
W&M ScholarWorks W&M ScholarWorks 

VIMS Articles Virginia Institute of Marine Science 

3-2022 

Nitrogen reductions have decreased hypoxia in the Chesapeake Nitrogen reductions have decreased hypoxia in the Chesapeake 

Bay: Evidence from empirical and numerical modeling Bay: Evidence from empirical and numerical modeling 

Luke T. Frankel 
Virginia Institute of Marine Science 

Marjorie A.M. Friedrichs 
Virginia Institute of Marine Science 

Pierre St-Laurent 
Virginia Institute of Marine Science 

Aaron J. Bever 

Rom Lipcius 
Virginia Institute of Marine Science 

See next page for additional authors 

Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles 

 Part of the Environmental Monitoring Commons 

Recommended Citation Recommended Citation 
Frankel, Luke T.; Friedrichs, Marjorie A.M.; St-Laurent, Pierre; Bever, Aaron J.; Lipcius, Rom; Bhatt, Gopal; 
and Shenk, Gary W., Nitrogen reductions have decreased hypoxia in the Chesapeake Bay: Evidence from 
empirical and numerical modeling (2022). Virginia Institute of Marine Science, 814. 
doi: 10.1016/j.scitotenv.2021.152722 

This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M 
ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M 
ScholarWorks. For more information, please contact scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/vimsarticles
https://scholarworks.wm.edu/vims
https://scholarworks.wm.edu/vimsarticles?utm_source=scholarworks.wm.edu%2Fvimsarticles%2F2263&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/931?utm_source=scholarworks.wm.edu%2Fvimsarticles%2F2263&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu


Authors Authors 
Luke T. Frankel, Marjorie A.M. Friedrichs, Pierre St-Laurent, Aaron J. Bever, Rom Lipcius, Gopal Bhatt, and 
Gary W. Shenk 

This article is available at W&M ScholarWorks: https://scholarworks.wm.edu/vimsarticles/2263 

https://scholarworks.wm.edu/vimsarticles/2263


Nitrogen reductions have decreased hypoxia in the Chesapeake Bay:
Evidence from empirical and numerical modeling

Luke T. Frankel a,⁎, Marjorie A.M. Friedrichs a, Pierre St-Laurent a, Aaron J. Bever b, Romuald N. Lipcius a,
Gopal Bhatt c,d, Gary W. Shenk c,e

a Virginia Institute of Marine Science, William & Mary, 1370 Greate Road, Gloucester Point, VA, USA
b Anchor QEA LLC, 1201 3rd Avenue, Suite 2600, Seattle, WA, USA
c Chesapeake Bay Program Office, 1750 Forest Drive, Suite 130, Annapolis, MD, USA
d Department of Civil & Environmental Engineering, The Pennsylvania State University, 212 Sackett Building, University Park, PA, USA
e U.S. Geological Survey, Virginia and West Virginia Water Science Center, 1730 East Parham Road, Richmond, VA, USA

H I G H L I G H T S

• During 1985–2019, the Chesapeake Bay
has undergone nitrogen reductions and
warming.

• Data analysis and models were used to
quantify the effects of nitrogen reductions.

• Reductions have decreased the duration
and southern extent of hypoxia in the Bay.

• From 1985 to 2019, warming has offset
6–34% of these hypoxia improvements.

• Nutrient reductions have made Bay oxy-
gen levels more resilient to climate
change.
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Seasonal hypoxia is a characteristic feature of the Chesapeake Bay due to anthropogenic nutrient input from agricul-
ture and urbanization throughout the watershed. Although coordinated management efforts since 1985 have reduced
nutrient inputs to the Bay, oxygen concentrations at depth in the summer still frequently fail tomeetwater quality stan-
dards that have been set to protect critical estuarine living resources. To quantify the impact of watershed nitrogen re-
ductions on Bay hypoxia during a recent period including both average discharge and extremely wet years
(2016–2019), this study employed both statistical and three-dimensional (3-D) numerical modeling analyses. Numer-
ical model results suggest that if the nitrogen reductions since 1985 had not occurred, annual hypoxic volumes
(O2 < 3 mg L−1) would have been ~50–120% greater during the average discharge years of 2016–2017 and
~20–50% greater during the wet years of 2018–2019. The effect was even greater for O2 < 1 mg L−1, where annual
volumeswould have been~80–280%greater in 2016–2017 and~30–100%greater in 2018–2019. These results were
supported by statistical analysis of empirical data, though the magnitude of improvement due to nitrogen reductions
was greater in the numerical modeling results than in the statistical analysis. This discrepancy is largely accounted for
by warming in the Bay that has exacerbated hypoxia and offset roughly 6–34% of the improvement from nitrogen
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reductions. Although these results may reassure policymakers and stakeholders that their efforts to reduce hypoxia
have improved ecosystem health in the Bay, they also indicate that greater reductions are needed to counteract the
ever-increasing impacts of climate change.

1. Introduction

Hypoxia resulting from anthropogenic eutrophication has become one
of the greatest threats to the health of estuarine and coastal ecosystems
worldwide due to its ability to degrade habitat, decrease biodiversity, and
alter food-web interactions (Diaz and Rosenberg, 2008). Despite ongoing
management efforts, the severity of hypoxia globally is projected to in-
crease in the future as an ever-increasing human population places more
anthropogenic stress on coastal environments through continued land-use
change, urbanization, and climate change (Altieri and Gedan, 2015). Al-
though at a fundamental level the development of coastal hypoxia is similar
across all systems, where oxygen use below the pycnocline draws down ox-
ygen concentrations to hypoxic levels, the characteristics of hypoxia can
vary substantially between systems due to differences in both natural and
anthropogenic processes (Carstensen and Conley, 2019; Fennel and Testa,
2019; Howarth, 2008; Meier et al., 2019; Rabalais and Turner, 2019;
Wang et al., 2018). Because of these differences, hypoxia needs to be stud-
ied individually for each system to develop management goals that take
into account the combination of local and global drivers so that appropriate
ecosystem restoration actions can be taken.

The Chesapeake Bay is one such system, for which hypoxia continues to
negatively impact ecosystem health. The Bay is naturally a highly produc-
tive estuary that receives a large flux of nutrients from terrestrial sources
due to its extensive watershed that spans six states and the District of
Columbia, encompassing 164,200 km2 (Kemp et al., 2005). The magnitude
of this nutrient flux varies in response to changes in land-use within the wa-
tershed, the most notable of which occurred during the European coloniza-
tion of the area in the 17th century, and the post-World War II increase in
fertilizer usage throughout the watershed. Through analysis of both obser-
vational data (Hagy et al., 2004; Kemp et al., 2005; Officer et al., 1984) and
proxies within sediment cores (Cooper and Brush, 1991, 1993), current low
oxygen conditions within the Chesapeake Bay have been definitively attrib-
uted to anthropogenic eutrophication.

Management efforts to restore ecosystem health within the Chesapeake
Bay began in 1976, in response to a visible decline in natural resources
(USEPA, 1982). A Total Maximum Daily Load (TMDL) for the Chesapeake
Bay was put in place in 2010, establishing pollutant load allocations for
the various subbasins in the watershed necessary to achieve water quality
standards that protect living resources. These allocated loads provide man-
agers with a framework to developWatershed Implementation Plans aimed
at reducing nutrient pollution from point and nonpoint sources throughout
the watershed (USEPA, 2010).

Despite the progress that has been made over the past 35 years in reduc-
ing nutrient concentrations entering the Bay (Harding et al., 2016a; Hirsch
et al., 2010; Lefcheck et al., 2018; Testa et al., 2008), hypoxia remains a sig-
nificant water quality issue for the Chesapeake Bay region. Seasonal hypoxia
continues to persist in large portions of the Bay today (Bever et al., 2021), and
a long-term decline is not directly visible from time series of hypoxic volume
computed via interpolation of dissolved oxygen observations (Fig. S1). In fact,
several recent high precipitation years (i.e., 2018 and 2019) have been asso-
ciated with unusually extensive volumes of hypoxia (1056–1408 km3 days
compared to 882–904 km3 days in 2016 and 2017 for O2 < 3 mg L−1).
Wet years are typically associated with lower water quality due to higher nu-
trient loading from land, and the period from June 2018 toMay 2019was ex-
tremely wet in the Chesapeake Bay region. During that time, four out of six
states in thewatershed (Maryland, Virginia, Pennsylvania, andWest Virginia)
experienced the wettest 12-months on record dating back to 1895 (National
Centers for Environmental Information, 2019).

In addition to the wet conditions in recent years, there are multiple
other hypotheses for why the water quality improvements observed in

the watershed are not being reflected in the estuary. One potential explana-
tion for this lack of estuarine response is that the Chesapeake Bay has un-
dergone a regime shift (Duarte et al., 2009), where positive feedbacks
such as enhanced recycling of ammonium and phosphate in sediments
and the decline in oyster populations under low oxygen conditions have
transformed the system to further support hypoxia (Cerco and Noel,
2007; Kemp et al., 2005; Newell, 1988; Testa and Kemp, 2012). Changes
to the physical dynamics within the Bay in response to external climate fac-
tors, such as the Bermuda highs influence on wind direction (Du et al.,
2018; Scully, 2010a), have also been highlighted as a potential explanation.
In addition to regional changes in wind patterns, large-scale increases in
temperature and precipitation due to climate change (Ni et al., 2019;
Hinson et al., 2021) may have already masked some of the expected im-
provements in bottom oxygen. Since there is already evidence that some
of the positive feedbacks in biogeochemistry that further support hypoxia
are weakening (Schulte et al., 2009; Testa et al., 2018), the impact of cli-
mate change is likely to become the most important factor counteracting
the impact of management efforts within the Chesapeake Bay in the future
(Irby etal., 2018; Ni et al., 2020).

It has been suggested that nutrient reductions over the 35-year period
from 1985 to 2019 have made the Chesapeake Bay more resilient to
years with high riverine discharge by decreasing hypoxia (Maryland
Department of Natural Resources, 2019), however this idea has been chal-
lenged as a result of record-breaking precipitation throughout the water-
shed in 2018 and 2019 that fueled particularly large volumes of hypoxic
water. In this study, the impact of decades of nutrient management efforts
is examined by estimating howmuchworse hypoxia would have been in re-
cent years, if no such nutrient reductions had taken place. Here the differ-
ence between the hypoxia that occurred and the hypoxia that would have
occurred if no nutrient reductions had taken place is referred to as the in-
creased “resilience” of the Bay for this time period. By generating a greater
understanding of this increased resilience due to nutrient reductions, this
study assists managers and policymakers in better evaluating the impact
that management actions have already had, so they can continue to support
and (or)modify these actions in the future to achieve the overall goal of im-
proved water quality throughout the Bay.

2. Methods

To estimate the impact of watershed nitrogen reductions on hypoxia,
this study employed empirical statistical methods in concert with three-
dimensional (3-D) numerical modeling. The statistical method used gener-
alized linear models (GLMs) to quantify changes in the relationship be-
tween riverine discharge and data-based estimates of hypoxic volume
over the 35-year period from 1985 to 2019. The numerical modeling ap-
proach consisted of realistic and sensitivity simulations run over the four-
year period from 2016 to 2019 to allow for the evaluation of two average
discharge years (2016 and 2017) and two high discharge years (2018 and
2019) that occurred recently. These two approaches provide independent
methods of evaluating any enhanced resilience of the Chesapeake Bay to
adverse environmental conditions over the 1985 to 2019 time period.

2.1. Observational data

Physical and biogeochemical data have been collected within the
Chesapeake Bay since 1984 as part of the Chesapeake Bay Program's
(CBP's) water quality monitoring program (WQMP). This program spans
the full extent of the estuary through the routine sampling of 49 fixed sta-
tions in the mainstem of the Bay and 105 fixed stations within the Bay's
tidal tributaries (CBP, 2012). These stations are typically sampled once
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per month, with mainstem and larger tributary stations sampled twice per
month during the warmer parts of the year (various intervals from
March–October before 2010, June–August after 2010). At each station, hy-
drographic vertical profiles measuring temperature, salinity, and dissolved
oxygen (O2) are made at 1–2 m intervals throughout the water column.
Water samples are also taken from the surface and bottom of the water col-
umn and at locations above and below the pycnocline. Laboratory analysis
is performed on these water samples for dissolved and particulate constitu-
ents (e.g., nutrients, pigments, and suspended solids; CBP, 2012).

Data-based estimates of hypoxic volume for specific thresholds,
i.e., O2 < 3 mg L−1 and O2 < 1 mg L−1, were calculated monthly to
twice-monthly by spatially interpolating available data from CBP's WQMP
during each sampling period. Thresholds of 3 and 1 mg L−1 were the
focus of this analysis as they correspond to the O2 requirements of ecologi-
cally important organisms found at depth in the Chesapeake Bay, such as
benthic infauna and the Bay anchovy (USEPA, 2003). The interpolation
to obtain hypoxic volume was performed using CBP's volumetric inverse
distance squared interpolator program (USEPA, 2003). This was done in
the same manner as previous studies (Bever et al., 2013, 2018), except
that data from56 stationswere used instead of 13 (Fig. 1). Using 56 stations
improves the estimates by filling spatial gaps in data coverage when key
stations are missing, without substantially increasing the temporal uncer-
tainty associated with a longer sampling period. The specific date assigned
to each hypoxic volume estimate was the average of the collection dates of
all the stations used in the interpolation. Following Bever et al. (2021), all
data collected within ±7 days of a data collection event at station CB3.2
was used in an individual interpolation. CB3.2 was chosen as it has been
sampled more often than any other station in the interpolation.

Annual hypoxic volume, otherwise known as cumulative hypoxic vol-
ume (Bever et al., 2013) or total annual hypoxic volume (Bever et al.,
2021), was calculated in order to quantify the total amount of hypoxia for
a given year. This was accomplished by first linearly interpolating the hyp-
oxic volume estimates from each sampling period to obtain a value for each

day, and then calculating the sum of these daily values over a calendar year.
The resulting time series consists of annual estimates of volumes (km3 days)
of water with oxygen less than a specific threshold, spanning the 35-year
period from 1985 to 2019.

A time series of the average annual freshwater discharge entering the
Chesapeake Bay over a water year (1 October–30 September) was obtained
for the same period (1985–2019) from the U.S. Geological Survey (USGS;
USGS, 2021). These values of total streamflow entering the Bay are calcu-
lated by the USGS using discharge data from gauges on the three largest riv-
ers entering the Bay: the Susquehanna (01576000), Potomac (01646500),
and James (02037500) rivers. Together, these rivers account for ~70% of
the total freshwater flow entering the Bay. When examined in the context
of hypoxia, averaging freshwater discharge over a water year is preferred
to an average over a calendar year, since discharges that occur late in the
calendar year (e.g., November) do not influence summer hypoxic condi-
tions associated with that calendar year, but may affect hypoxia the follow-
ing summer.

2.2. Statistical analysis

To investigate how the relationship between river discharge and hyp-
oxic volume has changed over time, two 6-year time periods in the begin-
ning and end of the interval from 1985 to 2019 were selected for analysis
(i.e., 1985–1990 and 2014–2019). A duration of 6 years was chosen as a
balance between sufficient separation between the two time periods and
adequate sample size for each time period. For these two periods, five
GLMs of varying complexity were analyzed, with annual hypoxic volume
serving as the response variable (y) and different combinations of both a
continuous independent variable of freshwater discharge (x1) and a cate-
gorical factor of time period (x2) serving as predictors. An information-
theoretic approach was used to select the best GLM from this set of five
using corrected AIC (Akaike Information Criterion) statistics and Likeli-
hood Ratio Chi-Square tests (Anderson, 2008; Burnham and Anderson,
2010; Seitz et al., 2009; Table S1). The additive GLM predicting hypoxic
volume from discharge and time period without interaction emerged as
the best GLM (Eq. (1)):

y ¼ β0 þ β1x1 þ β2x2 (1)

where β0 = intercept and βi =parameters for the corresponding variables.
This statistical analysis was repeated for the two different classifications of
hypoxia (i.e., O2 < 3mg L−1 and O2 < 1mg L−1). The probabilities that the
additive GLM was the best among the set were 0.93 and 0.85 for
O2 < 3 mg L−1 and O2 < 1 mg L−1, respectively (Table S1). The percent re-
sidual deviances explained by the additive GLM were low, accounting for
21.5% and 19.1% of the null deviance for O2 < 3 mg L−1 and
O2 < 1 mg L−1, respectively (Table S1). This statistical analysis was done
using R (R Core Team, 2020).

2.3. Numerical model description

2.3.1. Estuarine model
Numerical model simulations were generated using a fully coupled

hydrodynamic-biogeochemical estuarine model developed specifically for
the Chesapeake Bay (ChesROMS-ECB: Da et al., 2018; Feng et al., 2015;
Irby et al., 2018; St-Laurent et al., 2020, Bever et al., 2021). The hydrody-
namic model is an application of the Regional Ocean Modeling System
(ROMS; Shchepetkin andMcWilliams, 2005) to the Bay (Fig. 1), with a cur-
vilinear grid that has an average cell resolution of 1.7 km within the Bay
(Xu et al., 2012) and 20 terrain-following vertical levels that have higher
resolutions near the surface and bottom of the water column. The
biogeochemical model represents full carbon and nitrogen cycles through
multiple state variables including nitrate (NO3

−), ammonium (NH4
+), O2,

chlorophyll-a, phytoplankton, zooplankton, inorganic suspended solids
(ISS), small and large detrital nitrogen and carbon, and semi-labile and re-
fractory dissolved organic nitrogen and carbon (Feng et al., 2015), as well

Fig. 1. ChesROMS-ECB numerical model bathymetry. Black circles represent the 9
river locations where terrestrial inputs enter the estuarine numerical model. Blue
squares indicate the locations of the River Input Monitoring (RIM) stations. Red
x's indicate the Water Quality Monitoring Program station locations used to
estimate hypoxic volume and assess numerical model skill. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)
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as dissolved inorganic carbon and total alkalinity (St-Laurent et al., 2020).
For simplicity, these variables were classified into specific groups that are
referred to later in the text: dissolved inorganic nitrogen (DIN) includes
NO3

− and NH4
+; particulate organic nitrogen (PON) includes phytoplank-

ton, zooplankton, and small and large detrital nitrogen; dissolved organic
nitrogen (DON) includes semi-labile and refractory pools; organic nitrogen
(ON) represents the sum of PON and DON; and total nitrogen (TN) includes
all nitrogen state variables (i.e., the sum of ON and DIN).

The numerical model equations are identical to those listed in St-
Laurent et al. (2020), including those pertaining to the interaction between
the sediment bed and the water column. Specifically, upon reaching the sea
floor, the organic matter flux sinking from the water column is split into
three fractions: (1) a fraction is resuspended and respired in the water col-
umn with this fraction being determined by the local hydrodynamical
stress, (2) a fraction is permanently buried in the sediments, and (3) the re-
mainder is assumed to be instantly respired by the sediments. This assump-
tion of instantaneous respiration is an important limitation of the model as
it does not allow for delayed respiration associated with the accumulation
of organic matter in the sediments from previous phytoplankton blooms.
Parameter values are also the same as in St-Laurent et al. (2020), with the
exception of two minor modifications: (1) the remineralization rates of
DON and dissolved organic carbon (DOC) at 0 °C were decreased from
0.00765 d−1 and 0.012 d−1, respectively, to 0.0028 d−1 in order to im-
prove modeled DON skill, and (2) the Jerlov water type parameter in the
numerical model was increased from type 3 to 5, as in Hinson et al.
(2021), to improve the accuracy of modeled temperatures in the mainstem
Bay. This Jerlov water type parameter impacts how light is attenuated with
depth, with higher numbers indicating greater attenuation.

2.3.2. Terrestrial inputs
All simulations were run with terrestrial inputs (i.e., freshwater, nutri-

ents, and ISS) derived from a combination of USGS gauge data from all
nine rivers represented in the estuarine model and two separate watershed
models: the CBP's Phase 6 watershed model (CBP, 2017) and the Dynamic
Land Ecosystem Model (DLEM; Pan et al., 2021; Tian et al., 2015; Yang
et al., 2015a, 2015b; Yao et al., 2021). The use of two independent water-
shed models helps to quantify the uncertainty associated with estimating
nutrient loading to the Bay by providing a range of possible values instead
of a single value from one watershed model. Because the outputs from
Phase 6 and DLEM do not yet extend past 2015, the freshwater discharge
for 2015–2019 was derived from USGS gauge data (USGS, 2020) and
upscaled for each river to include inputs from the portions of the watershed
downstream of the gauges. As in Bever et al. (2021), daily gauge flow was
regressed against daily DLEMflow that includedwatershed areas below the
gauge for the period where the two time series overlap in 2014 and 2015.
The resulting linear relationship was employed to convert 2016–2019
gauge data to estimated total watershed inputs for all simulations.

Concentrations of terrestrial nutrients and ISS in 2015–2019 were esti-
mated using relationships between the different biogeochemical constitu-
ents and discharge (m3 s−1) in the watershed models from 2010 to 2014
(Fig. S2). As a result, this method assumes that the biogeochemical condi-
tions in the watershed from 2010 to 2014 were similar to those in
2015–2019. To develop these relationships between concentration and dis-
charge, 2010–2014 concentrations were log-transformed for each river and
binned by their corresponding log-transformed discharges every 0.25 log
(discharge) value from 0 to 4. Within each of these bins, median log-
transformed concentrations were calculated and used as the concentration
estimates for the central discharge values in the bins. To make these con-
centration estimates continuous across all discharges, the values between
these central discharges were obtained through interpolation using a piece-
wise cubic Hermite interpolating polynomial. For values outside of the cen-
tral discharges for the highest and lowest bins with data, the median
concentrations of these bins were used to estimate concentrations rather
than extrapolating this relationship outside of the range of data. The result-
ing relationships were very similar to those obtained when a Locally Esti-
mated Scatterplot Smoothing (LOESS) curve was fit to the log-

transformed values. When multiplied by discharge, these concentrations
for Phase 6 and DLEM yielded average annual loadings (mean ± standard
deviation) of 145 ± 61 Gg yr−1 and 104 ± 36 Gg yr−1, respectively, for
inorganic nitrogen, and 40± 30 Gg yr−1 and 59± 29 Gg yr−1 for organic
nitrogen over the 2016–2019 period.

To fully link the terrestrial and estuarine systems, variables from thewa-
tershed models must be partitioned into specific variables represented in
the estuarine model. For Phase 6, the partitioning was done in the same
manner as in Irby and Friedrichs (2019), where semi-labile DON concentra-
tions in ChesROMS-ECB riverine inputs were estimated as 100% of the bi-
ological oxygen demand of organic nitrogen and 80% of phytoplankton
nitrogen; refractory DON concentrations were estimated as 20% of the
total watershed refractory DON; and small detrital nitrogen concentrations
were estimated as 20% of phytoplankton nitrogen and 80% of the total wa-
tershed refractory DON. Since DLEM only provides estimates of total DON
and ChesROMS-ECB requires estimates of the semi-labile and refractory
components of DON, the relationship between discharge and the ratio of re-
fractory DON to total DON from the Phase 6 model was used to partition
total DON in DLEM into refractory and semi-labile pools. The resultant riv-
erine inputs were provided to ChesROMS-ECB at nine river locations
(Figs. 1 & S3).

2.3.3. Model forcing
ChesROMS-ECBwas forced at the surface using estimates of air temper-

ature, downwelling longwave radiation, net shortwave radiation, air pres-
sure, precipitation, and relative humidity from a 0.25° resolution
atmospheric reanalysis (ERA5) produced by the European Centre for
Medium-Range Weather Forecasts (C3S, 2017; Fig. S3). Rather than using
the wind from ERA5, a higher resolution wind product from the North
American Mesoscale Forecast System (NAM) was used to force the numer-
ical model (National Centers for Environmental Information, 2020), as
ChesROMS-ECB has greater skill with respect to hypoxia using NAM
winds compared to ERA5 (authors unpublished data). TheNAMwind prod-
uct (12 km resolution prior to 2018 and 3 km resolution thereafter) pro-
vides estimates of wind speed and direction that more effectively capture
the position of gradients in wind speed over the Bay and along the coastline
and has been successfully used for several years in the operational forecast
version of ChesROMS-ECB (Bever et al., 2021).

The open ocean boundary was forcedwithmonthly climatological aver-
ages of temperature and salinity computed from in-situ data in the World
Ocean Database from 2008 to 2018 (Boyer et al., 2018; Fig. S3). These
monthly averages were assumed to be representative of the central year
over this interval (2013), and information for subsequent years
(2014–2019) was computed by projecting this climatology forward using
a long-term trend calculated from the same dataset over a longer period
of time (Da et al., 2021). The long-term trends were computed individually
for eachmonth using a linear regression of depth-averaged values (0–35m)
along the boundary spanning the years 1985–2018 and the latitudinal in-
terval from 36° to 37.8°N (Da et al., 2021; Hinson et al., 2021). Sea surface
height forcing was derived using tidal harmonics from the Advanced Circu-
lation (ADCIRC) model (Luettich et al., 1992) and hourly nontidal water
levels from observation stations in Duck, NC and Lewes, DE (Da et al.,
2018).

2.4. Numerical model skill assessment

A realistic numerical model hindcast (termed the “Realistic” scenario)
was performed using the models and forcing described above for
2016–2019 (Table 1). Numerical model skill was assessed quantitatively
by comparing available data from CBP's WQMP (Section 2.1) with hourly
output from the model that was closest in space and time to each observa-
tion. This comparison was performed by computing the means and stan-
dard deviations of observations and model output individually, as well as
the bias, root-mean squared difference (RMSD), and correlation between
them. Specifically, observations of temperature, salinity, O2, NO3

−, NH4
+,

and DON, grouped into above and below 10 m depths at 56 stations
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(Fig. 1) from 2016 to 2019 were used in the comparison. These stations
were chosen as they are the same stations used to derive interpolated esti-
mates of hypoxic volume from the water quality monitoring cruises. In ad-
dition to being summarized in tables (Tables S2–S3), these metrics are
displayed graphically through Target diagramswhich display skill by repre-
senting standard-deviation normalized RMSD as the distance from the ori-
gin on a plot where normalized bias and normalized unbiased RMSD are
on the x- and y-axes, respectively (Hofmann et al., 2008; Jolliff et al.,
2009). The resulting figures from this analysis are described in Section 3.2.

Model-data comparison plots were also employed as a qualitative skill
assessment to provide amore intuitive and descriptive representation of nu-
merical model accuracy and to highlight differences in performance both
spatially and temporally. Spatial performance was investigated by compar-
ing seasonal averages of model output with observations from monitoring
stations throughout the Bay. Temporal skill was examined through time se-
ries of hourly model output and available observations at key stations span-
ning the extent of hypoxia in the Bay. Additionally, skill with respect to
hypoxic volumewas investigated by comparing the time series of daily hyp-
oxic volume from the numerical model with estimates of hypoxic volume
based on the interpolation of observed O2 from CBP's WQMP. Through
this combination of both quantitative and qualitative skill assessments,
the strengths and limitations of the model were identified, and a compre-
hensive assessment of model performance was achieved.

2.5. Sensitivity experiments

In addition to the Realistic scenario described above, six sensitivity ex-
periments were conducted over the same period (2016–2019) to determine
the impact that changing conditions had on the volume of hypoxic water
(Table 1). All simulations included a one-year spin-up with a realistic initial
condition beginning in January 2015 to ensure that the results from thefirst
year of simulation did not include transient effects. To investigate the effect
that nitrogen reductions had on hypoxia, the concentrations of specific ni-
trogen constituents were altered in the nutrient sensitivity experiments to
reflect 1985 values while keeping everything else constant. In addition,
the impact of temperature change on hypoxia was investigated by altering
atmospheric inputs from the Realistic scenario to reflect 1985 conditions.
The impact of each of these individual drivers was examined by comparing
numerical model output from the sensitivity experiments with results from
the Realistic scenario.

2.5.1. Experiment 1: 1985 TN
In the 1985 TN experiment (Table 1) riverine nutrient concentrations in

2016–2019 were set to concentrations representative of 1985. Specifically,
a percentage change in nitrogen loading from 1985 to 2019 was calculated
for each of the nine river basins entering ChesROMS-ECB (Fig. 1). The load
within each of these basins was subdivided into two separate components:

the portion of the load from the watershed above the River Input Monitor-
ing (RIM) stations (above RIM) and the portion of the load from the water-
shed below the RIM stations (belowRIM). Thiswas done because the above
RIM loads could be estimated using the available data at the RIM stations,
whereas the below RIM loads could only be estimated using watershed
models. For the river basins that do not contain a RIM station (Nanticoke
and Elk), the total loading was considered to be below RIM. For the river
basins that contain multiple RIM stations in different tributaries (James
and York; Fig. 1), the above RIM loading was represented by the sum of
these stations (the Appomattox and James RIM stations for the James
basin and the Pamunkey and Mattaponi RIM stations for the York basin).

For the above RIM portion of the watershed, TN and NO3
− results from a

“stationary” implementation of the Weighted Regression on Time, Dis-
charge, and Season (WRTDS) were used to estimate the change in loading
over the 35-year period. The stationaryWRTDSmodel is similar to the stan-
dardWRTDSmodel (Hirsch, 2014; Hirsch et al., 2010), except that it allows
a temporally invariant regression surface to be applied for concentration
predictions over the entire time period (Zhang et al., 2016). For this specific
case, the temporally invariant regression surfaces were reflective of specific
years. To examine the change in loading from 1985 to 2019, WRTDS was
run twice over this 35-year period: once with stationary 1985 nutrient con-
centrations and once with stationary 2019 nutrient concentrations (Q.
Zhang, CBP, written comm., January 19, 2021). The resulting difference
in loading between these two stationary models reflects the change in
loads over the 35-year period under the discharge and seasonal conditions
of a given year (Zhang et al., 2016). Since the numerical model simulations
span the four-year period from 2016 to 2019, each with different dis-
charges, a unique change in loading was obtained for each of the four
years in that interval using this approach.

These changes in loading were applied to the sensitivity experiments by
first distributing them among the various ChesROMS-ECB nitrogen state
variables (NO3

−, NH4
+, semi-labile DON, refractory DON, and small detrital

nitrogen), as described in Appendix B. For NO3
−, the change was calculated

and applied directly since there is a NO3
− state variable in the numerical

model. For other nitrogen constituents, the values for 1985 and 2019 had
to be estimated from TN loading by first calculating the load of non-
nitrate nitrogen as the remaining pool of TN once NO3

− is subtracted out.
This methodology is consistent with previous approaches to estimate
other nitrogen constituents from WRTDS output (Zhang et al., 2013;
Zhang et al., 2015). This non-nitrate nitrogen loading was then subdivided
into the individual constituents using the relative proportions of nonpoint
source loading from the Phase 6 watershed model and subsequently used
to calculate the change over the 35-year period.

The change in below RIM nitrogen loading from 1985 to 2019 was esti-
mated using the Chesapeake Assessment and Scenario Tool (CAST), a web-
based application of the CBP's Phase 6watershedmodel (CBP, 2021). CAST
provides annual loads of nonpoint source TN and point source NO3

−, NH4
+,

Table 1
Numerical model experiments with changes from the Realistic simulation highlighted in bold.

Simulation Watershed DIN input Watershed ON input Temp. Average difference from Realistic (km3 days)a

(O2 < 3 mg L−1) (O2 < 1 mg L−1)

Realistic 2016–2019 2016–2019 2016–2019 0 0
Expt. 1:
1985 TN

1985 1985 2016–2019 +575 (±169) +360 (±95)

Expt. 2:
1985 TN (High)

1985 + 0.3(%Δ) 1985 + 0.3(%Δ) 2016–2019 +720 (±207) +462 (±121)

Expt. 3:
1985 TN (Low)

1985–0.3(%Δ) 1985–0.3(%Δ) 2016–2019 +417 (±125) +256 (±68)

Expt. 4:
1985 DIN

1985 2016–2019 2016–2019 +327 (±72) +201 (±27)

Expt. 5:
1985 ON

2016–2019 1985 2016–2019 +277 (±183) +169 (±112)

Expt. 6:
1985 Temp

2016–2019 2016–2019 1985 −101 (±16) −45 (±16)

a Average difference between the sensitivity experiments and the “Realistic” scenario averaged across all four years and between simulations forced with the two different
terrestrial inputs. Standard deviations are shown in parentheses.
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and organic nitrogen for the below RIM portions of the watershed in 1985
and 2019 based on average hydrologic conditions. As with the above RIM
loading, these values needed to be distributed among the ChesROMS-ECB
state variables (Appendix C). For point source DIN, changes in below RIM
NO3

− and NH4
+ loading were applied directly to their respective nitrogen

state variables. Point source organic nitrogen loading, in contrast, had to
be subdivided into individual constituents using the relative proportions
of point source loading from the Phase 6 dynamic watershed model before
it could be applied to the appropriate nitrogen state variables. Nonpoint
source TN loading also had to be subdivided into individual constituents
using relative proportions of nonpoint source loading before it could be ap-
plied to the variables in ChesROMS-ECB.

The total change in loading between 1985 and 2019 (Δ(Total)y, b, s, typ-
ically a negative number) was calculated from the above and below RIM
changes in loading estimated for each of the nitrogen constituents

(Eq. (2); Fig. 2). The subscript y represents each of the individual years
from 2016 to 2019 (since there is a unique 35-year change in above RIM
loading under the different hydrologic conditions for these years), the sub-
script b represents each of the nine river basins, and the subscript s repre-
sents the different nitrogen species. For PON, the total change in loading
is calculated from small detrital nitrogen only as it is assumed that there
are no long-term changes in phytoplankton, zooplankton, and large detrital
nitrogen in the river inputs to the numerical model.

Δ Totalð Þy,b,s ¼ Δ Above RIMð Þy,b,s þΔ Below RIMð Þb,s (2)

From this total change, a percentage change in loading relative to 2019
was estimated over the 35-year period (Eq. (3)) and used to create

Fig. 2. Changes in loading from 1985 to 2019 for the different riverine nitrogen constituents. The grayscale bars represent the above RIM changes in loading, with unique
values for 2016–2019 based on the different hydrologic conditions during those years. Orange bars represent the below RIM changes in loading (point source and
nonpoint source), with constant values for 2016–2019 for each river-constituent combination.

L.T. Frankel et al. Science of the Total Environment 814 (2022) 152722

6



multipliers (Eq. (4); Table S4) to adjust the riverine nutrient concentrations
in the Realistic scenario to reflect concentrations in 1985 (Eq. (5)).

%Δ Totalð Þy,b,s ¼
−Δ Totalð Þy,b,s

Above RIMð Þ2019y,b,s þ Below RIMð Þ2019b,s

� 100 (3)

Multiplierð Þy,b,s ¼ 1þ%Δ Totalð Þy,b,s
100

� �
(4)

1985 Levels½ �y,b,s ¼ Realistic½ �y,b,s � Multiplierð Þy,b,s (5)

Recreating concentrations using this delta approach is preferable to
using realistic concentrations from the 1980s, as those past concentrations
are strongly influenced by themeteorological conditions of that specific pe-
riod and would produce inaccurate results if paired with the conditions
over the simulation period. When multiplied by the 2016–2019 discharge
values, these 1985 concentrations for Phase 6 (DLEM) yield average annual
loadings (mean ± standard deviation) of 195 ± 73 Gg yr−1 (139 ±
46 Gg yr−1) for inorganic nitrogen and 56 ± 36 Gg yr−1 (108 ±
38 Gg yr−1) for organic nitrogen. In addition to the common metrics of
daily hypoxic volume and annual hypoxic volume, a measure of “excess
hypoxia” will also be investigated using this sensitivity experiment by
showing the number of days at a particular location where hypoxia exists
in the 1985 TN simulation but not in the Realistic scenario.

2.5.2. Experiments 2 and 3: 1985 TN (High) and 1985 TN (Low)
To determine the sensitivity of the numerical model to the applied

changes in nitrogen concentration, additional experiments were performed
with larger and smaller percent changes in nutrient loading (Table 1). For
1985 TN (High) and 1985 TN (Low), the percent changes in loading from
the 1985 TN experiment were increased by 30% and decreased by 30%, re-
spectively. For example, if the percent change in loading for a specific nitro-
gen constituent in a river was 50%, the percentage applied to 1985 TN
(High) would be 65% and the percentage applied to 1985 TN (Low) would
be 35%. This threshold of 30% was selected as it is similar in magnitude
to the interannual variability of the multipliers used to obtain 1985-era
loading for the different nitrogen species in the Susquehanna River
(Table S4), which contributes the most to total nutrient loading to the
Bay. For consistency, this same 30% adjustment was applied to all rivers
and nitrogen species, such that the largest absolute changes in the sensitiv-
ity experiments were applied to the rivers and nitrogen species with the
greatest percent changes in loading.

2.5.3. Experiments 4 and 5: 1985 DIN and 1985 ON
The changes to the riverine inputs for the 1985DIN and 1985ON sensitiv-

ity experiments were calculated using the same approach as for the 1985 TN
experiment (Section 2.5.1) except the concentrations of DIN and ONwere al-
tered individually for each experiment (Table 1). For 1985 DIN, the percent
changes in loading for NO3

− and NH4
+ were calculated by first estimating

the above RIM and the below RIM changes in loading for the two constitu-
ents. These values were then used to calculate a total change (Eq. (2)) and a
percentage change (Eq. (3)) in loading to adjust the concentrations of NO3

−

and NH4
+ to reflect 1985 levels (Eqs. (4)–(5)). For 1985 ON, the percent

changes in loading for semi-labile DON, refractory DON, and small detrital ni-
trogenwere calculated in the samemanner by first estimating the above RIM
and the below RIM changes in loading. As with the other sensitivity experi-
ments, these above and below RIM changes were combined to estimate a
total change (Eq. (2)) and a percentage change (Eq. (3)) in loading from
which the concentrations of semi-labile DON, refractory DON, and small de-
trital nitrogen were altered to 1985 values (Eqs. (4)–(5)).

2.5.4. Experiment 6: 1985 Temp
A final sensitivity experiment was conducted (1985 Temp; Table 1) in

which temperatures were altered to reflect 1985 conditions when the Bay
was about 1.4 °C cooler in the summer (Hinson et al., 2021). As in Hinson

et al. (2021), long term trends in air temperature and downwelling longwave
radiation from 1985 to 2019 were calculated and used to adjust the
2016–2019 atmospheric conditions in the Realistic scenario. These trends
were calculated individually for each month at all grid cells in the same
ERA5 atmospheric reanalysis used to force the numerical model
(Section 2.3.3). These monthly trends were then interpolated using a spline
function in order to produce a smooth continuous time series that could be
applied to the atmospheric forcing at each 3-h timestep. This analysis ignored
other mechanisms that are contributing to long-term changes in Bay temper-
atures (e.g., changing ocean temperatures, changing river temperatures, sea
level rise) as air temperature and downwelling longwave radiation are the
dominant drivers of water temperature change in the upper- and mid-
portion of the Bay where hypoxia is most severe (Hinson et al., 2021).

3. Results

3.1. Empirical data analysis

Predicted hypoxic volume decreased substantially from the first time
period (1985–1990) to the second (2014–2019) both for O2 < 3 mg L−1

Fig. 3.GLM results for (a) O2< 3mg L−1 and (b)O2< 1mg L−1. Red lines represent
1985–1990; blue lines represent 2014–2019. The vertical difference between these
two lines represents the average 30-year decrease in hypoxic volume. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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and O2< 1mg L−1 (Fig. 3). The decrease was greater for the O2< 3mg L−1

threshold (232 km3 days) than for the O2 < 1 mg L−1 (92 km3 days). The
magnitude of this difference was the same across all discharge conditions
for each threshold, as indicated by the lack of an interaction effect between
discharge and time period. However, the relative difference in predicted
hypoxic volume decreased as average discharge increased, since the base-
line level of hypoxia became larger but the difference between the two
time periods was constant. Without the positive effect of time period, an-
nual hypoxic volume for O2 < 3 mg L−1 would have been 26% larger in
2016, 25% larger in 2017, 20% in 2018, and 18% in 2019. For
O2 < 1 mg L−1, annual hypoxic volume would have been 26% larger in
2016 and 2017, 18% in 2018, and 15% in 2019 (Fig. 3).

To determine sensitivity of the results to the number of years included
in each time period, the analysis was run for time period durations of
5–10 years. At 4 years and less, the low sample size per time period pre-
cluded sufficient statistical power to detect effects. For durations of
5–10 years, the additive GLM always emerged as the best among the set,

similar to the results for the 6-year time period. The decrease in annual hyp-
oxic volumewas also similar for all durations, ranging from135 to 232 km3-

days for O2 < 3mg L−1 and 69–101 km3 days for O2 < 1mg L−1. Thus, the
decline in hypoxic volume related to time period was robust irrespective of
time period duration.

3.2. Skill of the realistic hindcast

Numerical model hindcasts using terrestrial information from both
DLEM and Phase 6 captured the spatiotemporal distribution of multiple
variables within the Chesapeake Bay. For NO3

−, the numerical model
matched observations well for interannual variability in the along estuary
concentration gradient, with higher concentrations extending farther
down the Bay during wet years (Fig. 4c–d, k–l) compared to average dis-
charge years (Fig. 4a–b, i–j). Modeled concentrations were generally
lower than observed values from April–October in the mesohaline portion
of the Bay (150–250 km from the mouth); this discrepancy was greater in

Fig. 4. Model-data comparison plots for NO3
− (a–d, i–l) and O2 (e–h, m–p). Values shown are April–October averages for the corresponding years, with numerical model

output averaged only on days with observational data. Panels on the left (a, c, e, g, i, k, m, o) show maps of bottom concentrations while panels on the right (b, d, f, h, j, l,
n, p) show depth transects throughout the mainstem Bay. DLEM (a–h) and Phase 6 (i–p) simulation results are shown. In all panels, the head of the Bay (north) is to the
left and the mouth of the Bay (south) is to the right. NO3

− observations are binned every 5 m due to limited data. Averages containing less than three observations are
omitted as they do not represent conditions throughout the entire 7-month time period. Results are shown for an average discharge year (2017) and a wet year (2019).
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DLEM simulations (Fig. 4a–d) compared to Phase 6 simulations (Fig. 4i–l).
For O2, the numerical model results matched the horizontal and vertical
gradients in concentration and captured the greater O2 drawdown in wet
years (2019) compared to average discharge years (2017; Fig. 4e–h, m–
p). The greatest discrepancy between modeled and observed O2 was an
overprediction of bottom concentrations in the southern mesohaline por-
tion of the Bay around 60–120 km from the mouth (Fig. 4e–h, m–p).
These higher modeled concentrations were apparent in time series of bot-
tom O2 at station CB6.3, though most stations in the mainstem of the Bay
captured the seasonal cycle of oxygen well (Fig. S4). An explanation for
this discrepancy is currently under investigation; however, it is possible
that the model's lack of phosphate limitation causes too much production
and nitrogen uptake in the upper Bay, resulting in too little nitrogen
advecting down to the lower Bay where the resulting underestimate of or-
ganic matter causes too little bottom oxygen utilization.

The model demonstrated similar skill for temperature, salinity, and ox-
ygen compared to the suite of Chesapeake Bay numerical models evaluated
by Irby et al. (2016), as shown by the small normalized RMSD values rela-
tive to the standard deviation of the observations (Fig. S5). These variables
had low biases when compared to observations, with modeled tempera-
tures generally 0.4 °Cwarmer throughout thewater column,modeled salin-
ities similar at the surface and 0.6 higher in waters below 10 m, and
modeled O2 concentrations 0.2 mg L−1 higher in the surface and
0.3–0.4 mg L−1 higher at depths below 10 m (Tables S2–S3). Unlike oxy-
gen, there was no spatial pattern in skill for salinity and temperature,
with both along estuary and vertical gradients effectively captured in the
numerical model.

Numerical model skill was lower and varied more between the DLEM
and Phase 6 simulations for nitrogen constituents (e.g., NO3

−, NH4
+, and

DON). For NO3
−, the numerical model bias ranged from

−0.03–0.05 mg L−1 (Tables S2–S3), with greater skill observed in the
upper 10 m compared to depths below 10 m (Fig. S5). For NH4

+, modeled
concentrations were generally 0.05–0.11 mg L−1 larger than observed
values (Tables S2–S3). Numerical model skill was better for DON, with
biases ranging from −0.02–0.05 mg L−1 and smaller RMSD values com-
pared to NH4

+ (Fig. S5; Tables S2–S3). In the upper Bay, DON concentra-
tions were generally more accurate for DLEM compared to Phase 6 as
indicated by smaller biases at stations with latitudes greater than 39°N
(Figs. S6–S8).

Numerical model estimates of hypoxic volume generally matched the
seasonal and interannual changes in the data-based estimates of hypoxic
volume obtained by spatially interpolating O2 concentrations from the
CBP's WQMP. For both O2 < 3 mg L−1 and O2 < 1 mg L−1, the develop-
ment, continuation, and breakup of hypoxia from April–October was accu-
rately represented in the numerical model for each of the four years studied
(Fig. 5a–d, g–j). Volumeswere larger for theRealistic scenario using Phase 6
compared to that using DLEM, with DLEM generally showing better agree-
ment with the interpolated estimates in the beginning of the hypoxia season
(April–June) and Phase 6 showing better agreement at the end of the season
(July–October). This match between interpolated estimates and hypoxic
volumes from the numerical model was generally better for the wet years
(2018 and 2019) than the average discharge years (2016 and 2017)
evaluated.

3.3. 1985 TN sensitivity experiment results

The influence of nitrogen reductions on hypoxia was investigated by
comparing hypoxic volume results from the 1985 TN sensitivity experiment
with those from the Realistic scenario (Fig. 5). Despite the interannual var-
iability in hypoxic volume betweenwet and dry years, the average daily in-
crease in hypoxic volume in the 1985 TN simulation compared to the
Realistic scenario during the hypoxia season (i.e., defined as being when
hypoxia in 1985 TN was greater than 0 km3) was similar across all four
years. This average increase ranged from 3.5–4.6 km3 for DLEM and
1.7–3.1 km3 for Phase 6 during the four years when considering a threshold
of O2 < 3 mg L−1 (Fig. 5a–d), and 2.7–2.8 km3 (DLEM) and 1.4–2.0 km3

(Phase 6) for O2< 1mg L−1 (Fig. 5g–j). In terms of temporal differences be-
tween the two simulations, the hypoxia season was longer in 1985 TN dur-
ing the average discharge years of 2016 and 2017, beginning earlier in the
year for both O2 thresholds (Fig. 5a–b, g–h) and ending later in the year for
O2 < 1 mg L−1 (Fig. 5g–h). For the wet years of 2018 and 2019, the length
of the hypoxia season was similar in the Realistic and 1985 TN simulations
(Fig. 5a–d, g–j).

The metric of annual hypoxic volume can be used to summarize the
overall magnitude of hypoxia for a given year (Fig. 5e–f, k–l). The increase
in annual hypoxic volume in 1985 TN compared to Realistic is greater for
DLEM simulations, for which annual volumes with O2 < 3 mg L−1 in-
creased by 120% in 2016, 97% in 2017, 54% in 2018, and 46% in 2019
(Fig. 5e) and annual volumes with O2 < 1 mg L−1 increased by 288% in
2016, 179% in 2017, 108% in 2018, and 80% in 2019 (Fig. 5k;
Table S5). These increases are smaller in the simulations using Phase 6,
where annual volumes increased by 20–75% for O2 < 3 mg L−1 (Fig. 5f)
and by 33–165% for O2 < 1 mg L−1 (Fig. 5l; Table S5). The error bars on
annual hypoxic volumes for 1985 TN represent results from the TN (High)
and the TN (Low) simulations respectively. Even considering a range of ±
30%, the 1985 TN annual hypoxic volumes for both DLEM and Phase 6
were higher than the Realistic (2016–2019) results.

Although the percent differences in annual hypoxic volumebetween the
1985 TN and Realistic simulations varied from year to year, the absolute dif-
ferences were more similar. For O2 < 3 mg L−1, the absolute differences
ranged from 611 to 789 km3 days for DLEM (Fig. 6a) and from 315 to
552 km3 days for Phase 6 (Fig. 6b; Table S6). These differences between
years were even more similar for O2 < 1 mg L−1, where they ranged from
433 to 465 km3 days for DLEM (Fig. 6c) and 233–313 km3 days for Phase
6 (Fig. 6d; Table S6). The magnitude of these differences in the DLEM sim-
ulations was nearly double of those in the Phase 6 simulations for both O2

criteria. If the overall impact of nitrogen reductions is estimated as the av-
erage of all differences from both DLEM and Phase 6 (mean± standard de-
viation), the effect is 575 ± 169 km3 days (360 ± 95 km3 days) for
O2 < 3 mg L−1 (O2 < 1 mg L−1; Table 1).

Despite the fact that the impact of nutrient reductions on hypoxia was
evident to some extent throughout the entire portion of the Bay that regu-
larly experiences hypoxia, the effect was concentrated in a few geographic
areas. These areas are highlighted by the “excess hypoxia” metric that
shows where hypoxia existed in the 1985 TN simulation but not in the Re-
alistic scenario (Fig. 7). The area that experienced the most excess hypoxia
from 2016 to 2019 was the mesohaline portion of the Bay between the Pa-
tuxent and Rappahannock Rivers (~100–200 km from the Bay mouth),
where there were generally 50–90 additional days of hypoxia for both
O2 < 3 mg L−1 and O2 < 1 mg L−1. The exact position of this region of ex-
cess hypoxia in the mesohaline portion of the Chesapeake Bay varied de-
pending on the year and the O2 threshold examined. For O2 < 3 mg L−1,
this region was closer to the mouth of the Bay (Fig. 7a–h), with the wet
years of 2018 and 2019 showing a further along-estuary extent compared
to the average discharge years of 2016 and 2017. For O2 < 1 mg L−1, the
region of excess hypoxia was further from the mouth of the Bay than
O2 < 3 mg L−1 but with a similar interannual pattern (Fig. 7i–p). An addi-
tional distinct region of excess hypoxia was present near the oligohaline
portion of the Bay (~225–275 km from the mouth) at depths shallower
than 10 m for O2 < 3 mg L−1 (Fig. 7b, d, f, h). This region was most appar-
ent in 2016 (Fig. 7a–b), where hypoxia would have existed for more than
80 additional days if nutrient reductions had not occurred. The number of
excess hypoxia days in this region was progressively smaller in the three
subsequent years from2017 to 2019 (Fig. 7c–h). A similar upper Bay region
was observed around 240 km from the Bay mouth for O2 < 1 mg L−1 in
2016 and 2017 (Fig. 7i–l), however this area of excess hypoxia was ob-
served at depths greater than 10 m.

In the deep channel where hypoxia typically persists for most of the
summer (depths > 10 m, 150–250 km from the Bay mouth), there were a
greater number of additional days with hypoxic conditions during the aver-
age discharge years of 2016 and 2017 compared to the wet years of 2018
and 2019. This distinction is most apparent for O2 < 3 mg L−1, where in
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some locations in the deep channel the number of days of additional hyp-
oxia was less than 10 in 2018–2019 (Fig. 7e–h) but greater than 30 in
2016–2017 (Fig. 7a–d). The difference in the number of additional hypoxic
days between average discharge years and wet years was still present for
O2 < 1 mg L−1, however the difference in additional days was around
10 days compared to the greater than 20-day difference observed for
O2 < 3 mg L−1. The same spatial patterns were observed in the simulation
using Phase 6 (Fig. S9); however, the magnitude was lower with values
ranging up to 70 days instead of the 90-day range observed in DLEM.

3.4. 1985 DIN, ON, and Temperature sensitivity experiment results

The relative contributions that DIN and ON reductions had on the total
difference in hypoxia between the 1985 TN and Realistic simulations dif-
fered depending on the terrestrial inputs that were used for the

experiments. For the DLEM simulations, reductions in ON accounted for,
on average, ~60% of the total change in hypoxia compared to ~40% for
DIN reductions (Fig. 6a, c). The results were the opposite for Phase 6,
where reductions in DIN accounted for ~70–80% of the total change in
hypoxia and ON reductions accounted for the remaining ~20–30%
(Fig. 6b, d). The influence of changing DIN and ON concentrations was al-
most additive, with the sum of the additional hypoxia resulting from in-
creasing the two nutrient types individually in 1985 DIN and 1985 ON
being almost equal to the additional hypoxia resulting from increasing
them simultaneously (1985 TN).

As expected, altering 2016–2019 air temperatures and downwelling
longwave radiation to reflect cooler conditions characteristic of 1985 de-
creased hypoxia (Fig. 6). The magnitude of this decrease was almost identi-
cal for the DLEM and Phase 6 simulations, however it varied interannually.
The greatest impact occurred during the years with more hypoxia, with

Fig. 5. Daily hypoxic volume results for the Realistic scenario and the 1985 TN sensitivity experiment for O2 < 3 mg L−1 (a–d) and O2 < 1 mg L−1 (g–j), for each of the four
years studied, with black circles representing interpolated hypoxic volume estimates. Total annual hypoxic volumes are displayed for both O2 < 3 mg L−1 (e–f) and
O2 < 1 mg L−1 (k–l), with darker colors representing DLEM (e & k) and lighter colors representing Phase 6 (f & l). Error bars represent annual hypoxic volumes from the
1985 TN (High) experiment (upper limit) and the 1985 TN (Low) experiment (lower limit). Note that 2016–2017 are average discharge years and 2018–2019 are wet
years. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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1985 Temp having 122–126 km3 days and 101–106 km3 days less hypoxia
in 2018 and 2019, respectively, compared to the Realistic scenario for
O2< 3mg L−1 (Fig. 6a–b; Table S6). For O2< 1mg L−1, hypoxia decreased
by 57–68 km3 days in 2018 and 50–60 km3 days in 2019 in the 1985 Temp
simulation (Fig. 6c–d; Table S6). In contrast, during the average discharge
years of 2016 and 2017, this decreasewas substantially smaller: 85–92 km3-

days for O2 < 3 mg L−1 and 24–39 km3 days for O2 < 1 mg L−1.
When the magnitude of this temperature effect (1985 Temp) was com-

pared to that of the TN effect (1985 TN), the relative impact was different

for the simulations forced with the two types of terrestrial inputs. For
Phase 6, the relative impact of temperature was greater, counteracting
17–34% of the TN effect when considering a threshold of O2 < 3 mg L−1

(Fig. 6b) compared to only 11–18% for DLEM (Fig. 6a; Table S6). The
same is true for O2 < 1 mg L−1, where temperature counteracts 9–26% of
the TN effect for Phase 6 (Fig. 6d) and only 6–13% for DLEM (Fig. 6c;
Table S6).

4. Discussion

4.1. Spatiotemporal impacts of nitrogen reductions vary by hydrological
conditions

One advantage of using a 3-D numerical model to investigate the en-
hanced resilience of the Chesapeake Bay is that it can be used to identify
what areas have benefitted the most from nutrient reductions. Hypoxia in
the Chesapeake Bay is largely constrained by the depth of pycnocline and
the bathymetry of the deep mainstem channel (Bever et al., 2018; Irby
et al., 2016). Although the influence of these constraints varies depending
on which O2 threshold is examined, these vertical and horizontal bound-
aries generally cause the primary difference in annual hypoxic volume be-
tween years to be related to changes in the along estuary extent of low
oxygen water. Results from sensitivity experiments showed that the
greatest impact of nutrient reductions generally occurs at the southern
end of where hypoxia develops in the Bay, somewhere between the Patux-
ent and Rappahannock Rivers (~100–200 km from the Bay mouth), irre-
spective of year and oxygen threshold (Fig. 7). This result agrees well
with other studies that have found that hypoxia extends further south
(closer to the Rappahannock) in the Bay during years with greater nitrogen
loading (Murphy et al., 2011; Testa et al., 2018). Since hypoxia develops as
a result of oxygen drawdown from the benthic decay of previous phyto-
plankton blooms (Officer et al., 1984), it can only form in regions where
deep waters have a sufficient supply of sinking organic matter from the sur-
face. As a result, hypoxic conditions are primarily found in the mesohaline
Bay where surface phytoplankton concentrations are greatest (Zheng and
DiGiacomo, 2020). Hypoxia generally does not form in the upper portions
of the oligohaline Bay where the water column is well mixed and there is
low phytoplankton biomass due to light limitation near the estuarine tur-
bidity maximum (Harding et al., 1986). Therefore, when the total nutrient
input to the Bay decreases, the distribution of phytoplankton in surface wa-
ters responds by changing how far it extends down-estuary (Harding et al.,
2016b). The extent of hypoxia responds accordingly, and hence the greatest
and most consistent impact of nutrient reductions is seen near the
southernly extent of hypoxia in the Bay.

Another region that experienced a decrease in the number of days with
hypoxic conditions as a result of nutrient reductions was located near the
top of the pycnocline in the oligohaline portion of the Bay around
5–10 m, particularly during dry years (Fig. 7a–d, i–l). The curtailment of
hypoxia at this location suggests that with less nutrient input, oxygen pen-
etrateddeeper in thewater column as a result of less phytoplankton growth,
especially during drier years when light limitation is less dominant in the
upper Bay (surface ISS concentrations can be up to 80% lower for such
years in the model). The effect of nutrient reductions became less promi-
nent in this region during the higher discharge years of 2018 and 2019,
when it is likely that light limitation rather than nutrients plays a larger
role in controlling phytoplankton growth (Fisher et al., 1999; Fig. 7e–h,
m–p). Future monitoring efforts aimed at capturing interannual changes
in the extent of hypoxia due to nutrient reductions should focus on col-
lecting higher resolution data near the northern and southern extents of
hypoxia where O2 concentrations are most sensitive to additional nutrient
inputs.

Differences between wet and average discharge years were also appar-
ent when the duration of hypoxia is examined in the context of nutrient re-
ductions. Simulation results conducted here highlight that when terrestrial
nutrient inputs were higher in the 1980s, the hypoxia season was generally
longer during average discharge years with 10–20 additional days of

Fig. 6. Differences in annual hypoxic volume between the Realistic scenario and
sensitivity experiments: 1985 TN, 1985 DIN, 1985 ON and 1985 Temp. Values are
displayed for DLEM (a, c) and Phase 6 (b, d) for both O2 < 3 mg L−1 (a, b) and
O2 < 1 mg L−1 (c, d).
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O2 < 3 mg L−1 and 41–63 additional days of O2 < 1 mg L−1 in the Bay
(Fig. 5a–b, g–h). During wet years, the duration of hypoxia was more simi-
lar between the 1980s and 2010s terrestrial nutrient inputs, with only 4–10
additional days of O2 < 3 mg L−1 and 3–22 additional days of
O2 < 1 mg L−1 for simulations with 1980s inputs (Fig. 5c–d, i–j). Other
studies have similarly found a decline in the duration of hypoxia in the
Bay over the years from 1985 to 2010 and have primarily attributed this
to an earlier termination in the fall rather than a later initiation in the spring
(Testa et al., 2018; Zhou et al., 2014). In agreement with the results found
here, this decline has been linked to a decrease in January–May nitrogen
loading (Murphy et al., 2011), with lower nutrient input in the spring lim-
iting organic matter production in summer and subsequently decreasing
water column respiration and allowing oxygen concentrations to rise
above hypoxic levels earlier in the fall (Testa et al., 2017). This mechanism

explains the different responses in duration between average discharge
years and wet years, with nutrient reductions having a smaller impact
when the Bay is farther from this limitation threshold during wet years
when there is ample nutrient input to support spring and summer phyto-
plankton growth. Results from the sensitivity experiments conducted here
also suggest that this nutrient limitation effect may be occurring at the be-
ginning of the hypoxia season as well, with nutrient reductions limiting
phytoplankton growth and water column respiration early in the spring,
allowing bottom oxygen levels to remain above hypoxic levels until later
in the year as occurred in the summer of 2020 (Virginia Institute of
Marine Science and Anchor QEA, LLC, 2020). Ni et al. (2020) found a sim-
ilar effect by showing that nutrient reductions have delayed the onset of
hypoxia by a few days, however, their study did not discuss how this effect
varies between years with different riverine discharge.

Fig. 7. The number of days of excess hypoxia (defined as where hypoxia exists in 1985 TN but not in the Realistic scenario) for bottom grid cells (a, c, e, g, i, k, m, o) and cells
along a mainstem transect (b, d, f, h, j, l, n, p). Results are displayed by year for both O2< 3mg L−1 (a–h) and O2< 1mg L−1 (i–p). In all panels, the head of the Bay (north) is
to the left and the mouth of the Bay (south) is to the right. The values shown here are only for DLEM simulations; analogous results for Phase 6 are shown in Fig. S9.
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4.2. Increased resilience estimated from statistical and numerical modeling
analyses

Results from both statistical and numerical modeling analyses indicate
that the Chesapeake Bay has becomemore resilient to adverse environmen-
tal conditions in recent years as a result of the nutrient reductions that have
decreased hypoxia over the past 30–40 years. When the magnitude of the
effect is compared between the two methods, the resilience estimates
from the numericalmodeling simulations are larger than those from the sta-
tistical analysis. This discrepancy, however, is to be expected as the two
methods differ in a fundamental way. The statistical results do not directly
link the observed interannual changes in hypoxic volume to changes in nu-
trient concentrations, since nutrient data are not included in the GLM. A
link can only be presumed from the fact that since nutrient reductions
have occurred in the watershed since the 1980s (Ator et al., 2020;
Murphy et al., 2011; Testa et al., 2008), the same freshwater discharge in
the 2010s is expected to have a lower nutrient load than in the 1980s. How-
ever, other factors also influence the observed change in resilience between
the two time periods, including long-term changes in temperature (Hinson
et al., 2021; Ni et al., 2020), stratification (Du et al., 2018; Murphy et al.,
2011), and prevailing wind direction (Scully, 2010a, 2010b), which have
all been shown to impact hypoxia on decadal timescales.

Unlike the statistical analysis which does not account for factors other
than freshwater discharge, the numerical modeling approach directly
links nutrients and resilience by isolating the impact of nutrient load reduc-
tions over the past 35 years. By solely changing nutrient concentrations,
this mechanistic approach separates the impact of management efforts
from long-term changes in environmental conditions. As a result, if a
long-term change in environmental conditions exists over the 35-year
time period, the magnitude of the resilience from the numerical modeling
analysis would be expected to be different from the magnitude of the resil-
ience from the GLM analysis. The role of environmental conditions is exam-
ined in more detail in the next section.

4.3. Warming temperatures partially counteract improvements from nitrogen
reductions

Water temperatures in the Chesapeake Bay have increased by roughly
1.4 °C in the summer over the past 35 years, driven primarily by warming
atmospheric temperatures and increased downwelling longwave radiation
(Hinson et al., 2021). In terms of climate change impacts on hypoxia,
warming estuarine temperatures are of principal concern due to their
high probability of occurrence in the future (Muhling et al., 2018) and
their ability to promote hypoxia through enhanced stratification, decreased
oxygen solubility at the surface, and an increased rate of microbial respira-
tion at depth (Altieri andGedan, 2015; Irby et al., 2018). Since stratification
in the Chesapeake Bay is driven primarily by vertical gradients in salinity
rather than temperature (Murphy et al., 2011), and since surface and bot-
tom waters in the Bay have warmed at similar rates in the past (Hinson
et al., 2021), decreased solubility and increased respiration are the two pri-
mary mechanisms by which warming exacerbates hypoxia in the Bay. Not
only are warmer temperatures in the mid-21st century expected to have a
large impact on hypoxia in the Bay (Irby et al., 2018), but the results pre-
sented here also reveal that the impact of warming has already begun.
The temperature sensitivity experiment shows that hypoxic volumes in
2016–2019 would have been 7–13% (9–16%) smaller for O2 < 3 mg L−1

(O2 < 1 mg L−1) if temperatures had not increased from the levels that
they were in 1985. Although these percentages may seem small, this en-
hancement due to warming has already offset roughly 11–34% (6–26%)
of the improvements in hypoxia from nutrient reductions for
O2 < 3 mg L−1 (O2 < 1 mg L−1; Fig. 6).

Even though the improvements in hypoxic volume resulting from nutri-
ent reductions would have been larger without atmospheric warming, nu-
trient reductions have still managed to outpace the negative effects of
temperature and increase bottom oxygen concentrations in the Chesapeake
Bay. The retrospective analysis in this study is consistent with projections of

future change in the Bay, which show that hypoxic conditions will continue
to improve despite the negative impacts of climate change, as long as the
nutrient reduction targets set in the TMDL are met (Irby et al., 2018). The
opposite however was found in a similar study of warming temperatures
and nutrient reductions in the Chesapeake Bay (Ni et al., 2020), where ris-
ing temperatures between 1985 and 2016 cancelled out any potential ben-
efits from nutrient reductions by decreasing O2 concentrations in bottom
waters by a larger amount than they have been increased by nutrient reduc-
tions. Although Ni et al. (2020) focused on average O2 concentrations
rather than hypoxic volume and used a continuous simulation from 1985
to 2016 rather than applying a delta approach as used here, it is unlikely
that these differences alone explain why the results differ from those
found in this study. An alternative explanation could be that the nutrient re-
ductions calculated by Ni et al. (2020) underestimate the magnitude of re-
ductions observed in the Bay as they only consider above RIM changes in
NO3

−, NO2
−, and PO4

− in the Susquehanna River for their analysis. Large re-
ductions in other nitrogen constituents (e.g., NH4

+, DON, PON) and below
RIMNO3

− loading have also occurred in the Susquehanna River, and the ni-
trogen reductions found in other rivers entering the Bay are non-trivial
(Fig. 2). It is likely that the total impact of nitrogen reductions is larger in
this study as a result of accounting for these additional nitrogen reductions
in the Chesapeake Bay watershed.

The relative impacts that nutrient reductions and climate change have
on hypoxia can vary dramatically between systems. In the Gulf of Mexico,
a similar nutrient dominant effect was found where a proposed 30% reduc-
tion in NO3

− loading from theMississippi River decreased the occurrence of
hypoxia by a larger magnitude than the increase in occurrence resulting
from a 4 °C increase in water temperature (Justić et al., 2003). The opposite
is generally found for studies of future change in the Baltic Sea (Meier et al.,
2011, 2012), where the projected impacts from climate change tend to out-
weigh the anticipated impact of future nutrient reductions, owing primarily
to enhanced precipitation in the watershed increasing river runoff rather
than warming temperatures. As a result of these differences, studies exam-
ining the competing impacts of nutrient reductions and climate change on
hypoxia need to be performed individually for each system in order to ac-
count for different responses to local and global drivers.

Finally, warming temperatures can partially account for the discrepancy
in the magnitude of nutrient reduction impacts between the statistical anal-
ysis and the numerical modeling results, since increasing temperatures in
the Bay have at least partially counteracted the impact of nutrient reduc-
tions. For O2 < 3 mg L−1, the estimated additional hypoxic volume that
would have occurred without nutrient reductions is 83–557 km3 days
greater in the numerical modeling results than the statistical results de-
pending on the year and the terrestrial inputs. For O2 < 1 mg L−1, this dif-
ference between the two methods ranges from 141 to 373 km3 days. Since
the temperature effect ranges from85 to126km3days forO2<3mgL−1and
24–68 km3 days for O2 < 1 mg L−1 (Fig. 6), it accounts for 16–72% of the
discrepancy between the two methods for O2 < 3 mg L−1 (128% for
Phase 6 in 2019 since the temperature effect is greater than the difference
between the two methods for that year) and 7–42% of the discrepancy for
O2 < 1 mg L−1. The remaining difference between the two methods can
be attributed to a variety of factors, including long term changes in other
environmental factors not accounted for in the numerical modeling simula-
tions, as well as inherent differences and uncertainties associated with the
two methods.

4.4. Sources of uncertainty

One of the largest sources of uncertainty in this study comes from esti-
mating nitrogen input into the Bay. Over a large geographic area such as
the Chesapeake Bay watershed, it is infeasible to collect concentration
datawith high temporal resolution for the various nitrogen species entering
the Bay from different riverine sources. Statistical methods such as WRTDS
can be used to fill temporal gaps in data at specific station locations (Hirsch,
2014; Hirsch et al., 2010), however thesemethods are unable to provide in-
formation on the portions of the watershed that are unmonitored. As a
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result, estuarine numerical models are reliant on terrestrial watershed
models to provide the necessary spatial coverage. These terrestrial models
are calibrated and validated using available data (Pan et al., 2021; Shenk
et al., 2012; Yao et al., 2021), however uncertainty still exists, particularly
for nitrogen constituents and locations with limited data. To quantify this
uncertainty, all simulations were run in duplicate using terrestrial input re-
lationships derived from two separate watershed models (DLEM and Phase
6), both of which have been demonstrated to successfully generate esti-
mates of nitrogen loading to the Chesapeake Bay (CBP, 2017; Pan et al.,
2021).

The twowatershedmodels produce very similar estimates of freshwater
discharge; however, because they represent nutrient cycling processes on
land differently, the relationships between discharge and nutrient concen-
trations vary considerably. Using both sets of estimates in this analysis re-
sults in a range of values that is more likely to capture the actual nutrient
loading than either of the watershed models individually and provides in-
creased confidence in the results of this study. Other studies have found
thatmultiple numericalmodel approaches like this aremore robust than re-
lying on a single numerical model, since model performance varies
uniquely under different conditions for each model (Apostel et al., 2021;
Irby et al., 2016; Singh et al., 2005).

In comparing the results from the DLEM and Phase 6 simulations, the
largest discrepancy in annual hypoxic volume between the two sets of ter-
restrial inputs occurs in the organic nitrogen sensitivity experiments. Re-
sults from the inorganic nitrogen sensitivity experiments better agree
between DLEM and Phase 6 (Fig. 6; Table S6) due to the fact that the mag-
nitude of the increase in loading to recreate 1985 conditions ismore similar
in these simulations (roughly +35 Gg yr−1 for DLEM and roughly
+50 Gg yr−1 for Phase 6) compared to the organic nitrogen simulations
(roughly +49 Gg yr−1 for DLEM and roughly +16 Gg yr−1 for Phase 6).
This larger difference in the organic nitrogen loading change applied to
the sensitivity experiments causes the increase in annual hypoxic volume
to be four times greater for DLEM compared to Phase 6 (Fig. 6; Table S6).
Since the multipliers used to adjust nitrogen concentrations in the sensitiv-
ity experiments are the same for both terrestrial inputs (Eqs. (4)–(5)), the
larger increase in organic nitrogen loading in DLEM is due to the fact that
the organic nitrogenmultipliers are large (Table S4) and DLEMhas a higher
baseline organic nitrogen loading of roughly 59 Gg yr−1 compared to
40 Gg yr−1 for Phase 6. Even though the multipliers for ammonium are
large and Phase 6 does have a higher baseline inorganic nitrogen loading
than DLEM (145 Gg yr−1 compared to 104 Gg yr−1), the increase in inor-
ganic nitrogen loading is more similar for the DLEM and Phase 6 because
the higher baseline in Phase 6 is primarily due to higher NO3

− loading
and the NO3

− multipliers are generally small (Table S4).
When examining organic nitrogen skill in the numerical model simula-

tions, comparisons between numerical model results and observed values
indicate that simulations with DLEM generally overestimate DON concen-
trations in the oligohaline and mesohaline Bay (Figs. S6 & S8) while simu-
lations with Phase 6 generally underestimate DON concentrations in the
same region (Figs. S7–S8). It is clear from these differences that there is con-
siderable uncertainty in estimating organic nitrogen loading entering the
Bay, owing primarily to the lack of organic nitrogen data in streams and riv-
ers throughout the Bay's watershed. Since results from the sensitivity exper-
iments shown here demonstrate that organic nitrogen loading can have a
substantial impact on hypoxia, future monitoring efforts aimed at improv-
ing the understanding of how nutrients impact the Bay should focus on
obtaining more information regarding the cycling of organic nitrogen in
the watershed. This would not only improve the calibration and validation
of the watershed models but would also allow statistical methods such as
WRTDS to be employed directly to organic nitrogen data so that more accu-
rate loading estimates can be obtained.

An additional source of uncertainty in this study comes from estimating
the magnitude of nitrogen reductions over the time period studied
(1985–2019). To limit this uncertainty, the data-based WRTDS approach
was used to calculate nutrient reductions for the portion of the watershed
located above the RIM stations (Fig. 2). For the small portion of the

watershed not captured by these stations (below RIM), nutrient reduction
estimates were calculated fromwatershedmodel output. Since it is difficult
to quantify the uncertainty associatedwith this joint data-numerical model-
ing approach, the percent changes in loading obtained were both increased
and decreased by 30% to determine the sensitivity of the method applied.
The difference in hypoxic volume between these high and low loading sce-
narios is similar in magnitude to the difference in additional volume be-
tween the DLEM and Phase 6 simulations, suggesting that the uncertainty
associated with the terrestrial inputs (DLEM versus Phase 6) is of a similar
magnitude to±30% of the change in nutrient loading over the 35-year pe-
riod. Additionally, the annual hypoxic volumes from the low loading sce-
nario are far from overlapping with the realistic volumes in 2016–2019
(Fig. 5e–f, k–l), indicating that the conclusion of increased resilience re-
mains valid under a broad range of assumptions for the terrestrial inputs.
Although uncertainty exists, the use of a data-based approach to estimate
a substantial portion of the nutrient reductions in thewatershed should pro-
vide an added level of confidence in the values obtained and the subsequent
results from the sensitivity experiments.

Uncertainty in this study is also associated with multiple methodologi-
cal assumptions that are made for both the statistical and numerical model-
ing analyses. For the statistical analysis, there is uncertainty in both the
interpolated hypoxic volumes and the freshwater discharge estimates. Hyp-
oxic volume cannot be measured directly and is therefore estimated by in-
terpolating O2 data collected over multiple days. As a result, there is a
degree of temporal uncertainty associated with this non-synoptic sampling
(potentially ~5 km3 for O2< 2mg L−1) as well as uncertainty from the spa-
tial interpolation (potentially ~2.4 km3 for O2 < 2 mg L−1; Bever et al.,
2013). In addition, the discharge values used in the statistical analysis are
estimates of average annual total streamflow into the Bay calculated from
discharge data in the Susquehanna, Potomac, and James rivers. Although
the discharge in these three rivers is well constrained, uncertainty exists
when scaling these values up to reflect the entire watershed. In the numer-
icalmodeling analysis, uncertainty is introduced at every step in the process
from numericalmodel formulation and parameterization to the forcing that
is used to generate the simulations. As was done in this study, this uncer-
tainty can be minimized by using available data to evaluate numerical
model processes and improve the accuracy of the results; however, a base-
line level of uncertainty still exists. Despite the underlying uncertainties in
both the statistical and numerical modeling approaches, the general agree-
ment between these two independent methods of estimating resilience pro-
vides an added level of confidence that the overall findings from this study
are robust.

4.5. Informing the management effort

The primary objective of this research is to quantify the degree towhich
nutrient reductions in the watershed have improved O2 conditions in the
Chesapeake Bay in recent years despite the adverse environmental condi-
tions posed by warming temperatures and unusually wet conditions. This
information is of interest to watershed managers, policymakers, and other
stakeholders who have devoted a large amount of time and resources to-
ward improving water quality conditions in the Bay (Boesch, 2019;
USEPA, 2010). The increased resilience shown in this study is encouraging,
demonstrating that despite the occurrence of large hypoxic volumes in re-
cent years, efforts to reduce nutrient input to the Bay have improved
water quality by effectively preventing more hypoxia from developing.

From an ecological perspective, this curtailment of hypoxia has impor-
tant implications for ecosystem health in the Bay. Numerical model results
indicate that if nutrient reductions did not occur, 50–90 days of additional
hypoxia would have occurred at specific locations in the oligohaline and
southern mesohaline portions of the Chesapeake Bay for the thresholds of
O2< 3mg L−1 and O2< 1mg L−1 (Fig. 7). At these locations where oxygen
remained above this 3 mg L−1 threshold for a large portion of the summer
due to nutrient reductions, demersal fish had greater habitat availability
since this community tends to avoid areas with O2 < 3 mg L−1

(Breitburg, 2002; Buchheister et al., 2013). Less hypoxic water is also
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beneficial for other economically important species in the Bay such as
striped bass, which have been shown to have a reduced aerobic scope
when subjected to water with O2 < 3 mg L−1 (Lapointe et al., 2014). Al-
though hypoxia may still be present, a decrease in duration of hypoxic con-
ditions at some of these locations is critical for the recruitment of ecological
important species like the Bay anchovy, whose eggs and larvae are threat-
ened when exposed to water with O2 < 3 mg L−1 for durations of
~30 days (USEPA, 2003). In addition to better recruitment and habitat
availability, a shift from more severe and expansive hypoxic events to
ones that are short-lived and localized may also better support higher tro-
phic levels by allowing greater access to prey as benthic infauna move
closer to the sediment-water interface in search of O2 while still remaining
accessible from higher O2 waters (Long and Seitz, 2008; Nestlerode and
Diaz, 1998). Within the benthic community itself, a decrease in the number
of days with O2< 1mg L−1 can be the difference between life and death, as
themajority of macrobenthic species experiencemortality when conditions
are below this threshold for only a few days (Llansó, 1992; Seitz et al.,
2009). Thus, any decrease in the presence of hypoxia at both thresholds is
likely to result in greater species diversity and an improved overall health
of the ecosystem. Because this study has shown that oxygen conditions at
these critical ecological thresholds have improved, Bay managers and poli-
cymakers now have additional evidence to support the continuation and
enhancement of current nutrient reduction strategies.

Although the results from this work demonstrate that nutrient manage-
ment efforts in the Chesapeake Bay have been effective, the impact that in-
creasing temperatures have already had on hypoxia presents a cautionary
tale. An increase in summer water temperature of roughly 1.4 °C over the
35-year period from 1985 to 2019 has already offset between 6 and 34%
of the improvements in hypoxia due to nutrient reductions, and tempera-
tures in the Bay are expected to warm by an additional 2–5 °C over the
course of the 21st century (Muhling et al., 2018). So farmanagement efforts
have been able to outpace the competing impact of temperature, and this is
expected to continue through the middle of the 21st century if the nutrient
reduction targets set in the 2010 Chesapeake Bay TMDL aremet (Irby et al.,
2018). This dynamicmay shift toward the end of the century however, par-
ticularly if the high estimate of a 5 °C increase in water temperature is
achieved.

Nutrient management efforts should not be viewed as futile even in the
face of such a large degree of warming; on the contrary, theymay be the key
to minimizing the overall impact that increasing temperatures as a result of
climate change have on hypoxia. The impact of warming on hypoxia varies
depending on the size of the hypoxic region, with a greater impact during
years with large hypoxic volumes (2018–2019) compared to years with
smaller hypoxic volumes (2016–2017; Fig. 6). Since the impact of temper-
ature on O2 solubility is not a function of freshwater discharge, this greater
temperature effect inwetter years is likely due to enhancedmicrobial respi-
ration at depth as a result of more organic matter during years with higher
nutrient loading. If nutrient reductions can successfully limit this buildup of
organicmatter in bottomwaters in the future, the impact of temperature on
hypoxiamay beminimized. Thefindings of this study emphasize the impor-
tance of not only accounting for warming temperatures in determining the
magnitude of nutrient reductions required to raise bottom O2 concentra-
tions in the Bay in the future, but also the timeline by which these reduc-
tions should take place in order to minimize future negative effects.

5. Summary and conclusions

This study has demonstrated that nutrient reductions from 1985 to
2019 have made the Chesapeake Bay more resilient to warming atmo-
spheric temperatures and high discharge years by preventing additional
hypoxia from developing. If nutrient reductions had not occurred, hypoxic
volumes would have been ~50–120% (~80–280%) greater for
O2 < 3 mg L−1 (O2 < 1 mg L−1) during the average discharge years of
2016–2017 and ~20–50% (~30–100%) greater for O2 < 3 mg L−1

(O2 < 1 mg L−1) during the wet years of 2018–2019. Despite these interan-
nual differences in the relative magnitude of resilience, the absolute

magnitude of resilience is similar from 2016 to 2019, suggesting that nutri-
ent reductions are equally effective at curtailing hypoxia under a range of
hydrologic conditions. This reduction in hypoxia is primarily attributed to
(1) a decrease in the along estuary extent of hypoxia in the mainstem of
the Bay and (2) a decrease in the length of the hypoxia season during aver-
age discharge years. As a result, future monitoring efforts would benefit
from collecting high resolution O2 data near the northernly and southernly
extent of hypoxia. In addition, since hypoxia is strongly dependent on or-
ganic nitrogen loading, a focus on collecting more organic nitrogen data
throughout the Chesapeake Bay watershed is recommended.

Although nutrient reductions have substantially decreased Chesapeake
Bay hypoxia over the past 35 years, these decreases would have been larger
if warming temperatures had not offset 6–34% of the improvement in hyp-
oxia by decreasing oxygen solubility and increasing the rate of microbial
respiration. Once this temperature effect is taken into consideration, the
magnitude of increased resilience from the data-based statistical analysis
and the numerical modeling analysis agree reasonably well, providing an
added level of confidence in the results from this study. Even though nutri-
ent reductions have been able to outpace the negative effects of increasing
temperatures thus far, future warming may reverse this dynamic if ade-
quate nutrient management strategies are not implemented. Overall, the
positive impact that nutrient reductions have had on hypoxia in recent
years demonstrate that if management actions are implemented, the health
of the Chesapeake Bay ecosystem can be improved despite adverse environ-
mental conditions caused by future climate change.
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