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The retroviral v-ErbA oncoprotein is a highly mu-
tated variant of the thyroid hormone receptor «
(TRa), which is unable to bind T; and interferes
with the action of TRa in mammalian and avian
cancer cells. v-ErbA dominant-negative activity is
attributed to competition with TR« for T;-respon-
sive DNA elements and/or auxiliary factors in-
volved in the transcriptional regulation of T;-re-
sponsive genes. However, competition models do
not address the altered subcellular localization of
v-ErbA and its possible implications in oncogene-

sis. Here, we report that v-ErbA dimerizes with TR«
and the retinoid X receptor and sequesters a signif-
icant fraction of the two nuclear receptors in the
cytoplasm. Recruitment of TR« to the cytoplasm by
v-ErbA can be partially reversed in the presence of
ligand and when chromatin is disrupted by the his-
tone deacetylase inhibitor trichostatin A. These re-
sults define a new mode of action of v-ErbA and
illustrate the importance of cellular compartmental-
ization in transcriptional regulation and oncogenesis.
(Molecular Endocrinology 19: 1213-1230, 2005)

HE THYROID HORMONE receptor a (TRa) regu-
Tlates gene activity through alternatively silencing
or activating transcription in response to T;. Most
members of the nuclear receptor superfamily require
ligand binding for functional activity. TR is unusual in
that it is bound to target genes both in the presence
and absence of ligand. Depending on the DNA re-
sponse element to which the receptor is bound, TR«
acts as a repressor (or activator in some cases) of
specific genes in the absence of T; and as an activator
(or repressor) of these same genes in the presence of
T5. By mediating T; action, TR« exerts important func-
tions in homeostasis and development. Interest in
TRa-regulated developmental pathways was en-
hanced by the discovery of the viral oncogene v-erbA
carried by the avian erythroblastosis virus (AEV) (1).
AEV induces fatal erythroleukemia dependent on the
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Abbreviations: AEV, Avian erythroblastosis virus; Ar, Ex
argon laser; CFP, cyan fluorescent protein; CRM1, chromo-
some region maintenance 1; DCLP, Dichroic Long Pass;
DsRed, red fluorescent protein; ER, endoplasmic reticulum;
FRET, fluorescence resonance energy transfer; GFP, green
fluorescent protein; GST, glutathione-S-transferase; HA,
hemagglutinin; LMB, leptomycin B; 1p and 2p, one- and
two-photon excitation; pbFRET, photobleaching of the ac-
ceptor; RA, retinoic acid; RXR, retinoid X receptor; TRa,
thyroid hormone receptor «; TRE, thyroid hormone-respon-
sive element; TSA, trichostatin A; YFP, yellow fluorescent
protein.

Molecular Endocrinology is published monthly by The
Endocrine Society (http://www.endo-society.org), the
foremost professional society serving the endocrine
community.

activity of two oncogenes v-erbA and v-erbB. Both
v-erbA and v-erbB interfere with normal cell regulatory
pathways to promote proliferation rather than differ-
entiation. v-ErbB, a mutant form of the epidermal
growth factor receptor, promotes cell proliferation,
whereas v-ErbA, a mutant form of TR« that does not
bind T, inhibits differentiation of erythroblast progen-
itors by quenching the expression of erythroid-specific
genes (2, 3).

In mammalian and avian cancer cells, v-ErbA con-
tributes to tumor formation in part by interfering with
the action of liganded and unliganded TR« (4-7). The
exact mechanism for transcriptional repression by v-
ErbA has not yet been determined; however, two com-
plementary models for the dominant-negative action
of v-ErbA are well supported in the literature (8). In the
first model, competition for DNA binding accounts for
the dominant-negative activity: the oncoprotein binds
to a thyroid hormone-responsive element (TRE) and
blocks the recruitment of TRa to its TRE (9, 10). In the
second model, dominant-negative activity is attributed
to competition for TR« auxiliary factors and cofactors
such as the retinoid X receptor g (RXRB) (11-13). In
both models, v-ErbA interferes with TRa and subverts
regulation of T5-responsive genes.

Interested in understanding the molecular basis be-
hind the oncogenic conversion of TRa into v-ErbA,
and the mode of action of dominant-negative tran-
scription factors in general, we studied a relatively
unexplored mode of oncogenic action: the effect of
altered subcellular localization. TRa has a predomi-
nantly nuclear distribution at steady state but shuttles
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rapidly between the nuclear and cytoplasmic compart-
ments, providing an additional checkpoint in the con-
trol of T5-responsive gene expression (14). In contrast,
the oncoprotein v-ErbA exhibits a nucleocytoplasmic
distribution pattern distinct from TRa. Both cytoplas-
mic and nuclear populations of v-ErbA are present at
steady state in transfected mammalian cells (14, 15)
and in avian cells infected with AEV (16). According to
the current models of dominant-negative activity of
v-ErbA described above, the oncoprotein must enter
and be retained in the nucleus to interfere with the
action of both liganded and unliganded TR« (4, 7,
17-21). However, this is inconsistent with the observa-
tion that much of v-ErbA remains cytoplasmic (14, 15).

Here we report that v-ErbA dimerizes with both TR«
and RXRp and sequesters a significant fraction of these
two members of the nuclear receptor superfamily in the
cytoplasm. Recruitment of TR« to the cytoplasm by v-
ErbA can be partially reversed in the presence of ligand
and when chromatin is disrupted by the histone deacety-
lase inhibitor trichostatin A (TSA). These results define a
new mode of action of v-ErbA and illustrate the impor-
tance of cellular compartmentalization in transcriptional
regulation and oncogenesis.

RESULTS

The Oncoprotein v-ErbA Mislocalizes TRa to
the Cytoplasm

The oncoprotein v-ErbA differs from its cellular ho-
molog, TRe, by fusion at its C terminus with a retroviral
Gag sequence and by several amino acid substitu-
tions, along with deletions at both the C and N termini
(Fig. 1A). These sequence alterations have resulted in
a loss of hormone binding and transactivation activity,
altered DNA binding specificity, and a nucleocytoplas-
mic distribution distinct from TRa. At steady state, the
majority of TRa is found in the nucleus in a diffuse
pattern in transfected mammalian cells (14, 15). This
pattern is identical for untagged and epitope-tagged
counterparts. In contrast, v-ErbA has both cytoplas-
mic and nuclear populations at steady state, with dis-
tributions ranging from diffuse localization in both
compartments to a primarily cytoplasmic distribution
with distinct punctate foci (14, 15).

To investigate the important question of whether
alterations in subcellular localization also play a role in
oncogenesis, the effect of v-ErbA on the distribution of
TRa was assessed after coexpression in mammalian
cells, by a combined approach of epifluorescence and
laser scanning confocal microscopy. Strikingly, when
v-ErbA was coexpressed transiently, a subpopulation
of TRa was also typically found in the cytoplasm of
NIH/3T3 (mouse) cells with a punctate distribution pat-
tern (Fig. 1B). Mislocalization of TRa was observed
with every combination of fluorescent protein or
epitope tag we tested, including green, yellow, cyan,
and red fluorescent protein (GFP, YFP, CFP, and
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DsRed, respectively) and influenza A virus hemagglu-
tinin (HA)-tagged v-ErbA (Fig. 1C).

Fluorescent proteins can form dimers or oligomers
in some cases (22). Therefore, to ensure that the al-
tered distribution pattern of TRa was not an artifact
caused by interaction of the tags used, we also ana-
lyzed the distribution of GFP-TRe in the presence of
untagged v-ErbA (Fig. 2A). Untagged v-ErbA had the
same dramatic effect on TR« localization as its tagged
counterparts. In the presence of untagged v-ErbA,
GFP-TRa was mislocalized to cytoplasmic foci. Un-
tagged v-ErbA has a distribution pattern comparable
to fluorescent protein and epitope-tagged v-ErbA. In-
direct immunofluorescence assays using anti-c-ErbA-
specific antibodies revealed a distribution pattern
ranging from a diffuse nuclear and cytoplasmic local-
ization to cytoplasmic foci (Fig. 2B). When we in-
creased the ratio between the amount of untagged
v-ErbA and GFP-TRa expression vector used for the
cotransfections, in a dose-response experiment, there
was a positive correlation between the relative in-
crease in untagged v-ErbA and the amount of TRa
recruited to the cytoplasm. When cells were trans-
fected with a 19-fold excess of untagged v-ErbA ex-
pression plasmid, no cells displayed a primarily nu-
clear distribution of TRa. In contrast, about 43% of the
cells exhibited a primarily nuclear distribution when
they were transfected with a 19-fold excess of GFP-
TRa expression plasmid (Fig. 2C).

NIH/3T3 cells have been shown previously to be a
suitable model for studies addressing the transcrip-
tional activity and nucleocytoplasmic shuttling of TR
and variants (14, 15). To ensure that the cytoplasmic
mislocalization of TRa by v-ErbA was not a property of
NIH/3T3 cells only, we also studied the interaction of
coexpressed TRa and v-ErbA in HelLa (human) cells
and COS-1 (African green monkey) cells. Both HelLa
and COS-1 cells have been used extensively in studies
addressing the dominant-negative properties of
v-ErbA and the transcriptional activity of TR and RXR
(18, 23-29). A distribution pattern similar to that of
NIH/3T3 cells was also observed in HeLa and COS-1
cells (data not shown), confirming that NIH/3T3 cells
are a representative model system.

Taken together, our findings show that the onco-
protein v-ErbA mislocalizes TR« to the cytoplasm in a
dose-dependent manner. Importantly, this mislocal-
ization is neither cell type specific nor is it caused by
nonspecific interaction between fluorescent protein tags.

Recruitment of TRa to the Cytoplasm by v-ErbA
Can Be Partially Reversed in Presence of Ligand

To determine whether liganded or unliganded TR«
was more sensitive to cytoplasmic mislocalization by
v-ErbA, the effect of T; on subcellular distribution at
steady state (4-6 h incubation) was assessed. When
v-ErbA was coexpressed with TRa in the absence of
Ts, the distribution of TRa shifted significantly (P <
0.0001) from 95 = 6% of cells with a nuclear distribu-
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Fig. 1. TRa Is Mislocalized to the Cytoplasm in the Presence of v-ErbA

A, Schematic diagram (not to scale) of the oncoprotein v-ErbA illustrating its homology with TRa. v-ErbA differs from TRa by
fusion at its C terminus (Cterm) with a retroviral Gag sequence and by several amino acid substitutions (black circles), along with
deletions at both the C and N termini. MA, Matrix association domain, p10: domain containing the CRM1-dependent nuclear
export sequence; LBD, ligand binding domain; DBD, DNA binding domain; DAPI, 4’,6-Diamidino-2-phenylindole. The two
horizontal bars indicate the known dimerization domains of TRa. B, NIH/3T3 cells were cotransfected with vectors encoding
GFP-TRa and DsRed-v-ErbA. Cells were observed by epifluorescence microscopy, after staining with the DNA stain DAPI to
reveal the nucleus. When coexpressed with DsRed-v-ErbA, a significant fraction of GFP-TR«a was found in the cytoplasm. In a
cell not expressing DsRed-v-ErbA (white arrowheads), TRa was predominantly nuclear. C, Cells were transfected with TRa and
v-ErbA fused to various epitope and fluorescent protein tags (GFP-TRa/DsRed-v-ErbA, CFP-TR«/YFP-v-ErbA, YFP-TRa/CFP-
v-ErbA, GFP-TRa/HA-v-ErbA) and the subcellular localization of TRa and v-ErbA was imaged by confocal microscopy. HA-v-ErbA
was analyzed by indirect immunofluorescence using anti-HA-specific antibodies. Mislocalization of TRa to the cytoplasm was

observed for all combinations of tags.

tion (all N or N >C) to only 64 = 6% of cells with a
nuclear distribution of TR« (Fig. 3). Incubating cells for
greater than 6 h in ligand did not alter this steady-state
distribution of TR« (data not shown).

In contrast to the distribution pattern in the absence
of T, when ligand was present, a significantly greater
(P < 0.001) amount of TR« localized to the cell nucleus
instead of being sequestered by v-ErbA in the cyto-
plasm (Fig. 3D). Addition of T resulted in 85 = 5% of
the cells having a more nuclear localization of TR« (all
N or N >C) compared with 64 = 6% in the absence of
ligand (Fig. 3D), even though neither the subcellular
distribution of TRa nor v-ErbA alone is sensitive to T,
(14) (Fig. 3, B and C). These results suggest that v-
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ErbA may function as a dominant-negative repressor
of TRa action, in part, by sequestering wild-type TR«
in abnormal cellular compartments, and that unligan-
ded TRa is more sensitive to mislocalization.

v-ErbA Also Mislocalizes RXRB, an Auxiliary
Factor for TRq, to the Cytoplasm

TRa functions in regulating T;-dependent gene ex-
pression as a heterodimer with RXR (23). In addition,
RXR has been shown to form heterodimers with v-
ErbA in vitro (11-13, 20, 30, 31). To determine whether
an additional mode of action of v-ErbA involves se-
questering this important auxiliary factor for TR« in the
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Fig. 2. Nuclear Localization of TRa Decreases in the Pres-
ence of Increasing Amounts of Untagged v-ErbA

A, Representative example of the distribution of GFP-TR«
in the absence of v-ErbA (All N) and in cells transfected with
a 0.5/1.5 ratio of TRa/v-ErbA expression vector (N = C). B,
Representative examples of untagged v-ErbA detected by
indirect immunofluorescence. C, Cells were cotransfected
with varying ratios of untagged v-ErbA and GFP-TR« expres-
sion vectors for a total of 2 ug of DNA, as indicated. The
subcellular distribution of GFP-TRa was analyzed by epiflu-
orescence microscopy. Cells were analyzed for nucleocyto-
plasmic distribution according to three categories: all N,
completely nuclear; N = C, mainly nuclear or whole cell; N <
C, mainly cytoplasmic. The sample size (number of cells
scored) was 100 for all treatments.

cytoplasm, we assessed the effect of v-ErbA on the
subcellular distribution of RXRB. At steady state, the
majority of RXRgB is found in the cell nucleus in a
diffuse pattern (32) (Fig. 4A). Here, we show that in
cells coexpressing GFP-RXRB and HA-v-ErbA, a sub-
population of RXRB is found in the cytoplasm in a
punctate distribution pattern, similar to the pattern
seen for TRa (Fig. 4A). This cytoplasmic mislocaliza-
tion was also observed using other tag combinations
such as GFP/DsRed, CFP/YFP and YFP/CFP (data not
shown; see Figs. 5-6 for CFP/YFP), indicating that the
altered distribution pattern of RXRp is not due to in-
teraction between the protein tags themselves. Inter-
estingly, the action of v-ErbA is not limited to genes
regulated by TR. It has been shown previously that the
oncoprotein interferes with the transcription of other
genes, including those regulated by RXR (13, 33, 34)
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and the retinoic acid (RA) receptor (30, 33). Thus, our
observation that v-ErbA also mislocalizes RXR is con-
sistent with the wider action of v-ErbA on genes reg-
ulated by other nuclear receptors.

TRa and RXRp Colocalize with v-ErbA in
the Cytoplasm

Having shown that the presence of v-ErbA dramati-
cally alters the subcellular distribution of TRa and
RXRp, we sought to ascertain whether this change in
distribution pattern was due to dimerization of the
oncoprotein with these receptors. To this end, mam-
malian cells cotransfected with GFP-TRa or GFP-
RXRpB and DsRed-v-ErbA were scored, without prior
knowledge of the treatment, for colocalization of the
two proteins according to three categories (Fig. 4B).
Approximately 93 = 10% of the v-ErbA-expressing
cells displayed either total or partial colocalization of
TRa with the oncoprotein in the absence of T; (Fig.
4C). Similarly, 94 + 3% of the cells displayed either
total or partial colocalization of RXRB with v-ErbA (Fig.
4D). This colocalization was particularly evident in
overlapping cytoplasmic punctate signals (Fig. 4, A
and B; see also Fig. 1, B and C).

To determine whether increasing the level of onco-
protein expressed would strengthen the degree of co-
localization with TRa, a dose response assay was
performed. When the ratio between the amount of
v-ErbA and TRa expression vector used for transfec-
tions was varied, there was a positive correlation be-
tween the relative increase in v-ErbA and an increase
in TRa colocalization with v-ErbA in the cytoplasm
(Table 1). Up to 94% of cells showed colocalization
(partial or total) at a 19-fold excess of v-ErbA expres-
sion plasmid, increasing from 45% colocalization
when there was a 19-fold excess of TRa expression
plasmid.

Previous studies have reported that T, disrupts
TR/TR homodimers and favors the formation of TR/
RXR heterodimers (35). However, in vitro v-ErbA/TR«
heterodimers remain bound to TREs at a physiological
concentration of T; (100 nwm) (8). To determine whether
T, which restores TRa to the nucleus, also disrupts
interaction of TR and v-ErbA in vivo, the effect of T; on
colocalization was assessed. Restoration of TRa to
the nucleus in the presence of T; was concomitant
with a significant decrease in cytoplasmic colocaliza-
tion with v-ErbA (P < 0.0001) (Fig. 4C). In the presence
of ligand, the percentage of cells with no or partial
colocalization of TRa and v-ErbA increased to 65 =
7%, compared with 39 = 7% in the absence of ligand.
These results suggest that ligand-bound TR« is more
resistant to the formation of inactive heterodimers with
v-ErbA and may preferentially form transcriptionally
active heterodimers with RXR.

These observations correlate with our previous ob-
servation that T, which normally has no effect on TR«
localization, reduces the amount of the receptor in the
cytoplasm when it is coexpressed with v-ErbA. This
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Fig. 3. Recruitment of TR« to the Cytoplasm by v-ErbA Can be Partially Reversed in the Presence of T,

A, Categories of nucleocytoplasmic distribution: all N, completely nuclear; N >C, mainly nuclear; N = C, whole cell; all C, mainly
to entirely cytoplasmic. These categories were used to score the variation in subcellular distribution of GFP-tagged proteins upon
various treatments and to plot (B-D). The images depict cells transfected with a GFP-TRa expression vector and analyzed by
epifluorescence microscopy after staining with DAPI to reveal the nucleus. B-D, Bar graphs summarizing the effect of 100 nm T4
on the distribution of DsRed-v-ErbA (B) and GFP-TRa (C) expressed separately and together (D). GFP-TRa distribution was
scored blind (without prior knowledge of the treatment) according to the categories in (A).

model is also consistent with previous reports which
showed that addition of T; causes a slight increase in
the transcription of genes normally repressed by the
oncoprotein and inhibits proliferation of v-ErbA-trans-
formed erythroblasts (6). Furthermore, as we ex-
pected, the presence of T had no significant effect on
the colocalization of RXRB with v-ErbA because nei-
ther protein binds this ligand (Fig. 4D). However, un-
expectedly, there was no significant (P = 0.10) change
in RXR/v-ErbA colocalization in the presence of 9-cis
RA (data not shown). Our findings are consistent with
reports that T, causes a conformational change in TR«
that alters its dimerization affinity (35) and, more spe-
cifically in this case, its affinity for v-ErbA.

v-ErbA Does Not Colocalize TRa to any of the
Major Organelles Studied

The colocalization of TRa or RXRB with v-ErbA in
cytoplasmic foci was confirmed using confocal mi-
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croscopy. Visual colocalization was not due merely to
occasional, random overlapping of TRa or RXRB with
v-ErbA (Fig. 5A). Foci comprised of both TRa or RXRA
and v-ErbA have a similar pattern to cytoplasmic foci
present in cells solely transfected with v-ErbA. The
punctate patterns containing both v-ErbA and TR« or
RXRpB were mainly oval shaped (Fig. 5A) but did not
always have the same appearance in every case.
Whether the punctate cytoplasmic distribution of
v-ErbA represents localization to specific cytoplas-
mic subcompartments was investigated by using a
panel of compartment-specific probes. To deter-
mine whether the punctate cytoplasmic foci repre-
sent delivery of misfolded v-ErbA to lysosomes or
endosomes for degradation, we examined the colo-
calization of GFP or YFP-tagged v-ErbA with Lyso-
tracker Red or with the endosome-targeting con-
struct CFP-Endo, respectively. v-ErbA often shows
perinuclear and punctate staining, characteristic of
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A, Cells in the upper panels were transfected with an expression vector for GFP-RXRp alone and the nuclei were stained with
DAPI. In the bottom panels cells were cotransfected with both expression vectors for GFP-RXRB and HA-v-ErbA. The subcellular
distribution of GFP-RXRB was observed by direct epifluorescence microscopy and HA-v-ErbA was detected by indirect
immunofluorescence assay using anti-HA-specific antibodies. B, Categories of colocalization: none, partial, and total. These
categories were used to score the variation in subcellular colocalization of GFP or YFP-tagged proteins with DsRed or
CFP-tagged proteins upon various treatments and to plot (C) and (D). These images depict cells cotransfected with GFP-TRa and
DsRed-v-ErbA expression vectors and analyzed by epifluorescence microscopy. The colocalization categories chosen were
identical for GFP-RXRB and DsRed-v-ErbA. C-D, Bar graphs summarizing the effect of 100 nm T; on colocalization with v-ErbA.
Cells were scored blind (without knowledge of treatment) for colocalization according to the categories in (B). Cells were
cotransfected with TRa and v-ErbA (C), or RXRB and v-ErbA (D).

the Golgi and the endoplasmic reticulum (ER). To
investigate whether or not the oncoprotein colocal-
izes with these organelles, we analyzed the distri-
bution pattern of YFP-v-ErbA with ER-Tracker
Blue-White and the Golgi-specific marker CFP-
Golgi. Finally, given that a TR-like protein has been
found to be associated with rat liver mitochondria
(36), we also tested for aberrant mitochondrial
localization of v-ErbA by staining GFP-v-ErbA trans-
fected cells with Mitotracker Red. v-ErbA cytoplas-
mic foci showed no colocalization with any of these
compartment-specific probes (Fig. 5B; and data
not shown). There was occasional overlapping of
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v-ErbA foci with an organelle marker, but the spa-
tial distributions overall were not positively corre-
lated. Thus, the punctate distribution of the oncoprotein
does not represent localization to lysosomes, endo-
somes, Golgi, endoplasmic reticulum, or mitochondria.

To determine whether cytoplasmic foci containing
both TRa and v-ErbA localized to different cellular
subcompartments than foci of v-ErbA alone, we
tested for colocalization of v-ErbA/TRa with endo-
somes and Golgi. No colocalization of YFP-TRa co-
expressed with DsRed-v-ErbA was observed with
the CFP-Endo or CFP-Golgi probes (Fig. 5C). This
indicates that TR« and v-ErbA are not localized to
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Fig. 5. v-ErbA Cytoplasmic Foci Colocalize with TRa and RXRB but not with Various Organelles

A, Confocal images of cells coexpressing CFP-v-ErbA (red) and YFP-TRa (green) or CFP-v-ErbA (red) and YFP-RXRp (green)
are shown. Marks along each longitudinal section correspond to the position of reconstituted cross-sections (pictures to the right
and bottom of the main panel). This three-dimensional reconstruction of the transfected cells reveals that the TR/v-ErbA foci are
ovoid and vesicular-like structures, but not more complex networks. B, Cells transfected with GFP or YFP-tagged v-ErbA (green)
were stained with ER Tracker Blue-White (blue) or Lysotracker Red (red) or cotransfected with expression vectors for CFP-Endo
(endosomes), or CFP-Golgi (blue) and analyzed for colocalization by epifluorescence microscopy. Merged images revealed no
colocalization between v-ErbA and the organelles studied. C, Cells cotransfected with YFP-TR« (green), and DsRed-v-ErbA (red)
and with CFP-Endo (endosomes) or CFP-Golgi (blue), were analyzed for colocalization. Merged images show strong colocal-
ization between TR and v-ErbA, but none with the organelle probes. The images of cells expressing CFP-Endo and CFP-Golgi
in (B) and (C) were collected by confocal microscopy and represent the stacked projection of a Z-series.

the endosomes or trapped in the Golgi apparatus.
More importantly, these findings provide further ev-
idence that the colocalization observed between
TRa and v-ErbA is not an artifact caused by inter-
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action of the fluorescent protein tags. In addition,
foci were never observed in cells transfected solely
with expression vectors for unfused GFP, YFP, CFP,
or DsRed (data not shown).
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Fig. 6. TRa and v-ErbA Interact in Vitro and in Situ

A, GST pull-down assays were performed using GST-TRa and 3°S-labeled TR, v-ErbA, or ribosomal protein L5 as a negative control.
Input and binding fractions (elutions e1 and e2) are shown. Proteins were detected by fluorography. v-ErbA is eluted after binding to GST-TRa.
B, TRa and v-ErbA interact in situ. COS-1 cells were cotransfected with vectors encoding GFP-TR« and/or DsRed-v-ErbA, and proteins were
metabolically labeled with >°S-methionine. Cell extracts were subject to coimmunoprecipitation assays using anti-GFP antibodies. e1, €2, and
€3, Elutions of immunoprecipitates. Eluted 3°S-labeled proteins were detected by fluorography. The identity of radiolabeled protein bands was
confirmed by comparing with known size standards and by Western blot analysis with anti-GFP and anti-DsRed-specific antibodies (data not
shown). DsRed-v-ErbA is immunoprecipitated by anti-GFP antibodies via interaction with GFP-TRa. C, Schematic explanation of FRET
principle. FRET occurs between CFP and YFP-tagged proteins only when they are within 100 A from one another. When FRET occurs, the
donor (CFP) emission is quenched, whereas the acceptor (YFP) emission is sensitized. D, Representative examples of FRET collected using
the sensitized emission of the acceptor [E(%)] or using photobleaching of the acceptor [pbFRET(%))] in fixed NIH/3T3 cells transfected with
the CFP-YFP fusion protein construct or cotransfected with equal amounts of expression vectors for CFP-v-ErbA and either YFP-TRa or
YFP-RXRB. Calibration bar: Intensity represents the efficiency of FRET E(%) or pbFRET(%) in percentage. Note the higher within sample
variability for pbFRET compared with sensitized emission of the acceptor. In some cytoplasmic foci and in some nuclei the efficiency of FRET
between CFP-v-ErbA and YFP-TRa or YFP-RXRB was comparable to that of the positive control, CFP-YFP (left panels). The FRET signal
recorded was significantly higher than the negative control (CFP+ YFP, data not shown).
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Table 1. Colocalization of TRa with v-ErbA in the
Presence of Increasing Amounts of v-ErbA
Ratio of TRa/v-ErbA

1.9/01 1.5/0.5 1.0/1.0 0.5/1.5 0.1/1.9
% Colocalized 45 74 83 93 94
Sample size 40 42 47 46 18

Cells were cotransfected with varying ratios of GFP-TR« and
DsRed-v-ErbA expression vectors for a total of 2 ug of DNA,
as indicated, and analyzed for colocalization as described in
Fig. 4. % Colocalized, Cells with partial or total colocalization
of TRa and v-ErbA. The sample size corresponds to the
number of cells scored.

Histone Deacetylation Enhances the Effect
of Ligand on the Disruption of TR« and
v-ErbA Colocalization

Transcriptional activation by liganded TR requires his-
tone acetylation and remodeling of chromatin (37, 38).
To determine whether hyperacetylation of histones
would enhance nuclear retention of T;-bound TRe,
cells coexpressing TRa and v-ErbA were treated with
TSA, a histone deacetylase inhibitor (39). In the pres-
ence of TSA, the percentage of cells exhibiting partial
or total cytoplasmic colocalization of TRa and v-ErbA
decreased from 73% to 56%. Concomitant with this
disruption of colocalization, the percentage of cells
showing primarily nuclear localization of TRa in-
creased from 27% to 44%. Interestingly, there was a
striking additive effect of T; and TSA on the disruption
of TRa and v-ErbA colocalization (Table 2). Together,
T, and TSA reduced the percentage of cells exhibiting
partial or total colocalization to only 24% (Table 2).
Associated with this disruption of colocalization, the
percentage of cells showing primarily nuclear localiza-
tion of TR« increased to 76%. Not surprisingly, when
cells expressing GFP-TR« alone were treated with T,
and/or TSA the distribution of the nuclear receptor

Table 2. Additive Effect of T; and TSA on the Nuclear
Localization of TR and Disruption of TR and v-ErbA
Colocalization

Treatment

—TSA/-T, +TSA/~T, —TSA/+T, +TSA/+T,

% All nuclear 27 44 62 76
% Colocalized 73 56 38 24
Sample size 250 250 250 250

Cells were cotransfected with expression vectors for GFP-
TRa and DsRed-v-ErbA and treated with 100 nm T and/or
100 nm TSA, as indicated. Nuclear localization and colocal-
ization were analyzed as described in Figs. 3 and 4, respec-
tively. % All nuclear, Subpopulation of cells coexpressing
v-ErbA in which TR« was primarily localized in the nucleus. %
Colocalized, Subpopulation of cells with either partial or total
colocalization of TRa and v-ErbA. The sample size corre-
sponds to the number of cells scored.
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remained unchanged (Fig. 3C; and data not shown).
The sequestration of normal TR« in abnormal cellular
compartments is thus partially reversed in the pres-
ence of hyperacetylated, active chromatin.

In Vitro and in Situ Interaction of TRa and v-ErbA

Our data demonstrate that v-ErbA is able to partially
retain TRa in the cytoplasm, suggesting that v-ErbA
binds to TR« in vivo. Prior studies have only analyzed
the interaction of v-ErbA and TR« in the context of
their binding to DNA recognition sites as monomers,
homodimers, or heterodimers (8, 40), although the
direct interaction of v-ErbA and RXR in the absence of
DNA has previously been shown using in vitro assays
(11). To demonstrate a similar interaction between v-
ErbA and TRa in the absence of DNA, glutathione-S-
transferase (GST) pull-down, coimmunoprecipitation,
and fluorescence resonance energy transfer (FRET)
assays were performed. Consistent with the colocal-
ization studies, in vitro-translated v-ErbA can physi-
cally interact with GST-TR« in the absence of DNA
(Fig. 6A), and DsRed-v-ErbA is immunoprecipitated
from cells cotransfected with GFP-TRe, using anti-
GFP antibodies (Fig. 6B). Moreover, the close proxim-
ity between the oncoprotein and either TRa or RXRpB
was observed in situ using FRET.

FRET microscopy detects the result of a nonradia-
tive transfer of energy from a donor fluorophore to a
nearby acceptor that can only occur over a distance
less than about 100 A (Fig. 6C) (41-45). When FRET
occurs between a pair of fluorophores, the donor’s
emission signal is quenched, whereas a sensitized
light is emitted by the acceptor above the spectral
background signal. In the present study, CFP and YFP
were used, respectively, as the donor and acceptor
pair for FRET. To record FRET, there are a number of
well-established approaches (46). Among these tech-
niques, FRET can be recorded through the sensitiza-
tion of the donor or through the dequenching of the
donor after photobleaching of the acceptor (pbFRET).
Traditionally, these approaches have used one-pho-
ton (1p) excitation (41, 43, 44, 47-50). More recently,
however, two-photon (2p) excitation has become the
method of choice for some applications (45, 51-53).
Here, we assessed FRET via 2p sensitization of YFP
and confirmed it with 1p acceptor photobleaching.

To analyze FRET through sensitization of the donor,
we first collected 12 images of unfused CFP or YFP
alone under the same settings. These images were
used to measure the coefficients of spectral cross talk
from CFP or YFP in the FRET channel, and to correct
the images of cells coexpressing both donor and ac-
ceptor. Although, the cross-section of YFP and CFP is
broader for 2p excitation than for 1p (54) at 820 nm,
the CFP/YFP cross-section ratio is approximately
40-50 (55). This is important because, in FRET imag-
ing, the higher the CFP/YFP cross-section ratio is at
the wavelength used to image CFP, the smaller will be
the YFP signal monitored in the FRET channel (less
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cross talk). We found that 2p excitation for CFP/YFP
FRET has similar cross talk compared with 1p (data
not shown). Nevertheless, it is important to keep in
mind when using other fluorophores that the large
cross-section of many fluorophores with 2p excitation
may make this technique unsuitable for other FRET
pairs traditionally used with 1p excitation. Thus, it is
imperative to optimize the 2p excitation wavelength for
each FRET pair used, especially to minimize the exci-
tation of the donor when exciting the acceptor.
Second, 12 images of cells coexpressing both un-
fused CFP and YFP (CFP+YFP) together were col-
lected as a negative control for FRET and 12 images of
cells expressing the CFP-YFP fusion construct (44)
were collected as a positive control for FRET. The
positive control exhibits a 30% FRET efficiency (Fig.
6D). This value was used to quantify precisely the
efficiency of FRET between TRa or RXRB and v-ErbA.
Finally, without prior knowledge of the treatment, we
recorded images of cells displaying obvious colocal-
ization of TRa or RXRB with v-ErbA. At least 18 images
each of cells coexpressing YFP-TRa or YFP-RXRB
with CFP-v-ErbA in the presence or absence of ligand
were collected from three different transfection exper-
iments. A significantly higher FRET signal (P < 0.001)
was measured between both TRa+v-ErbA and
RXRB+v-ErbA compared with that of the negative
control CFP+YFP. These data confirm that both RXR
and TR colocalize with v-ErbA. On average, the FRET
efficiency between TRa or RXRB and v-ErbA was 19%
(Fig. 6D). With the widely used orientation factor of 2/3
(45), we calculated a distance of approximately 672
A between the fluorescent tags, which is well below
the 100 A limit for FRET detection (Fig. 6C). We did not
do any direct measurements of the dipole orientation
of the heterodimers, so this value is only an approxi-
mation. However, the distance measured is similar to
that of other proteins interacting in complexes, such
as the vacuolar H*-ATPase-a (VHA-a) and vacuolar
H*-ATPase-c (VHA-c) subunits in the vacuolar H*-
ATPase complex in plants (50). Because the DNA
binding domain of RXR alone is 38 x 74 x 25 A (56),
the relatively small distance measured between CFP
and YFP provides further evidence that there is direct
interaction of the receptors with the oncoprotein. In
the presence of ligand (T, or 9-cis RA), the efficiency of
FRET was slightly reduced between v-ErbA and TR«
or RXRB (Table 3); however, this decrease was not
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statistically significant (P = 0.017 and P = 0.022,
respectively). Finally, FRET signals greater than the
positive control CFP-YFP (>30%), sometimes oc-
curred within cytoplasmic foci and/or nuclei of cells
coexpressing v-ErbA and either TR« or RXRg (Fig. 6D).

To provide additional evidence for interaction be-
tween v-ErbA and either TRa or RXRB in situ, we
assessed FRET via recovery of the donor’s fluores-
cence after pbFRET. Using this technique, we con-
firmed that FRET occurred between YFP-TR« or YFP-
RXRpB and CFP-v-ErbA (Fig. 6D). The FRET efficiencies
obtained with pbFRET in the absence of T, compared
with those obtained with sensitized FRET, were
slightly higher between CFP-v-ErbA and YFP-TRa«
(24 = 7%, average of n = 8 repeats) or YFP-RXR
(29 = 4%, n = 10) (compare with Table 3). However,
the values were lower for the CFP-YFP-positive FRET
control (26 = 6%, n = 13) compared with the expected
30%. Direct comparison of the efficiencies is not pos-
sible because the within sample variability ranged
from 12-19% for pbFRET compared with 2-5% with
sensitized FRET (Fig. 6D). Low reproducibility and high
variability of pbFRET data has been described in a
previous study (43). Therefore, ppFRET cannot con-
clusively verify the accuracy of the cross-talk cor-
rections used in sensitized FRET. More importantly,
the values obtained with pbFRET confirm that FRET
occurs between YFP-TRa or YFP-RXRB and
CFP-v-ErbA.

Taken together, these data provide further confir-
mation that TRe and RXR can physically interact with
v-ErbA in situ and show that DNA binding is not re-
quired for heterodimer formation or stability.

v-ErbA/TRa Heterodimers Follow a Chromosome
Region Maintenance 1 (CRM1)-Mediated Nuclear
Export Pathway

Because TRa and v-ErbA are both shuttling proteins,
the sequestration of TRa/v-ErbA heterodimers in the
cytoplasm could be explained by at least two mech-
anisms. One possibility is that v-ErbA, being mostly a
cytoplasmic protein, interacts with TR« during its nu-
cleocytoplasmic shuttling. Heterodimers would then
be sequestered in the cytoplasm because v-ErbA itself
is retained in the cytoplasm. Alternatively, the two
proteins could interact in the nucleus. Heterodimers
would then be actively and rapidly exported to the

Table 3. Effect of Ligand on FRET between CFP-v-ErbA and YFP-TRa or YFP-RXRf

YFP-TRa + CFP-v-ErbA t Test YFP-RXRB + CFP-v-ErbA t Test
~Ts +T, —-RA +RA
E (%) =19.14 £ 217 E (%) = 17.69 = 2.04 p=0.017 E (%)= 19.71 =218 E (%) =18.29 +1.83 p = 0.022
n=21 n=18 n=21 n=18

Cells were cotransfected with CFP-v-ErbA and either YFP-TRa or YFP-RXRp, and incubated in the presence or absence of 100
nM T4 or 9-cis RA, as indicated. E(%), FRET efficiency in percentage. n, Number of cells imaged. t Test, Critical value measured
between treatments. The images for FRET quantifications were collected without prior knowledge of the treatment from three

different transfection experiments for each treatment.
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cytoplasm by a CRM1-mediated pathway, because
v-ErbA exits the nucleus by such a pathway, in con-
trast to TRa (14, 15). We thus sought to ascertain
whether coexpressing v-ErbA with TRa would confer
to TRa the ability to follow a CRM1-mediated export
pathway. To explore this model, we used heterokaryon
assays (Fig. 7A) to determine whether TRa nuclear
export becomes sensitive to leptomycin B (LMB) in the
presence of v-ErbA. LMB is a specific inhibitor of
CRM1-mediated export (39). Heterokaryons (or, in
some cases, monokaryons where only one of the
mouse nuclei of the fused cells was transfected) were
left to shuttle for 6 h to ensure a sufficient time for TR«
shuttling, which normally occurs within 1.5 h (14). In
the presence of v-ErbA, TRa nuclear export exhibited
sensitivity to LMB because there was no detectable
shuttling even after 6 h (Fig. 7B). Under the same
conditions (presence of LMB) and incubation time, but
in the absence of v-ErbA, TR« was able to shuttle. In
contrast v-ErbA remains trapped within the mouse
nucleus in the presence of LMB (Fig. 7B). These find-
ings, in conjunction with our findings that TRa forms
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dimers in vivo with v-ErbA, indicate that a CRM1-
mediated export pathway is most likely followed by
v-ErbA/TRa heterodimers (Fig. 7B). These observa-
tions also suggest that TRa may normally enter and
exit the nucleus as a homodimer or heterodimer. Even
if not all TRa becomes LMB sensitive by virtue of its
interaction with the oncoprotein, its export kinetics or
nuclear retention are clearly greatly altered in the pres-
ence of v-ErbA. Whether there is, in addition, active
retention or anchoring of TRa in the cytoplasm by
v-ErbA and other associated factors remains to be
determined.

DISCUSSION

The studies described in this report demonstrate a
previously uncharacterized mode of action for the on-
coprotein v-ErbA, which may contribute significantly
to its dominant-negative activity. In our model (Fig. 8),
we propose that in addition to the well characterized

Fuse cells (+LMB)

TR does not shuttle

=

TR shuitles

Fig. 7. v-ErbA/TRa Heterodimers Follow a CRM1-Mediated Nuclear Export Pathway

A, Schematic diagram of transient interspecies heterokaryon assay. B, Nucleocytoplasmic shuttling of YFP-TRa is blocked in
the presence of CFP-v-ErbA and leptomycin B (LMB). NIH/3T3 cells were cotransfected with expression vectors for CFP-v-ErbA,
YFP-TRa, or both. Subsequently, HeLa cells were fused with the transfected mouse cells to form heterokaryons, as confirmed
by Nomarsky microscopy. The cells were incubated for 6 h in the presence of LMB. The white arrowhead points toward the human
nucleus, as distinguished by differential staining with Hoechst and/or ToPro3, that should contain YFP-TRa or CFP-v-ErbA if
shuttling occurs. v-ErbA nuclear export is blocked by the presence of LMB. Although TR« is able to shuttle in the presence of
LMB alone, it is trapped in the nucleus in the presence of both v-ErbA and LMB.
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Fig. 8. Model of Dominant-Negative Activity of v-ErbA

In the absence of the oncoprotein, unliganded and liganded TR« along with RXRf repress or enhance the transcription of
specific genes. In the presence of v-ErbA, the normal transcriptional activity of TRa and RXRp is antagonized by competition with
v-ErbA for DNA response elements and/or cofactors, and mislocalization of TRa and RXRp to the cytoplasm. Unliganded TR«
is more sensitive to mislocalization; thus in the absence of ligand, cytoplasmic mislocalization may play a greater role in mediating
v-ErbA dominant-negative activity. This mislocalization is most likely due to the active export by the CRM1-mediated export
pathway of TRa/v-ErbA and RXRB/v-ErbA heterodimers formed in the nucleus, and anchoring of these receptors by v-ErbA in the
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competition between v-ErbA and TR for TREs, the
oncoprotein mediates the nuclear export of TR and its
heterodimerization partner RXR. This CRM1-mediated
export results in the sequestration of a subpopulation
of both receptors in the cytoplasm. Such mislocaliza-
tion provides a powerful level of repression by the
oncoprotein, particularly for unliganded TR-mediated
gene expression, leading to its oncogenic activity.
When unliganded TR is mislocalized to the cytoplasm,
it can no longer repress (or in some cases activate)
expression of its target genes. In the presence of T,
the dominant-negative activity of v-ErbA may be me-
diated to a greater degree by competition with TR for
DNA-binding sites, in the nucleus. This model is sup-
ported by a previous study that showed that in the
presence of T, v-ErbA dominant activity was reduced
and transcriptional activity of two TR-responsive re-
porter constructs was partially restored (8). However,
the incomplete restoration of TR to the nucleus, as well
as the mislocalization of RXR and possibly other co-
activators or corepressors of TR-mediated transcrip-
tional regulation, suggest that cytoplasmic recruitment
continues to play an important role even in the pres-
ence of Tj.

Earlier studies had suggested that v-ErbA acts by
competing for DNA response elements rather than by
formation of nonfunctional v-ErbA/TR heterodimers
(9). These conclusions were based on transcription
assays using a DNA binding domain mutant of v-ErbA;
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however, the subcellular localization of this mutant
was not examined. Another DNA binding mutant of
v-ErbA has been shown to be defective in its ability to
accumulate in the nucleus (16, 57), illustrating the im-
portance of DNA binding in nuclear import and reten-
tion. Our findings suggest that heterodimer formation
may occur primarily in the nucleus. Therefore, in light
of the data presented here and the link between the
DNA binding domain and subcellular localization, it is
highly likely that the DNA binding domain mutant of
v-ErbA used in prior studies (9) would not have had the
opportunity to form a heterodimer with nuclear TR,
because of being localized to the cytoplasm.
Evidence from other studies supports the role of
altered nuclear export, and cytoplasmic and/or nu-
clear mislocalization in transcriptional deregulation
and oncogenesis. For example, mislocalization of
INI1/hSNF5, a component of the SWI/SNF chromatin
remodeling complex, blocks its normal tumor sup-
pression function (58), p53 is hyperactively exported
from the nucleus in some transformed cells (59), and
ectopic expression of the hepatitis B virus X protein
sequesters CRM1 in the cytoplasm, suggesting that
the inactivation of the CRM1-mediated pathway may
be an early step during viral-mediated liver carcino-
genesis (60). Moreover, a recent report suggests that
the hepatitis C virus core protein modulates the retin-
oid signaling pathway by sequestering Sp110b, a
corepressor of the RA receptor «, to the endoplasmic
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reticulum (61). Finally, a mutant of the androgen re-
ceptor, which is aberrantly localized in nuclear foci and
subsequently mislocalizes steroid receptor coactiva-
tor 1, has been linked to human prostate cancer (62).
Oncogenic conversion of TRa into v-ErbA thus not
only involves changes in DNA binding specificity and
ligand binding properties, but also the acquisition of
altered nuclear export capabilities and subcellular lo-
calization (Fig. 8).

Mutants of the Rous sarcoma virus Gag polypep-
tide, as well as defective endogenous retroviruses
have been shown to localize to the secretory pathway
in host cells (63). Here we show that the portion of Gag
fused to the N terminus of v-ErbA does not target
v-ErbA to either the ER or the Golgi apparatus. Inter-
estingly, this sequence of v-ErbA encompasses the
matrix domain of Rous sarcoma virus Gag (Fig. 1),
known to be responsible for membrane targeting (53,
63) and which may also be responsible for the forma-
tion of cytoplasmic complexes. Other viral Gag pro-
teins have been reported to interact with various struc-
tures in the cytoplasm. For example, the Mason-Pfizer
monkey virus matrix association domain of Gag inter-
acts with the dynein/dynactin molecular motor and
targets Gag to the pericentriolar region of the cell (64,
65). We recently reported that the altered nuclear ex-
port properties of v-ErbA are mainly attributed to a
CRM1-dependent nuclear export sequence in the C-
terminal portion of the p10 domain of Gag (15).
Whether interaction and colocalization of Gag with
subcellular components contributes to formation of
foci is under investigation. Although the Gag domain
may play a role in the formation of these cytoplasmic
foci, it is unlikely that Gag is the sole contributor to the
punctate distribution. We have observed a similar dis-
tribution in a DNA binding mutant of TR« (14). Like-
wise, a TRa mutant in which the entire D domain is
deleted was shown by immunostaining to localize to
the cytoplasm, and then over time to become localized
to the perinuclear region or in cytoplasmic patches at
the border of the nuclei (66). These observations sug-
gest that cytoplasmic localization of TRa mutants and
v-ErbA may have more to do with decreased nuclear
retention, or a shift in the balance of nuclear import vs.
nuclear export, than with Gag-mediated targeting to
subcellular compartments.

The nature of v-ErbA cytoplasmic foci remains to be
determined, but results presented here suggest that
v-ErbA is not associated with a single organelle or
other subcellular compartment. Furthermore, it is un-
likely that these foci represent nonspecific aggregation
of misfolded proteins because other studies suggest
that, in cells, protein aggregation is highly specific (67).
Cytoplasmic foci were not simply the result of aggre-
gation of the DsRed tag, because a similar pattern of
distribution was observed with CFP, YFP, and HA-
tagged receptors, and when cells were cotransfected
with expression vectors for untagged, native v-ErbA.
Furthermore, in the presence of LMB, v-ErbA foci dis-
perse over time and v-ErbA becomes trapped in the
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nucleus with a diffuse distribution pattern (Allison, L.,
unpublished observations), suggesting that these foci
represent dynamic structures. Finally, cytoplasmic foci
were not observed in cells transfected with expression
vectors for unfused GFP, YFP, CFP, or DsRed.

The acquired oncogenic characteristics of v-ErbA,
including a viral NES, lead to sequestration of normal
TRa and auxiliary factors in the cytoplasm. This mis-
localization can be partially reversed in the presence of
ligand and active, hyperacetylated chromatin. Our
findings, along with previous reports (10, 37, 38), em-
phasize the importance of chromatin structure for TR
binding and transcriptional regulation. Although previ-
ous reports showed that the ligand for RXR, 9-cis RA,
disrupts RXR/v-ErbA dimers and, moreover, allows the
recovery of RXR transcriptional activity (13), we did not
record a significant effect of ligand on the cytoplasmic
colocalization of RXR and v-ErbA. However, the mod-
est decrease in FRET efficiency suggests that 9-cis RA
may partially disrupt RXR/v-ErbA dimers. It has been
shown that the responsiveness of RXR to its ligand is
greatly increased by the presence of TR (68). There-
fore, it is possible that disruption of colocalization
between RXR and v-ErbA, and concomitant restora-
tion of RXR to the nucleus may require other factors,
such as TR.

Our data show that increasing the amount of v-ErbA
relative to TR« increases the degree of receptor mis-
localization and colocalization with the oncoprotein in
the cytoplasm. In some instances, inappropriate cyto-
plasmic accumulation of nuclear proteins labeled with
GFP has been reported. For example, overexpression
of GFP-tagged SMN (survival of motor neuron pro-
teins) leads to aberrant cytoplasmic accumulation of
SMN-complex proteins and core snRNP proteins in
transiently transfected cells (69). However, cytoplas-
mic localization of v-ErbA is not a result of overexpres-
sion or tagging with GFP because we observed cyto-
plasmic accumulation over a range of different
expression levels, and whether v-ErbA was fluores-
cent protein tagged, epitope tagged, or untagged.
Furthermore, v-ErbA is naturally overexpressed in cells
infected with AEV, and this strong expression is es-
sential in host cells to mediate transforming activity (5,
9, 13). This phenomenon was previously explained
solely by the relatively poor interaction of v-ErbA with
TREs. In the presence of T, increasing amounts of
v-ErbA relative to TR are required to increase v-ErbA
transcriptional repression (8). This is consistent with
our finding that increasing the amount of v-ErbA rela-
tive to that of TR increased the degree of mislocaliza-
tion of the receptor to the cytoplasm, and that this
overexpression could partially compensate for the dis-
rupting action of T; on TR/v-ErbA dimers. It now ap-
pears that natural overexpression of the oncoprotein is
necessary, in part, to mediate all components of dom-
inant-negative activity, including subcellular mislocal-
ization of TRa and RXR.

In summary, our findings not only increase under-
standing of the normal cellular response to T but also
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provide important insight into the ontogeny of an on-
cogene and modulation of gene expression through
both compartmentalization and dominant-negative
transcription factors. Other dominant-negative vari-
ants of TRa may be involved in human cancer (70);
thus, these findings may have implications for a mech-
anism for their action as well.

MATERIALS AND METHODS

Gene Constructs

Expression vectors for GFP-TRa, GFP-v-ErbA, untagged v-
ErbA (RS-v-erbA) and for in vitro translation of TRa, v-ErbA,
and ribosomal protein L5 were as previously described (14,
71). Expression vectors for DsRed, YFP, and CFP-tagged
TRa and v-ErbA were constructed by subcloning into
pDsRed2-C1, pEYFP-C1 and pECFP-C1 plasmids (CLON-
TECH Laboratories, Inc., Palo Alto, CA). HA-v-ErbA was sub-
cloned into pCMV-HA (CLONTECH) by PCR ampilification of
v-erbA with an engineered Bgl/ll site at the 5’-end and the
existing EcoRl site from GFP-v-ErbA. Expression vectors for
GFP-RXRB and a CFP-YFP fusion protein were gifts from Y.
Katagiri (32) and J. Swanson (44), respectively. pGEX-2T-T3R
used for bacterial overexpression of GST-TR«a was a gift from
M. Privalsky (72).

Transient Transfection Assays

Transient transfection assays and subsequent analysis of
fixed NIH/3T3 cells by epifluorescence microscopy were per-
formed as described (14). Sixteen to 24 h after transfection,
cells were incubated for 4-14 h with T; and 9-cis RA-de-
pleted medium or with medium supplemented with 100 nm T4
and/or 100 nm TSA or 100 nm 9-cis RA (Sigma, St. Louis, MO).
The subcellular localization of untagged v-ErbA and HA-v-
ErbA was analyzed by indirect immunofluorescence using
standard procedures (14). Cells where probed with anti-c-
erbA antibodies (1:50, rabbit polyclonal to full-length chicken
TRq, FL-408; Santa Cruz Biotechnology, Inc., Santa Cruz,
CA) or anti-HA (1:200, rabbit polyclonal, S1827, CLONTECH)
and labeled secondary antibodies (1:100 and 1:500 respec-
tively, Vector Laboratories, Inc., Burlingame, CA). Confocal
images were collected with Laser Sharp 2000 version 5.3
(Bio-Rad, Hercules, CA) using the Radiance 2001 (Bio-Rad)
laser scanning system, mounted on an inverted microscope
(Nikon Eclipse TE300, Nikon Inc., Melville, NY). The following
filter combinations were used: GFP Ex Argon laser (Ar) 514
nm, Dichroic Long Pass (DCLP) 560, high quality filter (HQ)
515/30; DsRed Helium Neon laser 543 nm, DCLP 560, DCLP
650, HQ 600/50; CFP Ar 457 nm, DCLP 500, HQ 485/30; YFP
Ar 514 nm, DCLP 500, DCLP 650, HQ 545/40; DsRed He/Ne
570 nm, DCLP 500, DCLP 560, LP 570.

Analysis of v-ErbA Association with Specific Organelles

To analyze the colocalization of v-ErbA with lysosomes or
endosomes, cells transfected with GFP or YFP-tagged v-
ErbA were stained for 30 min at 37 C with Lysotracker Red
DND-99 (100 nm, Molecular Probes, Eugene, OR) or cotrans-
fected with an endosome-targeting vector, pECFP-Endo
(CLONTECH). For Golgi and ER colocalization, YFP or GFP-
v-ErbA transfected cells were stained for 30 min at 37 C just
before the fixation with ER-Tracker Blue-White DPX (500 nm,
Molecular Probes), or were cotransfected with a Golgi-spe-
cific targeting vector, pECFP-Golgi (CLONTECH). For mito-
chondrial association, GFP-v-ErbA transfected cells were in-
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cubated for 30 min at 37 C with Mitotracker Red (50 nm,
Molecular Probes) just before fixation.

Analysis of Nucleocytoplasmic Distribution and
Colocalization

Transfection experiments were carried out at least three
times for each treatment, with greater than 100 cells analyzed
per trial. Scoring of cells was performed blindly, without prior
knowledge of treatment. For analysis of nucleocytoplasmic
distribution, cells were categorized into four groups based on
rigorous criteria for the qualitative assessment of the subcel-
lular distribution of TRa: all N, complete nuclear localization;
N > C, mainly nuclear; N = C, whole cell distribution; or all C,
mainly to entirely cytoplasmic. For analysis of colocalization,
cells were categorized into three groups based on qualitative
rigorous criteria for the assessment of the relative degree of
colocalization of TRa or RXRB with v-ErbA: total, partial, or no
colocalization. Log-linear analysis was used to determine the
statistical significance of differences in subcellular distribu-
tion and colocalization in the presence and absence of v-
ErbA and ligand.

GST Pull-Down and Coimmunoprecipitation Assays

Direct interaction between TRa and v-ErbA was examined by
GST pull-down assays. The GST-TRa fusion protein was
expressed in Escherichia coli BL21-Codon Plus (DE3)-RIL
cells (Stratagene, La Jolla, CA). After induction with 0.5 m
isopropyl-B-b-thiogalactopyranoside at 30 C, bacterial cells
were harvested and sonicated in B-PER Bacterial Protein
Extraction Reagent (Pierce, Rockford, IL) supplemented with
500 pg/ml lysozyme. GST-TRa was purified using Glutathi-
one Sepharose 4B resin (Amersham Pharmacia Biotech, Ar-
lington Heights, IL) and eluted with reduced glutathione, fol-
lowed by dialysis against PBS. Purified protein was bound to
Immobilized Glutathione gel in Mini-Spin Columns (Pierce),
according to the manufacturer’s instructions. Radiolabeled
TR, v-ErbA, and ribosomal protein L5 were translated in
vitro using the TNT-coupled transcription/translation system
(Promega) in the presence of 3°S-methionine (Amersham)
and SP6 or T; RNA polymerase. Pull-down assays were
carried out using the Profound Pull-Down GST Assay Kit
(Pierce), according to the manufacturer’s instructions. Sam-
ples were analyzed by 10% SDS-PAGE and fluorography
was performed as described (14).

For coimmunoprecipitation assays, COS-1 cells were co-
transfected with GFP-TRa and DsRed-v-ErbA expression
plasmids in 100-mm plates. Twenty hours after transfection,
transfection medium was replaced with DMEM containing
10% fetal bovine serum minus methionine (Invitrogen Life
Technologies, Carlsbad, CA), supplemented with 50 uCi/ml
35S-methionine. Cells were lysed 48 h after transfection in
M-PER Reagent (Pierce) and incubated with anti-GFP anti-
body (CLONTECH Living Colors full-length A.v. polyclonal)
bound to AminoLink Plus Coupling Gel in Mini-Spin Columns
(Pierce), according to the manufacturer’s instructions. After
elution, immunoprecipitated antigen samples were concen-
trated using PAGEprep Protein Clean-Up and Enrichment Kit
(Pierce) and analyzed by 10% SDS-PAGE and fluorography.
The identity of radiolabeled protein bands was confirmed by
comparing with known size standards (Bio-Rad Kaleido-
scope prestained protein molecular weight standards) and by
Western blot analysis with anti-GFP and anti-DsRed-specific
antibodies (CLONTECH Living Colors A.v. monoclonal #JL-8;
CLONTECH Living Colors DsRed monoclonal).

FRET Analysis

NIH/3T3 cells were transfected with expression vectors for
unfused CFP, unfused YFP or CFP-YFP fusion protein alone,
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or cotransfected with equal quantities of expression plasmids
for both unfused CFP and YFP, or either CFP-TR« or CFP-
RXRB and YFP-v-ErbA. Transfected cells were fixed as de-
scribed above. To measure the efficiency of FRET analysis
via sensitized emission of YFP, all images were collected with
2p excitation. In monolayer cells, 2p excitation is reported to
yield a FRET signal that is less affected by donor concentra-
tion than in one photon confocal FRET microscopy (45).
However, the photobleaching rate under 2p excitation is
higher at the focal plane than in 1p microscopy (73-76). The
use of fixed cells and identical settings, allowed scanning of
each sample only once for each wavelength. This helped
reduced 2p high-order photobleaching and associated draw-
backs. Nevertheless, it is important when designing an ex-
periment using this technique on samples other than fixed
monolayer cells to keep in mind the higher photobleaching
properties at the focal plane of 2p excitation. The 2p-excita-
tion was achieved with a Ti/Si laser line (MaiTai, Spectra-
Physics, Mountain View, CA), connected to a Radiance 2100
(Bio-Rad) confocal microscope, using the same settings for
each image collected (gain, offset, zoom, laser power). The
channels used to collect the pictures were as follows: donor
(CFP), 2p-820 nm, HQ 485/30; FRET 2p-820 nm, DCLP 500,
HQ 528/50; acceptor (YFP) 2p-920 nm, DCLP 500, HQ 528/
50. To reduce potential photobleaching CFP and FRET chan-
nels were collected simultaneously. Using the setcol display
feature, the background (Bkg) was set as pixels with an
intensity of five or less. To quantify the data, a correction
algorithm was used that allows a more precise and more
quantitative approach to FRET (44, 45). The correction algo-
rithm was applied using scripts written with scientific imaging
software (Scanalytics, Fairfax, VA) according to the following
formula:

n-1

o) F= D (rXDF4rAx AT W(DF* and A%)€1Bkg..Satl

else

_ V(D¢ and A?)E]Bkg..Sat[
A v i €[0..n[

where cF corresponds to the corrected FRET signal; D, F, and
A represent the images collected under the donor, FRET, and
acceptor channels respectively, in samples transfected by: d,
donor; a, acceptor; or a,b, both donor and acceptor, respec-
tively. The index i represents the given range of intensity, and
n was set to 5 bit (=32), delimiting a 3-bit (=8) range of
intensity (for example, A;*? represents all the pixels that have
an intensity between 24 and 31, from an image of cells
coexpressing the donor and acceptor that was collected
under the acceptor channel). The background (Bkg) or satu-
rated pixels (Sat) of these images were set to zero using
masks before the analysis. The cross-talk coefficients r¥ and
r* were calculated for each range of intensity, i, using 12
different sets of images each from cells expressing donor or
acceptor alone from three different slides. These cells were
chosen with various intensity levels so that the entire dynamic
range could be covered for the correction. In this case, F¥ and
F represent the sets of pixels with the same coordinates as
in A7 and DF, respectively.

The efficiency of FRET was then calculated for each sam-
ple using the following formula:

Ad.a
E(%) = 100 X <1 —W>

where E(%) is the percent efficiency of FRET. y corresponds
to the ratio of &y in Hoppe et al. (44) or to (Wyq/Vyg)X Qg in
Elanglovan et al. (45). The efficiency of FRET for the construct
expressing a CFP-YFP fusion protein was determined to be
approximately 30% at pH 8.5 in vitro (pH of the mounting
media used) (44). y Was thus calculated by averaging 12
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different sets of images collected from three different slides
of cells transfected by the CFP-YFP fusion construct, ac-
cording to the following equation:
E(%)CFP*YFP ACFP*YFP
Y= <100 ~E(%)0P VP X <CFCFP—YFP>)

VeFj#0
E(%)CFP*YFP=3D%

ACFP-YFP is the intensity of CFP-YFP collected under the
acceptor channel, and cFCF”Y** the intensity of the cor-
rected FRET for CFP-YFP. y was estimated to be approxi-
mately 0.5.

To ensure that the signal measured was due to FRET, 12
images from cells transfected solely with unfused CFP and
YFP were collected from three different slides. Finally, for
cells expressing YFP-TRa or YFP-RXRB cotransfected with
CFP-v-ErbA in the presence or absence of T; or RA, respec-
tively, the images were collected blind from a total of 12
slides (three slides per treatment) without knowledge of treat-
ment. The cells chosen for analysis were solely cells with
obvious colocalization of YFP-TRa or YFP-RXRB with CFP-
v-ErbA. Distance was calculated according to the following

formula:
100
ray = Ro X 6 E%) ~ 1

where r, is the distance in Angstrom, R, is the Forster’s
distance calculated to be 52.76 for the CFP/YFP FRET pair
(45). This value of R, assumes the widely used dipole orien-
tation of 2/3 (45). E(%) is the FRET efficiency.

For pbFRET, the signal was determined using the following
formula:

PbFRET (%)

d.a
_ {100 X (1 — DD—d> V(D% and D% €]Bkg..Sat[
0 else

where pbFRET (%) is the FRET efficiency, D% are images
collected under the donor channel before photobleaching
(where donor and acceptor are present) and DY are images
collected under the donor channel after photobleaching of
the acceptor (only the donor remains present) (41-43). D%2,
D¢ were collected using the setcol display feature, so that the
background (Bkg) was set as pixels with an intensity of 5 or
less. These pictures were then corrected for background and
saturation if applicable. The cells were photobleached for
1-10 consecutive scans (~78-780 us/pixels at a 0.1-0.2
um/pixel resolution) using the 514-nm laser line (5 mW) of
the argon laser set at 100%. Images were captured under the
YFP filter set, before and after photobleaching to confirm the
loss of fluorescence.

Heterokaryon Assays

Heterokaryon assays were performed as described (14). In
brief, NIH/3T3 cells were transfected with YFP-TR«a and/or
CFP-v-ErbA. Twenty to 24 h after transfection, Hela cells
were trypsinized and plated at high density with transfected
NIH/3T3 cells. Three to 4 h after seeding, HelLa cells were
fused to the transfected NIH/3T3 cells with polyethylene gly-
col at 50% wt/vol in 75 mm HEPES (Roche, Indianapolis, IN).
LMB and/or cycloheximide (Sigma) were added after trans-
fection at a final concentration of 5 ng/ml for the LMB, and 50
ng/ml for the first 30 min then 100 wg/ml thereafter for the
cycloheximide. The heterokaryons were left to shuttle 6-8 h.
The integrity of the heterokaryons was confirmed using trans-
mission microscopy, and shuttling was indicated by the pres-
ence of YFP-TRa in both the transfected NIH/3T3 and un-
transfected Hela cell nuclei. For differential staining of nuclei,
the coverslips were incubated in a 100-ul drop of Dulbecco’s
PBS containing 0.5 umol of To-Pro3 and/or 10 ug/ml of
Hoechst for 15 min in the dark, then rinsed three times with
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Dulbecco’s PBS for 5 min before being mounted in
VectaShield.
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