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Detectability of Excitatory versus Inhibitory Drive in an
Integrate-and-Fire-or-Burst Thalamocortical Relay Neuron Model

Gregory D. Smith1 and S. Murray Sherman2

1Department of Applied Science, College of William and Mary, Williamsburg, Virginia 23187, and 2Department of
Neurobiology, State University of New York, Stony Brook, New York 11794-5230

Although inhibitory inputs are often viewed as equal but oppo-
site to excitatory inputs, excitatory inputs may alter the firing of
postsynaptic cells more effectively than inhibitory inputs. This is
because spike cancellation produced by an inhibitory input
requires coincidence in time, whereas an excitatory input can
add spikes with less temporal constraint. To test for such
potential differences, especially in the context of the function of
thalamocortical (TC) relay nuclei, we used a stochastic
“integrate-and-fire-or-burst” TC neuron model to quantify the
detectability of excitatory and inhibitory drive in the presence
and absence of the low-threshold Ca2� current, IT , and the
hyperpolarization-activated cation conductance, Isag. We find

that excitatory inputs are generally superior drivers compared
with inhibitory inputs in part because spontaneous activity of a
postsynaptic neuron is not required in the case of excitatory
drive. Interestingly, the presence of the low-threshold Ca2�

current, IT in a postsynaptic neuron allows the robust detection
of inhibitory drive over a certain range of spontaneous and
driven activity, a range that can be extended by the presence of
the hyperpolarization-activated cation conductance, Isag.
These simulations suggest a possible reinterpretation of the
role of inhibitory inputs, such as those to the thalamus.

Key words: thalamus; inhibition; excitation; basal ganglia;
neuron model; driver; modulator

Inhibitory inputs are often viewed as equal but opposite to exci-
tatory inputs. That is, a reduction of postsynaptic firing resulting
from an inhibitory input is often implied to convey information as
effectively as an increase of postsynaptic firing caused by an
excitatory input. For instance, the inhibitory GABAergic input
from the basal ganglia to the ventral lateral and ventral anterior
nuclei of the thalamus is often viewed as providing information to
be relayed to the cortex (Purves et al., 1997; Kandel et al., 2000),
just as excitatory input from the retina to the lateral geniculate
nucleus or medial lemniscus to the ventrobasal complex is relayed
to the cortex (Sherman and Guillery, 1996; Sherman and Koch,
1998). Other examples of inhibitory input include the cerebellar
Purkinje cell projection to the deep cerebellar nuclei, inputs from
the caudate nucleus to the substantia nigra pars reticulata, the
substantia nigra to the superior colliculus, and many others.

However, inhibitory inputs are not equal to but in fact are
opposite to excitatory ones. EPSPs affect the firing of the postsyn-
aptic cell by adding action potentials, whereas IPSPs remove
them. As long as the postsynaptic background firing rate is not
near its upper limit, excitatory inputs can always add action
potentials. However, because an inhibitory input can only cancel
action potentials that are temporally coincident, it follows that
IPSPs are ineffective at low postsynaptic firing rates.

Here we use a computational approach to test the hypothesis
that excitatory and inhibitory inputs are not equally detectable

with regard to postsynaptic effectiveness. Because the thalamus is
seen as a site for the relay of information and has both excitatory
and inhibitory inputs believed to be the source of information
(i.e., drivers as opposed to modulators) of thalamic relay nuclei
(Sherman and Guillery, 1998), we use a thalamocortical (TC)
relay neuron model to quantify the effect of voltage-dependent
conductances, such as the low-threshold Ca2� current, IT, and the
hyperpolarization-activated cation conductance, Isag, on the rel-
ative efficacy of excitatory versus inhibitory inputs.

Some of these results have been published previously in ab-
stract form (Smith and Sherman, 2001).

MATERIALS AND METHODS
The integrate-and-fire-or-burst model. For a complete description of the
development of the integrate-and-fire-or-burst (IFB) model and param-
eter selection, see Smith et al. (2000). Briefly, the IFB model is con-
structed by adding a slow variable to a classical integrate-and-fire neuron
model (Rinzel, 1980; Keener et al., 1981; Tuckwell, 1988, 1989). Our
simulations of the IFB model involve numerically integrating the follow-
ing equations:

C
dV
dt

� �IL � IT � IS � ID (1)

dh
dt

� � �h/�h
� �V � Vh�

�1 � h�/�h
� �V � Vh�

(2)

The current balance equation, Equation 1, includes a constant conduc-
tance leakage current (IL) of the form, IL � gL(V � VL); the low-
threshold Ca 2� current, IT; and two synaptic currents, IS and ID. An
action potential occurs whenever the membrane potential reaches the
firing threshold (V�). After each action potential, an absolute refractory
period of tR � 4 msec is enforced during which the current balance
equation, Equation 1, is not integrated and V � Vreset.

The low-threshold Ca 2� current takes the form IT � gT m� h(V � VT),
where m� � �(V � Vh) represents instantaneous voltage-dependent
activation, and � is the Heaviside step function. Equation 2 is an
idealization of the dynamics of inactivation and deinactivation of IT
(Jahnsen and Llinas 1984a,b; Smith et al., 2000).
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TC-like and thalamic reticular-like simulations. Because of similarities
between neurons of the thalamic reticular nucleus (TRN) and TC neu-
rons, a subtle change in Vh, the threshold for IT, or VL, the resting
membrane potential, converts an IFB TC neuron model into a model that
responds like TRN neurons. In TC cells at rest, IT is inactivated (i.e.,
VL � Vh), whereas TRN cells at rest are primed to burst in response to
depolarizing input (VL � Vh). The phrases “TC-like” and “TRN-like”
below refer to this tuning of parameters. In both cases, VL � �65 mV
(Table 1). Some simulations included the hyperpolarization-activated
cation current, Isag, also known as Ih. Parameters were chosen so that Isag
causes the IFB model to burst rhythmically for a range of inhibitory
applied current, consistent with experiment and detailed models of the
intrinsic 0.5–4 Hz (delta) oscillation of cat TC neurons (Dossi et al.,
1992; Wang, 1994).

Synaptic input. The last two terms in Equation 1, IS and ID, are synaptic
currents attributable to excitatory spontaneous input (IS) and excitatory
or inhibitory drive (ID). Each synaptic potential received by the IFB
model neuron is modeled as an � function (Rall, 1967) of conductance
with specified amplitude (AS or AD) and rise time (�). For example, in the
case of spontaneous input, an individual EPSP occurring at t � 0 would
be given by:

gS�t� �
AS

�2 te�t/� �t � 0�, (3)

where � � 1 msec, AS � 0.15 msec 	 mS/cm 2, and the depolarizing
postsynaptic current is IS � gS (V � VS), with an excitatory reversal
potential of VS � 0 mV. Spontaneous EPSP event times were modeled as
a Poisson process with rate 	S, and the resulting synaptic input was
generated using the method put forth by Destexhe et al. (1994). The
EPSPs or IPSPs that are the result of driven input were modeled similarly
(VD � 0 or �100 mV; AD � 5AS � 0.75 msec 	 mS/cm 2; rate 	D).

We integrated the equations for the IFB model using a 1 GHz LINUX
workstation running XPP, an ordinary differential equation solver writ-
ten by Bard Ermentrout at the University of Pittsburgh (Pittsburgh, PA)
(http://www.pitt.edu/
phase/). All calculations were performed using
the fourth-order Runge–Kutta integration method and a time step of
10–50 �sec.

Receiver operator characteristic analysis of simulated responses. Receiver
operator characteristic (ROC) analysis (Green and Swets, 1966; Mac-
Millan and Creelman, 1991) of IFB model response was performed using
a modified MATLAB 6 (The MathWorks) subroutine written by Fabrizio

Gabbiani at Baylor College of Medicine (Houston, TX) (Gabbiani and
Koch, 1998) (see http://glab.bcm.tmc.edu/). For given rates of spontaneous
(	S) and driven (	D) activity (Fig. 1A), multiple simulations were per-
formed to produce realizations of two random variables, S and D, that
represent the number of spikes occurring in a window of specified duration
(usually t � 50 or 200 msec). Although the random variable S represents the
spike count caused by spontaneous excitatory input at rate 	S, the random
variable D represents spike count caused by a combination of this sponta-
neous input and either excitatory or inhibitory drive at rate 	D. Each round
of ROC analysis involves ranging over 28 	 28 (i.e., 784) pairs of the rates
	S and 	D and for each pair of rates simulating 100–1000 neural responses.
These results served as a numerical estimate of the probability mass
functions of S and D from which ROC area was calculated (Guido et al.,
1995). ROC area parameter studies were performed on SciClone, a
Beowulf-like parallel computing system at the College of William and Mary
composed of several clusters of networked workstations from Sun Microsys-
tems (http://www.compsci.wm.edu/sciclone).

See http://www.as.wm.edu/Faculty/Smith.html for an extended de-
scription of the above methods.

RESULTS
ROC calculations without the low-threshold
calcium current
To quantify the detectability of excitatory versus inhibitory drive
for a model of a thalamic neuron responding purely in tonic
mode, we used the IFB model with the conductance underlying IT

(i.e., gT) set to zero. Thus, Equation 2 is irrelevant, and the IFB
model behaves as a classical integrate-and-fire model that re-
ceives EPSPs or IPSPs from two sources (Fig. 1A). The first
source provides EPSPs at rate 	S, and this spontaneous excitation
(i.e., noise) is supplemented by input at rate 	D from a second
source that represents either excitatory or inhibitory drive (i.e.,
signal).

The focus of this work is the extent to which the presence or
absence of the driver input is detectable in the output of the
postsynaptic neuron (Fig. 1A). Because this may depend on
spontaneous activity, Figure 1B shows the output rate (mean �
SD) of the IFB model as a function of the spontaneous EPSP
rate. The input–output relationship increases monotonically and
saturates at 250 spikes/sec, because the absolute refractory period
of the model, tR, is 4 msec. Saturation becomes appreciable only

Table 1. Parameters for the integrate-and-fire-or-burst model

Parameter Value Unit

V� �45 mV
VL �65 mV
C 2 �F/cm2

gL 0.035 mS/cm2

Vreset �50 mV
tR 4 msec
Vh �60 (TRN like) mV

�70 (TC like)
VT 120 mV
�h

� 20 msec
�h

� 100 msec
gT 0.2 mS/cm2

Vsag 0 mV
�r

� 40 msec
�r

� 200 msec
gsag 0.02 mS/cm2

Vspont 0 (always excitatory) mV
Vdrive �100 (inhibitory case) mV

0 (excitatory case)
AS 0.15 ms-mS/cm2

AD 0.75 ms-mS/cm2

� 1 msec

Figure 1. A, Diagram of the configuration of the model neuron that is
postsynaptic to two sources (input). The first input [Spontaneous (noise)]
is excitatory, and if sufficiently intense, it causes a certain level of back-
ground activity in the postsynaptic neuron. The second input [Driver
(signal)] represents either excitatory or inhibitory drive, the presence or
absence of which must be detected based on spike count (Output). B, Filled
circles, output rate of the IFB model (mean � SD) as a function of the
rate of spontaneous EPSPs. Open circles, Mean output rate of the
Hodgkin–Huxley style thalamocortical relay neuron model. Parameters
are as described in Table 1 and Materials and Methods.
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when the spontaneous input rate is greater than approximately
	S � 50 EPSPs/sec, because several EPSPs must summate to
evoke a spike in the postsynaptic neuron.

Figure 2A shows three representative 200 msec plots of the IFB
model membrane potential for a spontaneous input rate of 	S �
400 EPSPs/sec. The number of output spikes varies generally
between 10 and 30. The histogram of Figure 2D summarizes the
response of this neuron in the absence of drive (mean � SD of
98 � 13 spikes/sec). In Figure 2B, excitatory drive is 	D � 50
EPSPs/sec, and the histogram of spike counts shifts rightward
(124 � 14.4 spikes/sec). In Figure 2D, a ROC area calculation
(see Materials and Methods) quantifies the detectability of this
excitatory drive. For 	S � 400 EPSPs/sec and 	D � 50 EPSPs/sec,
the ROC area is 0.9, i.e., very detectable (0.5 is the chance level,
and 1 represents perfect detectability). Figure 2, C and E, shows
that when the postsynaptic neuron receives an inhibitory drive at
50 IPSPs/sec, the response of the postsynaptic neuron is sup-
pressed (5–25 spikes), and the spike count histogram shifts left-
ward, giving a ROC area of 0.9.

Thus, for a neuron receiving 400 EPSPs/sec, the detectability of
50 additional EPSPs/sec and 50 IPSPs/sec is comparable. How-
ever, this is not true in general and is, in fact, a consequence of
the background activity of the postsynaptic neuron (98 spikes/
sec). To clarify the dependence of this result on the rate of
spontaneous and driven input, Figure 3 presents a summary
of ROC area calculations performed for 28 	 28 (i.e., 784) values
of 	S and 	D. For each combination, 100 trials of 50 msec duration
were simulated to construct a histogram of spike count that
corresponds to the “spontaneous plus excitatory drive” case (sim-
ilar to Fig. 2B and the black curve in Fig. 2D). Next, the ROC area
was calculated by comparing these histograms to the distribution
of spike count using identical spontaneous EPSP rate and zero
excitatory drive (similar to Fig. 2A and the gray curve in Fig. 2D).

Figure 3A shows that for spontaneous input rates below 
100
EPSPs/sec, a relatively constant amount of excitatory drive leads
to detectable signal (for a ROC area of 0.8, 
15 EPSPs/sec drive
is required). However, when the spontaneous input rate increases
to �100 EPSPs/sec, the amount of excitatory drive necessary to
maintain detectability increases. This leads to a sloped (nonver-
tical) interface between low and high ROC area for a 	S of �100

EPSPs/sec. Despite this changing threshold of detectability, ROC
area is always a monotonic increasing function of the rate of
excitatory drive (left to right). Thus, elevated spontaneous input
can suppress the detectability of excitatory inputs, but increasing
excitatory drive never decreases detectability (Fig. 3A).

Figure 3, A and D, shows that excitatory and inhibitory drivers
are not equivalent with respect to postsynaptic detectability. In
the inhibitory case, spontaneous activity in the postsynaptic neu-
ron is required so that inhibitory drive may be detected as a
suppressed spike count (i.e., detectability is near zero for a 	S of
�100 EPSPs/sec). To clarify this point, Figure 4, A and C, shows
the ROC analysis of Figure 3, A and D, replotted with the mean
output rate of the postsynaptic neuron in the absence of drive on
the y-axis (no change to the x-axis, which still represents the rate
of excitatory or inhibitory drive). This transformation of the
y-axis is possible because in the absence of drive, the mean firing
rate of the postsynaptic neuron is a monotonic increasing func-
tion of the rate of spontaneous EPSPs (recall Fig. 1B). Figure 4B
shows that for a ROC area of 0.8, spontaneous activity of 
30
EPSPs/sec is needed. However, there is no such requirement in
the case of excitatory drive (Fig. 4A).

ROC calculations with a TC-like, low-threshold
calcium current
To quantify the detectability of excitatory versus inhibitory drive
in a TC neuron model that includes the low-threshold Ca2�

current, IT, the parameter gT in the IFB model was changed to the
standard value of 0.2 mS/cm2 (Table 1). Here Vh, the threshold
for activation/inactivation of IT, is �70 mV, 5 mV less than the
resting membrane potential, VL � �65 mV. Thus, IT is TC-like
(i.e., inactivated at rest), and the IFB model responds with bursts
only after release from hyperpolarization.

Figure 3, B and E, summarizes ROC analysis for the TC-like
IFB model under the influence of spontaneous EPSPs and either
excitatory (Fig. 3B) or inhibitory (Fig. 3E) drive. Figure 3B is
nearly identical to Figure 3A, so the presence of IT has little effect
on the detectability of excitatory drive, because all inputs to the
IFB model are depolarizing and, consequently, IT remains inac-
tivated. However, Figure 3, D and E, shows that IT has a signifi-
cant effect on the detectability of inhibitory drive. In this case,

Figure 2. A, Representative membrane
potential time courses (200 msec in dura-
tion) for an integrate-and-fire model re-
ceiving spontaneous EPSPs at 400 EPSPs/
sec. B, Time courses when 400 EPSPs/sec
of spontaneous input is augmented by 50
EPSPs/sec excitatory drive. C, Time
courses when 400 EPSPs/sec of spontane-
ous input is attenuated by 50 IPSPs/sec
inhibitory drive. D, Histogram of spike
counts for 1000 trials (from A and B) and
a diagram representing the corresponding
ROC area calculation (see Materials and
Methods), where the probability (Pr) of a
hit is plotted against the probability of a
false alarm. E, Histogram of spike counts
for 1000 trials (from A and C).

10244 J. Neurosci., December 1, 2002, 22(23):10242–10250 Smith and Sherman • Detectability of Excitatory versus Inhibitory Drive



clusters of IPSPs from the inhibitory drive occasionally deinacti-
vate IT. If additional inhibition does not occur, then the mem-
brane potential relaxes toward VL until the burst threshold Vh is
crossed, thereby activating IT. Often an appropriately timed spon-
taneous EPSP accelerates this process. The elevated ROC area
observed in Figure 3E (	S � 160 EPSPs/sec and two IPSPs/sec �
	D � 100 IPSPs/sec) is attributable to bursts that lead to an
elevated spike count distinguishable from that observed in the
absence of inhibitory drive; other regions of high ROC area in
Figure 3, D and E, reflect a reduced spike count. Figure 4D also
shows that in the presence of IT, spontaneous activity is not
required for inhibitory drive to be detectable. Notice that the
location of elevated ROC area implies that detectability is no
longer a monotonic increasing function of the rate of inhibitory
drive; that is, if the inhibitory drive is sufficiently strong, the relief
from inhibition required for bursts does not occur.

To clarify this, Figure 5 shows three representative plots of the
IFB model membrane potential for a spontaneous (excitatory)
input rate of 	S � 30 EPSPs/sec (Fig. 5A). Consistent with Figure
1B, this rate of spontaneous input leads to almost no response
(Fig. 5D, gray line) (less than one trial in a thousand results in a
spike). However, when this spontaneous input is supplemented
with an excitatory drive rate of 	D � 30 EPSPs/sec in Figure 5B,
tonic spikes are observed, and the histogram shifts rightward
(28.4 � 10.8 spikes/sec) (Fig. 5D, black line).

In Figure 5C, inhibitory drive is included at a rate of 	D � 30
IPSPs/sec, resulting in numerous IPSPs. Interestingly, although
the driving input is inhibitory, the histogram of spike counts
again shifts rightward (29.1 � 14.7 spikes/sec). Focusing on the
ROC area in the case of inhibitory drive, we see that postinhibi-
tory rebound bursting mediated by IT causes the inhibitory drive
to be nearly perfectly detectable (0.99 in Fig. 5E), despite the fact

Figure 3. Summary of ROC area calcu-
lations performed for various combina-
tions of spontaneous EPSP rate (sponta-
neous input rate; y-axis) and rate of
excitatory or inhibitory drive (driven in-
put rate; x-axis). ROC area plots summa-
rize 
800 combinations of spontaneous
input rate and driven input rate, each
leading to a number between 0.5 (chance
level) and 1 (perfectly detectable). A,
ROC area when the low-threshold Ca 2�

current, IT , is not included in the simu-
lations ( gT � 0.2 mS/cm 2). B, IT is in-
cluded in the model in a TC-like manner
( gT � 0.2 mS/cm 2; Vh � �70 mV; VL �
�65 mV). C, IT is included in the model
in a TRN-like manner ( gT � 0.2 mS/cm 2;
Vh � �60 mV; VL � �65 mV). D–F,
Same as A–C, except the drive is
inhibitory.

Figure 4. ROC analysis from Figure 3, A, B, D, and E replotted as a
function of mean output rate of the postsynaptic neuron in the absence of
drive ( y-axis) and rate of excitatory or inhibitory drive (x-axis). This
transformation is possible because in the absence of drive, the mean firing
rate of the postsynaptic neuron is a monotonic increasing function of the
spontaneous EPSP rate.

Smith and Sherman • Detectability of Excitatory versus Inhibitory Drive J. Neurosci., December 1, 2002, 22(23):10242–10250 10245



that the spontaneous activity of the neuron is negligible in the
absence of drive (Fig. 5A).

When the IFB model neuron was augmented to include the
hyperpolarization-activated cation current, Isag, ROC area calcu-
lations were qualitatively similar to those performed in the ab-
sence of this low-threshold current for both excitatory and inhib-
itory drive (data not shown; results are similar to Fig. 3B,E).
Interestingly, Isag does enlarge the region over which the presence
of IT allows the detection of inhibitory drive (Fig. 6).

ROC calculations with a TRN-like, low-threshold
calcium current
In TC cells at rest, IT is inactivated, i.e., the resting membrane
potential is greater than the threshold for activation/inactivation

of the low-threshold Ca2� current (VL � Vh). However, in TRN
neurons, the threshold for activation of IT is more depolarized
than that in TC cells (Huguenard and Prince, 1992). Thus, we set
the parameter Vh to �60 mV (5 mV greater than the resting
membrane potential, VL � �65 mV) so that the IFB model is
TRN-like (Vh � VL) and responds to sufficiently intense depolar-
ization with a low-threshold Ca2� spike.

Figure 3, C and F, summarizes ROC analysis for the TRN-like
IFB model when the drive is either excitatory (Fig. 3C) or
inhibitory (Fig. 3F). Although the overall comparison of C and F
with B and E in Figure 3 gives the impression that the effects of
TRN-like IT are subtle, there are some differences. For example,
the distinction between Figure 3, C and A, is certainly greater
than that between Figure 3, B and A, demonstrating that the
presence of IT influences the detectability of excitatory drive in
the TRN-like IFB model (as opposed to the TC-like case, in
which it had no effect). Interestingly, the presence of TRN-like IT

has an overall effect of decreasing the region of elevated ROC
area. In particular, the threshold for detectability of excitatory
inputs increased when the spontaneous input rate was 10–100
EPSPs/sec (see notch in Fig. 3, C compared with A).

The ROC areas in the presence of TRN-like IT and inhibitory
drive (Fig. 3F) are distinct from both the TC-like case (Fig. 3E)
and the result in the absence of IT (Fig. 3D). There is an island of
detectability for spontaneous input rates between 30 and 300
EPSPs/sec. At 	S � 100 EPSPs/sec, for example, ROC area first
increases, then decreases, and then increases again as a function
of the rate of inhibitory drive (	S). The elevated detectability for
spontaneous input rates between 30 and 300 EPSPs/sec is analo-
gous to the region of elevated ROC area in the TC-like case.
Here, the excitatory spontaneous input depolarizes the model
membrane potential enough so that certain levels of inhibitory
drive lead to postinhibitory rebound bursts. This is demonstrated
in Figure 7C using 	S � 100 EPSPs/sec and 	D � 30 IPSPs/sec.
The TRN-like IFB model shows increased spike count for exci-
tatory drive (Fig. 7B), but for these values of 	S and 	D, the
detectability of inhibitory drive (0.94) (Fig. 7E) is greater than
that of excitatory drive (0.82) (Fig. 7D).

Figure 3F shows moderate ROC area (0.7–0.8) extending to

Figure 5. A, Representative membrane
potential time courses (200 msec in dura-
tion) for the IFB model with TC-like,
low-threshold Ca 2� current receiving
spontaneous EPSPs at 30 EPSPs/sec (no
response). B, Time courses when 30
EPSPs/sec of spontaneous input is aug-
mented by 30 IPSPs/sec of excitatory
drive. C, Cell response increases when 30
EPSPs/sec of spontaneous input is com-
bined with 30 IPSPs/sec of inhibitory
drive. D, E, Histograms of spike counts
for 1000 trials and the corresponding
ROC area calculations. Pr, Probability.

Figure 6. ROC analysis for the IFB model in the presence (E) and
absence (F) of the hyperpolarization-activated cation current, Isag , as a
function of the rate of inhibitory drive (x-axis) for a spontaneous excita-
tory input rate of 10 EPSPs/sec. In the absence of Isag , this corresponds to
a cross section of Figure 3E.

10246 J. Neurosci., December 1, 2002, 22(23):10242–10250 Smith and Sherman • Detectability of Excitatory versus Inhibitory Drive



lower levels of spontaneous EPSP rates than in the absence of IT

(compare Fig. 3D), although the effect is not as strong as when IT

is TC-like (compare Fig. 3E) and occurs over a different range of
rates of inhibitory drive (Fig. 3F, 	D of �100 IPSPs/sec; Fig. 3E,
	D of �100 IPSPs/sec). This region of moderate ROC area is
attributable to detectable suppression of bursts that are induced
by spontaneous excitatory input in the absence of inhibitory drive
(data not shown).

Voltage dependence of ROC calculations
In the above simulations, ROC area analysis has been performed
using the IFB model both with and without IT. In the presence of
IT, we have found that the detectability of inhibitory inputs was
dependent on the relationship between the IFB model resting
membrane potential, VL, and the threshold (Vh) for activation/
inactivation of IT. In particular, a region of elevated detectability of
inhibitory inputs that is prominent when the IFB model is TC-like
and IT is inactivated at rest (VL � Vh) (Fig. 3E) is reduced or
absent when the IFB model is TRN-like and IT is deinactivated at

rest (VL � Vh) (Fig. 3F). However, because modulatory inputs can
change the resting membrane potential of both TC and TRN
neurons, it is important to clarify how the detectability of inhibitory
input may depend on the resting membrane potential.

To address this question for inhibitory inputs, Figure 8A–E
presents ROC area calculations in which VL was varied from �75
through �55 mV (Table 1). In these calculations, Vh � �70 mV,
and Figure 8C thus reproduces Figure 3E. Figure 8, D and E,
shows that changing VL to more depolarized values (�60 or �55
mV) has little effect on the ROC area calculation. That is, Figure
8C–E shows a region of elevated detectability for inhibitory inputs
induced by IT. Conversely, Figure 8, A and B, shows that changing
the resting membrane potential to more hyperpolarized values
(VL � �75 or �70 mV) reduces the detectability of inhibitory
inputs. Interestingly, the result in Figure 8A (where VL � �75
and Vh � �70 mV) is very similar to the ROC analysis of the
TRN-like IFB model shown in Figure 3F (where VL � �65 and
Vh � �60 mV), indicating the importance of the relationship

Figure 7. A, Representative membrane
potential time courses for the IFB model
with TRN-like, low-threshold Ca 2� cur-
rent receiving spontaneous EPSPs at 100
EPSPs/sec. B, Time courses when 30
EPSPs/sec of excitatory drive is included.
C, Cell response increases when 30 IP-
SPs/sec of inhibitory drive is included. D,
E, Histograms of spike counts for 1000
trials and the corresponding ROC area
calculations. Pr, Probability.

Figure 8. ROC area calculations result-
ing from inhibitory drive, where VL is
varied from �75 to �55 mV. A–E, Vh �
�70 mV so that C is a reproduction of the
TC-like result of Figure 3E, where the
resting membrane potential is given by
the standard value of VL � �65 mV. F–J,
Vh � �60 mV so that H is a reproduction
of the TRN-like result of Figure 3F.
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between VL and Vh in determining whether the model bursts in
response to depolarization or relief from hyperpolarization and
the consequent detectability (or lack thereof) of inhibitory input.
Indeed, the overall structure of Figure 8A–J (where Vh � �60 mV
so that Fig. 8H thus corresponds to the TRN-like result of Fig.
3F) suggests that the important features of the ROC analysis
plots are determined by the quantity VL � Vh.

Calculations similar to those presented in Figure 8 indicate that
the resting membrane potential affects the detectability of exci-
tatory input as well (data not shown). However, the similarity of
TC-like and TRN-like responses to excitatory inputs (Fig. 3,
compare B with C) means that the variation in the ROC analysis
is modest compared with that observed in Figure 8.

ROC area analysis using a Hodgkin–Huxley-like,
conductance-based model
To determine the degree to which the above results generalize,
we performed ROC analysis using a truncation of the McCor-
mick–Huguenard TC neuron model (Huguenard and McCor-
mick, 1992, 1994; McCormick and Huguenard, 1992; Mukherjee
and Kaplan, 1995). The current balance equation included five
currents: fast Na� and K� (delayed rectifier) currents responsible
for action potential generation, INa and IK-DR; K� and Na� leak
currents, IKleak and INaleak; the low-threshold Ca2� current, IT;
and in some cases, Isag (for details, see http://www.as.wm.edu/
Faculty/Smith.html). Action potentials were counted according to
the number of times the membrane potential was depolarized
above an arbitrary threshold value of �30 mV. We found the
ROC area analysis of the Hodgkin–Huxley (HH) and IFB mod-
els to be in quantitative agreement, regardless of whether the
drive was excitatory or inhibitory. This agreement is attributable
in part to the similarity of the input–output relationships of the
HH and IFB models (data not shown) when both are constrained
to fit experimental observations of TC neuron responses from cat
thalamic slices (Smith et al., 2001).

ROC calculations with balanced excitatory and
inhibitory spontaneous input
In the simulations presented thus far, the detectability of excita-
tory or inhibitory drive has been quantified assuming that the
background activity of the IFB model is caused solely by excita-
tory spontaneous input. However, it is more realistic to presume
that the background activity of the output neuron in Figure 1A is
caused by a mixture of excitatory and inhibitory spontaneous
input. To represent this possibility, the current balance equation
for the IFB model was extended to include two spontaneous
synaptic current terms, one excitatory and the other inhibitory.
When the spontaneous excitatory and inhibitory inputs are bal-
anced (both arriving at identical 	S rates), the input–output
relationship for the IFB model in the absence of drive is signif-
icantly shallower than the result for purely excitatory spontaneous
input (data not shown).

Despite this difference, the ROC analysis for balanced excita-
tory and inhibitory spontaneous input is qualitatively similar to
the results for pure excitatory spontaneous input (data not shown,
similar to Fig. 3). However, in both the absence and the presence
of IT, the combination of excitatory and inhibitory spontaneous
input does slightly improve detectability of excitatory input when
the spontaneous input rate is high (	S of �100 PSPs/sec). When
the driving input is inhibitory, the combination of excitatory and
inhibitory spontaneous input tends to decrease detectability at
high spontaneous input rates but does not eliminate the region of

elevated ROC area observed in the presence of IT (compare Fig.
3E). When the parameters for IT are TRN-like, a corresponding
trend is observed; mixed excitatory and inhibitory spontaneous
input leads to a slight increase in detectability when the drive is
excitatory and a slight decrease in detectability when the drive is
inhibitory, but only when the spontaneous input rate is high.

DISCUSSION
Using an integrate-and-fire-or-burst TC neuron model and a
more detailed Hodgkin–Huxley-style model (data not shown), we
have quantified the detectability of stochastic excitatory and in-
hibitory drive in the presence and absence of the low-threshold
Ca2� current, IT. By calculating ROC area, we quantified detect-
ability when the model neuron received postsynaptic potentials
from an excitatory source that evokes spontaneous activity (i.e.,
noise) and a second (excitatory or inhibitory) source that repre-
sents an afferent signal (Fig. 1A). Similar results were obtained
when the model neuron received spontaneous postsynaptic po-
tentials from a combination of excitatory and inhibitory sources
(data not shown).

We find that in the absence of IT detectability is typically
poorer for inhibitory than for excitatory drive. This is particularly
true for low to moderate levels of spontaneous activity in the
postsynaptic neuron, because spontaneous activity is required for
inhibitory drive to be detected as a suppressed spike count. In the
presence of IT, results depend strongly on whether the threshold
for IT activation lies above the resting membrane potential (TRN-
like) or below it (TC-like). In the latter case, IT enables the
detection of inhibitory drivers even when the postsynaptic neuron
is not spontaneously active.

The qualitative aspects of the ROC area analysis presented
here are not sensitive to the size of the spontaneous and driven
postsynaptic potentials (AS and AD), although a threefold change
does shift areas of elevated detectability toward higher or lower
EPSP/IPSP rates (data not shown). Interestingly, we found that
changes in resting membrane potential can significantly change
the overall dependence of the detectability of inhibitory input on
spontaneous and driven input rates (Fig. 8). This suggests that the
detection of inhibitory inputs enabled by IT may be sensitive to
neuromodulation that affects the resting membrane potential of
TC neurons.

Limitations of single-compartment modeling
Because both of the models used (IFB and Hodgkin–Huxley) are
single-compartmental models, a limitation of this work is that some
results may not generalize to situations involving temporally or
spatially patterned synaptic input distributed over dendritic arbors.
Although excitatory and inhibitory inputs are demonstrably not
equivalent in isopotential compartmental models, one might devise
a multicompartmental model with various assumptions about den-
dritic architecture, the distribution of ionic currents, and the spatial
organization of synaptic inputs, for which excitatory and inhibitory
inputs are less distinguishable on the basis of detectability. Never-
theless, the use of single-compartmental models is appropriate on
several grounds. As a practical matter, the choice is motivated by
a desire to perform adequate statistics of the stochastic responses
that we quantify. Furthermore, previous cable modeling of cur-
rent flow within dendritic arbors of thalamic relay cells has
concluded that they are electronically compact. Thus, a postsyn-
aptic potential generated anywhere in the dendritic arbor of a
relay cell spreads with relatively little attenuation throughout the
arbor and to its soma (Bloomfield and Sherman, 1989). Finally,
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the experimental evidence that would allow one to associate
various compartments of a multicompartmental model with spe-
cific synaptic inputs suggests that excitatory and inhibitory inputs
are largely overlapping (Wilson et al., 1984). In the absence of
spatial heterogeneity of excitatory and inhibitory inputs, we ex-
pect the results of multicompartmental modeling to largely agree
with the single compartment modeling results presented here.

Can inhibitory inputs be drivers to thalamus?
It has been stressed previously (Sherman and Guillery, 1998,
2001) that afferent inputs to thalamic relay cells can be divided
into at least two functionally distinct groups: drivers and modu-
lators. Drivers of thalamic relay cells transmit the basic informa-
tion to be relayed to the cortex, act through ionotropic receptors
that have a fast postsynaptic effect, and, where practical, have
been identified as the transmitter of receptive field properties.
Modulators, on the other hand, may activate metabotropic recep-
tors having a slow and prolonged postsynaptic effect, and these
afferents produce only subtle changes in receptive field proper-
ties. The retinal input to the lateral geniculate nucleus, the infe-
rior collicular input to the medial geniculate nucleus, and the
medial lemniscal input to the ventrobasal complex are examples
of drivers, and so are cortical layer 5 inputs to many higher-order
thalamic relays. Although drivers can be clearly recognized for
some other thalamic relays, the identity of the drivers is not yet
obvious in some nuclei (Sherman and Guillery, 1998, 2001).
Examples of modulators include local GABAergic inputs, corti-
cothalamic feedback from layer 6 and cholinergic, noradrenergic,
and serotonergic inputs from brainstem. It is possible to view the
spontaneous (noise) input leading to background activity in the
IFB model as a modulator, because the time constant for spon-
taneous EPSPs can be slowed considerably without qualitative
changes to the detectability analysis (data not shown).

A number of criteria to distinguish drivers from modulators for
thalamic relays have been suggested; for example, cross-
correlograms from driver inputs are likely to be sharply peaked
compared with those from modulatory inputs. Certainly an im-
portant functional criteria for a driver input is an ability to
transfer information efficiently across the synapse to the relay cell,
and thus, the presence or absence of driving input must be
detectable on the basis of the postsynaptic neuron response. In
the absence of knowledge about presynaptic firing rates, our
simulations show that overall detectability is poorer for inhibitory
drive than excitatory drive. Thus, we suggest adding to the list of
criteria to distinguish drivers from modulators the proposition
that, other things being equal, inhibitory inputs are less likely to
be drivers than excitatory inputs.

However, an important caveat to this conclusion is that over a
certain range of spontaneous and driven activity, the low-
threshold Ca2� current, IT, may allow the detection of inhibitory
drive. Indeed, the calculations of elevated detectability mediated
by IT presented above suggest three criteria for the identification
of an inhibitory driver that uses IT: (1) a candidate inhibitory
driver must provide IPSPs at a rate that results in postinhibitory
rebound bursting and elevated spike count in the postsynaptic
neuron (in Fig. 3E, this range is 10–100 IPSPs/sec), (2) the
spontaneous activity of the postsynaptic neuron must be modest
(�30 spikes/sec in Fig. 4D), and (3) for robust detectability, the
postsynaptic neuron must express the low-threshold Ca2� current
in a TC-like manner, so that inhibitory drive can deinactivate IT.
In light of these results, we suggest that inhibitory projections to
thalamic relay nuclei should not be presumed to be drivers unless

the spontaneous activity of the postsynaptic neuron is relatively
high or there is reason to believe that these three conditions for
IT-mediated detectability hold. Because relay cells responding in
burst mode have nonlinear input–output relationships, we also
suggest that IT-mediated detection of inhibitory drive is unlikely
to be a mechanism associated with faithful relay of information to
the cortex (Sherman, 2001).

The implications of these criteria for inhibitory drivers are
potentially far reaching. For example, textbook accounts (Purves
et al., 1997; Kandel et al., 2000) imply that the basal ganglia relays
information to the neocortex via a GABAergic inhibitory input to
ventral anterior and lateral nuclei of the thalamus. Because avail-
able evidence suggests that the responses of relay cells of these
nuclei are primarily in tonic mode (Zirh et al., 1998; Radhakrish-
nan et al., 1999; Magnin et al., 2000), it is unlikely that these
nuclei detect inhibitory input via an IT-dependent mechanism.
Thus, using the criteria for inhibitory drivers listed above, one
might suggest that these nuclei detect inhibition through the
suppression of spontaneous and relatively high-frequency tonic
responses. Alternatively, the basal ganglia input to the ventral
anterior and lateral nuclei of the thalamus might not be function-
ing as an inhibitory driver but rather as an inhibitory modulator
of another input or inputs to these thalamic nuclei, for example,
input from the cerebellum (Mason et al., 2000; Sakai et al., 2000)
and/or layer 5 of the motor cortex (cf. Guillery and Sherman,
2002).

To give another example, the identification of inhibitory Pur-
kinje cells of the cerebellar cortex as drivers of the deep cerebel-
lar nuclei may or may not be consistent with the criteria for
inhibitory drivers discussed above. If not, another candidate
driver input to the deep cerebellar nuclei is excitation from mossy
or climbing fiber axon branches, in which case Purkinje cell
activity would be an inhibitory modulator rather than an inhibi-
tory driver, providing the basic information for the deep cerebel-
lar nuclei to transmit to other brain centers. Rethinking of the
functional organization of this and other neural pathways may be
required if responses of presumed inhibitory drivers and their
postsynaptic targets are not consistent with the criteria for inhib-
itory drivers proposed above.

REFERENCES
Bloomfield SA, Sherman SM (1989) Dendritic current flow in relay cells

and interneurons of the cat’s lateral geniculate nucleus. Proc Natl Acad
Sci USA 86:3911–3914.

Destexhe A, Mainen Z, Sejnowski T (1994) Synthesis of models for
excitable membranes, synaptic transmission and neuromodulation using
a common kinetic formalism. J Comput Neurosci 1:195–230.

Dossi RC, Nunez A, Steriade M (1992) Electrophysiology of a slow
(0.5–4 Hz) intrinsic oscillation of cat thalamocortical neurones in vivo.
J Physiol (Lond) 447:215–234.

Gabbiani F, Koch C (1998) Signal processing techniques for spike train
analysis using MatLab. In: Methods in neuronal modeling: from ions to
networks, Ed 2 (Koch C, Segev I, eds). Cambridge, MA: MIT.

Green D, Swets J (1966) Signal detection theory and psychophysics. New
York: Wiley.

Guido W, Lu S-M, Vaughan J, Godwin D, Sherman SM (1995) Receiver
operating characteristic (ROC) analysis of neurons in the cat’s lateral
geniculate nucleus during tonic and burst response mode. Vis Neurosci
12:723–741.

Guillery RW, Sherman SM (2002) Thalamic relay functions and their
role in corticocortical communication: generalizations from the visual
system. Neuron 33:1–20.

Huguenard JR, McCormick D (1992) Simulation of the currents in-
volved in rhythmic oscillations in thalamic relay neurons. J Neuro-
physiol 68:1373–1383.

Huguenard J, McCormick D (1994) Electrophysiology of the neuron.
New York: Oxford UP.

Huguenard JR, Prince DA (1992) A novel T-type current underlies
prolonged Ca 2�-dependent burst firing in GABAergic neurons of rat
thalamic reticular nucleus. J Neurosci 12:3804–3817.

Smith and Sherman • Detectability of Excitatory versus Inhibitory Drive J. Neurosci., December 1, 2002, 22(23):10242–10250 10249



Jahnsen H, Llinas R (1984a) Electrophysiological properties of guinea-
pig thalamic neurones: an in vitro study. J Physiol (Lond) 349:205–226.

Jahnsen H, Llinas R (1984b) Ionic basis for the electroresponsiveness
and oscillatory properties of guinea-pig thalamic neurones in vitro.
J Physiol (Lond) 349:227–247.

Kandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science.
New York: McGraw Hill.

Keener J, Hoppensteadt F, Rinzel J (1981) Integrate-and-fire models of
nerve membrane response to oscillatory input. SIAM J Appl Math
41:503–517.

MacMillan N, Creelman C (1991) Detection theory: a user’s guide.
Cambridge, MA: Cambridge UP.

Magnin M, Morel A, Jeanmonod D (2000) Single-unit analysis of the
pallidum, thalamus and subthalamic nucleus in Parkinsonian patients.
Neuroscience 96:549–564.

Mason A, Ilinsky IA, Maldonado S, Kultas-I linsky K (2000) Thalamic
terminal fields of individual axons from the ventral part of the dentate
nucleus of the cerebellum in Macaca mulatta. J Comp Neurol
421:412–428.

McCormick D, Huguenard J (1992) A model of the electrophysiological
properties of thalamocortical relay neurons. J Neurophysiol
68:1384–1400.

Mukherjee P, Kaplan E (1995) Dynamics of neurons in the cat lateral
geniculate nucleus: in vivo electrophysiology and computational mod-
eling. J Neurophysiol 74:1222–1243.

Purves D, Augustine GJ, Fitzpatrick D, Katz LC, Lamantia A-S, Mc-
Namara JO (1997) Neuroscience. Sunderland, MA: Sinauer.

Radhakrishnan V, Tsoukatos J, Davis KD, Tasker RR, Lozano AM,
Dostrovsky JO (1999) A comparison of the burst activity of lateral
thalamic neurons in chronic pain and non-pain patients. Pain
80:567–575.

Rall W (1967) Distinguishing theoretical synaptic potentials computed
for different soma-dendritic distributions of synaptic inputs. J Neuro-
physiol 30:1138–1168.

Rinzel J (1980) Models in neurobiology. In: Nonlinear phenomena in
physics and biology, Vol 75 (Enns RH, Jones BL, Miura RM, Rang-
nekar SS, eds), pp 347–367. Alberta, Canada: North Atlantic Treaty
Association Advanced Study Institute.

Sakai ST, Stepniewska I, Qi HX, Kaas JH (2000) Pallidal and cerebellar
afferents to pre-supplementary motor area thalamocortical neurons in
the owl monkey: a multiple labeling study. J Comp Neurol 417:164–180.

Sherman SM (2001) Tonic and burst firing: dual modes of thalamocor-
tical relay. Trends Neurosci 24:122–126.

Sherman SM, Guillery RW (1996) The functional organization of
thalamocortical relays. J Neurophysiol 76:1367–1395.

Sherman SM, Guillery RW (1998) On the actions that one nerve cell can
have on another: distinguishing “drivers” from “modulators”. Proc Natl
Acad Sci USA 95:7121–7126.

Sherman SM, Guillery RW (2001) Exploring the thalamus. San Diego:
Academic.

Sherman SM, Koch C (1998) Thalamus. In: Synaptic organization of the
brain, Ed 4 (Shepherd G, ed), pp 246–278. New York: Oxford UP.

Smith G, Sherman SM (2001) Detectability of excitatory versus inhibi-
tory drive in a stochastic thalamocortical relay neuron model. Soc
Neurosci Abstr 27:723.21.

Smith G, Cox C, Sherman SM, Rinzel J (2000) Fourier analysis of
sinusoidally-driven thalamocortical relay neurons and a minimal
intergrate-and-fire-or-burst model. J Neurophysiol 83:588–610.

Smith G, Cox C, Sherman SM, Rinzel J (2001) Spike-frequency adapta-
tion in sinusoidally-driven thalamocortical relay neurons. Thalamus
and Related Systems 1:135–156.

Tuckwell H (1988) Introduction to theoretical neurobiology: nonlinear
and stochastic theories, Vol 2. Cambridge, UK: Cambridge UP.

Tuckwell H (1989) Stochastic processes in the neurosciences. Philadel-
phia: Society for Industrial and Applied Mathematics.

Wang XJ (1994) Multiple dynamical modes of thalamic relay neurons:
rhythmic bursting and intermittent phase-locking. Neuroscience
59:21–31.

Wilson JR, Friedlander MJ, Sherman SM (1984) Fine structural mor-
phology of identified X- and Y-cells in the cat’s lateral geniculate
nucleus. Proc R Soc Lond B Biol Sci 221:411–436.

Zirh TA, Lenz FA, Reich SG, Dougherty PM (1998) Patterns of burst-
ing occurring in thalamic cells during parkinsonian tremor. Neuro-
science 83:107–121.

10250 J. Neurosci., December 1, 2002, 22(23):10242–10250 Smith and Sherman • Detectability of Excitatory versus Inhibitory Drive


	Detectability of Excitatory versus Inhibitory Drive in an Integrate-and-Fire-or-Burst Thalamocortical Relay Neuron Model
	Recommended Citation

	tmp.1644245649.pdf.Id6Hi

