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PHYSICAL REVIEW E, VOLUME 64, 041914
Mode locking in a periodically forced integrate-and-fire-or-burst neuron model
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G. D. Smith
Department of Mathematics, Arizona State University, Tempe, Arizona 85287-1804
(Received 10 May 2001; published 24 September 2001

The minimal “integrate-and-fire-or-burst(IFB) neuron model reproduces the salient features of experi-
mentally observed thalamocortical relay neuron response properties, including the temporal tuning of both
tonic spiking (i.e., conventional action potenti@qland post-inhibitory rebountursting mediated by the low-
threshold C&" current,l ;. In previous work focusing on experimental and IFB model responses to sinusoidal
current injection, large regions of stimulus parameter space were observed for which the response was en-
trained to periodic applied current, resulting in repetitive burst, tonic, or mixed burst followed by tonic
responses. Here we present an exact analysis of such mode-locking in the integrate-and-fire-or-burst model
under the influence of arbitrary periodic forcing that includes sinusoidally driven responses as one case. In this
analysis, the instabilities of mode-locked states are identified as both smooth bifurcations of an associated
firing time map and nonsmooth bifurcations of the underlying discontinuous flow. The explicit construction of
borders in parameter space that define the instabilities of mode-locked zones is used to build up the Arnol'd
tongue structure for the model. The zones for mode-locking are shown to be in excellent agreement with
numerical simulations and are used to explore the observed stimulus dependence of burst versus tonic response
of the IFB neuron model.

DOI: 10.1103/PhysReVE.64.041914 PACS nuner87.10+e, 05.45-a

I. INTRODUCTION I+. However, when a relay neuron is hyperpolarizbelow
roughly —65 mV), the low-threshold current deinactivates
Like other sensory thalamic nuclei, the dorsal lateral genwith a time constant of-100 ms. In this situation, depolar-
iculate nucleugdLGN) controls the flow of sensory infor- ization (or simple release from hyperpolarizatjoresults in
mation to the cortex, acting as a state-dependent “gatewayan LTS and a cluster of two to ten spikésurst firing.
between the sensory periphery and higher cortical centers Using a thalamic slice preparation that contained both the
[1]. However, it is probably an oversimplification to charac- LGN and associated perigeniculate nucleus, Seitithl. per-
terize the thalamic gate as simply open or clog2@]. In-  formed intracellular recordings of relay neuron responses to
stead, the thalamus may filter sensory information in a dysinusoidal current injection and quantified these responses
namic fashion related to a behavioral state and perhapssing Fourier analysigs]. During this study of the stimulus
attentional demands. Indeed, while the spatial receptive fieldependence of burst and tonic response modes in thalamo-
properties of LGN relay neurons are largely inherited fromcortical relay neurons, a minimal “integrate-and-fire-or-
retinal ganglion cells that innervate them, the temporal aspurst” (IFB) model was constructed by adding a slow vari-
pects of relay neuron response properties have long sugble (representing the deinactivation level of) to a
gested to investigators that the thalamus has an importagtassical leaky integrate-and-fi(F) neuron mode[7]. The
dynamic role to play in visual processifig,5]. For this rea- |FB model has only two currents and 10 well-constrained
son and others, a quantitative understanding of thalamocoparameters that are easily chosen to fit Fourier analysis of
tical relay neuron firing patterns is an important scientificexperimental responses.e., a few current-clamp record-
goal. ings). Detailed Hodgkin-Huxley-style relay neuron models,
The response properties of thalamocortical relay neurongn the other hand, often include 10 or more currents and over
are greatly influenced by a low-threshold, transienf™Ca 100 parameters, many of which require voltage-clamp tech-
conductance known ds . When this conductance is evoked, niques to be well-constrained. In spite of its simplicity, the
C&* entering the neuron via T-type Eachannels causes a IFB model quantitatively reproduces salient features of relay
large voltage depolarization known as the low-thresholcheuron response properties in both burst and tonic modes
ca* spike (LTS). Conventional action potentials mediated [6,8].

by fast Na" and K" (delayed-rectifiercurrents often ride on In this paper, we present an exact analysis of the firing
the crest of an LTS resulting inlaurstresponsdi.e., a tight  patterns of the periodically forced IFB model. By construct-
cluster of spikes ing the firing time map for the IFB model with arbitrary

When a thalamocortical relay neuron is depolarizedperiodic forcing, we are able to calculate the regions in pa-
(above roughly—60 mV), the low-threshold Ga current rameter space that support mode-locked solutions. The bor-
inactivates with a time constant 620 ms. In this situation, ders of these zones are defined by both smooth bifurcations
further depolarization of sufficient magnitude will evoke a of the firing time map and nonsmooth bifurcations of the
train of action potentialétonic firing) that is independent of underlying discontinuous flow. This explicit construction of
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the Arnol’d tongue structure allows us to establish the condi- TABLE I. Standard cellular parameters for the IFB model, ob-
tions under which an IFB neuron can switch its responsdained from fits with experimental dafé].

from a bursting to a tonic spike train output. Moreover, we
are able to follow the bifurcation sequence of mode-locked Parameter Value Unit
solutions and establish that tonic solutions typically undergo

bifurcations that may be ordered with a Farey sequence, x(’ _2: Qx
while bursting transitions are dominated by spike-adding bi- CL > uFlen?
furcations. - =
The remainder of this paper is organized as follows. In 9 0.035 msS/c
Sec. Il, we introduce the IFB model and discuss its relation Vieset —50 mv
to neural models that incorporate a post-inhibitory rebound Vi —60 mv
current. We also construct the implicit firing time map for V1 120 mV
the response of the system to arbitrary input. The definition Th 20 ms
of a mode-locked solution is given next in Sec. lIl. Here, we U 100 ms
review the theory for mode-locking for the standard leaky IF gr 0.07 mS/cm

neuron model and show how to generalize this to cover thé
IFB model. An application of the general theory to the case ) o

of sinusoidal forcing is provided in Sec. IV. We also dem- V=V and relaxes to unity with time constan{ whenV
onstrate the excellent agreement between our analysis aridVh- Hence, sufficient hyperpolarization leads to increasing
direct numerical simulations. Finally, in Sec. V we discussvalues ofh, representing deinactivation ¢f. The IFB dy-
the main points of our analysis and consider extensions ofamics depends strongly on the two threshdlgsandV,,

this work to networks of interacting IFB neurons. responsible for the activation of burst and tonic spiking, re-
spectively. In previous work, Smitkt al. chose the threshold
Il. INTEGRATE-AND-FIRE-OR-BURST DYNAMICS valuesVy,, Vg, Vieser the time scales,, , reversal potentials

_ V., V1, leakage conductancg , and membrane capaci-
The IFB model may be regarded as an IF model with the:anceC to fit in vitro intracellular recordings of relay neuron
addition of a slow variabl¢6,9]. The current balance equa- responses to sinusoidal current injectisee Table)l These

tion for the model is cellular parameters are unchanged throughout this work;
however, the stimulus parameters withigp, are varied. All
Cdv—l o 1 intrinsic and applied transmembrane currents are given in
a_ app 'L T 1)

units of wA/cm?.

It is useful to rewrite the inactivation and deinactivation
where |,,, represents an applied current amd=g,(V  dynamics in the form
—V\) is a leakage current with constant conductagicand

leakage reversal potentisl, . The low-threshold C& cur- dh

rent is given byl t=grh(V—V7)O(V—-V,), where®() is a (V) g = ~h+h=(V), 4
Heaviside step function and the slow variahléas dynam-

ICS. where h.(V)=0(V,—V) and m(V)=1, O(V-V,)

+ 71 @ (Vy— V). The form of this equation is reminiscent of
- (2) a post-inhibitory rebound current described by Wang and
dt (1-h)/7, V<V,. Rinzel [10]. In agreement with voltage-clamp experiments,
the low-threshold C& current in their model is given by
The slow variablen represents the deinactivation of the low- | .=g;m3(V)h(V—V;) with “smooth” equilibrium activa-
threshold C&" conductance, which involves T-type €a  tion m,,(V) and inactivatiorh..(V) functions,
channels and produces the transmembrane currentThe
fraction of channels that are inactivated is given simply by ha(V) 1 ©
1—h. An action potential is said to occur whenever the «(V)= — , S)
membrane potential reaches some thresholg. The set of L+ exp(Bn(V=Vh)
action potential firing times is defined by

dh [ —him,, V=V,

1

MV = L ex= B (V =V T €)'

o,=inf{t|V(t)=V,;t=0,_4}. (3) ©

Immediately after a firing event, the system undergoes a difor some appropriate constangs,, 8;,, ande; andh satis-
continuous reset such th¥(o )=V, Hence, the flow fying Eq. (4) under the replacement,(V)— h..(V)exp(V
generated by the IF process is discontinuous at the firing-a)/b) (for constantsa andb). The smooth activation func-
timest=o,. For simplicity, we follow Smithet al. and do  tion m,(V) may be considered as the asymptotic value of a

not include an absolute refractory period in the model. fast activation variable. In the limiB,—«, the sigmoidal
Equation(2) describes a process whereby the deinactivafunction h..(V) tends to a step function, so that.(V)
tion level of |+ relaxes to zero with time constanf when =0 (V,—V). In the limit 8,,—» ande—0, m,(V)=0(V
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—V,). Hence, the two models may be identified in the limit subsequent intracluster firing events. The associated value of
Bh,Bm— >, €—0 under the replacement,(V)— 7, O(V h(t) at the timeBy,,,; is denotedhp; .
—Vp) + 11 O(Vy— V). Integrating Eq(7) betweervy, anduv , determines the first

For mathematical simplicity we avoid smooth activation firing time within a cluster as
m..(V) and inactivationh_,(V) functions and instead con- B
sider the original IFB model with piecewise constant activa- [n/p] .
tion and inagtivation functions. Wg also eliminate the shunt- ©¢ & Tiwp(0)/71=vn+ JO e "A(S+ Bypy s,
ing term, —Vy), of the low-threshold Ca current by (11)
assumingv+>V. This does not lead to any qualitatively dif-
ferent behavior in the model with shunting. With these ap-where
proximations, the slow current,;, takes the forml;=
—gTVTh@(V—Vn)- Itis now convenient to rewrite the IFB A(t)=gh[n,p]e’(t’B[n/Pl)”ﬁ@(v(t)—vh)+I(t). (12)
model with the introduction of the relative voltage=V
—V, and the parameteg=g;V:/C, 7=C/g,, so thatvy Introducing the functions
=Vyx—V_, where Vye{Vy,Vieser Vn}. The rescaled IFB
model is then 0 0
é(t):f e¥7| (t+s)ds, G(t)=f eY"A(t+s)ds,

i)=—%+gh®(v—vh)+l(t), ) (13)

. and defining F(t)=e'TG(t)—v,] and F(t)=e’TG(t)
mh(v)h=h.(v)—h, (8 —p,] means that we may use E@.1) to write the implicit
relationship betweeii,/,;(0) andBy,p; in the form
where 1(t)=1,4,/C, h.(v)=0(vy,—v), and 7,(v)
=7,0(—vy)+ 7 O(vy,—v). Apart from the firing times, F(B{np+ Tip1(0))=F(Bppp) +[v s— v1]eXd Bprygy /7.
there are two types of events that play an important role in (14)
the dynamics of this system, namely the times at which
crosses, from above or below. At these times the dynamicsA similar construction may be used to relate times within a

for h undergoes a switch in behavior. cluster as
The focus of this paper will be on mode-locked solutions,
such that one sees a repeating pattern of clustered spikes in F(Bnp)+ Tinip (M)
response to a periodic stimuli. Moreover, we shall consider
the case that these clusters repeat at integer multiples of the =FBpt Tinpy (M= 1)) +[v g~ Vresel
stimulus period. However, before we consider this special X Xt (Bipypy + Tprvp (M= 1))/ 7] (15)

class of solutions it is instructive to consider the description

of slightly more general spike trains, where the number Offor m=1 p— 1. Finally the time at which the next cycle
spikes per cycle remains fixed, but the firing pattern on eacgtarts is 'tﬁé.s,olutic;n to

cycle is different. This is especially important for a linear

stability analysis of mode-locked solutions. If we denote the

= _= +

number of spikes within a cluster lyy then it is convenient F(Bap)+1) =F(Bpop) + Ay (16)
to write the set of times for which(t) crosses throughy, P i i

from below as where A, is the time spent above=uvy, in one cycle.

This time interval can be written as the solution to
B,=inf{tjv(t)=v,,0>0;t=B,_,}. (9)
! " F(Bpnip + Anypy) v o= vnlexd (Bp + Apnypy)/ 7]
We use this notation so that tiéh firing event can be writ- = FBpy + Tporp (P~ 1) +[05~ Vresel

ten as
X exd (Bin/pp+ Tnp (P— 1))/ 7]. (17)
n=Bnpt Tip(N(P)),  n(p)=n mod p, (10
The evolution ofh,,; over a cycle is easily calculated in
where[ ] denotes the integer part amd= Z. Here we have terms of the time spent above and below v,,. If we de-
decomposed a firing event using intercluster and intraclustatote the time spent below=uv, by Afpypy » then
firing times. The notatiom(p)=n mod p is introduced to

cor)veniently label each of thp spikes within a clgster, h[n/p]+l:h[n/p]exq_A[-;/p]/TI:_A[_n/p]/TIT)
while [n/p] keeps track of which cluster the setp&pikes - .
belongs to. The timeBy,, signal the onset of a clustered tl-exp(— A/ 7). (18)

firing pattern, whileT,,;(0) signifies the first firing event
within a cluster(relative to the start of the clustered firing The crossing timesB(,,, then satisfy Bjyp)+1=Binp
pattern and Tinp(1), T (2), -y Tiwp(P—1) signal  +Apyp whereA[n,p]zA[n,p]JrA[’n,p].
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[ll. MODE LOCKING, STABILITY, generates the firing map, since the linear stability analysis of
AND ARNOL’'D TONGUES the firing map does not describe bifurcations that arise when
fixed points(mode-locked solutionsnteract with a discon-
tinuity. Indeed, nonsmooth bifurcations of IF systems are
%xpected to occur whenever a tangential crossing of the fir-
‘?ng threshold occurs. Interestingly, an IF neuron model may
be regarded as a type of impact oscillateee, for example,
'[16]). In the study of impact oscillators, one is often inter-
; . X ested in the map, which relates one impact to the next. For
thenh(t) and hence(t) will be periodic. In fact if the IFB a periodically fofged IF neuron model, a% impact is identified

system behaves in such a way thatv,, for all time, then its by its impact phasend itsimpact velocitvat threshold. We
behavior is the same as that of a periodically forced IF neu—y 'S IMpact p rsimpact v T :

ron model. Mode-locking of IF systems has previously beerir;trr?gjr%ent;eoggrzgt phast, and impact velocit, for an
discussed by several authdrkl-15. Here we outline the

approach to constructing the Arnol'd tongues for the stan- ) vy

dard periodically forced IF model and then extend this work Op=0, mod A, c,=v(o,)=Il(o,)——. (22
to cover the IFB model. T

For the case thai(t) is a periodic function, one would

of clustered spikes at times which are integer multiples of th
period of A(t) (up to some phase shiftif the applied signal
I(t) is periodic and the response of the system is also per
odic [with period rationally related to the period oft)],

From these definitions we may construct the impact map
P, :(6,,cp)—(6,11,Chs1)- In many cases one must resort
In a previous study of a single IF neuron model with to numerics to construcP, (see, for example[17]). The

sinusoidal forcing, it was shown that the dynamics of thederivative of the firing mapr,— o, is obtained from Eq.
firing times can be described by a circle nfag]. For large-  (19) as

amplitude periodic forcing, the circle map may become dis-

continuous. It is convenient to consider the nonautonomous done1 V(o) +e v = vresel! T

IF equation given by Eq(7) with g=0. The input function =

A. Periodically forced IF neuron model

: i , do" V' (ons1)
I(t) will be taken to be periodic in time with frequendy
(and not just restricted to be sinusoida\n implicit map of ~ oy 1 (O0) " Uresed T
the firing times may be obtained by integrating E@). be- =e (In+17n) Tm, (23)
tween reset and threshold to gil&2,13 el me
‘I’(Unﬂ):‘I’(Un)+e””/7[ve—vrese}ly (19 and becomes unbounded@s ;—0. Hence P, is a smooth

map of a cylinder to itself apart from on a one-dimensional

where‘lf(t)=e”7[é(t)—v0]. Fixed points of the firing map (possibly branchedsetS defined by
are known to correspond to so-called mode-locked solutions
[13] in which the IF oscillator fires a packet pfspikes inq
multiples of the fundamental period of the signét). As-
suming they exist, thesgq solutions have the form

S={(6,c):P(6,c)=(4,0}. (24

Hence,S is the preimage of the line=0 underP,. This
discontinuity seintroduces infinite local stretching into the
phase spacgl6]. The conditionc,—0 is referred to as a

Un:( n + i ))ﬂ (200  9razewithin the impact oscillator literature. For the IF neu-
p Pl ron model, the stretching of phase space would manifest it-

. self for two nearby trajectories of which only one has suffi-
where¢,[0,1) forn=0, ... p—1 denotes a collection of

ient impact velocity near threshold to guarantee a firing
vent. A drastic difference in subsequent behavior of the two

! h di ; béi trajectories would result. In the IF context a graze can lead to
time). The corresponding rotation numbére., average .4 gifferent types of bifurcation. To see, this it is conve-

phase rotation per spikés q/p mod 1. In[13] it was shown  piant 19 study the IF trajectory without the reset condition.
that the linear stability of a mode-locked state is guaranteed Tne first type of bifurcation occurs when there is a tan-

for [«(®,A)[<1, where gential intersection of the trajectory with the threshold value
p-1 A 1 such that upon variation of the bifurcation parameter the lo-
(D A):e—A/TH {l(gbm )T Ureﬂ (21) cal maxima of the IF trajectory passes through threshold
' m=0 | 1(¢pnA)—7 v, ’ from above[see Fig. 18)]. In this case there is loss of a
solution in a nonsmooth fashion. Hence, a mode-locked so-
andA=q/f. The borders of the regions where such mode-ution undergoing such a bifurcation satisfl¢s,) =v ,/7 or
locked solutions become unstable are defined by the condequivalently W' (o,)=0 (using ¥'(t)=e""[I(t)—v,/7]).
tions x(®,q)=—1 (tangent bifurcationand «(®,q)=+1 In the second scenario, a subthreshold local maxima in-
(period doubling bifurcation with the set of phasesb creases through threshold leading to the creation of a new
={¢o, ....¢,1} Obtained from the solution of Eq19)  firing event at some earlier time than usiisée Fig. 1)].
using (20). However, for a general analysis it may be desir-For mode-locked solutions these nonsmooth bifurcations are
able to work with the underlyingdiscontinuous flow that  defined by W(o*)=¥(o,)+e" "' [v,—viesed and

firing phases. The firing rate of a neuron in a mode-locke
state is simplyp/q (spikes per cycleor pf/q (spikes per unit

041914-4
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3 ~ o largest mode-locked zones are those with low-order ratios of
> v i p to g. In the regime where the map of firing times is con-
S tinuous and invertible, the Arnol'd tongue boundaries are
defined by tangent bifurcations, and period doubling bifurca-
tions do not occur. Just outside the tongues, solutions may
lock to some other mode-locked solution or drift aperiodi-
cally. In fact, the measure of the parameter set for mode-
@ locking when|l|<ly—v,/7 goes to zero as— . When
the circle map of firing times is discontinuous, the Arnol'd
c Gn+1/ tongues are determined, in part, by the nonsmooth bifurca-
tions of the full discontinuous IF flow. For example, the
right-hand boundary of the mode-locked zone in Fig. 2
(above the dashed lings of the type associated with Fig.
1(b), while the left-hand border is associated with a tangent
bifurcation of the firing map.

¥(")=0

(b) B. Mode-locked instabilities of the IFB model

FIG. 1. (a) Loss of solution via a nonsmooth bifurcation where V& now focus on the class of periodic Solgtion_s, such that
a local maxima decreases through threshdil. Creation of solu- (U (t+A4),h(t+4))=(u(t),h(t)) in which pe 7 spikes are
tion, in a nonsmooth bifurcation, as a local maxima increasedired within a periodA, rationally related to the period of the
through threshold. driving signall 5, i.e.,A=q/f, geZ. In this case the cross-

) ) . |ng timeS B[n/p] SatiSfy B[n/p]+1:B[n/p]+Av and we may

V' (o*)=0 with 6* <o, .1, ando,, 1 is the solution to Eq. write
(19). Note that in both these cases, the derivative of the firing
map (23) becomes unbounded, sintér,)=v,/7, and the B.— n A+ pA (25)

. .. . . . . n— y
(circle) map of firing times is discontinuoy4.2]. From Eq. p

(23) we see that if the firing map is continuous, it is only ) ) _
invertible if 1 (07,) # v resed 7 where ¢ is the phase of the clustered spike packet with re-

By considering both smooth bifurcations of the firing map spect to the periodic driving signal. The firing times of spikes
and nonsmooth bifurcations of the underlying discontinuoudVithin a cluster are assumed to have the form
IF flow, we are able to construct the Arnol’d tongue structure . .
of an IF neuron model in response to an arbitrary periodic To(m)=(¢m=¢)a, mM=0,...p~1 (26)
signal. For illustration we present some 01_‘ the que—lockeqor all n, wheregy, . . . ¢, 1€[0,1) denote a collection of
zones for an IF neuron model with sinusoidal forcing of thefiing phases. The firing times of a periodic solution are then
form I(t)flo+lls|n 2nt in Fig. 2. It is straightforward to given by Eq.(10) using Eqs/(25) and (26).
calculate G(t) as lor—I,7sin(0—2mt)/\1+ 47272, where From numerical simulations of the IFB neuron model un-
tand= 27 [13]. The firing map is discontinuous whéh| der sinusoidal forcing, we have found that responses are
>lg—vy/7. In this parameter region it is known that mode- typically p:1 mode-locked solutions, in which the deinacti-
locking can occur almost everywhdre2]. From Fig. 2 itcan  vation variableh is 1:1 frequency locked to the stimulus. For
be seen that the Arnol'd tongues do not overlap and that thgimplicity, we restrict further discussion to the case of
p:1 mode-locked solutions since these define the dominant
responses to sinusoidal stimulation. The generalization to
p:g-type states is straightforward and, for clarity, will not be
pursued here. However, some numerical examples of less
dominant states will be presented later. For very low fre-
quency stimulatior{say, below 0.1 Hgit is also possible to
generate what have previously been terméxiedresponses.
————— These may be regarded as repeating patterns of bursting be-
havior followed by tonic behavior. They may be treated ana-
lytically with a simple combination of the mode-locking an-
satz for tonic firing, given by Eq(20) and the burst firing
ansatz described above.

Denoting the time spent on that portion of a periodic orbit

! ' ! with v<v, asA~ and the time spent on the orbit with

0.6 1 14 ¢ 18 >vp asA™, we may writeA=A"+A~. More usefully the

FIG. 2. The Arnol'd tongue structure of a sinusoidally forced IF assumption of g:1 periodic orbit allows us to determine

oscillator with (t)=2+1,sin 2at. Above the dotted line the circle hpnp; Using the constrainhyyp = hpyp+1=h. Using Eq.
map of firing times is discontinuous. (18) we have that

——
-

0
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FIG. 3. A 3:1 bursting orbit],=—-0.5,1,=1, andf=2.5.

1—e A7/

(27)

1_e—A+/’TI;e—A7/T; ’

An expression forA™ may be found from Eq(17) as the
solution to

G(pA+A")—vy,
G(¢p—1A)_Ureset

=exdA(¢p-1— ¢)7lexd —AF/7].
(28

We may also writeA(t)=h"(t)® (v (t) —vy)+1(t), where
h*(t)=ghe = ¢3/™ for te[pA,pA+A") and is peri-
odically extended such thét* (t+A)=h(t). Since the pe-
riod of h™(t) is a multiple of the period of(t) (which we
take to bef 1), A(t) has the period of(t). After substitut-
ing the firing ansatZ225) and (26) into Eq. (14), the first
firing phase is the solution to

G(od)—vy _
m—exdﬂ(ﬁ— $o)/7]=0, (29
and subsequent firing phases<£1, ... p—1) satisfy

G(dmA)—vy
G(pm—14) — Vreset

—eXdA(¢m-1~ dm)/7]=0. (30

Using Eq.(16) the phase of the periodic solutiog, must
satisfy

G(pA+A)—vy,
G(pA+AT)—vy,

—exd (At —A)/7]=0.

An example of a 3:1 bursting solution is shown in Fig. 3.

In this figure the trajectory is plotted in the () plane(with

spikes superimposgdwhile Fig. 4 shows the corresponding

PHYSICAL REVIEW B4 041914

20 T v v . .
A"
20},
9
| __reset | \ \ \
i \/ v v \/
-100 | 1
0 400 800 1200 t

FIG. 4. A 3:1 bursting orbit] ;= —0.5,1,=1, andf=2.5.

the above type require thatperiodically crossesy, and that
the thresholdv, can be reached. There are three types of
nonfiring periodic solution that fail to meet these criteria. In
the first casep (t+A)=v(t) and h(t)=0, with v,<v(t)
<v, for all t. In the secondv (t+A)=v(t) and h(t)=1,
with v (t)<vy, for all t. In the third case (t+A)=uv(t) and
h(t+A)=h(t) with v(t)<v, andv(t)=v, for somet. We
denote the first two of these solutions by 0:0 and the latter by
0:g. The 0:0 voltage solution is given explicitly by(t)
=G(t) with v(t+A)=v(t) andA=g/f. The phase of a 6
solution relative to the driving signal and the time spent
abovev,, are given by the simultaneous solution of Eg1)

and

G(pA+AT)—vy,
G(¢A)—vn

—exd—A*/7]=0, (32

with A=g/f. Note that for a Oq state,hjp;+q=hnp @nd
h is given by Eq.(27) with A" =qg/f—A™. We now turn to
the linear stability of these mode-locked solutions.

The linear stability of mode-locked solutions may be
found by perturbing the firing times such thag,, (n(p))
— T (N(P))+ ﬁT[n,p](n(p)). 'Thes.e per.turbatlons will
cause corresponding perturbations in the tiBgs; and the
intervaIAfn,p] . Denoting these perturbations I8;,,; and
5A[+n,p], respectively, we may expand Ed44), (15), (16),
and (17) around a mode-locked solution to obtain the first-
order relationships

6B[n/p]+5T[n/p](0):KO((DIA)(sB[n/p] y (33)

voltage trajectory as a function of time. Bursting solutions ofwhere

(B Bup T ST [npy (M) = km(P,A)[ 6By + 6Ty (M= 1)1,
(34)
Bnp)+1= Kkp(P,A) [ 8Byyp) + 6T (P—1)], (39
|
F([N/P]A+ A) + (vy— vy, elMPIAI T+ 6017 - -

ko(®,A)=

F'([n/p]+ ¢ol)
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Ko (D A):F,([n/p]A+¢mflA)+(U0_Urese)e[n/p]A/ﬂ—¢m71A/T/7' (37)
" F'([n/p]A+ drA)

([N/plA+¢A+A")  F'([n/p]A+ ¢y 18)+ (05— vresed€ P P13/ 7

—. 38
([n/p]A+pA+A) F'([n/p]A+dA+AT)+ (v, —vy)elVPIATHoalTTA T o 33

(®,A) P
K y ==
P F

In this section we use the notatich to stand for the set  G(¢*A)—v, vy
{0, ... .bp-1,4,A7}. Using these expansions we can con- W—EXF{AW— ¢*)I7]=0, A($"A)=—,
struct a map of the perturbed crossing times as h (42)

p

_ _ where¢ andA ™ are those for a Oqg solution.
OBinipy+1= K(P,A) Bpnpy . k(P,4) _FLIO Km(P,4). If a firing solution is periodic withy >v}, always, then the

(39 contribution of the slow current to the dynamics is negligible
since lim_.,h(t)=0 and mode-locked solutions are the
This has solutions of the formdB,=e"" for ve C. Hence, same as those in the standard IF model. To guarantee such

the stability of a mode-locked state is guaranteed foronic firing events, we require méxt)>v,. A necessary
|<(®,A)|<1. A compact form forc(®,A) is obtained with  ¢,ngition for a bursting current is that ma&(t)>vy,.
the observation thaF’'(t)=e"TA(t)—v,/7] and F'(t)

— at/ 7 _ .
=eI(t)—vn/7]: IV. RESPONSE TO SINUSOIDAL INPUT

-1 In this section, we focus on the application of our general

; theory to the specific case of sinusoidal forcing. A detailed
numerical analysis of the IFB systefwith shunt$ with

(40) sinusoidal forcing has previously been performed by Smith

et al. [6]. Our analysis provides a framework in which to

A( d’(m—l)(p)A) -7 lUrese
A( ¢m(p)A) -l 0

p
K(<1>,A)=e_A”7(<I>,A)m

| A(A) =T o || H(pA+AT) =7 Ny, describe such numerical results and is able to clarify the way
r(®.4)= H(pA)—7 Yo, || A(GA+AT) — 7 10, | in which solutions lose stability under parameter variation.
" " (41  Asinthe work of Smithet al. we consider an applied current
of the form
Hence, the borders in parameter space delimiting the zones
of stablep:1 bursting solutions are defined Hy(d,A)] lapp=lo+11c0q27ft). (43

=1, where the se® is obtained by the simultaneous solu-

tion of Egs.(28), (29), (30), and (31). The expression for It is straightforward to show that for this case

x(®,A), given by Eq.(40), may be regarded as a generali-

zation of Eq.(21) to include the effects of discontinuous - o7 I 7

jumps at not only the firing times bu_t also at th_e _times when G(t)= T + WCOSZW”_ 0) (44)

v crosses throughy, (whereh is continuous, buh is no.
Obviously one must also take into account nonsmooth

bifurcations of the underlying discontinuous IFB flow. These

can take the form of bifurcations discussed in Sec. Il A, ) .

together with bifurcations where the bursting threshold, ~ Where in Eq.(45) te[¢A,¢A+A™) and

is crossed tangentially. Assuming the existence of 0:0 solu-

tions, it is expected that these will undergo nonsmooth bifur- ~

cations with varying input such that the thresholgcan be =

reached. If this happens a 0:0 solution can bifurcate toga O:

solution. The condition for this bifurcation is defined by the

voltage trajectory of a 0:0 solution to tangentially intersectsuch that G(t)=G(t+A). Note that for this particular

the thresholdvy,. In a S|m|lar. fash|on th(_a @ solution can  choice of drive, bursting solutions require that
undergo a nonsmooth transition when its voltage trajectory

tangentially intersects the firing threshoild,. The nons-

G(t)=G(t)+ghrexp(— (t— pA)/7,), (45)

1 1|t
———1 , tano=2wfr, A=-—. (46)

T Th

—| O

The calculation ofG(t) is completed by periodic extension

mooth bifurcation of the Qy state is therefore defined by the | % _ 1 47)
conditionsv (¢*A)=v, andv(¢*A)=0 for someg* (¢ 1 1+an?2

<¢*<AT/A). These conditions may be ensured by the si-

multaneous solution of and tonic events can only occur for
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FIG. 5. Analytical Arnol'd tongue structure of the sinusoidally 20 t
forced IFB neuron using standard parameters WitilO Hz. The . ]
dashed line is the border of instability of 0:0 states, with constant 60 \\// \\/1 \\/I \\/I \\/l
h=0 or h=1, such that inside thevedge0:q solutions may be | ]
found. 100
0 100 200 300 400 t 500
|o>£ — I—l (48 FIG. 6. The upper trajectory shows a 1:1 bursting solution just
T J1+47%%72 prior to a nonsmooth bifurcation| {,1;)=(—0.2,3). Other param-

eters are the same as for Fig. 5. The middle trajectory shows the

. . . . resulting 3:2 orbit just after bifurcation,{,I;)=(—0.1,3). The
To describe the smooth bifurcationsmf (p=1), bursting lower figure shows the 2:1 state dty(lI,)=(0,3) that bifurcates

State§ require the solution @f+3 Sllmulta-neous nonlinear from the 3:2 state. Note the near-tangential intersection of the orbit
equations. For the nonsmoothcpbifurcation we need to  jth the firing threshold in the upper figure. The basic mechanism
solve four simultaneous nonlinear equations. For the  for adding spikes to an existing packet is a tangential crossing of the
tonic states there arp+1 equations defining the smooth firing threshold at the end of an existing packet.
bifurcations, p+1 equations defining nonsmooth bifurca-

tions like those of Fig. (B), andp+ 2 defining those of Fig. tongues, the ratip/q will exhibit a Devil's staircase struc-
1(b). Numerical experiments suggest tiat bursting zones ture, and the underlying bifurcation structure can be orga-
with low p occupy large regions of parameter space for largelized with a Farey sequence. Figure 5 also suggests that one
f. To avoid having to solve large numbers of simultaneoughight find a period-adding bifurcation sequenpel—p
nonlinear equations’ we therefore focus on |arge enough vat1:1 for bursting solutions but not for tonic solutions. In
ues off (f=10 Hz is used in most numerical experiments fact, direct numerical simulations show that, for bursting be-
so as to make comparison of theory with numerical experihavior, the bifurcation sequence is more likely to jpd
ment relatively easy. In Fig. 5, we show the calculation of ~2p+1:2—p+1:1, albeit with the 2+ 1:2 solutions oc-
the borders where mode-locked solutions lose stability. Th€upying extremely small windows of parameter space. In
tonic borders are computed in the absence of a slow curreffitig. 6, we show that the mechanism for the addition of a
[i.e., only valid whenh(t)=0]. The left-hand borders of Spike to an existing cluster is via the growth of a maximum
these solutions are defined by tangent bifurcatitafsthe  in the trajectory, at the end of the packet, until another firing
firing map while the right-hand borders are tangent bifurca-event can be generated. This figure also illustrates the bifur-
tions for low values of ; and nonsmooth bifurcatiorisf the ~ cation sequence 1:33:2—2:1, found for fixedl, and in-
type in Fig. 1b)] for large values ofi,. The p:1 (p=1)  creasingl.

bursting boundaries are all nonsmooth bifurcations of the To illustrate the usefulness of our results, we now present
type shown in Fig. (a), where the failure to cross the firing a numerical exploration of the IFB response in thg, (;)
threshold occurs at the time of the last spike in the clusterparameter plane. We introduce the quantify(oo)

As an example of the instability of a @:solution, we com- =Alimy_.M/(oy—0o) as a measure of the number of
pute the nonsmooth bifurcation of the 0:2 state and also thepikes fired within one stimulus cyclerhereo, denotes the
nonsmooth bifurcation of the 0:0 stat@hich is expected to time of themth spikg. We include the dependence upap
give rise to a Oq state. Interestingly, it would appear that to account for the possibility that long time behavior may
the termination of a bursting border occurs at a point on thélepend upon initial data. For purposes of simulation, we
boundary of a tonic tongue. For tonic solutions, the Arnol'dwrite the applied current as a function of soleasevari-
tongue structure may be organized such thap-ap’:q ables with 1(t)=1(s), s=1 and then choose initial data of
+q’ solution can be found separatingpag and ap’:q’  the form @,h,s)=(v,es:0.5(0)). Interestingly, different
solution [13]. Hence as one passes through a set of toni¢hoices ofs(0) do give rise to different final states. For
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20 —_— loses stability with increasingy, in favor of a subharmonic
response, which itself then undergoes a sequence of bifurca-
tions resulting in a 1:1 orbit. This bifurcation sequence oc-
-20 ¢ 1 curs over an extremely small window of parameter space. In
Fig. 9, we show an example of a 0:2 state and a 1:3 state that

N A N appears to bifurcate from it as one crosses the instability
60 Pk L A [\ border(within the triangular wedgeshown in Fig. 8.
v \\/ \/ Apart from the solutions that we have focused upon with
I ] our analysis, our numerical simulations show that there are
-100 e ML ML also some small windows of parameter space that support
0 100 200 300 400 t 500 2p:2 solutions, which cannot be distinguished frpm so-
0.6 i i i i lutions using just the firing rate function. Some of these
h zones are marked in Fig. 8. It would appear that they reside
0.5 | T in parameter regions that separate bursting and tonic states
04 b both of typep:1. An example of a 6:2 solution is shown in
Fig. 10.
03 r . In Fig. 11, we show two cross sections of Fig. 8 that
02 | ] highlight the difference in firing rate response of an IFB
) / neuron when receiving sinusoidal periodic signals of differ-
0.1f A 1 ing amplitude. For large amplitude the IFB neuron responds
0 with a bursting pattern and one sees steps in the firing rate
2100 80 60 -40 20 0 v 20 function of size one or half ak, varies. Plateaus opf:1

solutions are much larger than those fgr21:2 solutions.
FIG. 7. A subharmonic 1:2 statéfound with initial data  For smaller amplitude signals the neuron may respond with a
(v,h,5) = (vreset0,0.5)], that coexists with a 1:1 state ato(l1)  tonic output and the firing rate function exhibits a Devil’s
:(*0.695,3)[f0Und with initial data (;,h,s)=(vrese,0,0)]. staircase structure.

For low-frequency stimulation it is possible to generate a
example, it is possible for the 1:1 state to coexist with a 1:2mixed response of the type shown in Fig. 12. This periodic
state. This is illustrated in Fig. 7. Subharmonig ktatesin ~ behavior may be regarded as a burst followed by a tonic
which one spike is fired for every multiple of the forcing response. The low frequency of sinusoidal stimulation means
period were previously thought to be excluded in the IFB that, for appropriate choices d¢f andl,, the IFB voltage
neuron model. It is now clear that they can actually be acvariable can spend sufficient time belay, such thah has
cessed with appropriate choices of initial data. Hence, th@me to come close to its maximal value of 1. Upaaiease
IFB neuron model, in common with other more complicatedfrom inhibition, whenv crossesv,, from below, the large
neuron models with rebound currefis8], supports 1:q sub- rebound current causes a burst of spikes. The subsequent
harmonic resonances, in which inhibitory signals that do notapid decay of the rebound current to zero means that further
lead to a rebound event in isolation may, when applied perifiring events generated during the excitatory phase of sinu-
odically, lead to a resonance phenomenon. These types @bidal stimulation are of a tonic nature.
solution rely upon the slow buildup &fover several forcing
periods. They are readily analyzed within the framework pre-

sented here by setting; + 4= hpnpy=h and solving for a
single (@ periodig firing time. However, one also needs to  In this paper, we have presented an exact analysis of
calculate each of the i times that the thresholdy, is  mode-locking in the IFB model under the influence of arbi-
crossed. In comparison wighl states, they typically occupy trary periodic forcing. We identify the instabilities of mode-
very small windows of parameter space. locked states as smooth bifurcations of an associated firing
In Fig. 8, we show a plot of the firing rate functiéi{ o) time map and nonsmooth bifurcations of the underlying dis-
in the (15,11) parameter plane. Also in this figure we include continuous flow. The Arnol'd tongue structure for the model
some of the boundaries as calculated in Fig. 5. The goo analyzed through the explicit construction of borders in
agreement between theory and experiment indicates that wearameter space that define the instabilities of mode-locked
have uncovered the fundamental instabilities of the periodizones. In the case of sinusoidally driven responses we find
cally forced IFB neuron. It is clear that, for thpel bursting that these analytically calculated zones for mode-locking are
solutions, an examination of just smooth bifurcations of thein excellent agreement with firing patterns of the IFB model
underlying firing map is not enough to delimit the Arnol'd obtained through numerical integraticcompare Figs. 5 and
tongue structure and one must take into account nonsmoo®). Because the IFB model includes an idealized low-
bifurcations of the underlying flow. Note also that instabili- threshold C&" current that mediates post-inhibitory rebound
ties of 0;q states can contribute significantly to the responséursting, this analysis is a significant extension of previous
of the system. For example, within the triangular wedge thatvork related to mode-locked solutions in leaky integrate-
emanates atlg,l;)~(0.25,0) (defining the nonsmooth in- and-fire neuron models.
stability border of 0: O staté®ne can find a 0:2 solution that The presence of the low-threshold LCacurrent, |1, in

V. DISCUSSION
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6

0
-2 -1 0

FIG. 8. (Color False color plot of the average number of spikes per cycle inlthg,() plane for a direct numerical simulation of the
IFB model with a 40X 401 grid. Simulations at each point correspond to 3 s of time with the first 1 s discarded as transient. Solid lines
correspond to theoretical predictions for instabilitiepdf stategsee Fig. 5. Parameters as in Fig. 5 with initial data varied such that the
largest possible firing rat@f the multistable solutionss obtained at each point in théy(l,) parameter plane. This is achieved in a natural
way by starting atl(y,l,) =(2,4) with initial data ¢ .s¢0,0) and decreasing while choosing the final output from the previous simulation
as initial data. The process is then repeated with decredgjrahoosing initial data at; =4, from the final ouput of the previous run at
1,=4.

relay neurons and the IFB model expands their repertoire ahe circle map of firing times. In contrast, pure bursting
mode-locked firing patterns. Here we analytically confirm astates, associated with a periodic rebound current, can be
previous numerical and experimental finding that large refound to coexist with differing rotation number. The insta-
gions of stimulus parameter space result in responses ebilities of bursting states are largely determined by nons-
trained to periodic applied current, resulting in repetitivemooth grazing bifurcations that may either add a spike to a
burst, tonic, or mixed(i.e., burst followed by tonicre-  cluster or subtract a spike from a cluster. Hence, the bifur-
sponses. Indeed, mode-locked states are shown here to bation from one pure bursting state to another is fundamen-
generic solutions of the periodically forced IFB model. To tally different from that of a bifurcation between pure tonic
our knowledge, this is the first time this type of analysis hasstates.
been applied to mode locking in an idealized neuronal model The borders in parameter space that define the beginning
that expresses both burst and tonic responses. of a crossover from tonic to bursting behavior may be found
The analytical and numerical work presented here givedy examining the conditions under which the voltage of a
insight into experimental observations of mode-locked firingtonic solution can cross the rebound threshgldo sustain
patterns of sinusoidally driven thalamocortical relay neuronsn oscillatory rebound current. As an example, we have con-
recordedn vitro using a cat thalamic slice preparatid@. In  structed the instability border separating the tonic nonfiring
tonic mode the firing rate response of the IFB neuron modestate with constant rebound current from that of a similar
to sinusoidal input is found to be independent of initial con-state with oscillatory rebound current. Numerical simulations
ditions. In fact, this can be shown to be true for arbitraryshow that the transition region separating the nonfiring tonic
forms of periodic forcing[15]. Moreover, the bifurcation solution with oscillatory rebound current from a pure 1:1
structure may be organized with a Farey sequence. Fdiursting state is extremely smaéls evidenced by our calcu-
small-amplitude forcing, the origin of the Farey sequence idation of the instability of the 0:2 state in Fig).8The tran-
easily understood in terms @¢$addle-nodebifurcations of  sition layers separating geneml bursting states from pure
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-30 6 -
v F 5 -
-40 4 —
I,=4
1 -
3 _ rr;—/
-50 f — 11= ._!_'
-60
vV v vy 1 0 1 I, 2
-70 . . . - - )
0 200 400 600 800 ¢ 1000 FIG. 11. Average firing frequency for fixed values Igf (and
other parameters as in Fig).8or 1,=4, changes in the firing
10 frequency are dominated by period-adding bifurcatigm$— p
v +1:1 of bursting stateginterspersed with small windows ofp2
10 +1:2 solution$, while for lower value ofl ;, tonic states undergo
) tangent bifurcations leading to a Devil's staircase structure. Initial
30 data are ¢,h,s) = (vese:0,0).
50 B A A A nonlinear algebraic equations, as required in the analysis of
IWAVAYAVYAVAVAVRVAVAY the full model.
70 M In agreement with previous simulations, we do not ob-
0 200 400 600 800 t 1000 serve subharmonic bursts in the IFB model with more than

one spike per burst. The subharmonic 1:2 and 1:3 solutions
FIG. 9. An example of a 0:2 state dj(l,)=(0.25,1)(top and ¢ Fig. 7 and Fig. 9 are examples of subharmonic bursting.
a subhgrmonlc 1:3 state that occurs directly after the nonsmootmthough the IFB model reproduces subharmonic tonic re-
bifurcation of the 0:2 state, at{,1,)=(0.25.1.1) sponses of relay neurons, it does not reproduce the qualita-
tively different subharmonic burstsvith multiple spikes per
tonic solutions are also found to be extremely small. burs) occasionally observed experimentall§]. However,
For low-frequency sinusoidal stimulation, it is also pos- models that include smooth equilibrium activation and inac-
sible for the IFB neuron model to exhibit a mixed responsetfivation functions forl  or additional ionic currentssuch as
in which bursting is followed by a tonic output. These ex-the hyperpolarization activated nonspecific cation current,
perimentally observed periodic responses are naturally dés) can reproduce this experimental observation of robust
scribed within the framework of this paper by combining theSubharmonic bursting6]. In contrast, the IFB model has
firing time ansatz for pure tonic solutions with that of pure Piecewise constant activation and inactivation functions.
bursting solutions. The mechanisms for the bifurcation of The simplicity of the model makes it a good candidate for
these solutions are the same as uncovered for pure burstifigither mathematical analysis of network phenomena involv-
and pure tonic solutions. The calculation of mode-locked

zones is, however, complicated by the increase in the number 20
of possible instabilities. One set of these instabilities is to be v ol burst tonic
associated with those of the tonic component of the response
(with potentially many spikesand the other with the burst- 20
ing component. For such states supporting a large number of
spikes on the time scale of the forcing period, it is perhaps 40 [
more natural to consider the reduction of the model to a N N N
firing rate description. Mixed responses then occur as repeat- -60 )
ing pairs offrequency bumpsnd may be studied without
r rse to the simultan lution of a large number of -80
ecourse to the simultaneous solution of a large number o 0 10000 20000
10 ! r M
v 0.8 | 1
-10
0.6 |
-30
0.4 |
ol I, N
V NV \_V 02
Jo_ .. 0
0 100 200 300 400 t 500 0 10000 t 20000
FIG. 10. A 6:2 state atlg,l1)=(2.3,1.3). FIG. 12. A mixed solution af=0.1 Hz,1,=0.5 andl;=0.6.
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ing neurons that exhibit post-inhibitory rebound bursting.behavior. The IFB model, on the other hand, generates bursts
Because a mode-locked solution can be explicitly written inonly in response to some appropriate external stimulus since
the form (v(t),h(t))=(A,(6(1)),An(6(t))) for some peri- the dynamics of the slow variableis not intrinsically oscil-

odic functionsA ,(#) andA (), there is a natural change of latory. For strong coupling it is likely that progress can be
coordinates which allows us to write the dynamics in termsmnade along similar lines to network studies of standard IF
of a phase variabl®. The responses of a weakly connectedoscillators(see[21] for a review. Furthermore, when con-
population of firing IFB neurons could be analyzed using thesidering large networks of interacting IFB neuron models
theory of weakly interacting phase oscillatdt®]. This type  with fast synapses, one may also obtain insight from the
of approach has been used to reduce detailed Hodgkircorresponding population density formulatig22].

Huxley-style models of bursting oscillators to a canonical
framework[23—26. One may then address issues regarding
synchrony of bursts and the effects of mode-locking between
neurongd 20]. A major difference between the IFB model and  This work was supported in part by NSF Grant No. IBN
many canonical models of bursting oscillators is that the 1at00079931 to G.D.S., who would like to thank John Rinzel
ter typically invoke an internal slow subsystem to periodi-for helpful conversations. S.C. would like to acknowledge
cally sweep a faster variable through a region of spikingsupport from the Nuffield Foundation.
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