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Abstract: Soft sensors are inferential estimators when the employment of hardware sensors is 

inapplicable, expensive, or difficult in industrial plant processes. Currently, a simple soft sensor, namely 

locally weighted partial least squares (LW-PLS), which can cope with the nonlinearity of the process, 

has been developed. However, LW-PLS exhibits the disadvantages of handling strong nonlinear process 

data. To address this problem, Kernel functions are integrated into LW-PLS to form locally weighted 

Kernel partial least squares (LW-KPLS). Notice that a minimal study was carried out on the impact of 

different kernel functions that have not been integrated with the LW-KPLS, in which this model has the 

potential to be applied to different chemical-related nonlinear processes. Thus, this study investigates 

the predictive performance of LW-KPLS with several different Kernel functions using three nonlinear 

case studies. As the results, the predictive performances of LW-KPLS with Polynomial Kernel are better 

than other Kernel functions. The values of root-mean-square errors (RMSE) and error of approximation 

(Ea) for the training and testing dataset by utilizing this Kernel function are the lowest in their respective 

case studies, which are 34.60% to 95.39% lower for RMSEs values and 68.20% to 95.49% smaller for 

Ea values.  

Keywords: soft sensors; locally weighted kernel partial least squares; kernel functions; linear kernel; 

polynomial kernel; nonlinear chemical processes. 

Abbreviations: CPU: Central Processing Unit; CSTR: Continuous Stirred Tank Reactor; ITHS: 

Intelligent Tuned Harmony Search; GK: Gaussian Kernel; JIT: Just-In-Time; KPLS: Kernel Partial 

Least Squares; LW-KPLS: Locally Weighted Kernel Partial Least Squares; LW-PLS: Locally Weighted 

Partial Least Squares; MK: Multiquadric Kernel; MLR: Multiple Regression; PCR: Principle 

Component Regression; PLS: Partial Least Squares; RMSE: Root-Mean-Square Error; STHE: Shell 

and tube heat exchangers; x: Input variables; y: Output variables; n: Number of samples; L: Number of 

output variables; M: Number of input variables; T: Transpose matrix; X: Matrix of input; Y: Matrix of 

output; �̂�𝑞: Predicted output; xq: Queried matrix of input; 1𝑛: Vector with length n; 1𝑛𝑡: Vector with 

length nt; B: Dual representation of the scaling of projection direction; S: Latent variables number;              

Ω: Similarity matrix; 𝜔𝑛: Index of similarity; 𝜑: Localization parameter; 𝜎𝑛: Standard deviation of 𝑑𝑛; 

ts: sth latent variable of 𝑋𝑠; ws: Eigenvector of 𝑋𝑠
𝑇ΩY𝑠𝑌𝑠

𝑇ΩX𝑠 that correlates to maximal eigenvalue;         

𝑝𝑠: s
th loading vector of 𝑋𝑠; 𝑞𝑠: s

th regression coefficient vector; 𝑡q,s: s
th latent variable of 𝑋𝑞; Nt: Total 

samples number; N1: Number of training samples; N2: Number of testing samples; iy : Actual values 

of output; iŷ
: Predicted values of output; y: Actual output mean value: RMSE1: Root-Mean-Square 

Error of Training Data; RMSE2: Root-Mean-Square Error of Testing Data; b: Kernel Parameter;                      

Ea: Error of Approximation; σ: Sigma. 
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1. Introduction 

Hardware sensors are generally adapted in chemical plants for process sensing and 

control systems [1]. However, there are several existing drawbacks for the hardware sensors 

from the prospect of technical and economic. For instance, shortages of technology, the time 

delay from measurement, and many online variables contribute to costly devices [2]. 

Meanwhile, these sensors allow better process control and monitoring for optimization, which 

can lead to business profit targets and minimize costs while meeting the desired product quality 

[3]. Moreover, they also allow chemical plants to be in a more sustainable and profitable 

situation by achieving operational excellence goals. 

Soft sensors, therefore, are being introduced to overcome the limitations of the 

hardware sensors. Soft sensors, which are inferential estimators, are preferable when the 

employment of hard sensors is inapplicable, expensive, or difficult in the industrial plant 

processes. Generally, soft sensors are assorted as inferential models, which require only a 

simple step on variables estimation. Moreover, soft sensors can easily predict hard-to-measure 

process variables and provide beneficial information from the view of fault detection using 

easy-to-measured variables from the hardware sensors [4]. In other words, soft sensors are 

ordinarily adopted for online predictions according to the analysis of measurement signals from 

hardware sensors with software executed mathematical models [5,6]. In industry, it is 

commonly used in industrial processes for providing predictions to the control system in 

achieving their operational excellence, which ultimately leads to more sustainable and 

profitable operations [7,8]. Besides, soft sensors with better measurements can generate better 

product quality and improve the system's performance through enhanced operation, fault 

detection, and process management [9,10]. Thus, they are commonly used in the industrial 

process to settle issues that correspond to cost, availability, quality, and reliability of 

measurements [11]. 

Soft sensors have been broadly developed to measure hard-to-measure variables such 

as product quality or other significant online or offline indexes, which cannot be estimated by 

hardware sensors in real-time [12]. The term soft measurement is advocated and acts as a 

parameter forecast tool subjected to online process measurement [13]. In an extremely 

impressive view, soft sensors are classified into two distinct classes: model-driven and data-

driven based soft sensors. The model-driven or first principal models depict the process 

physically and chemically. However, they are sometimes difficult to use since they require the 

structure's complexity and insufficient professional knowledge of the chemical processes [12]. 

Therefore, data-driven soft sensors are preferable in this situation. 

The data-driven-based soft sensors predict the connection between the primary and 

secondary variables extracted from the processes in the circumstance of real conditions [14]. 

They acquire a great amount of interest [12]. Data-driven modeling is superior for mapping out 

the model if the development of the modeling sample is enough to train the model [13]. Besides, 

multivariate regression models are usually used for data-driven soft sensors development. They 

include multiple regression (MLR), principal component regression (PCR), and partial least 

squares (PLS) regression [15]. However, the predictive performance of the MLR is 

disappointing and imprecise when it comes to handling a huge amount of collinear data and 

noise estimation [16,17]. Hence, PCR, and PLS are adopted to overcome these drawbacks. 

PCR and PLS can overcome the constraints or regression when they set up a MLR 

model with the low capability to create a nonlinear connection between dependent and 
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independent variables [18,19]. PLS also generates the components in terms of modeling the 

relationship between input and output variables and retaining most of the information in input 

variables simultaneously, which is dissimilar from PCR which uses input variables in modeling 

[20]. Due to better predictive performance, the PLS model is proved to be more used as a 

dominant multivariate statistical tool when applied in the real world than PCR [21]. However, 

both PCR and PLS, which are latent-variable-based methods, cannot handle nonlinear process 

data [22].  

Nonlinear models are postulated to generate better accuracy estimation in processing 

high nonlinearity data [23]. Nonlinear soft sensors usually employ artificial neural or Kernel-

based methods such as Kernel-PLS (KPLS), support vector regression, and artificial neural 

network [15]. The assembling of Kernel functions in PLS supports KPLS to become better 

efficiency algorithms in conquering nonlinearity data since KPLS maps the data into a higher-

dimensional space. Nonetheless, the accuracy of the non-adaptive and nonlinear soft sensors 

degrades due to the alternation in the process conditions. 

To adapt the alternation in process characteristics and nonlinearity, Just-In-Time (JIT) 

modeling can be resorted to developing adaptive soft-sensors or virtual sensors. Locally 

weighted partial least squares (LW-PLS), a JIT model, has been studied and prosperity applied 

in various industries due to its simplicity and capability [24]. Nevertheless, LW-PLS fails to 

accomplish a successful estimation for nonlinear processes. Hence, the locally weighted Kernel 

partial least squares (LW-KPLS) model is established by assembling Kernel functions with 

LW-PLS to handle the highly nonlinear issue [25]. Due to the good predictive performance, 

the LW-KPLS was also studied by Yeo, Saptoro, and Kumar [25], Yeo and Lau [26], and Yeo, 

et al. [27]. However, the impact of other different Kernel functions on the predictive 

performance of LWKPLS has not been detailly carried out. This study investigates the effect 

of these different Kernel functions that have not been accomplished yet in the LW-KPLS 

model. Then, the performance of LW-KPLS, which was subjected to different Kernel 

functions, was evaluated and compared. 

2. Materials and Methods 

In this section, the description of LW-KPLS is expressed. Then, it is followed by 

optimizing parameters, data splitting and setting of parameters, measurement of quality 

prediction, kernel functions, and specifications of computer configuration. 

2.1. Locally weighted Kernel partial least squares. 

By applying a Kernel function, the LW-KPLS model was built under the LW-PLS 

procedures. As shown in (1) and (2), the input variables and output variables, x, and y, are 

expressed [25].  

 TnMn2n1n  x,...,x,xx =
                                          (1) 

 TnLn2n1n y,...,y,yy =
                                           (2) 

The symbols n, M, L, and T represent the number of samples, number of input variables, 

number of output variables, and a transpose of a matrix, respectively. The input matrix is 

symbolized by X∈Rn×M, while the output matrix is symbolized by Y∈Rn×L. These input and 

output matrices are the databases saved x and y in MATLAB. To obtain the predicted output, 
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�̂�𝑞 for a query, xq for a nonlinear process, and LW-KPLS algorithm was developed by Yeo, 

Saptoro, and Kumar [25], and it is shown as follows: 

Step 1: To obtain the Kernel matrices for input variables, V, and query, Vq, they are 

mapped into a high dimensional feature space by applying a Kernel function. 

Step 2: Using (3) and (4), mean centering is done on the mapped V and Vq.  
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where the length vector with n and the length vector with nt are symbolized by 1n and 1nt, 

respectively. 

Step 3: Dual KPLS discrimination is conducted by applying (5) to produce B. 

B = YY’Vβ with normalization, β=
𝛽

‖𝛽‖
                (5) 

where B represented the dual representation of the scaling in the projection direction. 

Step 4: The computation on re-scaled queried and input, Vq, and V variables are 

conducted using (6) and (7). 

Xq = VqB                                                                           (6) 

X = VB                                                                           (7) 

More details about the LW-KPLS model can be found in Yeo, Saptoro, and Kumar 

[25]. 

2.2. Optimisation of parameters. 

By carrying the optimization of parameters in a model, the model can be presumed as 

a well-performing model. In the LW-KPLS algorithm, the parameters used are Nt, S, ∅ and b. 

Nt symbolizes the total number of samples; S symbolizes the amount of latent variable while 

the localization parameter is symbolized by ∅ , and b is a kernel parameter. Nt is the total 

number of samples used for the LW-KPLS model, and it is an insensitive parameter to the LW-

KPLS algorithm. Moreover, according to the study carried out by Yeo, Saptoro, and Kumar 

[25], the first few latent variables of PLS-based models can indicate the predominant data 

feature; hence S is set at 1. LW-KPLS model uses ∅ to cope with the nonlinearity of the process 

data. The nonlinearity of the process can be handled by the model when the ∅ is small, thus ∅ 

is set as 0.1 [25]. In addition, the Kernel parameter, b is the most ingenious parameter of the 

LW-KPLS algorithm; hence it must be fine-tuned properly for each case study. 

2.3. Data splitting and setting of parameters. 

A total of 5,000 data sets is achieved and separated into training and testing sets. Hence, 

a dataset ratio of 90% to 10% is used for training and testing purposes, respectively. Then, Nt 

is 5,000 while N1 and N2 represent the number of training and testing data are 4,500 and 500, 

respectively. As mentioned earlier, S is allocated as 1, and an optimal value of 0.1 is allocated 

∅. By referring to Table 1, the parameter values involved in each case study are summarized. 

Table 1. Values of parameters in the algorithm. 

Parameters Nt N1 N2 S ∅ 

Values 5,000 4,500 500 1 0.1 
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2.4. Measurement of quality prediction. 

The implementation of indexes which are root-mean-square error (RMSE) and error of 

approximation (Ea), are carried out to evaluate the prediction performance of LW-KPLS 

quantitatively. The formula of RMSE is demonstrated in (8), while Ea is calculated using (9) 

[28-30]. 
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where ŷ
i
 and yi are the predicted and actual values of the output variable, respectively, while y 

is the mean of the actual output. RMSE1 and RMSE2 are the RMSE of training and testing data, 

respectively. Sometimes, the overall predictive performance of the LW-KPLS model is 

difficult to be determined when two RMSE values (RMSE1 and RMSE2) for each case study 

are varied. For instance, there could be a case where the error of training data is the smallest, 

the testing set error could be high. To solve this issue, Ea is applied. The lower the Ea, the better 

the predictive performance of the model [25]. 

2.5. Kernel functions. 

Kernel functions map the nonlinear data to a high dimension space [31]. In this study, 

several different Kernel functions are integrated into the LW-KPLS model; then, their results 

were accessed and compared. Table 2 shows the equations for Kernel functions employed in 

this study, where the majority of them have not been tested in the LW-KPLS model yet. 

Table 2. General and modified form of Kernel functions applied. 

Type of Kernel function Kernel function 

Linear Kernel (1) σyxy)k(x, T +=
 

Linear Kernel (2) σybxy)k(x, T +=
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Type of Kernel function Kernel function 

Power Kernel 
b

yxy)k(x, −−=
 

Log Kernel ( )1yx logy)k(x,
b
+−−=

 

Cauchy Kernel 
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2
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2.6. Specifications of computer configuration. 

In this section, the computer configuration used to execute the LW-KPLS model is 

specified. The operating system (OS) is Windows 10 (64-bit). Besides, Intel(R) Core (TM) i7-

4500U j(1.80 GHz) 2.40 GHz is the central processing unit or the main processor. Furthermore, 

the random-access memory installed is 4.00 GB, while the MATLAB version R2019b is used. 

3. Results and Discussion 

3.1. Case Studies. 

The LW-KPLS model with different Kernel functions was applied to three different 

case studies. The first case study is a predictive control of a wastewater treatment process [32]. 

The second case study is re-scaled the Rosenbrock function, which was studied by Turgut et 

al. [33]. Lastly, the third case study is the process of polymerization of methyl methacrylate, 

which was adopted from Shafiee et al. [34]. 

3.1.1. Case study 1: Predictive control of a wastewater treatment process. 

Case study 1 demonstrates the wastewater treatment process studied by Caraman, 

Sbarciog and Barbu [32]. One of the most significant environmental conservation processes in 

the industry is the wastewater treatment process. It is usually complicated, nonlinear, and 

multivariable as it has multiple inputs and outputs. In this wastewater treatment process, an 

aeration tank, a biological reactor, consists of a mixture of liquid and suspended solids. A 

microorganism population is raised to eliminate the organic substrate from the mixture. A 

settler acts as a clarifier tank to split the sludge and the clear effluent using gravity. An amount 

of sludge is recycled back to the aeration tank while the other amount is eliminated. The details 

of this case study, including the mass balance equations and their notations, can be found in 

Caraman, Sbarciog, and Barbu [32]. 

3.1.2. Case study 2: Rescaled Rosenbrock function. 

This case study was carried out by Turgut, Turgut, and Coban [33] and Picheny, et al. 

[35], in which a nonlinear test function expressed in (10) is, the Rosenbrock function, is 

employed. This function is re-scaling to keep a mean of zero and one variance [35]. 

( ) ( ) ( )( )  = + −−+−


=
3

1j

52
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22
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where x̅=15x-5 and -2.048 ≤xi ≤2.048. 
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3.1.3. Case study 3: Polymerization of methyl methacrylate. 

In this case study, a continuous stirred tank reactor (CSTR) with a cooling jacket is 

employed to polymerize Methyl Methacrylate. Surplus heat is delivered throughout the 

exothermic polymerization. Hence, the cooling jacket of CSTR plays an important role in 

removing the heat. There are three feed streams for CSTR, which include the feed streams for 

solvent, monomer, and initiator. At the outlet stream of CSTR, the unreacted polymer, initiator, 

solvent, and polymer product are transmitted downstream to undergo the separation process. 

Table 3 tabulates the input variables for this case study. On the other hand, zeroth, first, and 

second molecular weight distribution moments are the output variables. More details of this 

case study can be obtained in [34]. 

Table 3. Input variables of polymerization of methyl methacrylate. 

Input variable x1 x2 x3 

Variable description Initiator concentration (gmol/L) Monomer concentration (gmol/L) Reactor temperature (K) 

3.2. Results and discussion. 

3.2.1. Case study 1: Predictive control of a wastewater treatment process. 

As shown in Table 4, the values of RMSE for training and testing datasets and Ea with 

the Kernel functions after tuning the b in Case study 1 were tabulated in ascending order. The 

b must be tuned with care to prevent overestimation and underestimation [36]. A lower RMSE 

indicates the closeness of the regression line to the data points and gives a better fit to the data. 

In this case study, Linear Kernel (1) and Linear Kernel (2), as well as Polynomial Kernel (1) 

and Polynomial Kernel (2), gave the same results, and they have the lowest RMSEs. From 

Table 2 above, it can be seen that Linear Kernel and Polynomial functions have slightly 

different characteristics in which Linear Kernel is equivalent to a Polynomial Kernel of degree 

one [37]; hence the result of RMSEs as well as Ea by using Linear Kernel (1) and Linear Kernel 

(2) were equivalent. However, Linear Kernel (1), Linear Kernel (2), Polynomial Kernel (1), 

and Polynomial Kernel (2) were chosen as the best Kernel functions since they gave the lowest 

RMSEs, comparable central processing unit (CPU) running time, and more accurate as 

compared to other Kernel functions in this case study.  

Moreover, from Table 4, the range of central processing unit (CPU) running time for 

the training and testing data set, CPU1 and CPU2 of Linear Kernel (1), Linear Kernel (2), 

Polynomial Kernel (1), and Polynomial Kernel (2) were between 252s and 263s as well as 29s 

and 33s, respectively which are comparable to other Kernel functions. Moreover, they have 

similar results that gave the values of 0.6703, 0.6728, and 0.6731 for the RMSE of training and 

testing data and the Ea, respectively. Since the values of the output variable in this case study 

were small, between -1.9536 to 23.9143, thus the RMSE and Ea values were also small. In 

other words, the higher the values of the output variables, the bigger the values for RMSE and 

Ea. Besides, as the testing data set utilized training data to develop the model, hence it is 

observed that the RMSE1 is smaller than RMSE2 [38]. Other than that, among the Kernel 

functions, Multiquadric Kernel (MK) gave the largest value of RMSEs and Ea at 1.1922, 

2.5505, and 2.6863, respectively, when its Kernel parameter, b was tuned at 2. These results 

indicate that MK, which transforms the scattered data into a very precise, appropriate model of 

a graph or surface [39], does not fit the data in this case study. By comparing the results from 
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MK, the Linear Kernel (1), Linear Kernel (2), Polynomial Kernel (1), and Polynomial Kernel 

(2) improved the results by 43.78% for RMSE1, 73.62% for RMSE2, and 74.94% for Ea.  

Hence, it can be concluded that the predicted data from the LW-KPLS model with the 

Linear Kernel (1), Linear Kernel (2), Polynomial Kernel (1), and Polynomial Kernel (2) are 

said to be closer to the real nature of the data set as the Ea is lower as compared to the rest of 

the kernel functions. The training and testing data graphs on their actual output values against 

the predicted outputs from the LW-KPLS model with the Linear Kernel (1) were plotted and 

shown in Figures 1 and 2. Since these Kernel functions gave the best results, Linear Kernel (1) 

was chosen to plot Figures 1 and 2. From these figures, the predicted output of training and 

testing data is allocated more concentrated along with the actual output of training and testing 

data. These results indicate that the LW-KPLS model with Linear Kernel (1), Linear Kernel 

(2), Polynomial Kernel (1), and Polynomial Kernel (2) can fit the data in Case study 1 well. 

 
Figure 1. Graph of a training dataset of output variable of actual and predicted output values for output 1 from 

LW-KPLS model with Linear Kernel (1) in Case Study 1. 

 
Figure 2. Graph of testing dataset of output variable of actual query and predicted query output values for 

output 1 from LW-KPLS model with Linear Kernel (1) in Case Study 1. 

3.2.2. Case study 2: Rescaled Rosenbrock function. 

The RMSE values for training and testing data and the value of Ea with Kernel functions 

for Case study 2 were organized in ascending order, as shown in Table 5. By comparing the 

results obtained from the Kernel functions, Polynomial Kernel (1) gave the lowest RMSEs and 

Ea. When b was tuned at a value of 4, the RMSE values for training and testing data sets and 

Ea obtained from Polynomial Kernel (1) were 55.6670, 59.5754, and 59.9662, respectively. 

From Table 2, the results indicate the Polynomial Kernel (1) had mapped the dataset in this 

case study to a high dimensional space, enabling the LW-KPLS model to predict better results 

than the rest of the kernel functions. 

From Table 5, it can be found that the Polynomial Kernel (2) and Gaussian Kernel (GK) 

obtained the nearest values when their b were tuned at 10. Polynomial Kernel (2) gave the 

values of RMSEs and Ea as 57.3369, 61.4174, and 61.8255, respectively, while GK gave the 
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values of RMSEs and Ea 61.3635, 61.9157, and 61.9710, respectively. The Polynomial Kernel 

(2) can adapt to problems of normalized training data, while GK can estimate the anticipated 

value [40]. Thence, both Kernel functions can be considered to obtain the nearest values of 

RMSEs and Ea. Additionally, the results obtained using MK are the highest among the Kernel 

functions. This result indicates that the MK with a non-positive definite Kernel [41] does not 

work well with the data in this case study. MK gave the values of RMSEs and Ea, which are 

85.1186, 224.8771, and 238.8530, respectively. As compared to MK, Polynomial Kernel (1) 

performed an improvement of 34.60%, 73.51%, and 74.89% for RMSE1, RMSE2, and Ea, 

respectively. 

On the other hand, the average CPU running time for the training and testing data set, 

CPU1 and CPU2 of Polynomial Kernel (1), were 265.08s and 32.41s, respectively, which are 

not the lowest. However, it is still the best model since it gave the lowest RMSEs and Ea 

compared to other Kernel functions. In Figures 3 and 4, the comparison of the actual output 

values against the predicted outputs from the LW-KPLS model with Polynomial Kernel (1) for 

training and testing data were plotted and shown. Both predicted values of the training and 

testing data sets are to be seen within the data range of actual output. These results express the 

integration of nonlinear features in LW-KPLS with the Polynomial Kernel (1) function and 

have proved the effectiveness of LW-KPLS when dealing with the high nonlinearity of data 

[42]. 

 
Figure 3. Graph of a training dataset of output variable of actual and predicted output values for output 1 from 

LW-KPLS model with polynomial Kernel (1) in Case Study 2. 

 
Figure 4. Graph of testing dataset of output variable of actual query and predicted query output values for 

output 1 from LW-KPLS model with polynomial Kernel (1) in Case Study 2. 
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3.2.3. Case study 3: Polymerization of methyl methacrylate. 

This case study is a multi-input and multi-output case study with three outputs; hence 

three sets of RMSE values for the training and testing data sets and Ea in Kernel functions are 

being studied. Tables 6 and 7 show the values of RMSE for training and testing data, and Ea 

with the Kernel functions after tuning the Kernel parameter in this case study were 

demonstrated in ascending order. By carrying out the comparison, it can be concluded that the 

lowest RMSEs and Ea have been achieved by adopting Linear Kernel (1) and (2) as well as 

Polynomial Kernel (1) and (2). Hence, they are selected as the best models in this case study.  

For output 1, Linear Kernel (1) and Linear Kernel (2), as well as Polynomial Kernel (1) 

and Polynomial Kernel (2), provided the values of 1.0117×10-5, 5.9672×10-3, and 6.2180 for 

the RMSE for training and testing data sets and Ea, respectively. For output 2, Linear Kernel 

(1) and Linear Kernel (2), as well as Polynomial Kernel (1) and Polynomial Kernel (2) gave 

the values of the RMSE for training and testing data sets and Ea, which are 3.2955×10-5, 0.0197, 

and 21.3119, respectively. Moreover, output 3 gave the RMSEs for training and testing data 

and Ea of 3.5239×10-5, 0.0211, and 22.8213, respectively. Furthermore, in Table 6, CPU1 and 

CPU2 of Linear Kernel (1) and Linear Kernel (2), as well as Polynomial Kernel (1) and 

Polynomial Kernel (2), were ranged from 252s to 260s for training data, and 26s to 32s  for 

testing data. It can be said that they gave lower CPUs running times than the majority of other 

Kernel functions. 

Referring to Table 6, MK provided the highest values of RMSEs and Ea for the three 

outputs. It gave values of 3.2006×10-5, 0.0191, 20.0034 for RMSE1 of outputs 1, 2 and 3, 

respectively, 4.7745×10-4, 0.3383, 462.2747 for RMSE2 of outputs 1, 2 and 3, respectively, 

5.2200×10-4, 0.3702, 506.5018 for Ea of outputs 1, 2 and 3, respectively. According to Drewnik 

and Pasternak-Winiarski [43], MK is a non-positive and definite Kernel function. However, 

MK does not cope well with the data in this case study. As a result, Linear Kernel (1) and 

Linear Kernel (2), as well as Polynomial Kernel (1) and Polynomial Kernel (2), are greater than 

MK as they can enhance the performance better by 68.39% to 68.92% for RMSE1, 93.10% to 

95.39% for RMSE2, and 93.25% to 95.49% for Ea, respectively. 

 
Figure 5. Graph of a training dataset of output variable of actual and predicted output values for output 1 from 

LW-KPLS model with Linear Kernel (1) in Case Study 3. 

The graphs of training and testing data of the three output variables, which show the 

actual and predicted output values from LW-KPLS with Linear Kernel were also plotted, as 

illustrated in Figures 5 to 10. Similar to Case study 1, since these Kernel functions gave the 

best results, Linear Kernel (1) was chosen to plot Figures 5 to 10. Figures 5, 7, and 9 show that 

the predicted output values of training data sets for outputs 1, 2, and 3 are also close to their 
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actual output values. In contrast, the predicted query outputs of testing data for the 3 outputs 

are also closed to their actual query output values by observing Figures 6, 8, and 10. To 

conclude, LW-KPLS with Linear Kernel (1) and Linear Kernel (2) as well as Polynomial 

Kernel (1) and Polynomial Kernel (2) can fit the data in this study very well and accomplish 

superior performance when compared to other Kernel functions. 

 
Figure 6. Graph of testing dataset of output variable of actual query and predicted query output values for 

output 1 from LW-KPLS model with Linear Kernel (1) in Case study 3. 

 
Figure 7. Graph of a training dataset of output variable of actual and predicted output values for output 2 from 

LW-KPLS model with Linear Kernel (1) in Case study 3. 

 
Figure 8. Graph of testing dataset of output variable of actual query and predicted query output values for 

output 2 from LW-KPLS model with Linear Kernel (1) in Case study 3. 
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Figure 9. Graph of a training dataset of output variable of actual and predicted output values for output 3 from 

LW-KPLS model with Linear Kernel (1) in Case study 3. 

 
Figure 10. Graph of testing dataset of output variable of actual query and predicted query output values for 

output 3 from LW-KPLS model with Linear Kernel (1) in Case study 3. 

4. Conclusions 

In a nutshell, Kernel functions possess the ability to cope with the nonlinearity of the 

data and to map the data to the different high dimensions of space. In this study, the predictive 

performance of Kernel functions in the LW-KPLS model has been evaluated via 3 case studies, 

which are the predictive control of a wastewater treatment process denoted as Case study 1, re-

scaled Rosenbrock function designated as Case study 2; thus the process of polymerization of 

methyl methacrylate denoted as Case study 3. It was found that Linear Kernel (1), Linear 

Kernel (2), Polynomial Kernel (1), and Polynomial Kernel (2) have provided the best results 

among Kernel functions in Case studies 1 and 3 while Polynomial Kernel (1) is the best model 

in Case study 2. Since Polynomial Kernel (1) performed well in these nonlinear case studies, 

it can conclude that it is the more suitable Kernel function for the LW-KPLS model. From the 

results in these case studies, it was found that Polynomial Kernel (1) gave 34.60% to 95.39% 

lower for RMSEs values and 68.20% to 95.49% smaller for Ea values, especially the 

comparison made with the MK, which gave the highest values of RMSEs and Ea values.  
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Table 4. RMSE1, RMSE2 and Ea using LW-KPLS model with different Kernel functions for Case Study 1. 

Kernel LNK (1) LNK (2) PK(1) PK(2) GK PK HTK LK CK IMK LPK MK 

b 3 3 1 1 1 7 7 7 10 1 2 2 

RMSE1 0.6703 0.6703 0.6703 0.6703 1.2412 1.5566 1.3468 1.3468 1.3571 1.3057 1.1201 1.1922 

CPU1 (s) 251.22 262.81 256.49 259.12 251.67 286.39 258.20 291.57 263.51 263.20 253.62 268.36 

RMSE2 0.6728 0.6728 0.6728 0.6728 1.1214 2.2697 2.4264 2.4264 2.4432 2.4672 2.4910 2.5505 

CPU2 (s) 30.41 32.42 32.44 28.62 27.78 68.95 32.66 67.39 47.18 46.90 40.20 48.88 

Ea 0.6731 0.6731 0.6731 0.6731 1.3489 2.3410 2.5344 2.5344 2.5518 2.5833 2.6281 2.6863 

Legends: LNK(1) – Linear Kernel (1); LNK(2) – Linear Kernel (2); PK(1) – Polynomial Kernel (1); PK(2) - Polynomial Kernel (2); GK - Gaussian Kernel; PK - Power Kernel; HTK - 

Hyperbolic Tangent (Sigmoid) Kernel; LK – Log Kernel; CK - Cauchy Kernel; IMK - Inverse Multiquadric Kernel; LPK – Laplacian Kernel; MK - Multiquadric Kernel;. 

Table 5. RMSE1, RMSE2 and Ea using LW-KPLS model with different Kernel functions for Case Study 2. 

Kernel PK(1) PK(2) GK EK LNK (1) LNK (2) HTK CK IMK PK LK MK 

b 4 10 10 1 3 3 1 1 10 3 9 1 

RMSE1 55.6670 57.3369 61.3635 91.3526 124.9340 124.9340 131.2939 162.5037 157.9390 147.9563 140.5478 85.1186 

CPU1 (s) 263.23 262.04 255.24 258.67 258.66 257.97 252.84 263.50 271.94 264.69 286.57 273.10 

RMSE2 59.5754 61.4174 61.9157 92.7694 126.9206 126.9206 131.9680 177.4952 179.9464 189.9410 193.9760 224.8771 

CPU2 (s) 34.39 27.68 28.89 28.12 32.76 26.07 28.99 45.92 56.50 52.53 69.59 50.36 

Ea 59.9662 61.8255 61.9710 92.9111 127.1193 127.1193 132.0354 178.9943 182.1471 194.1395 199.3189 238.8530 

Legends: LNK(1) – Linear Kernel (1); LNK(2) – Linear Kernel (2); PK(1) – Polynomial Kernel (1); PK(2) - Polynomial Kernel (2);  GK - Gaussian Kernel; PK - Power Kernel; HTK - 

Hyperbolic Tangent (Sigmoid) Kernel; LK – Log Kernel; CK - Cauchy Kernel; IMK - Inverse Multiquadric Kernel; MK - Multiquadric Kernel; 

Table 6. RMSE1, RMSE2 and Ea using LW-KPLS model with different Kernel functions for Case Study 3 

Kernel LNK (1) LNK (2) PK(1) PK(2) GK HTK CK IMK LK PK MK 

b 3 10 1 1 1 1 1 1 9 10 1 

RMSE1,1 1.0117×10-5 1.0117×10-5 1.0117×10-5 1.0117×10-5 2.3970×10-5 2.2783×10-5 4.8152×10-5 4.6910×10-5 4.9723×10-5 4.7201×10-5 3.2006×10-5 

RMSE1,2 5.9672×10-3 5.9672×10-3 5.9672×10-3 5.9672×10-3 0.0168 0.0161 0.0303 0.0291 0.0303 0.0286 0.0191 

RMSE1,3 6.2180 6.2180 6.2180 6.2180 26.9303 27.0225 37.9383 35.2956 34.4207 30.3804 20.0034 

CPU1 (s) 259.84 261.38 253.95 251.74 265.81 251.81 311.74 315.63 301.61 340.23 267.44 

RMSE2,1 3.2955×10-5 3.2955×10-5 3.2955×10-5 3.2955×10-5 4.8407×10-5 4.6463×10-4 4.6578×10-4 4.6979×10-4 4.7655×10-4 4.7754×10-4 4.7745×10-4 

RMSE2,2 0.0197 0.0197 0.0197 0.0197 0.0289 0.3237 0.3249 0.3291 0.3371 0.3383 0.3383 

RMSE2,3 21.3119 21.3119 21.3119 21.3119 30.8969 428.1452 430.9400 439.7454 458.7096 462.4150 462.2747 

CPU2 (s) 31.00 29.28 29.33 25.15 32.00 42.98 93.18 94.46 75.38 117.59 47.11 

Ea,1 3.5239×10-5 3.5239×10-5 3.5239×10-5 3.5239×10-5 5.0851×10-5 5.0881×10-4 5.0755×10-4 5.1208×10-4 5.1923×10-4 5.2057×10-4 5.2200×10-4 

Ea,2 0.0211 0.0211 0.0211 0.0211 0.0301 0.3544 0.3544 0.3591 0.3678 0.3693 0.3702 

Ea,3 22.8213 22.8213 22.8213 22.8213 31.2935 468.2575 470.2402 480.1904 501.1385 505.6184 506.5018 

Legends: LNK(1) – Linear Kernel (1); LNK(2) – Linear Kernel (2); PK(1) – Polynomial Kernel (1); PK(2) - Polynomial Kernel (2);  GK - Gaussian Kernel; PK - Power Kernel; HTK - 

Hyperbolic Tangent (Sigmoid) Kernel; LK – Log Kernel; CK - Cauchy Kernel; IMK - Inverse Multiquadric Kernel; MK - Multiquadric Kernel; 
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Therefore, it can also be concluded that the MK is not the right Kernel function for the 

LW-KPLS model. Future studies can further improve the LW-KPLS model to cope with 

missing data. 
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