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A total of five new CuSCN-L compounds with alkyl sulfide ligands, L = methyl sulfide (Me,S), ethyl sulfide
(Et,S), isopropyl sulfide (Pri,S) or tetrahydrothiophene (THT) have been prepared and characterized.
X-ray crystal structures for four of the compounds were obtained. Two compounds were collected from
solutions of CuSCN in Me,S: {[Cu(SCN)(Me,S),]}, (1a) in the form of colorless blocks and (CuSCN)(Me,S)
(1b) as a white powder. Neat mixtures of CuSCN in the other alkyl sulfide ligands yielded only one pro-
duct each: {[Cu(SCN)(Et,S)]}x (2); {[Cu(SCN)(Pr'yS)]}s (3); and {[Cu(SCN)(THT),]}, (4). Crystals of 2 and 4
underwent destructive phase changes at lower temperatures. Two networks types were observed: 1:2
decorated 1-D chains (1a and 4) and 1:2 decorated 1-D ladders (2 and 3). Further network formation
through bridging of the organic sulfide ligands was not observed.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Organosulfur ligands occupy an important niche in transition
metal chemistry. As soft ligands, they are able to stabilize soft
metal ions in low oxidation states. By virtue of their vacant d-orbi-
tals and ancillary lone pairs, such ligands can potentially act either
as m-donors or t-acceptors, depending upon their substituent elec-
tron demand. Sulfur ligands readily bridge metal centers, facilitat-
ing the formation of oligomers and polymers. Nevertheless, they
also tend to solubilize metal salts, in particular Cu(I) salts. Thus,
CuX-Me,S (X =Cl, Br, I, and CN) is a convenient carrier of copper
(I) salts in organic reactions [1]. There are many known complexes
of CuX with sulfur ligands, including sulfides [2], thiolates [3],
thioamides [4], and phosphine sulfides [5]. Their structural types
include polymers and networks based on Cu,X, dimers, Cu,X, lad-
ders, and (CuX),, polymers and oligomers. In some cases, such as
that of Cul with tetrahydrothiophene (THT), many stoichiometries
can be realized from the same combination of components [2f].

In the preceding paper, we described new networks of copper(I)
thiocyanate coordinated with aromatic diimine ligands [G]. These
fall into categories including 4-coordinate Cu and 3-coordinate
Cu (CuSCN),, chains, [Cu,S(SCN), ] ladders, and (CuSCN),, sheets.
Surprisingly, there have as yet been no reports of simple alkyl sul-
fide complexes of CuSCN. The only related structure we uncovered
was that of (CuSCN),(1,10-dithia-18-crown-6) [7]. In this complex
the bis-sulfide ligand bridges [Cu,(SCN),]., ladders, forming a
sheet network. Only the sulfur atoms in the crown ether/thioether
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molecule coordinate to Cu(I); the harder oxygen atoms fail to inter-
act with the soft Cu(I). Herein we present the synthesis of five new
CuSCN-L compounds, containing the aliphatic sulfides L= Me,S,
Et,S, PrbS, and THT. Four new crystal structures, falling in CuSCN
chain and ladder categories, were solved and are discussed.

2. Experimental
2.1. Materials and methods

All reagents were purchased from Aldrich or Acros and used
without purification. Commercial CuSCN (Aldrich) was shown by
FTIR to consist solely of the a-phase [8]. IR spectra were collected
on a Shimadzu IRTracer-100 instrument using a diamond ATR
probe (spectra shown in Supporting Information). Analyses for C,
H, and N proved impossible for the compounds described herein
due to high ligand lability. Atomic absorption (AAS) analyses for
Cu were carried out using a Perkin—-Elmer AAnalyst 700 as previ-
ously described [9]. Thermogravimetric analyses (TGA) were con-
ducted using a TA Instruments Q500 in the dynamic (variable
temp.) mode with a maximum heating rate of 50 °C/min. to
800 °C under 50 mL/min. N, flow.

2.2. Syntheses

2.2.1. {[Cu(SCN)(Me,S), [}, 1a

CuSCN (131 mg, 1.07 mmol) was dissolved in 480 pL of neat
Me,S in a vial. The resulting brown solution was placed in a freezer
for 3d. The colorless crystals that formed were collected by
siphoning excess ligand from the vial. The crystals were washed
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with pentane and air-dried for no more than 5 min. Yield: 82 mg,
38.9%. Samples were immediately analyzed via TGA, IR, and AAS.
IR (cm™!): 2920 (weak), 2098 (v strong), 1419, 1029, 979, 771,
682. Anal. Calc. for CsH;,NCuSs: Cu, 25.8. Found: Cu, 25.2%. Due
to sample instability, CHN analysis was not possible. TGA calcd
for (CuSCN)(Me,S): 74.7%. Found: 70.2% (20-50 °C). Calcd for
CuSCN: 49.4%. Found: 53.6% (50-130 °C).

2.2.2. {[(CuSCN)(Me5S)]}., 1b

CuSCN (271 mg, 2.23 mmol) was dissolved in 1.5 mL of neat
Me,S. The resulting suspension was stirred at room temperature
for 1 h in a sealed vial, with the solid dissolving completely into
the ligand after only a few minutes. The product was precipitated
with addition of pentane. The resulting white solid was collected
via filtration, and washed with pentane. Because of the ready loss
of sulfide, the product was dried for no more than 5 min. prior to
storage in a freezer (271 mg, 51.3% yield). Samples were immedi-
ately analyzed via TGA, IR, and AAS. IR (cm™!): 2117 (v strong),
1415, 1037, 975, 759. Anal. Calc. for C3HgNCuS,: Cu, 34.6. Found:
Cu, 35.1%. Due to sample instability, CHN analysis was not possible.
TGA calculated for CuSCN: 66.1%. Found: 67.1% (35-120 °C).

2.2.3. {[Cu(SCN)(EtS)[}n, 2

CuSCN (96 mg, 0.798 mmol) was dissolved in 2 mL of neat Et,S
in a vial. The solid dissolved within 20 min. with stirring. The solu-
tion was stirred for 3 d. Precipitation with ethyl ether resulted in a
white powder, which was isolated by filtration and washed with
ether. The product was dried for no more than 5 min. due to ready
loss of ligand (103 mg, 61.6%). Due to sample instability, CHN anal-
ysis was not possible. IR (cm™'): 2970 (weak), 2169 (v strong),
1446, 1377, 1259, 974, 746. Anal. Calc. for CsH;oCuNS;: Cu, 30.0.
Found: Cu, 32.5%. TGA calculated for CuSCN: 58.4%. Found: 61.6%
(45-95 °C).

2.2.4. {[Cu(SCN)(PriS)]},, 3

The procedure for 2 was followed, using 85 mg (0.699 mmol)
CuSCN and 2 mL of neat Pr’,S. The solid did not dissolve com-
pletely. The suspension was stirred for 3 d. A white powder was
collected via filtration and washed with ethyl ether (110 mg,
65.6%). IR (cm™1): 2974 (weak), 2924 (weak), 2866 (weak), 2924
(weak), 2866 (weak), 2110 (strong), 1442, 1381, 1365, 1238,
1153, 1045, 929, 906, 883, 860, 748. Anal. Calc. for C;H;4CuNS;:
Cu, 26.5. Found: Cu, 26.9%. Due to sample instability, CHN analysis
was not possible. TGA calculated for CuSCN: 50.7%. Found: 54.8%
(40-75 °C).

2.2.5. {[Cu(SCN)(THT), ]}, 4

The procedure for 2 was followed, using 91 mg (0.748 mmol)
CuSCN and 2 mL of neat THT. The solid did not dissolve completely.
The suspension was stirred for 3 d. A white powder was collected
via filtration and washed with ethyl ether (186 mg, 83.4%). IR
(cm~1): 2951, 2125 (strong), 1435, 1253, 883, 756, 671. Anal. Calc.
for CoHCuNS3: Cu, 21.3. Found: Cu, 21.6%. Due to sample instabil-
ity, CHN analysis was not possible. TGA calcd for (CuSCN)(THT):
70.4%, Found: 72.8 (31-50°C). Calcd for CuSCN: 40.0%. Found:
43.3% (60-95 °C).

2.3. Crystallizations

Single crystals were grown using several techniques. Once
removed from mother liquor, all crystals were immediately placed
into Paratone N oil and then mounted under a stream of dry air at
100 K. Crystals of 1a were grown as described above, resulting in
colorless blocks. For 2, 80 mg of CuSCN were stirred in 2 mL of
Et,S for 1 h. The vial was then left uncapped and undisturbed in
a fume hood. Overnight evaporation of excess Et,S left colorless

blades of 2. For 3 and 4, 119 mg of CuSCN were stirred with 4 mL
of neat THT, and 117 mg of CuSCN were stirred with 4 mL of neat
Pr’,S in sealed vials under Ar in an oil bath at 70 °C for 3 d. CuSCN
dissolved completely in THT in this procedure. The vial was
allowed to cool to room temp before being placed in a freezer.
Colorless plates of 4 grew over 3 d. Although the Pr’,S compound
never fully dissolved in the neat ligand, long colorless needles of
3 suitable for diffraction grew as the vial was left to cool at room
temp.

2.4. X-ray data collection, structure solutions and refinements

All X-ray measurements were made using graphite-monochro-
mated Cu Ko radiation on a Bruker-AXS three-circle diffractometer,
equipped with a SMART Apex II CCD detector. Crystals of 2 and 4
underwent destructive phase changes at reduced temperatures,
even as high as 250 K. Data for 2 and 4 were collected at room tem-
perature (298 K). Data for 1a and 3 were collected at 100 K. Initial
space group determination was based on a matrix consisting of 120
frames. The data were corrected for Lorentz and polarization [10]
effects and absorption using sabass [11]. The structures were solved
using intrinsic phasing methods. Structure solution, refinement
and the calculation of derived results were performed using the
sHELXTL [12] package of software and ShelXle [13]. Non-hydrogen
atoms were refined anisotropically. Hydrogen atoms were placed
in theoretical positions.

Powder diffraction analysis was carried out on the instrument
described above. Samples were rapidly ground and prepared as
mulls using Paratone N oil. Four 180 s frames were collected, cov-
ering 8-100° 26. Frames were merged using the SMART Apex II
software [14] and were further processed using DIFFRAC.EVA soft-
ware [15].

3. Results and discussion
3.1. Synthesis and characterization

Copper(I) thiocyanate complexes with dialkyl sulfide ligands
were generated easily via dissolution or suspension of CuSCN in
neat sulfide ligand. The off-white CuSCN dissolved completely in
Me,S and Et,S after only a few minutes of stirring. A white ligated
product was readily precipitated from the neat sulfide solution via
addition of pentane or ethyl ether. Although CuSCN was not fully
soluble in Pr',S or THT at room temperature, stirring of the two-
phase mixtures over several days enabled complete conversion to
the white sulfide products. Reaction of CuSCN was found to afford
two different products from neat Me,S solution, depending on the
conditions of product isolation. Colorless crystals grown by cooling
highly concentrated solutions of CuSCN in Me,S were found to be
have 1:2 stoichiometry: (CuSCN)(Me,S),, 1a. This result was con-
firmed via both X-ray diffraction and TGA. A white powder
obtained by pentane precipitation of the solid from the CuSCN/
Me,S solution analyzed as a 1:1 compound: (CuSCN)(Me,S), 1b,
by thermogravimetric analysis (TGA) and atomic absorption anal-
ysis. As shown in Fig. 1, the Me,S compounds produced distinct
X-ray powder diffraction traces. Each of the other sulfides pro-
duced only a single product phase when reacted with CuSCN:
{[Cu(SCN)Y(EtzS)}m, 2, {[Cu(SCN)(PryS)[},, 3, and {[Cu(SCN)
(THT)2[}n, 4.

None of the five compounds prepared herein was thermally
stable. Instead, each compound steadily lost ligand at ambient
temperature over the course of hours. This was apparent upon
examination of TGA data collected on samples after relatively short
and longer drying times. Thermal decomposition is expected
to cause quantitative removal of organic ligand from CuSCN-L



244 G. Ayala, R.D. Pike/Polyhedron 115 (2016) 242-246

RATTr s s s snoan
zzzassssses

Intensity, (a.u.)

[
. | f it s
AR AR LARE AR S AL A AR A A LA AR LA R LA AL LA AR RARARAAAR RARRE LR RY |
10 20 30 40 50 60 70
2theta (°)

Fig. 1. Powder X-ray diffraction comparison of complexes 1a and 1b.

complexes. The complexes air-dried for no more than five minutes
showed ligand loss plateaus by TGA that corresponded to the the-
oretical mass of CuSCN (see Fig. S1). The sulfide ligands were
removed between ambient temperature and 135 °C, leaving
CuSCN, which itself decomposed around 400-450 °C. However,
samples dried for longer periods or under vacuum showed plateaus
after ligand loss that indicated elevated CuSCN content. The alkyl
sulfide-CuSCN compounds proved to be stable in sealed vials at
—5 °C for a period of days to weeks. The instability the alkyl sulfide
products reported herein are likely to be the result of excess elec-
tron donation at the Cu(I) center.

3.2. Description of X-ray structures

A total of four crystal structures were solved during the course
of this study. The resulting structures fall into two recognized cat-
egories: 1-D chains and 1-D ladders. All of the alkyl sulfide com-
pounds were found to behave as monodentate capping ligands,
precluding the formation of multidimensional networks. This was
a surprising finding given the propensity of alkyl sulfide ligands

to bridge in complexes of CuCl, CuBr, Cul, and CuCN |[2]. Crystallo-
graphic data are summarized in Table 1. Selected bond lengths and
angles are given in Table S1.

Compound 1a crystallized as colorless blocks that solved in cen-
trosymmetric monoclinic space group P2;/c. A chain diagram is
shown in Fig. 2. The structure consists of a 1-D CuSCN chain with
the four-coordinate Cu centers capped by pairs of Me,S ligands.
The CuSCN chain propagates along the crystallographic c-axis. Both
Cu-S bonds associated with the sulfide molecules (Cu-S2 = 2.3456
(5), Cu-S3 =2.2869(4) A) are shorter than that of the thiocyanate
(Cu-S1=2.3783(6) A). The chain has a zigzag angle N1-Cu1-S1
of 106.73(5)°. This is the smallest of the roughly tetrahedral angles
about Cu, which range from 106.73(5)° to 117.24(5)°. The single
independent CuSCN unit lies in two positions that are slightly dis-
placed from one another, such that a Cul Cul Cul angle of
173.64° and a S1--"Cul Cul - S1 dihedral angle of 27.06° are seen.
There are no apparent inter-chain interactions.

Compound 2 crystallized as colorless blades that solved in the
centrosymmetric monoclinic space group P2;/n. The asymmetric
unit consists of Cu(SCN)(Et,S). A structure diagram is shown in
Fig. 3. Crystals of this compound underwent a destructive phase
change upon modest reduction in temperature, necessitating data
collection at 298 K. Even the ambient temperature structure
retained relatively poor crystallographic ordering. The disordered
Et,S ligand was modeled over two positions, and still shows rather
larger thermal ellipsoids (see Supporting Information). The net-
work in 2 consists of CuSCN ladders capped by Et,S ligands. The
ladders are formed by the crosslinking of antiparallel CuSCN chains
by ps-S. The sulfur atoms of the thiocyanate groups bridge
between pairs of Cu atoms, resulting in alternating, edge-sharing
Cu,S; and Cu,(SCN), dimers. The ladders propagate along the crys-
tallographic a-axis. A single diethyl sulfide ligand completes the
roughly tetrahedral coordination sphere around copper
(angles = 103.16(8)-121.80(12)°). In 2, the distance between the
Cu atoms across the rhomboid Cu,S, dimer is 2.8893(7) A, falling
just outside the van der Waals radius sum for copper (2.8 A). This
short distance results in a relatively small Cu-S-Cu angle of 72.74
(3)°. Distances between Cu and thiocyanate S (Cu-S=2.368(1),
2.500(1) A) are slightly longer than those between Cu and S of
the aliphatic ligand (Cu-S2A=2.227(5), Cu-S2B=2.294(9)A).
Adjacent ladders are rotated by 90° with respect to one another,
and there are no significant interactions between the ladders.

Compound 3 crystallized as thin colorless needles that solved in
the centrosymmetric monoclinic space group P2/n. The asymmetric

Table 1
Crystal and structure refinement data.
Complex 1a 2 3 4
CCDC deposit No. 1460762 1460764 1460765 1460763

Color and habit colorless block

colorless prism

colorless prism colorless plate

Size (mm) 0.49 x 0.42 x 0.26 0.45 x 0.14 x 0.11 0.63 x 0.10 x 0.08 0.38 x 0.21 x 0.06
Formula CsH1,CuNS3 CsH;oCuNS, C7H14CuNSs, CoH16CuNS3
Formula weight 245.88 211.80 239.85 297.95

Space group P2,/c (#14) P2/n (#14) P2,/n (#14) P2, (#4)

a(A) 7.39230(10) 5.82340(10) 5.92320(10) 5.8965(2)

b (A) 13.0297(3) 9.6077(2) 10.9226(2) 9.3775(3)
c(A) 11.2206(2) 16.2675(4) 15.9989(3) 11.7823(3)
B(°) 108.7360(10) 96.4230(10) 91.4730(10) 98.004(2)

V (A3) 1023.49(3) 904.45(3) 1034.73(3) 645.15(3)

z 4 4 4 2

Pearc (g cm ™) 1.596 1.555 1.540 1.534

F000) 504 432 496 308

u(Cu Kor) (mm~1) 8.211 7.093 6.271 6.626

T (K) 100(2) 296(2) 100(2) 296(2)
Residuals:® R; Ry 0.0232; 0.0581 0.0327; 0.0936 0.0228; 0.0589 0.0294; 0.0737
Goodness of fit (GOF) on F? 1.209 1.038 0.997 1.103

Flack - - - 0.03(4)

3 R=Ry =Y||F.| — |F||/>3|F,| for observed data only. R,, = WR, = {3[W(F,2 — F2)?]/S [w(F,2)?]}'/? for all data.
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Fig. 2. The chain structure of 1a viewed along b-axis CuSCN atoms shown as ball
and stick, and Me,S atoms as wireframe. Hydrogen atoms are omitted. Color
scheme for all X-ray figures: orange = Cu, yellow =S, grey = C, blue = N. Selected
bond lengths (A) and angles (°): Cu-SCN = 2.3784(5), Cu-NCS = 1.9493(17), Cu-
SR, = 2.2868(5), 2.3456(5), Cu-S-C = 96.41(7), C-N-Cu = 170.51(16). (Color online.)

e

Fig. 3. The ladder structure of 2 viewed along c-axis. CuSCN atoms shown as ball
and stick, and Et,S atoms as wireframe. Hydrogen atoms and disordered ligand
positions are omitted. Selected bond lengths (A) and angles (°): Cu-SCN = 2.3684

(11),2.5004(10), Cu-NCS = 1.961(3), Cu-SR; = 2.227(6), Cu'-*Cu = 2.8895(10), Cu-S-
C=95.30(11), 106.60(12), C-N-Cu = 161.2(2), Cu-S-Cu = 72.75(3).

TN

unit consists of Cu(SCN)(Pr,S). A structural diagram is shown in
Fig. 4. This compound displays the same ladder networking as
was seen with 2. Unlike 2, the crystal did not undergo a destructive
phase change at reduced temperatures, and the ligand molecules
were not disordered. Some important structural differences
between 2 and 3 are apparent when examining the Cu,S, dimers.
The ladders in 3, which propagate along the a-axis are all aligned,
unlike those in 2. In 3, the dimer CuCu=3.1662(5)A, with a
corresponding dimer Cu-S-Cu angle of 81.08(2)°. This trend of
increasing Cu-S-Cu angle with increasing Cu"Cu has been noted
in other CuSCN ladder compounds and in (Cul);Qox, which
contains both long and short Cu Cu [6,9,16]. As was the case in
1a and 2, bond distances between the copper and thiocyanate
sulfur atoms (2.4816(6) and 2.3883(6) A) are slightly longer than
that for the sulfide ligand (2.2740(5) A). There are no interactions
between adjacent ladders.

Compound 4 crystallized as thin, colorless and transparent
plates, solving in the non-centrosymmetric monoclinic space
group P2,. As was the case with 2, the crystals of 4 underwent a
destructive phase just below ambient temperature, and so data
were collected at 298 K. The complex also showed ligand disorder

Fig. 4. The ladder structure of 3 viewed along c-axis. CuSCN atoms shown as ball
and stick, and Pr’,S atoms as wireframe. Hydrogen atoms are omitted. Selected
bond lengths (A) and angles (°): Cu-SCN = 2.3883(5), 2.4816(5), Cu-NCS = 1.9629
(16), Cu-SR, =2.2739(5), CuCu = 3.1662(6), Cu-S-C =97.08(7), 107.43(7), C-N-
Cu =160.64(15), Cu-S-Cu = 81.084(17).

O O OO

Fig. 5. The chain structure of 4 viewed along b-axis. CuSCN atoms shown as ball and
stick, and THT atoms as wireframe. Hydrogen atoms and disordered ligand
positions are omitted. Selected bond lengths (A) and angles (°): Cu-SCN = 2.3438
(15), Cu-NCS = 1.967(5), Cu-SR; = 2.187(19), 2.400(17), Cu-S-C = 105.07(18), C-N-
Cu=173.4(4).

(see Supporting Information). In this case there are two THT
ligands, both of which were modeled over two disordered posi-
tions. Like 1a, the structure of 4 consists of a 1-D CuSCN chain with
four-coordinate Cu atoms capped by pairs of THT ligands. The
CuSCN chain propagates along the a-axis. A chain diagram is
shown in Fig. 5. The zigzag angle, N1-Cu1-S1, is 110.06(15)°, and
all angles around Cu are fairly close to tetrahedral: 103.5(3)-
117.7(6)°. Unlike 1a, the thiocyanate Cu-S (2.344(2) A), falls within
the range of the Cu-Styr distances: Cu-S2A=2.40(2), Cu-
S2B =2.35(2) Cu-S3A=2.19(2), Cu-S3B =2.366(6) A. Once again,
no significant interactions between chains are noted.

4. Conclusions

We have reported the first alkyl monosulfide complexes of cop-
per(I) thiocyanate. Five compounds were prepared by the reaction
of CuSCN in neat Me,S, Et,S, Pr’,S, and tetrahydrothiophene (THT).
In the former case {{Cu(SCN)(Me,S),]}, (1a) forms upon cooling a
solution of CuSCN in Me,S, while {[(CuSCN)(Me,S)]}, (1b) is
formed by rapid precipitation from the solution. Only {[Cu(SCN)
(Et2S)]}n (2) can be realized from a solution of CuSCN in Et,S. Sul-
fide compounds {[Cu(SCN)(Pr’,S)]}. (3) and {[Cu(SCN)(THT),]}. (4)
are formed from suspensions of CuSCN in the ligand. All com-
pounds are thermally unstable, losing alkyl sulfide ligand over a
course of hours at room temperature. None of the complexes show
bridging through the sulfide ligand. Compounds 1a and 4 consist of
zigzag CuSCN chains decorated with pairs of monodentate sulfide
ligands. Compounds 2 and 3 consist of ladders of alternating and
edge sharing Cu,S, and (CuSCN), rungs. In both cases a monoden-
tate sulfide ligand fills out the tetrahedral copper coordination
sphere. The sulfide compounds of CuSCN appear to be far less
stable than those of the copper(I) halides and cyanide. This insta-
bility of CuSCN-SR, appears to be connected with the failure to
promote network formation.
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Appendix A. Supplementary data

CCDC 1460762-1460765 contains the supplementary crystallo-
graphic data for 1a and 2-4. These data can be obtained free of
charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or
from the Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: (+44) 1223 336 033; or e-mail:
deposit@ccdc.cam.ac.uk. Supplementary data associated with this
article can be found, in the online version, at http://dx.doi.org/10.
1016/j.poly.2016.05.029.
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