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Mode locking in a periodically forced integrate-and-fire-or-burst neuron model
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The minimal ‘‘integrate-and-fire-or-burst’’~IFB! neuron model reproduces the salient features of experi-
mentally observed thalamocortical relay neuron response properties, including the temporal tuning of both
tonic spiking ~i.e., conventional action potentials! and post-inhibitory reboundburstingmediated by the low-
threshold Ca21 current,I T . In previous work focusing on experimental and IFB model responses to sinusoidal
current injection, large regions of stimulus parameter space were observed for which the response was en-
trained to periodic applied current, resulting in repetitive burst, tonic, or mixed~i.e., burst followed by tonic!
responses. Here we present an exact analysis of such mode-locking in the integrate-and-fire-or-burst model
under the influence of arbitrary periodic forcing that includes sinusoidally driven responses as one case. In this
analysis, the instabilities of mode-locked states are identified as both smooth bifurcations of an associated
firing time map and nonsmooth bifurcations of the underlying discontinuous flow. The explicit construction of
borders in parameter space that define the instabilities of mode-locked zones is used to build up the Arnol’d
tongue structure for the model. The zones for mode-locking are shown to be in excellent agreement with
numerical simulations and are used to explore the observed stimulus dependence of burst versus tonic response
of the IFB neuron model.

DOI: 10.1103/PhysRevE.64.041914 PACS number~s!: 87.10.1e, 05.45.2a

I. INTRODUCTION

Like other sensory thalamic nuclei, the dorsal lateral gen-
iculate nucleus~dLGN! controls the flow of sensory infor-
mation to the cortex, acting as a state-dependent ‘‘gateway’’
between the sensory periphery and higher cortical centers
@1#. However, it is probably an oversimplification to charac-
terize the thalamic gate as simply open or closed@2,3#. In-
stead, the thalamus may filter sensory information in a dy-
namic fashion related to a behavioral state and perhaps
attentional demands. Indeed, while the spatial receptive field
properties of LGN relay neurons are largely inherited from
retinal ganglion cells that innervate them, the temporal as-
pects of relay neuron response properties have long sug-
gested to investigators that the thalamus has an important
dynamic role to play in visual processing@4,5#. For this rea-
son and others, a quantitative understanding of thalamocor-
tical relay neuron firing patterns is an important scientific
goal.

The response properties of thalamocortical relay neurons
are greatly influenced by a low-threshold, transient Ca21

conductance known asI T . When this conductance is evoked,
Ca21 entering the neuron via T-type Ca21 channels causes a
large voltage depolarization known as the low-threshold
Ca21 spike ~LTS!. Conventional action potentials mediated
by fast Na1 and K1 ~delayed-rectifier! currents often ride on
the crest of an LTS resulting in aburst response~i.e., a tight
cluster of spikes!.

When a thalamocortical relay neuron is depolarized
~above roughly260 mV), the low-threshold Ca21 current
inactivates with a time constant of;20 ms. In this situation,
further depolarization of sufficient magnitude will evoke a
train of action potentials~tonic firing! that is independent of

I T . However, when a relay neuron is hyperpolarized~below
roughly 265 mV!, the low-threshold current deinactivates
with a time constant of;100 ms. In this situation, depolar-
ization ~or simple release from hyperpolarization! results in
an LTS and a cluster of two to ten spikes~burst firing!.

Using a thalamic slice preparation that contained both the
LGN and associated perigeniculate nucleus, Smithet al. per-
formed intracellular recordings of relay neuron responses to
sinusoidal current injection and quantified these responses
using Fourier analysis@6#. During this study of the stimulus
dependence of burst and tonic response modes in thalamo-
cortical relay neurons, a minimal ‘‘integrate-and-fire-or-
burst’’ ~IFB! model was constructed by adding a slow vari-
able ~representing the deinactivation level ofI T) to a
classical leaky integrate-and-fire~IF! neuron model@7#. The
IFB model has only two currents and 10 well-constrained
parameters that are easily chosen to fit Fourier analysis of
experimental responses~i.e., a few current-clamp record-
ings!. Detailed Hodgkin-Huxley-style relay neuron models,
on the other hand, often include 10 or more currents and over
100 parameters, many of which require voltage-clamp tech-
niques to be well-constrained. In spite of its simplicity, the
IFB model quantitatively reproduces salient features of relay
neuron response properties in both burst and tonic modes
@6,8#.

In this paper, we present an exact analysis of the firing
patterns of the periodically forced IFB model. By construct-
ing the firing time map for the IFB model with arbitrary
periodic forcing, we are able to calculate the regions in pa-
rameter space that support mode-locked solutions. The bor-
ders of these zones are defined by both smooth bifurcations
of the firing time map and nonsmooth bifurcations of the
underlying discontinuous flow. This explicit construction of
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the Arnol’d tongue structure allows us to establish the condi-
tions under which an IFB neuron can switch its response
from a bursting to a tonic spike train output. Moreover, we
are able to follow the bifurcation sequence of mode-locked
solutions and establish that tonic solutions typically undergo
bifurcations that may be ordered with a Farey sequence,
while bursting transitions are dominated by spike-adding bi-
furcations.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the IFB model and discuss its relation
to neural models that incorporate a post-inhibitory rebound
current. We also construct the implicit firing time map for
the response of the system to arbitrary input. The definition
of a mode-locked solution is given next in Sec. III. Here, we
review the theory for mode-locking for the standard leaky IF
neuron model and show how to generalize this to cover the
IFB model. An application of the general theory to the case
of sinusoidal forcing is provided in Sec. IV. We also dem-
onstrate the excellent agreement between our analysis and
direct numerical simulations. Finally, in Sec. V we discuss
the main points of our analysis and consider extensions of
this work to networks of interacting IFB neurons.

II. INTEGRATE-AND-FIRE-OR-BURST DYNAMICS

The IFB model may be regarded as an IF model with the
addition of a slow variable@6,9#. The current balance equa-
tion for the model is

C
dV

dt
5I app2I L2I T , ~1!

where I app represents an applied current andI L5gL(V
2VL) is a leakage current with constant conductancegL and
leakage reversal potentialVL . The low-threshold Ca21 cur-
rent is given byI T5gTh(V2VT)Q(V2Vh), whereQ( ) is a
Heaviside step function and the slow variableh has dynam-
ics:

dh

dt
5H 2h/th

2 , V>Vh

~12h!/th
1 , V,Vh .

~2!

The slow variableh represents the deinactivation of the low-
threshold Ca21 conductance, which involves T-type Ca21

channels and produces the transmembrane current,I T . The
fraction of channels that are inactivated is given simply by
12h. An action potential is said to occur whenever the
membrane potentialV reaches some thresholdVu . The set of
action potential firing times is defined by

sn5 inf$tuV~ t !>Vu ;t>sn21%. ~3!

Immediately after a firing event, the system undergoes a dis-
continuous reset such thatV(sn

1)5Vreset. Hence, the flow
generated by the IF process is discontinuous at the firing
times t5sn . For simplicity, we follow Smithet al. and do
not include an absolute refractory period in the model.

Equation~2! describes a process whereby the deinactiva-
tion level of I T relaxes to zero with time constantth

2 when

V>Vh and relaxes to unity with time constantth
1 when V

,Vh . Hence, sufficient hyperpolarization leads to increasing
values ofh, representing deinactivation ofI T . The IFB dy-
namics depends strongly on the two thresholdsVh andVu ,
responsible for the activation of burst and tonic spiking, re-
spectively. In previous work, Smithet al.chose the threshold
valuesVh , Vu , Vreset, the time scalesth

6 , reversal potentials
VL , VT , leakage conductancegL , and membrane capaci-
tanceC to fit in vitro intracellular recordings of relay neuron
responses to sinusoidal current injection~see Table I!. These
cellular parameters are unchanged throughout this work;
however, the stimulus parameters withinI app are varied. All
intrinsic and applied transmembrane currents are given in
units of mA/cm2.

It is useful to rewrite the inactivation and deinactivation
dynamics in the form

th~V!
dh

dt
52h1h`~V!, ~4!

where h`(V)5Q(Vh2V) and th(V)5th
2Q(V2Vh)

1th
1Q(Vh2V). The form of this equation is reminiscent of

a post-inhibitory rebound current described by Wang and
Rinzel @10#. In agreement with voltage-clamp experiments,
the low-threshold Ca21 current in their model is given by
I T5gTm`

3 (V)h(V2VT) with ‘‘smooth’’ equilibrium activa-
tion m`(V) and inactivationh`(V) functions,

h`~V!5
1

11exp„bh~V2Vh!…
, ~5!

m`~V!5
1

11exp„2bm~V2Vh1e!…
, ~6!

for some appropriate constantsbm , bh , ande; andh satis-
fying Eq. ~4! under the replacementth(V)→h`(V)exp„(V
1a)/b… ~for constantsa andb). The smooth activation func-
tion m`(V) may be considered as the asymptotic value of a
fast activation variable. In the limitbh→`, the sigmoidal
function h`(V) tends to a step function, so thath`(V)
5Q(Vh2V). In the limit bm→` ande→0, m`(V)5Q(V

TABLE I. Standard cellular parameters for the IFB model, ob-
tained from fits with experimental data@6#.

Parameter Value Unit

Vu 235 mV
VL 265 mV
C 2 mF/cm2

gL 0.035 mS/cm2

Vreset 250 mV
Vh 260 mV
VT 120 mV
th

2 20 ms
th

1 100 ms
gT 0.07 mS/cm2
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2Vh). Hence, the two models may be identified in the limit
bh ,bm→`, e→0 under the replacementth(V)→th

2Q(V
2Vh)1th

1Q(Vh2V).
For mathematical simplicity we avoid smooth activation

m`(V) and inactivationh`(V) functions and instead con-
sider the original IFB model with piecewise constant activa-
tion and inactivation functions. We also eliminate the shunt-
ing term, (V2VT), of the low-threshold Ca21 current by
assumingVT@V. This does not lead to any qualitatively dif-
ferent behavior in the model with shunting. With these ap-
proximations, the slow current,I T , takes the formI T5
2gTVThQ(V2Vh). It is now convenient to rewrite the IFB
model with the introduction of the relative voltagev5V
2VL and the parametersg5gTVT /C, t5C/gL , so thatvX
5VX2VL , where VXP$Vu ,Vreset,Vh%. The rescaled IFB
model is then

v̇52
v
t

1ghQ~v2vh!1I ~ t !, ~7!

th~v !ḣ5h`~v !2h, ~8!

where I (t)5I app/C, h`(v)5Q(vh2v), and th(v)
5th

2Q(v2vh)1th
1Q(vh2v). Apart from the firing times,

there are two types of events that play an important role in
the dynamics of this system, namely the times at whichv
crossesvh from above or below. At these times the dynamics
for h undergoes a switch in behavior.

The focus of this paper will be on mode-locked solutions,
such that one sees a repeating pattern of clustered spikes in
response to a periodic stimuli. Moreover, we shall consider
the case that these clusters repeat at integer multiples of the
stimulus period. However, before we consider this special
class of solutions it is instructive to consider the description
of slightly more general spike trains, where the number of
spikes per cycle remains fixed, but the firing pattern on each
cycle is different. This is especially important for a linear
stability analysis of mode-locked solutions. If we denote the
number of spikes within a cluster byp, then it is convenient
to write the set of times for whichv(t) crosses throughvh
from below as

Bn5 inf$tuv~ t !>vh ,v̇.0;t>Bn21%. ~9!

We use this notation so that thenth firing event can be writ-
ten as

sn5B[n/p]1T[n/p]„n~p!…, n~p!5n mod p, ~10!

where@ # denotes the integer part andnPZ. Here we have
decomposed a firing event using intercluster and intracluster
firing times. The notationn(p)5n mod p is introduced to
conveniently label each of thep spikes within a cluster,
while @n/p# keeps track of which cluster the set ofp spikes
belongs to. The timesB[n/p] signal the onset of a clustered
firing pattern, whileT[n/p] (0) signifies the first firing event
within a cluster~relative to the start of the clustered firing
pattern! and T[n/p] (1), T[n/p] (2), . . . , T[n/p] (p21) signal

subsequent intracluster firing events. The associated value of
h(t) at the timeB[n/p] is denotedh[n/p] .

Integrating Eq.~7! betweenvh andvu determines the first
firing time within a cluster as

vu exp@T[n/p]~0!/t#5vh1E
0

T[n/p] (0)

es/tA~s1B[n/p] !ds,

~11!

where

A~ t !5gh[n/p]e
2(t2B[n/p] )/th

2

Q„v~ t !2vh…1I ~ t !. ~12!

Introducing the functions

G̃~ t !5E
2`

0

es/tI ~ t1s!ds, G~ t !5E
2`

0

es/tA~ t1s!ds,

~13!

and defining F(t)5et/t@G(t)2vu# and F̃(t)5et/t@G̃(t)
2vh# means that we may use Eq.~11! to write the implicit
relationship betweenT[n/p] (0) andB[n/p] in the form

F„B[n/p]1T[n/p]~0!…5F~B[n/p] !1@vu2vh#exp@B[n/p] /t#.

~14!

A similar construction may be used to relate times within a
cluster as

F„B[n/p]1T[n/p]~m!…

5F„B[n/p]1T[n/p]~m21!…1@vu2v reset#

3exp@„B[n/p]1T[n/p]~m21!…/t# ~15!

for m51, . . . ,p21. Finally the time at which the next cycle
starts is the solution to

F̃~B[n/p] 11!5F̃~B[n/p]1D [n/p]
1 !, ~16!

where D [n/p]
1 is the time spent abovev5vh in one cycle.

This time interval can be written as the solution to

F~B[n/p]1D [n/p]
1 !1@vu2vh#exp@~B[n/p]1D [n/p]

1 !/t#

5F„B[n/p]1T[n/p]~p21!…1@vu2v reset#

3exp@„B[n/p]1T[n/p]~p21!…/t#. ~17!

The evolution ofh[n/p] over a cycle is easily calculated in
terms of the time spent above and belowv5vh . If we de-
note the time spent belowv5vh by D [n/p]

2 , then

h[n/p] 115h[n/p]exp~2D [n/p]
1 /th

22D [n/p]
2 /th

1!

112exp~2D [n/p]
2 /th

1!. ~18!

The crossing timesB[n/p] then satisfy B[n/p] 115B[n/p]

1D [n/p] , whereD [n/p]5D [n/p]
1 1D [n/p]

2 .
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III. MODE LOCKING, STABILITY,
AND ARNOL’D TONGUES

For the case thatA(t) is a periodic function, one would
expect the IFB oscillator to start generating periodic patterns
of clustered spikes at times which are integer multiples of the
period ofA(t) ~up to some phase shift!. If the applied signal
I (t) is periodic and the response of the system is also peri-
odic @with period rationally related to the period ofI (t)#,
thenh(t) and henceA(t) will be periodic. In fact if the IFB
system behaves in such a way thatv.vh for all time, then its
behavior is the same as that of a periodically forced IF neu-
ron model. Mode-locking of IF systems has previously been
discussed by several authors@11–15#. Here we outline the
approach to constructing the Arnol’d tongues for the stan-
dard periodically forced IF model and then extend this work
to cover the IFB model.

A. Periodically forced IF neuron model

In a previous study of a single IF neuron model with
sinusoidal forcing, it was shown that the dynamics of the
firing times can be described by a circle map@12#. For large-
amplitude periodic forcing, the circle map may become dis-
continuous. It is convenient to consider the nonautonomous
IF equation given by Eq.~7! with g50. The input function
I (t) will be taken to be periodic in time with frequencyf
~and not just restricted to be sinusoidal!. An implicit map of
the firing times may be obtained by integrating Eq.~7! be-
tween reset and threshold to give@12,13#

C~sn11!5C~sn!1esn /t@vu2v reset#, ~19!

whereC(t)5et/t@G̃(t)2vu#. Fixed points of the firing map
are known to correspond to so-called mode-locked solutions
@13# in which the IF oscillator fires a packet ofp spikes inq
multiples of the fundamental period of the signalI (t). As-
suming they exist, thesep:q solutions have the form

sn5S Fn

pG1fn(p)Dq

f
, ~20!

wherefnP@0,1) for n50, . . . ,p21 denotes a collection of
firing phases. The firing rate of a neuron in a mode-locked
state is simplyp/q ~spikes per cycle! or p f /q ~spikes per unit
time!. The corresponding rotation number~i.e., average
phase rotation per spike! is q/p mod 1. In@13# it was shown
that the linear stability of a mode-locked state is guaranteed
for uk(F,D)u,1, where

k~F,D!5e2D/t )
m50

p21 F I ~fmD!2t21v reset

I ~fmD!2t21vu
G , ~21!

and D5q/ f . The borders of the regions where such mode-
locked solutions become unstable are defined by the condi-
tions k(F,q)521 ~tangent bifurcation! and k(F,q)511
~period doubling bifurcation! with the set of phasesF
5$f0 , . . . ,fp21% obtained from the solution of Eq.~19!
using ~20!. However, for a general analysis it may be desir-
able to work with the underlying~discontinuous! flow that

generates the firing map, since the linear stability analysis of
the firing map does not describe bifurcations that arise when
fixed points~mode-locked solutions! interact with a discon-
tinuity. Indeed, nonsmooth bifurcations of IF systems are
expected to occur whenever a tangential crossing of the fir-
ing threshold occurs. Interestingly, an IF neuron model may
be regarded as a type of impact oscillator~see, for example,
@16#!. In the study of impact oscillators, one is often inter-
ested in the mapPI which relates one impact to the next. For
a periodically forced IF neuron model, an impact is identified
by its impact phaseand itsimpact velocityat threshold. We
introduce the impact phaseun and impact velocitycn for an
IF neuron model as

un[sn mod D, cn[ v̇~sn!5I ~sn!2
vu

t
. ~22!

From these definitions we may construct the impact map
PI :(un ,cn)°(un11 ,cn11). In many cases one must resort
to numerics to constructPI ~see, for example,@17#!. The
derivative of the firing mapsn°sn11 is obtained from Eq.
~19! as

]sn11

]sn
5

C8~sn!1esn /t@vu2v reset#/t

C8~sn11!

5e2(sn112sn)/t
I ~sn!2v reset/t

I ~sn11!2vu /t
, ~23!

and becomes unbounded ascn11→0. Hence,PI is a smooth
map of a cylinder to itself apart from on a one-dimensional
~possibly branched! setS defined by

S5$~u,c!:P~u,c!5~c,0!%. ~24!

Hence,S is the preimage of the linec50 underPI . This
discontinuity setintroduces infinite local stretching into the
phase space@16#. The conditioncn→0 is referred to as a
grazewithin the impact oscillator literature. For the IF neu-
ron model, the stretching of phase space would manifest it-
self for two nearby trajectories of which only one has suffi-
cient impact velocity near threshold to guarantee a firing
event. A drastic difference in subsequent behavior of the two
trajectories would result. In the IF context a graze can lead to
two different types of bifurcation. To see, this it is conve-
nient to study the IF trajectory without the reset condition.

The first type of bifurcation occurs when there is a tan-
gential intersection of the trajectory with the threshold value
such that upon variation of the bifurcation parameter the lo-
cal maxima of the IF trajectory passes through threshold
from above@see Fig. 1~a!#. In this case there is loss of a
solution in a nonsmooth fashion. Hence, a mode-locked so-
lution undergoing such a bifurcation satisfiesI (sn)5vu /t or
equivalently C8(sn)50 „using C8(t)5et/t@ I (t)2vu /t#….
In the second scenario, a subthreshold local maxima in-
creases through threshold leading to the creation of a new
firing event at some earlier time than usual@see Fig. 1~b!#.
For mode-locked solutions these nonsmooth bifurcations are
defined by C(s* )5C(sn)1esn /t @vu2v reset# and
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C8(s* )50 with s* ,sn11, andsn11 is the solution to Eq.
~19!. Note that in both these cases, the derivative of the firing
map ~23! becomes unbounded, sinceI (sn)5vu /t, and the
~circle! map of firing times is discontinuous@12#. From Eq.
~23! we see that if the firing map is continuous, it is only
invertible if I (sn)Þv reset/t.

By considering both smooth bifurcations of the firing map
and nonsmooth bifurcations of the underlying discontinuous
IF flow, we are able to construct the Arnol’d tongue structure
of an IF neuron model in response to an arbitrary periodic
signal. For illustration we present some of the mode-locked
zones for an IF neuron model with sinusoidal forcing of the
form I (t)5I 01I 1sin 2pt in Fig. 2. It is straightforward to
calculate G̃(t) as I 0t2I 1tsin(u22pt)/A114p2t2, where
tanu52pt @13#. The firing map is discontinuous whenuI 1u
.I 02vu /t. In this parameter region it is known that mode-
locking can occur almost everywhere@12#. From Fig. 2 it can
be seen that the Arnol’d tongues do not overlap and that the

largest mode-locked zones are those with low-order ratios of
p to q. In the regime where the map of firing times is con-
tinuous and invertible, the Arnol’d tongue boundaries are
defined by tangent bifurcations, and period doubling bifurca-
tions do not occur. Just outside the tongues, solutions may
lock to some other mode-locked solution or drift aperiodi-
cally. In fact, the measure of the parameter set for mode-
locking whenuI 1u,I 02vu /t goes to zero ast→`. When
the circle map of firing times is discontinuous, the Arnol’d
tongues are determined, in part, by the nonsmooth bifurca-
tions of the full discontinuous IF flow. For example, the
right-hand boundary of the mode-locked zone in Fig. 2
~above the dashed line! is of the type associated with Fig.
1~b!, while the left-hand border is associated with a tangent
bifurcation of the firing map.

B. Mode-locked instabilities of the IFB model

We now focus on the class of periodic solutions, such that
„v(t1D),h(t1D)…5„v(t),h(t)… in which pPZ spikes are
fired within a periodD, rationally related to the period of the
driving signalI app, i.e.,D5q/ f , qPZ. In this case the cross-
ing times B[n/p] satisfy B[n/p] 115B[n/p]1D, and we may
write

Bn5Fn

pGD1fD, ~25!

wheref is the phase of the clustered spike packet with re-
spect to the periodic driving signal. The firing times of spikes
within a cluster are assumed to have the form

Tn~m!5~fm2f!D, m50, . . . ,p21 ~26!

for all n, wheref0 , . . . ,fp21P@0,1) denote a collection of
firing phases. The firing times of a periodic solution are then
given by Eq.~10! using Eqs.~25! and ~26!.

From numerical simulations of the IFB neuron model un-
der sinusoidal forcing, we have found that responses are
typically p:1 mode-locked solutions, in which the deinacti-
vation variableh is 1:1 frequency locked to the stimulus. For
simplicity, we restrict further discussion to the case of
p:1 mode-locked solutions since these define the dominant
responses to sinusoidal stimulation. The generalization to
p:q-type states is straightforward and, for clarity, will not be
pursued here. However, some numerical examples of less
dominant states will be presented later. For very low fre-
quency stimulation~say, below 0.1 Hz! it is also possible to
generate what have previously been termedmixedresponses.
These may be regarded as repeating patterns of bursting be-
havior followed by tonic behavior. They may be treated ana-
lytically with a simple combination of the mode-locking an-
satz for tonic firing, given by Eq.~20! and the burst firing
ansatz described above.

Denoting the time spent on that portion of a periodic orbit
with v,vh as D2 and the time spent on the orbit withv
.vh asD1, we may writeD5D11D2. More usefully the
assumption of ap:1 periodic orbit allows us to determine
h[n/p] using the constrainth[n/p]5h[n/p] 115h̄. Using Eq.
~18! we have that

FIG. 1. ~a! Loss of solution via a nonsmooth bifurcation where
a local maxima decreases through threshold.~b! Creation of solu-
tion, in a nonsmooth bifurcation, as a local maxima increases
through threshold.

FIG. 2. The Arnol’d tongue structure of a sinusoidally forced IF
oscillator with I (t)521I 1sin 2pt. Above the dotted line the circle
map of firing times is discontinuous.
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h̄5
12e2D2/th

1

12e2D1/th
2

e2D2/th
1 . ~27!

An expression forD1 may be found from Eq.~17! as the
solution to

G~fD1D1!2vh

G~fp21D!2v reset
5exp@D~fp212f!t#exp@2D1/t#.

~28!

We may also writeA(t)5h1(t)Q„v(t)2vh…1I (t), where

h1(t)5gh̄e2(t2fD)/th
2

for tP@fD,fD1D1) and is peri-
odically extended such thath1(t1D)5h(t). Since the pe-
riod of h1(t) is a multiple of the period ofI (t) ~which we
take to bef 21), A(t) has the period ofh(t). After substitut-
ing the firing ansatz~25! and ~26! into Eq. ~14!, the first
firing phase is the solution to

G~f0D!2vu

G~fD!2vh
2exp@D~f2f0!/t#50, ~29!

and subsequent firing phases (m51, . . . ,p21) satisfy

G~fmD!2vu

G~fm21D!2v reset
2exp@D~fm212fm!/t#50. ~30!

Using Eq.~16! the phase of the periodic solution,f, must
satisfy

G̃~fD1D!2vh

G̃~fD1D1!2vh

2exp@~D12D!/t#50. ~31!

An example of a 3:1 bursting solution is shown in Fig. 3.
In this figure the trajectory is plotted in the (v,h) plane~with
spikes superimposed!, while Fig. 4 shows the corresponding
voltage trajectory as a function of time. Bursting solutions of

the above type require thatv periodically crossesvh and that
the thresholdvu can be reached. There are three types of
nonfiring periodic solution that fail to meet these criteria. In
the first case,v(t1D)5v(t) and h(t)50, with vh,v(t)
,vu for all t. In the secondv(t1D)5v(t) and h(t)51,
with v(t),vh for all t. In the third casev(t1D)5v(t) and
h(t1D)5h(t) with v(t),vu andv(t)5vh for somet. We
denote the first two of these solutions by 0:0 and the latter by
0:q. The 0:0 voltage solution is given explicitly byv(t)
5G̃(t) with v(t1D)5v(t) andD5q/ f . The phase of a 0:q
solution relative to the driving signal and the time spent
abovevh are given by the simultaneous solution of Eq.~31!
and

G~fD1D1!2vh

G~fD!2vh
2exp@2D1/t#50, ~32!

with D5q/ f . Note that for a 0:q state,h[n/p] 1q5h[n/p] and
h̄ is given by Eq.~27! with D25q/ f 2D1. We now turn to
the linear stability of these mode-locked solutions.

The linear stability of mode-locked solutions may be
found by perturbing the firing times such thatT[n/p]„n(p)…
→T[n/p]„n(p)…1dT[n/p]„n(p)…. These perturbations will
cause corresponding perturbations in the timesB[n/p] and the
interval D [n/p]

1 . Denoting these perturbations bydB[n/p] and
dD [n/p]

1 , respectively, we may expand Eqs.~14!, ~15!, ~16!,
and ~17! around a mode-locked solution to obtain the first-
order relationships

dB[n/p]1dT[n/p]~0!5k0~F,D!dB[n/p] , ~33!

dB[n/p]1dT[n/p]~m!5km~F,D!@dB[n/p]1dT[n/p]~m21!#,

~34!

dB[n/p] 115kp~F,D!@dB[n/p]1dT[n/p]~p21!#, ~35!

where

k0~F,D!5
F8~@n/p#D1fD!1~vu2vh!e[n/p]D/t1fD/t/t

F8~@n/p#1f0D!
~36!

FIG. 3. A 3:1 bursting orbit,I 0520.5, I 151, and f 52.5. FIG. 4. A 3:1 bursting orbit,I 0520.5, I 151, and f 52.5.
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km~F,D!5
F8~@n/p#D1fm21D!1~vu2v reset!e

[n/p]D/t1fm21D/t/t

F8~@n/p#D1fmD!
~37!

kp~F,D!5
F̃8~@n/p#D1fD1D1!

F̃8~@n/p#D1fD1D!

F8~@n/p#D1fp21D!1~vu2v reset!e
[n/p]D/t1fp21D/t

F8~@n/p#D1fD1D1!1~vu2vh!e[n/p]D/t1fD/t1D1/t/t
. ~38!

In this section we use the notationF to stand for the set
$f0 , . . . ,fp21 ,f,D1%. Using these expansions we can con-
struct a map of the perturbed crossing times as

dB[n/p] 115k~F,D!dB[n/p] , k~F,D!5 )
m50

p

km~F,D!.

~39!

This has solutions of the formdBn5enn for nPC. Hence,
the stability of a mode-locked state is guaranteed for
uk(F,D)u,1. A compact form fork(F,D) is obtained with
the observation thatF8(t)5et/t@A(t)2vu /t# and F̃8(t)
5et/t@ I (t)2vh /t#:

k~F,D!5e2D/tg~F,D! )
m50

p21 FA~f (m21)(p)D!2t21v reset

A~fm(p)D!2t21vu
G ,

~40!

g~F,D!5FA~fD!2t21vh

I ~fD!2t21vh
GF I ~fD1D1!2t21vh

A~fD1D1!2t21vh
G .

~41!

Hence, the borders in parameter space delimiting the zones
of stable p:1 bursting solutions are defined byuk(F,D)u
51, where the setF is obtained by the simultaneous solu-
tion of Eqs. ~28!, ~29!, ~30!, and ~31!. The expression for
k(F,D), given by Eq.~40!, may be regarded as a generali-
zation of Eq. ~21! to include the effects of discontinuous
jumps at not only the firing times but also at the times when

v crosses throughvh ~whereh is continuous, butḣ is not!.
Obviously one must also take into account nonsmooth

bifurcations of the underlying discontinuous IFB flow. These
can take the form of bifurcations discussed in Sec. III A,
together with bifurcations where the bursting threshold,vh ,
is crossed tangentially. Assuming the existence of 0:0 solu-
tions, it is expected that these will undergo nonsmooth bifur-
cations with varying input such that the thresholdvh can be
reached. If this happens a 0:0 solution can bifurcate to a 0:q
solution. The condition for this bifurcation is defined by the
voltage trajectory of a 0:0 solution to tangentially intersect
the thresholdvh . In a similar fashion the 0:q solution can
undergo a nonsmooth transition when its voltage trajectory
tangentially intersects the firing thresholdvu . The nons-
mooth bifurcation of the 0:q state is therefore defined by the
conditionsv(f* D)5vu and v̇(f* D)50 for somef* (f
,f* ,D1/D). These conditions may be ensured by the si-
multaneous solution of

G~f* D!2vu

G~fD!2vh
2exp@D~f2f* !/t#50, A~f* D!5

vu

t
,

~42!

wheref andD1 are those for a 0:q solution.
If a firing solution is periodic withv.vh always, then the

contribution of the slow current to the dynamics is negligible
since limt→`h(t)50 and mode-locked solutions are the
same as those in the standard IF model. To guarantee such
tonic firing events, we require maxG̃(t).vu . A necessary
condition for a bursting current is that maxG̃(t).vh .

IV. RESPONSE TO SINUSOIDAL INPUT

In this section, we focus on the application of our general
theory to the specific case of sinusoidal forcing. A detailed
numerical analysis of the IFB system~with shunts! with
sinusoidal forcing has previously been performed by Smith
et al. @6#. Our analysis provides a framework in which to
describe such numerical results and is able to clarify the way
in which solutions lose stability under parameter variation.
As in the work of Smithet al.we consider an applied current
of the form

I app5I 01I 1cos~2p f t !. ~43!

It is straightforward to show that for this case

G̃~ t !5
I 0t

C
1

I 1t

CA114p2f 2t2
cos~2p f t2u! ~44!

G~ t !5G̃~ t !1gh̄t̂ exp„2~ t2fD!/th
2
…, ~45!

where in Eq.~45! tP@fD,fD1D1) and

t̂5F1

t
2

1

th
2G21

, tanu52p f t, D5
q

f
. ~46!

The calculation ofG(t) is completed by periodic extension
such that G(t)5G(t1D). Note that for this particular
choice of drive, bursting solutions require that

I 0.
vhC

t
2

I 1

A114p2f 2t2
, ~47!

and tonic events can only occur for
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I 0.
vuC

t
2

I 1

A114p2f 2t2
. ~48!

To describe the smooth bifurcations ofp:1 (p>1), bursting
states require the solution ofp13 simultaneous nonlinear
equations. For the nonsmooth 0:q bifurcation we need to
solve four simultaneous nonlinear equations. For thep:1
tonic states there arep11 equations defining the smooth
bifurcations, p11 equations defining nonsmooth bifurca-
tions like those of Fig. 1~a!, andp12 defining those of Fig.
1~b!. Numerical experiments suggest thatp:1 bursting zones
with low p occupy large regions of parameter space for large
f. To avoid having to solve large numbers of simultaneous
nonlinear equations, we therefore focus on large enough val-
ues off ( f 510 Hz is used in most numerical experiments!
so as to make comparison of theory with numerical experi-
ment relatively easy. In Fig. 5, we show the calculation of
the borders where mode-locked solutions lose stability. The
tonic borders are computed in the absence of a slow current
@i.e., only valid whenh(t)50#. The left-hand borders of
these solutions are defined by tangent bifurcations~of the
firing map! while the right-hand borders are tangent bifurca-
tions for low values ofI 1 and nonsmooth bifurcations@of the
type in Fig. 1~b!# for large values ofI 1. The p:1 (p>1)
bursting boundaries are all nonsmooth bifurcations of the
type shown in Fig. 1~a!, where the failure to cross the firing
threshold occurs at the time of the last spike in the cluster.
As an example of the instability of a 0:q solution, we com-
pute the nonsmooth bifurcation of the 0:2 state and also the
nonsmooth bifurcation of the 0:0 state~which is expected to
give rise to a 0:q state!. Interestingly, it would appear that
the termination of a bursting border occurs at a point on the
boundary of a tonic tongue. For tonic solutions, the Arnol’d
tongue structure may be organized such that ap1p8:q
1q8 solution can be found separating ap:q and a p8:q8
solution @13#. Hence as one passes through a set of tonic

tongues, the ratiop/q will exhibit a Devil’s staircase struc-
ture, and the underlying bifurcation structure can be orga-
nized with a Farey sequence. Figure 5 also suggests that one
might find a period-adding bifurcation sequencep:1→p
11:1 for bursting solutions but not for tonic solutions. In
fact, direct numerical simulations show that, for bursting be-
havior, the bifurcation sequence is more likely to bep:1
→2p11:2→p11:1, albeit with the 2p11:2 solutions oc-
cupying extremely small windows of parameter space. In
Fig. 6, we show that the mechanism for the addition of a
spike to an existing cluster is via the growth of a maximum
in the trajectory, at the end of the packet, until another firing
event can be generated. This figure also illustrates the bifur-
cation sequence 1:1→3:2→2:1, found for fixedI 1 and in-
creasingI 0.

To illustrate the usefulness of our results, we now present
a numerical exploration of the IFB response in the (I 0 ,I 1)
parameter plane. We introduce the quantityF(s0)
5D limM→`M /(sM2s0) as a measure of the number of
spikes fired within one stimulus cycle~wheresm denotes the
time of themth spike!. We include the dependence upons0
to account for the possibility that long time behavior may
depend upon initial data. For purposes of simulation, we
write the applied current as a function of somephasevari-
ables with I (t)5I (s), ṡ51 and then choose initial data of
the form (v,h,s)5„v reset,0,s(0)…. Interestingly, different
choices ofs(0) do give rise to different final states. For

FIG. 5. Analytical Arnol’d tongue structure of the sinusoidally
forced IFB neuron using standard parameters withf 510 Hz. The
dashed line is the border of instability of 0:0 states, with constant
h50 or h51, such that inside thewedge0:q solutions may be
found.

FIG. 6. The upper trajectory shows a 1:1 bursting solution just
prior to a nonsmooth bifurcation, (I 0 ,I 1)5(20.2,3). Other param-
eters are the same as for Fig. 5. The middle trajectory shows the
resulting 3:2 orbit just after bifurcation, (I 0 ,I 1)5(20.1,3). The
lower figure shows the 2:1 state at (I 0 ,I 1)5(0,3) that bifurcates
from the 3:2 state. Note the near-tangential intersection of the orbit
with the firing threshold in the upper figure. The basic mechanism
for adding spikes to an existing packet is a tangential crossing of the
firing threshold at the end of an existing packet.
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example, it is possible for the 1:1 state to coexist with a 1:2
state. This is illustrated in Fig. 7. Subharmonic 1:q states~in
which one spike is fired for everyq multiple of the forcing
period! were previously thought to be excluded in the IFB
neuron model. It is now clear that they can actually be ac-
cessed with appropriate choices of initial data. Hence, the
IFB neuron model, in common with other more complicated
neuron models with rebound currents@18#, supports 1:q sub-
harmonic resonances, in which inhibitory signals that do not
lead to a rebound event in isolation may, when applied peri-
odically, lead to a resonance phenomenon. These types of
solution rely upon the slow buildup ofh over several forcing
periods. They are readily analyzed within the framework pre-
sented here by settingh[n/p] 1q5h[n/p]5h̄ and solving for a
single (q periodic! firing time. However, one also needs to
calculate each of the 2q times that the thresholdvh is
crossed. In comparison withp:1 states, they typically occupy
very small windows of parameter space.

In Fig. 8, we show a plot of the firing rate functionF(s0)
in the (I 0 ,I 1) parameter plane. Also in this figure we include
some of the boundaries as calculated in Fig. 5. The good
agreement between theory and experiment indicates that we
have uncovered the fundamental instabilities of the periodi-
cally forced IFB neuron. It is clear that, for thep:1 bursting
solutions, an examination of just smooth bifurcations of the
underlying firing map is not enough to delimit the Arnol’d
tongue structure and one must take into account nonsmooth
bifurcations of the underlying flow. Note also that instabili-
ties of 0:q states can contribute significantly to the response
of the system. For example, within the triangular wedge that
emanates at (I 0 ,I 1)'(0.25,0) ~defining the nonsmooth in-
stability border of 0: 0 states! one can find a 0:2 solution that

loses stability with increasingI 1, in favor of a subharmonic
response, which itself then undergoes a sequence of bifurca-
tions resulting in a 1:1 orbit. This bifurcation sequence oc-
curs over an extremely small window of parameter space. In
Fig. 9, we show an example of a 0:2 state and a 1:3 state that
appears to bifurcate from it as one crosses the instability
border~within the triangular wedge! shown in Fig. 8.

Apart from the solutions that we have focused upon with
our analysis, our numerical simulations show that there are
also some small windows of parameter space that support
2p:2 solutions, which cannot be distinguished fromp:1 so-
lutions using just the firing rate function. Some of these
zones are marked in Fig. 8. It would appear that they reside
in parameter regions that separate bursting and tonic states
both of typep:1. An example of a 6:2 solution is shown in
Fig. 10.

In Fig. 11, we show two cross sections of Fig. 8 that
highlight the difference in firing rate response of an IFB
neuron when receiving sinusoidal periodic signals of differ-
ing amplitude. For large amplitude the IFB neuron responds
with a bursting pattern and one sees steps in the firing rate
function of size one or half asI 0 varies. Plateaus ofp:1
solutions are much larger than those for 2p11:2 solutions.
For smaller amplitude signals the neuron may respond with a
tonic output and the firing rate function exhibits a Devil’s
staircase structure.

For low-frequency stimulation it is possible to generate a
mixed response of the type shown in Fig. 12. This periodic
behavior may be regarded as a burst followed by a tonic
response. The low frequency of sinusoidal stimulation means
that, for appropriate choices ofI 0 and I 1, the IFB voltage
variable can spend sufficient time belowvh , such thath has
time to come close to its maximal value of 1. Uponrelease
from inhibition, whenv crossesvh from below, the large
rebound current causes a burst of spikes. The subsequent
rapid decay of the rebound current to zero means that further
firing events generated during the excitatory phase of sinu-
soidal stimulation are of a tonic nature.

V. DISCUSSION

In this paper, we have presented an exact analysis of
mode-locking in the IFB model under the influence of arbi-
trary periodic forcing. We identify the instabilities of mode-
locked states as smooth bifurcations of an associated firing
time map and nonsmooth bifurcations of the underlying dis-
continuous flow. The Arnol’d tongue structure for the model
is analyzed through the explicit construction of borders in
parameter space that define the instabilities of mode-locked
zones. In the case of sinusoidally driven responses we find
that these analytically calculated zones for mode-locking are
in excellent agreement with firing patterns of the IFB model
obtained through numerical integration~compare Figs. 5 and
8!. Because the IFB model includes an idealized low-
threshold Ca21 current that mediates post-inhibitory rebound
bursting, this analysis is a significant extension of previous
work related to mode-locked solutions in leaky integrate-
and-fire neuron models.

The presence of the low-threshold Ca21 current, I T , in

FIG. 7. A subharmonic 1:2 state@found with initial data
(v,h,s)5(v reset,0,0.5)#, that coexists with a 1:1 state at (I 0 ,I 1)
5(20.695,3)@found with initial data (v,h,s)5(v reset,0,0)#.
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relay neurons and the IFB model expands their repertoire of
mode-locked firing patterns. Here we analytically confirm a
previous numerical and experimental finding that large re-
gions of stimulus parameter space result in responses en-
trained to periodic applied current, resulting in repetitive
burst, tonic, or mixed~i.e., burst followed by tonic! re-
sponses. Indeed, mode-locked states are shown here to be
generic solutions of the periodically forced IFB model. To
our knowledge, this is the first time this type of analysis has
been applied to mode locking in an idealized neuronal model
that expresses both burst and tonic responses.

The analytical and numerical work presented here gives
insight into experimental observations of mode-locked firing
patterns of sinusoidally driven thalamocortical relay neurons
recordedin vitro using a cat thalamic slice preparation@6#. In
tonic mode the firing rate response of the IFB neuron model
to sinusoidal input is found to be independent of initial con-
ditions. In fact, this can be shown to be true for arbitrary
forms of periodic forcing@15#. Moreover, the bifurcation
structure may be organized with a Farey sequence. For
small-amplitude forcing, the origin of the Farey sequence is
easily understood in terms of~saddle-node! bifurcations of

the circle map of firing times. In contrast, pure bursting
states, associated with a periodic rebound current, can be
found to coexist with differing rotation number. The insta-
bilities of bursting states are largely determined by nons-
mooth grazing bifurcations that may either add a spike to a
cluster or subtract a spike from a cluster. Hence, the bifur-
cation from one pure bursting state to another is fundamen-
tally different from that of a bifurcation between pure tonic
states.

The borders in parameter space that define the beginning
of a crossover from tonic to bursting behavior may be found
by examining the conditions under which the voltage of a
tonic solution can cross the rebound thresholdvh to sustain
an oscillatory rebound current. As an example, we have con-
structed the instability border separating the tonic nonfiring
state with constant rebound current from that of a similar
state with oscillatory rebound current. Numerical simulations
show that the transition region separating the nonfiring tonic
solution with oscillatory rebound current from a pure 1:1
bursting state is extremely small~as evidenced by our calcu-
lation of the instability of the 0:2 state in Fig. 8!. The tran-
sition layers separating generalp:1 bursting states from pure

FIG. 8. ~Color! False color plot of the average number of spikes per cycle in the (I 0 ,I 1) plane for a direct numerical simulation of the
IFB model with a 4013401 grid. Simulations at each point correspond to 3 s of time with the first 1 s discarded as transient. Solid lines
correspond to theoretical predictions for instabilities ofp:1 states~see Fig. 5!. Parameters as in Fig. 5 with initial data varied such that the
largest possible firing rate~of the multistable solutions! is obtained at each point in the (I 0 ,I 1) parameter plane. This is achieved in a natural
way by starting at (I 0 ,I 1)5(2,4) with initial data (v reset,0,0) and decreasingI 1 while choosing the final output from the previous simulation
as initial data. The process is then repeated with decreasingI 0, choosing initial data atI 154, from the final ouput of the previous run at
I 154.
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tonic solutions are also found to be extremely small.
For low-frequency sinusoidal stimulation, it is also pos-

sible for the IFB neuron model to exhibit a mixed response,
in which bursting is followed by a tonic output. These ex-
perimentally observed periodic responses are naturally de-
scribed within the framework of this paper by combining the
firing time ansatz for pure tonic solutions with that of pure
bursting solutions. The mechanisms for the bifurcation of
these solutions are the same as uncovered for pure bursting
and pure tonic solutions. The calculation of mode-locked
zones is, however, complicated by the increase in the number
of possible instabilities. One set of these instabilities is to be
associated with those of the tonic component of the response
~with potentially many spikes! and the other with the burst-
ing component. For such states supporting a large number of
spikes on the time scale of the forcing period, it is perhaps
more natural to consider the reduction of the model to a
firing rate description. Mixed responses then occur as repeat-
ing pairs of frequency bumpsand may be studied without
recourse to the simultaneous solution of a large number of

nonlinear algebraic equations, as required in the analysis of
the full model.

In agreement with previous simulations, we do not ob-
serve subharmonic bursts in the IFB model with more than
one spike per burst. The subharmonic 1:2 and 1:3 solutions
of Fig. 7 and Fig. 9 are examples of subharmonic bursting.
Although the IFB model reproduces subharmonic tonic re-
sponses of relay neurons, it does not reproduce the qualita-
tively different subharmonic bursts~with multiple spikes per
burst! occasionally observed experimentally@6#. However,
models that include smooth equilibrium activation and inac-
tivation functions forI T or additional ionic currents~such as
the hyperpolarization activated nonspecific cation current,
I h) can reproduce this experimental observation of robust
subharmonic bursting@6#. In contrast, the IFB model has
piecewise constant activation and inactivation functions.

The simplicity of the model makes it a good candidate for
further mathematical analysis of network phenomena involv-

FIG. 11. Average firing frequency for fixed values ofI 1 ~and
other parameters as in Fig. 8!. For I 154, changes in the firing
frequency are dominated by period-adding bifurcationsp:1→p
11:1 of bursting states~interspersed with small windows of 2p
11:2 solutions!, while for lower value ofI 1, tonic states undergo
tangent bifurcations leading to a Devil’s staircase structure. Initial
data are (v,h,s)5(v reset,0,0).

FIG. 12. A mixed solution atf 50.1 Hz, I 050.5 andI 150.6.

FIG. 9. An example of a 0:2 state at (I 0 ,I 1)5(0.25,1)~top! and
a subharmonic 1:3 state that occurs directly after the nonsmooth
bifurcation of the 0:2 state, at (I 0 ,I 1)5(0.25,1.1)

FIG. 10. A 6:2 state at (I 0 ,I 1)5(2.3,1.3).
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ing neurons that exhibit post-inhibitory rebound bursting.
Because a mode-locked solution can be explicitly written in
the form „v(t),h(t)…5(Lv„u(t)…,Lh„u(t)…) for some peri-
odic functionsLv(u) andLh(u), there is a natural change of
coordinates which allows us to write the dynamics in terms
of a phase variableu. The responses of a weakly connected
population of firing IFB neurons could be analyzed using the
theory of weakly interacting phase oscillators@19#. This type
of approach has been used to reduce detailed Hodgkin-
Huxley-style models of bursting oscillators to a canonical
framework@23–26#. One may then address issues regarding
synchrony of bursts and the effects of mode-locking between
neurons@20#. A major difference between the IFB model and
many canonical models of bursting oscillators is that the lat-
ter typically invoke an internal slow subsystem to periodi-
cally sweep a faster variable through a region of spiking

behavior. The IFB model, on the other hand, generates bursts
only in response to some appropriate external stimulus since
the dynamics of the slow variableh is not intrinsically oscil-
latory. For strong coupling it is likely that progress can be
made along similar lines to network studies of standard IF
oscillators~see@21# for a review!. Furthermore, when con-
sidering large networks of interacting IFB neuron models
with fast synapses, one may also obtain insight from the
corresponding population density formulation@22#.
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