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Large-grain Nb has become a viable alternative to fine-grain Nb for the fabrication of superconducting

radio-frequency cavities. In this contribution we report the results from a heat treatment study of a large-

grain 1.5 GHz single-cell cavity made of ‘‘medium purity’’ Nb. The baseline surface preparation prior to

heat treatment consisted of standard buffered chemical polishing. The heat treatment in the range

800–1400�C was done in a newly designed vacuum induction furnace. Q0 values of the order of

2� 1010 at 2.0 K and peak surface magnetic field (Bp) of 90 mT were achieved reproducibly. A Q0

value of ð5� 1Þ � 1010 at 2.0 K and Bp ¼ 90 mT was obtained after heat treatment at 1400�C. This is the
highest value ever reported at this temperature, frequency, and field. Samples heat treated with the cavity

at 1400�C were analyzed by secondary ion mass spectrometry, x-ray photoelectron spectroscopy, energy

dispersive x ray, point-contact tunneling, and x-ray diffraction, and revealed a complex surface compo-

sition which includes titanium oxide, increased carbon, and nitrogen content but reduced hydrogen

concentration compared to a non-heat-treated sample.

DOI: 10.1103/PhysRevSTAB.16.042001 PACS numbers: 74.25.N�, 84.40.�x, 81.65.Mq, 74.70.Ad

I. INTRODUCTION

Since its introduction in 2005 as a material potentially
suitable for superconducting radio-frequency (SRF) cav-
ities for accelerators, multicell cavities made of large-grain
Nb obtained directly from an ingot have demonstrated
comparable performance, both in terms of accelerating
gradient, Eacc, and Q0 values, to those made of standard
high purity (residual resistivity ratio, RRR> 300), fine-
grain (ASTM> 5) niobium, for the same ‘‘standard’’
surface treatment procedures. Two large-grain nine-cell
1.3 GHz cavities have been operating in the FLASH
accelerator at DESY with Eacc values of �30 MV=m [1],
while eight new additional cavities, which will be installed
in a cryomodule for the XFEL accelerator also at DESY,
achieved Eacc values of up to 45:6 MV=m in a vertical test
at 2.0 K [2].

The experience with large-grain cavities at several
laboratories showed that 10%–30% higher Q0 values at

medium field (Eacc � 20 MV=m) could be obtained com-
pared to fine-grain cavities, for the same frequency and
temperature [3–5]. While the causes for the observed
higher Q value are not known, some possibilities include
fewer grain boundary losses, higher thermal conductivity
at 2.0 K due to the so-called ‘‘phonon-peak,’’ lower flux-
trapping efficiency and lower hydrogen pickup.
In the 1970s, heat treatment in ultrahigh vacuum (UHV)

at �1800�C for �10 h was the standard practice to

achieve high Q0 values in bulk Nb cavities [6]. The main

benefits were associated to the dissolution of precipitates

and clusters of impurities and to ‘‘stress relief,’’ therefore

greatly reducing the dislocation content. In the 1990s, the

heat treatment temperature was reduced to�1300�C and a

solid state getter, such as titanium, was used inside the

furnace to ‘‘post-purify’’ the Nb cavities [7]. This was done

mainly to increase the thermal conductivity and therefore

provide better thermal stabilization of possible defects in

the Nb inner surface. In the past decade, the heat treatment

temperature has been reduced to�600–800�C, mainly just

to degas hydrogen absorbed by the Nb during cavity fab-

rication and surface treatments [8].
Removal of �20 �m of material from the inner cavity

surface by either buffered chemical polishing (BCP) or
electropolishing (EP) is a standard step following the
heat treatment and allows eliminating a ‘‘polluted’’ layer
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which contains high concentration of impurities absorbed
into Nb from the residual gases in the furnace, during
cooldown to room temperature. Nevertheless, the chemical
processing readily introduces hydrogen, which segregates
at the Nb surface and has been known to degrade the rf
superconducting properties of Nb cavities [9,10].

Increasing the quality factor of SRF cavities is one of the
key factors to enable efficient continuous wave (CW)
linear accelerators (linacs) of various kind (energy recov-
ery linacs, free electron lasers, high-intensity proton
linacs) for many different applications, ranging from light
sources to energy production via accelerator-driven reac-
tors. A ‘‘streamlined’’ treatment procedure to be applied to
large-grain cavities has been proposed to obtain improved
Q0 values at a reduced cost [3]. The bulk material removal
after fabrication should be done by centrifugal barrel pol-
ishing (CBP) to smooth the equatorial weld area with an
‘‘environmentally friendly’’ process, followed by a smaller
amount of material removal by BCP. A high-temperature
heat treatment in a clean UHV furnace should then be
applied, followed by standard high-pressure rinse (HPR)
with ultrapure water to remove particulates from the sur-
face, before assembly in an ISO 4 clean room. In order to
determine the optimum heat treatment temperature to max-
imize Q0ð2:0 K; 90 mTÞ, the Q0ðBpÞ of a large-grain

single-cell cavity was measured at 2.0 K after heat treat-
ment at different temperatures, in the range 800–1400�C
for 3–6 h, in a newly built induction furnace with all-
niobium hot zone. Approximately 20 �m were etched by
BCP 1:1:2 after each heat treatment to provide a new
‘‘baseline’’ surface. Additional characterization techniques
such as optical inspection of the cavity inner surface and
thermal mapping were applied for each test, besides the rf
measurements of Q0ðTÞ and Q0ðBpÞ. Samples heat treated

with the cavity have been analyzed by secondary ion mass
spectrometry (SIMS), x-ray photoelectron spectroscopy
(XPS), energy dispersive x ray (EDX), x-ray diffraction
(XRD), and point contact tunneling (PCT) to determine the
impurity concentration and depth profiles as well as the
electronic density of states in the superconducting state.

II. CAVITY PREPARATION AND TREATMENT

The single-cell cavity was fabricated from 3.125 mm
thick disks sliced by wire electrodischarge machining from
an ingot (labeled ‘‘ingot G’’) supplied by CBMM, Brazil.
The tantalum content of the ingot is �1375 wt:ppm and
the RRR, obtained from the thermal conductivity at 4.2 K
of a sample from the same ingot, is �200. The cavity was
built with the standard fabrication method, consisting of
deep drawing of half cells joined at the equator and to the
cutoff tubes by electron beam welding. The cell shape is
that of the center cell of the cavity installed in the CEBAF
accelerator. The resonant frequency of the TM010 mode
in the single cell is 1.47 GHz, the ratios Bp=Eacc and

Ep=Eacc are 4:43 mT=ðMV=mÞ and 1.78, respectively,

and the geometry factor, G is 273 �.
An average of 73� 13 �mwas removed from the cavity

inner surface by CBP after fabrication. This was done in
three steps with different media: a ‘‘coarse’’ 5.5 h long
polishing step with a ceramic mix media, a ‘‘medium’’
10 h long polishing step using a ceramic with binder cones
media, and a ‘‘fine’’ 12 h long polishing step with corn cobs.
The rotation speed for each step is 115 rpm. Figure 1 shows
a plot of the total material removal at different locations
along the cavity profile. Thickness measurements were
done with an ultrasonic probe.
After CBP, an average of 65� 9 �m were removed

from the inner cavity surface by BCP 1:1:2. The cavity
was degreased in a solution of ultrapure water and deter-
gent, with ultrasonic agitation, then it was rinsed, dried,
and loaded in the induction furnace. The furnace features
an all Nb hot zone consisting of a can and a vertical stand
which holds the cavity inside the can’s volume. The outside
of the Nb can is contained in a quartz tube and an induction
coil sits on the outside of the quartz tube. The volumes
between the quartz tube and the can and inside the can are
separated and part of different vacuum systems. The Nb
can is heated by induction, whereas the cavity is heated by
irradiation from the hot Nb can. Further details about the
induction furnace can be found in [11].
The cavity was heat treated at 800�C for 3 h, then cooled

to �160�C, held for �7 h, and finally cooled down to
room temperature. The furnace was vented with ultrapure
nitrogen gas at �150�C. The average total pressure at
800�C was 3� 10�5 Torr. After heat treatment (HT), the
cavity was degreased, HPRed for 1 h, dried for�3 h in an
ISO 4 clean room. Stainless steel blanks with pump-out
port and rf antennas were assembled on the cavity flanges
with indium wire as gasket. The cavity was then evacuated

FIG. 1. Material removal by CBP measured at different loca-
tions along the cavity contour rðzÞ.
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to�10�8 mbar on a vertical test stand which is inserted in
a cryostat for rf testing in a liquid He bath. The subsequent
treatment procedures were as follows: (i) �20 �m mate-
rial removal by BCP 1:1:2 (baseline 1); (ii) HT at 800�C
for 6 h at an average total pressure, Pavg, of 7:6�
10�6 Torr; (iii) low-temperature baking (LTB) at 120�C
for 24 h; (iv) �15 �m material removal by BCP 1:1:2
(baseline 2); (v) HT at 1000�C for 6 h at Pavg ffi 3:3�
10�6 Torr; (vi) LTB at 120�C for 12 h; (vii) �29 �m
material removal by BCP 1:1:2 (baseline 3); (viii) HT at
1200�C for 6 h at Pavg ffi 2:5� 10�6 Torr; (ix) LTB at

120�C for 12 h; (x) �20 �m material removal by BCP
1:1:2 (baseline 4); (xi) HT at 1400�C for 3 h at Pavg ffi
9:6� 10�6 Torr; (xii) LTB at 120�C for 12 h. The cavity
treatments are summarized in Table I.

The residual gases in the furnace during heat treatment
were dominated by hydrogen. During the HT cycles in
steps (ii), (v), (viii), and (xi) the total pressure during the
furnace cooldown was maintained at�10�6 Torr by flow-
ing ultrahigh purity argon gas into the chamber through a
leak valve. This was done to mitigate pollution of the Nb

surface during cooldown [12]. Once room temperature
was reached, argon was pumped out and the furnace was
vented to 1 atm, with ultrahigh purity oxygen gas to grow a
so-called ‘‘dry oxide’’ layer. For all heat treatments, the
heating rate was �5�C=min and the cooling time was
�8 h. Figure 2 shows the total pressure and temperature
during HT at 1400�C. The total pressure in the furnace
before heat treatments is �2� 10�9 Torr, except prior to
the HTat 1400�C, when the pressure was�2� 10�8 Torr.
In this case, residual gases included nitrogen (partial
pressure �1� 10�9 Torr), oxygen (partial pressure
�5� 10�10 Torr), and a specie with an atomic mass unit
of 69 (partial pressure �1� 10�9 Torr). During the heat
treatment at 1400�C, the flange of the vacuum coupling
radiation fitting for the thermocouple inserted in the fur-
nace was tightened a few times and the residual gases in the
furnace after the HT were only hydrogen and water vapor.
It was noticed that, after the HT at 1400�C, a ‘‘gold’’
colored ring was formed on the top of the Nb susceptor
can of the induction furnace, as shown in Fig. 3.
The LTB was done by enclosing the cavity, under

vacuum and connected to the vertical test stand, in an
insulating box and flowing hot nitrogen gas into the
box. The heating rate is �0:3�C=min , the cooling
time is �4 h. Pavg at 120

�C was �1� 10�7 Torr, mostly

hydrogen.

III. CAVITY MEASUREMENT RESULTS

The rf tests consisted of measurements of
Q0ðT;�10 mTÞ during the pump-down of the helium
bath from 830 Torr (4.3 K) to as low as 4 Torr (1.5 K)
and of Q0ð2:0 K; BpÞ. These measurements were done

after each treatment step listed in the previous section.
The input and pickup antennas have fixed coupling to the
cavity with a Qext value of �1:2� 1010 and �7� 1011,
respectively. A thermometry system [13], consisting of 576
carbon resistance-temperature devices in contact with the
outer cavity surface, was routinely used during rf testing at
2.0 K to obtain temperature maps of the outer cavity
surface as a function of Bp. In the following, we identify

TABLE I. Summary of cavity treatments including the mate-
rial removal by BCP, the temperature/duration and average
pressure during HT, the furnace venting gas, the temperature/
duration of the LTB, and the figure showing the Q0 vs Bp results.

Removal

(�m) HT

Pavg

(Torr) Venting LTB Fig.

65 800�C=3 h 3� 10�5 N2 160�C=7 h 4

20 800�C=6 h 7:6� 10�6 O2 120�C=24 h 4

15 1000�C=6 h 3:3� 10�6 O2 120�C=12 h 5

29 1200�C=6 h 2:5� 10�6 O2 120�C=12 h 6

20 1400�C=3 h 9:6� 10�6 O2 120�C=12 h 7

FIG. 2. Temperature and total pressure during heat treatment at
1400�C. During cooldown the total pressure was kept at
�10�6 Torr by admitting ultrahigh purity argon gas. The tem-
perature was measured with a type C thermocouple using a
voltmeter with �1 mV resolution (� 70�C).

FIG. 3. Picture of the inside of the Nb susceptor can of the
induction furnace showing the presence of a ‘‘gold colored’’ ring
at the top after the HT at 1400�C.
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a thermometer position by a pair (angle, sensor number),
where the angle is the azimuthal location of a thermometry
board and sensors No. 1 to 16 follow the cavity contour,
along the main axis. Sensors No. 1 and No. 16 are located
at the top and bottom cutoff tubes, close to the irises,
respectively, whereas sensors No. 8 and No. 9 are located
just above and below the equator weld, respectively.
Following the rf test, an optical inspection of the inner
surface at quench locations was done using a high-
resolution camera [14].

Figure 4 shows a plot of Q0 vs Bp measured at 2.0 K

after the first HT at 800�C, after BCP, after the second HT
at 800�C and after LTB. The cavity was limited by a strong
multipacting at�105 mT after the first test, by a quench at
�105 mT at location (60, 9–10) after the following three
tests. Q0ð2:0 K; 90 mTÞ increased from ð1:6� 0:2Þ � 1010

after BCP up to ð2:0� 0:3Þ � 1010 after HT at 800�C for
6 h. LTB reduced the Bardeen-Cooper-Schrieffer (BCS)
surface resistance, RBCS, at 4.3 K by�38% but doubled the
residual resistance, Rres, from �3 to �6 n�.

Figure 5 shows a plot of Q0 vs Bp measured at 2.0 K

after additional BCP, after HT at 1000�C and after LTB. In
this series of tests the cavity was limited by quench at
�114–118 mT occurring at location (310, 9).
Q0ð2:0 K; 90 mTÞ increased from ð1:9� 0:3Þ � 1010 after
BCP up to ð2:2� 0:3Þ � 1010 after HT at 1000�C. LTB for
shorter time (12 h instead of 24 h) limited the increase in
Rres to �0:6 n�.

Figure 6 shows a plot of Q0 vs Bp after additional BCP,

after HT at 1200�C and after LTB. The cavity was limited
by quench at �110 mT after BCP and by multipacting
induced quench at �96 mT at location (220, 11) after HT
and LTB. Multipacting at �90 mT was also observed
during the test after BCP. Q0ð2:0 K; 90 mTÞ increased
from ð1:8�0:2Þ�1010 after BCP up to ð2:3�0:3Þ�1010

after LTB. The residual resistance after HT was less than
1 n� and theQ0ð1:5 K; 20 mTÞwas greater than 1� 1011.

Figure 7 shows a plot of Q0 vs Bp after additional BCP,

after HT at 1400�C and after LTB. The cavity was limited
by quench at�100 mT at location (30, 9) after BCP and by
quench at location (10, 8) after HT. Multipacting was
observed during the test after BCP at �86 mT. RBCS at
4.3 K was reduced by�24% after HT at 1400�C. A Rres of
�1 n� was also obtained after HT which, combined
with the reduced RBCS, resulted in a low-field Q0 value
of �2� 1011 at 1.5 K. The Q0 vs Bp dependence at 2.0 K

shows an increase of Q0 up to �60 mT, resulting in a Q0

value of ð5� 1Þ � 1010 at 90 mT. To our knowledge, this is
the highest Q0 value ever reported at this field, frequency,
and temperature. The temperature maps as a function of
field taken at 2.0 K after HT showed no significant heating
up to the quench field, as the temperature difference from
the He bath, �T, remained below 1 mK. The rf test after
HT was done twice, without warming up the cavity, with
two different rf systems and by two different operators and
the data were within 5%. It was also verified that there was
no significant dependence of the insertion loss of the input

FIG. 4. Q0ð2:0 KÞ vs Bp measured after the first HT at 800�C,
followed by BCP, by the second HT at 800�C and by LTB.

FIG. 5. Q0ð2:0 KÞ vs Bp measured after etching by BCP,
followed by HT at 1000�C and by LTB.

FIG. 6. Q0ð2:0 KÞ vs Bp measured after etching by BCP,
followed by HT at 1200�C and by LTB.
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power cable on rf power, up to 1.5 W, which was the
incident power needed to quench the cavity, as that could
introduce a Q0 dependence on field. The cavity optical
inspections did not show any outstanding feature at quench
locations, except after 1400�C heat treatment, when the
quench location was found to be at a grain boundary, as
shown in Fig. 8.

A large-grain hollow rod sample (12 cm long, 12 mm
outer diameter, 8 mm inner diameter) was heat treated at
1400�C for 3 h and the RRR obtained from the thermal
conductivity measured at 4.2 K, �ð4:2 KÞ, [RRR �
4� �ð4:2 KÞ] decreased from 208� 12 to 152� 8 after
HT. There was no change in the critical temperature after
HT: Tc ¼ 9:26� 0:01 K before HT and Tc ¼ 9:24�
0:02 K after HT.

A. Data analysis

The low-field surface resistance as a function of tem-
perature, RsðTÞ, obtained from the ratioRsðTÞ ¼ G=Q0ðTÞ,
from each test has been fitted with a code [13,15] which
calculates RBCSðTÞ to obtain material parameters such as
the ratio �=kTc, where � is the energy gap value at 0 K,
k is Boltzmann’s constant, and Tc is the critical tempera-
ture, and the normal electrons’ mean-free path, ‘. Tc ¼
9:25 K, the London penetration depth (�L ¼ 32 nm),
and the coherence length (�0 ¼ 39 nm) are considered
material constants of Nb. The fit of RsðTÞ also yields the
temperature-independent Rres. Figure 9 shows, as an ex-
ample, RsðTÞ data measured after BCP and after HT at
1400�C and the curve fits with RsðTÞ ¼ RBCSðTÞ þ Rres.

Figure 10 shows ‘, �=kTc, and Rres obtained for the
different treatments. Although the uncertainty in the value
of ‘ is significant, there seems to be a pattern where HT
increases the mean-free path, except after HT at 1400�C,
whereas LTB reduces it. �=kTc increases by �12% from
the first BCP etching after all the treatments: it increases
after HT and, less markedly, after LTB. The Rres always

FIG. 7. Q0ð2:0 KÞ vs Bp measured after etching by BCP,
followed by HT at 1400�C and by LTB. A Q0 value of
ð5� 1Þ � 1010 was obtained at 90 mT.

FIG. 8. ‘‘Unfolded’’ temperature map showing the temperature
increase, �T, above the He bath at 2.0 K during quench at 91 mT
after heat treatment at 1400�C (a) and image of the inner cavity
surface at the quench location showing the presence of a grain
boundary (b).

FIG. 9. Rs vs 1=T measured after BCP and after HTat 1400�C.
Solid lines are least-square fits with RsðTÞ ¼ RBCSðTÞ þ Rres.
The values of the fit parameters are �=kTc ¼ 1:87� 0:02, ‘ ¼
ð303� 85Þ nm, Rres ¼ ð2:0� 0:3Þ n� after BCP and �=kTc ¼
1:90� 0:01, ‘ ¼ ð76� 17Þ nm, Rres ¼ ð1:0� 0:2Þ n� after HT
at 1400�C.
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increases after LTB. These dependencies will be discussed
in relation to surface impurities in Sec. VI. Changes in ‘,
�=kTc, and Rres by LTB are consistent with results from
earlier studies [16].

Figure 11 shows Q0ð2:0 K; 90 mTÞ for the different
treatments. The average Q0ð2:0K;70mTÞ¼ð1:2�0:2Þ�
1010 measured in the vertical test of 1.5 GHz seven-cell
cavities for the CEBAF upgrade is also shown in Fig. 11 for
comparison. The seven-cell cavities were built from stan-
dard high-purity, fine-grain Nb and treated by EP. Details
about the seven-cell cavities preparation can be found in
[17]. The data shown in Fig. 11 indicate a high Q0 value
already after BCP and Q0 improves by �20% on average
after HT in the range 800–1200�C. The LTB has no
significant benefit on the Q0 value at 90 mT. As mentioned
before,Q0 more than doubles from the baseline value after
HT at 1400�C.

IV. RESULTS ON SAMPLES

Samples (7:5 mm� 5 mm� 3:125 mm in dimensions)
were cut by wire electrodischarge machining (EDM) from
a niobium ingot. The samples were etched by BCP 1:1:1,
removing �70 �m, heat treated in a UHV furnace at
600�C for 10 h to degas hydrogen, and etched by BCP
1:1:2, removing �30 �m. Afterwards, the samples were
nanopolished at Wah Chang, USA, to obtain a surface with
mirror quality smoothness. Samples labeled L40 and L46
were heat treated with the cavity at 1000�C. Sample L48
was heat treated with the cavity at 1200�C, while samples
L50 and L51 were heat treated with the cavity at 1400�C.
Sample L50 had an additional chemical etching by BCP
1:1:1 removing�80 �m after nanopolishing, prior to heat
treatment. The samples labeled L11 and L35 were not heat
treated after nanopolishing and were used as a reference for
comparison with heat treated samples.
The samples’ treatments attempted to replicate the cav-

ity treatments to the extent possible, the differences being
in the samples not being subjected to the deep-drawing
process, being chemically mechanically polished (’’nano-
polishing’’) instead of CBP, and each being heat treated
with the cavity only one time, instead of multiple BCP-HT
cycles as for the cavity. A schematic representation of the
cavity and samples inside the furnace is shown in Fig. 12.

A. SIMS analysis

Samples L40, L48, and L51 have been analyzed using a
CAMECA IMS-6f magnetic sector dynamic SIMS to mea-
sure the depth profiles of H, C, N, and O. Depth profiles for
Ti were also measured on samples L48 and L51. For
detection of H, C, O, N, Csþ primary ion beam was used
since Cs enhances the negative ion yields. Experiments
were carried out using 14.5 keV impact energy, with a
120� 120 �m2 raster and a 30 �m diameter detection
area to minimize contributions from crater edges and
achieve good depth resolution. A current of 20 nA was
maintained throughout the analysis for acceptable sputter-
ing rates to reach depths of the order of 1–3 �m. Since
absolute quantification of H in Nb is not possible using
SIMS because of the high diffusion coefficient of H in Nb,

FIG. 10. Mean-free path, �=kTc and Rres from RsðTÞ fits for
the various treatments: BCP (squares), HT (circles), and LTB
(triangles).

FIG. 11. Q0ð2:0 K; 90 mTÞ obtained after different treatments.
The solid line is the average Q0ð2:0 K; 70 mTÞ measured on
fine-grain, electropolished seven-cell cavities for the CEBAF
upgrade. The yellow area indicates the standard deviation of
the average.
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H levels were characterized as H/Nb ratios. For metallic
impurities, analysis was performed using 5.5 keV Oþ

2

primary ion beam for better positive secondary ion yield.
A 200 �m raster with a 60 �m detection area and a
120 nA primary beam current was used for this analysis.
A mass resolution, M=�M, of 2050 was chosen so as to
eliminate any interfering ions and improve analysis detec-
tion limits for measurements with Cs and O beams. The
analysis chamber was also kept under UHV conditions
(� 10�10 Torr) to minimize contamination. Ion implanta-
tion was used to obtain standards of C, O, and N in Nb [18].
Since N does not have a significant negative secondary ion
yield in SIMS, NbN� ions were used to monitor the N�
signal.

Figure 13 shows the depth profiles of nitrogen, hydro-
gen, and carbon measured in samples L35, L40, L48, and
L51, whereas the depth profiles of oxygen and titanium in
the same samples are shown in Fig. 14. Quantification of
titanium was established by analysis of ion implanted 48Ti
into Nb. The concentration of titanium in the reference
sample was below the detection limit (� 1 at:ppm).
Significant carbon and oxygen segregation near the surface
resulted after the heat treatment at 1400�C. A titanium
concentration of �1 at:% near the surface was also found
after 1400�C. It was realized that Ti evaporated from the
cavity flanges which are made of Ti45Nb. The vapor
pressure of Ti at 1000�C, 1200�C, and 1400�C is 3:0�
10�9 Torr, 7:6� 10�7 Torr, and 6:3� 10�5 Torr, respec-
tively [19].

Since the penetration depth of the rf field is of the order
of 40 nm, it is important to measure impurities depth
profiles within �100 nm depth from the surface with
�1–2 nm depth resolution. This can be accomplished by
reducing the SIMS primary ion beam energy to 6 keV for
Csþ beam and to 1.25 keV for Oþ

2 beam. A primary ion

current of 7 nA, a raster area of 200 �m� 200 �m with

60 �m detected area, and a mass resolution of 2000 were
used for Csþ beam, whereas a current of 20 nA, a raster
area of 220 �m� 220 �mwith 60 �m detected area, and
a mass resolution of 2200 were used for Oþ

2 beam. SIMS

FIG. 13. H/Nb ratio, NbN and carbon concentrations measured
in the reference, non-heat-treated, sample L35 (black line),
sample L40 heat treated at 1000�C (red line), sample L48 heat
treated at 1200�C (green line), and sample L51 heat treated at
1400�C (blue line).

FIG. 14. Oxygen concentration measured in the reference, non-
heat-treated, sample L35 (black line), sample L40 heat treated at
1000�C (red line), sample L48 heat treated at 1200�C (green
line), and sample L51 heat treated at 1400�C (blue line). Also
shown is the titanium concentration measured in samples L48
(cyan dashed line) and L51 (magenta dashed line).

FIG. 12. Schematic of the cavity and samples inside the
furnace.
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measurements were repeated on another reference sample,
labeled L11, on sample L48 and on sample L51 after it had
been baked in UHVat 120�C for 12 h. Figure 15 shows the
results of the low-energy SIMS analysis on these samples.
In the region below the surface oxide, the H level is
significantly lower in the heat-treated samples compared
with the reference, non-heat-treated, sample.

B. PCT, EDX, and XPS results

Superconducting properties of the surfaces of samples
L46 (heat treated at 1000�C) and L50 (heat treated at
1400�C) were analyzed through the use of electron tunnel-
ing spectroscopy. By cooling the sample below the critical
temperature down to 1.8 K, tunneling measurements can
directly probe the superconducting density of states, Nð�Þ.
Using a point-contact technique, we measured both the
conductance and differential conductance spectra from
which we extracted the superconducting gap of both
samples, as shown, for example, in Ref. [20]. Assuming
the niobium sample is in the clean limit, the probing depth
of the PCT measurement can be estimated to be on the
order of the niobium coherence length 40 nm.

In the setup at Argonne National Lab, the point
contact is made by approaching the sample surface with

a sharpened gold tip to create a SIN (superconducting-
insulating-normal) junction, where the natural oxide layer
on the Nb surface creates the insulating layer. The tip-
sample separation is mechanically controlled in situ
through the use of a differential screw while mechanical
hysteresis allows for probing slightly different regions to
obtain statistics on the sample’s superconducting proper-
ties. A homemade analog sweep circuit combined with a
lock-in amplifier were used to simultaneously measure the
junction’s IV and dI=dV / Nð�Þ curves, respectively. The
resulting spectra were normalized to the normal state dif-
ferential conductance dI=dVN (assumed to be linear) and
fit using the modified Blonder-Tinkham-Klapwijk (BTK)
theory [21,22] to extract the gap �, barrier strength Z, and
the phenomenological quasiparticle lifetime broadening
parameter �.
Approximately 40–50 junctions were measured on each

sample to obtain a reasonable trend in the statistics on the
superconducting gap. As shown by the red bars in Fig. 16,
sample L50 exhibited a single gap sharply peaked at
1.55 meV, consistent with the bulk value for niobium.
The spectra also displayed tall coherence peaks (small �)
with an average � value of 0.1 meV where the typical
spectra obtained for L50 are shown in Fig. 17. The ratio
of �=�was small and roughly constant for all the junctions
measured for sample L50, which is a strong indication of a
highly pure Nb and uniform surface with minimal inelastic
scattering processes.
In contrast to the aforementioned, sample L46 shows

the emergence of two different gap values of 1.10
and 1.47 meV (blue bars in Fig. 16), an indication of

FIG. 15. High-resolution depth profiles of H/Nb, oxygen,
NbN, and carbon measured in a reference, non-heat-treated,
sample L11 (black line), sample L48 heat treated at 1200�C
(green line), and sample L51 heat treated at 1400�C and 120�C
(blue line). Also shown in the second panel is the Ti depth profile
in sample L51 (magenta line).

FIG. 16. A histogram of BTK fit parameter � for junctions
measured by PCT spectroscopy. Sample L50 (red), heat treated
at 1400�C, shows a single sharp peak at 1:55� 0:05 meV while
sample L46 (blue), heat treated at 1000�C shows two broad
peaks at 1:10� 0:16 and 1:47� 0:15 meV. The dashed lines are
Gaussian fits to the histogram peaks where the FWHM defines
the error in gap value. The ratio of �=� (inset) remains roughly
constant for L50 (red circles) while there is a large deviation as
gap values get smaller than about 1.4 meV for L46 (blue
triangles).
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nonuniform superconducting properties of the surface pos-
sibly due to impurities. For the gap values near that of bulk
Nb, � is small and consistent with that of L50. However, as
� gets smaller � becomes quite large with significant
variation. This can be seen in the spectra by lower and
broader quasiparticle peaks along with higher zero bias
conductance values in the differential conductance spectra,
which are characteristic signatures of inelastic scattering
processes. The typical differential conductance curves ob-
tained for L46 are shown in Fig. 18 where the gap size is
increasing from 1.1 meV in the top curve to 1.55 meV in
the bottom curve. Notice the peak (and dip) features are

getting more pronounced as the gap gets closer to that of
bulk niobium.
Niobium naturally forms a thin oxide layer when ex-

posed to oxygen or water, creating a tunnel barrier.
However, two peculiar behaviors were noticed during the
measurement of both samples as compared to previously
measured cavity grade Nb samples under identical condi-
tions [20]. First, measurable tunneling junctions (resist-
ance less than or equal to 106 �) were found after an
unusually high number of turns during the mechanical
approach (effectively as if the distance sample to tip was
larger). The shape of the Au tips observed under an optical
microscope after the measurements revealed a flattened
apex area larger than usually seen. It is therefore likely
that the native oxide thickness or/and work function is
higher than previously measured on Nb samples. Second,
several superconductor-insulator-superconductor (SIS)
junctions rather than SIN were measured on both samples,
indicating that the Au tip dislodged a Nb piece from the
sample’s surface. In particular, this was more pronounced
in sample L46 where six SIS junctions were found as
opposed to the two found in L50. These results seem to
point to a more brittle surface on that of L46 and may also
explain the two gap trend and larger � values. Some of the
differential conductance spectra for the SIS junctions
found in both samples are shown in Fig. 19. The dip in
the SIS spectra around 3 meV for L46 (blue curves in
Fig. 19) are an indication of a proximity effect in the Au
tip, meaning the dislodged Nb was in good metallic contact
with the Au tip. It is noteworthy to point out that, although
surprising, the number of SIS junctions obtained on both
samples represent only up to 10% of the SIN junctions
measured. Therefore it is very unlikely that the trend in the
superconducting gap and gamma parameters observed and
discussed earlier could have been induced by the pressure
exerted by the tip onto the samples.

FIG. 18. Typical tunneling spectra obtained for different junc-
tions on sample L46 offset vertically for clarity. This sample had
a broad range of gap values with values of 1.10 and 1.47 meV
being the most common. Junctions with gaps closer to the bulk
value for Nb showed large coherence peaks (small �). However,
this decreased considerably for gap values smaller than about
1.4 meV.

FIG. 19. Some SIS junctions obtained for samples L46 (blue)
and L50 (red). The dip features seen outside the gap indicate a
proximity effect of the Nb in the Au tip.

FIG. 17. Typical tunneling spectra obtained for different junc-
tions on sample L50 offset vertically for clarity. The junctions
obtained in L50 showed a consistent gap value of 1.55 meV and
large coherence peaks (small �).
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Assuming the same value of Tc ¼ 9:25 K as used for the
computation of RBCS to fit of the RsðTÞ data, the gap values
measured by PCT correspond to a ratio �=kTc of 1.94 for
sample L50 and of 1.84 for sample L46. These values are in
very good agreement (less than 2% difference) with those
obtained from the fit of RsðTÞ, shown in Fig. 10, even

though the cavity was not subjected to the same nano-
polishing surface treatment as the measured coupons. In
addition, the tunneling spectroscopy results showing that
the 1400�C HT improved significantly the surface super-
conductivity in terms of the amplitude of the gap and the
pair-breaking parameter, as well as their uniformity, are
consistent with the improvement of the cavity Q0 value.
Following the PCT measurements, elemental analysis

was performed on sample L50 to determine what impuri-
ties it might contain. First, using a secondary electron
microscope (Hitachi S4700) equipped with EDX, the
chemical composition of the surface was probed at 10
and 25 keV (Fig. 20) showing the presence of a small
amount of titanium as well as oxygen. The Ti concentration
is estimated at �1 at:%, close to the sensitivity of the
instrument. To determine whether the Ti impurities resided
on the surface or throughout the bulk Nb, sample L50 was
used as a target in a sputtering system equipped with XPS.
This was a home-built system that allowed a sample to be
sputtered and then measured by XPS without breaking
vacuum. The initial XPS spectrum is shown in Fig. 21(a)
with a zoomed in view of the Ti peaks in Fig. 21(b). The
surface was then sputtered several times at fixed time
intervals with a chemical analysis at each interval. As
shown in Fig. 21(c), the Ti concentration decreases with
increasing sputtering time and after 10 minutes of sputter-
ing no measurable Ti is seen in the XPS data. The results
confirm the presence of Ti on the sample’s surface, con-
sistent with the results from SIMS.

FIG. 20. Electron dispersive x-ray spectrum of sample L50 at
10 keV (main figure) and 25 keV (inset) show the presence of
titanium (red lines) and oxygen (blue lines) on the surface of the
niobium (green lines). The filament current was 10 �A, the
magnification was 5000 and the aperture was 100 �m.

FIG. 21. The XPS spectrum of sample L50 (a) shows the niobium, titanium, and oxygen peaks present on the surface prior to using
the sample as the sputtering target. The upper right figure (b) shows a zoomed in view of (a) around the Ti peaks where the red curve is
the fit to the spectrum. The bottom right figure (c) shows the concentration of titanium (green) and nitrogen (red) measured by XPS as a
function of sputtering time. After 10 minutes there is no longer any measurable titanium present, thus, the Ti impurities lie only on the
surface of the sample.

P. DHAKAL et al. Phys. Rev. ST Accel. Beams 16, 042001 (2013)

042001-10



C. XRD results

The XRD spectrum was measured for sample L51 with a
Bruker SMART APEX II instrument at The College of
William and Mary. The instrument has a fixed-position
source with a wavelength of 1.5406 Å (Cu-K� line) and
a movable detector (2�) and sample (!). The detector is a
charge coupled device (CCD) which covers about 30� in
2� per image. Four image positions were used for the
experiment. In each case, the angle 2� is the center position
of the 30� CCD image, and each ! value is set so that the
angles of incidence and diffraction are equal. Long
(10 min) exposure time was used in order to look for the
presence of minor phases. Figure 22 shows the detector
counts as a function of 2�. Besides the large peaks corre-
sponding to bulk Nb orientations, smaller peaks are visible
which showed some superficial match with �-Ti3O5 or
�-NbN. To further investigate this, pole figures at fixed

2� values corresponding to high-intensity peaks for either
�-Ti3O5 or �-NbN were measured using a PANalytical
X’Pert PRO MRD instrument at Norfolk State University.
A clear indication of a polycrystalline �-Ti3O5 with fiber
texture can be seen from the pole figure of (3 1 0) �-Ti3O5,
shown in Fig. 23. On the other hand, counts for (6 2 0) or
(14 6 2) �-NbN were within the noise.
The Nb (1 1 0) pole figure measured on sample L51 is

shown in Fig. 24. The sample is a single crystal with (1 1 0)

FIG. 23. Pole figure of (3 1 0) �-Ti3O5 measured on sample
L51. 	 is the angle of rotation around the direction normal to the
sample. c is the tilt angle from the normal direction.

FIG. 24. Niobium (1 1 0) pole figure measured on sample L51.

FIG. 22. XRD spectrum of sample L51. The vertical scale is
expanded to show the presence of minor peaks. Vertical bars
represent the relative intensities of tabulated powder diffraction
spectra for bulk Nb (blue) and �-Ti3O5 (red).

FIG. 25. Reciprocal space maps of Nb (1 1 0) pole measured
on sample L51 with low (a) and high (b) x-ray angle of
incidence.
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orientation with �20� inclination with respect to the nor-
mal to the sample’s surface. A method which allows in-
vestigating the crystal quality consists of 2D-reciprocal
space mapping of an x-ray diffraction peak. In this case,
the so-called triple axis mode [23] was used. This mea-
surement was done at an incident angle of �4:9� and
�21:9�, corresponding to a probing depth of �680 nm
and �3 �m, respectively. By doing the measurements
both at low and high incident angles, changes in crystal
quality with increasing depth from the surface can be
revealed. Reciprocal space maps obtained at low and
high incident angle are shown in Fig. 25. The full width
half maximum (FWHM) of the peak in the reciprocal space
maps is related to the crystal quality, the lower the FWHM,
the better the crystal quality. The relative variations,

Q=Q, of the reciprocal lattice vectors in the directions
parallel (Qx) and normal (Qy) to the surface are directly

related to variations in the spacing of the crystal plane and
were measured to be 
Qx=Qx ¼ 1:9% and 
Qy=Qy ¼
0:4% for high angle of incidence, 
Qx=Qx ¼ 0:4% and

Qy=Qy ¼ 1:6% for low angle of incidence. There is no

large variation of crystal quality with depth, although there
seems to be opposite change between x and y directions.

V. MECHANICAL PROPERTIES

One of the issues related to the heat treatment of stan-
dard high-purity fine-grain Nb at temperatures greater than
�1000�C is a reduction of the yield strength due to re-
crystallization during the HT [24]. The JLab specifications
for the yield strength and tensile strength of high-RRR Nb
at room temperature are 48.2 and 96.4 MPa, respectively.
For the mechanical analysis of a multicell cavity, Von
Mises stresses are calculated under a variety of load con-
ditions, both at room temperature and 2.0 K, and it is
verified that, in each condition, the peak stresses are less
than 2=3 of the yield strength [25].

A total of eight ASTM-compliant samples with nominal
reduced section gage 45 mm long� 6 mmwide� 4 mm

thick were cut by wire EDM from the same ingot G used to
fabricate the single-cell cavity. The samples were etched
by BCP 1:1:1, removing�100 �m. Four samples, labeled
No. 5–8, were heat treated at 1400�C for 3 h with the same
procedure used for the cavity HT. The tensile properties of
all eight samples were measured at the National High
Magnetic Field Laboratory according to ASTM E8 and
ASTM E1450, on a servohydraulic test machine in dis-
placement control. The test machine is equipped with a
cryostat that enables low-temperature tests with the speci-
men and test fixture immersed in subcooled ethanol
(182 K), or liquid nitrogen (77 K), or liquid helium
(4 K). Strain is measured with two 25 mm gage length
extensometers mounted on opposite sides of the specimen
and their outputs are averaged to compensate for inaccur-
acies that may occur due to machine tolerances or
specimen misalignment. The final percent elongation is
determined from lines that are scribed 25 mm apart in
the gage section of the sample. At the start of a test,
the initial displacement rate is 0:5 mm=min
(elastic strain rate ¼ 1:8� 10�4 s�1) and it is increased
after the onset of yield (at about 1.5% strain) to a rate of
1:0 mm=min . An unload/reload cycle is performed at
1.5% strain to confirm the elastic modulus.
The test results are listed in Table II. The data show that

the yield strength at 295 K actually increased after HT,
with no significant change in Young’s modulus and <10%
reduction in tensile strength. The samples have only a few
grains in the gage section and typically only one grain in
any local region of the cross section. The deformation of
the large grains at low temperature resulted in interesting
deformation of the tensile specimens. Examples of the
nonuniform strain and unique deformation characteristics
are shown in photos of fractured samples in Fig. 26.

VI. DISCUSSION

From a broad perspective, the cavity test results shown
in Sec. III clearly indicate the benefit of using ingot Nb
and high-temperature HT to produce SRF cavities with

TABLE II. Results from tensile tests (T: temperature; E:
Young’s modulus; YS: yield strength at 0.2% strain; TS: tensile
strength; �b: elongation at fracture; Ar: area reduction) con-
ducted at different temperatures on non-heat-treated samples
and samples heat treated at 1400�C for 3 h.

Sample

No.

T
(K) HT

E
(GPa)

YS
(MPa)

TS
(MPa)

�b
(%)

Ar

(%)

1 295 None 72 43 88 44.0 99.0

2 183 None 76 225 234 18.3 29.6

3 77 None 74 425 562 28.2 255.8

4 4.2 None 86 � � � 894 1.5 1.6

5 295 1400�C=3 h 73 56 82 21.8 99.0

6 182 1400�C=3 h 74 259 294 22.3 99.0

7 77 1400�C=3 h 103 407 509 26.0 99.0

8 4.2 1400�C=3 h 105 � � � 563 7.2 2.7

FIG. 26. Images of sample No. 3 (a) and No. 7 (b) after tensile
test at 77 K.
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exceptionally high Q0 at accelerating gradients of
�20–25 MV=m. Besides the performance improvement,
the cavity material and processing used in this study is
expected to provide significant cost savings compared to
the standard Nb material and processes currently used for
the production of SRF cavities. SIMS analysis shows
that the hydrogen content is reduced by up to about 1 order
of magnitude in samples which were heat treated at
800–1400�C compared to non-heat-treated ones.
Changes in the concentration of other impurities such as
C, N, and O as a function of heat treatment temperature are
less obvious, but generally increases after HT. The con-
centration of these impurities is of the order of
10�1–10�2 at:%, significantly lower than that of hydrogen.
The highest O, C and N concentrations in the near-surface
region were found after HT at 1400�C. Yet, parameters
indicative of the quality of the superconducting state such
as the energy gap, the quasiparticle lifetime broadening,
and the surface resistance all improved after this heat
treatment. The residual resistance also decreased com-
pared to that prior to the HT, after BCP. Furthermore,
SIMS analysis, corroborated by data using EDX and
XPS, indicates the presence of a diffusion profile for Ti
in Nb, with a concentration of �1 at:% at the surface, and
for O, which is gettered by Ti during the HT at 1400�C.
This result was unintentional and explained by the cavity
flanges being made of Ti45Nb. The improvement of super-
conducting properties after HT at 1400�C seems counter-
intuitive, given the impurity analysis.

It is not possible at this stage, and it is beyond the scope
of this article, to provide a conclusive explanation of the
mechanism behind the extended increase in Q0ðBpÞ which
resulted in a very high Q0 value at 90 mT. Related to this
phenomenon it should be noticed that: (i) a similar Q0 rise
had been reported for a 3 GHz niobium cavity which had
been oxidized in situ with dry oxygen gas after HT at
1950�C for 9 h [26]; (ii) the Q0 rise we have measured
can be well described by a recent numerical calculation of
the surface resistance based on the Mattis and Bardeen
theory modified to account for moving Cooper pairs under
the action of the rf field [27]. For the dry oxidation treat-
ment described in [26], the cavity surface was exposed to
0.5 atm of pure oxygen for 10 days while in our experi-
ments the pressure was 1 atm and the time was not longer
than 1 h, corresponding to an exposure lower by about 2
orders of magnitude. Further studies are necessary to in-
vestigate the role of dry oxidation after heat treatment.

Further studies are also needed to understand the effect
of the interplay among Ti, O, and H on the rf superconduct-
ing properties of annealed Nb. Regarding this effect, it
should be mentioned that the reduction of H concentration
and the presence of Ti and O at the Nb surface after heat
treatment at 1400�C, acting as trapping centers for H
[28,29], both contribute to prevent the formation of
normal-conducting hydrides, which had been found in

the past to be responsible for an increase of the residual
resistance [8–10].
The results from the tensile tests provided the important

information that the mechanical properties of ingot Nb do
not degrade after 1400�C HT, which is important when
considering this process for multicell cavities.

VII. CONCLUSION

The measurement results described in this contribution
push the limit of high quality factors in SRF cavities at
temperature and surface fields relevant for present and
future CW accelerators relying on SRF cavity technology
[30–32]. These results have been accomplished by using
ingot Nb material of medium purity with final treatment
consisting of a high-temperature annealing in a clean in-
duction furnace. The highest achieved Q0 value is about a
factor of 4 higher than the averageQ0 value achieved in the
production cycle of multicell cavities for the CEBAF
12 GeV upgrade, which used the standard ‘‘recipe’’ of
fine-grain, high-purity Nb with final treatment consisting
of EPþ LTB. It should also be remarked that the material
and processes which resulted in the much higher Q0 value
are less expensive than the current standard material and
processes. Unlike for fine-grain Nb, the mechanical prop-
erties of medium purity, ingot Nb did not degrade after
1400�C annealing which makes this material/process com-
bination suitable for multicell cavities.
The Q0ðBpÞ dependence in the rf test which exhibited

the highestQ0 value had an extended low-field Q increase.
An important question, from both the theoretical and ex-
perimental point of view, is how high can the peak Q0

value be pushed and also what is the highest surface field
this peak Q0 value can be attained at.
A thorough analysis of Nb samples annealed with the

cavity using several complementary surface analytical
methods revealed increased concentrations of C, N, and
O after annealing. The hydrogen, on the other hand, was
significantly reduced. A titanium-oxide phase, within
�1 �m depth from the surface, was found on the sample
annealed at 1400�C for 3 h. Further experimental studies
are necessary to understand the mechanism behind the
extended Q0 rise and the exceptionally high Q0.
Additional studies will also focus on the reproducibility

of the techniques to obtain high Q0 values by repeating the
1400�C HTon the same cavity and by applying it to newly
built cavities. The role of titanium oxide and hydrogen in
this process will be investigated further by applying the
1400�C HT to cavities with Nb flanges. In addition, the
process will be applied to fine-grain cavities as well, for
comparison. Because the breakthrough high-Q0 result we
report has such relevance for accelerators application, it is
likely that it will trigger new efforts to pursue similar
processing techniques and studies within the SRF
community.
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