the nu-
cleon obtained on the a094m358 ensemble, using the spatially-local, non-relativistic interpolator

N2SS
1
2

+
subduced into the G1g and E1 irreps of ODh and Dic4, respectively. Panel (a) results

from standard eigenvectors and panel (b) from ~ζ1-phased eigenvectors. Data are shown for
points where the signal-noise ratios are ≥ 1.35 (a) and ≥ 2 (b), and are shifted horizontally for
legibility. The bands show the two-state fits to the correlators, where the dark regions indicate
data included in the fits. The dashed lines are energies expected from the continuum dispersion
relation.

well described by a two-state fit and in agreement with the continuum dispersion. The

predictable onset of signal degradation is seen for apz = {3, 4} × (2π/L), and the data

at early Euclidean times T/a . 5 are increasingly at odds with a simple two-state fit.

Switching to ~ζ1-phased eigenvectors (3.24) in Fig. 3.7(b), the apz = {3, 4}× (2π/L) signals

are now readily resolved and exhibit a plateau indicative of single-state dominance. The

slight deviations from continuum predictions suggest an incomplete determination of the

ground-state contribution that is best addressed with a variational analysis.

To assess the degree excited-states may have affected the preceding N2SS
1
2

+
extrac-

tions, variational analyses were applied to correlator matrices formed by interpolators in

the bases B[7]

~p=~0
(3.7) and B[16]

~p 6=~0 (3.25) both for unphased and ~ζ1-phased eigenvectors. The

~ζ1-phased variational analysis was completed for momenta 1 ≤ (2π/L)−1apz ≤ 4. The
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(a) (b)

FIG. 3.8: The ground-state nucleon principal correlators rescaled as λ0e
E0(T−T0) for the

a094m358 ensemble using projected interpolators within each momentum channel obtained

from B[7]

~p=~0
and B[16]

~p6=~0. The left-hand and right-hand panels are obtained from the unphased and

~ζ1-phased eigenvectors, respectively. The ground-state principal correlator from the unphased
B~p=~0 basis is shown for reference (blue). In each case, data are shown for signal-to-noise ratios
≥ 2. The bands show the two-exponential fits of Eq. 2.75, with data excluded from the fits in
gray.

principal correlators and applied two-state fits (2.75) stemming from these analyses are

shown in the left- and right-hand panels of Fig. 3.8. The principal correlators in each case

demonstrate a rather uniform plateau near unity, indicating that unwanted eigenstates

have decayed away. The ~ζ1-phased principal correlators, however, are better determined

than the unphased equivalent - up to ∼ 35% more precise ground-state energy deter-

mination in the apz = 4(2π/L) channel. A further variational analysis is completed in

the 4 ≤ (2π/L)−1apz ≤ 8 channels for operators Oi ∈ B[16]

~p 6=~0 built from ~ζ2-phased eigen-
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vectors (3.24). The ~ζ2 principal correlators have been omitted, as statistical fluctuations

prevail in the unphased principal correlators at such high momenta; the reader is directed

to [85] for further detail.

The results for the variational analyses of the unphased and phased bases for all

momenta considered are aggregated in Fig. 3.9, juxtaposed with the unphased N2SS
1
2

+

results and the continuum and lattice dispersion relations for a free fermion particle. En-

ergies from the ~ζ1-phasing were found to be consistent with those determined from the

variational analysis of the unphased B[16]

~p 6=~0, but of higher statistical quality. Despite the

use of an extended operator basis and the improved isolation of eigenstates that it en-

tails, distillation without phasing is unable to cleanly resolve the ground-state nucleon

energy for apz = 4(2π/L) - whether N2SS
1
2

+
or an optimized operator is used, the signal

is noise-dominated. Most encouraging, the ~ζ2 eigenvectors, even with limited statistics,

have enabled accurate energy determinations to at least apz = 6(2π/L) and perhaps as

high as pz ' 3 GeV where O (ap) discretization errors accrue. One final variational anal-

ysis of a set of purely-local and mostly relativistic interpolators (red in Fig. 3.9) yielded

consistent results. This sanity check confirms the interpolator group theory, especially in

the derivative constructions, is not spoiled by the addition of momentum phase factors.

In regards to the agreement between the extracted nucleon energies and the continuum

dispersion relation, the reader is reminded the lattice dispersion relation shown in Fig. 3.9

applies for a naively discretized point particle. The faithful mapping of the ground-state

nucleon’s continuum dispersion relation up to ∼ 3 GeV by the lattice data is indicative

of the considerable overlap our lattice interpolators have with the continuum nucleon. In

particular, the chosen operator bases have effectively captured the extended structures of

the nucleon, and the use of a phased eigenvector basis has enabled a continued description

of the nucleon up to ∼ 3 GeV. These observations are supported by the disagreement

between the continuum dispersion relation and the N2SS
1
2

+
energies without phasing for
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~ζ =
2π
L
ẑ

~ζ
=
2 ·

2π
L
ẑ

FIG. 3.9: The ground-state nucleon dispersion relation for the a094m358 ensemble, together
with expectations from the continuum (blue) and free lattice scalar (purple) dispersion relations.

Energies without the use of phasing are shown in magenta for the N2SS
1
2

+
operator, and orange

for the variational analyses using the bases B[7]

~p=~0
,B[16]

~p6=~0. The squares and triangles are results

from the variational analyses of ~ζ1 and ~ζ2 phased eigenvectors. A subsequent GEVP of a purely
local basis (red), demonstrates the phase factors do not invalidate the group theory used to
construct our operators. The energies for apz = 4 (2π/L), where each phase and unphased
eigenvectors were used, are shown in the inset plot. The lower panel emphasizes the differences
between each method by normalizing each with respect to the continuum dispersion relation.

pz ≥ 4 (2π/aL) (∼ 1.65 GeV). Of course, for high enough momenta the continuum dis-

persion relation should be violated, and this appears to be the case around the highest

momenta (∼ 3 GeV) we access in this proof of principle calculation.

These results emphasize that broad momentum space overlaps are possible in distil-

lation with a minimal set of eigenvectors, thereby obviating the need for precisely tuned

eigenvector phases for each momentum. The resolution of the ground-state nucleon to
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at least apz = 6(2π/L) marks a considerable improvement in the distillation/GEVP in-

frastructure. Before leveraging this new paradigm to its fullest extent in Ch. 4, similar

benefits should be demonstrated in matrix elements at high-momenta.

3.2.3 Towards Matrix Elements at High Momentum

The investigation of phased distillation is extended here to the nucleon’s isovector

charges, in the forward direction, both for the nucleon at rest and in moving frames of

increasing ẑ-oriented momenta. Our aim is to demonstrate consistency between charges

computed in different forward frames, and likewise gauge whether currents that vanish

by symmetry at rest can provide a complementary channel in motion to access a given

charge; this will exercise distillation’s ability to minimize pollution from unwanted form

factors and excited-states. This is an especially nuanced venture even with the explicit

three-momentum transfer ~q = ~0, as numerous form factors become relevant to a matrix

element as the momentum frame is varied from zero. In this sense, some reported charges

are instead a blend of form factors. We note these situations as they arise.

A second 323 × 64 isotropic ensemble of 2 ⊕ 1 dynamical flavors of Wilson-clover

fermions is exploited for this study. The inverse coupling is once more β = 6.3 and is oth-

erwise identical to a094m358, but the pion mass has been reduced to 278 MeV. Table 3.4

summarizes this ensemble, abbreviated a094m278. The renormalization constants for each

isovector current were previously computed in [78], allowing direct comparison with any

continuum results. Three nucleon boosts of apz = {0, 1, 4} × (2π/L) were considered. At

the lower values of momentum [apz = {0, 1}× (2π/L)] we use distillation without phasing,

while for apz = 4(2π/L) results both without and with ~ζ2-phasing (3.24) are compared

as a consistency check of the phased distillation method. These choices are motivated by

calculation of the ground-state nucleon effective energies for 0 ≤ apz ≤ 4 (2π/L) using
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FIG. 3.10: Nucleon effective energies for the a094m278 ensemble using a projected interpolator

obtained from the B[7]

~p=~0
and B[16]

~p6=~0 bases subduced into the relevant little group, together with

continuum expectations (dashed), and 2-state fits (bands), where in each case the darker region
denotes the time series included in the fit. No phasing was used to extract the ground-state
nucleon energy for lattice momenta apz ∈ Z5, while apz = 4 (2π/L) was also determined with ~ζ2-
phasing (3.24). In the case of apz = 4 (2π/L), the results with and without phased eigenvectors
are shown as the green and red points respectively, clearly demonstrating the need for phasing.
Data shifted for legibility, and shown for signal-to-noise ratios greater than 1.35.

a variationally optimized interpolator from the B[7]

~p=~0
(3.7) and B[16]

~p 6=~0 (3.25) bases. From

the effective energies and applied 2-state fits illustrated in Fig. 3.10, it is clear the varia-

tional method without phasing is insufficient to extract the ground-state nucleon energy

for apz ≥ 3 (2π/L). The highest momentum apz = 4 (2π/L) was then chosen to compare

with unphased distillation to underscore the compulsory use of phasing in order to obtain

meaningful physics results in such highly-boosted frames.

The needed forward isovector matrix elements are again accessed by constructing

two- and three-point correlation functions given by Eqns. 3.8 & 3.9. These correlation

functions were computed on each of 259 configurations in the a094m278 ensemble and

averaged over four temporal origins. In anticipation of poorer statistics at this pion mass,
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the three-point functions are computed for source-sink separations T/a ∈ {6, 8, 10, 12, 14}

and currents inserted ∀τ/a ∈ [0, T − 1]. The projector Γ3pt = 1
2

(1 + γ4) (1 + iγ5γ3) is

used to select the forward-propagating, positive parity nucleon with spin aligned in the

ẑ-direction. As was noted in Sec. 3.1.3 the isovector charges gu−dS , gu−dV , gu−dA , gu−dT are only

accessible at rest with the Dirac structures 1, γ4, γ3γ5, γ1γ2. For the Γ3pt projected nucleon

in motion, a rich structure of Dirac channels opens, as codified in Tab. 3.1. The vector

structure of the nucleon is now accessible with any component of the vector current ψγµψ.

The axial structure is probed with the time-like axial current ψγ4γ5ψ and ψγ3γ5ψ. The

tensor structure of the nucleon remains accessible only with ψiσ12ψ, which has important

consequences for computing gu−dT in our moving frames.

Correlated simultaneous fits of the two- (3.16) and three-point (3.17) data are used

once more to extract the matrix elements. The time series fit to are τfit/a ∈ [2, T − 2] and

Tfit/a ∈ [2, Tmax
fit ]. The maximal temporal range for which the principal correlator associ-

ated with each momenta has signal-to-noise ratios exceeding unity sets Tmax
fit . The effective

charge (3.18) was used in Sec. 3.1.4 to quantify the degree of excited-state contamination

in each matrix element extraction. This quantity has the advantage of plateauing to the

ground-state matrix element in the temporal regimes 0 � τ/a � T/a, but is only useful

in so far as the two-point fit is well determined. As the high-momentum two-point data

encountered on a094m278 are generally not well-determined, especially without phasing,

we instead illustrate the quality of our matrix element extractions by forming a direct ratio

of the computed correlators:

RΓ (T, τ) = C3pt
Γ (T, τ) /C2pt (T ) . (3.26)

The following figures show RΓ (T, τ) together with the ratio of the fitted three- and two-

point functions. Data excluded from fits are in gray, and each isolated gu−dΓ is present as
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a black line with a gray error band. Lastly, errors are purely statistical and estimated via

a simultaneous jackknife resampling.

Results – Renormalized Scalar Matrix Elements

A Lorentz decomposition of the nucleon isovector scalar matrix element

〈N |ψτ
3

2
ψ |N〉 = (2MN)−1 ūN (pf )G

u−d
S

(
q2
)
uN (pi) (3.27)

produces a single isovector scalar form factor Gu−d
S . Absent lattice systematics, the zero

virtuality limit of Gu−d
S (0) ≡ gu−dS should be accessible and equivalent in each forward

frame we consider. Figure 3.11 indicates this supposition is realized within statistical

precision for the frames apz = {0, 1} × (2π/L). Both extractions are heavily weighted

by the precise data for T/a ≤ 10, consistent with the effective energies of Fig. 3.10. We

highlight that gu−dS ' 0.953(22), determined herein at rest, is nearly 75% more precise

than a recent high statistics study on the same ensemble [78].

Without surprise, the role of excited-states is more pronounced for the case apz =

2π/L, as evidenced by the increased curvature of RS (T, τ) of a given T/a and the vertical

spacing between each RS (T, τ). These effects are described by B and C of Eq. 3.17,

which the reader is reminded contain the excited 〈N ′|S |N ′〉 and transition 〈N ′|S |N〉

matrix elements, respectively. Despite the increased contamination from excited-states, the

consistent determinations of gu−dS in these frames is encouraging for the distillation/GEVP

infrastructure.

Isolation of gu−dS in the unphased apz = 4 (2π/L) frame is meaningless, but makes

manifest the dramatic gains afforded by phased distillation (lower panel of Fig. 3.11).

The dubiously low value of gu−dS in the apz = 4 (2π/L) frame with ~ζ2-phased eigenvectors

may find an explanation in the mixing of the scalar current with Dµ{ψ̄γµψ (x) e−iq·x}.
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FIG. 3.11: Renormalized RS (T, τ) and gu−dS for momenta apz = 0 (upper-left), apz = (2π/L)
(upper-right), apz = 4 × (2π/L) without phasing (lower-left), and apz = 4 × (2π/L) with
~ζ2-phasing (lower-right). Variationally improved operators were used within each momentum
channel, with Tmax

fit = 16, 16, 7, 12 respectively.

The derivative mixing receives contributions from two terms, one proportional to qµ and

another to the four-divergence of the vector current. The explicit ~q = 0 projection here

implies the former can contribute only for excited-to-ground transitions, which should be

picked up by the three-point fit. The latter is a worrying possibility, as the vector current

conservation is violated at O (a) by the lattice regularization. Pending a follow-up study

on a finer lattice ensemble, the apparent discrepancy of the phased gu−dS determination can

conceivably be due to limited statistics and fluctuations of RS (T, τ) [85]. The possibility
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of strong correlated fluctuations in the phased apz = 4 (2π/L) frame can be seen in the

lower-right panel of Fig. 3.11, where the RS (T = 10, τ) data deviate considerably from the

data for smaller separations. The scalar charge computed in each frame and the correlated

figure of merit is summarized in Tab. 3.5.

Results – Renormalized Vector Matrix Elements

The conservation of the vector current in the continuum is a symmetry of the QCD

action, and implies the time-like component between nucleon states simply yields the

baryon number of the nucleon and its excitations. Our use of a local vector current,

however, violates this conservation. A useful sanity check then for phased distillation is

whether the renormalized gu−dV4
is unity and temporally invariant for all frames consid-

ered. As illustrated in Fig. 3.12(a) and the right column of Fig. 3.13, the conservation

ZV g
u−d
V4,bare = 1 + O (a2) is observed for each nucleon boost, with the crucial exception of

the apz = 4 (2π/L) frame when standard distillation is used. Remarkably when ~ζ2-phased

eigenvectors are put to use gu−dV4
in the apz = 4 (2π/L) frame is once more unity.

(a) (b)

FIG. 3.12: Rest-frame renormalizedRV4
(T, τ) and gu−dV4

(left), andRγ3γ5 (T, τ) and gu−dA3
(right).

A variationally improved operator was used in these determinations.
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The spectral representation of a Γ3pt projected nucleon boosted to non-zero ẑ-momenta

stipulates ψ̄γjψ can likewise expose the nucleon’s vector content. Even with ~q = ~0 in this

calculation, the spatial vector current between the ground-state nucleon and an excited

JP = 1
2

+
partner receives contributions from the Dirac and Pauli form factors according

to

〈N ′|ψγjψ |N〉 = ūN ′ (pf )

[
F u−d

1

(
q2
)(

γj −
qj
q2/q

)
+

σjνqν
MN ′ +MN

F u−d
2

(
q2
)]
uN (pi) .

In the ideal scenario that excited states are completely removed, the energy transfer q4

will vanish and the Dirac form factor can be accessed without impact from the Pauli form

factor F u−d
2 . The upper-left of Fig. 3.13 clearly indicates the presence of excited-states.

Thus without a dedicated study and removal of the Pauli contamination, discussion of

the ψγjψ results herein would be merely qualitative. For completeness Ru−d
V3

and the

extracted “charge” are shown in the left column of Fig. 3.13. As before the unphased

apz = 4 (2π/L) is useless, while the ~ζ2-phased equivalent returns a picture similar to the

unphased apz = 2π/L frame up to an overall concavity flip. Repeat calculations are needed

to assess the statistical stability of this behavior.

Results – Renormalized Axial Matrix Elements

The renormalized Rγ3γ5 (T, τ) and gu−dA3
isolated at rest are shown in Fig. 3.12(b).

Apart from T/a = 6, 8, broad consistency is observed in the renormalized ratios indicative

of minimal impact from the first-excited state matrix element at these times. Even though

the distillation/GEVP paradigm boasts control of excited-state effects, our value of gu−dA3
'

1.18(1) differs from experiment by nearly 7%. Expansion of the axial current matrix
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element into form factors

〈N |Aµ |N〉 = ūN (pf )

[
γµγ5G

u−d
A

(
q2
)
− i qµ

2MN

γ5G̃
u−d
P

(
q2
)]
uN (pi) (3.28)

confirms for ~q = ~0, the induced pseudoscalar form factor cannot explain this tension with

experiment. It has been shown that closely spaced excited states in the γ3γ5 channel at

rest, when incorrectly identified, can lead to effective excited states that violate the PCAC

relation and thus skew gu−dA3
[86]. Although the ensemble a094m278 is rather coarse and

has unphysically heavy dynamical light quarks, numerous calculations (see introduction

of e.g. [80]) exhibit weak dependence on the lattice spacing and pion mass. This alone

warrants a detailed follow-up study; not to obtain exact agreement with experiment, but to

elucidate what mechanism in the lattice regularization causes even distillation to experience

this discrepancy.

The Rγ3γ5 (T, τ) data for apz = 2π/L shown in the upper-left panel of Fig. 3.14 do

not exhibit consistent plateaux until T/a ' 12 (1.13 fm). Even then it is difficult to claim

a plateau has been reached, as the ratios appear to be rising at this level of statistics.

Together with the decrease of gu−dA3
in the apz = 2π/L frame relative to the rest case (see

Tab. 3.5) suggests excited-states are not under control.

In passing, we note the ~ζ2-phased determination of gu−dA3
in the lower-left of Fig. 3.14 is

inconsistent with the prior determinations, but agrees with experiment. The most logical

explanation is this determination is largely unconstrained, as Ru−d
γ3γ5

is well-determined

for only two source-sink separations. An alternative viewpoint is the nucleon is Lorentz

contracted at this momenta ∼ 1.65 GeV causing the lattice volume to appear larger. This

perspective is supported by some of the few lattice studies which have isolated gu−dA3
to

within ∼ 1% of experiment [71, 72] using lattices up to eight times the cubic volume as

a094m278.
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Discussion of the γ4γ5 channel is reserved for [85], as the Ru−d
γ4γ5

ratios in the apz =

2π/L frame are considerably less than their space-like counterparts. Since the induced

pseudoscalar form factor of the nucleon is known to be large for small virtualities, even mild

excited-to-ground transitions will skew 〈N |A4 |N〉 from 〈N |A3 |N〉 (see (3.28)). Hence a

reported gu−dA4
“charge” in this context is instead a detailed interplay between the Gu−d

A

and G̃u−d
P form factors.

Results – Renormalized Tensor Matrix Elements

The tensor current between nucleon states induces the following expansion in form

factors

〈N |Tµν |N〉 = ūN (pf )

[
iσµνA

u−d
10

(
q2
)

+
[γµ, qν ]

2MN

Bu−d
10

(
q2
)

+
[Pµ, qν ]

2M2
N

Ãu−d10

(
q2
)]
uN (pi) ,

(3.29)

where P = pf + pi and Tµν = iψ̄σµν
τ3

2
ψ. At the outset of this subsection it was noted

that the spectral representation of the ẑ-boosted and Γ3pt projected nucleon three-point

correlator is non-vanishing only for T12. The Lorentz decomposition (3.29) shows Au−d10 (q2)

is the only form factor that contributes in this channel, so long as ~q = ~0. As gu−dT12
≡

Au−d10 (0), the tensor matrix element is perhaps the litmus test for a consistent charge

determination with and without phasing.

It is indeed found in Fig. 3.15 that gu−dT12
is statistically consistent across the rest and

boosted frames we have considered. The sub-percent error of our determination in the

frames apz = {0, 1} × (2π/L) marks a considerable reduction relative to a recent high-

statistics estimate of gu−dT12
' 0.973(36) on the same ensemble [78]. Unlike the other Dirac

structures considered, even the unphased apz = 4 (2π/L) determination is consistent. This

is certainly attributable to the single relevant form factor Au−d10 (q2) for this channel. On the

question of whether the ~ζ2-phased effort was worth the computational cost, we highlight the
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use of phasing has led to a ∼ 12% reduction in uncertainty of gu−dT12
in the apz = 4 (2π/L)

frame. The excellent mutual agreement of these determinations is presented in Tab. 3.5.

3.2.4 Closing Remarks

In this chapter we have seen that distillation, especially when coupled with the varia-

tional method (GEVP), leads to better determined hadronic energies and matrix elements,

relative to conventional smearing kernels. Other than more faithfully representing the ra-

dial/orbital structures of a desired hadronic state, an extended basis of N operators enables

principal correlators λn (T, T0) (Eq. 2.75) to be isolated from a correlator signal with lead-

ing excited-state contamination of O
(
e−∆E′nT

)
, where ∆E ′n = EN+1 − En and EN+1 the

lowest energy not spanned by the operator basis [57].

gΓ apz = 0 apz = 2π/L apz = 8π/L apphase
z = 8π/L

gu−dS 0.953(22) 0.916(28) 0.57(44) 0.705(35)
χ2
r 0.920 1.010 12.482 2.037

gu−dV4
1.001(5) 1.003(4) 0.84(9) 0.982(18)

χ2
r 0.901 1.767 12.317 1.902

gu−dV3
– 0.915(15) 0.63(8) 0.995(23)

χ2
r – 1.216 12.544 2.150

gu−dA3
1.18(1) 1.145(9) 0.8(1) 1.275(29)

χ2
r 1.255 1.421 12.301 2.761

gu−dA4
– 0.970(14) 0.71(9) 1.302(24)

χ2
r – 1.148 12.353 1.990

gu−dT12
1.049(7) 1.048(8) 0.99(14) 1.06(3)

χ2
r 1.267 1.064 12.603 1.999

TABLE 3.5: Renormalized isovector charges determined at rest and in boosted frames. The
comparatively large correlated χ2/d.o.f for each gu−dΓ in the apz = 8π/L frame can be traced
to the large fluctuations of the corresponding two-point correlator (cf. Fig. 3.10), which suffers
from few measurements to constrain the needed energies and overlaps.
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The benefits of distillation and the GEVP deteriorate as the hadron momentum is

increased. We proposed and demonstrated the efficacy of a momentum-smeared version

of distillation. With this approach coined phased distillation, the nucleon’s dispersion

relation was correctly mapped in excess of 3 GeV and with high precision. A scan across

nucleon boosts and repeat charge calculations in each was taken as the final proof-of-

principle study of phased distillation. Emphasis was placed on charges being consistently

determined across the considered boosts. For certain channels, namely γ4 and γ1γ2, this

was realized beautifully even in a highly-boosted frame, so long as phased eigenvectors

were utilized. The scalar and axial channels indeed quell any notion of a “free lunch” with

distillation.

The phased distillation proof of principle study, and to a lesser extent the comparison

of standard distillation with Jacobi smearing in Sec. 3.1, relied on a variational analysis

of a matrix of two-point correlators. The same suppression of excited-states in two-point

functions via a GEVP likewise applies to three-point functions. The charges computed

within this chapter, however, were computed using the projected operator associated with

each principal correlator determined from the relevant two-point function. This decision

was based on reducing the overall cost of the three-point functions herein; were a GEVP

applied, the Wick contraction costs would expand by a factor of N2. It is important to note

that our use of projected operators in the three-point functions is not incorrect, but rather

suboptimal perhaps, as excited-states altered by the external current may be missed.

A useful follow-up study to consider would be to apply the GEVP to a matrix of

three-point functions constructed from operators in a small basis and compare the matrix

element extractions with those using the corresponding two-point projected operator -

for instance, the B[3]

~p=~0
basis and P̂3 projected operator. Such a future work would open

the possibility to further explore the impact of excited-states by exploiting the so-called

summed GEVP [87] method for matrix element extractions. In this case, a matrix of
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three-point functions is again computed, but the insertion time slice is summed over. This

leads to an even greater suppression of excited-states that scales as O
(
Te−∆E′nT

)
. Such

sophisticated strategies, although not explored in this body of work, remain essential tools

to quantify and fit away stubborn excited states. Nevertheless these studies epitomize

the potential benefits phased distillation can provide in high-impact calculations of the

nucleon’s collinear structures given in Chapters 4 and 6.
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FIG. 3.13: Renormalized RVµ (T, τ) and gu−dVµ
determined from γ3 (left panel) and γ4 (right

panel) insertions. External nucleon momentum according to apz = (2π/L) (upper), apz =

4 (2π/L) without phasing (middle), apz = 4 (2π/L) with ~ζ2-phasing (lower). Variationally
improved operators were used within each momentum channel.
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FIG. 3.14: Renormalized RAµ (T, τ) and gu−dAµ
determined from γ3γ5 (left panel) and γ4γ5 (right

panel) insertions. External nucleon momentum according to apz = (2π/L) (upper), apz =

4 (2π/L) without phasing (middle), apz = 4 (2π/L) with ~ζ2-phasing (lower). Variationally
improved operators were used within each momentum channel.
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FIG. 3.15: Renormalized RT12 (T, τ) and gu−dT12
for momenta apz = 0 (upper-left), apz = (2π/L)

(upper-right), apz = 4 (2π/L) without phasing (lower-left), and apz = 4 (2π/L) with ~ζ2-phasing
(lower-right). Variationally improved operators were used within each momentum channel.



CHAPTER 4

Coordinate-Space Factorizable

Matrix Elements

Parton Distribution Functions (PDFs), introduced in Sec. 2.1, are indispensable ob-

jects to describe the non-perturbative dynamics of hadrons. Recall that the operator

definition of a flavor-a PDF in some hadron h is given by the Fourier transform of a

hadronic matrix element of a non-local parton bilinear along the z− light-like direction

f
[Γ]
a/h

(
x, µ2

)
=

∫
dz−

4π
e−ixp

+z− 〈h (p)|ψa
(
z−
)

Γ+Φ
(f)

ẑ−

(
{z−, 0}

)
ψa (0) |h (p)〉MS , (4.1)

where the polarization dependence has been omitted and the PDF is assumed to be renor-

malized at a scale µ2 in MS. The use of a Euclidean spacetime provides for the numerical

solution to a number of key quantities in QCD. However this metric signature precludes

a direct calculation of PDFs, and indeed of any operator constructed on the light-cone.

There is no point in a Euclidean spacetime that is displaced from the origin and has a

null invariant interval z2 = 0. In effect, the natural arena in which to describe much of a

hadron’s structure collapses onto the proverbial “light-point”.

101
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Any lattice effort to access PDFs would appear fruitless. Consider nonetheless the

following x-moments, or Mellin moments, of the PDFs

m(j)
a

(
µ2
)

=
1

sa

∫ 1

−1

dx

x
xjf

[Γ]
a/h

(
x, µ2

)
=

∫ 1

0

dx

x
xj
[
f

[Γ]
a/h

(
x, µ2

)
+ (−1)j f

[Γ]
ā/h

(
x, µ2

)]

=
1

sa

∫ ∞

−∞
dx xj−1f

[Γ]
a/h

(
x, µ2

)
, (4.2)

with a symmetry factor sa = 1, 2 for a = q, g. We note the symmetry factor sg = 2

corresponds to the identification of the anti-gluon with the gluon. The last line follows

from PDFs being non-vanishing on the interval x ∈ [−1, 1], and by CP-symmetry which

relates parton/anti-parton PDFs according to fa/h (−x) = −fā/h (x). As the parton struck

in an inclusive process is ejected along the z−-direction, we have x = k+

p+
= −i∂+

p+
= −i

p+
∂
∂z−

.

Substituting (4.1) into (4.2), we have

m(j)
a

(
µ2
)

= s−1
a

∫
dz−

4π

∫ ∞

−∞
dx xj−1e−ixp

+z− 〈h (p)|ψa
(
z−
)

Γ+Φ
(f)

ẑ−

(
{z−, 0}

)
ψa (0) |h (p)〉

= s−1
a

∫
dz−

4π

∫ ∞

−∞
dx

(−i
p+

∂

∂z−

)j−1

e−ixp
+z− 〈h (p)|ψa

(
z−
)

Γ+Φ
(f)

ẑ−

(
{z−, 0}

)
ψa (0) |h (p)〉

= s−1
a

(−i)j−1

2 (p+)j

∫
dz−δ

(
z−
)( ∂

∂z−

)j−1

〈h (p)|ψa
(
z−
)

Γ+Φ
(f)

ẑ−

(
{z−, 0}

)
ψa (0) |h (p)〉 .

The z− differential applies to the quark fields and the Wilson line, where the latter will

bring down factors of igA+
c tc:

m(j)
a

(
µ2
)

=
s−1
a (−i)j−1

2 (p+)j
〈h (p)|ψa (0) Γ+

[
−∂− + igA+

c tc
]j−1

ψa (0) |h (p)〉

=
s−1
a

2 (p+)j
〈h (p)|ψa (0) Γ+

(
iD+

)j−1
ψa (0) |h (p)〉 (4.3)

2
(
p+
)j
m(j)
a

(
µ2
)

= s−1
a 〈h (p)|ψaΓ+iD+ · · · iD+ψa |h (p)〉 . (4.4)
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This result shows that the Mellin moments of the PDFs are proportional to matrix elements

of local operators. More generally, the local operators Oµ1···µja = ψaΓ
µ1iDµ2 · · · iDµjψa

with j Lorentz indices is reducible under the Lorentz group, and hence can be expressed

as a sum of objects that transform irreducibly. As we will now find, each irreducible

component is associated with a distinct energy dependence and hence rescaling law under

renormalization.

Let us digress for a moment and consider application of the Operator Product Ex-

pansion (OPE) [88] to the two-current matrix element (2.25) defining the DIS hadronic

tensor in Sec. 2.1:

J µ (z)J ν (0) =
∑

a

∑

j

Ca
(
z2, µ2

)
zµ1 · · · zµjOµνµ1···µja

(
µ2
)
. (4.5)

The OPE expresses this non-local operator product at a renormalization scale µ2 as an

infinite sum of local operators Oµνµ1···µja (µ2) and perturbatively calculable Wilson coeffi-

cients Ca (z2, µ2). For large virtualities of the incoming virtual gauge boson, the relative

contribution of each operator Oµνµ1···µja (µ2) to the DIS amplitude scales as (Q−2)
d−s

, where

d and s are respectively the energy dimension and spin of the operator; this defines (ge-

ometric) twist t ≡ d − s, and the different irreps of the Lorentz group are labeled by the

operator spin. The leading contributions are then given by generic twist-2 operators of

the form

Oµ1···µja = ψaΓ
{µ1iDµ2 · · · iDµj}ψa − traces, (4.6)

where braces denote index symmetrization and pairwise traces are removed; the trace

terms involve factors of the metric tensor gµiµj and higher dimension operators with fewer

Dirac indices (i.e. higher-twist). Note, when substituted into (4.5) the higher-twist terms

are proportional to z2 and vanish for the light-like separations defining the PDF.
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The OPE establishes that PDFs can be alternatively defined as distributions whose

Mellin moments are matrix elements of the local twist-2 operators (4.6). This connection is

ideally suited for calculation in lattice QCD, and indeed has historically been the method

PDFs and even GPDs have been studied from lattice QCD. The breaking of the continuum

Euclidean space-time O (4) to the discrete hypercubic group H (4) ≤ O (4) induces mixing

between twist-2 and higher-twist operators. This mixing diverges with the lattice spacing -

consequently the continuum limit is not well-defined. Furthermore, operators of increasing

twist are sensitive to increased gauge noise. The net effect is an insufficient number of

local operators (Mellin moments) to reliably reconstruct a PDF [89].

4.1 Quasi-Distributions

Attempts to circumvent the preclusion of light-like quantities by the Euclidean space-

time of lattice QCD date to early efforts to compute the hadronic tensor [90, 91], forward

Compton amplitude [89], and distribution amplitudes (e.g. [92]) from suitably constructed

Euclidean correlation functions. Although the parton model can readily interpret the

hadronic tensor and forward Compton amplitude in terms of PDFs, the ability to re-

solve PDFs from lattice QCD was revolutionized with Xiangdong Ji’s introduction of the

quasi-PDF [93].

Supposing a hadron is moving with momentum pµ = (p0,0⊥, p
3), Ji’s reasoning begins

with the realization that (4.1) is boost invariant along the ẑ-direction. Furthermore, from

Eq. 4.4 it follows that hadronic matrix elements of a generic local twist-2 operator (4.6)

are given by

〈h (p)| Oµ1···µja

(
µ2
)
|h (p)〉 = 2m(j)

a

(
µ2
)

(pµ1 · · · pµj − traces) , (4.7)
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with m
(j)
a (µ2) the scale-dependent reduced matrix elements. Selecting the components

O+···+
a , which corresponds to the z− separated parton fields, the traces vanish due to

their nominal proportionality to g++, recovering the time-dependent correlation defining

the PDF (4.4). Removing the time-dependence from (4.7), and thus creating a setup

amenable to lattice QCD, Ji considers different components of the local twist-2 operator:

Oµ13···3
a = ψaΓ

{µ1iD3 · · · iD3}ψa − traces. (4.8)

Hadronic matrix elements of Oµ13···3
a are

〈h (p)| Oµ13···3
a

(
µ2
)
|h (p)〉 = 2m(j)

a

(
µ2
)
pµ1
(
p3
)j−1 − 〈h (p)| traces |h (p)〉

= 2m(j)
a

(
µ2
)
pµ1
(
p3
)j−1

+ gµ13O
([
p3
]j−2

)
+ g33O

([
p3
]j−2

)

= 2m(j)
a

(
µ2
)
pµ1
(
p3
)j−1

+O
(

Λ2
QCD

p2
3

,
M2

h

p2
3

)
,

where Lorentz invariance demands the matrix elements of the trace terms appearing in

Oµ13···3
a scale at most as (p3)

j−2
with metric tensor components {gµ13, g33}. This result im-

plies a finite-momentum hadronic matrix element of a space-like separated parton bilinear

〈h
(
p3
)
|ψa (z3) γ3Φ

(f)
ẑ3

({z3, 0})ψa (0)
︸ ︷︷ ︸

O̊[γ3]
WL (z3)

|h
(
p3
)
〉 , (4.9)

yields the light-cone PDF up to power-suppressed corrections in the inverse square of the

hadron momentum. The corrections O
(
Λ2

QCD/p
2
3

)
are genuine higher-twist corrections,

while the O (M2
h/p

2
3) corrections are so-called target mass effects.

The Fourier transform of the finite-boosted space-like matrix element (4.9), now cast
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in Euclidean space, defines the unpolarized quasi-PDF1

f̃a/h
(
x̃, p3, µ̃

2
)

=

∫
dz3

4π
e−ix̃p3z3 〈h (p3)|ψa (z3) γ3Φ

(f)
ẑ3

({z3, 0})ψa (0) |h (p3)〉 . (4.10)

Ji notes in Ref. [95] that the differences between the light-cone PDF and the quasi-PDF

vanish for infinite boost, namely p3 → ∞. Furthermore, the approach to large-p3 only

modifies the UV structure of the quasi-PDF, and its IR structure is the same as the PDF.

The Large Momentum Effective Theory (LaMET) [95] formalizes these observations by

computing and subsequently removing these differences in perturbation theory:2

f̃a/h
(
x̃, p3, µ̃

2
)

=

∫ 1

−1

dx

|x|Z
(
x̃

x
,
µ

p3

,
Λ

p3

)
fa/h

(
x, µ2

)
+O

(
Λ2

QCD

p2
3

,
M2

h

p2
3

)
, (4.11)

where Z
(
x̃
x
, µ
p3
, Λ
p3

)
is a perturbative coefficient function that matches the renormalized

quasi-PDF to the light-cone PDF, and Λ is an ultraviolet cutoff such as the inverse lattice

spacing a−1. The matrix element (4.9) is gauge invariant and space-like, both of which

are amenable to lattice QCD and guarantee the same result when computed in Euclidean

and Minkowski spacetimes [96]. A complicating factor is the integration over the length of

the Wilson line; this leaves the Fourier conjugate x̃pz as the hard scale of the quasi-PDF.

Quasi-PDFs in this sense describe the distribution of a parton’s z3-component of the parent

hadron’s longitudinal momentum pz: x̃ = k3/p3, contrary to the familiar light-cone PDFs.

It is clear quasi-PDFs are not boost-invariant, freeing the “quasi momentum fraction” to

assume any value x̃ = k3/p3 ∈ (−∞,∞) and hence violate the conservation of total parton

momentum. A series of recent quasi-PDF results are shown in Fig. 4.1 which illustrate the

1Contemporary quasi-distribution calculations now make use of the temporal vector current γ4. It has
been shown in lattice perturbation theory that the vector current with index collinear with the Wilson
line will mix with the scalar current, a twist-3 operator, under renormalization [94].

2LaMET is actually not an effective field theory in the strictest sense, as sub-leading powers of the
hadron momentum are neglected in the large momentum expansion.
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FIG. 4.1: Recent isovector unpolarized (left), helicity (center), and transversity (right) PDFs
obtained by the ETM collaboration using the quasi-distribution formalism [97]. The momentum
fraction x-dependence is obtained from the LaMET procedure. A strong dependence on the
hadron’s momentum is evident.

strong momentum dependence of quasi-PDFs.

A considerable challenge of using the Wilson line operator O̊[γµ]
WL (z3) is the appearance

of additional ultraviolet (UV) divergences for space-like separations [98]. These divergences

manifest as power divergences in perturbation theory, and renormalize to all orders with

the factor Zlink (z3, a) ' e−A|z3|/a, with a a UV regulator. These unwanted UV divergences

are also known to be independent of the invariant p · z = pzz3 [99]. Prior to taking the

continuum limit of O̊[γµ]
WL (z3), these divergences must be regularized and removed. Recently,

and to great benefit in Sec. 4.2.2, O[γµ]
WL (z3) was shown to renormalize multiplicatively [100,

101, 102].

4.2 Lattice Cross Sections

A comprehensive and generic framework for the extraction of PDFs from Lattice QCD

involves the construction of hadronic matrix elements of time-local and space-like separated

operators. These matrix elements are generically written as the time-ordered product of

a collection of partonic field operators featuring a purely space-like extent within some

hadronic state:

Mn

(
p · z, z2

)
= 〈h (p)| T̂ {On (z)} |h (p)〉 , (4.12)



108

where n classifies distinct operator constructions, T̂ a time-ordered product, and the renor-

malization scale µ2 has been suppressed. A broad class of operators fall into this frame-

work, and under certain situations factorize into the convolution of perturbative coefficient

functions and PDFs up to power-suppressed corrections. This paradigm is inspired by the

QCD factorization of (semi-)inclusive cross sections to extract PDFs and other distribu-

tions. These matrix elements have hence been deemed Lattice Cross Sections [103, 104]

(LCSs), as they too may be analyzed in a global framework to provide a best estimate of

the universal PDFs from lattice QCD.

The astute reader will note (4.12) was precluded by demanding time-locality. The

time-ordering operator in (4.12) is included to ensure all relevant field orderings are con-

sidered for the composite operator On, after which the temporal separation is taken to

zero. Time-locality is an essential ingredient of any good LCS, as a matrix element com-

puted in Euclidean space will then equal its Minkowski counterpart [96]. To have any

physical relevance, any good LCS must also possess a well-defined continuum limit and

share the same factorizable logarithmic collinear divergences as PDFs.

One choice for the non-local operator On (z) is the Wilson line operator O̊[γµ]
WL (z3) used

to define the quasi-PDF. Its utility as an operator sensitive to the light-cone structure of

hadrons in a manner distinct from quasi-distributions will be further developed in the

context of pseudo-distributions in Sec. 4.2.2.

4.2.1 Two-Current Correlations

A broader class of operators with factorizable matrix elements (4.12) are pairs of local

gauge-invariant currents {J1,J2} with a space-like separation z:

O{µν}J1,J2 (z) = zdJ1+dJ2−2ZJ1ZJ2 J1 (z)J2 (0) , (4.13)
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with ZJk and dJk respectively the renormalization constant and energy dimension associ-

ated with the currents Jk. The simplest choice of operators are those with no Dirac indices

or that are fully contracted, including

OS (z) = z4Z2
S

{
ψ̄ψ
}

(z)
{
ψ̄ψ
}

(0) (4.14)

OV (z) = z2Z2
V

{
ψ̄/zψ

}
(z)
{
ψ̄/zψ

}
(0) , OV ′ (z) = z2Z2

V ′

{
ψ̄/zΨ

}
(z)
{

Ψ̄/zψ
}

(0) (4.15)

OṼ (z) = −z
4

2
Z2
V {ψ̄γµψ} (z) {ψ̄γµψ} (0) (4.16)

OṼ Ã (z) = −z
4

2
ZVZA

{
ψ̄γµψ

}
(z)
{
ψ̄γµγ5ψ

}
(0) (4.17)

OV A (z) = z4ZVZA{ψ̄γµψ} (z) {ψ̄γνγ5ψ} (0) . (4.18)

The choice of currents is quite general, even allowing for flavor-changing currents such

as OV ′ (z) above. More generic operators featuring one or several open Dirac indices

are also possible. For such Lorentz covariant operators, it is the invariant amplitudes, or

pseudo-structure functions, Ti (ν, z
2) dependent on the space-like interval z2 and Ioffe-time

ν = p ·z [105, 106]3 that factorize into the PDFs. The proof of this factorization is essential

for a large remainder of this body of work. The logical steps of the proof [103, 104] are

closely followed here.

Consider the matrix element of a non-local scalar operator (4.12). Analogous to the

factorization of an inclusive DIS cross section, take the current separation z to define the

hard scale and suppose z2 is small but non-vanishing. In this short-distance regime, apply

the operator product expansion (OPE) to On (z):

Mn

(
ν, z2

)
=
∑

j=0

∑

a

C(j,a)
n

(
z2µ2, αs

)
zµ1 · · · zµj 〈p| O(j,a)

µ1···µj

(
µ2
)
|p〉 (4.19)

3The Ioffe-time may be thought of as the amount of time, in units of the inverse hadron mass, a DIS
probe interacts with a target hadron.
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where C
(j,a)
n (z2µ2, αs) are Wilson coefficients dependent on the renormalization scale and

invariant interval between the currents. The operators O(j,a)
µ1···µj (µ2) are traceless, local,

and symmetric operators of spin-j, with a delineating operators of the same j value. The

matrix element of O(j,a)
µ1···µj (µ2) has the Lorentz decomposition

〈p| O(j,a)
µ1···µj

(
µ2
)
|p〉 = 2m̃(j)

a

(
µ2
) (
pµ1 · · · pµj − traces

)
≡ 2m̃(j)

a

(
µ2
)

Πµ1···µj , (4.20)

where the reduced matrix element m̃
(j)
a (µ2) absorbs the scale dependence and ∀j is oth-

erwise a Lorentz scalar with a j-dependent mass dimension. The traces denote terms

proportional to at least one factor of the metric tensor gµiµj . Note Πµ1···µj is the unique

traceless and symmetric rank-j tensor that can be constructed from the hadron four-

momentum [107]. Substituting (4.20) into (4.19)

Mn

(
ν, z2

)
= 2

∑

j=0

∑

a

C(j,a)
n

(
z2µ2, αs

)
zµ1 · · · zµjm̃(j)

a

(
µ2
) (
pµ1 · · · pµj − traces

)

= 2
∑

j=0

∑

a

C(j,a)
n

(
z2µ2, αs

)
m̃(j)
a

(
µ2
) bj/2c∑

k=0

(
j − k
j

)(
−z

2p2

4

)k
νj−2k, (4.21)

where the O (z2p2) terms are induced by contractions of the four-vectors zµk with the trace

terms. The leading contribution to Mn (ν, z2) comes from the reduced matrix element

m̃
(j)
a (µ2) with the smallest mass dimension. These are precisely the local twist-2 operators

which we found in Eq. 4.4 are given in terms of the Mellin moments of the PDF. The

higher-dimensional contributions then scale as O
(
z2Λ2

QCD

)
. With our prescription of small

z2 these higher-dimensional terms are power-suppressed and can be neglected to leading
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approximation. We are then left with

Mn

(
ν, z2

)
=
∑

a

∫ 1

−1

dx

x
fa/h

(
x, µ2

) ∑

j=1

2

sa
C(j,a)
a

(
z2µ2, αs

)
xj
bj/2c∑

k=0

(
j − k
j

)(
−z

2p2

4

)k
νj−2k.

(4.22)

Note the spin sum has shifted to start at j = 1, as no twist-2 scalar operator can be

constructed with QCD fields - the scalar operator in QCD is of twist-3, and is thus a

sub-leading effect to the twist-2 component. This factorization establishes a connection

between the Ioffe-time dependence of a lattice cross section and the Mellin moments of

the PDF via the matching kernel

Ka
n =

∑

j=1

2

sa
C(j,a)
n

(
z2µ2, αs

)
(xν)j . (4.23)

As the OPE is valid only in the regime wherein all components of zµk uniformly go to zero

but with all other variables fixed, the Taylor series in (4.22) then implies this factorization

is valid only for |z2p2| � 1 and |ν| � 1.

The factorization (4.22) shows that the LCS Ioffe-time behavior is inextricably linked

with the parton momentum fraction. To be of any practical use, the validity of this

factorization must exist for finite ν as well. The OPE ensures Mn (ν, z2) is analytic in a

small neighborhood about ν = 0, represented by the Taylor expansion (4.22). This same

expansion shows analyticity in z2p2. By fixing the operator separation z to be small, the

Ioffe-time is increased by boosting the hadronic state to higher momenta p. No additional

perturbative divergences, except for the point at infinity, can be produced, establishing

the factorization defined in (4.22) remains valid ∀{ν, z2p2} that are finite. The final LCS

factorization relationship is then

Mn

(
ν, z2

)
=
∑

a

∫ 1

−1

dx

x
fa/h

(
x, µ2

)
Ka
n

(
xν, z2µ2, x2p2

)
+O

(
z2Λ2

QCD, z
2p2
)
, (4.24)
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where a runs over all parton flavors.

Unlike the hard momentum scale that enables factorization of an inclusive cross sec-

tion, a large hadron momentum in an LCS calculation does not guarantee the validity of

the OPE of Eq. 4.12. Any contributions from large separations z will invalidate the fac-

torized relationship regardless of whether two currents or the quasi-/pseudo-distribution

operator O[γµ]
WL (z3) are used. The hard scale analog in an LCS calculation is the invariant

interval z2, which is a valid parameter to expand in perturbatively so long as the separation

is much smaller than the inverse square of the typical hadronic scale, namely z2Λ2
QCD � 1.

Theoretically the coordinate space factorization has several advantages over similar

matching schemes formulated in momentum space. To understand these advantages, con-

sider the momentum space representation of Mn (ν, z2)

M̃n

(
ν̃, q2

)
=

∫
d4z z−4eiq·zMn

(
ν, z2

)
, (4.25)

with ν̃ ≡ 2p·q
−q2 = 1/xB and xB the Bjorken variable from DIS (Eq. 2.21). The first,

and perhaps most obvious, realization is that although q is related to z via the Fourier

transform, it is not a one-to-one mapping. Regions of M̃n (ν̃, q2) with small and large values

of q receive contributions from its Fourier conjugate z both when it is large and small. It

is these contributions from large separations that spoils the coordinate space factorization

we have demonstrated. The analytic behavior of Mn (ν, z2) is likewise altered, and in a

highly non-trivial manner, by the Fourier transform. This is seen by recognizing M̃n (ν̃, q2)

is much the same as the Compton amplitude, which through the optical theorem is related

to the hadronic tensor. For sufficiently deep inelastic scattering, real propagating final

state particles of arbitrary momentum are created. This in turn leads to a non-analytic

cut in the M̃n (ν̃, q2) amplitude. The origin of this cut was explored in Ref. [104] and found

to be produced by the large-z integration regime of (4.25). In other words, the kinematic
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P P

k = xP k = xP

l

[ν] [µ]

−z/2 z/2

P P

k = xP k = xP

l

[ν] [µ]

−z/2 z/2

FIG. 4.2: Lowest order Feynman diagrams contributing to the quark partonic matching coef-
ficient. Each current is spatially separated by z. The current insertions are denoted as red
dashed lines with a potential open Dirac index indicated.

demand |q2| � Λ2
QCD employed in the factorization of experimental inclusive cross sections

is insufficient to exclude large-z contributions to M̃n (ν̃, q2) for ν̃2 > 1. This separation of

z2 scales should be compared with the quasi-distribution formalism, which mixes different

invariant scales.

Tree-Level Perturbative Matching Kernel

The perturbative coefficient functionsKa
n (xν, z2µ2, x2p2) are determined by projecting

the factorized relationship (4.24) onto an asymptotic parton with momentum k and on-shell

condition k2 = 0. This strategy clarifies the matching coefficients are process-dependent,

but are independent of the hadronic state. Each side is then expanded as a power series

in the strong coupling αs. At tree-level O (α0
s) we have two diagrams shown in Fig. 4.2

to consider. Supposing one is interested in measuring a quark PDF, the factorization

relationship projected onto an asymptotic quark reads

M q(0)
n

(
ν, z2

)
=
∑

a=q,q̄,g

∫ 1

0

dx

x
f
q(0)
a/h

(
x, µ2

)
Ka
n

(
xν, z2µ2, x2p2

)
+O

(
z2Λ2

QCD, z
2p2
)
. (4.26)
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As the quark distribution of an on-shell quark at tree-level is simply a delta function with

no scale dependence f
q(0)
a/h (x, µ2) = δ (1− x) δqa, it trivially follows

M q(0)
n

(
ν, z2

)
= Kq(0)

n

(
ν, z2

)
. (4.27)

The leading order matching coefficient therefore follows from M
q(0)
n , namely the Feynman

diagrams of Fig. 4.2, expressed in coordinate space.

Consider the generic tensor operator embedded between an arbitrary hadronic state

Mµν
ij (p, z) = 〈h (p)| J µ

i (z/2)J ν
j (−z/2) |h (p)〉 . (4.28)

For generality this matrix element is given with two open Dirac indices, but the precise

character of the currents will be left unspecified allowing for a generic leading-order result.

Projecting (4.28) onto an asymptotic quark and averaging over the quark spin, the left

diagram gives

M
(a)
ij =

1

2

∑

s

〈0| ūs (k) eik·z/2Γµi ψ (z/2) ψ̄ (−z/2) Γνj e
ik·z/2us (k) |0〉

=
1

2

∑

s

eik·zūs (k) Γµi 〈0|ψ (z/2) ψ̄ (−z/2) |0〉Γνjus (k)

=
1

2
eik·zTr

[
/kΓµi

∫
d4l

(2π)4

i/l

l2 + iε
e−il·zΓνj

]
,

=
1

2
eik·zkαTr

[
γαΓµi γ

βΓνj
] ∫ d4l

(2π)4

ilβ
l2 + iε

e−il·z

=
1

2
eik·zkαTr

[
γαΓµi γ

βΓνj
]
i
∂

∂zβ

(
i

4π2

1

z2 − iε

)

=
i

4π2

kαzβ
z4

eik·zTr
[
γαΓµi γ

βΓνj
]
, (4.29)

where the massless momentum-space quark propagator has been cast in coordinate space
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via a Fourier transform. The second tree-level Wick contraction yields

M
(b)
ji =

1

2

∑

s

〈0| ūs (k) e−ik·z/2Γνjψ (−z/2) ψ̄ (z/2) Γµi e
−ik·z/2us (k) |0〉

=
1

2
e−ik·zkαTr

[
γαΓνjγ

βΓµi
] ∫ d4l

(2π)4

−ilβ
l2 + iε

e−il·z

= − i

4π2

kαzβ
z4

e−ik·zTr
[
γαΓνjγ

βΓµi
]
. (4.30)

Combining (4.29) and (4.30) and noting the struck parton momentum kµ = xpµ, the

general leading-order quark matrix element in coordinate space is

M
µν(0)
ij (p, z; ν) =

i

4π2

xpαzβ
z4

[
eixp·zTr

(
γαΓµi γ

βΓνj
)
− e−ixp·zTr

(
γαΓνjγ

βΓµi
)]
. (4.31)

Since the trace of an odd number of Dirac matrices vanishes, it follows that the leading-

order matching kernel for a scalar (S) current paired with either a pseudoscalar (P), vector

(V), or axial-vector (A) current vanishes: MSP (p, z) = Mµ
SV (p, z) = Mµ

SA (p, z) = 0. It

is also easily shown that OṼ Ã (z) (Eq. 4.17) is in fact vanishing at leading-order. The

leading-order perturbative kernels for the representative scalar current combinations in

Eq. 4.14 - 4.18 are presented in Tab. 4.1.

The flavor structure of the probing currents naturally probes the same flavor PDF

of the target hadron. Since the factorization connecting an LCS to a PDF involves par-

ton momentum fractions in the interval x ∈ [−1, 1], it is worth considering at leading

order what CP-even/-odd PDF combinations each matching kernel accesses. Consider the

leading-order matching kernel for the operator OS (z):

∫ 1

−1

dx

x
fq/h (x)K

q(0)
S (xν) = −2ν

π2

{∫ 1

0

dx fq/h (x) sin (xν) +

∫ 0

−1

dx fq/h (x) sin (xν)

}

= −2ν

π2

{∫ 1

0

dx fq/h (x) sin (xν) +

∫ 1

0

dx fq/h (−x) sin (−xν)

}
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On Prefactor Γi Γj Mµν
ij (p, z; ν)

OS (z) z4 1 1 i
π2xν (eixν − e−ixν)

OV (z) z2 zµγ
µ zνγ

ν i
π2xν (eixν − e−ixν)

OṼ (z) −z4/2 gνµγ
µ γν i

π2xν (eixν − e−ixν)
OV ′ (z) z2 zµγ

µ zνγ
ν i

π2xνe
ixν

OṼ Ã (z) −z4/2 gνµγ
µ γνγ5 0

OV A (z) z4 γµ γνγ5 1
π2 ε

µναβxpαzβ (eixν + e−ixν)

TABLE 4.1: Leading-order coordinate space matrix elements resulting from the scalar operators
presented in Eq. 4.14 - 4.18. The Dirac structure of each current, and the prefactor of each
current-current pair are indicated. Powers of the invariant interval z2 are included to ensure
each leading-order kernel has the same Ioffe-time dependence where possible.

= −2ν

π2

{∫ 1

0

dx fq/h (x) sin (xν) +

∫ 1

0

dx fq̄/h (x) sin (xν)

}

= −2ν

π2

∫ 1

0

dx {fqv/h (x) + 2fq̄/h (x)} sin (xν) ,

where CP-symmetry relates the quark and anti-quark PDFs according to fq/h (x, µ2) =

−fq̄/h (−x, µ2), and fqv/h (x) is the valence PDF defined as fqv/h (x) ≡ fq/h (x) − fq̄/h (x).

Thus at leading-order the current-current operators {OS (z) ,OV (z) ,OṼ (z)} all access the

CP-odd combination fqv/h (x) + 2fq̄/h (x) ≡ fq+/h (x), deemed the plus quark PDF. The

leading-order Wick contractions (Fig. 4.2) imply generally that any symmetric current

combination will only probe the CP-odd PDF combination fq+/h (x). The same exercise

performed for the remaining operators listed in Tab. 4.1 demonstrates that OV A (z) probes

the CP-even PDF combination, while the flavor changing operator OV ′ (z) simultaneously

accesses the valence and plus quark content. Evidently more intricate operator construc-

tions are required to exclusively sample the valence content of a hadron.

Theoretically the valence PDFs of a hadron are important, due to quark number
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conservation in QCD. As a result

∫ 1

0

dx
[
fq/h (x)− fq̄/h (x)

]
=

∫ 1

0

dx fqv/h (x) = Nq/h, (4.32)

where Nq/h ∈ N is the number of flavor-q quarks in a hadron. In the moderate to large-x

region, the valence quark PDFs are then the dominant collinear momentum distributions of

a hadron. The sea and gluonic distributions, in say the nucleon, are then highly suppressed

for these same momentum fractions. From a practical standpoint, the flavor isovector

currents we utilize in Sec. 4.3 lead to cancellation of any disconnected quark lines. In this

sense, extraction of fq+/h (x) provides only a partial snapshot of the the sea quark PDFs.

The rather limited current-current Lorentz structures considered above will be expanded

in Sec. 4.3 to allow unambiguous access of the valence quark PDF of the pion.

Next-to-Leading Order (NLO) Perturbative Matching Kernel

To perturbatively calculate the matching coefficient Kn (xν, z2µ2) valid to NLO of

an on-shell struck parton satisfying k2 = x2p2 = 0, the coordinate space calculations

become challenging analytically and often result in complicated admixtures of modified

Bessel functions (e.g. Appendix of [108]). An alternate strategy is to Fourier transform

the coordinate space factorization into a momentum space representation in D = 4 − 2ε

dimensions

M̃n

(
ν̃, q2

)
=

∫
dDz

z4
eiq·zMn

(
ν, z2

)
=

∫ 1

−1

dx

x
K̃
(
xν̃, q2µ2

)
fq/h

(
x, µ2

)
+O

(
Λ2

QCD/q
2
)
,

(4.33)

with ν̃ = 1
xB+i0+

= 2p·q
−q2−i0+ . As in the tree-level case, to calculate K̃ (xν̃, q2µ2) for, say

the valence quark PDF, Eq. 4.33 is projected onto an asymptotic quark and each side is
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expanded in powers of αs. The tree-level and NLO expansions are given by

M̃ q(0)
n

(
ν̃, q2

)
=

∫ 1

0

dxK̃(0)
(
xν̃, q2µ2

)
f

(0)
qv/q

(
x, µ2

)
(4.34)

M̃ q(1)
n

(
ν̃, q2

)
=

∫ 1

0

dx K̃(1)
(
xν̃, q2µ2

)
f

(0)
qv/q

(
x, µ2

)
+

∫ 1

0

dx K̃(0)
(
xν̃, q2µ2

)
f

(1)
qv/q

(
x, µ2

)
.

(4.35)

The choice of renormalization scheme for the above “quark-in-quark” PDFs means the

matching prescription will be scheme dependent. A standard choice are the perturbative

MS PDFs

f
(0)
qv/q

(
x, µ2

)
= δ (1− x) (4.36)

f
(1)
qv/q

(
x, µ2

)
= −1

ε

(4π)ε

Γ (1− ε)
αsCF

2π

(
1 + x2

1− x

)

+

, (4.37)

with the plus-prescription denoted
∫ 1

0
dα G (α)+ h (αx) =

∫ 1

0
dα G (α) [h (αx)− h (x)].

The coordinate space matching kernel valid up to NLO is then obtained by applying an

inverse Fourier transform to the momentum space kernel obtained from (4.34) and (4.35)

K
(
xν, z2µ2

)
= z4

∫
dDq

(2π)D
e−iq·zK̃

(
xν̃, q2µ2

)
. (4.38)

A specific matching relationship valid to NLO will be given in Sec. 4.3 wherein numerical

implementation and the first results using the two-current LCS formalism are reported by

the HadStruc Collaboration.

4.2.2 Wilson Line Operator

Consider the non-local quark bilinear ψ (z) γαΦ
(f)
ẑ ({z, 0})ψ (0) connected with a straight

z-separated Wilson line Φ
(f)
ẑ ({z, 0}) in the fundamental representation of SU(3). Lorentz
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invariance dictates that the forward helicity-averaged matrix element of this operator de-

compose according to

Mα (p, z) = 〈h (p)|ψ (z) γαΦ
(f)
ẑ ({z, 0})ψ (0) |h (p)〉 = 2pαM

(
ν, z2

)
+ 2zαN

(
ν, z2

)
.

(4.39)

For a fast-moving hadron, the usual unpolarized PDFs are defined with light-cone coor-

dinates where α = +, pα =
(
p+,

m2
h

2p+
,0⊥

)
and zα = (0, z−,0⊥). In this scenario M+ (p, z)

only receives contributions from M (p+z−, 0). Provided the logarithmic singularity that

arises for z2 = 0 (generated by the DGLAP evolution of the PDF) is regularized (typically

in MS), M (p+z−, 0) defines the Ioffe-time distribution (ITD) [106]:

M
(
p+z−, 0

)
µ2
≡ Q

(
ν, µ2

)
=

∫ 1

−1

dx eiνxfq/h
(
x, µ2

)
. (4.40)

The finding that the ν-dependence of the ITD dictates the x-dependence of the conven-

tional twist-2 PDFs is unsurprising given the proof of factorization of the coordinate space

LCSs given in Sec. 4.2.1.

Lorentz invariance implies the ν-dependence ofM (p+z−, 0)µ2 can be computed in any

frame, and with any choice of {z, α} that may be convenient. A particular choice amenable

to calculation with lattice QCD is α = 0, pα = (E,0⊥, pz) and zα = (0,0⊥, z3), which

excludes the contamination from the pure higher-twist term N (ν, z2). The remaining

term M (ν, z2 6= 0) is deemed the Ioffe-time Pseudo-distribution [109] or pseudo-ITD. It

is important to note that in addition to the twist-2 contributions, the pseudo-ITD also

contains higher-twist contributions O
(
z2Λ2

QCD

)
that vanish only in the light-cone limit.

For all relevant Feynman diagrams, the Fourier transform of the pseudo-ITD with respect

to ν has been shown [110] to carry support only in the canonical parton momentum fraction
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interval x ∈ [−1, 1]:

M
(
ν, z2

)
=

∫ 1

−1

dx eiνxP
(
x, z2

)
(4.41)

P
(
x, z2

)
=

1

2π

∫ ∞

−∞
dν e−iνxM

(
ν, z2

)
. (4.42)

The so-called pseudo-PDF [109] P (x, z2) therefore provides a Lorentz covariant notion of

parton x and a generalization of light-cone PDFs onto space-like intervals.

The separation of (4.39) into its invariant amplitudes and subsequent analysis with re-

spect to Ioffe-time casts an important distinction between pseudo- and quasi-distributions.

Pseudo-PDFs and quasi-PDFs each share the matrix element in Eq. 4.39 as the basic nu-

merical object to compute. The Fourier transform over the length of the Wilson line

defining the quasi-PDF corresponds to

f̃q/h
(
x̃, pz, µ̃

2
)
∝
∫
dz3 e

−ix̃pzz3 〈h (pz)|ψ (z) γ0Φ
(f)
ẑ3

({z3, 0})ψ (0) |h (pz)〉

∝
∫
dz3 e

−ix̃pzz3M
(
ν, z2

3

)
=

∫
dz3 e

−ix̃pzz3M
(
pzz3, z

2
3

)
.

In other words quasi-PDFs, and quasi-distributions more generally, are the result of compli-

cated dependencies on both invariants ν and z2
3 , most notably large-z2

3 . The z2-dependence

of the pseudo-ITD was shown in [110] to correspond to the k⊥-dependence of the primor-

dial straight-link transverse momentum dependent parton distributions. The mixing of

invariant scales by the quasi-PDF explains the considerable dependence on the hadron

momentum pz seen in Fig. 4.1 and the slow approach to the light-cone PDF. The pseudo-

PDF (4.42) however avoids the mixing of different z2
3 scales by integrating only the ν-

dependence of M (ν, z2
3) for fixed z3.

Since the Wilson line operator O̊[γµ]
WL (z) is multiplicatively renormalizable and Ioffe-
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time independent, instead of the pseudo-ITD we consider the reduced pseudo-ITD [109]

M
(
ν, z2

)
=
M (ν, z2)

M (0, z2)
. (4.43)

Since the rest-frame pseudo-ITD M (0, z2) has the same gauge-link associated power di-

vergence, the reduced pseudo-ITD cancels this divergent factor, thereby ensuring a finite

continuum limit. For the reduced pseudo-ITD to be more than an algebraic trick, the

normalizing quantity should be a finite constant in the z2 → 0 limit. This aspect will

guarantee that when the OPE is applied to the pseudo-ITD and its reduced counter-

part, the resulting Mellin moments and thus factorization into PDFs are identical. The

choice to construct the reduced pseudo-ITD with M (0, z2) is especially straightforward,

as M (0, z2) is simply the bare vector charge Z−1
V in the light-cone limit. Motivation for

the reduced pseudo-ITD also extends to the mitigation of soft higher-twist O
(
z2Λ2

QCD

)

effects. Such large-z2 effects correspond to the soft k2
⊥-dependence of the associated Trans-

verse Momentum Dependent PDF (TMD), which is commonly assumed to factorize from

its x-dependence [111]. The first calculation of pseudo-distributions in the nucleon indeed

found M (ν, z2) is subject to polynomial-z2 corrections of lesser magnitude thanM (ν, z2)

at large-z2 [112]. This is understood in terms of at least a partial factorization of the ν

and z2 dependencies of the pseudo-ITD, or again the x and k2
⊥ dependencies of the TMD.

Alternatives have recently been proposed that make use of a vacuum matrix element of

O[γµ]
WL (z) [113] or a pseudo-ITD in a boosted frame [114]. These are not considered here.

Following removal of the UV singularities produced by the space-like Wilson line, the

remaining UV divergences in (4.43) stem from ln z2
3 contributions in QCD. These diver-

gences generate the perturbative evolution of the collinear PDFs and complicate the naive

z2
3 → 0 limit at which P (x, 0) = fa/h (x). Fortunately M (ν, z2) is a good LCS and the fac-

torization in Sec. 4.2.1 applies. The reduced pseudo-ITD M (ν, z2) therefore factorizes in
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the perturbative short-distance regime into PDFs with perturbatively calculable hard co-

efficients. The factorization relationship has been computed to NLO in MS [115, 116, 117]

and matches the MS ITD Q (ν, µ2) to the reduced pseudo-ITD M (ν, z2):

M
(
ν, z2

)
=

∫ 1

0

du

{
δ (1− u)− αsCF

2π

[
ln

(
e2γE+1z2µ2

4

)
B (u) + L (u)

]}
Q
(
uν, µ2

)

+
∞∑

k=1

Bk (ν)
(
z2
)k
. (4.44)

The matching involves a scale-independent kernel L (u) =
[
4 ln(1−u)

1−u − 2 (1− u)
]

+
due to

the MS matching, and a scale-dependent kernel that relates the z2 and µ2 scales through the

flavor non-singlet DGLAP evolution kernel B (u) =
[

1+u2

1−u

]
+

[22, 23, 24]. The factorization

is valid in so far as the polynomial corrections Bk (ν) (z2)
k

can be mitigated.

4.3 Pion Ioffe-time Pseudo-Structure Functions

The first community results of a PDF obtained using the two-current LCS matrix

elements are that of the pion valence quark PDF fqv/π (x). The pion is chosen as the

numerical arena in which to study this formalism, as fewer Wick contractions are needed

to fully calculate a correlation function and it is naively less susceptible to signal-to-noise

degradation relative to baryons. We note in practice that high-momentum pion correla-

tion functions are considerably more noisy than baryon correlation functions of the same

lattice momenta (see e.g. [118]). Whereas in mesonic systems it will prove to be relatively

straightforward to measure the two-current LCS matrix elements, selecting the current

separation in baryons presents the greatest roadblock to baryonic LCS measurements, and

is left for a future study.

Pionic LCS matrix elements are computed on four separate isotropic gauge ensem-
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bles with 2 ⊕ 1 dynamical flavors of Wilson-clover fermions [75] and a tree-level tadpole

improved Symanzik gauge action. Characteristics of each ensemble as well as the number

of configurations employed are gathered in Tab. 4.2. These ensembles were chosen to illu-

minate potential variability in LCS matrix elements as the pion mass, volume and lattice

spacings are changed. Although extrapolation in any one variable is generally performed

on data from three different ensembles with all other parameters fixed, we will find a

flexible global analysis of these data to be instructive.

As in previous chapters, the sought-after pion matrix elements require overlap and

spectroscopic information garnered from pion two-point correlation functions (2.68). A

combination of Jacobi smearing and standard momentum-smearing [59] (Sec. 2.4) is im-

plemented to ameliorate the effects of excited-states and improve the overlap of our inter-

polating fields onto boosted pions. The resulting momentum-projected pion annihilation

interpolator we use is given by

Π~p (T ) =
∑

x

ei~p·~x ¯̃q (~x, T ) γ5q̃ (~x, T ) , (4.45)

where q̃ is a light quark field modified by the combined action of momentum and Jacobi

smearing. The spatial smearing parameters are kept fixed on a given ensemble, while the

momentum smearing parameter is tuned for all lattice momenta platt
z such that 2 ≤

∣∣platt
z

∣∣ ≤

ID a (fm) mπ (MeV) L3 ×NT Ncfg

a127m413 0.127(2) 413(4) 243 × 64 2124
a127m413L 0.127(2) 413(5) 323 × 96 490
a94m358 0.094(1) 358(3) 323 × 64 417
a94m278 0.094(1) 278(4) 323 × 64 503

TABLE 4.2: Parameters for each gauge ensemble used in this work: lattice spacing, pion mass,
spatial and temporal sizes, and number of configurations used.
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6. A representative sample of these parameters can be found in [119, 120]. Indeed with a

single local pion interpolator, and especially without the combined benefit of distillation

and the variational method, increased excited-state contamination should be expected.

The use of a single interpolator is rooted in numerical cost and is discussed below.

The relevant four-point function is given by

C4pt (~p, z;T, τ) = 〈Π (−~p, T )J †Γ (~z + ~z0, τ)JΓ′ (~z0, τ) Π (~p, 0)〉, (4.46)

with the spatially separated currents inserted at time τ . If the currents were composed

entirely of mass degenerate light quarks JΓ = ¯̀Γ`, the set of Wick contractions to be

evaluated numerically would be large. The topology of each contraction in the case of

flavor-conserving currents is illustrated in Fig. 4.3. Notable is the appearance of sev-

eral diagrams involving disconnected quark loops, which would require expensive all-to-all

propagators. On the basis of power-suppressed diagrams in DIS, such as the cat’s ears

diagram, one might expect several of these diagrams to be suppressed as well in coordinate

space. Each of the above concerns is addressed by introduction of currents that couple

light and auxiliary heavy quarks JΓ = ¯̀ΓQ. Such heavy-light flavor changing currents

render Figs. 4.3(a) & 4.3(d) as the only possible contraction topologies. An overall flavor

isovector combination (i.e. the two currents transform with isospin-1) then cancels the

Fig. 4.3(d) diagram. A similar scheme was used in [89] to exclude higher-twist pollution

in moments calculations of PDFs and distribution amplitudes. Since the auxiliary quark

field is quenched by construction and any disconnected diagrams are excluded by the flavor

construction of our currents, we are guaranteed that the auxiliary PDFs vanish and do not

mix with the valence PDF we target. Moreover, the phase space between the two currents,

where the equal-time heavy quark propagator resides, is more thoroughly saturated with

a quark mQ > m`. We set the auxiliary quark mass equal to the strange quark mass on
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(a) (b) (c)

(d) (e) (f)

FIG. 4.3: Wick contraction topologies resulting from two current correlators with each current
conserving flavor. The use of flavor changing currents cancels all but contractions (a) and (d),
while the latter is canceled by an isovector construction.

the ensembles we consider. Higher yet masses may lead to further reduced statistical noise

from the equal-time propagator, but discretization errors O (amQ) will begin to accrue.

The factorization of the composite operator LCS matrix elements is again valid only

for short-distances |z| � Λ−1
QCD. Any momentum projection at either current, although to

zero three-momentum in this calculation, would sum over the spatial lattice sites thereby

mixing small and large z2 scales. Each current must therefore be introduced on a time

slice at precisely one lattice site. The sequential source method common in matrix element

calculations consequently is not a viable numerical tool here, because of the need for

many point-to-point propagators. Fortunately for mesonic systems a modified sequential

operator method can be implemented to calculate the Wick contraction in Fig. 4.3(a). The

modified sequential source is constructed through sequential inversions of the light quark

Dirac operator, reusing already computed propagators. The algorithm we implement for

the modified sequential source is as follows: first a light quark propagator from a point-
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source at one of the currents to the source interpolator is computed. This object is then

used as the source for a subsequent inversion to the sink interpolator. This resulting

larger sequential operator is lastly used as the source for an inversion from the sink to the

second current. Mathematically this algorithm proceeds by solving the sequential systems

of equations for {Gq, H
p
q , I

p
q }:

∑

z′,t′

Dq (z, t; z′, t′)Gq (z′, t′; z0, τ) = δ (z − z0) δ (t− τ)

∑

z′,t′

Dq (z, t; z′, t′)Hp
q (z′, t′; z0, τ) = e−iz·p

∑

y′,y′′

S [z; y′] γ5S [y′; y′′]Gq (y′′, t; z0, τ) δ (t)

∑

z′,t′

Dq (z, t; z′, t′) Ipq (z′, t′; z0, τ) = eiz·p
∑

y′,y′′

S [z; y′] γ5S [y′; y′′]Hq (y′′, t; z0, τ) δ (t− T ) ,

where Dq is the light quark Dirac matrix, S [∗; ∗] is the combined smearing procedure,

and color and Dirac indices have been suppressed for clarity. The phase factors in the

second and third inversions project the interpolators to definite momenta, while the du-

plicate smearing operators S [∗; ∗] handle the distinct smearing for each quark field. We

note the momentum smearing phases are opposite in sign for the quark/anti-quark fields,

and the currents are left unsmeared. This algorithm, illustrated in Fig. 4.4, is clearly in-

version dominated. It is however advantageous, as it allows currents of arbitrary Lorentz

structure and separation to be correlated after the inversions have been performed. Any

modification to the source/sink interpolators, including the temporal separation, will then

require repeating the final two inversions. Expanding to a basis of pion-like interpolators

is thus impractical and avoided in this calculation due to the proliferation of inversions.
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0τ = T
2T

pzpz π π†

z

J2

J1

FIG. 4.4: Diagrammatic construction of the pion four-point function built from a modified
sequential source (black) and a time-local auxiliary heavy quark propagator (red). This setup
admits correlation of currents with arbitrary Lorentz structure and separation independent of
the costly Dirac inversions.

4.3.1 Vector-Axial Currents and fqv/π (x)

To access the CP-even pion valence quark PDF fqv/π (x), a set of currents different

from most considered in Sec. 4.2.1 need to be constructed. The precise form of any

current-current combination is restricted by the invariance of QCD under parity (P̂) and

time-reversal (T̂ ) transformations. Specifically scalar/pseudoscalar two-current matrix

elements must obey

〈p| Oµνij (z) |p〉 = 〈p| (P̂T̂ )Oµνij (z)† (P̂T̂ )−1 |p〉 .

Consider a vector J µ
V = ψ̄γµψ and axial-vector J ν

A = ψ̄γνγ5ψ current, whose transforma-

tion properties are (P̂T̂ )J µ
V (z) (P̂T̂ )−1 = J µ

V (−z) and (P̂T̂ )J µ
A (z) (P̂T̂ )−1 = −J µ

A (−z).

The linear combination Mµν
V A (p, z)+Mµν

AV (p, z) ≡ 〈π (p)| [OµνV A (z) +OµνAV (z)] |π (p)〉 is then

antisymmetric in Lorentz indices. The only Lorentz decomposition antisymmetric in the
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Lorentz structures {pµ, zµ} is

σµνV A ≡
z4

2
[Mµν

V A (p, z) +Mµν
AV (p, z)] =

εµναβpαzβ
ν

T1

(
ν, z2

)
+

(pµzν − zµpν)
ν

T2

(
ν, z2

)
.

(4.47)

Appropriate tensor contractions can isolate each pseudo-structure function:

T1

(
ν, z2

)
=

ν

2 (ν2 − p2z2)
εµναβp

αzβσµνV A, T2

(
ν, z2

)
=

ν

2 (ν2 − p2z2)
(zµpν − pµzν)σµνV A.

In light of the sequential inversions above, computation of all elements of σµνV A followed by

the appropriate projections for T1 (ν, z2) and T2 (ν, z2) is wholly impractical numerically.

Each Ti (ν, z
2) can be accessed with a judicious choice of Dirac indices, momenta, and

current separations. With pion momenta pµ = (p0,0⊥, p3) and current separation zµ =

(0,0⊥, z3), each Ti (ν, z
2) is accessed by selecting particular components of σµνV A

T1

(
ν, z2

)
=

ν

p0z3

σ12
V A, T2

(
ν, z2

)
=

ν

p0z3

σ03
V A. (4.48)

Applying the general leading-order on-shell quark matrix element result in coordinate

space (4.31) to the vector-axial combination first, we have

M
µν(0)
V A (p, z; ν) =

i

4π2

xpαzβ
z4

[
eixνTr

(
γαγµγβγνγ5

)
− e−ixνTr

(
γαγνγ5γβγµ

)]

=
i

4π2

xpαzβ
z4

[
−4iεαµβνeixν + 4iεανβµe−ixν

]

=
2

π2z4
εµναβxpαzβ cos (xν)

using the identity Tr (γµγνγργσγ5) = −4iεµνρσ subject to the convention ε0123 = 1. Re-

peating the traces for the axial-vector combination, the same result is obtained. Therefore
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at leading-order in coordinate space we have

σ
µν(0)
V A ≡ z4

2

[
M

µν(0)
V A (p, z) +M

µν(0)
AV (p, z)

]
=

2

π2
εµναβxpαzβ cos (xν) . (4.49)

To derive the leading-order perturbative coefficients, Eq. 4.49 is substituted into the rela-

tions of Eq. 4.48 relevant to the kinematics we have identified. It follows

T
q(0)
1

(
ν, z2

)
=

2νx

π2
cos (xν) T

q(0)
2

(
ν, z2

)
= 0. (4.50)

As the leading-order ”quark-in-quark” PDF is simply f
q(0)
a (x, µ2) = δ (1− x) δqa, the LCS

factorization (4.26) of a quark state at LO implies

K
q(0)
1

(
xν, z2

)
= T

q(0)
1

(
xν, z2

)
=

2νx

π2
cos (xν) (4.51)

K
q(0)
2

(
xν, z2

)
= T

q(0)
2

(
xν, z2

)
= 0. (4.52)

Since K
q(0)
1 (xν, z2) is proportional to the parity-even cos (xν), it easily shown

∫ 1

−1

dx

x
K

(0)
1 (xν) =

2ν

π2

{∫ 1

0

dx fq/h (x) cos (xν) +

∫ 1

0

dx fq/h (−x) cos (−xν)

}

=
2ν

π2

∫ 1

0

dx
{
fq/h (x)− fq̄/h (x)

}
.

This demonstrates that pion matrix elements of an antisymmetric vector-axial two-current

operator factorize in a short-distance regime at LO into the valence quark PDF of the pion

fqv/π (x).
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NLO Matching

Determination of the next-to-leading order (NLO) matching kernel for the same anti-

symmetric vector-axial current combination adopts the strategy outlined in Sec. 4.2.1. The

NLO kernel that matches the valence PDF to the vector-axial LCS is presented in [120]

and stated here for completeness:

KNLO =
1

π2

ε12αβpαzβ
2ν

[
K(0) (ν) +

αsCF
2π

{
K(1,0) (ν) +K(1,1) (ν) ln

[
−z2µ2 e

2γE

4

]}]
,

(4.53)

where K(0) (ν) = ν cos (ν) is the tree-level result, while K(1,0) (ν) and K(1,1) (ν) are the

NLO kernels given respectively by

K(1,0) (ν) = ν

∫ 1

0

du cos (uν)

[
1

2
δ (1− u)−

(
2 ln (1− u)

1− u − u2 − 3u+ 1

1− u

)

+

]
(4.54)

K(1,1) (ν) = −ν
∫ 1

0

du cos (uν)

(
1 + u2

1− u

)

+

, (4.55)

where in Euclidean space it is understood the interval z2 < 0. As was the case for

the pseudo-distributions, the full NLO kernel involves a scale-independent contribution

K(1,0) (ν) responsible for matching the lattice and MS schemes, as well as a kernel K(1,1) (ν)

describing the scale-dependence of the data; the latter containing the familiar flavor non-

singlet DGLAP kernel [22, 23, 24]. The plus-prescription designation in K(1,0) (ν) and

K(1,1) (ν) reflect the perturbative cancellation of infrared (IR) divergences between real and

virtual diagrams in momentum space (i.e. before theD-dimensional Fourier transformation

to coordinate space). Near the point of IR cancellation, however, it is not uncommon for

diagrams to receive large logarithmic corrections [121] from soft and collinear gluons. In

applying standard QCD factorization in momentum space to hadronic cross sections, these

potentially large corrections must be re-summed before making contact with experimental
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data. The short-distance matching of the LCS coordinate space matrix elements to the

PDFs is then less sensitive to these corrections [120], a further benefit of this paradigm.

The stability and effect of the K(1,0) (ν) and K(1,1) (ν) kernels is explicitly demonstrated

in Sec. 5.2.3.

4.3.2 Numerical Implementation

The modified sequential source recasts the four-point function (4.46) as

C4pt (p, z;T, τ) = 〈Π~p (~x, T )J †Γ (~z + ~z0; τ)JΓ′ (~z0, τ) Π~p (~y, 0)〉

=
∑

~x,~y

ei(~x−~y)·~p
〈

¯̃dγ5ũ (~x, T )
[
Q̄Γu+ ūΓQ

]
(~z + ~z0; τ)×

[
ūΓ′Q+ Q̄Γ′u

]
(~z0; τ) ¯̃uγ5d̃ (~y; 0)

〉

= Tr
[
Ipq (~z + ~z0, τ ; ~z0, τ) Γγ5GQ (~z + ~z0, τ ; ~z0, τ)† γ5Γ′

]
+ (Γ 7→ Γ′) ,

where GQ (~z + ~z0, τ ; ~z0, τ) is the equal-time auxiliary quark propagator that ties together

the modified sequential source Ipq . The source point (~z0, τ) is randomly determined per

configuration and is fixed midway between the source and sink interpolators (i.e. τ = T/2).

This choice eliminates the ability to resolve the excited-state dependence in the two-current

matrix elements for τ/a ∈ [0, T ], at the benefit of avoiding an additional 4 × T Dirac in-

versions. By requiring τ/a = T/2 and constructing the source and sink interpolators in

identical manners, we are assured excited-state contamination is equal in the intervals

τ/a ∈ [0, T/2), [T/2, T ]. The desired pion ground-state matrix element is then accessed

by successively increasing the source-sink separations, repeating the series of inversions,

and studying the large-T behavior. Due to the decreasing signal to noise ratio, the higher

momentum states require more source points per configuration and shorter source-sink

separations T . The two-current matrix element is extracted following a correlated simul-
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FIG. 4.5: Representative matrix element extractions for z = 3a and increasing pion boosts on
the ensembles a94m278 (left) and a94m358 (right). The leading time dependence has been
removed to expose the asymptotic plateau in the data. The p = 1.25, 1.65 GeV data have been
rescaled by factors of 5 and 25, respectively, to illustrate the rapid deterioration of the matrix
element signals as the pion momentum is increased.

taneous fit to the pion two- and four-point correlators:

Cπ
2pt (T ) = Ae−E0T (4.56)

Cπ
4pt (T ) = e−E0T

(
B +De−∆mT

)
. (4.57)

The ground-state energy and its gap relative to excited-states are respectively given by E0

and ∆m, while the matrix element is the asymptotic plateau of B/A.

Selected fit results on the ensembles a94m278 and a94m358 are shown in Fig. 4.5 for

a current separation of z = 3a and momenta in the range pz ∈ {0.41 − 1.65} GeV. The

numerical challenges manifest in this formalism are reflected in the signal-to-noise ratio

of the largest momentum pz = 1.65 GeV relative to that of the smallest pz = 0.41 GeV -

the former is nearly three times smaller. Despite this, these data can be fit for source-sink

separations up to T/a ' 14 (∼ 1.32 fm), even for the highest momentum pz = 1.65 GeV on

the lightest pion mass mπ = 278 MeV ensemble. The fitted time series for each momentum

and two-current separation is tuned to only include data with signal-to-noise ratios of at

least unity. All matrix elements with z/a = 1 are excluded from our analysis on the basis
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of contact terms arising from the Wilson clover fermion action.

Although the representative z = 3a matrix element extractions shown in Fig. 4.5 do

exhibit signal for source/sink pion separations in excess of 1 fm, the loss of signal is consid-

erable as the lattice momenta is increased from platt
z = 1 to platt

z = 3, 4. These reductions

in the signal-to-noise ratios are consistent with expectations following momentum projec-

tions at the source and sink pions. However, the lack of a volume average (i.e. momentum

projection) on the current-current time slice translates into O (104) fewer measurements

of the two current operator on the ensembles we consider. The remarkable loss of signal

relative to conventional matrix element calculations is then most certainly due to the sin-

gle measurement of the two current operator per time slice. By considering smaller pion

interpolator separations and current-current separations for larger momenta, we attempt

to limit this observed noise growth. To provide a specific example, on the a127m413L

ensemble the largest source-sink separation is limited to T ≤ 16a for pz ' 1.525 GeV.

For the corresponding highest lattice momenta we consider on the a94m278 and a94m358

ensembles (green in Fig. 4.5), the source-sink separations are also restricted to T ≤ 16a

but a meager O (4) measurements of R (T ) are used to constrain the ground-state matrix

element. Due to the currents being equidistant between the source and sink pions in our

calculation, we cannot populate R (T ) further by repeating the series of sequential inver-

sions for odd values of T/a (i.e. T/a ∈ Z \ 2Z). The only remaining value of T = 4a

was not considered, as R (T = 4a) was found to be quite precise and skewed the high

momentum fits.

The aggregate determination of the T π1 (ν, z2) Ioffe-time pseudo-structure function (4.48)

from all four ensembles is presented in Fig. 4.6. The data exhibit the expected monotonic

decrease as ν is increased, however much of these data are characterized by large uncer-

tainty, especially at the largest values of Ioffe-time we consider. The poor precision again

originates from the vanishingly small window of reasonable statistical signal for R (T ),
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FIG. 4.6: The Ioffe-time pseudo-structure function Tπ1
(
ν, z2

)
computed on the a94m278 (◦),

a94m358 (�), a127m413 (?), and a127m413L (4) ensembles. In the small-z regime Tπ1
(
ν, z2

)

factorizes into the valence quark PDF of the pion fqv/π (x).

especially at the highest momenta on each ensemble. This is indeed a symptom of the

manner in which we have implemented the two-current LCS formalism. This is discussed

further in Sec. 5.2.4. The final step to obtain fqv/π (x) will be developed in Ch. 5.

4.4 Unpolarized Nucleon Ioffe-time

Pseudo-Distributions with Distillation

The pseudo-distribution formalism has been leveraged in several lattice calculations

of partonic structure of hadrons, including the valence quark content of the pion [122],

and the unpolarized valence quark [123, 124, 118, 112] and recently gluon [125] contents of

the nucleon. Even though each calculation makes use of standard spatial and momentum

smearing techniques, considerable statistical fluctuations are manifest for Ioffe-times in

excess of ν & 5 (and at even smaller values for gluonic matrix elements).
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Motivated by the demonstrable success of the distillation and momentum smearing

amalgam in Ch. 3, we apply for the first time the distillation spatial smearing program to

the extraction of PDFs from lattice QCD. The isovector unpolarized valence and plus quark

PDFs of the nucleon are obtained on a 349 configuration subset of the a94m358 ensemble

listed in Tab. 3.4. This same ensemble, but with a different number of configurations,

was used in Sec. 3.1 to compute the nucleon’s isovector charges at rest, validate phased

distillation in Sec. 3.2.2, and in part compute pion two-current LCS matrix elements in

Sec. 4.3. The designation a94m358 is retained for convenience.

To isolate the unpolarized quark PDFs of the nucleon from Ioffe-time pseudo-distributions,

we compute the matrix element (4.39) using a purely ẑ3-boosted nucleon with pα =

(E,0⊥, pz), a space-like Wilson line with zα = (0,0⊥, z3) and γα = γ4. In this setup,

the pseudo-ITD is directly related to the space-like matrix element we compute:

M4 (p, z3) = 〈h (p)|ψ (z3) γ4Φ
(f)
ẑ3

({z3, 0})
τ 3

2
ψ (0) |h (p)〉 = 2EM

(
ν, z2

3

)
, (4.58)

where τ 3 is a Pauli spin matrix and τ 3/2 projects onto the isovector combination. Accessing

this matrix element requires computation of standard two-point

C2 (pz, T ) = 〈N (−pz, T )N (pz, 0)〉 =
∑

n

|An|2 e−EnT (4.59)

and three-point functions featuring the unrenormalized Wilson line operator O̊[γ4]
WL (z3, τ):

C3 (pz, T, τ ; z3) = V3 〈N (−pz, T ) O̊[γ4]
WL (z3, τ)N (pz, 0)〉

= V3

∑

n,n′

〈N |n′〉 〈n|N 〉 〈n′| O̊[γ4]
WL (z3, τ) |n〉 e−En′ (T−τ)e−EnT , (4.60)

where the nucleon interpolating fields N are smeared with distillation and are separated
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FIG. 4.7: The factorization of a baryonic three-point with the non-local space-like operator

O̊[γ4]
WL (z, τ). Distillation splits this correlation function into reusable elementals (blue), peram-

bulators (green) and generalized perambulators (red) of the form in Eq. 4.61.

by a Euclidean time T . An explicit momentum projection is performed using the initial

points of the Wilson line, thereby leading to an overall spatial volume factor V3 in the

forward case. The Wilson line operator is inserted for 0 < τ < T . We elect to use the

single spatially-local, non-relativistic nucleon interpolating operator N2SS
1
2

+
constructed

according to Refs. [69, 79, 84] and summarized in Sections 3.1 and 3.2.2. The reader is

reminded distillation factorizes a correlation function into distinct reusable components.

The generalized perambulators produced in this case are of the form

Ξ
(l,k)
αβ (Tf , T0; τ, z3) =

∑

~y

ξ(l)† (Tf )D
−1
ασ (Tf , τ ; ~y + z3ẑ)

[
γ4
]
σρ

× Φ
(f)
ẑ ({~y + z3ẑ, ~y})D−1

ρβ (τ, T0; ~y) ξ(k) (T0) , (4.61)

where the sum over the initial spatial coordinates of the Wilson line ~y ensures a zero 3-

momentum projection. The genprops are illustrated in Fig. 4.7; the two-point factorization

is visualized in Fig. 2.11.

To ensure the matrix elements (4.58) are in the perturbative small-z regime while also

maximizing coverage in Ioffe-time, we adopt three eigenvector bases. A precomputed un-

phased eigenvector basis, and two oppositely phased bases to enhance the boosted nucleon

signal in the ±ẑ-directions. More specifically, the unphased basis is used for the nucleon at
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FIG. 4.8: Real (above) and imaginary (below) summation data R (p3, z3;T ) for {p3, z3/a} =
(0.82 GeV, 10) , (1.24 GeV, 9) , (2.47 GeV, 4) from left to right, together with the linear fit (4.63)
applied for different time series. The slope of each linear fit yields the bare matrix element,
which is seen to be consistently determined for varied fitting windows. Slight tension in the
(2.47 GeV, 4) extracted matrix element is observed as the fitting window is altered. Although
minor, this stems from the poorly determined T/a = 12, 14 data.

rest and with small ẑ momenta |apz| ≤ 3 [2π/L]. The phased bases are formed according

to Eq. 3.20, where ~ζ± = ±2 · 2π
L
ẑ is chosen to respectively resolve the ground-state nucleon

in ẑ-boosted frames |apz| ≥ 4 [2π/L]. We employ RD = 64 eigenvectors within each basis.

The spectral contributions to (4.59) and (4.60) show that the desired ground-state ma-

trix element follows from ratios of the three-point to two-point correlation functions, which

plateau asymptotically for 0 � τ � T . This was the strategy to extract the nucleon’s

isovector charges in Ch. 3. The contamination from excited-states is reduced further in

this calculation by extracting the matrix elements using the Summation method [126, 127],

whereby the time slice τ on which O̊[γ4]
WL (z3) is introduced is summed over

R (pz, z3;T ) =
T−1∑

τ=1

C3 (pz, T, τ ; z3)

C2 (pz, T )
. (4.62)
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Note any contact terms are explicitly excluded. Excited-states in (4.62) scale as exp [−∆ET ],

while in plateau and multi-state fits these effects scale as exp [−∆ET/2] (cf. Eq. 3.17).

As the ground-excited state gap ∆E is generally large at low-momenta, the gains afforded

by the summation method over plateau/multi-state fits are modest. However, at high-

momenta ∆E becomes small and the summation method offers considerable suppression

of excited-states relative to plateau and multi-state fits. The geometric series resulting

from (4.62) depends linearly on the targeted matrix element M4 (pz, z3), for which we

implement the fitting functional

Rfit (pz, z3;T ) = A+M4 (pz, z3)T +O
(
e−∆ET

)
. (4.63)

We note in practice, the excited-state term O
(
e−∆ET

)
is found to have no impact on the

summation fits performed and is hence omitted from our results.

The two- and three-point functions are computed on four temporal source origins per

configuration with T/a ∈ {4, 6, 8, 10, 12, 14} ∼ 0.38− 1.32 fm. This number of source-sink

separations is chosen to filter out any excited-states that are not captured by the combined

effect of distillation and the summation method, and to ensure our linear fits (4.63) do not

over fit our data as signal-to-noise problems become unavoidable. We consider nucleon

momenta up to |pz| = 6 × [2π/aL] ∼ 2.47 GeV and Wilson line lengths up to z3/a = 16,

although only z3/a ≤ 12 will be subsequently used in our analysis. A representative set of

R (p3, z3;T ) and applied linear fits are shown in Fig. 4.8.

Recall that formation of the reduced pseudo-ITD (4.43) cancels the multiplicative UV

divergences produced by the space-like Wilson line and is an important step in our analysis.

Normalizing the pseudo-ITD M (ν, z2
3) by its rest-frame amplitude M (0, z2

3) amounts to

dividingM (ν, z2
3) by the local vector current matrix element. Strictly speaking, the local

vector current ψγ4ψ in lattice QCD is not conserved and contains O (ap) effects. To create
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FIG. 4.9: The real (left) and imaginary (right) component of the unpolarized reduced pseudo-
ITD on the a94m358 ensemble with Wilson like extents z/a < 13.

an absolute normalization for M (ν, z2
3) originating from each momentum we consider, this

O (ap) dependence must be removed. An effective prescription [112] to do this involves

introduction of a renormalization constant Zeff
V for each nucleon momentum to ensure

limz3→0 Z
eff
V,pz
M (pz · z3, z

2
3) = 1. The Zeff

V,pz
factor is simply the bare vector charge g̊u−dV in

the pz-frame. The reduced pseudo-ITD we construct is then obtained by the double ratio

M
(
ν, z2

3

)
=
M (ν, z2

3) / [M (ν, z2
3) |z3=0]

M (0, z2
3) / [M (0, z2

3) |z3=0]
. (4.64)

This modified ratio is now guaranteed to be unity in the light-cone limit z2 → 0, leaving its

factorization into PDFs from the OPE unaltered. Repeating the matrix element extraction

for all momenta and displacements, the real/imaginary components of the unpolarized

reduced pseudo-ITD are given in Fig. 4.9.
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4.5 Closing Remarks

A broad class of matrix elements computable in lattice QCD factorize into PDFs with

perturbatively-calculable matching coefficient functions. These so-called Lattice Cross

Sections (LCSs) include two-current correlators and Wilson line parton bilinears each of

a space-like extent. Although quasi-PDFs catalyzed the resurgence of interest in the

light-cone structure of hadrons from lattice QCD, the two-current and pseudo-distribution

LCSs offer distinct theoretical advantages. The formalisms of each were developed, and

calculations were respectively performed in the pion and nucleon. In the following chapter

we will move to discuss how PDFs can reliably be obtained from the Ioffe-time dependent

amplitudes computed in this chapter.



CHAPTER 5

Extraction of Parton Distributions

from LQCD

The two Lattice Cross Sections (LCSs) studied in this dissertation, the two-current

correlators and pseudo-distributions, establish coordinate-space factorization schemes be-

tween certain lattice calculable matrix elements and the light-cone distributions of hadrons.

Untangling the convolutional relationship connecting these data with a desired contin-

uum light-cone distribution represents an inverse problem that is grossly ill-posed - the

coordinate-space factorizations of Eq. 4.24 and Eq. 4.44 match discrete lattice data to

the continuous PDFs. Even as state-of-the-art computational capabilities have facilitated

these studies, contemporary LCS calculations are limited in practice to O (50) measure-

ments of the Ioffe-time dependent distributions. The approaching Exascale frontier will

most certainly push this number higher, but the central ill-posed inverse problem will

remain.

Naively inverting each matching relationship against a discrete dataset produces an

infinite set of viable solutions, each having little predictive or postdictive credibility. The

141
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futility of direct inversions has been demonstrated in a few LCS calculations [124, 118],

wherein each inversion yielded unstable PDFs with spurious oscillations. The limited range

of Ioffe-time accessible to present LCS calculations only compounds the need for refined

extraction methods.

This inversion problem is shared with other lattice formalisms that rely on QCD fac-

torization, and indeed the global analysis of inclusive/semi-inclusive processes (see Ch. 2).

Although different in character, this problem pervades the quantitative sciences and even

impacts the image reconstruction of black holes [128]. Arguably the most serious sys-

tematic that must then be confronted in LCS studies is how to reliably extract a targeted

distribution, while minimizing numerical artifacts and bias. Numerous sophisticated meth-

ods, such as the Backus-Gilbert, maximum entropy, and Bayesian reconstruction methods

have been explored as tools to aid in PDF extractions [129, 124] and other observables more

generally [130, 131]. This chapter will develop and apply both standard and novel extrac-

tion procedures in order to obtain the PDFs of the pion and nucleon from the Ioffe-time

dependent distributions isolated in Chapter 4.

5.1 Regularization Through Model Ansätze

All partonic distributions of hadrons, such as PDFs and GPDs, are not direct physical

observables. It is the application of the QCD factorization theorems to inclusive and exclu-

sive scattering processes that splits the experimentally-measured hadronic cross sections

into partonic hard contributions, and the long-distance non-perturbative parton distribu-

tions. Section 2.2.2 outlined that the global fitting community relies on well-informed

PDF parameterizations in order to extract these continuous distributions from discrete

measurements of the x and Q2 dependencies of the DIS structure functions and Drell-Yan

cross sections. In this section, the PDF forms used by many of the leading global fitting
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collaborations will be looked at in more detail. Given the many similarities to the inverse

problem faced when attempting to relate LCS quantities to PDFs, we propose a novel

fitting prescription that has the potential to capture and remove systematic effects from

LCS data while simultaneously extracting the targeted PDF.

5.1.1 Phenomenology

If the DIS structure functions could be measured continuously across its independent

variables x and Q2, PDFs could be obtained straightforwardly at some order in αs by

inverting the factorization relationship (2.33); numerical stability and to what order in αs

the matching coefficients are computed to would then be the principal sources of potential

pitfall. The extraction of PDFs from global analyses of only discretely measured (semi-

)inclusive structure functions can only proceed by modeling phenomenologically the PDF

in question. Selections must be made for the precise parametric form and the order of

perturbative truncation in the DIS coefficient functions, or partonic cross section in the

case of Drell-Yan. A parametric fit does however offer several important benefits: any

parton sum rules, as well as known convergent/divergent behavior of PDFs in the x → 1

and x → 0 regimes, can be engineered into the functional form. While the truncation in

αs does ultimately affect the PDF extraction1, the most serious source of bias arises from

the model chosen to describe the PDF. The optimal method to understand the severity

of this bias and minimize its effect is achieved by traversing the full range of functional

descriptions consistent with the symmetries and sum rules of QCD. Fortunately the global

fitting community implements this mantra quite well, as we now explore.

Consider the light quark sector {u, d, s}, the corresponding anti-quarks and gluon.

1The treatment of heavy quark flavors {c, b, t} can also heavily influence PDFs for each flavor. This
complication is not discussed, but the reader is directed to any of the cited phenomenological PDF results
for a thorough discussion.
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Recent PDF sets in this sector at an initial scale Q2
0 published by the CJ [132] and

MSTW [133] collaborations make use of functional form

xfa/h
(
x,Q2

0

)
= Axα (1− x)β

(
1 + γ

√
x+ δx

)
, (5.1)

while the 2014 PDF set from MMHT [37] exploits a slightly modified form

xfa/h
(
x,Q2

0

)
= Axα (1− x)β

(
1 +

4∑

k=1

ckT
Ch
k

(
1− 2

√
x
)
)
, (5.2)

where TCh
k are Chebyshev polynomials in the combination (1− 2

√
x). The Chebyshev

terms are clearly more sophisticated than the combination (1 + γ
√
x+ δx). Indeed the

authors of the MMHT set, some of whom also authored the MSTW set, note the Chebyshev

parameterization is more favorable, as the expansion coefficients ck were found to be more

stable than the γ, δ terms in (5.1). Other collaborations, such as the CTEQ-TEA (CT)

collaboration, have made use of the functional form

xfa/h
(
x,Q2

0

)
= Axα (1− x)β

4∑

k=1

ckb
4
k

(√
x
)

(5.3)

in their 2018 global analysis [36], where bmn (y) =
(
m
n

)
ym (1− y)n−m are Bernstein polyno-

mials. The authors note the Bernstein polynomials minimize rapid variation in the PDF

in the limiting x → 0/x → 1 regimes, and likewise cut down on correlations between the

ck parameters that would conventionally multiply fractional powers of x.

The similarities between each functional form cannot be missed. Each PDF parame-

terization is nominally expressed as xfa/h (x,Q2
0) = Axα (1− x)β P (x). The x→ 0 behav-

ior is described by a Regge-like term xα [134], while the x → 1 regime is described by a

(1− x)β term consistent with power counting rules derived in perturbative QCD [135]. Fi-
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nally, if a momentum sum rules exists for a specific parton flavor, the coefficient A ensures

that the sum rule is satisfied - otherwise the parameter is left to float.

As PDFs are involved with intrinsically inelastic scattering processes, the use of the

term Regge-like for the small-x behavior of the PDF would seem inappropriate. The phe-

nomenological use of Regge in this context stems from early efforts to understand hadronic

elastic scattering amplitudes T (s, t), with {s, t} the standard Mandelstam variables. In

the large-s regime, the amplitude scales as T (s, t) ∼ sα(t) with the power law dictated

by α (t) = α0 + α′ · t, or a Regge trajectory which governs the linear dependence of the

invariant mass of resonances on their spin. The insistence of the global fitting community

on terms like
√
x can be understood qualitatively in terms of qq̄ pairs produced at small-x.

These quark-antiquark pairs look like a ρ-meson which lies on a Regge trajectory with

α0 ∼ 0.5 and α′ ∼ 1 [136]. These statements are given a rigorous backdrop in Ref. [137]

in terms of the Veneziano dual model [138] of the strong interactions.

Returning to the global fitting forms, apart from details relevant to error estima-

tion/propagation and fitting frameworks, the primary difference between these global fits

is the smooth function P (x) used to connect the limiting PDF behaviors. Other popular

PDF sets are provided by the NNPDF collaboration [139, 38], unique among the global

fitting collaborations in their parameterization of P (x) using a neural network.

The different functional forms of each collaboration are subject to different systematics

and fit parameter correlations. Indeed these effects may adversely affect any one particular

PDF set. Taken together however, the consistency of PDFs obtained by each collaboration

(cf. Fig. 2.6 and Fig. 2.7), in spite of the varied treatments of the smooth interpolating

polynomial P (x), strengthens considerably the universality of PDFs obtained from data

and justifies the functional parameterization as a sound method to regulate the inverse

problem.
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The LCSs presented in Ch. 4 generically face an inverse problem represented by

L =
∑

a=q,q̄,g

Ka (αs)⊗Fa
(
µ2
)

+ h.t., (5.4)

where L are the Ioffe-time dependent invariant amplitudes associated with the two-current

or Wilson line matrix elements that factorize into perturbative kernels Ka and the PDFs

up to higher-twist (h.t.) corrections. Inspired by the phenomenological forms of the global

fitting community, we will first extract PDFs of the nucleon and pion from the data in

Ch. 4 using the parameterizations

fqv/h
(
x, µ2

)
= Nvx

α (1− x)β P (x) (5.5)

fq+/h
(
x, µ2

)
= N+x

α+ (1− x)β+ P (x) . (5.6)

Given the limited range of Ioffe-time in our results, we will find the simplest 2-parameter

ansatz with P (x) = 1 cannot be rejected. Where possible, the bias of this highly-

constraining choice will be studied by supplementing P (x) with additional half-integer

powers of x: P (x) = 1 +
∑

k λkx
(k+1)/2, thereby increasing the flexibility of our param-

eterizations. The light valence quark PDFs of the nucleon and pion each satisfy the

quark counting rule
∫ 1

0
dx fqv/{π,N} (x) = 1, for which we fix N−1

v = B (α + 1, β + 1) +

∑
k λkB

(
α + 1 + k+1

2
, β + 1

)
.2 These functional forms we adopt parallel those of CJ and

MSTW, and are used almost exclusively in other lattice calculations (e.g. [122, 118, 123,

114, 124, 140]). Ultimately any PDF reported from a lattice calculation should take into

account the space of functions that smoothly connects the x → 0 and x → 1 limits, as is

done in the global fitting community. We now turn to a more refined fitting prescription.

2B (n,m) =
∫ 1

0
dx xn−1 (1− x)

m−1
is the beta function or Euler integral of the first kind.
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5.1.2 Jacobi Polynomials

The phenomenological parameterizations we have considered thus far are but one way

to regulate the ill-posed inverse relating an LCS invariant to the corresponding PDF. As an

alternative means to describe the valence/plus quark sectors and minimize model bias, we

propose to parameterize the PDFs by a complete basis of classical orthogonal polynomials.3

The leveraging of orthogonal polynomials to obtain an unknown distribution is not unique

to this work. The approach we adopt parallels efforts to extract PDFs from phenomeno-

logical fits of inclusive processes [37, 141], as well as distribution amplitudes [142, 143] and

inelastic scattering cross sections [144] from matrix elements calculated in lattice QCD.

Consider the Jacobi (hypergeometric) polynomials

P (α,β)
n (z) =

Γ (α + n+ 1)

n!Γ (α + β + n+ 1)

n∑

j=0

(
n

j

)
Γ (α + β + n+ j + 1)

Γ (α + j + 1)

(
z − 1

2

)j
, (5.7)

which form an orthogonal basis of polynomials on the interval z ∈ [−1, 1] with respect to

the metric (1− z)α (1 + z)β for α, β > −1:

∫ 1

−1

dz (1− z)α (1 + z)β P (α,β)
n (z)P (α,β)

m (z) =
δn,m2α+β+1

2n+ α + β + 1

Γ (α + n+ 1) Γ (β + n+ 1)

n!Γ (α + β + n+ 1)
.

Under the mapping z 7→ 1− 2x the mapped Jacobi polynomials

Ω(α,β)
n (x) =

n∑

j=0

Γ (α + n+ 1)

n!Γ (α + β + n+ 1)

(
n

j

)
(−1)j Γ (α + β + n+ j + 1)

Γ (α + j + 1)︸ ︷︷ ︸
ω
(α,β)
n,j

xj, (5.8)

form a complete basis of orthogonal polynomials on the interval x ∈ [0, 1] with respect to

the metric xα (1− x)β. The shifted orthogonality relation is omitted for brevity. As the

3A truncation of the basis will be necessary in practice.
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set of polynomials {Ω(α,β)
n } span the interval x ∈ [0, 1], a PDF can be expressed generically

as

fq/h (x) = xα (1− x)β
∞∑

n=0

C(α,β)
q,n Ω(α,β)

n (x) , (5.9)

with expansion coefficients C
(α,β)
n . The parameters {α, β} lose their familiar character-

ization of the x → 0/x → 1 PDF behaviors in place of delineating different choices of

bases. The expansion in Jacobi polynomials in Eq. (5.9) is thus entirely generic and

model-independent. However, the series of Jacobi polynomials must in practice be trun-

cated at some finite order-n. By using a basis of orthogonal polynomials, it is hoped the

bias introduced is less than for the phenomenological forms of Eq. 5.5 and Eq. 5.6. Two

simple ways to study this bias include fixing the order of truncation and determining the

optimum {α, β}, or tuning {α, β} to capture generic properties of a PDF and subsequently

optimize the order of truncation. This prescription will be applied in Sec. 5.3, but first we

turn to simple fits of the pion pseudo-structure function data.

5.2 Pion Valence PDF from

Ioffe-time Pseudo-Structure Functions

The results for the T π1 (ν, z2) Ioffe-time pseudo-structure functions across the four

gauge ensembles considered in Sec. 4.3 allow the pion mass, lattice spacing, and volume

dependence to be quantified. We only include the two-current LCS matrix elements in

our analysis if |z| ≤ 0.56 fm, which is sufficiently smaller than Λ−1
QCD and hence in the

perturbative regime. These data are then assured to be in the perturbative regime where

the factorization relationship is valid, and are also minimally afflicted by higher-twist

effects. The reader is reminded that all matrix elements with z/a = 1 have been excluded

on the basis of contact terms. The data satisfying these conditions from the four ensembles
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we have considered are shown in Fig. 4.6.

A global fit of these data can then be leveraged to obtain the T π1 (ν, z2) Ioffe-time

pseudo-structure function in the physical limit. As T π1 (ν, z2) is functionally unknown and

analytic in ν (Sec. 4.2.1), we implement a flexible z-expansion fit

T π1
(
ν, z2

)
=

kmax=4∑

k=0

λkρ
k + b1

(
mπ −mphys

π

)
+ b2a+ b3z

2 + b4a
2p2 + b5e

−mπ(L−z) (5.10)

supplemented with well-informed chiral (b1), discretization (b2, b4), higher-twist (b3) and

finite-volume (b5) corrections, with ρ =
√
νcut+ν−

√
νcut√

νcut+ν+
√
νcut

. Higher-order (kmax > 4) expansion

terms have no statistical significance and are omitted. We selected νcut ≡ 1 to be consistent

with Ref. [122]; although other choices are possible, they did not affect the final fit band.

The z-expansion fit is inspired by conformal mappings developed in model-independent

form factor descriptions [145, 146] that must confront non-analytic behavior in the targeted

distribution. Given the analyticity of T π1 (ν, z2), with the exception of ν →∞, there is no

non-analytic region of T π1 (ν, z2) that is avoided by selecting νcut. In this sense, νcut does

not have a physical interpretation, and is only useful here as part of the conformal mapping

that provides a description of T π1 (ν, z2) in general terms. The corrections in (5.10) are

selected based on each being the dominant contribution of its type. For instance, model

calculations suggest spatially non-local operators are subject to volume corrections that

scale as e−mπ(L−z) [108]. The global z-expansion fit provides an excellent description of

the data with χ2/d.o.f = 1.20. Removing the corrections bi (upper panel of Tab. 5.1) from

the z-expansion result T π1 (ν, z2), one obtains the structure function T π1 (ν) in the physical

limit, which is shown by the indigo band in Fig. 5.1. The statistical error of T π1 (ν) is

estimated by the ρk covariances.

The corrections listed in the upper panel of Tab. 5.1 indeed indicate that the two-

current LCS data are most sensitive to pion mass and finite-volume effects. The lack of
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FIG. 5.1: Simultaneous and correlated z-expansion fit to the Tπ1
(
ν, z2

)
Ioffe-time pseudo-

structure function computed on the a94m278 (◦), a94m358 (�), a127m413 (?), and a127m413L
(4) ensembles. The indigo band is Tπ1 (ν) in the continuum limit, having removed the lattice
effects parameterized by the bi coefficients in Eq. 5.10. The ρk covariances are used to determine
the Tπ1 (ν) errorband. The outer dark cyan band is the result of combining the Tπ1 (ν) statistical
uncertainties in quadrature with the systematic bi uncertainties.

z2-dependence is also evident from the global fit, where the associated correction b3 is

seen to be small and consistent with zero. On the one hand, this may be taken as an

encouraging sign that the two-current LCS data are not affected by higher-twist effects.

However, the absolute lack of any z2-dependence translates into an inability to resolve the

scale dependence of these data and hence a rigorous application of DGLAP [22, 23, 24].

Other possible correction terms included in the z-expansion, such as a2, m2
π, Le−mπ(L−z),

√
Le−mπ(L−z), were also considered. Each alternate correction is given in the lower panel of

Tab. 5.1. The most important observation is the independence of the z-expansion param-

eters λk for each alternate correction. In other words, the T π1 (ν) and ultimately fqv/π (x)

determinations are unaffected by the alternate corrections considered. Furthermore, the

fitted value of each alternate correction is seen to be sub-leading to those considered in
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Correction bi λ0 λ1 λ2 λ3 λ4 χ2/d.o.f.

(mπ −mphys
π ) 0.174(96) 0.104(3) −0.006(3) −0.029(9) −0.907(404) 0.124(136) 1.20

a −0.083(43) · · · · · · · · · · · · · · · · · ·
z2 −0.0004(7) · · · · · · · · · · · · · · · · · ·
a2p2 0.007(8) · · · · · · · · · · · · · · · · · ·

e−mπ(L−z) 0.102(51) · · · · · · · · · · · · · · · · · ·

a2 −0.049(34) 0.104(3) −0.006(3) −0.028(9) −0.901(391) 0.124(135) 1.26

(m2
π −m

phys 2
π ) 0.15(12) 0.104(3) −0.006(3) −0.029(10) −0.926(388) 0.118(132) 1.18

Le−mπ(L−ξ) 0.007(3) 0.104(3) −0.006(3) −0.028(10) −0.915(402) 0.121(136) 1.22√
Le−mπ(L−ξ) 0.026(14) 0.104(3) −0.006(3) −0.029(10) −0.914(403) 0.121(136) 1.21

TABLE 5.1: (Upper panel) Fit parameters of the z-expansion fit in Eq. 5.10 where ellipses are
placeholders for the correction terms in the z-expansion fit, which all have the same λi and
χ2/d.o.f. (Lower panel) Alternative corrections supplementing the z-expansion fit of Tπ1

(
ν, z2

)
.

The alternate coefficients bk are seen to be sub-leading relative to the adopted fit, and the
z-expansion parameters are unaltered.

Eq. 5.10. We then proceed with T π1 (ν) obtained from Eq. 5.10, as the leading corrections

are the greatest sources of systematic effects.

Having obtained the continuous distribution T π1 (ν) in the physical limit, it would

seem the inverse problem we face to extract fqv/π (x, µ2) is now moot. Although tempting,

this is not valid, as it would imply our z-expansion has garnered infinite resolution in Ioffe-

time from an otherwise discrete dataset. To retain the same information content as was

in T π1 (ν, z2) across the four ensembles, we make 30 correlated and equally spaced slices of

the physical T π1 (ν) in the interval ν ∈ [0, 4.71]; this number is in accordance with the 20

points determined on the a094m278 and a094m358 ensembles. The mean and covariance

of these sampled data points are used to create 200 Gaussian pseudodata samples. We

note this multi-step analysis is performed using the ROOT [147] library. Varying the number

of derived pseudodata samples or increasing the number of T π1 (ν) slices cannot strongly

impact the fqv/π (x, µ2) fit results, because of the highly correlated T π1 (ν) data. This was

confirmed by repeating the PDF extraction now discussed.

The extraction of fqv/π (x, µ2) follows from numerically evaluating the convolution of

the NLO matching kernel (4.53) with two- and three-parameter PDF functional forms (5.5),
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and fitting these to bootstrap samples of the T π1 (ν) pseudodata:

T π1 (ν)fit =

∫ 1

0

dx KNLO
1

(
xν, z2µ2

)
fqv/π

(
x, µ2

)
. (5.11)

Because of the lack of an observed scale dependence in these data (b3 correction of Eq. 5.10),

we make the assignment z = 2a = 0.188 fm, the shortest Wilson line length in this study,

in the NLO matching kernel present in Eq. 5.11. The matched input scale in MS was

taken to be µ0 = 2 GeV, for which the three-flavor value αs (2 GeV) ' 0.303 was taken

from the LHAPDF6 library [148]. The normalization of the PDF is fixed to an appropriate

reciprocal sum of beta functions due to the sum rule
∫ 1

0
dx fqv/π (x, µ2) = 1. Since the

T π1 (ν) only exists in the limited interval ν ∈ [0, 4.71], we also supply extra physically mo-

tivated constraints {α ≤ 0, β ≤ 4} to help stabilize the fits. The constraint α < 0 reflects

the expected Regge behavior of the PDF at small-x, while β < 4 is a flexible range that

captures the pQCD expectation of β = 2 and surrounding values. A four-parameter fit

with P (x) = (1 + σ
√
x+ δx) was found to have no distinction from the three-parameter

fit, as σ ' 0. This agrees with our leading-order extraction of fqv/π
(
x, 1 GeV2

)
on the

a127m417L ensemble [119], as well as predictions from Dyson-Schwinger calculations [149]

and global fits to experimental data. Table 5.2 summarizes the fqv/π (x, µ2
0) parameters

obtained from the NLO fits to the physical T π1 (ν) structure function. A comparison is

also made with our previous fqv/π
(
x, 1 GeV2

)
result computed on the a127m417L en-

semble [119], which was obtained from a three-parameter LO fit of the T π1 (ν, z2) pseudo-

structure function. The pion valence quark PDFs associated with the parameters given in

Tab. 5.2 are illustrated in Fig. 5.2(a).



153

Nparam α β δ χ2
r

2 −0.17(7)stat(2)sys 1.24(22)stat(7)sys − 1.41
3 −0.22(11)stat(3)sys 2.12(56)stat(14)sys 4.28(1.73)stat(25)sys 1.29

3 −0.34(31)stat 1.93(68)stat 3.05(2.50)stat 2.2

TABLE 5.2: (Top panel) Results for fqv/π
(
x, µ2

0

)
using two- and three-parameter phenomeno-

logical ansätze convolved with the NLO matching kernel (4.53) at an initial scale of µ0 = 2 GeV.
The systematic uncertainty of each PDF fit parameter set is obtained by a 10% variation of
αs from the nominal three-flavor αs (2 GeV) ' 0.303 value taken from LHAPDF6 [148]. (Bottom
panel) Results of a leading order three-parameter fit to Tπ1

(
ν, z2

)
computed on the a127m417L

ensemble [119], with the PDF parameterized at an initial scale µ0 = 1 GeV. The z-expansion
was not implemented in this LO analysis, so errors are statistical only and no corrections have
been implemented.

5.2.1 Discussion of fqv/π (x) Results

The commensurate figures-of-merit shown in Tab. 5.2 between the two- and three-

parameter NLO fits to the T π1 (ν) data (5.11) limits the selection of one fit over another

based solely on the goodness of fit. The NLO analysis of the vector-axial two-current

matrix elements computed across the four ensembles, has however led to a statistically

better determined (1− x) exponent. As seen in Fig. 5.2(a), the two-parameter NLO fit

appears to favor a harder (1− x) approach to x of unity, while the three-parameter NLO

fit appears to prefer a softer approach to momentum fractions of unity.

To truly distinguish between these different large-x behaviors of fqv/π (x), data for

the T π1 (ν) ITD is required over a much larger range of Ioffe-time. This is understood

quantitatively by reconstructing the T π1 (ν) ITD by convolving the NLO kernel with the

PDFs obtained from the fits to the pseudodata samples. These reconstructed distributions,

denoted KNLO (ν, z2µ2) ⊗ fqv/π |N=param, are compared with the true T π1 (ν) distribution

in Fig. 5.2(b). The two-parameter reconstruction is seen to underestimate the uncertainty

of the physical T π1 (ν) ITD by ∼ 8 − 12% for ν > 4, and starts to deviate all together as

ν increases further. The uncertainty estimate of the three-parameter reconstruction is of
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FIG. 5.2: (a) The pion valence quark distribution obtained from fitting the convolution of
the NLO matching kernel (4.53) and two- and three-parameter PDF ansätze to the Tπ1 (ν) ITD
obtained from the z-expansion fit (5.10). The two- and three-parameter PDFs are obtained from
the NLO matching at an initial scale µ2

0 = 4 GeV2, and are given in red and green respectively.
The same PDF obtained from a three-parameter LO matching of the a127m413L Tπ1

(
ν, z2

)
at

µ2
0 = 1 GeV2 is given in cyan - error is omitted for clarity, but may be found in Ref. [119]. (b)

Comparison of Tπ1 (ν) with reconstructions from the PDF fits for 4 < ν < 5.

the same scale as the physical T π1 (ν) ITD, but is shifted slightly vertically. One can show

that for a fixed value of α in either the two- or three-parameter PDF ansätze we have

considered, the ITD will decrease more rapidly as a function of ν for smaller values of β

relative to larger values. By extrapolating the central curve of the true and reconstructed

ITDs beyond the largest Ioffe-time ν = 4.71 accessible in this calculation, it is clear were

data available up to ν ∼ 10 the T π1 (ν) ITD would then be able to discriminate between

the two- and three-parameter forms. While PDFs can minimally be described by the

xα (1− x)β functional form, encompassing the Regge theory [134] and pQCD based power

counting rules [135], the flexibility favored by modern global analyses [141, 37, 38] inform

our decision to give higher credence to the three-parameter NLO fit. The inclusion of the,

albeit simple, polynomial P (x) = 1 + δx that interpolates between the small- and large-x

regimes affords a more flexible and less biased description of the PDF.
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5.2.2 Comparison with Experiment

The valence quark PDF of the pion is known experimentally from Drell-Yan scatter-

ing of pions from fixed-target proton rich nuclei, such as platinum and tungsten. This

phenomenologically important distribution is constrained by only three experiments from

the mid- to late-1980s, two at CERN [150, 151] and most recently the E615 experi-

ment at Fermilab [152]. The shape of fqv/π (x) extracted in several analyses of the world

data [153, 154, 155, 156, 157] are mutually in tension, and contrast sharply with expecta-

tions from perturbative QCD [158]. Various model calculations exemplify this disparity,

with some favoring a harder ∼ (1− x) and others a softer ∼ (1− x)2 falloff as x → 1.

Although lattice calculations may one day unambiguously provide a first-principles res-

olution to this confusion, our goal with these calculations of fqv/π (x) is to establish the

two-current LCS formalism as a particularly effective scheme to access the collinear mo-

mentum distributions of hadrons.

To this end, we evolve our extracted PDFs in Fig. 5.2(a) from their initial scales to

µ2 = 27 GeV2, commensurate with the Fermilab E615 pionic Drell-Yan data. The evolved

PDFs are shown in Fig. 5.3, and are juxtaposed with a LO factorization [152] of the E615

data and a re-analysis of the Drell-Yan data [156] where next-to-leading-logarithmic thresh-

old soft-gluon resummation effects [121] have been included in the partonic cross section

calculation. The LO experimental analysis clearly favors a harder (1− x) approach of the

PDF to x = 1, while the resummation of soft-gluon logarithms leads to a softer (1− x)2

approach. In comparing our xfqv/π (x, µ2) results, the importance of an NLO matching of

the two-current LCS coordinate space matrix elements is evident by the observed devia-

tion of the LO three-parameter PDF from the experimental data and our NLO results.

Both the two- and three-parameter PDF forms are remarkably consistent with experi-

ment over the entire range of x when the NLO matching relationship is included. The
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FIG. 5.3: The xfqv/π
(
x, µ2

)
distributions evolved to the scale µ2 = 27 GeV2. The PDFs

resulting from the two- and three-parameter NLO analyses of the Tπ1 (ν) ITD are shown in red
and green, respectively. The three-parameter PDF obtained from the LO analysis of Tπ1

(
ν, z2

)

on the a127m413L ensemble is given in cyan. This evolution scale was chosen to facilitate a
direct comparison with a LO analysis [152] of the E615 pionic Drell-Yan data (blue points), and
a re-analysis [159] accounting for the emission of soft gluons [156] (orange points).

two-parameter xfqv/π (x, µ2) obtained at NLO favors the hard approach to x = 1, while

the three-parameter determination is in better agreement with the re-analyzed E615 data.

Regardless, our NLO determinations evolved to µ2 = 27 GeV2 are statistically consistent

with each other. Future two-current LCS calculations with a greater reach in Ioffe-time

and improved precision will hopefully lead to statistically meaningful differences between

these NLO PDF results.

A generic feature worth noting in our LO and NLO determinations is the peak in

xfqv/π (x, µ2
0) is below x = 0.5 (cf. Fig. 5.2(a)) regardless of the initial scale considered.

Furthermore, as these PDF sets are evolved to µ2 = 27 GeV2 the peak likewise shifts

towards smaller values of x and the upward concavity of each distribution in the large-x

regime increases. These observations are indicative of the dynamic gluonic content of the
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FIG. 5.4: (a) The convolution of the K(1,0) kernel with model PDFs. (b) The convolution
of the K(1,1) kernel with model PDFs. Note the green and black model PDFs are precisely
the PDF results obtained from the above global analysis of the Tπ1 (ν) ITD using the NLO
matching kernel. The respective agreement between the green and black K(1,0) and K(1,1)

convolutions reiterates Tπ1
(
ν, z2

)
data at larger values of ν are needed to discriminate these

PDF parameterizations.

pion; a conclusion borne out in global analyses and consistent with the pion existing as

the Goldstone mode associated with dynamical chiral symmetry breaking [157].

5.2.3 Stability of the NLO Matching Kernel

A considerable advantage of the short-distance factorization of LCS coordinate space

matrix elements into PDFs is the absence of large logarithmic corrections often encountered

in the conventional QCD factorization of momentum space observables. Having discussed

these details in Sec. 4.3.1, this section is dedicated to an explicit demonstration of the

stability and mild impact of the NLO coordinate space matching relationship (4.53). The

reader is directed to Ref. [120] for a useful comparison between the tree-level and one-loop

matching kernels, wherein the ratio K(1)/K(0) is visualized as an asymptotic series.

To demonstrate the effect of the NLO kernels K(1,0), K(1,1), consider their convolutions
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with model pion valence quark PDFs

K(1,i) (ν)⊗ fqv/π
(
µ2
)

=

∫ 1

0

dx

xν
K(1,i) (xν) fqv/π

(
x, µ2

)
, (5.12)

with i ∈ {0, 1}. These convolutions are visualized for four different parameterizations

of the pion valence quark PDF in Fig. 5.4(a) and Fig. 5.4(b), two of which are those

reported in Tab. 5.2 from our NLO analysis of T π1 (ν). These convolutions represent the

difference between the MS PDF and the two-current LCS matrix elements, and are seen

to be structurally quite similar but roughly opposite in sign. Each convolution reaches

an extremum around ν ∼ 5.0 and begins to decay to zero at larger values of Ioffe-time.

Evidently the NLO effects are most significant around the highest Ioffe-times available to

our calculations (ν ∼ 4.71). These convolutions demonstrate a reassuring feature of the

position space matching. By including the one-loop prefactors αs and ln (−z2µ2e2γE/4)

onto the kernels K(1,i), it is clear the full NLO term K(1) is of O (αs) over the entire

range of Ioffe-time. Furthermore, each convolution is smooth, without cusps, and does

not show any large logarithmic corrections. These behaviors are encouraging, and show

the two-current LCS formalism is not subject to large perturbative corrections and has

the potential to complement the well-established and modern state-of-the-art global fits of

PDFs.

5.2.4 Areas for Improvement in Two-current LCSs

The first and most practical means of improving the fqv/π (x) determination is to si-

multaneously analyze other current combinations that are anti-symmetric in Dirac indices.

The namesake of the lattice cross section formalism solicits an even more general scenario

where numerous current combinations, even those that access the CP-odd combination

fq+/π (x), are considered. For instance, consider a symmetric vector-vector LCS matrix
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FIG. 5.5: The Tπg
(
ν, z2

)
pseudo-structure function obtained on the a127m413 ensemble by

averaging γxγx and γyγy two-current combinations. Lack of a clear functional trend together
with a floating normalization of fq+/π (x) accessible from these current combinations, limits a
global analysis with the vector-axial currents.

element Mµν
V V (p, z) = z4 〈π (p)| J µ

V (z)J ν
V (0) |π (p)〉. With only four symmetric combina-

tions of the Lorentz structures {pµ, zµ}, the Lorentz decomposition of Mµν
V V (p, z) is given

by

Mµν
V V (p, z) =

pµpν

p2
Tpp
(
ν, z2

)
+

1

2

(pµzν + zµpν)

ν
Tpz
(
ν, z2

)
+ gµνTg

(
ν, z2

)
+
zµzν

z2
Tzz
(
ν, z2

)
.

(5.13)

The generic LO coordinate space quark matrix element (4.31) reduces in this case to

M
µν(0)
V V = −2νx

π2 sin (xν) (ν−1 [pµzν + zµpν ]− gµν). The non-trivial LO matching coefficients

Kq(0)
g

(
xν, z2

)
= −ixν

π2

(
eixν − e−ixν

)
Kq(0)
pz

(
xν, z2

)
=

2ixν

π2

(
eixν − e−ixν

)
(5.14)

follow easily and confirm the symmetric Mµν
V V (p, z) accesses fq+/π (x). A global analysis

of the vector-axial T π1 (ν, z2) and vector-vector T πg (ν, z2) pseudo-structure functions was

attempted on the a127m413 ensemble in an effort to jointly constrain fqv/π (x). This

effort was fraught with numerical instability, as both T π1 (ν, z2) and T πg (ν, z2) lack well-

determined functional behaviors, as seen in Fig. 4.6 and Fig. 5.5. Absent any algorithmic
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improvements or changes in lattice parameters, the most feasible method to improve the

fqv/π (x) determination is simply to analyze other current channels that exclusively access

this CP-even combination.

Some of these challenges are attributable to our present two-current LCS implemen-

tation, including a single measurement of the two-current matrix element per time slice,

and a limited number of temporal separations used to constrain the ground-state matrix

elements. The former is a consequence of having not performed a momentum projection,

equivalently a volume average, on the two-current operator time slice, as this would nul-

lify our ability to control the hard scale z needed for the short-distance factorization. The

dramatic scatter seen in T π1 (ν, z2) (Fig. 4.6) and T πg (ν, z2) especially for small-ν cannot

be explained by poorly constrained matrix elements. The currents implemented in these

two-current LCS results are local and introduce error of O (a). Many coordinate space

methods with local currents are known to have the most severe discretization errors when

currents are separated along lattice axes [59, 142]. By considering separations along body

or facial diagonals these discretization effects can be reduced [142]. A dedicated calcula-

tion in the freefield to more rigorously assess the impact of discretization effects in these

LCSs is a high priority for future work.

5.3 Unpolarized Nucleon PDFs from Ioffe-time

Pseudo-Distributions

As PDFs are determined phenomenologically at a factorization scale µ2 in MS to

renormalize the associated collinear divergences, the nucleon unpolarized reduced pseudo-

ITD shown in Fig 4.9 must be matched to a common scale in MS prior to any meaningful

comparisons. At one-loop and without loss of generality, negating the sign of the O (αs)
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correction and interchanging the ITD and reduced pseudo-ITD in (4.44), one obtains the

factorization relationship that matches at NLO the reduced pseudo-ITD to the ITD:

Q
(
ν, µ2

)
= M

(
ν, z2

)
+
αsCF

2π

∫ 1

0

du

[
ln

(
e2γE+1z2µ2

4

)
B (u) + L (u)

]
M
(
uν, z2

)
. (5.15)

This relationship describes the evolution of each distinct set of M (ν, z2) data of constant-

z2 to a common scale µ2 in MS. Regardless of whether the evolution and matching steps

are done separately or in one step, a smooth and continuous description of the reduced

pseudo-ITD for each z2 is required. It is common in the literature to find polynomials in

Ioffe-time fit to each set of distinct z2 data in order to build M (uν, z2) [118, 123, 114, 124].

Interpolations within a range of Ioffe-time available to a calculation are also common, and

when utilized have been found to be consistent with polynomial fits [118, 124].

A polynomial in ν is perhaps a dubious choice, as it cannot capture the correct limiting

behavior of the ITD at large-ν. To understand this, consider a simple nucleon valence PDF

ansatz

fqv/N (x) =
Γ (α + β + 2)

Γ (α + 1) Γ (β + 1)
xα (1− x)β . (5.16)

The cosine transform of this ansatz with respect to Ioffe-time (Eq. 4.40) is given by

Re Q (ν, α, β) =
πΓ (2 + α + β)

21+α+β 2F3

(
1 + α

2
,
2 + α

2
;
1

2
,
2 + α + β

2
,
3 + α + β

2
;−ν

2

4

)
,

(5.17)

with 2F3 a generalized hypergeometric function and α, β > −1. In the large Ioffe-time

regime (5.17) behaves as

Re Q (ν) ' β cos
(π

2
α
) Γ (α + 2)

να+2
− sin

(π
2
α
) Γ (α + 1)

να+1
. (5.18)

For the real component of the ITD to correspond to a valence PDF with a finite sum rule,
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the ITD must then vanish for asymptotically large-ν (i.e. α > −1). This suggests the

usefulness of a smooth polynomial in ν extends only so far as interpolating the discrete

pseudo-ITD data, and should not be used as a measure of the moments of the pseudo-

PDFs given their divergent behavior at large-ν. This motivates methods to directly extract

the PDFs from the reduced pseudo-ITD, thereby obviating the need for a continuous

description of M (ν, z2) in order to perform the evolution/matching steps. This will be

developed in Sec. 5.3.2.

To get a handle on the scale dependence of our data and ground the ensuing discussion,

we nonetheless start with a provisional sixth order polynomial fit in Ioffe-time to the

reduced pseudo-ITD for constant z2:

M
(
ν, z2

)
= 1 +

3∑

n=1

(
c2nν

2n + ic2n−1ν
2n−1

)
. (5.19)

The even (odd) powers of the polynomial are applied to jackknife samples of the real

(imaginary) component of M (ν, z2) given in Fig. 4.9. Higher order polynomials were con-

sidered, but were found to be unconstrained by the data. With the polynomial fits in hand,

we perform the evolution and scheme conversion convolutions (5.15) in a single step. The

matched MS scale µ = 2 GeV was chosen, and the strong coupling αs (2 GeV) ' 0.303 was

adopted from LHAPDF6 [148]. The scale µ = 2 GeV corresponds to the reduced pseudo-

ITD being evolved to the common distance scale z2
0 = 4e−2γE−1 (2 GeV)−2 ' 0.12 GeV−2

or z−1
0 ' 2.94 GeV. On this ensemble a094m358, this common scale then equates to

z2
0/a

2 ' 0.511. The computed evolution and scheme matching convolutions are depicted

in Fig. 5.6 for the real and imaginary components, respectively. It is curious the evolu-

tion and matching convolutions appear to be nearly equal in magnitude but opposite in

sign. This feature of the pseudo-distributions has been observed in independent calcula-

tions [123, 124] and hints that an NNLO matching relation may not be needed.
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FIG. 5.6: Convolutions needed to evolve (upper) and match (lower) the reduced pseudo-ITD to
a common scale of 2 GeV in MS. The real and imaginary convolutions are shown at the left and
right, respectively. The NLO prefactor αsCF /2π is included in these data, but omitted from
the labels for clarity. The convolutions were performed up to z/a = 16, but data for z/a > 9
are generally noisy and not shown.

When the scale and scheme conversion are incorporated, we observe in Fig. 5.7 a

dramatic collapse of the reduced pseudo-ITD onto a common curve for z/a . 10. The lack

of residual z2-dependence is particularly striking in the real component of the ITD, but less

so in the imaginary component. This confirms the formation of the reduced ratio (4.43)

indeed cancels much of the z2-dependence in the pseudo-ITD, with any remaining at small-

z2 ideally described by the coordinate-space DGLAP evolution [109].

5.3.1 PDF Extractions from ITDs

The effort spent evolving the reduced pseudo-ITD data to a common scale allows the

simple Fourier transform relating the ITD and PDF (4.40) to be invoked. Of course the

PDF defined in terms of the ITD fa/h (x, µ2) = (2π)−1 ∫∞
−∞ dνe

−iνxQ (ν, µ2) remains an

ill-posed inverse. Regularization of the inverse problem at this stage with a PDF ansatz is

however cheap and numerically stable relative to a direct matching to the reduced pseudo-

ITD.
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FIG. 5.7: The real (left) and imaginary (right) components of the unpolarized ITD at a scale
of 2 GeV in MS obtained from the matching relation (5.15) applied to polynomial fits of the
reduced pseudo-ITD data. Data is shown for Wilson line extents z/a ≤ 12 - Wilson lines of
z/a > 12 are considerably uncertain, and thus excluded from our ensuing analysis.

To form a backdrop for the PDF extraction methods we consider, simple two- and

three-parameter PDF parameterizations (Eq. 5.5 and 5.6) are our starting point. In the

three-parameter case, we take P (x) = 1 + δx. The cosine/sine transforms of these PDF

forms are fit to the real/imaginary ITD data using first an uncorrelated least-squares

regression

χ2 =
νmax∑

νmin

[Q (ν, µ2)−Qfit (ν, µ2)]
2

σ2
Q

, (5.20)

with σ2
Q the variance of the ITD, and {νmin, νmax} representing potential cuts on the data.

These uncorrelated fits include all z/a ∈ {1, · · · , 12} and apz ∈ {1, · · · , 6} × 2π/L. For

ease of later reference, this method of extraction is denoted type-C. The fits to the real and

imaginary components of the ITD are shown in Fig. 5.8(a) and Fig. 5.9(a). The resulting

valence and plus quark PDFs are juxtaposed with phenomenological determinations in

Fig. 5.8(b) and Fig. 5.9(b). The phenomenological PDFs are three flavor NLO determina-

tions by the CJ (CJ15nlo) [132] and JAM (JAM20-SIDIS PDF proton nlo) [160] collabo-

rations, and three flavor NNLO determinations of MSTW (MSTW2008nnlo68cl nf4) [161]
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FIG. 5.8: (a) Real component of the matched ITD at µ = 2 GeV in MS fit by cosine transforms
of two- and three-parameter model PDFs (Eq. 5.5). Data have been fit for z/a ≤ 12, and
correlations have been neglected. The resulting PDF parameters and figure of merit are gathered
in Tab. 5.3. (b) The two- and three-parameter PDF parameterizations are compared with four
phenomenological determinations (noted in text) at the same scale.

Nparam Nv/+ α β γ δ χ2
r

2 – −0.006(98) 2.754(285) − − 2.183(483)
3 – 0.019(98) 2.212(291) − −0.737(12) 2.192(490)

2 3.616(2.260) −0.077(275) 2.983(606) − − 2.780(806)

TABLE 5.3: Unpolarized nucleon valence and plus quark PDF parameters obtained from per-
forming uncorrelated cosine/sine transform fits to the real/imaginary component of the matched
ITD at 2 GeV in MS. Results for the plus quark PDF are only shown for Nparam = 2, where
the smooth polynomial P (x) = 1, as higher numbers of parameters led to uncontrolled fits.
The uncorrelated figure of merit is also shown.

and NNPDF (NNPDF31 nnlo pch as 0118 mc 164) [38].

Apart from the z/a ≥ 9 data, such an uncorrelated fit would seem to well describe the

Re Q (ν, µ2) data and lead to valence PDFs that feature many structural similarities with

phenomenological determinations at the same scale. The statistically consistent figure of

merit for the two- and three-parameter fits tabulated in Tab. 5.3, however indicates the

data cannot distinguish between these models. The two-parameter fit to Im Q (ν, µ2) is
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FIG. 5.9: (a) Imaginary component of the matched ITD at µ = 2 GeV in MS fit by a sine
transform of a two-parameter model PDF (Eq. 5.6). Data has been fit for z/a ≤ 12, and cor-
relations have been neglected. The resulting PDF parameters and figure of merit are gathered
in Tab. 5.3. (b) The two-parameter PDF parameterization is compared with four phenomeno-
logical determinations (noted in text) at the same scale.

clearly more heavily constrained by the z/a . 7 data, and all but avoids points of the ITD

originating from larger separations. Above x ∼ 0.4 the extracted fq+/N (x, µ2)
n=2
C result

likewise shares structural similarities with the shown phenomenological results. The lack

of any large-ν constraint provided by Im Q (ν, µ2) entails a generally unconstrained fitted

PDF in the small-x regime, although this relation is not bijective.

5.3.2 Direct Extraction of PDFs from Reduced Pseudo-ITDs

A separate, though in principle equivalent, route to extract PDFs from these data is

to directly apply the factorized relationship (4.44) having substituted the definition of the

ITD:

M
(
ν, z2

)
=

∫ 1

−1

dx

∫ 1

0

du C
(
u, z2µ2, αs

(
µ2
))
eixνfq/N

(
x, µ2

)
+
∞∑

k=1

Bk (ν)
(
z2
)k
. (5.21)
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By assuming a PDF parameterization and performing a maximum likelihood regression

of the double convolution and M (ν, z2), the introduction of additional systematic errors

from the evolution/matching steps and a potentially incorrect functional description of

M (ν, z2) when interpolating its ν-dependence (e.g. Eq. 5.19) can all be avoided. The

direct matching relationship between the PDFs and the reduced pseudo-ITD is given by




Re

Im





M
(
ν, z2

)
=

∫ 1

0

dx




Kv (xν, z2µ2) fqv/N (x, µ2)

K+ (xν, z2µ2) fq+/N (x, µ2)





+
∞∑

k=1

Bk (ν)
(
z2
)k
, (5.22)

where the one-loop kernels that match the {x, µ2}-dependencies of the valence/plus quark

PDFs to the reduced pseudo-ITD are given by

Kv

(
xν, z2µ2

)
= cos (xν)− αsCF

2π

[
ln

(
e2γE+1z2µ2

4

)
B̃v (xν) + D̃v (xν)

]
(5.23)

K+

(
xν, z2µ2

)
= sin (xν)− αsCF

2π

[
ln

(
e2γE+1z2µ2

4

)
B̃+ (xν) + D̃+ (xν)

]
, (5.24)

with the Altarelli-Parisi and scheme matching kernels modified to

B̃v (y) =
1− cos (y)

y2
+

3− 4γE
2

cos (y) + 2 sin (y)
ySi (y)− 1

y
+ 2 cos (y) [Ci (y)− ln (y)]

B̃+ (y) = −sin (y) + y

y2
+

3− 4γE
2

sin (y)− 2 cos (y)
ySi (y)− 1

y
+ 2 sin (y) [Ci (y)− ln (y)]

D̃v (y) = −4yIm
[
eix 3F3 (111; 222;−iy)

]
+ cos (y)

(
1 + 2/y2

)
− 2/y2

D̃+ (y) = 4yRe
[
eix 3F3 (111; 222;−iy)

]
+ sin (y)

(
1 + 2/y2

)
− 2/y,

and Si (y) /Ci (y) are the integral sine/cosine functions and 3F3 (111; 222;−iy) is a gen-

eralized hypergeometric function [162, 115]. A notable challenge of this direct approach

is the multi-precision arithmetic and computational efficiency required for sufficient and

timely convergence of the generalized hypergeometric function. PDFs extracted by directly
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N = 2v/+ Nv/+ α β χ2
r

2v – −0.030(96) 2.601(277) 7.364(761)
2+ 5.131(3.405) 0.091(299) 3.244(638) 4.536(902)

TABLE 5.4: Unpolarized nucleon valence and plus quark PDF parameters obtained from type-K
fits to the real/imaginary component of M

(
ν, z2

)
.

performing parametric fits (5.22) to the reduced pseudo-ITD data are denoted type-K.

Simple two-parameter PDFs obtained from uncorrelated type-K fits are shown in

Fig. 5.10(a) and Fig 5.10(b), together with the same phenomenological determinations

and the uncorrelated type-C two-parameter PDF fits. Visually the type-C and type-K

fits are statistically consistent. This is confirmed by comparing the type-K fit results in

Tab. 5.4 to the type-C results in Tab. 5.3. However, the central values of the type-K

fits suggest that at small-x the fqv/N (x) is more divergent and the fq+/N (x) is instead

convergent for small-x at the scale µ = 2 GeV. The factor of two or three increase in
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FIG. 5.10: Two-parameter valence (a) and plus (b) quark PDFs resulting from type-C (red)
and type-K (indigo) fits to the unpolarized nucleon ITD and reduced pseudo-ITD, respectively.
The direct matching fits are consistent with the cosine/sine transform of the model PDF fit to
the ITD.
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the figure of merit when switching from type-C to type-K fits is the first indication of

puzzling behavior in M (ν, z2). We reiterate that the naive two-parameter fits capture the

known limiting regimes of the PDFs. The poor figures of merit in the type-K fits hint that

M (ν, z2) at this stage apparently does not align well with expectations from the direct

matching (5.22). This is a potentially disastrous conclusion. To gain some insight, we now

consider the data correlations.

Data Correlation

The data featured in this and indeed any lattice calculation naturally are correlated.

By beginning this subsection with uncorrelated fits, we highlight that without knowledge

or through the simple neglect of data correlations, which appears to be common in the

literature, one might incorrectly assume an adequate description of the data has been

achieved. These correlations must be taken into account in order to provide a rigorous

accounting of mutual fluctuations in the data and thus an agnostic PDF determination.

Simply repeating the two-parameter fit to ReQ (ν, µ2), only this time accounting

for the data covariance, we arrive at a much different conclusion shown in Fig. 5.11(a).

The visual discrepancy between the ITD and two-parameter fit is stark, and leads to a

correlated χ2/d.o.f ∼ O (40). Although the fit misses nearly all of the moderate to large-z

points, Fig. 5.11(b) illustrates that the large increase in the figure of merit is primarily due

to the slight deviation from the very precise z/a . 4 data. Visualizing the data covariance

in the real component in Fig. 5.12(a), it is clear the low-momentum data apz ≤ 4π/L are

strongly correlated amongst each other and correlate weakly with the apz ≥ 8π/L data;

some mild correlation is visible with the apz = 6π/L data with z/a ≤ 6. Within the

apz ≤ 4π/L channels the strongest correlation can be found in the shortest Wilson line

data. These observations provide an explanation for the poor correlated two-parameter fit

in Fig. 5.11(a) - the strongest correlation is with the most precise data in our calculation
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causing any correlated fit to favor the small-ν data. Indeed strong correlation is also

observed amongst the momentum channels apz = {4, 5, 6}× 2π/L, but the signal-to-noise

degradation for these high-momentum data minimizes their effect on any fit. It is curious

this delineation corresponds to the transition from an unphased to phased eigenvector

basis. The data covariance in the imaginary component, shown in Fig. 5.12(b), shows the

strongest correlations within each momentum channel and between adjacent Wilson line

lengths (e.g. z/a = 4 and z/a = 5). It is then no surprise a correlated two-parameter

PDF parameterization of Im Q (ν, µ2) is also met with a poor figure of merit. The non-

trivial structures of correlation evident in these data are indicative of our simple PDF

parameterizations (5.5) and (5.6) being inappropriate for these data. The above puzzling,

and indeed worrisome, conclusions are given a deeper quantitative understanding in the

following subsections.
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FIG. 5.11: (a) Real component of the matched ITD at µ = 2 GeV in MS fit by the cosine
transform of a two-parameter model PDF (5.5). Data has been fit for z/a ≤ 12 and data
correlations have been incorporated. The fit clearly misses each point of the ITD. The derived
CJ15 ITD at the same scale is shown for reference. (b) The same as panel (a), but with focus
given to the small-ν region. The correlated two-parameter fit is seen to deviate appreciably
from the precise small-ν data.
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FIG. 5.12: Data covariance in the real (left) and imaginary (right) components of the matched
ITD at 2 GeV, normalized according to Covij/

√
CoviiCovjj . Within each lattice momentum

block, entries are ordered in ascending Wilson line lengths.

5.3.3 Nucleon PDFs from Reduced Pseudo-ITDs Parameterized

with Jacobi Polynomials

Our strategy to parameterize the reduced pseudo-ITD using a set of Ω
(α,β)
n (x) will be

met by similar numerical difficulties as the type-K fits discussed above. The numerical

effort is lessened by considering a Taylor series expansion in ν for fixed separations z2 of

the direct matching kernels Kv/+ (xν, z2µ2) and Eq. 5.9. The contribution of an nth-order

Jacobi polynomial Ω
(α,β)
n (x) to Re M (ν, z2) and Im M (ν, z2) is given by

σ(α,β)
n

(
ν, z2µ2

)
≡
∫ 1

0

dx Kv

(
xν, z2µ2

)
xα (1− x)β Ω(α,β)

n (x)

η(α,β)
n

(
ν, z2µ2

)
≡
∫ 1

0

dx K+

(
xν, z2µ2

)
xα (1− x)β Ω(α,β)

n (x) .
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Expanding the direct matching kernels Kv/+ (xν, z2µ2) in even/odd powers of ν one finds

σ(α,β)
n

(
ν, z2µ2

)
=

n∑

j=0

∞∑

k=0

(−1)k ν2k

(2k)!
c2k

(
z2µ2

)
ω

(α,β)
n,j B (α + 2k + j + 1, β + 1) (5.25)

η(α,β)
n

(
ν, z2µ2

)
=

n∑

j=0

∞∑

k=0

(−1)k ν2k+1

(2k + 1)!
c2k+1

(
z2µ2

)
ω

(α,β)
n,j B (α + 2k + j + 2, β + 1) , (5.26)

with ω
(α,β)
n,j given in Eq. 5.8 and where

cn
(
z2µ2

)
= 1− αsCF

2π

[
γn ln

(
e2γE+1

4
z2µ2

)
+ dn

]
. (5.27)

The constants γn and dn are the leading order moments of the Altarelli-Parisi and scheme

matching kernels

γn =

∫ 1

0

du B (u)un =
3

2
− 1

1 + n
− 1

2 + n
− 2

n∑

j=1

1

j
(5.28)

dn =

∫ 1

0

du L (u)un = 2



(

n∑

j=1

1

j

)2

+
2π2 + n (n+ 3) (3 + π2)

6 (n+ 1) (n+ 2)
− ψ(1) (n+ 1)


 (5.29)

derived in Ref. [163], with ψ(1) the order-1 polygamma function. The sum over k is to be

performed to assure convergence for a given value of ν - we have identified kmax = 75 as

providing more than adequate numerical precision, in reasonable computation time. With

the above definitions, the leading-twist valence and plus quark PDFs describe the reduced

pseudo-ITD components according to

ReMlt
(
ν, z2

)
=
∞∑

n=0

σ(α,β)
n

(
ν, z2µ2

)
C lt (α,β)

v,n ImMlt
(
ν, z2

)
=
∞∑

n=0

η(α,β)
n

(
ν, z2µ2

)
C
lt (α,β)
+,n ,

(5.30)

where the C
lt (α,β)
v/+,n are the Jacobi polynomial expansion coefficients.

The reduced pseudo-ITD is subject to discretization errors that vanish in the contin-



173

uum limit, and higher-twist effects that survive the continuum limit. A reliable determi-

nation of the leading-twist PDF in the continuum then depends on parameterization and

removal of these effects. As the Fourier transform in ν of the reduced pseudo-ITD only has

support on the momentum fraction interval x ∈ [−1, 1] [110], any contaminating effects

must also have support only in this interval and can be parameterized by the same basis

of Jacobi polynomials. Any corrections by construction must be functions of ν2 in the real

component, and ν in the imaginary component. Since the space-like matrix element (4.58)

is on-shell, at a single lattice spacing we may account for contaminating discretization and

higher-twist effects of O (a/z) and O
(
z2Λ2

QCD

)n
. The latter are the expected polynomial

corrections to the Wilson line LCS factorization (4.44), while the discretization correction

should scale based on parity. Namely, the real (imaginary) component of M (ν, z2) is even

(odd) in z, so any discretization effect should behave in this manner as well. We will find

this to be especially subtle in our data, motivating the present designation of O (a/z).

The contaminating x-space distributions are of the same form in (5.9) with distinct

expansion coefficients. The coefficients of the corrections are denoted C
corr (α,β)
τ,n with τ =

{v,+} indicating whether the effect arises in the valence/plus quark PDFs. The choice of

basis {α, β} in (5.30) may equally be utilized to quantify these distributions. Supposing,

for simplicity, these effects enter at tree-level, their contributions to the reduced pseudo-

ITD signals with σ
(α,β)
0,n ≡ σ

(α,β)
n (ν, z2µ2) |αs=0 and η

(α,β)
0,n ≡ η

(α,β)
n (ν, z2µ2) |αs=0 are then

Re Mcorr
(
ν, z2

)
= κcorr

∞∑

n=1

σ
(α,β)
0,n Ccorr (α,β)

v,n (5.31)

Im Mcorr
(
ν, z2

)
= κcorr

∞∑

n=0

η
(α,β)
0,n C

corr (α,β)
+,n , (5.32)

where κcorr is a dimensionless parameter constructed from the dimensionful parameters of

the calculation which describes the scaling of each correction (e.g. κcorr = a/z). Visualizing
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FIG. 5.13: The eight lowest-order σ
(α,β)
0,n (left) and η

(α,β)
0,n (right) polynomials for an arbitrarily

chosen basis α = 0.125 and β = 2.85. Each polynomial features an extremum in a range of
Ioffe-time accessible in our lattice calculation, and asymptotically approaches zero for ν →∞.

the Taylor-expanded matching kernels (5.25) and (5.26) at tree-level across a range of

Ioffe-times in Fig. 5.13, it is seen the polynomials σ
(α,β)
0,n , η

(α,β)
0,n reach an extremum in

Ioffe-time commensurate with the polynomial order and asymptotically approach zero.

This conveniently reflects the correct large-ν behavior of the ITD in the same limit (see

Eq. 5.18). Since M (0, z2) = 1 by construction, all corrections must vanish at zero Ioffe-

time. Of the Jacobi polynomial expanded corrections, only σ
(α,β)
0,0 (0) 6= 0 (blue curve in

left panel of Fig. 5.13). The corrections to the real component of M (ν, z2) (5.31) must

then be restricted to order n ≥ 1.

The complete functional forms we apply to each component of M (ν, z2) are:

ReMfit

(
ν, z2

)
=
∞∑

n=0

σ(α,β)
n

(
ν, z2µ2

)
C lt (α,β)

v,n +
(a
z

) ∞∑

n=1

σ
(α,β)
0,n (ν)Caz (α,β)

v,n (5.33)

+ z2Λ2
QCD

∞∑

n=1

σ
(α,β)
0,n (ν)Ct4 (α,β)

v,n + z4Λ4
QCD

∞∑

n=1

σ
(α,β)
0,n (ν)Ct6 (α,β)

v,n

ImMfit

(
ν, z2

)
=
∞∑

n=0

η(α,β)
n

(
ν, z2µ2

)
C
lt (α,β)
+,n +

(a
z

) ∞∑

n=0

η
(α,β)
0,n (ν)C

az (α,β)
+,n (5.34)

+ z2Λ2
QCD

∞∑

n=0

η
(α,β)
0,n (ν)C

t4 (α,β)
+,n + z4Λ4

QCD

∞∑

n=0

η
(α,β)
0,n (ν)C

t6 (α,β)
+,n .
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The leading-twist (C lt
τ,n) and discretization (Caz

τ,n) corrections are accompanied by twist-4

(Ct4
τ,n) and twist-6 (Ct6

τ,n) corrections. The twist-6 corrections will almost certainly not be

constraining, as their effect will be large beyond the range of Ioffe-time for which we have

statistically clean data (ν ∼ 10); they are included nonetheless for exploration purposes.

We note that higher-twist corrections in a lattice calculation must arise in even powers of

z, as odd powers are not hypercubic invariants.

In the fits we perform according to (5.33) and (5.34), we elect to fix the order of

truncation for the leading-twist and each type of correction, and numerically search for

the optimal {α, β, Ccorr
τ,n }. Treating each fitted parameter as non-linear in a maximum

likelihood fit leads to wildly unstable results. The way forward is to recognize that α, β

are the only fitted parameters that are truly non-linear; the correction coefficients Ccorr
τ,n

are all linear. A maximum likelihood fit of the posterior distribution of the linear terms

is then Gaussian and cheap to obtain. It is worth digressing for a moment to discuss

separable minimization problems, and a specific algorithm for their solution.

Variable Projection

Extremization of a posterior distribution of a correlated data set conventionally pro-

ceeds by minimizing the correlated χ2 defined according to

χ2 =
∑

ij

(
yi −

∑

k

ckφk (xi)

)
Cov−1

ij

(
yj −

∑

k

ckφk (xj)

)
, (5.35)

where yi is the dependent data sampled at xi, and a linear combination of basis functions

φk defines the model function:
∑

k ckφk (xi). As the parameters {ci} appear linearly, for

a given set of non-linear parameters the {ci} can be determined by solving a linear least-

squares regression - a numerically cheap task. This separation of linear and non-linear

parameters and the variable projection (VarPro) algorithm as a method for its solution,
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was first shown analytically by G. Golub and V. Pereyra [164]. The linear variables

{ci} are solved for exactly by extremizing the functional (5.35) with respect to these

linear variables. As the data covariance matrix Cov is symmetric by construction, from

∂χ2/∂cl = 0 it follows

∑

ij

(
yiCov−1

ij φl (xj) + φl (xi) Cov−1
ij yj

)
=
∑

ij

∑

k

{φk (xi) Cov−1
ij φl (xj) + φl (xi) Cov−1

ij φk (xj)}ck

2
∑

ij

yiCov−1
ij φl (xj) = 2

∑

k

∑

ij

φk (xi) Cov−1
ij φl (xj) ck.

Defining the vector Yi =
∑

ij yiCov−1
ij φl (xj) and matrix Φkl =

∑
ij φk (xi) Cov−1

ij φl (xj), a

solution for Ci = ci becomes apparent:

Y = ΦC ⇒ C = Φ−1Y. (5.36)

Upon substitution of (5.36) into (5.35), the linear parameters may be swapped for the

non-linear basis functions φk as follows

χ2 =
∑

ij

yiCov−1
ij yj −

∑

k

∑

ij

yiCov−1
ij φk (xj) ck −

∑

k

ck
∑

ij

φk (xi) Cov−1
ij yj

+
∑

k

ck
∑

m

∑

ij

φk (xi) Cov−1
ij φm (xj) cm

= yTCov−1y −YTC−
∑

k

ck
∑

ij

yjCov−1
ji φk (xi) + CTΦC

= yTCov−1y − 2YTC + CTΦC

= yTCov−1y − 2YTΦ−1Y + YT
(
Φ−1

)T
ΦΦ−1Y

= yTCov−1y −YT
(

2Φ−1 −
(
Φ−1

)T)
Y. (5.37)
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This result implies the dimensionality of an optimization in both linear and non-linear

parameters can be reduced dramatically by solving exactly for the linear parameters,

effectively removing them from the problem.

This result is generalized trivially in the event the linear parameters {ck} are con-

strained. Suppose Bayesian priors of a Gaussian form are imposed for each ck. The

unconstrained functional (5.35) is then modified as

χ2 = χ2
unconstrained +

∑

k

(ck − ck)2

σ2
ck

, (5.38)

where ck and σck are the prior and prior widths, respectively, of the linear parameters ck.

Repeating the extremization exercise above, one finds

∂χ2
unconstrained

∂cl
= −2 (cl − cl)

σ2
cl

∑

ij

(
yiCov−1

ij φl (xj) + φl (xi) Cov−1
ij yj

)
=
∑

ij

∑

k

{
φk (xi) Cov−1

ij φl (xj)

+φl (xi) Cov−1
ij φk (xj)

}
ck +

2 (cl − cl)
σ2
cl

∑

ij

yiCov−1
ij φl (xj) =

∑

k

∑

ij

φl (xi) Cov−1
ij φk (xj) ck +

(cl − cl)
σ2
cl

Yl = ΦlkCk +
cl
σ2
cl

(
1

cl
Cl − 1l

)

Yl +
cl
σ2
cl

1l =

(
Φlk +

1

σ2
cl

δlk

)
Ck. (5.39)

As in the unconstrained case, the linear parameters are obtained by solving C = Φ̃−1Ỹ,

where Ỹl =
(
Yl + cl

σ2
cl

)
and Φ̃lk =

(
Φlk + 1

σ2
cl

δlk

)
. Thus Eq. 5.38 with normally distributed

Bayesian priors can be re-expressed in terms of the non-linear basis functions via

χ2 = yTCov−1y − Ỹ

(
2Φ̃−1 −

(
Φ̃−1

)T)
Ỹ +

∑

k

c2
k

σ2
ck

. (5.40)
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The reader is reminded that the final terms
c2k
σ2
ck

∈ R, and are not varied in the optimization.

PDF Results with Jacobi Polynomials and VarPro

The reduced pseudo-ITD fits of Eqns. 5.33 and 5.34 are implemented with the help

of VarPro. This reduces the dimension of the non-linear optimization from d = Ncorr + 2

to d = 2, where Ncorr are the number of linear correction coefficients. In our case,

minimization is performed in the d = 2 Jacobi polynomial basis {α, β}, and any cor-

rection terms C
corr(α,β)
τ,n are solved for exactly in terms of the non-linear basis functions

{σ(α,β)
n , σ

(α,β)
0,n , η

(α,β)
n , η

(α,β)
0,n }. We note without VarPro, optimizations with Ncorr ≥ 4 were

numerically unstable, regardless of the type of correction included in the model.

Care needs to be taken as correction terms are included in Eqns. 5.33 and 5.34, as

physical insight can quickly be replaced with over-fitting. The first sensible restriction

to impose is for all x-space corrections O (a/z), O
(
z2Λ2

QCD

)
and O

(
z4Λ4

QCD

)
to be sub-

leading relative to the leading-twist PDF. It would be alarming to obtain, say, a twist-

4 contribution that is larger than the leading-twist PDF, given that the short-distance

factorization of the pseudo-distributions implies leading-twist dominance. Such disastrous

scenarios are avoided with several Bayesian constraints of a Gaussian form. So as to allow

the reduced pseudo-ITD to dictate the best fit results, all Bayesian priors are fixed to zero.

The hierarchy we desire is realized with the following prior widths:

• Leading-twist: δC
lt(α,β)
τ,0 = 1.1, δC

lt(α,β)
τ,1 = 0.75, δC

lt(α,β)
τ,2 = 0.5, δC

lt(α,β)
τ,3 = 0.25,

δC
lt(α,β)
τ,4 = 0.125, δC

lt(α,β)
τ,5 = 0.1, δC

lt(α,β)
τ,6 = 0.05, δC

lt(α,β)
τ,7 = 0.025

• Corrections: δC
corr(α,β)
τ,n∈Z3

= 0.25, δC
corr(α,β)
τ,n=3,4,5 = 0.125, δC

corr(α,β)
τ,n=6,7 = 0.1.

The validity of the entire Jacobi polynomial parameterization is guaranteed using shifted

log-normally distributed priors to ensure α, β > −1. In practice, the log-normal prior on

beta is shifted to β = 0 to secure β > 0 and hence convergent PDFs at x = 1.
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FIG. 5.14: Parameter covariances in Jacobi polynomial fits with [nlt, naz, nt4, nt6] = [6342] to
the real (left) and imaginary (right) components of the unpolarized reduced pseudo-ITD for
z/a ≤ 12. Entries are normalized according to Covij/

√
CoviiCovjj .

As leading-twist and correction terms are added, the question becomes at which order

each series of Jacobi polynomials should be truncated. We address this by scanning over

all possible combinations of truncation orders for nlt ∈ {3, 4, 5, 6}, naz ∈ Z4, nt4 ∈ Z5,

nt6 ∈ Z3, where n∗ are the orders of truncation in the fits (5.33) and (5.34). Figure 5.14

illustrates, for a rather large number of Jacobi polynomials {nlt, naz, nt4, nt6} = {6, 3, 4, 2},

the covariances of α, β and each linear correction term C
corr(α,β)
τ,n in fits to the real (5.33)

and imaginary (5.34) reduced pseudo-ITD components for Wilson line lengths z/a ≤ 12.

The covariance of each pair of fitted parameters is estimated via jackknife resampling

Covij '
N − 1

N

N∑

n=1

(
fn,i − f̄i

) (
fn,j − f̄j

)
, (5.41)

where fit parameters associated with jackknife sample n are denoted by fn,k, with jackknife

average f̄k. Without observing the quality of agreement between each fit and the reduced

pseudo-ITD, it is clear several parameters correlate weakly or not at all with other param-
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eters in the fit. This implies these weakly correlated parameters are not well-constrained

by the data, and their removal will not affect the information content of the fit. For in-

stance, the real component fit parameter covariances, shown in Fig. 5.14(a), suggest the

leading-twist expansion coefficients C lt
nlt

are constrained by the data for nlt ≤ 3, while

C lt
4 , C

lt
5 weakly correlate with the remaining parameters. The discretization, twist-4 and

twist-6 corrections exhibit mild correlation for Caz
1 , Ct4

2 , C
t4
3 , C

t6
1 , with the remaining cor-

rection parameters largely unconstrained. In the imaginary component, the fit parameter

covariances shown in Fig. 5.14(b) suggest a more nuanced pattern of correlation. Sev-

eral leading-twist Jacobi polynomials appear to be well-constrained by the data, while the

relative correlation between the Caz and Ct4, Ct6 parameters is increased relative to the

corresponding entries in Fig. 5.14(a).

This exercise demonstrates an important point. Although the VarPro implementa-

tion of the Jacobi polynomial fits allows for arbitrarily many leading-twist and correction

coefficients, the reduced pseudo-ITD data simply do not contain enough information to

constrain so many parameters. One should then expect that the likelihood function is max-

imized for the real component of the reduced pseudo-ITD with truncation orders nlt ∼ 3

and naz ∼ 1− 2, and nlt ∼ 3 and naz ∼ 3 for the imaginary component.

By scanning over the order of truncation for the leading-twist and correction terms

parameterized by Jacobi polynomials, we find the likelihood of the functional (5.33) to de-

scribe Re M (ν, z2) with z/a ≤ 12 to be maximized for {nlt, naz, nt4, nt6}v = {4, 1, 3, 2}v.

Likewise, the likelihood of the functional (5.34) to describe Im M (ν, z2) with z/a ≤ 12

is maximized for {nlt, naz, nt4, nt6}+ = {3, 3, 1, 0}+. The fit results for each and their

respective figures-of-merit are given in Tab. 5.5. The Jacobi polynomial fits of orders

{nlt, naz, nt4, nt6}v = {4, 1, 3, 2}v and {nlt, naz, nt4, nt6}+ = {3, 3, 1, 0}+ applied to the real

and imaginary components of M (ν, z2) are presented in Fig. 5.15 and Fig. 5.18, respec-

tively.
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{nlt, naz , nt4, nt6}v/+ {4, 1, 3, 2}v {4, 0, 3, 2}v {3, 3, 1, 0}+ {3, 0, 1, 0}+ {6, 3, 4, 2}v {6, 3, 4, 2}+
α −0.209(147) −0.376(37) −0.328(20) −0.331(31) −0.264(117) −0.326(20)
β 1.330(415) 2.032(496) 2.361(243) 3.227(297) 1.438(404) 2.051(260)

Cltτ,0 1.606(257) 1.340(165) 2.041(108) 1.156(83) 1.489(213) 1.954(107)

Cltτ,1 0.427(752) 0.335(261) 0.123(248) 0.161(243) 0.174(620) 0.404(213)

Cltτ,2 −0.880(409) −0.125(100) −0.464(121) 0.700(98) −1.002(301) −0.241(118)

Cltτ,3 −0.675(122) −0.651(140) − − −0.568(118) −0.018(79)

Cltτ,4 − − − − 0.089(28) 0.020(27)

Cltτ,5 − − − − 0.020(12) −0.023(10)

Cazτ,0 − − −0.001(43) − − 0.054(35)

Cazτ,1 −0.279(48) − −0.338(39) − −0.226(53) −0.219(46)

Cazτ,2 − − 0.434(74) − 0.209(67) 0.283(67)

Cazτ,3 − − − − −0.164(48) −
Ct4τ,0 − − 0.170(28) 0.391(46) − 0.185(47)

Ct4τ,1 0.052(53) −0.090(52) − − 0.060(50) 0.032(68)

Ct4τ,2 −0.371(106) −0.112(77) − − −0.341(93) −0.200(79)

Ct4τ,3 −0.407(122) 0.274(99) − − −0.397(131) 0.076(29)

Ct4τ,4 − − − − 0.088(30) −
Ct6τ,0 − − − − − −0.067(34)

Ct6τ,1 −0.045(37) 0.011(39) − − −0.045(36) −0.079(53)

Ct6τ,2 0.228(52) 0.397(84) − − 0.227(53) −
χ2
r 2.620(345) 45.68(1.72) 2.845(387) 123.16(2.73) 2.809(374) 3.110(431)

TABLE 5.5: Various Jacobi polynomial fits to the real and imaginary components of the unpo-
larized reduced pseudo-ITD for z/a ≤ 12. Each column represents distinct orders of truncation
in the Jacobi polynomial expansions to the leading-twist, discretization, twist-4 and twist-6 cor-
rections. The real and imaginary component fits were found to have the highest likelihoods of
describing the data with truncation orders {4, 1, 3, 2}v and {3, 3, 1, 0}+, respectively. The dra-
matic effect even a single discretization term has on each fit is shown in the columns {4, 0, 3, 2}v
and {3, 0, 1, 0}+.

Considering first the real component fit, each set of Re M (ν, z2) for z/a ≤ 8 are well

represented by the expansion in Jacobi polynomials. The main exception is the highest

momentum point pz = 6 × (2π/aL) ∼ 2.47 GeV. The Re M (ν, z2) data for z/a > 8

are also well represented, however the highest two momenta are seen to deviate. This

behavior is not surprising despite the twist-4 and twist-6 corrections, which capture large-

z2 deviations, as the highest momentum data are subject to loss of signal in both the two-

and three-point functions. The associated fit parameter covariances shown in Fig. 5.16(a)

demonstrate the leading-twist, discretization and twist-4 corrections are well constrained

by the Re M (ν, z2) data; as expected, the twist-6 corrections are only weakly constrained.

The resultant leading-twist PDF fqv/N (x) and x-space distributions corresponding to
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FIG. 5.15: Fit to the real component of the unpolarized reduced pseudo-ITD where the leading-
twist, discretization, twist-4, and twist-6 corrections have been expanded in Jacobi polynomials
up to order {nlt, naz, nt4, nt6}v = {4, 1, 3, 2}v. Starting from the upper left panel and traversing
horizontally, the leading-twist plus corrections are shown for each z/a ≤ 12.

the {nlt, naz, nt4, nt6}v = {4, 1, 3, 2}v Jacobi polynomial fit are gathered in Fig. 5.17(b).

As expected, the corrections in x-space are sub-leading to the leading-twist PDF. The

Jacobi-parameterized leading-twist PDF, however, features many structural differences

with the included phenomenological PDFs and the uncorrelated two-parameter PDF fit

from Sec. 5.3.1. Most evident is the softer approach to x = 1. Due to the valence quark

sum rule, this enhances the low- to moderate-x region and leads to further tension with

the phenomenological results. By evaluating the cosine transform of the pure leading-

twist component, we see in Fig. 5.17(a) that the z/a & 7 ITD data deviate successively
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FIG. 5.16: Parameter covariances of the optimal Jacobi polynomial fits to the real (a) and
imaginary (b) component of the unpolarized reduced pseudo-ITD for z/a ≤ 12 with truncation
orders {nlt, naz, nt4, nt6}v = {4, 1, 3, 2}v and {nlt, naz, nt4, nt6}+ = {3, 3, 1, 0}+, respectively.
Entries are normalized according to Covij/

√
CoviiCovjj .

further from the derived leading-twist ITD shown in purple. Whereas the uncorrelated

two-parameter ITD fit shown in red attempts to capture all the z/a ≤ 12 data and indeed

the unwanted impact from higher-twist effects, the Jacobi polynomial parameterization has

effectively isolated and removed these polynomial-z2 effects, leaving the pure leading-twist

contribution.

The quality of the Jacobi polynomial fit to the imaginary component of the reduced

pseudo-ITD shown in Fig. 5.18 is more puzzling. The z/a ≤ 4 appear reasonably well

represented by the expansion in Jacobi polynomials, but by z/a = 5 it is evident the

data for a given z2 segregate into two distinct groups - one for lattice momenta platt ∈

{1, 2, 3} and another for platt ∈ {4, 5, 6}. This distinction coincides with the switch from an

unphased eigenvector basis to the phased bases ~ζ± defined in Sec. 4.4. The fit parameter

covariances shown in Fig. 5.16(b) demonstrate a milder constraint of the first and second

order leading-twist Jacobi polynomials compared to the best fit of the real component.

The discretization and twist-4 corrections are also seen to be well constrained by the
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FIG. 5.17: (a) The real component of the leading-twist ITD (purple) at 2 GeV derived from the
Jacobi polynomial expansion of the reduced pseudo-ITD for z/a ≤ 12 with {nlt, naz, nt4, nt6}v =
{4, 1, 3, 2}v. The result is compared with the uncorrelated 2-parameter phenomenological form
of Eq. 5.5 shown in red. (b) The valence quark leading-twist PDF (purple) obtained from
the {nlt, naz, nt4, nt6}v = {4, 1, 3, 2}v Jacobi polynomial expansion of the reduced pseudo-ITD.
The a/z (orange), twist-4 (brown), and twist-6 (navy) x-space distributions are also shown
and seen to be sub-leading. The distributions are compared with the uncorrelated 2-parameter
phenomenological fit of Eq. 5.5 (red), as well as an NLO global analyses of CJ15 [132] and
JAM20 [160], and the NNLO analyses of MSTW [161] and NNPDF [38] at the same scale.

data. The resultant leading-twist plus quark PDF fq+/N (x) and x-space distributions

corresponding to the {nlt, naz, nt4, nt6}+ = {3, 3, 1, 0}+ Jacobi polynomial fit are illustrated

in Fig. 5.19(b). As in the real component fit, the corrections are sub-leading to the

leading-twist PDF, which in this case is in agreement with the NNPDF result [38] for

x ≥ 0.5. At small values of x, the leading-twist PDF parameterized by Jacobi polynomials

is generally consistent with the two-parameter uncorrelated PDF fit from Sec. 5.3.1. The

sine transform of the pure leading-twist component is shown in Fig. 5.19(a) together with

the Im Q (ν, µ2) data at 2 GeV. Unlike the real component of the derived leading-twist

ITD in Fig. 5.17(a), the derived imaginary component of the leading-twist ITD does not

agree with the Im Q (ν, µ2) data for any of the apz & 4π/L data with z/a & 7. As the

imaginary component of M (ν, z2) is optimally fit with three discretization corrections and
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FIG. 5.18: Fit to the imaginary component of the unpolarized reduced pseudo-ITD where
the leading-twist, discretization, twist-4, and twist-6 corrections have been expanded in Jacobi
polynomials up to order {nlt, naz, nt4, nt6}+ = {3, 3, 1, 0}+. Starting from the upper left panel
and traversing horizontally, the leading-twist plus corrections are shown for each z/a ≤ 12.

only one higher-twist term, the {nlt, naz, nt4, nt6}+ = {3, 3, 1, 0}+ fit would suggest the

imaginary component of the ITD is susceptible to less higher-twist effects in exchange

for greater discretization effects. This is a tenuous conclusion, however, in light of the

segregation of the Im M (ν, z2) data into two distinct clusters, a low- and high-momentum

set, for large Wilson line lengths. A future study exploring the side effects of phased

distillation is warranted.

By far the biggest indicator of a reasonable description of the reduced pseudo-ITD data

via Jacobi polynomials is a discretization term. Repeating the above Jacobi polynomial fits
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FIG. 5.19: (a) The imaginary component of the leading-twist ITD (purple) at 2 GeV de-
rived from the Jacobi polynomial expansion of the reduced pseudo-ITD for z/a ≤ 12 with
{nlt, naz, nt4, nt6}+ = {3, 3, 1, 0}+. The result is compared with the uncorrelated 2-parameter
phenomenological form of Eq. 5.6 shown in red. (b) The plus quark leading-twist PDF (purple)
obtained from the {nlt, naz, nt4, nt6}+ = {3, 3, 1, 0}+ Jacobi polynomial expansion of the re-
duced pseudo-ITD. The a/z (orange) and twist-4 (brown) x-space distributions are also shown
and seen to be sub-leading. The distributions are compared with the uncorrelated 2-parameter
phenomenological fit of Eq. 5.6 (red), as well as the NLO global analyses of CJ15 [132] and
JAM20 [160], and the NNLO analyses of MSTW [161] and NNPDF [38] at the same scale.

but leaving out any discretization corrections, namely {nlt, naz, nt4, nt6}v = {4, 0, 3, 2}v and

{nlt, naz, nt4, nt6}+ = {3, 0, 1, 0}+, we find each correlated χ2/d.o.f increases considerably

to an unacceptable value (see Tab. 5.5). This same conclusion is reached when cuts

on momentum and Wilson line lengths are made. Since the discretization term we have

included is of O (a/z), its effect is most pronounced at short distances. This is precisely the

regime wherein the short distance factorization (5.15), or equivalently (5.21), is applicable.

This motivates a more detailed look at the short-distance behavior of the computed reduced

pseudo-ITD.
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5.3.4 On the Numerical Consistency with DGLAP

The one-loop matching relationship between the ITD and the reduced pseudo-ITD (5.15)

implies that Q (ν, µ2) = M (ν, z2) at tree-level. The scatter that exists for a given z2 should

ideally be compensated at O (αs) by the ln z2-dependence produced by the DGLAP evo-

lution, up to large-z2 higher-twist corrections. In this section we study the z2-dependence

of M (ν, z2) more closely, and investigate whether the observed dependence is numerically

consistent with DGLAP, thus yielding a truly z2-independent ITD.

We begin by focusing on the real component of the reduced pseudo-ITD. The depen-

dence of Re M (ν, z2) on the invariant space-like interval z2 can be most easily visualized

by parameterizing the valence pseudo-PDF Pv (x, z2;α, β) by a simple two-parameter phe-

nomenological form

Pv

(
x, z2;α, β

)
=

Γ (2 + α + β)

Γ (1 + α) Γ (1 + β)
xα (1− x)β , (5.42)

and fitting its cosine-transform to Re M (ν, z2) separately for each z2. In order to more

readily expose the role of the Altarelli-Parisi kernel, we impose the added restriction β = 3.

This choice not only captures the naive x → 1 behavior of the nucleon’s valence quark

PDF [135], but also forces α to reflect any z-dependence in the reduced distribution;

further, this value of β is in statistical agreement with those obtained from the uncorrelated

ITD fits (see Tab. 5.3).

Figure 5.20 illustrates the cosine-transform of the model valence pseudo-PDF (5.42)

fit separately to each z2 of the real component of the reduced pseudo-ITD. The cosine-

transforms of Pv (x, z2;α, β = 3) are seen to describe Re M (ν, z2) quite well for z/a . 10,

with the greatest tension seen for the highest momentum point for each separation. The

fits for z/a ≥ 13 are also shown for completeness, but are clearly noise dominated. Also

noteworthy, the highest figures-of-merit are observed for the smallest separations, with a
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FIG. 5.20: Cosine transform of the model pseudo-PDF in Eq. 5.42 fit separately to Re M
(
ν, z2

)

for distinct z2; data correlations have been included in each fit. Starting from the upper left
panel and traversing horizontally, z/a increases from unity. The correlated figure of merit for
each separate fit is also indicated.

somewhat monotonic reduction until z/a ' 11. The dependence of the fitted values of α

on the separation z/a is visualized for Re M (ν, z2) in Fig. 5.21. As a function of z/a,

α decreases with the Wilson line length, matching expectations from the Altarelli-Parisi

evolution of the pseudo-PDF. However, it is clear Re M (ν, z2) depends linearly on z/a for

z/a . 12, most notably for small-z.

This manifest lack of ln z2 behavior of Re M (ν, z2) at short distances immediately

suggests tension with the presumed DGLAP evolution of the pseudo-PDF. To determine if

this z2-dependence in ReM (ν, z2) is nevertheless numerically consistent with DGLAP, the
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FIG. 5.21: The fitted value of α as a function of z/a resulting from the cosine-transform of the
model pseudo-PDF in Eq. 5.42 fit to Re M

(
ν, z2

)
. The decrease of α with z/a is in agreement

with expectations from the Altarelli-Parisi evolution of the pseudo-PDF. This dependence is
however clearly linear.

one-loop matching relationship between the reduced pseudo-ITD and ITD is applied. In

the ideal scenario where the z2-dependence of ReM (ν, z2) is exactly described by DGLAP,

the matched ITD will be independent of the interval z2 up to polynomial corrections for

large-z2. Rather than perform the matching step to a common scale in MS using a smooth

polynomial in Ioffe-time (e.g. Eq. 5.19) as was done in Sec. 5.3.1, we leverage the cosine-

transform of the model pseudo-PDF (5.42) as the smooth and continuous description of

the reduced pseudo-ITD data. That is, we perform the matching of Re M (ν, z2) to a

common scale in MS according to

ReQ
(
ν, µ2

)
= ReM

(
ν, z2

)
+
αsCF

2π

∫ 1

0

duP
(
uν, z2;α, β = 3

) [
ln

(
z2µ2e2γE+1

4

)
B (u) + L (u)

]
,

(5.43)
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where P (uν, z2;α, β = 3) is the cosine-transform of the model pseudo-PDF Pv (x, z2;α, β = 3)

expressed in a closed form by a generalized hypergeometric function

P
(
ν, z2;α, β = 3

)
= 2F3

(
1 + α

2
,
2 + α

2
;
1

2
,
5 + α

2
,
6 + α

2
;−ν

2

4

)
. (5.44)

For an explicit, albeit crude, conversion to MS, we set α = 0.2 in Eq. 5.44.

Our strategy to expose any z-dependence in the ITD Q (ν, µ2) remains identical to

the reduced distribution above. The resultant matched ITD at 2 GeV in MS is once more
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FIG. 5.22: Cosine transform of the two-parameter model PDF, with the same functional form
as (5.42), fit separately to each z2 of the matched ITD. The ITD was obtained using (5.44) for
the evolution/matching step. Data correlations have been included in each fit. Starting from
the upper left panel and traversing horizontally, z/a increases from unity. The correlated figure
of merit for each separate fit is also indicated.
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fit using the two-parameter form in Eq. 5.42 independently for each z2 and with β = 3.

The parameterized distribution in this case is of course no longer the valence pseudo-PDF,

but rather the valence PDF itself. As illustrated in Fig. 5.22, each z2 of the matched ITD

is well described by the simple two-parameter form. The poorest figures-of-merit are again

observed for the smallest (z/a . 3) and largest (z/a & 13) separations. The dependence

of the fitted values of α on the separation z/a for Re Q (ν, µ2) is illustrated in Fig. 5.23.

For 4 . z/a . 11 the fitted value of α is observed to be independent of z/a and hence

numerically consistent with DGLAP in said interval. Remarkably, however, the values of

α for the shortest separations, namely z/a . 4, deviate increasingly from this constancy

as z/a → 1. A subsequent analysis of the imaginary component of both the reduced

pseudo-ITD and matched ITD arrived at a similar conclusion, but has been omitted for

brevity.

Jacobi Polynomial Corrections - Discretization Effects

The findings above rigorously demonstrate the reduced pseudo-ITD is numerically in-

consistent with DGLAP in the small-z regime. Whether matching the reduced pseudo-ITD

to the light-cone ITD or directly to the light-cone PDF, the presence of the Altarelli-Parisi

evolution kernel should in principle capture and remove the ln z2 scatter that theoretically

exists in M (ν, z2) for small-z. As M (ν, z2) was found to depend only linearly on the sepa-

ration z (Fig. 5.21), the Altarelli-Parisi kernel effectively introduces a ln z2-dependence into

the small-z ITD and thus explains the dependence of α on z/a in Fig. 5.23. Despite this

concerning conclusion, a broad subset of M (ν, z2) remains consistent with DGLAP; the

statistically constant value of α (z/a) observed in the ITD fits in the interval 4 . z/a . 11

(e.g. Fig. 5.23) validates the nice collapse of the M (ν, z2) data onto a common curve

(Fig. 5.7) when matched to a common scale in MS.

To gain further insight into the regions wherein DGLAP is not respected, we return to
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FIG. 5.23: The fitted values of α from the cosine-transform of the two-parameter PDF functional
form (5.42) fit to each z2 of the matched ITD. The latter was obtained using (5.44) for the
evolution/matching step. The values of α are statistically constant for 4 . z/a . 11, with
sharp deviations for small-z/a.

the optimal Jacobi polynomial fits {nlt, naz, nt4, nt6}v = {4, 1, 3, 2}v and {nlt, naz, nt4, nt6}+ =

{3, 3, 1, 0}+. The reader is reminded Sec. 5.3.3 concluded with the realization that a suit-

able description of M (ν, z2) was only possible with the nominal inclusion of an O (a/z)

correction in Eq. 5.33 and Eq. 5.34. The discretization effect parameterized by each of

these fits is given by

Maz
(
ν, z2

)
=
a

z
×





C
az (α,β)
v,1 σ

(α,β)
0,1 (ν) for {4, 1, 3, 2}v

∑2
n=0C

az (α,β)
+,n η

(α,β)
0,n (ν) for {3, 3, 1, 0}+

, (5.45)

and visualized in Fig. 5.24. The discretization effect Re Maz (ν, z2) is seen to be strictly

negative in the interval of Ioffe-time in which M (ν, z2) has been computed. By comparison,
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FIG. 5.24: Visualization of the discretization effects determined by the optimal Jacobi polyno-
mial fits {nlt, naz, nt4, nt6}v = {4, 1, 3, 2}v (left) and {nlt, naz, nt4, nt6}+ = {3, 3, 1, 0}+ (right)
for z/a ≤ 7.

the discretization effect Im Maz (ν, z2) involves three Jacobi polynomials and suggests the

Im M (ν, z2) data are subject to a discretization effect that is opposite in sign at small

and large values of Ioffe-time.

We now justify the necessity of the O (a/z) discretization correction by considering

the removal of the Re Maz (ν, z2) effect from the computed Re M (ν, z2) data, which

we denote Re M ′(ν, z2) ≡ Re M (ν, z2) − Re Maz (ν, z2). Based on the left panel of

Fig. 5.24, the removal should shift the small-z points of Re M (ν, z2) to larger values,

with the largest impact for ν ∼ 4.5. Figure 5.25 juxtaposes the original Re M (ν, z2) and

discretization corrected Re M ′(ν, z2) in the interval ν ∈ [0, 2.5]. Although the differences

are numerically small, at small Ioffe-times Re M ′(ν, z2) is noticeably larger than the

uncorrected reduced pseudo-ITD. The importance of removing this discretization effect is

quantitatively discerned by repeating the DGLAP investigation for Re M ′(ν, z2).

Parameterizing the discretization corrected valence pseudo-PDF P ′v (x, z2) with the

two-parameter form in Eq. 5.42 and fitting its cosine-transform to Re M ′(ν, z2) with

β = 3, the z-dependence of Re M ′(ν, z2) is once more reflected in the variation of α with

z/a. As illustrated in the left panel of Fig. 5.26, α now varies non-linearly with z/a for
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z/a . 4 and linearly for 4 . z/a . 11. Whether this markedly distinct z-dependence

(c.f. Fig. 5.21) is numerically consistent with DGLAP is once again checked by performing

the matching to a common scale in MS using Eq. 5.44, and repeating the two-parameter

fits to the discretization corrected ITD Re Q′ (ν, µ2) for each z2 and with β = 3. The

resulting fitted values of α are presented in the right panel of Fig. 5.26. Relative to the

z-dependence of the uncorrected ITD shown in Fig. 5.23, the variation of α with z/a

is considerably more constant for z/a . 11. In other words, the ITD is seen to fall

into better agreement with DGLAP in the short-distance regime following removal of the

O (a/z) effect. That the optimal Jacobi polynomial fits {nlt, naz, nt4, nt6}v = {4, 1, 3, 2}v

and {nlt, naz, nt4, nt6}+ = {3, 3, 1, 0}+ provide the best description of M (ν, z2) can now

be quantitatively explained by the compensating effect the O (a/z) term provides. The

poor quality of the correlated phenomenological fits to the matched ITD, as well as the
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FIG. 5.26: (Left) The variation of α with z/a resulting from the cosine-transform of the model
pseudo-PDF in Eq. 5.42 fit to Re M ′(ν, z2

)
for each z2. The discretization effect captured by

the optimal Jacobi polynomial expansion {nlt, naz, nt4, nt6}v = {4, 1, 3, 2}v is subtracted from
Re M

(
ν, z2

)
prior to performing each fit. (Right) The variation of α with z/a resulting from the

cosine-transform of the two-parameter PDF form in Eq. 5.42 fit to the discretization corrected
and matched ITD Re Q′

(
ν, z2

)
for each z2. The discretization corrected ITD is considerably

more independent of the interval z2.

correlated Jacobi polynomial fits to M (ν, z2) without any corrections, are a direct result

of attempting to fit a singular function in z to data that do not exhibit singular behavior.

By excluding z/a . 4 and z/a & 11, the short-distance tension and any large-z polynomial

effects can be removed yielding reduced pseudo-ITD or matched ITD data that are well in

line with theoretical expectations. Such cuts are common in the literature, however their

nominal effect is to neglect deviating behavior.

Although the DGLAP investigation has been shown for the real component of the

reduced pseudo-ITD, the considerable reduction in the correlated figure-of-merit when

discretization effects are included in fits to Im M (ν, z2) (e.g. {nlt, naz, nt4, nt6}+ =

{3, 3, 1, 0}+ versus {nlt, naz, nt4, nt6}+ = {3, 0, 1, 0}+ in Tab. 5.5) indicates the imaginary

component of the raw reduced pseudo-ITD likewise deviates from expectations of DGLAP

at short-distances. The central question left for future research is the origin of this dis-

cretization effect.



CHAPTER 6

Generalized Ioffe-time

Pseudo-Distributions

The previous two chapters laid the theoretical foundation for the extraction of for-

ward collinear parton distributions from lattice calculable matrix elements. The pseudo-

distribution LCS formalism has recently been extended to the off-forward case, identifying

suitable matrix elements that can be matched to GPDs in MS. As of yet, no results have

appeared in the literature featuring off-forward pseudo-distributions. This dissertation

wraps up with some preliminary numerical results, which demonstrate the continued effi-

cacy of the pseudo-distribution LCS formalism in frames of non-zero momentum transfer.

Consider the non-local Wilson line operator O̊[γµ]
WL (z) between nucleon states of distinct

initial and final momenta:

Mα (pf , pi, z) = 〈N (pf )|ψ (z) γαΦ
(f)
ẑ ({z, 0})ψ (0) |N (pi)〉 (6.1)

=〈〈γα〉〉M
(
νf , νi, t, z

2
)

+ zαN
(
νf , νi, t, z

2
)
, (6.2)

196



197

with the shorthand 〈〈Γ〉〉 = ūN (pf , sf ) ΓuN (pi, si). With two distinct momenta and the

Wilson line direction, the invariant amplitudes or double Ioffe-time pseudo-distributions

depend on the Ioffe-times νi = pi · z and νf = pf · z, spacelike interval z2 and momentum

transfer t = (pi − pf )2. The unpolarized GPDs which parameterize the off-forward parton

correlator (2.10) in a fast-moving hadron are again defined in light-cone coordinates with

α = +, zα = (0, z−,0⊥) and pαk =
(
p+
k ,

m2
h

2p+k
,0⊥

)
. In such a frame, M+ only receives

contributions from M
(
p+
f z
−, p+

i z
−, t, 0

)
and not from N

(
p+
f z
−, p+

i z
−, t, 0

)
. Introducing

skewness ξ =
(piz)−(pf z)
(piz)+(pf z)

and average Ioffe-time ν =
νf+νi

2
allows for definition of the

generalized Ioffe-time pseudo-distribution (pseudo-GITD)

M
(
νf , νi, t, z

2
3

)
7→ M

(
ν, ξ, t, z2

)
. (6.3)

The pseudo-GITD is subsequently parameterized by the pseudo-GPD G (x, ξ, t, z2)

M̃
(
ν, ξ, t, z2

)
= e−iξνM

(
ν, ξ, t, z2

)
=

∫ 1

−1

dx eixνG
(
x, ξ, t, z2

)
, (6.4)

where the prefactor e−iξν establishes a direct conjugacy with the pseudo-GPD. As in the

forward case, the space-like Wilson line introduces power and logarithmic divergences that

must be renormalized prior to taking the continuum limit. The reduced pseudo-GITD

M̃
(
ν, ξ, t, z2

)
≡ M̃ (ν, ξ, t, z2)

M̃ (0, 0, 0, z2)
(6.5)

conveniently cancels this multiplicative divergent factor, and is the quantity we attempt

to isolate to extract the unpolarized leading-twist GPDs.

The one-loop matching between the reduced pseudo-ITD and the ITD (4.44) is a

specific case of a general one-loop matching relationship of matrix elements dependent on

the non-local space-like bilinear ψ (z) γαΦ
(f)
ẑ ({z, 0})ψ (0) [165]. Without regards to the
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external hadronic state or specific parton distribution, the reduced pseudo-GITD can be

matched to the MS Generalized Ioffe-time Distribution (GITD) to one-loop in coordinate

space via [162]:

Ĩ
(
ν, ξ, t, µ2

)
= M̃

(
ν, ξ, t, z2

)
+
αsCF

2π

∫ 1

0

du M̃
(
uν, ξ, t, z2

){
ln

[
e2γE+1

4
z2µ2

]

×BG (u, ū, ξ, ν) + LG (u, ū, ξ, ν)

}
+O

(
z2Λ2

QCD

)
, (6.6)

where the GITD is conjugate to the GPD through Ĩ (ν, ξ, t, µ2) =
∫ 1

−1
dx eixνH (x, ξ, t, µ2).

The abbreviation ū = 1 − u has been used for brevity and the kernels BG (u, ū, ξ, ν) and

LG (u, ū, ξ, ν) are given by

BG (u, ū, ξ, ν) =

[
2u

1− u

]

+

cos (ūξν) +
sin (ūξν)

ξν
− 1

2
δ (ū) (6.7)

LG (u, ū, ξ, ν) = 4

[
ln (1− u)

1− u

]

+

cos (ūξν)− 2
sin (ūξν)

ξν
+ δ (ū) . (6.8)

The scale dependence of M̃ (ν, ξ, t, z2) is then associated with the kernel BG (u, ū, ξ, ν),

and the scale-independent kernel LG (u, ū, ξ, ν) with the choice of conversion to MS.

6.1 Numerical Implementation

To access the unpolarized nucleon GPDs in a frame amenable to calculation in lattice

QCD, we compute the off-forward matrix element (6.1) in an isovector combination subject

to the kinematics pαi = (Ei,p
i
⊥, p

i
z), p

α
f = (Ef ,p

f
⊥, p

f
z ) and zµ = (0,0⊥, z3). As in the

forward-limit, the choice α = 4 removes the pure higher-twist N (νf , νi, t, z
2
3) pollution.

The matrix elements are computed using distillation on the by now well-exercised 349

configuration subset of the a94m358 ensemble (Tab. 3.4). The needed correlation functions,

temporal parameters, interpolator and phased eigenvector constructions of this calculation
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are identical to those leveraged in pursuit of the unpolarized nucleon PDFs. The reader is

directed to Sec. 4.4 for these details. The principal difference here is that the distillation

genprops include a non-trivial momentum projection ~q at the Wilson line terminus. We

consider nineteen distinct momentum transfers (given in lattice units):

~q = (qx, qy, qz) ∈





(0, 0,±1) , (0, 0,±2) , (0, 1, 0) , (0, 1,±1) , (0, 1,±2)

(1, 0, 0) , (1, 1, 0) , (1, 1,±1) , (1, 1,±2)

(2, 0,±1) , (2, 0,±2) .

(6.9)

The needed correlation functions are by now standard, with the relevant two-point function

given in Eq. 4.59 and the off-forward three-point function given by

C3 (~pf , T ; ~q, τ ; ~pi; [~z ]) =
∑

~z

e−i~q·~z〈N (~pf , T ) O̊[γµ]
WL (~z, τ)N (~pi, 0)〉. (6.10)

The simple ratio of three- to two-point correlation functions used in the isolation of forward

matrix elements in previous chapters is no longer sufficient in the off-forward case. In

order to eliminate the distinct operator-state overlaps and Euclidean time dependencies

on source and sink sides of a three-point correlation function when pµf 6= pµi , we construct

a more general ratio:

RΓ (~pf , ~pi;T, τ) =
C3pt

Γ (~pf , ~pi;T, τ)

C2pt (~pf , T )

√
C2pt (~pi;T − τ)C2pt (~pf ; τ)C2pt (~pf ;T )

C2pt (~pf ;T − τ)C2pt (~pi; τ)C2pt (~pi;T )
, (6.11)

where T is the Euclidean time separation between the source/sink nucleon interpolators

and τ ∈ (0, T ) are the Euclidean times for which the quark bilinear is inserted. Selected

ratios in the Γ = γ4, γx channels for a mild momentum transfer of ~q = (0, 0,−1) are shown

in Fig. 6.1 and Fig. 6.2. A number of encouraging features can be garnered from these
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FIG. 6.1: The ratio RΓ (~pf , ~pi;T, τ) for the Γ = γ4 insertion and ~pf = ~0 and ~pi = (0, 0, 1).
The top row is the real component of the ratio, and the bottom row the imaginary component.
From left to right the Wilson line lengths increase monotonically in the set z/a ∈ {1, 3, 5, 8}.

FIG. 6.2: The ratio RΓ (~pf , ~pi;T, τ) for the Γ = γx insertion and ~pf = ~0 and ~pi = (0, 0, 1).
The top row is the real component of the ratio, and the bottom row the imaginary component.
From left to right the Wilson line lengths increase monotonically in the set z/a ∈ {1, 3, 5, 8}.

very preliminary data. First, in both Dirac channels the real component ratio is seen to

achieve its largest value for the shortest Wilson line lengths and gradually decreases in

magnitude as the quark bilinear extent increases. Likewise in the imaginary component

of both Dirac channels, the ratio starts from zero for a local quark bilinear, reaching

its largest value for moderate z/a and then gradually decreases. These observations are

consistent with the forward pseudo-distributions in Chapters 4 and 5, and are likewise
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consistent with the Fourier transform (6.4) relating a GITD with its GPD. Furthermore,

it is broadly encouraging how precise the ratios are. A great many additional ratios for

several other momentum transfers and Wilson line lengths are not shown for brevity,

but are likewise characterized by well-determined ratios for source/sink separations up to

T/a ∼ 10 = 0.94 fm and have the same dependence on the Wilson line length as the

forward case.

6.2 Outlook

The use of distillation in the computation of off-forward pseudo-GITDs has led to a

tremendous amount of apparently statistically precise data. Given the nineteen distinct

momentum transfers considered and nucleon momenta |apj| ∈ Z7 × 2π/L collinear to the

Wilson line, the coverage of a future GPD illustrated in Fig. 6.3 is quite expansive. The

−1.0 −0.5 0.0 0.5 1.0
ξ

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5
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t
=

(p
i
−
p f

)2
(G

eV
2
)

FIG. 6.3: Coverage of the unpolarized GPDs in ξ vs. t with source/sink nucleon interpolators
with a component of momenta |apj | ∈ Z7 × 2π/L collinear to the Wilson line and nineteen
distinct momentum transfers associated with the space-like quark bilinear. The unpolarized
nucleon PDFs using the pseudo-distribution that were featured in Sec. 5.3 correspond to the
(ξ, t) = (0, 0) point.
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analysis of these data is in its infancy at the time of this writing. However, as the analysis

matures, the factorization of the relevant three-point functions provided by distillation and

how they relate to the pseudo-GITDs will need to be considered more fully. In particular,

for the numerous equivalent kinematic frames that will be analyzed, a given pseudo-GITD

will be overconstrained by the systems of equations

〈~pf ,Λf , µf | jΛγ ,µγ |~pi,Λi, µi〉 =
∑

λf ,λγ ,λi

S
Λf ,µf
Jf ,λf

[
S

Λγ ,µγ
Jγ=1,λγ

]∗ [
SΛi,µi
Ji,λi

]∗

×K (hf , Jf [λf , ~pf ] ;hi, Ji [λi, ~pi])M
(
νf , νi; t; z

2
)
, (6.12)

where the subduction coefficients SΛk,µk
Jk,λk

map continuum helicity λk eigenstates into irreps

of OD
h or its associated little groups, and the kinematic matrix K captures the energy

and polarization dependence of the continuum momentum channels. The extraction of

the pseudo-GITDs will then proceed through matrix inversion methods well-suited for

(generally) non-invertible systems.



CHAPTER 7

Conclusion and Outlook

The Euclidean metric of lattice QCD affords immense predictive power for the prop-

erties of the strong interaction. By discretizing the theory in a finite volume, spectral and

structure information of hadronic states can be numerically computed by solving QCD

from first-principles. This volume of work has unapologetically focused on hadronic ma-

trix elements, and especially those sensitive to the light-cone structure of hadrons.

QCD factorization is the essential ingredient needed for a quantitative description of

various inclusive, semi-inclusive and exclusive hadronic scattering processes. The sepa-

ration of scales relies on perturbative calculation of the parton level scattering process,

and on the long range non-perturbative Parton Distribution Functions (PDFs) and Gen-

eralized Parton Distributions (GPDs). The metric signature of lattice QCD complicates

considerably the first-principles and non-perturbative determination of PDFs, GPDs, and

any other light-like quantity. As no point in a Euclidean spacetime that is displaced from

the origin has a null invariant interval, the rich light-cone structure of a hadron is inac-

cessible directly. A broad class of coordinate space matrix elements accessible in lattice

QCD, so called Lattice Cross Sections (LCSs), fortunately factorize in a short-distance

203
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regime into these collinear parton distributions. The specific examples of equal-time two-

current correlators and space-like separated parton bilinears were developed as specific,

and theoretically advantageous LCSs.

Following a global analysis of two-current correlators computed on four gauge ensem-

bles, the valence PDF of the pion was found to agree with experiment across the entire

range of x for which Drell-Yan data is available. This bolsters confidence in two-current

correlations as a viable LCS. The two-current correlators were seen to suffer from several

limitations including computationally existing only for mesonic systems, doing little to

address short-distance discretization effects, and being plagued by relatively poor statis-

tical quality of data due to the lack of a volume average on the non-local operator time

slice. Each of these threads is actively under investigation, each promising a considerable

enhancement of the already encouraging results obtained. Future studies should make full

use of several current combinations to leverage the full power of the two-current LCS. A

simultaneous analysis will then have the potential to constrain a number of phenomeno-

logically interesting PDF behaviors.

The second LCS considered was the space-like parton bilinear, which when embedded

between hadronic states gives rise to pseudo-distributions. The nucleon was taken as the

hadron of interest, however unlike community literature the spatial smearing paradigm

of distillation was implemented for the first time. To be of use, distillation was first

demonstrated as an effective mechanism in the reduction of excited-states, and was later

equipped with momentum smearing to access high momentum matrix elements. The use

of distillation in computation of the unpolarized nucleon pseudo-distributions has led to

a considerable improvement in statistical quality relative to the literature. Being valuable

in its own right, the precision of these data have allowed for a rigorous quantification of

systematic errors and numerical artifacts that are otherwise shrouded in statistical errors

in the literature. A novel implementation of Jacobi polynomials to parameterize both the
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leading-twist and any systematic artifacts is the first of its kind, and was found to be

necessary for an adequate description of the data. It was found any reliable description

of the reduced pseudo-ITD and determination of the leading-twist PDFs required a dis-

cretization correction. This necessity was found to be a symptom of a much larger and

previously unknown deviation of the M (ν, z2) scale dependence from a strict ln z2 DGLAP

evolution. Whereas continuum results are not afflicted by a spacetime granularity or a fi-

nite volume, all results determined in lattice QCD are. As of this writing, the source of

this discrepancy is an area of active theoretical investigation. Although the leading-twist

PDFs obtained in the nucleon were seen to differ from phenomenological determinations,

an expected result given the unphysical pion mass, we can have confidence in the Jacobi

polynomial parameterizations of the leading-twist and corrections, and in so doing allowed

the data to dictate the PDFs. Follow up calculations are underway at finer lattice spacings

and ensembles of larger volumes and closer to physical light quark masses to control any

other known lattice systematic.

Ultimately the coordinate space QCD factorization we have implemented, as well as

the conventional momentum space variety leveraged in global analyses, is only an approx-

imation. Power corrections to the factorization formalisms depend on the observable and

in which scenarios they are applied. As systematic effects and limitations of these LCSs

come into greater focus, unraveling the enigmatic structure of the pion, nucleon, and other

hadrons more broadly is within closer reach. The potential is high, as some hadronic states

accessible in lattice QCD, such as the ∆ baryons and the lightest pseudoscalar mesons, are

especially difficult, if not impossible, to study experimentally. Moreover, these calculations

of PDFs and GPDs from lattice QCD are particularly well timed given the expansive ex-

perimental efforts within the hadronic physics community. The especially ambitious plans

at the future Electron Ion Collider, notably in regards to tomographic images of hadrons,

solicits a synergy of increasing importance between experimental and theoretical efforts.



APPENDIX A

Euclidean Space Relations

The Euclidean gamma matrices are defined so as to generate a matrix representation

of the Euclidean Clifford algebra Cl4 (R)

{γµ, γν} = 2δµν . (A.1)

The Euclidean gamma matrices can be obtained from their Minkowski counterparts ac-

cording to

γE4 = γ0 γEj = −iγj. (A.2)

The “fifth” Dirac matrix is then defined as a convenient product γE5 = γE1 γ
E
2 γ

E
3 γ

E
4 , which

satisfies
(
γE5
)2

= 1 and anti-commutes with each other Euclidean gamma matrix. This is

seen via

γ5
M ≡ i

(
γ0γ1γ2γ3

)
= − 1

i4
(
γ4γ1γ2γ3

)
=
(
γ1γ2γ3γ4

)
. (A.3)
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A.1 The Pauli-Dirac Representation

γ0
M =



1 0

0 −1


 γjM =




0 σj

−σj 0


 γ5

M =




0 1

1 0


 (A.4)

γ4
E =



1 0

0 −1


 γiE =




0 −iσj

iσj 0


 γ5

E =




0 −1

−1 0


 (A.5)

Spin projections:

u (~p, s)u (~p, s) =
(
/p+m

)(1 + γ5/s

2

)
(A.6)

v (~p, s) v (~p, s) =
(
/p−m

)(1 + γ5/s

2

)
. (A.7)

The γ5 pieces become the identity when the polarization is summed over. Here sµ is the

spin four-vector of the particle - in its rest frame pµ =
(
m,~0

)
, the spin vector is a unit

vector sµ (~p = 0) = (0, ŝ) in the spin direction [166]. This then satisfies s2 = −1 and

p · s = 0.

A.2 Completeness

In an infinite volume energy eigenstates satisfy the Lorentz invariant normalization

〈n (p, s) |m (q, r)〉 = 2En (p) (2π)3 δ3 (p− q) δnmδsr. (A.8)

The completeness relation then takes the form: 1 =
∑

n

∫
d3k

(2π)3
1

2En(k)
|n (k)〉 〈n (k)|. In a

finite periodic volume momenta are quantized, and the Lorentz-invariant normalization

and completeness become 2En (p)V3δ
3 (p− q) δnmδsr and 1 = 1

V3

∑
n,p,s

|n(k,s)〉〈n(k,s)|
2En(p)

.



APPENDIX B

Gell-Mann Matrices

A conventional set of 3 × 3 traceless Hermitian matrices that span the fundamental

representation of the su (3) algebra are given by:

λ1 =




0 1 0

1 0 0

0 0 0




λ2 =




0 −i 0

i 0 0

0 0 0




λ3 =




1 0 0

0 −1 0

0 0 0




λ4 =




0 0 1

0 0 0

1 0 0




λ5 =




0 0 −i

0 0 0

i 0 0




λ6 =




0 0 0

0 0 1

0 1 0




λ7 =




0 0 0

0 0 −i

0 i 0




λ8 =
1√
3




1 0 0

0 1 0

0 0 −2



.

First developed by Murray Gell-Mann, these matrices satisfy the orthogonality condition

Tr (λiλj) = 2δij and are seen to generalize the Pauli spin matrices of SU(2).
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APPENDIX C

Grassmann Numbers

The Fermi statistics that all fermions must obey [6, 7] implies fermionic fields are

anti-symmetric under interchange of their quantum numbers. That is, distinct flavors of

Dirac spinors in QCD obey

ψ(fj) (xj)αj
aj
ψ(fk) (xk)αk

ak
= −ψ(fk) (xk)αk

ak
ψ(fj) (xj)αj

aj
(C.1)

ψ (fj) (xj)αj
aj
ψ (fk) (xk)αk

ak
= −ψ (fk) (xk)αk

ak
ψ (fj) (xj)αj

aj
(C.2)

ψ(fj) (xj)αj
aj
ψ (fk) (xk)αk

ak
= −ψ (fk) (xk)αk

ak
ψ(fj) (xj)αj

aj
, (C.3)

where all spacetime, flavor, Dirac and color indices have been made explicit. This behavior

is described by a set of anticommuting numbers or Grassmann numbers defined according

to

θiθj = −θjθi ∀i, j ∈ {1, · · · , N}. (C.4)
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It immediately follows any Grassmann number is nilpotent (θ2
i = 0), and polynomials are

the only relevant functions of a set of N Grassmann numbers:

f ({θk}) = c+
∑

i

ciθi +
∑

i<j

cijθiθj + · · ·+ c12···Nθ1θ2 · · · θN , (C.5)

with c∗ ∈ C. The polynomials f ({θk}) define a Grassmann algebra, where the individual

Grassmann numbers θi are generators of the algebra.

Stated without proof1, the differentiation rules of elements of a Grassmann algebra

with respect to its generators are

∂θic = 0 ∂θiθi = 1 (C.6)

∂θi∂θj = −∂θj∂θi ∂θiθj = −θj∂θi ∀i 6= j. (C.7)

The observables in lattice QCD depend on the path integrals of fermionic fields. To

make sense of these, we establish “integration” rules for elements of a Grassmann algebra.

Rather than define definite integrals of Grassmann variables, we need only consider the

analog of a variable x ∈ R integrated over the entire domain (i.e.
∫∞
−∞ dx) to define the

functional integration of Grassmann variables. For a generic function of a Grassmann

variable ∫
dθif (θi) =

∫
dθi (c+ ciθi) , (C.8)

we demand the integral, or Berezin integral, be a complex linear functional with c, ci ∈ C.

Furthermore, when integrated over the entire range of θi, the integral must be invariant

under a linear change of variables θi 7→ θi + η. That is,

∫
dθi (c+ ciθi) =

∫
dθi (c+ ciη + ciθ) . (C.9)

1The reader is directed to several sources [48, 167, 41] that establish these differentiation rules.
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The only linear functional of {c, ci} consistent with property is a constant, conventionally

taken to be unity [168]. The following integral relations result:

∫
dθi (c+ ciθi) = ci

∫
dθic = 0

∫
dθiθi = 1. (C.10)

This establishes integration and differentiation of Grassmann variables is identical! Adopt-

ing the convention

∫
dNθ θ1 · · · θN =

∫
dθN · · · dθ1 θ1 · · · θN = 1 (C.11)

for several Grassmann variables, a Gaussian Berezin integral over complex-valued Grass-

mann variables is

∫
dθdθe−θcθ =

∫
dθdθ

(
1− θcθ

)
=

∫
dθdθ

(
1 + cθθ

)
= c. (C.12)

Under a linear change of variables θ′i =
∑N

j=1Mijθj with M an N×N complex matrix,

the normalizing Berezin integral is modified according to

∫
dNθ θ1 · · · θN =

∫
dNθ′ θ′1 · · · θ′N

=

∫
dNθ′

∑

i1,i2,··· ,iN

M1i1 · · ·MNiN εi1i2···iN θ1 · · · θN

= (detM)

∫
dNθ′ θ1 · · · θN . (C.13)

The totally anti-symmetric tensor emerges to capture the permutation of any two Grass-

mann variables, and the vanishing product if any variable is repeated. Thus under the

change of variables, the integration measure behaves as dNθ = (detM) dNθ′. These above

relations can then be readily applied to establish the Matthews-Salam formula [169, 170]
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for functional integration of generators θi, θi of a 2N -dimensional Grassmann algebra:

(∏

i

∫
dθidθi

)
e−

∑N
i,j=1 θiMijθj = detM, (C.14)

with M an N ×N complex matrix.

The Matthews-Salam formula (C.14) can immediately be applied to the fermionic

partition function

ZF [U ] =

∫
D
[
ψ, ψ

]
e−SF [ψ,ψ,U] (C.15)

we encounter in the fermionic expectation value of some operator in the presence of an

external gauge field

〈Ô〉F =
1

ZF [U ]

∫
D
[
ψ, ψ

]
Ô
[
ψ, ψ, U

]
e−SF [ψ,ψ,U]. (C.16)

As the fermion action is bilinear in the Grassmann-valued fields {ψ, ψ} with the Dirac

operator connecting the two, the fermionic partition function

ZF [U ] =

∫
D
[
ψ, ψ

]
e−ψ(D[U ])ψ = det (D [U ]) (C.17)

is instead deemed the fermion determinant. In continuum quantum field theory, this

determinant is a functional determinant and may be expressed as an infinite series of

Feynman diagrams. In lattice field theory, the Dirac operator is rigorously a matrix and

the determinant is defined as usual.

Inserting additional pairs of generators θmθn into the Matthews-Salam integrand, one

can show (∏

i

∫
dθidθi

)
θmθne

−
∑N
i,j=1 θiMijθj = (detM)

(
M−1

)
mn
. (C.18)

This conveniently captures Wick’s theorem, which states the behavior of an n-point func-
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tion is dictated by the inverse of the Dirac operator (quark propagators). These relation-

ships developed in this appendix allow an observable in lattice field theory, given as a path

integral over bosonic and fermionic fields, to be expressed entirely as a path integral over

the bosonic degrees of freedom.
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[122] B. Joó, J. Karpie, K. Orginos, A. V. Radyushkin, D. G. Richards, R. S. Sufian, and

S. Zafeiropoulos, “Pion valence structure from Ioffe-time parton pseudodistribution

functions,” Phys. Rev. D 100, 114512 (2019), arXiv:1909.08517 [hep-lat] .
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