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Abstract. Phenol and its derivatives exist in various types of industrial effluents, and are 

known to be harmful to aquatic lives even at low concentrations. Conventional treatment 

technologies for phenol removal are challenged with long retention time, high energy 

consumption and process cost. Enzymatic treatment has emerged as an alternative technology 

for phenol removal from wastewater. These enzymes interact with aromatic compounds 

including phenols in the presence of hydrogen peroxide, forming free radicals which 

polymerize spontaneously to produce insoluble phenolic polymers. This work aims to extract 

peroxidase from agricultural wastes materials and establish its application for phenol removal. 

Peroxidase was extracted from jicama skin peels under varying extraction conditions of pH, 

sample-to-buffer ratio (w/v %) and temperature. Experimental results showed that extraction 

process conducted at pH 10, 40% w/v and 25
o
C demonstrated a peroxidase activity of 0.79 

U/mL. Elevated temperatures slightly enhanced the peroxidase activities. Jicama peroxidase 

extracted at optimum extraction conditions demonstrated a phenol removal efficiency of 87.5% 

at pH 7. Phenol removal efficiency was ~ 97% in the range of 30 – 40
o
C, and H2O2 dosage has 

to be kept below 100 mM for maximum removal under phenol concentration tested.           

1. Introduction 

Rapid development and blooming of various industries such as petroleum refineries, wood 

preservation, resins and plastics, pulp and paper, dyes and other chemicals contribute significantly to 

the economics of many countries. However, these industries also generate huge amount of industrial 

effluents, of which if discharged untreated or partially treated, could cause serious ecological problems 

to aquatic lives and human health. This is due to the presence of xenobiotic and recalcitrant organic 

pollutants in the wastewaters, which include phenols and its derivatives. Phenolic compounds are 

mostly toxic and have been classified as hazardous pollutants [1]. Therefore, developing effective and 

sustainable treatment technologies for industrial wastewaters is of vital importance and continues to be 

one of the greatest challenges to the environmental engineering and science.  
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Conventional treatment methods for phenol removal from wastewater include microbial degradation 

[2, 3], adsorption on activated carbon [4, 5], and chemical oxidation such as ozonation [6, 7] and 

Fenton reaction [8, 9]. The aforementioned methods, though showing high removal efficiencies for 

phenol, suffer certain disadvantages such as lengthy start-up for microbial acclimatization [10], 

microbial growth inhibition due to high concentrations of phenolic compounds [11], intensive cost and 

energy for carbon regeneration [12], and disposal concern of reagents used during reaction process 

[12]. Due to the challenges associated with conventional phenol removal methods, research focuses 

have been geared towards finding an alternative method that is versatile for a wide range of reaction 

conditions with little or no environmental impacts for phenol removal. Enzymatic approach has been 

proposed by researchers for phenol bioremediation owing to its potential advantages over conventional 

treatment methods. These include application to bio-refractory compounds, operation at high and low 

contaminant concentrations, operation over a wide range of pH, temperature and salinity, absence of 

delays associated with the acclimatization of biomass, reduction in sludge volume (no biomass 

generated) and ease of controlling the process [13].  

Among the various types of enzymes, peroxidases have been identified as a suitable candidate for 

the treatment of phenolic contaminants and related compounds. Activated by hydrogen peroxide, 

peroxidases catalyze the oxidation of aromatic compounds, forming free radicals which undergo 

spontaneous polymerization. The polymerized product precipitates out from the solution and can be 

readily separated by sedimentation and filtration techniques [14]. Peroxidases are ubiquitous in nature 

and can be found in plants, microorganisms and animals. Horseradish peroxidase (HRP) has been 

explored extensively for its potential in decontamination of phenolic compounds from wastewater [15-

20]. However, most of the studies conducted were using purified HRP which imposed high cost to the 

removal process. This has triggered the search for peroxidases from other less expensive sources with 

comparable or better stability and efficiency in phenol removal. Peroxidases from soybean seed hulls 

[1,14,21], turnip [22], bitter gourd [23], radish [24], cauliflower [25] and potato [24] have been 

evaluated for their performances in phenol removal, and the results obtained were encouraging and 

promising. Other peroxidases that have been identified, extracted and characterized include oil palm 

leaves [26], rice leaves [27], sweet potato [28] and tomato [29]. 

The aim of this study is to explore the possibility of using jicama skin peels as the source of 

peroxidase for phenol removal. The skin of jicama is not edible and therefore is discarded as waste. 

Our preliminary study has shown that peroxidase exists in the skin peels of jicama. The use of this 

agricultural waste for peroxidase extraction is not in competition with human food consumption. This 

approach offers a chain of green technology as waste from one source is transformed into a useful 

product to treat waste from a different source. The extraction of peroxidase from jicama skin peels will 

be studied from the aspect of pH, sample-to-buffer ratio and temperature. Jicama peroxidase extracted 

at optimum conditions will then be evaluated for its performance efficiency in phenol removal under 

varying reaction conditions which include pH, temperature and hydrogen peroxide (H2O2) 

concentration.  

 

2. Materials and methods 

 

2.1. Preparation of crude extract 

Jicama purchased from local market was washed thoroughly with distilled water, and then the skin 

peeled off and chopped into small pieces. The chopped jicama was weighed and mixed with buffer 

solutions based on weight (g)/volume (mL) percentage (w/v %). Homogenization of enzyme mixtures 

was carried out at 400rpm for 1 h at room temperature (unless stated otherwise). The enzyme extract 

was then filtered through four layers of cheesecloth before being subjected to centrifugation and 

sonication. The enzyme collected was considered as crude extract and stored at 4
0
C until further use. 
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2.2. Analytical procedures 

Enzyme activity of jicama peroxidases was measured using a colorimetric assay containing phenol, 4-

aminoantipyrene (4-AAP) and hydrogen peroxide. This assay is a modification of that developed by 

Wu et al. [20] in which the assay mixture consists of 250µl of 9.6mM 4-AAP, 100µl of 100mM 

phenol, 100µl of 2mM hydrogen peroxide, 450-500µl of 100mM phosphate buffer (pH 6.0) and 50-

100µl of enzyme solution. Prior to significant substrate depletion, activity was proportional to the rate 

of formation of a coloured product which absorbs light at a peak wavelength of 510nm with an 

extinction coefficient of 7100 L/mol.cm based on the conversion of H2O2.One unit of activity is 

defined as the number of micromoles of H2O2 consumed per minute at pH 6.0 and 25
o
C. 

Phenol concentrations were determined colorimetrically using 4-AAP and potassium ferricyanide 

in an alkaline buffer medium. Phenolic compounds react with 4-AAP under alkaline conditions to 

yield an intermediate species which is oxidized in the presence of the potassium ferricyanide reagent. 

The resulting compound is a quinone-type dye which absorbs light at 510nm. The colour intensity is 

linear with respect to phenol concentration, provided that this concentration does not exceed 0.1mM in 

the cuvette [30]. The absorbance was measured at 510nm after 5 minutes.    

2.3. Extraction of jicama peroxidase 

2.3.1. Effect of pH on peroxidase extraction. The effect of pH on peroxidase extraction from jicama 

peels was evaluated by mixing buffer solutions (0.1M) of different pH values to the weighed amount 

of jicama. The range of pH being studied was from pH 3 to 10. One gram of jicama peels was added to 

10ml of buffer solution at certain pH, and homogenization was carried out as previously described. 

Enzyme sample-to-buffer ratio (w/v %) in this aspect was 10%. 

2.3.2. Effect of sample-to-buffer ratio on peroxidase extraction. Sample-to-buffer ratio (w/v %) for 

jicama peroxidase extraction was investigated at 10%, 20% and 40%. The maximum w/v % that can 

be achieved was based on the minimum amount of buffer solution needed to cover all the pre-weighed 

quantity jicama peels for proper homogenization. 

2.3.3. Effect of temperature on peroxidase extraction. Jicama peroxidase extraction was carried out at 

25
o
C, 35

o
C and 45

o
C. For 35

o
C and 45

o
C, the extraction process was carried out in water bath with 

constant stirring. The temperatures of the water bath were monitored to ensure constant temperature 

throughout the extraction process. 

2.4. Batch treatment of aqueous phenol by using jicama peroxidase 

The efficiency of jicama peroxidase in removing phenol from aqueous solution was evaluated under 

varying reaction conditions such as pH, temperature and H2O2 concentration. Jicama peroxidase was 

prepared based on the optimum conditions in extraction process. The reaction mixture consisted of 

buffer solution, phenol solution and enzyme. The enzymatic reaction was initiated through the 

addition of H2O2 into the mixture, and the process was carried out in incubator with constant shaking 

for 24 h to ensure maximum phenol removal. Phenol concentration in the reaction mixture before and 

after reaction process was assayed according to section 2.2, and percentage of phenol removal 

calculated.     

2.4.1. Effect of pH on phenol removal.  

Phenol removal processes were carried out in buffer solutions of various pH ranging from pH 4 to 9. 

The molarity of the buffer solutions was kept constant at 0.1M. The reaction mixtures were incubated 

at 30
o
C with constant shaking for 24 h. 
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2.4.2. Effect of temperature on phenol removal.  

Reaction mixtures containing 1 mL of 10mM phenol were treated with 1.5 mL jicama peroxidase in 

the presence of 0.2 mL of 10mM H2O2 at the optimum pH. Reaction mixtures were incubated at 

temperatures 30, 40, 50 and 60
o
C respectively for 24 h with constant shaking. 

2.4.3. Effect of H2O2 concentration on phenol removal.  

The effect of H2O2 concentration on phenol removal was performed by varying the concentrations of 

H2O2 added into the reaction mixtures while keeping other reaction conditions (pH and temperature) 

optimum. The range of concentration of H2O2 being evaluated was from 0.2mM to 4mM. 

 

3. Results and discussion 

3.1. Effect of pH on peroxidase extraction 

 

Figure 1. Peroxidase extraction as a function of 

pH. Extraction conditions: 1g of jicama peels 

was mixed with 10 mL of buffer solutions of 

various pH (10% w/v) and homogenized at 400 

rpm and 25
o
C for 1 h. 

 

The pH condition of the medium plays an important role in enzyme extraction process as it affects the 

ionization state of enzyme amino acids side chain. As shown in figure 1, low pH did not favour the 

extraction process for jicama peroxidase. This could be due to the detachment of haem prosthetic 

group from the poly-peptide chain [31]. Crude enzyme of jicama extracted at high acidic regions 

showed low enzyme activities. Peroxidase activity increased as the pH value approached neutral. 

However, there was a dip in peroxidase activity at pH 8, which is slightly basic. Peroxidase activity 

increased again at higher alkalinity regions. The maximum peroxidase activity for jicama was 

observed at pH 10, with an activity of 0.473 U/mL. This could be due to most of the amino acids side 

chain in jicama peroxidase molecules are positively charged. In a highly basic medium, the positively 

charged amino acids are attracted to hydroxide ions, hence releasing the peroxidase molecules into the 

medium. 

3.2. Effect of sample-to-buffer ratio on peroxidase extraction 

As can be seen from Figure 2, enzyme activity obtained increased when the amount of jicama used in 

the homogenization medium was increased. This is because the extracts are more concentrated with 

peroxidase molecules. The highest sample-to-buffer ratio that can be achieved with jicama was 40%. 

Beyond this ratio, the volume of buffer solution was not sufficient for proper homogenization. 

Sample-to-buffer ratio of 40% (w/v) will thus be used for subsequent parameter studies. 
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Figure 2. Peroxidase extraction as a function 

of sample-to-buffer ratio (w/v %). Extraction 

conditions: jicama peels was mixed with 0.1M 

buffer pH 10 at various w/v % and 

homogenized at 400 rpm and 25
o
C for 1 h.  

Figure 3. Peroxidase extraction as a function 

of temperature. Extraction conditions: jicama 

peels was mixed with 0.1M buffer pH 10 at 

40% w/v and homogenized at 400 rpm at 

various temperatures for 1 h.   

3.3. Effect of temperature on peroxidase extraction 

From figure 3, it can be seen that extraction of jicama peroxidase at temperatures of 35
o
C and 45

o
C 

enhanced enzyme activity for ~ 9.6 %. However, in view of the extra cost incurred for extraction 

process at higher temperatures, it is therefore more economical to extract jicama peroxidase at room 

temperature (~25
o
C). 

3.4. Effect of pH on phenol removal 

Figure 4 shows the dependence of phenol removal efficiency on pH for jicama peroxidase. When 1 

mM stock phenol solution was treated with jicama peroxidase, phenol removal efficiency of more than 

80% was observed at pH values 6 to 7, with the optimum occurring at pH 7. Removal efficiency 

decreased to less than 40% below pH 5 and above pH 8. This is a result of variations in enzyme 

protein structure in response to varying pH. The enzyme molecules undergo structural modifications 

as a result of protonation and hydroxylation effects which could potentially obscure the enzyme active 

sites before causing denaturation and permanent loss of functionality. Moreover, the decrease in 

removal efficiency at pH above 8 could be attributed to the formation of phenol conjugated base since 

the pKa of phenol at 25
o
C is 10. This conjugated basic form does not permit the phenolic compounds 

to act as hydrogen donors, thus hindering binding onto the surface of the enzyme active sites. 

Previous studies on phenol removal catalyzed by horseradish peroxidase demonstrated optimal 

operating pH at pH 8 [17, 18], which was slightly basic. Another work by Wright and Nicell [21] 

showed that nearly complete removal of phenol was observed over a pH range of 5 to 9, with the 

maximum removal at pH 6 by using high dose of soybean peroxidase. Other studies using soybean 

peroxidase exhibited optimum pH for phenol removal at pH 6 [1] and pH 7 [32]. For jicama 

peroxidase, subsequent enzymatic reactions will be conducted using buffer pH 7. 
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Figure 4. Phenol removal using jicama 

peroxidase at different pH conditions. 

Experiments were performed using 1.5 mL 

jicama peroxidase and 1 mL of 1mM phenol in 

buffer solutions of various pH at 30
o
C in the 

presence of 0.2mM H2O2.   

Figure 5. Phenol removal using jicama 

peroxidase at different operating temperatures. 

Experiments were performed using 1.5 mL 

jicama peroxidase and 1 mL of 10mM phenol in 

buffer pH 7 in the presence of 0.2mM H2O2. 

3.5. Effect of temperature on phenol removal 

The effect of temperature on phenol removal was examined by incubating the reaction mixtures 

containing 1 mL of 10 mM phenol stock solution at various temperatures, ranging from 30
o
C to 60

o
C. 

As depicted in figure 5, phenol removal efficiency of greater than 90% was observed over the 

temperature range of 30 – 40
o
C. Moderate increases in temperature from ambient conditions results in 

enhanced collision of the enzyme molecules with substrate molecules to form more products. 

However, further increase in temperature to above 50
o
C caused a decrease in removal efficiency to 

less than 50%. This is attributed to thermal denaturation of enzyme molecules, causing loss of its 

active sites to catalyze substrate molecules. The thermal stability of peroxidases is governed by the 

haem prosthetic group, which under elevated temperatures is released to form apoenzyme. The 

transient enzyme formed is less stable and more susceptible to thermal inactivation as compared to the 

native enzyme [33]. Higher temperature conditions distort the structure of the enzyme, causing a 

limited binding capacity of its active sites onto substrate molecules. 

3.6. Effect of H2O2 concentration on phenol removal 

 

Figure 6. Phenol removal using jicama 

peroxidase at different H2O2 

concentrations. Experiments were 

performed using 1.5 mL jicama 

peroxidase and 1 mL of 10mM phenol in 

buffer pH 7 at 30
o
C. 
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Hydrogen peroxide (H2O2) is required in peroxidase-catalyzed reactions to oxidize the native enzyme 

molecules into Compound I which then accepts an aromatic compound into its active site and carries 

out its oxidation [18]. Low concentrations of H2O2 limit the enzymatic reaction rate while excessive 

amounts could result in inhibitory effect on the enzyme activity [34]. According to figure 6, phenol 

removal efficiencies of more than 85% were recorded over a wide range of H2O2 concentrations, from 

0.2 mM to 2 mM. However, enzymatic inhibition effect was observed at H2O2 concentration beyond 2 

mM where the efficiency dropped to less than 50%. High concentrations of H2O2 inhibit peroxidase 

catalytic activity by irreversibly oxidizing the enzyme ferriheme group which is vital for peroxidase 

catalysis [22]. Therefore, phenol removal process using jicama peroxidase has to be carried out at 

H2O2 concentration less than 2 mM to ensure maximal removal.  

 

4. Conclusions 

Present study demonstrated that plant peroxidase can be extracted from agricultural and bio-wastes for 

phenol removal application. The peroxidase extraction process established in this work is simple and 

does not require the usage of many chemicals. The crude enzyme from jicama peels was subjected to 

phenol removal reaction and the results showed that the enzymatic process was dependent on pH, 

temperature and concentration H2O2. The extracted jicama peroxidase was not subjected to any further 

purification, and its activity in the homogenous crude enzyme solution was uniform. Relatively, 

enzyme volume was used in place of enzyme concentration as one of variable parameters in phenol 

removal reaction. However, its effect on phenol removal efficiency was not significant for the range 

being studied (data not shown).  

 

The phenol removal efficiencies exhibited by jicama peroxidase was encouraging and this revealed the 

potential of jicama peroxidase in enzymatic wastewater treatment. The use of low cost materials and 

processes for peroxidase extraction coupled with moderate enzymatic reaction conditions and limited 

use of harsh chemicals creates a sustainable and environmentally friendly operation with low process 

economics. Nevertheless, further studies into optimization of reaction conditions such as reaction time 

and substrate dosages are essential to better understand the factors affecting the performance of this 

enzyme. The effects and interactions between various extraction conditions such as pH, sample-to-

buffer ratio and temperature as well as the effect of H2O2 on enzymatic activities should also be 

addressed.     
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