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Abstract

The application of deep learning is evolving, including in expert sys-
tems for healthcare, such as disease classification. There are several
challenges in the use of deep-learning algorithms in application to dis-
ease classification. First, deep learning for classification performs su-
pervised training, which means the algorithm requires large amounts
of labelled examples. Satisfying this requirement is not easy in health
care. Both high-quality samples (e.g. high-resolution images) and hu-
man experts may not be readily available to create the required num-
ber of samples. Second, deep learning performs end-to-end training,
which means the algorithm will require costly computing power and
uses inputs directly without pre-processing during the training pro-
cess. Third, when a particular disease is more health threatening or
has rarer samples to analyse than others in a group, a unique deep
learning algorithm may need to be applied to provide results specific

to the classification of that specific disease.

This thesis aims to improve classification to address the above men-
tioned problems. First, this thesis proposes a cost-sensitive imbalance
training algorithm to address an unequal number of training exam-
ples, further improving classification performance. The results from
the cost-sensitive algorithm have achieved state-of-the-art performance
for a commonly used dataset. Second, the thesis proposes a two-stage
Bayesian optimisation training algorithm. The experiment shows that
the algorithm can reduce computational cost and maintain the classifi-
cation performance. Third, the thesis proposes a dual-branch network
for the training of a one-class classification scheme. We use 14 one-

class classifiers; each of them was trained only with positive examples.



The experiment shows that the algorithm preserves classification per-

formance without the presence of counterexamples during training.
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Chapter 1

Introduction

There is a crucial shortage of medical experts and many demands to serve patients
with adequate diagnoses in a short period. The expert system is the de facto answer
to transfer knowledge from medical experts into computer hardware. There are also
some cases in which doctors falsely diagnose patients [30]. This research reduces
the risk [110] because the supervised learning method uses a dataset provided with
labels from multiple experts. This procedure reduces the risk of incorrect labels
being applied by a single expert. Different experts may have different opinions
about the labelling for an individual item in the dataset; the differences may occur
due to the experts’ knowledge, the level of expertise or the subjective preferences
[167].

An expert system technology is a subset of Artificial Intelligence that simulates
the process which experts use to solve problems [24]. The machine-learning-based
method is considered state-of-the-art in expert system technology. There are many
machine-learning approaches for the expert system, and a prominent subset is deep
learning. A primary advantage of deep learning over other machine-learning meth-
ods is that it does not require extensive feature engineering to feed the algorithm.

One prominent deep learning algorithm is the convolutional neural network.
The convolutional neural network’s (CNN’s) behaviour, which reduces inputs from
the upper layer into the bottom layer, is advantageous. This process automates
and supersedes manual feature engineering, which is commonly found in traditional
machine-learning approaches. The lowest layers in the deep network only consist

of valuable features for the final node’s classification. In terms of the capability
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to automatically separate only helpful features to perform classification, only a
decision-tree-based classifier works similarly with the use of Gini impurity and
entropy (92,179, 188].

Deep networks also inherit an essential strength from multilayer perceptrons
(MLP), the capability to distinguish non-linearly separable data. This case is also
widely known as “the XOR problem”. The XOR problem requires a classifier to
develop a non-linear decision boundary. A support vector machine (SVM) manages
this problem by mapping data into the higher dimensions—the approach is widely
known as the SVM “kernel trick”. Since a deep neural network is the more complex
version of an MLP, it handles the non-linearity of data without further extension.

There are cases when obtaining the labelled examples to suffice the training
algorithm is complex. The problem is not rare in medical cases for which the
availability of data is also subject to experts’ availability. However, the shortage of
high-quality examples may lead to further technical problems, such as imbalance,
which later inherently reduces the algorithm’s performance and the limitation of
classifying minority cases. In developing a unique method to classify a particular
class of interest, traditional classifiers accompany methods such as one-class SVM
and one-class nearest neighbour. The further extension to use a deep-network-
based classifier to improve the medical classification is a promising subject of
study.

Despite the preference for deep learning over other machine-learning approaches,
it has numerous challenges. This thesis will discuss the proposed approaches to im-
prove the challenges of deep learning in the field of medical images. This research

identifies several significant challenges, which are discussed in Section 1.1.

1.1 Challenges and Gaps

The challenge of the class imbalance within a medical images dataset is that the
number of images from some important diseases are much smaller than others.
Also, the numbers of positively labelled images with diseases are much smaller than
the images that are negatively labelled with diseases (healthy). One conventional
approach to overcome the imbalance problem is “class-weighting”, which aims to

provide cost-sensitive learning. However, there are various methods to perform
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class-weighting. The significance of this research is that it contributes to the
calculation of the importance of negatively and positively labelled images into the
form of weights in the cost function during training. This research addresses this
in [128] and Chapter 3.

The challenge is the limited dataset, owing to the high cost of labelling medical
data. Deep-learning algorithms work well when a large amount of training data
is available, but have limitations when only a small, annotated dataset is avail-
able. Further, the algorithm mostly works in supervised learning, which requires
well curated (labelled) data. The significant contribution of this research is that
we propose using cost-sensitive learning and one-class classifiers to alleviate the
problem. This research addresses this in [128] and Chapter 5.

There is also the challenge of time-consuming training. Deep-learning algo-
rithms are well known for the long training periods required to achieve small
improvements. This research proposes the use of extracted feature vectors from
deep-network backbones to mitigate the use of high-sized medical images and re-
duce the time required to train the deep-network. This research addresses this in
Chapters 4 and 5.

Network architecture is critical for image classification performance and differ-
ent architectures are required for various application problems. The architecture
learning and hyperparameter tuning will be investigated for efficient classification.
This research addresses this in [128] and Chapters 3 and 4.

Some classes of diseases are more dangerous or rarer than others; this research
aims to detect the most dangerous or smallest numbered samples of diseases using
a one-class deep-network classifier. This research expects to have robust classifiers
for specific cases. During our literature review, we did not find any peer-reviewed
paper that provides a deep-network classifier solution for this problem !. This

research addresses this in Chapter 5.

IThe latest query: “one class deep learning neural network for medical classification” through
Google (April 2021).
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1.2 Thesis Objectives and Chapters’ Contribu-
tions

This research formulates aims and objectives through this study of deep-learning

algorithms:

1. To use novel approaches to classify diseases based on deep learning and
improves existing results with state-of-the-art imbalance optimisation tech-
niques. This thesis investigates the effectiveness of using imbalance learning
for classification improvements. The primary advantage of imbalance learn-
ing optimisation is providing better training procedures for learning deep
networks when only limited high-quality original images are available. The
works involved are outlined in [128] and Chapter 3.The Chapter 3 contribu-
tion is to propose an approach that combines a weights calculation algorithm
for deep networks with the optimisation of training strategy from the state-

of-the-art architecture.

2. To alleviate the costs of training the neural network using extracted features
and provide deeper analysis from the architectural neural network perspec-
tive with a novel bayesian-optimisation training scheme. The research anal-
yses disease classification using extracted features from the neural network.
Architectural learning and hyperparameters tuning will be investigated. The
works that include parameter tuning are in [128] and are listed in Algorithm 1
of Section 4.2.3.3. A primary distinction is that in [128], the proposed method
applies to the original images’ inputs. In Algorithm 1 of Section 4.2.3.3, it

applies to the feature vectors inputs.

The Chapter 4 contributions are (i) the comparable classification perfor-
mance, using minor FLOPs neural-network architecture and Bayesian Op-
timisation for the features classification task (ii) the proposed Bayesian
iteration-partitioning framework works both for the Chest X-Ray dataset and
the skin cancer dataset (iii) the proposed method forces a more determin-
istic Bayesian-Optimisation, ensuring the maximum magnitude of results is
achieved whilst minimising the time required (iv) the proposed method’s ap-

plicability to mobile devices into implementation. The results are empirically
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reported and tested both on the Android simulator and the actual device
(Samsung Galaxy S8) (v) all the source codes are shared publicly [127] for

further study, ensuring that the works are repeatable and well-documented.

3. To use a novel neural network architecture and algorithm for a one-class
classification method in classifying diseases. The research investigates the
one-class classification method to classify the deadliest class of diseases or
the classes of interest or minor cases with deep networks in the proposed
medical image domain. This research focuses on a particular class for each
disease of interest, since in the medical image domain, most likely there is a
particular class that is more lethal than others, or there is a particular class
that is rarer than others. Further, there is an urgency to analyse several
classes. To provide sound classification performance for severe or minority
diseases, unique tuning and network learning will be used. The work involved

is outlined in Chapter 5.

The Chapter 5 primary contribution is that it proposes a dual-branch net-
work architecture to train a one-class classifier without the presence of coun-
terexamples. This study can show the advantage of the proposed method to
achieve better results than previous studies [26,62,64]. It also requires fewer

computational costs during training.

The works written in the thesis flow through the pipeline depicted in Figure 1.1.
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Figure 1.1: Pipeline of The Research

Imbalance Features One Class
Classification Classification Classification
THE:':JSE THE USE OUTPUT
OF THESES
MEDICAL
IMAGES FEATURES CONCLUSION
TACKLE ANALYZE ANALYZE
IMBALANCE ARCHITECTURES AND ONE CLASS CLASSIFICATION
PROBLEM HYPERPARAMETERS OF
LEARNING MEDICAL IMAGES CLASSIFICATION

This research informs the flow of the thesis for better reading and compatibility

with the research pipeline, as depicted in Figure 1.1.

1.3 Structure of the Thesis

Chapter 2 provides the background and preliminary knowledge of the topic.
It covers several important issues: the comparison of various expert systems,
the comparison of traditional machine-learning versus deep-learning algo-
rithms, the comparison of the traditional images classification task with the
task of features classification, and details of the network architectures used

during the study.

Chapter 3 discusses the research to improve classification performance from
the medical images dataset with the proposed cost-sensitive approach. This
chapter minimises the effect of imbalance examples in the dataset during the
task of disease classification. The primary results from the study have been

published in the refereed Springer Nature’s Scientific Reports journal [128].

Chapter 4 discusses the research to better understand the trade-off between
classification performance and computational cost. This chapter proposes

the two phases of Bayesian optimisation for features-based classification.
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This approach results in lower computation costs and competitive classi-

fication performances.

Chapter 5 explores the proposed network architecture with one-class classi-
fication training scheme and its usage in medical images classification tasks.
This chapter proposes that the network trained in the one-class fashion have
a fine-grained analysis of classification performance and the required com-
putational cost. The results show that the proposed one-class classification
is helpful to improve medical image classification. Chapter 6 provides con-

clusions and recommendations for future research.



Chapter 2

Background and Literature
Review

2.1 Chest Diseases

A study of the financial cost of diseases in 2015 showed that respiratory diseases
have contributed to $4 billion in Australian healthcare expenditures [6]. The latter
study [16] breaks down the cost of diseases into direct and indirect costs. The direct
cost refers to personal expenses related to direct access to health care. The indirect
cost refers to personal expenses caused by the reduced workload because of the
illness. The direct cost of asthma for each person in a year is up to USD3,000
in the United States (US) [16]. The US population of people over 18 in 2019 is
255,042,109 [36]; 8% of people over 18 severe had asthma in 2019 [19]. This study
can infer that in 2019, asthma, among other lung problems in the US, cost USD61
million. The highest indirect cost for asthma is recorded in South Korea, up to
USD1,274 for each person in a year [16].

According to the Australian Bureau of Statistics from the 2017 - 2018 National
Health Survey, 31 % of Australians suffer from chronic respiratory disease, roughly
7.4 million people [5]. The two most common chronic respiratory diseases in Aus-
tralia are chronic obstructive pulmonary disease (COPD) and asthma [5]. In 2003
COPD was the primary cause of death in Australia, with 5,400 recorded death
cases [7]. Later, in 2018, COPD was the fifth major cause of death in Australia,
with 7,113 deaths recorded [3]. Still, in 2018, a related chest disease, lung can-
cer, was in the fourth position with 8586 deaths [2]. During 2015 - 2016 COPD
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cost $977 million in the Australian health system [4].In detail, $536 million was
the cost of hospitals, $189 million for non-hospital services and $252 million for

pharmaceuticals [4].

Figure 2.1: The Anatomy of The Lung [18]
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2.1.1 The Taxonomy of Chest Diseases

From the disorder perspective, there are three types of major lung diseases [20]:

1. airway-related diseases, the conditions in which the disease obstructs the

flow of gasses in the lung

2. tissue-related diseases, in which disease influences the structure of lung tissue
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3. blood circulation-related diseases—conditions in which the disease attacks

the lung’s blood vessels.

In terms of the malignancy perspective, there are two prominent characteristics of

lung diseases :

1. non-cancer/non-malignant lung diseases—this includes asthma, interstitial
lung diseases (ILD) and chronic obstructive pulmonary disease (COPD).
ILD is a group of disorders that produce scars in the lungs. COPD is a

chronic obstruction in the lung’s airflow.

2. cancerous lung diseases—these consist of small cell lung cancer and non-
small cell lung cancer. The most common cause of lung cancer is smoking

behaviour.

2.1.2 A Brief Overview of Chest Diseases

In Section 2.1.2, the thesis reviews specific chest diseases that will be used in the
research. The discussion includes diseases that are potentially contagious, like
pneumonia and diseases leading to complications and death, like pneumothorax.

Generally, cardiomegaly is the abnormal enlargement of the heart. The clinical
signs of this disease are commonly found through chest X-ray diagnosis. According
to Amin (2020) [22], “A Chest X-ray with an enlarged cardiac silhouette and a
cardiothoracic ratio of more than 50% is suggestive of cardiomegaly”.

Edema is the accumulation of fluids within the lungs in an abnormal condition
[15]. Edema collects fluids within air sacs, “alveoli” of the lung, then it causes
breath shortness. Another disease, pleural effusion, collects fluids around the chest,
surrounded by the cause of the abnormality [12]. The primary difference between
edema and pleural effusion is the location where the fluids obstruct the lungs to
function properly. In pulmonary edema, the fluids build up in the air sacs, while
the pleural effusion collects fluid around the lung’s surroundings.

Pleural thickening is the condition in which the “pleura”—the special area
between the lung and chest wall—become thickened then develop scars in the
pleural tissues. The most common causes of pleural thickening are the inhalation

of special fibres called asbestos. Pleural thickening cannot be cured, but the right
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treatment will improve the patient’s life quality. However, pleural thickening has
a high likelihood to reduce an individual’s life expectancy. Pulmonary fibrosis
is a condition in which the lungs develop scars and become thickened in the air
sacs (also widely known as alveoli). When the cause of scars is unknown, the
more succinct term is “idiophatic pulmonary fibrosis” The more recent studies
attempt to investigate whether COVID-19 can lead to long-term pulmonary fibrosis
[130, 154].

Emphysema is another name for chronic bronchitis; the symptom is a con-
stant cough with phlegm [129]. Because it can cause severe damages to alveol,
emphysema is categorised as a COPD [9].

Atelectasis is a condition in which the lung cannot enlarge properly [1]. The
other name for atelectasis is “the collapsed lung” or “the shrinking lung” [73]. The
condition mainly results from reduced volume from the lungs, producing further
unwanted blocked airways within the lungs. A collapsed lung occurs when the
air breaks into the pleura. If the collapse only affects a part of the lungs, it is
an atelectasis. However, when the lungs experience total collapse, a more proper
term for the condition is pneumothorax [17].

The pulmonary hernia is a condition in which part of the lung pushes the weak
spot of the chest’s wall [145]. The effort to cure the patient is through a surgical
procedure and medical imaging products (e.g. computed tomography [CT] and
magnetic resonance imaging [MRI]) to recommend a surgical road map [37].

Pneumonia is a condition in which the lung has infections caused by virus
or bacteria or fungi [13,14]. Pneumonia results in the alveoli of the lung filling
with fluids or pus [14]. A recent study [189] provided conclusions to differentiate

common pneumonia and pneumonia resulting from COVID-19 in the chest X-ray.

2.1.3 Chest Diseases Classifications

A review paper from Ginneken (2017) [169] discusses several issues from the com-
puting domain in term of its application in the field of chest imaging. These issues

involve:

1. rib suppression—the objective is to subtract the bones from the image and

provide a better image of tissues for analysis
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2. fissure detection—aimed to emphasise the area boundaries that describe the

diseased lobes in the chest

3. airway segmentation—since several lung diseases obstruct the airway, to have

a precise understanding of the airway’s location is crucial

4. nodule detection and classification—in some cases the existence of nodules

in the image may represent the occurrence of cancers.

Figure 2.2: Training Distribution from Official Split
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Two deep neural networks, ChexNet and CheXNeXt, are proposed in Ra-
jpurkar et al. (2017) [136] and Rajpurkar et al. (2018) [135] respectively; both use
Densenet-121, which has been pre-trained with ImageNet. The primary differences
between these two methods are the labelling of the training datasets. The latter
relabelled the partially incorrect labels in the dataset, while the first work trained
the learning network based on the original National Institutes of Health (NIH)
labels. Recent works by Jaipurkar et al. (2018) [82] claimed that their results are
better than Rajpurkar et al. (2017) [136], but the results are not equally compara-
ble since the work of Jaipurkar et al. (2018) [82] used a different testing subset of
the dataset in the performance evaluation. The experimental results reported in
Rajpurkar et al. (2017) [136] are based on the testing subset; those from Jaipurkar
et al. (2018) [82] are based on the validation subset.
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Table 2.1: The Imbalanced Number of Samples

‘ Samples ‘ Number ‘
Healthy 60,361
Hernia 227
Pneumonia 1,431
Fibrosis 1,686
Edema 2,303

Emphysema 2,516
Cardiomegaly | 2,776
Pleural Thick. | 3,385
Consolidation | 4,667
Pneumothorax | 5,302

Mass 5,782
Nodule 6,331
Atelectasis 11,559
Effusion 13,317
Infiltration 19,894

However, Jaipurkar et al. (2018) [82] proposed new methods to address the
dataset imbalance and improve the signal-to-noise ratio. [82] pruned the training
dataset since they found many records that have no classes (unlabelled) and have
blurry images. Therefore, they decided to use only the labelled classes with good-
quality source images.

Bhatia et al. (2019) [31] used a CT scan in DICOM format of lungs to predict
cancer. The method [31] extracts DICOM images with the use of deep residual
networks. This stage produces the extracted features. The next step is to perform
the classification with the use of ensemble classifiers and extracted features.

According to Baltruschat et al. [26], the current state-of-the-art performance
for the dataset [173] classification performance was achieved by Giindel et al. [64].
Further research by Guan et al. [62], which used three-phase training procedures,
reported better performance than Giindel et al. [64]. However, the work [62] did
not share the split sets, which is critical for the performance evaluation. Further,
the re-implementation by another party in Github [139] reported lower results.
This study also noticed that the re-implementation [139] of [62] did not share
identical sets with the work of Giindel et al. [64]. Baltruschat et al. [26] noticed
that different split sets will lead to different performances for the dataset [173].

The chest X-ray dataset [173] was used to evaluate the performance of the proposed
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method. It contains 112,120 chest X-ray images from 30,805 unique patients and
has multilabels of 14 classes of disease.

The image resolution is 1,024 x 1,024 with the 8-bit channel. This research
downsampled the resolution as 224 x 224 and converted the channel into Red-
Green-Blue (RGB), which can be adopted to our backbone network. Chest X-Ray
14 only consists of frontal-view images. It does not have any lateral-view cases.
The number of positive samples for each class is much less than the negative
samples, as depicted in Figure 2.2.

To develop a neural network for medical diagnosis, patient data are necessary;
however, the positive class is in a minority and the negative class is in a majority.
The neural network is biased to the majority class and has poor performance on
the minority class. The common methods to balance the number of positive and
negative class for the traditional classifiers is by undersampling and oversampling.
After applying those methods, the numbers of each training pattern are equal.

A more sophisticated approach might involve algorithmic techniques to perform
cost-sensitive training [85]. Cui et al’s definition of the effective number of samples:
“the effective number of samples is defined as the volume of sample” [44]. Cui et
al. [44] developed a metric to determine the effective samples and reformulated
the loss function based on the numbers of effective samples in the positive and
negative classes. Wang et al. [173] contributed by providing a novel chest X-ray
dataset. Both [64,173] used the same method to balance the dataset; however,
the method from [64,173] is different than the method from [44] to address the
imbalance problem.

Cui et al’s approach [44] treats the contributions of training patterns to the
loss function equally for all output nodes; this is contrary to Wang and Giindel et
al’s methods [64,173], which use the distinct weights from positive and negative
patterns as the multipliers in the loss function. Although better classification
performance can potentially be achieved by Cui et al’s approach [44], it only
addressed effective samples [44] and the imbalances of positivenegative patterns
were not tackled.

In summary, Chest X-Ray image specific problems are the minimum labelling
from the experts, the data imbalance, and the diseases’ visibility in the Chest

X-Ray images.
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2.2 A Taxonomy and History of the Healthcare
Expert System

Yanase and Triantaphyllou (2019) [75] broke down the computer-assisted diagnosis
(CAD) system into two broad technical categories. The first is the knowledge-based
system, also widely known as the rule-based system. The second is machine-
learning types. This type of categorisation is also followed by other literature

[93,114,138]. The taxonomy of the expert system depicted in Figure 2.3 is our
compilation from literature [75,93,114, 138].

Figure 2.3: The Taxonomy of CAD Expert System [75,93,114,138]
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The machine-learning healthcare-based expert system’s main characteristic is
generating a model by learning from a set of data inputs, commonly referred to as
the “training” process. The data inputs are further called the “training data”. Con-
versely, a non-machine learning type—such as in the rule-based system—involves
the interference process from a set of rules to apply a supportive medical analysis

decision. The rule-based system requires a process called “knowledge engineering”,



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW Page 16

which transfers the expertise into a set of rules. In the machine-learning-based sys-
tem, this has been done through the “feature engineering” and “training” process.
Table 2.2 depicts the strengths and weaknesses for each approach. Table 2.3 sum-

marises the details between CNN and non-CNN architectures.

Table 2.2: The Comparison of Expert System Approaches

Technical Knowledge Knowledge Required .
approach transfer nput computational
PP method method resources
B - -
Rule-based Knowledge Xpert interviews
expert system engineerin then Low
P S & & | hard-code
Th h
Non fea‘iﬁ?g selection
neural network | Training or Low to high
expert system . .
feature engineering
Raw input (text or images)
Neural network . also .
expert system Training features High
(e.g.: extracted features)

Table 2.3: The Comparison of CNN and Non-CNN

Neural Network Special
Name Type | Labels Characteristics
Supervised
RNN / Non | o Handling
LSTM / CNN Semi Supervised | sequential time
GRU or data
Unsupervised
Autoencoder g;rll\] Unsupervised dEiC(jfeir
Convolutional Convolutional
CNN | Unsupervised encoder

Autoencoder

decoder

Image downsampling
Resnet CNN | Supervised and

residual layer

Image downsampling
DenseNet CNN | Supervised and

dense layer

Image downsampling
EfficientNet CNN | Supervised and

architecture search
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2.2.1 The Rule-Based Expert System for Health Care

Several classical CAD expert systems gained popularity because they are the “early
pioneers” in the field, such as MYCIN (1975) [150] and INTERNIST-I (1982) [113].
The IF-THEN rules in MYCIN [150] were set based on Bayes theorem, while in
the INTERNIST-I [113], the inference comes from a collection of symptoms as the
core supporting knowledge.

Bindoff et al. (2006) [32] proposed an incremental updating rule-based recom-
mendation system for a medication review. Whenever a new case arrives as input,
the system identifies whether the existing rules need to be updated. If updates
are required, the system will require the human expert to make the amendments;
then the new rule sets will be applied based on the human expert’s decision.

A rule-based alerting system to provide a remote heart-failure monitoring ser-
vice from Seto et al. (2012) [146] comprises the initial rule sets, which were created
by interviewing 10 clinician experts. The other nine clinician experts validated the
initial rule sets. The outputs are eight types of alert messages that provide rec-
ommendations on the basis of the input variables taken from the patients (weight,
blood pressure and heart rate).

A rule-based system is understandable and straightforward. However, this

study can also conclude several disadvantages:

1. There is a bottleneck in term of interviewing the experts to acquire knowl-

edge.

2. It is required to update the rule in the system to accommodate the new

knowledge.

3. There is a complicated problem when experts disagree. In the supervised
machine-learning system, an ordinary resolution for this problem is to make

the decision based on majority vote.

2.2.2 Applications of Traditional Machine-Learning Meth-
ods for Health Care

The thesis discusses some of the classical machine-learning approaches for health-

care applications in Section 2.2.2. kNN (k-nearest neighbours) is a lazy learner
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method that builds a model when the query is submitted [57]; it contradicts the
eager learner method that builds the model during training. The letter “k” refers
to the k-number of examples used to determine the label outputs for the new
examples submitted in the testing query. Examples of applications in the kNN
algorithm’s health care are outlined in [48,131,170]. The distance between the
training and test set was calculated using the Euclidean function [48,131,170].

Oliva and Rosa (2016) [131] distinguished normal versus epileptic (abnormal)
electroencephalogram (EEG) with kNN using cross-correlogram (CCo) features
from 200 EEG segments. The kNN with k = 1 achieves the highest negative
predictive values 91.18% NPV (91.18% is the normal fraction correctly classified
from the actual normal and false-negative normal), and 90.91% sensitivity (90.91%
likelihood that abnormalities of abnormal cases will be correctly classified). The
kNN with k = 7 achieves the positive predictive values 98.88% PPV (98.88%
abnormal fraction correctly classified from the actual abnormal and false-positive
abnormal) and 99.00% specificity (99.00% likelihood that normalities of the normal
cases will be correctly classified). The results were evaluated using 10-fold cross-
validation; there were no significant differences in each fold.

Elsayed and Syed (2017) [48] applied the kNN classification for Framingham
heart decision support in the cardiology field. The Framingham study set the
risk factors for early risk detection of coronary heart diseases. Data were taken
from a hospital in Saudi Arabia. The data include the following features for each
patient: age, gender, glucose level, total cholesterol, high-density lipoproteins,
systolic blood pressure and family history (treatment for hypertension and smoking
status). The kNN classifier’s highest accuracy is 66.7%.

Venkataramanaiah and Kamala (2020) [170] performed the kNN classifier on
heart rate variability features from the electrocardiogram (ECG) signal, achieving
the highest accuracy of 99%. The work [170] used a publicly available dataset [118].
However, Venkataramanaiah and Kamala (2020) [170] did not describe the detailed
procedure used to develop the training and testing sets.

SVM is a binary classifier. It optimises the best decision boundary between
two patterns with the help of support vectors. SVM is a linear classifier in nature,

but kernel function (e.g., radial basis function [RBF], polynomial) will improve its
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capability as a non-linear classifier. The examples of the applications in the SVM
algorithm’s health care are in [27,181].

Son et al.(2010) [181] applied several SVM kernels (linear, polynomial, RBF,
Sigmoid) to perform heart-failure (HF) classification tasks. The features were
11 variables of 76 patients: gender, age, spouse, education, monthly income and
duration of HF diagnosis, daily frequency of medication, ejection fraction, mini-
mental status examination-Korean (MMSE-K), medication knowledge and New
York Heart Association functional class. The best accuracy achieved was 77.63%,
with RBF kernel.

Battineni et al. (2019) [27] used SVM with non-linear RBF kernel to classify
dementia using MRI inputs. The input features were MRI’s longitudinal data,
which refers to the MRI session from 150 subjects (373 MRI data), and resulted
in 70% classification accuracy.

The decision-tree classifier splits features based on the criterion. Each split
quality is determined by its “impurity”. The measurement of impurity is either
by the use of Gini index or entropy, with the range values [0,0.5) and [0, 1) re-
spectively. The Gini index values or entropy from lower nodes of a decision tree
are near or equal to zero, which means lower nodes are purer than upper nodes.
Chern et al. (2019) [39] attempted to identify patients who are eligible to receive
insurance reimbursements for telehealth services (remote health services). The
solution is to develop a binary decision-tree classifier. The work [39] applied the
(C4.5 algorithm, which uses entropy to build the decision tree. The training data
are small-—200 records. The labels come from three experts in the field; majority
vote is used when experts disagree about a particular record’s label. The final
accuracy achieved was 98.5%.

The thesis has discussed several traditional classifiers approaches. To determine

which is the best solution, it very much depends on the case.

2.2.3 The Convolutional Network Applications for Health
Care

Esteva et al. (2017) [49] used 1.41 million images to train CNN for malignant

skin cancer detection. The base architecture came from GoogleNet Inception v3,
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which was pre-trained with 1.28 million images from the 2012 ImageNet recognition
competition dataset. Using the concept of transfer learning, they trained and
tested the architecture using their own 129,450 images, which were categorised
into 757 fine-grained classes of lesion disease. The novelty of fine-grain classes in
taxonomy within a disease partitioning scheme itself is a key contribution in this
research. Part of the upper taxonomy from Esteva et al.(2017) [49] is shown in
Figure 2.4.

The experimental results in [49] under 9-folds training configuration demon-
strate that the classification models that have been trained using fine-grain parti-
tions from nine class classification perform 72.1+0.9% accuracy. In contrast, the
coarser-grain partitions only perform 69.4+0.8% accuracy. The fine-grain parti-
tions from the three-class classification perform and 55.441.7% accuracy, while the
coarser-grain only perform 48.9+1.9% accuracy. To recover the fine-grained the
757-classes classification results into nine-class and three-class, Esteva et al.(2017)

sum the probabilities from the fine-grained descendants.

Bullous 2 jluberous’
pemphigoid ?g%‘:;'c‘;l SClerosis
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"@' b
@
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Figure 2.4: The Taxonomy of Skin Cancer Lesions [49]
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Menegola et al. (2020) [168] used transfer learning, resulting from multi-way
analysis of variance (anova) from several “factorial” experiments (factors/variables:
network model, dataset, resolution, augmentation, normalisation, segmentation,
training length, svin layer and weight transfer learning). Previously [111], Mene-
gola et al. (2017) used transfer learning from models that were pre-trained from dif-
ferent image domains (between related domain—e.g. retinophaty and skin—versus
unrelated domain—e.g. ImageNet and Skin). The experiments’ settings in [168]
and [111] are different, but the objectives are the same: to provide evidence of the
effectiveness of transfer learning.

The work of Kowsar et al. (2020) [94] performs hierarchical training to classify
the severity of Celiac Disease. The private dataset contains three parent classes
of bowel enteropathies: environmental enteropathy, celiac disease, and normal.
Celiac disease has four fine-grained sub-classes: type I, type Illa, type IIIb and
type Illc. Hence, Kowsar et al. designed two types of networks: the parent CNN
with three softmax node-outputs and the child CNN with four softmax node-
outputs.

Before being fed into the hierarchical training, the original images were pre-
processed into 1000 x 1000 image patches. The original images were fed into
an autoencoder to obtain the image patches. The bottleneck layer is in-between
the middle of the decode-encode layers; the patches were taken from features in
the bottleneck layer. The K-mean clustering was applied to the features; the
clustering removed unused background patches. Only the valuable patches that
contain meaningful information are fed to the network. Both the parent CNN and
the child CNN were fed with patches rather than the original images.

Kowsar et al. [94] define the custom CNN networks for baseline. They argue
that the existing pre-built networks (e.g. ResNet, Alexnet) are only capable of
handling small images 250 x 250 and not suitable for handling 1000 x 1000 in-
put. The hierarchical images classification (HMIC) system obtains 88.614+0.37%
F1-Score for non-whole slide classification, 90.8940.38% F1-Score for whole slide
classification

Zhang et al. (2020) [186] proposed using active learning with CNN to address
the imbalanced dataset problem. The work argues that an imbalanced problem

may exist in the medical dataset due to the expensive cost of the labelling process.
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Since there is a process to label the unlabelled dataset during training actively,
some also mention “active learning” as “semi-supervised learning”. The term “ac-
tive learning” means interventions from domain experts during the training pro-
cess.

The proposed active-learning [186] compute similarity scores from feature vec-
tor inputs. The algorithm [186] decides manual labelling is necessary for two types
of the unlabelled images—first, the unlabelled images with high similarity scores
to the labelled. Second, the unlabelled images with high dissimilarity scores to
the labelled, contrasting to the first. The first is assuming that similar images are
under the same classes. They need manual labelling from domain experts. The
second is under the assumption that highly dissimilar images are novel classes;
also, they need manual labelling from domain experts.

The work [186] results in a 94% average-recall value with the Endoscopy dataset,
and 92% average-recall value with the Caltech-256 dataset. The results were
achieved with only 5.6% unlabelled examples from the Endoscopy dataset, and
7.5% unlabelled examples from the Caltech-256 dataset need manual labelling by
experts.

The work of Galdran et al. (2018) [56] proposes improvements over Zhang et
al’s work (2018) [187], namely MixUp [187]. The early idea of MixUp [187] was to
provide synthetic augmentations based on the interpolation algorithm. Initially,
MixUp aimed to provide regularisation in order to prevent overfitting. Galdran et
al. argue that the classical MixUp approach ignores the class distribution, resulting
in underfitting for the minority class [56]. Therefore the balanced-MixUp [56]
improves the MixUp approach by enhancing the sampling strategy into a more
balanced majority-minority example in the training distribution.

The performance evaluation [56] was performed through quadratic-kappa met-
ric and Matthews Correlation Coefficient, respectively, for the Diabetic Retinopa-
thy grading’s - the Eyepacs dataset [8] and the Gastro-Intestinal images - the
Hyper Kvasir dataset [10]. The quadratic-kappa metric results are 80.78 and 91.15
under ResNext-50 architecture, respectively, for the Eyepacs and Hyper Kvasir
datasets.

The work of Liu et al. (2019) [102] does not use medical datasets. However, as

it might help medical images research, makes it reasonably sufficient to mention
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in the thesis. Liu et al. [102] propose a novel neural network architecture for 3D
convolutions and uses 3D images to feed the network. 3D images occupy large
GPU’s memory, similar to high-resolution medical images.

The voxel-based and point-based models are the prominent architectures to
perform convolution for 3D images. The first uses volumetric convolution, whereas
the latter uses point-based convolution. The voxel-based has good memory locality
but occupies memory cubically. On the other hand, the point-based is memory
savvy but prone to irregular access behaviour.

Liu et al. [102] propose a point-voxel CNN (PVCNN) that integrates volumet-
ric convolution with the point-based representation. Therefore, the PVCNN is
both more space-savvy and enhances the small latency to memory access. The
evaluation datasets were obtained from the case of indoor space segmentation us-
ing the S3DIS dataset [23] and 3D object detection using the KITTI dataset [55].
The indoor segmentation results in 14x memory speedup and 10x memory reduc-
tion. The 3D object detection results in 1.8x memory speedup and 1.4x memory
reduction.

A review paper from Wang et al. (2020) [172] provides details of the deep
neural network’s transfer learning. Transfer learning is the method of applying
previous knowledge from the source domain to the destination domain, where
there exists relevant tasks between the source and the targeting domain. The
manuscript classifies transfer learning into four types. The first is instance-based,
the second is feature-based, the third is parameter-based, and the fourth is rela-
tional knowledge. The instance-based mainly is to amplify the subset of matching
or the similar source domain’s data into the targeting domain. The action would
be effective when using the source’s data directly without adjustments. However,
the availability of a similar subset of source data may not always exist to match
the destination domain.

The feature-based mainly transforms the source data into the feature spaces
that match the targeting domain. The feature transformation will narrow the
source and target domain gap. The parameter-based is mainly to fine-tune and
use the parameters in the source domain as initialization to the targeting domain.
Hence the targeting domain is learning to solve its problem by adjusting the source

domain’s parameter. The relational knowledge transfer-learning mainly occurs
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when there are many compatible data points between the source domain and the
targeting domain. Hence the source domain and the destination domain share

some logical relationship intrinsically.

2.2.4 The DenseNet-121 Network

DenseNet-121 is popular to perform classification [173] with some other meth-
ods [26,64,173,180] that use ResNet [71]. DenseNet [80] and ResNet [71] utilise
different skip-connection approaches to pass features from previous layers to later
layers. ResNet [71] performs a summation of features for the skip connections
while DenseNet [80] performs concatenation from features. After the input layer,
DenseNet utilises 7 x 7 convolution in a stride 2 mode and uses 3 x 3 max pooling

in stride 2 mode. Then, it concatenates features in the first dense block.

Table 2.4: The Layer Comparison DenseNet-121 and ChexNet

Layers Output Size | DenseNet - 121 ChexNet
112 x 112 | 7x7 CONV stride 2 7x7 CONV stride 2
56 x 56 MAX POOL stride 2 MAX POOL stride 2
Dense block (1) 56 x 56 1x1 CONV x6 |1x1CONV x6
3 x 3 CONV 3 x 3 CONV
Transition (1) 56 x 56 1x1 CONV 1x1 CONV
28 x 28 2 x 2 AVG POOL stride 2 2 x 2 AVG POOL stride 2
Dense block (2) 28 x 28 1x 1 CONV X 12|1x1CONV X 12
3 x 3 CONV 3 x 3 CONV
Transition (2) 28 x 28 1x1 CONV 1x1 CONV
14 x 14 2 x 2 AVG POOL stride 2 2 x 2 AVG POOL stride 2
Dense block (2) 14 x 14 1x 1 CONV x24 |1x1CONV x 24
3 x 3 CONV 3 x 3 CONV
Transition (3) 14 x 14 1x1 CONV 1x1 CONV
Tx 7 2 x 2 AVG POOL stride 2 2 x 2 AVG POOL stride 2
Dense block (4) 7Tx 7 1x 1 CONV x 16 |1 x 1 CONV x 16
3 x 3 CONV 3 x 3 CONV
Classification layer |1 x 1 7 x7 GLOBAL AVG POOL 7 x7 GLOBAL AVG POOL
1000D SOFTMAX 14D SIGMOID

There are four dense blocks in DenseNet; each dense block consists of at least
six consecutives of a 1 x 1 convolution layer, followed by a 3 x 3 convolution layer.
The numbers of these consecutive 1 x 1 and 3 x 3 layers in dense blocks depend
on the types of DenseNet which are either 121,169,201 or 264 layered DenseNet.

However, all DenseNet configurations have four dense blocks, and the differences
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are only in the number of consecutive convolution layers within a dense block.
The concatenated features from a dense block in DenseNet are then downsampled
through a transition layer.

The transition layer consists of a 1 x 1 convolutional layer and a 2 x 2 average-
pool layer in stride 2 mode. A dense block in DenseNet is followed by a transition
layer consecutively. ChexNet by Rajpurkar et al. [136] initiates the popularity of
DenseNet-121 as the backbone network to perform the chest X-ray classification.
ChexNet [136] consists of the sigmoid functions in the last layer. ChexNet changes
the output dimension of the final classification layer of DenseNet-121 from 1,024
dimension of softmax output into 14 dimensions of sigmoid functions. The changes
from 1,024 to 14 nodes reflects the number of classification labels in the chest X-
ray dataset [142]. Table 2.4 depicts the layer differences between ChexNet [136]
and DenseNet [80].

2.2.5 EfficientNet

Table 2.5: The EfficientNet-B0O Layer [161]

Stage Operator Resolution Channels Layers
1 Conv 3x3 224x224 32 1
2 MBConvl1, k3x3 112x112 16 1
3 MBConv6, k3x3 112x112 24 2
4 MBConv6, k5x5 56x56 40 2
5 MBConv6, k3x3 28X28 80 3
6 MBConv6, kbxb 28X28 112 3
7 MBConv6, kbxb 14x14 192 4
8 MBConv6, k3x3 <7 320 1
9 Conv 1x1 & Pooling & FC 7x7 1280 1

The recent work from Tan et al. [161] introduced EfficientNet. It proposed a
formulation to perform grid search among three prominent aspects of the deep-
network’s architecture: depth, width and input resolution. The depth defines the
number of layers, the width defines the number of nodes for each layer and the input

resolution defines the size of the input images. The compound scaling from those
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three components is then composed into different architectures from EfficientNet-
B0 into EfficientNet-B7. The networks use the mobile inverted bottleneck layers,
similar to [143,160]. The layers are then concatenated to a squeeze-excitation
layer [78]. The ReLu6 function is capped at the magnitude of 6; it was used in
MobileNetV2 [143]. However, EfficientNet replaces the use of ReLu6 with Swish.
Equation 2.1 shows the difference among the ordinary ReLu function, the ReLu6

[97] and the Swish activation function:

ReLu(z) = max(0, x) (2.1)
ReLu6(x) = min(maz(0,z),6)
Swish(z) = xReLu(x)

The layers of EfficientNet-B0 are depicted in Table 2.5. The further scaling of
EfficientNets BO into B7 are then defined by the grid-search formula, as reported
in [161]. After the input layer, EfficientNet uses a 3 x 3 spatial convolutional
layer in stride 2 mode; then, it uses MBConv1, the linear bottleneck and inverted
residual layer [143]. After the MBconvl layer, the network has six consecutive
MBConv6 layers with various 3 x 3 and 5 x 5 kernels, as listed in Table 2.5. Each
MBConv6 has three consecutive layers consisting of a 1 x 1 convolutional layer,
a 3 x 3 or 5 x b5 depth-wise convolutional layer and another 1 x 1 convolutional
layer. Each MBConvl has two consecutive layers consisting of a 3 x 3 depth-
wise convolutional layer and another 1 x 1 convolutional layer. The final layer
consists of 1 x 1 convolutional, the global average pooling and 1,280 nodes of a
fully connected layer. Following the previous modification of DenseNet-121 into
the specific implementation of the chest X-ray [173] classification problem, we also

modify the final output layer from 1,280 nodes into 14 nodes.

2.2.6 The Conclusion: Traditional Classifiers Versus Neu-
ral Networks

The traditional classifiers, such as an SVM, a decision tree or a logistic regression,
require feature engineering to perform classification. The better features chosen

during feature engineering will produce more accurate classification performance.
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However, it is also the primary disadvantage of traditional classifiers; the incorrect
features will not satisfy classification performances. Further, the trials to select
the appropriate features may be time-consuming. Despite the necessity of feature
engineering, a neural network has the advantage of performing end-to-end training
to output a final classification’s predictions. The removal of feature engineering in
the neural network will reduce the risk of incorrect features for classification. The
feature engineering in the traditional classifier is complex; the resulting features
do not always deliver good classification performance.

Conversely, the traditional classifier, such as a decision tree, has better explain-
ability. The classification process of a decision-tree classifier is more interpretable
than that of the neural network type. Also, the decision tree supports feature

importance, which sorts the rank of features being used during classification.

2.3 The Binary, Multiclass and One-Class Clas-
sification Overview

Speaking of the characteristics of a classifier, the decision boundary to separate
the distinct training patterns is illustrated in Table 2.6. This study refers to the

term “training-patterns” as the patterns present in the training process. The re-

Table 2.6: Decision Boundary

One Class Binary Multiclass

search presented in this thesis defines the task of classification in terms of quantity
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from the training patterns into four categories: binary classification, multiclass
classification, one-class classification and multilabel classification. The multilabel
problem exists when there is a training example that belongs to more than one
training pattern [109]. However, the multilabel classification, in most cases, con-
verts into binary classification or multiclass classification problem. Therefore, in

Section 2.3, this study discusses only three prominent types of classification.

2.3.1 Binary Classification

Binary classification occurs when there are two training patterns present during
training. The binary classification objective is to assign a training example to one
of two categories [47].

Some popular algorithms suitable for performing binary classification include
SVM, logistic regression, multilayer perceptron/neural network, decision tree and

Naive Bayes. Prominent advantages of a binary classification task are:

1. The binary classification uses fewer labels than multiclass classification. In
the case of an equal number of examples between multiclass and binary
classification tasks; the binary classification task requires fewer computing

resources because of this reason [124].

2. Binary classification produces a more complex decision boundary than one-

class classification tasks [90].

3. Several binary classifications can be extended into a multiclass classification

to solve more complex problems [156].

4. Binary classifier is suitable for both linear and non-linear classification prob-

lems.

The primary disadvantage of the binary classification is when the data suffers
from massive imbalance to one of the labels; then, the classifier tends to result in
non-representative accuracy outputs [40] because there was only a small fraction

of samples from the minority pattern to learn.
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2.3.2 Multiclass Classification

Multiclass classification occurs when more than two training patterns are available
for the training process. Khan et al. (2014) [90] emphasised a constraint that in
the multiclass classification, the decision boundary is supported by the presence
of training examples from each class.

Sugiyama (2016) [156] proposed that solutions to address the multiclass classi-
fication can be in the form of: (i) the decomposition of the multiclass classification
problem into several binary classifications; and (ii) the direct method to approach
the multiclass problem (e.g.: support vector extension for multiclass problem;
the typical procedure is to use the kernel trick to provide the non-linear decision
boundary, which can capture multiclass patterns) [156]. Other works [115,134] use
the tree-based algorithm as a direct approach to address multiclass classification.

The decomposition of a multiclass problem into several binary classifications
is also called “binarization”. “A class binarization is a mapping of a multiclass
problem on several two-class problems that allows a derivation of a prediction
for the multiclass problem from the predictions of the two-class classifiers. The
two-class classifier is usually referred to as base learner” [60]. Generally, there are
two types of binarisation scheme. The first is one-versus-rest or one-versus-all,
abbreviated as OvR or OvA. Rajpurkar et al. (2017) [136] classified a single class
of pneumonia among 14 classes of lung cancer with the OvR strategy. The second
is the one-versus-one (OvO) strategy.

Suppose we have N different training patterns, the binarisation for N multiclass
problem will result only in N binary classification for OvR/OvA schemes and N
- (N —1)/2 binary classification for the OvO scheme.

In terms of comparison between the binarisation and direct method to address
the multiclass classification problem, this study quotes the opinion of Sugiyama
(2016) [156] “However, the direct method does not necessarily perform better
than the reduction approaches, because multiclass classification problems are usu-
ally more complicated than binary classification problems. In practice, the best

approach should be selected depending on the target”
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2.3.3 Omne-Class Classification

The application of one-class classification (OCC) is useful when (i) there is an
imbalance in the dataset [58] or (ii) there is a case when the end user “may only
be interested in a specific class without considering other” [100]. In the context of
medical images classification, a dataset can have multiple labels, but the subject
of interest for the classification might be in the specific patterns. The litera-
ture [87,90] suggests that OCC occurs when there is only one training pattern.
Other patterns are either absent or available in limited amounts (hence, the other
patterns are presented as outliers). Khan et al. (2014) [90] emphasises a con-
straint: “only one side of the classification boundary can be determined using only
positive data (or some negatives)”. Figure 2.5 depicts the taxonomy of the OCC
from Khan et al. (2014) [90].

Figure 2.5: The One Class Classification (OCC) Taxonomy [90]
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The concept of OCC is principally different from binary classification, multi-

class classification. Only one class is present during training [52, 133]. Generally,
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there are two procedures to train a one-class classifier [45,90]. The first is to train
with only the presence of the regular pattern. The second is with the normal and
the other patterns as the outliers. These training procedures then create a final
classifier model, which only recognises the present pattern during the training as
the standard class, and the other patterns as the outliers.

Another study [52] described three approaches to train an OCC. The first is to
train using the majority pattern; the second is to “fine-tune” a pre-trained OCC
into the minority pattern. The third is to train the OCCs in both majority and
minority and combine the outputs.

Yu et al. (2003) [183] proposed an SVM optimisation algorithm employing a
single class support vector mapping convergence (SVMC), using only minimum
training examples to maintain the decision boundary and take less training time .
The literature [183] reports that SVMC produces better accuracy decision bound-
aries than regular SVM with fully labelled data and the one-class SVM [106, 107]
(OSVM). However, the latter OCC work of Yu et al. (2005) [184]—the mapping
converge algorithm—provides slightly better accuracy decision boundary than does
the SVMC [183].

Several works [67,68,163] have proposed approaches to address the multiclass
classification problem with the use of one-class learners. Ban and Abe (2006)
[163] proposed the ensemble approach from several OCCs with the adaptation
from previous works: support vector domain description (SVDD) [164] and kernel
whitening-kernel principal component analysis (KW-KPCA) [165]. The proposed
method [163] shows faster training and better generalisation under the appropriate
given parameters.

Hadjadji et al. (2014,2017) [67,68] proposed “a dynamic weighted average
rule to measure the importance of the used classifiers”. The work [67,68] trains
separately several distinct classifiers in the same set. There are three classifiers
in the early work of Hadjadji et al. (2014) [67]: one-class nearest neighbour, one-
class SVM and auto associative neural network. Later, Hadjadji et al. (2017) [68]
used five classifiers with two additional classifiers: one-class K-center and one-class
principal component analysis (PCA). The proposed approach [67,68] ensures the

best classification performance is chosen among those three classifiers.
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Gao et al. (2020) [59] propose an Image Complexity based on One-Class Clas-
sification (ICOCC). The work [59] uses perturbation to augment four imbalanced
datasets. Gao et al. argue that the perturbation can improve the one-class clas-
sification performance. Despite the perturbation behaviour, which is quite similar
to ordinary augmentation. Gao et al. [59] note that perturbation and augmen-
tation are pretty different. Perturbation aims to build a multiclass classification
task from single-class examples. In contrast, augmentation aims to generalise the
classification performance (e.g. reduce the overfitting).

The proposed work [59] evaluates four datasets, namely: The Breast Mag-
netic Resonance Imaging (MRI) dataset, The Breast Full-Field Digital Mammog-
raphy (FFDM), The Space-occupying Kidney Lesion (SOKL) and HEP-2 Cell
Image dataset. The other competing methods for benchmarks are One-Class SVM
(OCSVM), Convolutional Autoencoder OCSVM (COCSVM), Deep Structured
Energy-Based Model (DSEBM), Deep Autoencoding Gaussian Mixture Model
(DAGMM). The evaluation metrics are AU-ROC and AU-PRC; for AU-PRC, the
calculation is performed in two ways. First, the samples for a particular class
are considered positive. Second, the samples for all-other classes are considered
positive. Results from ICOCC [59] provide improvements over other methods on
all the evaluation datasets.

The research presented in this thesis intends to improve the multiclass medical
images classification problem with the help of the one-class neural network ap-
proach. The approach of Ruff et al. (2018) [141] and Perera and Patel, 2018 [133]
proposed OCC using a neural network, but their works are not in medical case
problems.

This research trains the network with only positive examples. The reasons for

choosing this approach for this study chose are listed below:

1. A one-class classifier with a single pattern training procedure represents a
better definition than the one also trained with outlier patterns. Despite
the number of outliers examples, the outliers’ patterns render the training

procedure more similar to binary or multiclass classifiers.

2. This study aims to combine the strength of compactness and descriptiveness,

which is similar to [133]. These two concepts represent different perspectives.
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Compactness exists when the decision boundary converges to a single pat-
tern. Conversely, descriptiveness exists in the binary or multiclass settings
because of the discriminative behaviour among different patterns. A pri-
mary distinction of our work with [133] is that this study proposes a custom

network architecture.

2.4 The Computational Cost of the Use of Fea-
tures for Classification Task

Features-based methods refer to the use of salient features from a dataset, rather
than using the dataset source in the original forms (e.g., images and text). The
main objective in performing features-based classification is mainly to reduce the
computational cost. This type of study is essential when the application domain
consumes significant computational environment (e.g. large input size), but only
limited resources are available. In terms of the importance of low-cost neural
network architecture, previous works from Howard et al. [76] and Sandler et al.
[143] proposed low FLOPs (floating point operations) architecture compatible for
mobile devices.

The advantage of [76, 143] is that those works do not perform the feature-
extraction process; they use the end-to-end training model. The key to achieving
the low-cost architectures is the grid search of the width factor from the convo-
lutional filter and the input size’s grid search into the maximum of 224 x 224
pixels. Thus, this type of approach also comes with trade-offs. Reducing the input
size and the width of the convolutional filter also leads to reduced classification
accuracy. Hence, this particular method might not be effective when accuracy is
critical, such as in medical image classification tasks. A significant advantage of
feature extraction is its capability to use the feature vectors from large size input
without sacrificing accuracy. The feature extraction will gain a better trade-off
in terms of computational resources versus classification accuracy, compared with
reducing the input size.

Sarkar et al. [144] extracted features with AlexNet [98] from 640 x 360 reduced
pixels, which were initially 1,280 x 720 in size. The work [144] then used the
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extracted features to run the traditional SVM algorithm for face detection in sev-
eral mobile telephone platforms, such as Samsung Galaxy, HT'C One and Google
Nexus. This study can have different perspectives regarding the computational
cost from the classifier model: either from the deployment or production perspec-
tives. For example, Sarkar et al. [122] was more concerned about the aspect of
the final classification model deployment into the mobile devices, while Nanni et
al. [122] emphasised the requirements of substantial computational resources dur-
ing the classifier’s training. Nanni et al. [122] combined the feature extraction
from the neural network with the handcrafted features to increase accuracy using
low computational resources required during the training process.

Understanding the computational-cost perspective is critical and affects the
calculation of the total final required resources. It also clarifies a separation be-
tween training and testing costs. For example, Howard et al. [76] and Sandler
et al. [143] did not consider the architectural-search process in the total sum of
required computational resources. Further, Sarkar et al. [144] did not count the
backbone network’s training process in the sum of required computational re-
sources for the final model. This study can conclude that these works [76,143,144]
care more about the deployment computational-cost perspective than the produc-
tion perspective.

In general, there are three ways to obtain dataset features. The first is to
perform feature selection; this method is performed by handcrafting the selected
features from the dataset. The easy examples use feature importance from a
decision-tree algorithm [89] or a PCA algorithm [151]. The second is to perform
traditional feature extraction. The method extracts features from the dataset to
acquire the desired features; some of the famous methods are scale-invariant feature
transform (SIFT) [121], speeded-up robust features (SURF) [28] and histogram of
oriented gradients (HOG) [88]. The third is to perform a deep-network-based fea-
ture extraction; the method extracts the features with a neural network’s help.
This method is sometimes also mentioned as “deep features”. The first and second
methods are more manual with the supervised human intervention process. Con-
versely, the third is more automatic with the use of pre-trained weights from the

neural network.
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However, a combined method is widely known as “feature fusion”. This method
combines the approaches above. For example, feature fusion is performed by con-
catenating the features from two processes: the feature selection from the random
forest algorithm and the feature extraction from a neural network [63]. Another
feature fusion type joins the feature extraction from a neural network and the
feature extraction from traditional methods [122].

Another advantage of using a deep-network-based approach is that it requires
less expertise to comprehend the application domain [148] than does the con-
ventional features of handcrafting methods. Also, handcrafted features are more
problem-specific and not guaranteed to solve other problems because the features
were designed by human experts [148].

The neural network backbone to perform feature extraction can be supervised
(e.g. convolutional network) or unsupervised (e.g. autoencoder). An example
of the applicability of feature-extraction work for the imbalanced classification
problem is in [84],in which Jiang et al. (2019) applied the feature extraction from
an autoencoder. The work [84] improves the classification problem that a medical
dataset suffers from—the intrinsic imbalance classes. The same dataset was used
later in other work [99],but a different backbone network was applied to extract
the features. Li et al.(2017) [99] barely used the convolutional network for the
extraction. In the term comparison of accuracy between “the deep features” and
the use of handcrafted features, a deep-network classifier performs better than a
traditional classifier [84].

The use of the unsupervised network for feature extraction, such as in [84],
extends the requirements of “deep features” to a more minimum domain expert.
The statement is closely related to the autoencoder network’s capability to per-
form the features extraction without the labels from the domain experts. Unlike
the supervised network, an autoencoder minimises the reconstruction loss (error)
during training rather than minimising the errors from the predicted label.

The research presented in this thesis’s approach is to use “deep features” ex-
tracted from supervised network EfficientNet-B3. This is because the original
images in the NIH dataset have large size (1,024 x 1,024) and the use of “deep
features” significantly reduces the computational resources. Further, this study

maintains accuracy through the Bayesian optimisation process.
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Figure 2.6: The Datasets’” Timeline

2.5 The Datasets of Medical Images

A primary reason to nominate candidate datasets listed in Table 2.7 is because
these datasets have labels from experts in their particular domains. Hence, the
datasets are suitable for the supervised tasks, such as deep-learning methods. The
DDSM dataset contains 2,620 patients’ cases in high resolution and each case has
more than one image. However, Ribli et al. (2017) [140] reported that the dataset
is not fit for evaluation purposes; hence, they only used the DDSM dataset for
training and used INBreast dataset [119] for testing. This research obtained the
INBreast dataset [119] by requesting privately, and the original owner obliged us
to cite them in our publications. This dataset has 410 images from 115 cases.
CBIS-DDSM is an improvement subset from the DDSM dataset, which has been
curated for better CAD purposes.

The international skin imaging collaboration (ISIC) dataset uses photographic
images to reduce skin cancer mortality, especially melanoma. The use of images as
a skin cancer detection tool aims to reduce the need for biopsies (test tissue taken
under a microscope). The ISIC dataset has roughly 23,000 cancer images. NIH
Chest-X-Ray 14 has 112,120 frontal views for 14 classes. As mentioned previously,
the Chest-X-Ray 14 has an imbalance class problem. A large dataset musculoskele-
tal radiographs (MURA) of bone X-rays has 40,561 abnormality images. MURA

is suitable for binary classification task.



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW Page 37

Table 2.7: The Datasets

Title How To Obtain

Database for Screen- | http://marathon.csee.usf.edu/Mammography/Database.html
ing Mammography
(DDSM)

INbreast: Toward | By request to INBreast dataset owner
a Full-field Digi-
tal Mammographic
Database [119]
International skin imag- | https://www.isic-archive.com
ing collaboration (ISIC)
dataset for skin cancer
detection

An updated and stan- | https://wiki.cancerimagingarchive.net/display/Public/CBIS-
dardised version dataset | PDSM

from Curated Breast
Imaging  Subset  of
Database for Screening
Mammography (CBIS-
DDSM)

The ChestX-ray14 | https://nihcc.app.box.com/v/ChestXray-NIHCC
dataset
A large dataset MURA | https://stanfordmlgroup.github.io/competitions /mura/
of bone X-rays
The Glaucoma dataset | The dataset was previously used in a scholarly work
91

2.6 Discussion

Deep learning has become the most prominent algorithm in medical image anal-
ysis. However, its applicability in the real world faces several challenges. These
include the requirement of high-computing resources and sufficient labelled data.
According to the literature, there are several approaches to tackle the problems.
In most cases, the best solutions for each case are specific, and no method works

best for all problems.



Chapter 3

Imbalance Classification: The
Aggregate Method for Chest
Cancer Classification

3.1 Introduction

In this work, a novel focal-loss function is proposed to address the imbalance of
positive—negative patterns and tackle the classification correctness in both positive
and negative samples when training the neural networks. The performance of the
proposed focal-loss function is evaluated by performing chest X-ray classification,
which relates to the imbalance data [173].

This research also proposes the use of EfficientNet [161] with progressive image
resizing under two-phase training in complement with the proposed loss function.
The motivation to use EfficientNet is to inspect the outcome of the proposed
loss function into different scaling architecture. The aggregate of the proposed
loss function and the two-phase EficientNet training achieved 2.10% improvement,
which is measured with area under receiver-operating-characteristic curve (AU-
ROC). Also heatmap visualisation shows that better coverage of disease can be
achieved by the proposed aggregate approach compared with the baseline [136].

To achieve fair benchmarks, this research reports several results from various
split-set options for the performance evaluation. This research performs three
split-set experiments, which aim to provide better evaluation and comprehensive

analysis ; the first is by the use of “official” splits from [157]. The second is
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under five-folds cross-validation configuration, which was also used in the work of
Baltruschat et al. [26]. The last one is via use of identical splits from the public
Github page [139,174].

This research achieves state-of-the art results for the classification problem of
the chest X-ray dataset [173], measured under these three split-set configurations.
The dataset [173] for base metrics includes the same training, validation and test
splitting set from [129]. This research refers to the split set [157] as “official
split”. [157] and has two groundtruth files as labels. They are train val list.txt,
which consists of 86,524 samples, and test list.txt, which consists of 25,596 samples.
Baltruschat et al. [26] emphasised that different splitting of datasets [173] has a
significant impact on classification performance. Since the splitting of training and
test data is the same, the benchmark is fair. Figure 2.2 and Table 2.1 show that
the class distribution is imbalanced since the positive and negative samples are
very different.

This research contributes to the improvement of medical image classification
problem and addresses the imbalance problem within the chest X-ray dataset.
Also, this research proposes the advancement of the use of state-of-the-art neural
net architecture for the final classification performance—The EfficientNet—with
two-stage training. The progression of Chapter 3 is the improvement of classifica-

tion performance over previous studies [26,64, 136, 173].

3.2 Method

3.2.1 The Existing Weights Function and Network Archi-
tecture

Wang et al. [173] and Giindel et al. [64] defined the weights, wi, and wy_, of the

positive and negative samples for the & — th pattern.

P, + Nj,

Wk+ = Pk (31)
P, + Nj,
TN

where P, and N} are the numbers of positive and negative samples for the the k"

pattern. However, Cui et al. [44] used both wy, and wy_ equally to develop the
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loss function. Lin et al. [101] proposed the focal-loss function:

Lioc(p) = —a(1 = p)log(p). (3.2)

p is the prediction.

In Equation 3.2, parameter « attempts to balance the positive—negative sam-
ples, while 7 is adjusted to release the easy samples and dominate the hard samples;
the easy and hard samples are those classified correctly and incorrectly, respec-
tively. Generally, v > 0; when v = 0 focal loss is the same as an ordinary
cross-entropy loss [101]. The experimental results showed that easy samples are
down-weighed when v &~ 1; The samples are further down-weighed when v > 1.
Determination of « is discussed to demonstrate the impact to the focal-loss func-

tion (see Equation 3.2). The parameters chosen as below [44]:

g= 2D (33)
a(p) = 11—_55’“

where n,, is the number of the k;, pattern, and N is the number of samples.
Conceptually, S is used to adjust the significance of the number of samples.
N(B) is the sum of all ay-s, which corresponds to the 3 value for each k-pattern.
N(p) is used for normalisation with the number of patterns. However, Cui et
al. [44] ignored the negative pattern in the weight calculations, which is very

common in the medical image classification problem.

3.2.2 Proposed Weights Function and Network Architec-
ture

The normalisation of oy, formulated in Equation 3.4 is used to weight the k"

pattern:

ar(B) = w77 - (B (3.4)
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where C' is the number of class. Although Cui et al. [44] proposed the grid search
to determine [ based on their formulation, the separable weights of a positive and
negative patterns have not been addressed .

This research integrates the separability of positive and negative patterns into
the loss-function to improve the classification capability of Cui et al’s approach.
The hypotheses address the importance of both positive and negative pattern

weights to improve the end-to-end training.

Wt = &Vk(ﬁ) (3.5)

where wy,, are the weights for positive samples of the k* pattern. Equation 3.5 is
an elaboration point between [44] and the proposed method.

This research deliberately assigns a;, to each sample in k™ pattern on the basis
of the specified wy, weights. [44] emphasised the importance of effective samples
to define the weights and this research has two types of weights wy, and wi_. In
the proposed approach, ag(3) from [44] attempts to determine the weights of only
the positively labelled samples, which is given in Equation 3.5. Also, this research

determines the weight of the negative patterns:
We— — 1-— W+ (36)

Experimental results evaluate the performance of the proposed weights in Equa-

tions 3.5 and 3.6 to balance the imbalanced samples.

In the proposed method, the five hyperparameters g are given in Equation 3.7.
fr=1-20-10%8=1-20-1078=1-20-10"% (3.7)
Ba=1-70-10%p=1-20-10"3

where 5 is determined by Equation 3.3. The other -s are determined by the
grid-search. With the exception of the (4, the grid search was performed by
changing the [ value with standard deviation of 10 from 5. The current value
of 5, was chosen because that magnitude is the median between 3 and (5. Also
the results obtained by the proposed method is compared with those obtained by
the other six methods, Wang et al. [173], Yao et al. [180], baseline ChexNet [136],
weighted binary cross-entropy loss, Balturschat et al. [26] and Gundel et al. [64].
The comparison is depicted in Tables 3.5.A and 3.5.B.
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3.2.2.1 The Weighted Cross-Entropy

The formulation for cross-entropy loss [190] with the proposed weight is:

C
Lbce<p) = Z Wk (_yfrue lOg(p))
k=1

) Wk if yfrue =0
e {wk-i- if yfrue =1 (38)

where yF _ are the groundtruth labels for each sample in pattern k. To perform
the experiments in Section 3.4.2; this research sets the w,_ = wy, for a particular
case, the case where this research wants to see the outcome from Cui et al’s
[44] formulation adjusted into the dataset [173] classification problem. The cross-
entropy loss uses softmax output by default, whereas the binary cross-entropy loss

uses sigmoid output.

3.2.2.2 The Weighted Focal Loss

The formulation for focal loss with the proposed weight is:

C
Lfoc(p) = Zwk (—Oé (1 - p)7 yf’rue log(p))
k=1

W = Wk— if yfruezo
g Wi+ if yfrue =1

The proposed focal loss attempts to weight both the easy—hard samples and the

(3.9)

positive-negative patterns, which are not addressed in Cui et al’s approach [44].
The proposed focal loss also suits the multiclass classification problem [120, 123].
There is no existing focal-loss method that addresses both effective number of

samples and positive-negative patterns weighting.

3.2.2.3 Progressive Image Resizing

Progressive image resizing is the procedure to train a single deep-network archi-
tecture with incremental input sizes in multiple stages of training. The first stage
trains the network with the default image size for the network, followed by the
next stage that utilises the bigger size images and the best performance of the

pre-trained model from the previous stage. There is no formal definition of the
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exact number of steps, but the classification performance will improve to some
extent and then become saturated. Then, gain diminishes; this is highly specific
to classification problems. This research reports that the third stage of training
with progressive image resizing did not improve the performance of the existing
chest X-ray classification problem.

Another functionality from the progressive image resizing is to provide another
form of augmentation. It (re)trains the model with the augmentations of different
sized inputs. Several works [34, 132,149, 175] mention that augmentation is a
proven method to reduce overfitting. This research required the final model to
be risk-free from overfitting; two-stage training is the approach to ensure this.
In summary, this research performed two-stage training to achieve two aims: to

improve classification accuracy and prevent overfitting.

3.2.2.4 The Network Backbone

This research used DenseNet 121 [80] and EfficientNet [161] for the experiments.
However, the results in the Tables 3.2, 3.4, 3.5.A and 3.5.B suggest that Effi-

cientNet [161] is a better network to improve classification performances than is
DenseNet 121 [80].

3.2.2.5 Baseline

This research reproduces ChexNet [136] based on [42]. The experiments performed
by the proposed method and the other methods [26, 64, 173] are based on the
training and test split in [157] and are reported in Tablese 3.5.A and e 3.5.B
However, Rajpurkar et al. [136] never shared the split set with the public. The
use of official split [157] resulted in lower performance than reported in Rajpurkar
et al. [136]. This research used the ADAM optimiser as in [136] to develop the
neural network, of which optimisation converged at epoch 11. Other research also
used ADAM [26,64] and stochastic gradient descent [173].

3.2.2.6 Performance Evaluation

Suppose this research needs a better perspective of algorithm performance; it

should apply different metrics to evaluate the results. This research applied the
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area under precision-recall curve (AU-PRC) metric for further evaluation; the met-
ric has a different characteristic than AUROC. In terms of baseline, AUROC has
a fixed baseline of 0.50 for random classifiers and 1 for the perfect classifier, re-
spectively [43,69].

In contrast, the AU-PRC baseline is dynamic since it heavily depends on the
ratio between positive and negative samples [142]. AU-PRC is more sensitive to
data distribution. AU-PRC will have the baseline (0.50) for a random classifier
under the equal number of positive and negative samples. When the number of
negative samples is 10 times that of positive samples, this baseline will decrease
to a smaller number (0.09) [142]. The formulation to calculate the baseline of
AU-PRC shown in Equation 3.10 is from the literature [142].

positives

baseline AUPRC = (3.10)

positives + negatives

Suppose there are two classes with an identical value of AU-PRC (0.50); the
interpretation from this result will vary for both classes. The 0.50 AU-PRC is a
good result for the class with low positive samples, but it may not be satisfactory

for the class with a remarkable number of positive samples.

3.3 Research Contribution and Novelty State-
ment

The contribution is to propose an approach that can combine a weights calculation
algorithm for deep network and the optimisation of training strategy from the

state-of-the-art architecture.

3.4 Experiments and Results

3.4.1 Backbone Network Training

Since this experiment uses DenseNet 121 [80] as the primary backbone network,
the availability of pre-trained ImageNet can be used for the classification. This

research used the pre-trained weights from ImageNet to develop the network. This
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research used a single Titan V with 12 Gb GPU memory to develop the network;
24 hours with 25 epochs of training were required. This research also trained
the Densenet-121 in a two-phase training cycle and performed progressive image
resizing for comparison in Table 3.5.B. Because this research aims to improve
overall classification performance, the experiments also modified the architecture
of backbone network from DenseNet-121 into EfficientNet [161].

The approach is mainly to expand the performances from the proposed cost-
sensitive loss function into better architecture. This research was limited only to
the use of the EfficientNet-B0 and EfficientNet-B3 networks for experiments. This
is because the use of EfficientNet-B3 in combination with the progressive image
resizing method (as discussed in Section 3.7), further input beyond 600 x 600 was
not practical. Consecutive EfficientNets training requires extensive computations
because of the scaling of the image sizes, the depth and width of the network.
Conversely, the approach of progressive image resizing only considers the aspect
of image sizes into computational resources; it ignores the depth and width of the
network.

To train the EfficientNets, the experiments used the Tesla v100 with 32 Gb of
GPU memory. For each network, this research performed the two-phase training
procedure with progressive image resizing, as previously discussed. In the first
phase, the experiment trained the network with the pre-trained model from Im-
ageNet. In the second phase, the experiments trained the network with the best
performing model from the first phase.

The important fine-tune was the size of the image input. In the first phase,
this research used the default input size from the network. Then, it doubled the
input size in the second phase. This was implemented with size of 224 x 224 in the
first stage of EfficientNet-B0 and 448 x 448 in the second stage (EfficientNetBO).
Also, it used 300 x 300 in the first stage of EfficientNet-B3 and 600 x 600 in the
second stage (EfficientNet-B3). The experiment reduced the batch size to half,
from 32 in the first phase to 16 in the second phase. The reduced batch size is
mainly to ensure the batched images for each step on each epoch will fit into the
GPU’s memory boundary.

Their default configuration determines the first phase of the EfficientNets’ input
sizes. In this case, 224 x 224 is the default input size for EfficientNet-BO and
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200 x 300 is the default input size for EfficientNet-B3. This research assumes
that those sizes are the best configuration for each EfficientNet network since the
EfficientNet’s creators [161] chose those sizes. The input sizes for the second phase
were also assumed that if this research doubled the input size, it would still suit
the network quite nicely. The two-phase training with progressive image resizing
improved (£1%) the classification outputs between each model’s first and second

phases.

3.4.2 Weighted Binary Cross-Entropy with Effective Num-
ber of Samples

This experiment is an adoption of Cui et al’s [44] method for the chest X-ray
dataset [173] classification problem. In Cui et al’s approach [44], the balanced
weights between positive and negative was not used; the weights were computed
using the effective number of samples. Cui et al. [44] used Equation 3.3 to compute
the weights. The research performed this experiment to provide evidence of perfor-
mances derived from [44] versus that of the proposed approach. This experiment
used binary cross-entropy as a loss function and combined the weighting into the
loss function. This research required improved comparison because the work [136]
of Rajpurkar et al. used binary cross-entropy loss but ignored the importance of
the imbalance problem.

This research sets the w,_ = wy, for the implementation of Equation 3.8
for this case, since [44] ignored the balanced positives-negatives. The best per-
formance classification for the model was also achieved on epoch 11, similar to
the Section 3.2.2.5 baseline. Comparison results with the other experiments are
shown in Tables 3.5.A and 3.5.B. This method performed only slightly better than
the baseline, with the 79.24% area under receiver-operating-characteristic (ROC)

curve.
3.4.3 Weighted Focal Loss with Positive and Negative Pat-
tern

This experiment uses the loss function [101], which is integrated with the focal loss

and proposed weighting. This experiment selected the value of a value on the basis
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of [101], which is between [.25,.75]. This experiment discovered that o = 0.5 and
~v = 1 is the best of focal-loss hyperparameters for the proposed method. Table 3.1

depicts the v hyperparameter-tuning process.

Table 3.1: Results from Various v for Focal Loss

weighted
focal
loss
£ =0.9998
a=05 a=05 a=0.5
v=1 v=2 vy=4

Atelectasis 0.7777  0.7784  0.7755
Cardiomegaly 0.8925 0.8911  0.8912
Effusion 0.8322 0.8288  0.8318
Infiltration 0.7098 0.7064  0.6989
Mass 0.8262 0.8294  0.8235
Nodule 0.7626  0.7662  0.7551
Pneumonia 0.7311  0.7276  0.7147
Pneumothorax 0.8665 0.8661  0.8624
Consolidation 0.7563  0.7502  0.7526
Edema 0.8460  0.8427  0.8489
Emphysema 0.9211  0.9251 0.9182
Fibrosis 0.8296  0.8295  0.8189
Pleural thickening 0.7783  0.7805  0.7792
Hernia 0.8977  0.9131  0.9292
Average 0.8175  0.8168  0.8143

This research used the rectified ADAM and look-ahead (RANGER) optimiser,
which requires a smaller number of training epochs to converge. The optimiser
converged at epoch 5. The experiment deliberately assigned the two-stage training
to prevent overfitting and to improve performance. This method achieved 82.32%
area under ROC curve with two-phase DenseNet-121 and 83.13% with two-phase
EfficientNet-B3 under the official split setting. The comparison of the official split
setting results with other experiments is shown in Tables 3.5.A and 3.5.B.

The training time took 71 minutes for one epoch in the first phase, with 32

batch size and 180 minutes for one epoch in the second phase, with 16 batch sizes.
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The test took 15 minutes with eight batch sizes for the first phase and 27 minutes
with eight batch sizes in the second phase.

Table 3.2: Identical Split Comparison [139]

Weighted
Third party [139] fﬁ)‘;zl
Pathology of 3=
Guan et al. [62] 0.9998
EfficientNet-B3
Phase 1 Phase 2

Cardiomegaly 0.9097 0.9137  0.9144
Emphysema 0.8905 0.9471  0.9558
Edema 0.9185 0.9021  0.9071
Hernia 0.9064 0.9357  0.9409
Pneumothorax  0.8794 0.9003  0.9092
Effusion 0.8843 0.8899  0.8923
Mass 0.8707 0.8596  0.8669
Fibrosis 0.8208 0.8526  0.8657
Atelectasis 0.8225 0.8350  0.8397
Consolidation 0.8210 0.8124  0.8208
Pleural thicken. 0.8127 0.8041  0.8136
Nodule 0.7691 0.8043  0.8293
Pneumonia 0.7614 0.7721  0.7703
Infiltration 0.7006 0.7297  0.7363
Average 0.8405 0.8542  0.8616

* This research found the third-party re-implementation [139] reported lower per-
formances than did [62]. Guan et al. [62] did not provide the official code and
split sets. The critical classification problems for the dataset [173] is that different
splits will lead to different performances [26]

Table 3.2 shows the comparison with the latest research’s outputs; Tables 3.3.A
and 3.3.B show the improvement rates. The comparison of five-folds setting results
are depicted in Table 3.4.
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Table 3.3.A: Improvement Rate
Name | Hernia | Pneumonia | Fibrosis | Edema | Emphysema | Cardiomegaly | Pleural Thick. | Pneumothorax
Rate +3.45% | +0.89% +4.49% | —1.14% | +6.53% +0.47% +0.09% +2.98%
Table 3.3.B: Improvement Rate (cont.)
Consolidation Mass Nodule Atelectasis Effusion Infiltration Average
—0.02% —0.38% +6.02% +1.72% +0.80% +3.57% +2.10%

Table 3.4: Results from Five-Folds Cross-Validation

Weighted
focal
loss
Pathology Beilglu S[C;é?t g =
' 0.9998
EfficientNet-B3
two-phase training

Cardiomegaly 89.8 +0.8 90.6 £2.4
Emphysema 89.1 £1.2 94.6 +1.2
Edema 88.9 £0.3 90.3 £0.9
Hernia 89.6 £4.4 92 +1.3
Pneumothorax 85.9 +1.1 91.2 £1.2
Effusion 87.3 +£0.3 88.5 £0.5
Mass 83.2 £0.3 86.9 £1.1
Fibrosis 78.9 £0.5 82.2 £2.5
Atelectasis 79.1 £0.4 83.3 £0.7
Consolidation 80.0 £0.7 80.9 £0.5
Pleural Thicken. 77.1 £1.3 82.7 £1.3
Nodule 75.8 +1.4 81.7 £1.4
Pneumonia 76.7 £1.5 77 +1.9
Infiltration 70.0 +£0.7 72.8 +£4.5
Average 82.2 £1.1 85.3 £0.6

* This research performs five-fold cross-validation, mainly aiming to have the most
similar setting to the benchmarked work by Baltruschat et al. [26]
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Table 3.5.A: Comparison Results with Previous Research under The Official

Splits

Baseline

Weighted

Wang et al. Yao reproduce binary Baltruschat
et al. et al.
[173] [180] ChexNet  cross entropy 126]
[136] loss

Atelectasis 0.700 0.733 0.7541 0.7625 0.763
Cardiomegaly 0.810 0.856 0.8787 0.8812 0.875
Effusion 0.759 0.806 0.8236 0.8266 0.822
Infiltration 0.661 0.673 0.6928 0.6939 0.694
Mass 0.693 0.777 0.8053 0.8023 0.820
Nodule 0.669 0.724 0.7318 0.7383 0.747
Pneumonia 0.658 0.684 0.6980 0.7019 0.714
Pneumothorax 0.799 0.805 0.8378 0.8344 0.819
Consolidation 0.703 0.711 0.7349 0.7390 0.749
Edema 0.805 0.806 0.8345 0.8305 0.846
Emphysema 0.833 0.842  0.8666 0.8701 0.895
Fibrosis 0.786 0.743 0.7957 0.8040 0.816
Pleural thickening 0.684 0.724 0.7456 0.7502 0.763
Hernia 0.872 0.775 0.8684 0.8589 0.937
Average 0.745 0.761 0.7906 0.7924 0.806

Table 3.5.B: Comparison Results with Previous Research under The Official

Splits (cont.)

Glndel
et al.
[64]

Weighted

focal
loss

£ = 0.99998
DenseNet-121  DenseNet-121

Weighted
focal
loss
£ =0.9998

Weighted

focal
loss

8 =0.9998
DenseNet-121
two-phase training two-phase training

Weighted
focal
loss
£ =0.9998
EfficientNet-B3

0.767
0.883
0.806
0.709
0.821
0.758
0.731
0.846
0.745
0.835
0.895
0.818
0.761
0.896
0.807

0.7781
0.8918
0.8310
0.7037
0.8263
0.7685
0.7262
0.8664
0.7546
0.8491
0.9201
0.8276
0.7789
0.9172
0.8171

0.77r7
0.8925
0.8322
0.7098
0.8262
0.7626
0.7311
0.8665
0.7563
0.8460
0.9211
0.8296
0.7783
0.8977
0.8175

0.7820
0.8845
0.8380
0.7022
0.8329
0.7863
0.7338
0.8706
0.7537
0.8534
0.9413
0.8229
0.7970
0.9260
0.8232

0.7919
0.8917
0.8414
0.7051
0.8356
0.8036
0.7366
0.8909
0.7601
0.8609
0.9424
0.8408
0.8080
0.9286
0.8313
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3.4.4 Generalisation of the Weights Formula into the Glau-
coma Classification Problem

This research required further evidence that the proposed weight function can be
generalised for different cases of medical classification problems. The glaucoma
images were obtained from optical coherence tomography. The example of the
healthy versus glaucoma-diseased images are shown in Table 3.6. Three layers ex-
ist in glaucoma disease; they are internal limiting membrane, inner retinal pigment
epithelium (IRPE) and outer aspect of the Bruch’s membrane. The difference be-
tween healthy and glaucoma image is that the diseased image has dripped contour
for the IRPE layer, while the normal image has a smooth surface. The distinctive-
ness is shown in Table 3.6. The size for each image was 512 x 992 pixels.

This research recognised that the glaucoma dataset has an imbalanced training
set; also, the glaucoma case suffers from the binary classification problem, which
makes it distinct from the multiclass problem in the chest X-ray dataset [173].
Since there is a problem generalising from multiclass into binary classification,
this research can claim the proposed weights function also works well in the binary
classification problem.

The glaucoma dataset consists of 254 training samples, 58 validation samples
and 58 test samples. This research follows the work of Yamashita et al. [177],
using 70:15:15 proportion for training-validation-testing split configuration. This
research asserts that the work in [177] shares some similarities with ours in terms
of the number of samples in the dataset, the problem it addresses and the chosen
method. As aforementioned, the training set suffers from an imbalance prob-
lem. There are 182 negative cases and 72 positive glaucoma cases in the training
set. Since the number of samples is considered too small to feed an established
pre-trained deep-network algorithm, this research decided to construct a custom
shallow network to classify the images. During training, the experiment resized
the images into 64 x 64.

Since smaller input sizes feeding a neural network will lead to faster training,
this research estimated that the size of 64 X 64 would be the smallest size possible
to gain the best classification accuracy in the lowest training time. Although

the images have the grayscale texture pattern, the proposed network used RGB
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Table 3.6: Glaucoma Cases

Healthy Glaucoma

mode for training. The network layers consisted of a Gaussian noise layer after
the input layer. After the Gaussian noise layer, this experiment placed another
two consecutive blocks of intermediate layers. Each intermediate layer consisted
of a 3 x 3 convolution layer with 32 filters, followed by a 2 x 2 average-pool layer.
The experiment flattened the outputs from the last intermediate layer; then, the
research used a fully connected layer with 16 nodes. For all convolutional and fully
connected layers, the experiment used the Rel.u activation functions.

This experiment finalised the network with a final classification layer, for which
the experiment used a sigmoid activation with two output nodes. The experiment
trained the network for 20 epochs with a batch size of 1; the initial learning rate
of 0.001 reduced 10 times if the validation loss plateaued after one epoch. The
experiment obtained 3 = 1—4.0-1073 by the use of Equation 3.3. The experiment
achieved increased accuracy from the imbalanced weight model, with 76% perfor-
mance. Then, the weighted binary cross-entropy loss with 81% performance and
the highest accuracy was performed by the weighted focal-loss model, with 93%
and 100% performance. This increment is listed in Table 3.7. This research con-
cluded that the proposed weight function works well for the binary classification

problem.
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Table 3.7: Effectiveness of Weights for Glaucoma Classification

Imbalanced We.lghted :
. binary Weighted
binary
Cross focal
oSS entropy loss
enlt;"sspy loss 3 = 0.996
£ =0.996
a=01 a=0.1
v=00 ~=0.01
Accuracy 76 % 81 % 93 % 100 %

The weights in Table 3.7 are different from those used for the chest X-ray
dataset. This is mainly because both datasets have a different number of sam-
ples and positivenegative patterns. In this case, the formula to calculate the
weights functions outputs differently for both datasets. However, since the glau-
coma dataset is relatively small [91], it is faster to perform experiments. The
experiments selected the combination of the a and ~ value for the focal-loss func-

tion arbitrarily into the one that demonstrated the best classification performance.

3.5 The Intuitive Theoretical Background and
Evidence from Experiment

Since part of the approach inherits the strength of focal loss [101], and the class-
balanced approach [44], this research can obtain further theoretical analysis from
the proposed approach intuitively using [101] and [44]. The main distinction of
focal loss with binary cross-entropy loss is the existence of a and v parameter. Cui
et al. mentioned “the class-balanced term can be viewed as an explicit way to set
« in focal loss based on the effective number of samples” [44]. However, Lin et al.
also stated “a common method for addressing class imbalance is to introduce a
weighting factor a € [1,0] for class 1 and 1 — « for class — 17 [101]. This research

implements these two statements into the elaboration in Equation 3.6.
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Table 3.8: The Improvement of The Proposed Weight Calculation

Weighted
Focal fl(; C:;l
Pathology loss 3 -
DenseNet-121 0.9998

DenseNet-121
Validation Test Validation Test

Cardiomegaly 0.9155 0.9096 0.9092 0.9090
Emphysema 0.9140 0.9178 0.9056 0.9327
Edema 0.9141 0.8851 0.9147 0.8917
Hernia 0.8614 0.9135 0.9067 0.9404
Pneumothorax  0.8896 0.8663 0.8973 0.8749
Effusion 0.8822 0.8762 0.8792 0.8827
Mass 0.8622 0.8430 0.8655 0.8514
Fibrosis 0.8277 0.8219 0.8313 0.8308
Atelectasis 0.8191 0.8079 0.8228 0.8259
Consolidation 0.8247 0.8007 0.8224 0.8043
Pleural thicken. 0.8219 0.7874 0.8214 0.7910
Nodule 0.7823 0.7751 0.7888 0.7756
Pneumonia 0.7722 0.7504 0.7586 0.7698
Infiltration 0.7061 0.7073 0.7113 0.7166
Average 0.8424 0.8330 0.8453 0.8427

The experiments provide further evidence for the theory. The improvement
from the change of the proposed formula is £1% under the test set, according to
Table 3.8. Both experiments were performed with o« = 0.5 and v = 1.0 for the
focal-loss parameters. Tables 3.2 and 3.8 use an identical split. The training set
consists of 78,468 images, the validation set consists of 11,219 images and the test
set consists of 22,433 images. The training took 38 minutes for one epoch with a
batch size of 32, and the test took 12 minutes with a batch size of 8.
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3.6 The Imbalance Metric Evaluation

Table 3.9: The AU-PRC Improvement

Weighted
focal Baseline
Reproduce loss AU-PRC
Pathology ChexNet g = from
[136] 0.9998 Distribution
EfficientNet-B3
two-stage
) . Identical . Identical
Split Official [139] Official [139]

Cardiomegaly 0.3288  0.2880 0.3444  0.3127 0.0247
Emphysema 0.3125  0.2948 0.4706  0.4515 0.0224

Edema 0.1497  0.1455 0.2048  0.1835 0.0205
Hernia 0.0785 0.0311 0.4147  0.5372 0.0020
Pneumothorax  0.3683  0.2929 0.4965 0.4242 0.0472
Effusion 0.5012  0.5149 0.5428  0.5439 0.1187
Mass 0.2887  0.2847 0.3355  0.3357 0.0515
Fibrosis 0.0773  0.0886 0.1231  0.1405 0.0150
Atelectasis 0.3208  0.3262 0.3664  0.3859 0.1030

Consolidation 0.1488 0.1479 0.1736  0.1692 0.0416
Pleural thicken. 0.1109 0.1159 0.1831 0.1754 0.0301

Nodule 0.1899  0.2025 0.2595  0.2919 0.0564
Pneumonia 0.0448 0.0381 0.0609  0.0484 0.0127
Infiltration 0.3891  0.3342 0.4067  0.3592 0.1774
Average 0.2364  0.2218 0.3130 0.3114 0.0517

Table 3.9 and Figure 3.1 show the advancement from the proposed method in
comparison with previous work [136] and the baseline retrieved from the dataset.
This research calculated the baseline of AU-PRC metric directly from the dataset’s
distribution of positive and negative samples using Equation 3.10. The bold fonts
show the top scores achieved between a same split-set configuration. The hernia
has the lowest number of positive samples in the distribution. Despite being in
the greatest minority, the proposed algorithm for hernia resulted in a couple of
hundred more AU-PRC than the baseline, as shown in Table 3.9 and Figure 3.1.
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Figure 3.1: Area Under Precision-Recall Curve
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3.7 Third-Phase Training Saturation

To ensure the effectiveness of progressive image resizing, this research needs to
ensure the applicable boundary from the method for the dataset. The experiment
performed third-phase training with an identical configuration from Table 3.2,
except the resized input image changed into 1,024 x 1,024. Table 3.10 show results
from the third-phase training; this research concludes that further training would
not improve classification performance. Since the method of progressive image
resizing is another form of transfer learning, the reason for the lack of improvement
for the third-phase training is most likely because the network did not find better
features to learn. This research summarises that a 1,024 x 1024-pixel input in the

third phase did not provide new features for the network to learn and improve the
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classification.

Table 3.10: Third-Phase Training Results from Table 3.2

Pathology Phase 1 Phase 2 Phase 3
Cardiomegaly 0.9137 09144  0.9101
Emphysema 0.9471  0.9558  0.9517

Edema 0.9021  0.9071  0.9025
Hernia 0.9357  0.9409  0.9328
Pneumothorax  0.9003  0.9092  0.9079
Effusion 0.8899  0.8923  0.8877
Mass 0.8596  0.8669  0.8580
Fibrosis 0.8526  0.8657  0.8648
Atelectasis 0.8350  0.8397  0.8341

Consolidation 0.8124 0.8208 0.8118
Pleural thicken. 0.8041 0.8136  0.9025

Nodule 0.8043  0.8293  0.8255
Pneumonia 0.7721 0.7703 0.7683
Infiltration 0.7297  0.7363 0.7254
Average 0.8542  0.8616  0.8561

3.8 Discussion

To provide greater insights of the effect from different splits into classification
performance, several split sets have been assessed in performance evaluation.

The results in Tables 3.3.A and 3.3.B are the improvements made compared
with the most recent research [46]. The individual comparisons for each disease
with the latest research [62] are listed in Table 3.2. This research achieved better
performances than did the work of Guan et. al [62] . Further, this research
proposes technically more simple approaches to achieve the results.

The standard procedure is to follow the “official” splits [157]. This research
reports the results in Tables 3.5.A and 3.5.B. To the best of our knowledge, only [26]
reported the performance evaluation of a random fivefold cross-validation from
the chest X-ray dataset [173]. This research reports the results from the proposed
method in Table 3.4.
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Some split sets are considered “non-standard” settings. These splits are from
Github pages. [139] is the third-party re-implementation of [62] and [174] is the
third-party re-implementation of [136]. However, after further investigation, [139]
and [174] were subject to identical training, validation and testing sets. This
research reports the results with the custom sets [139,174] in Table 3.2.

Since the diversity of split sets is a well-known problem for the dataset’s [173]
evaluation, the use cross-validation is a fair method to follow. [26] is the only
work that reported performing cross-validation on the dataset [173]. This research
achieved better performance in five-folds cross-validation experiment than did Bal-
truschat et al. [26].

The class-activation-mapping (CAM) method [178,191] visualises the discrimi-
native features from the deep network’s last layer in the form of heatmap localisa-
tion. The more the heatmap visualisation matches the groundtruth bounding-box
from the dataset, the network has a better understanding of the images. This
research visualises the classification performances with heatmap from the CAM
method in Table 3.11.

This research obtained the bounding boxes as the annotation groundtruth for
only eight classes, which are available from the file BBox List 2017.csv [157]. The
annotations consist of 984 images, and the number of samples for each class is
not distributed evenly. Table 3.11 shows that the networks equipped with the
proposed method read the area of the disease better than did the baseline.
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Table 3.11: The Heatmap from Different Methods and Various Networks

Baseline Weighted Weighted
reproduce focal focal
Pathology ChexNet loss loss
[136] DenseNet-121  EfficientNet-B3
Atelectasis i el ' '
Cardiomegaly m } E‘
Effusion i P | H
Infiltration 4
‘
Mass ‘ I/! !
— r" —n
| W #
Nodule i! i ‘
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Pneumothorax




Chapter 4

Hyperparameters and Network
Architectures Learning for
Features Classification

4.1 Introduction

This study aims to reduce the computational cost of training deep networks for
medical image classification. However, it is a common practice that a deep neural
network dedicated to an image classification task requires substantial computa-
tional resources and days to train. Hence, this study used feature vectors instead
of the original images to feed the network, similar to previous works [63,122,144].

This study expected the outcomes to be practical to use within low-computing
resources environments. The research applies to improve classification performance
within mobile devices, system on chip (SoC) or internet of things (IoT) devices.
This study has strong confidence that features will significantly reduce the network
floating-point operations (FLOPs); thus, it will decrease training time. The simple
logical reasoning for this is that with features for a neural network, the required
input for the network is smaller than the use of original images, which reduces the
required FLOPs. Further, the classifier network does not require the convolutional
layer. Hence, it is computationally cheaper to tune the hyperparameters in the
feature spaces [122,144].

This study also has strong confidence that using extracted features to construct

a new neural network architecture will have a lower classification performance than
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original images. This study has a particular reason to support this hypothesis: ex-
tracting salient useful features from images is an automated process without human
intervention. It has a disadvantage; when important features are unintentionally
removed during the process, it will reduce classification performance later. This
study extracts features from the EfficientNet-B3 network, which were trained in
Chapter 3.

The contribution from this work is the findings of smaller FLOPs architectures
with comparable classification results. The novelty is to find a computationally
low-cost architecture for features classification tasks in the medical domain through
Bayesian optimisation. Conversely, previous research [66,147] focused on the con-
tributions under synthetic datasets and MNIST (Modified National Institute of
Standards and Technology). The proposed approach maximises the potential of
balanced exploitation—exploration under the weighted expected improvement ac-
quisition function [51,152]. This study aimed to prove that the approach is suitable
for finding a sound trade-off between classification performance and the required
cost of computing. In short, the proposed approach attempted to find the most
suitable network architecture and hyperparameters to perform a classification task
with the help of features from medical images.

The study also provides a further contribution that the proposed method works
not only for the Chest X-Ray dataset but also is generalisable to other datasets.
Experimental results from the ISIC-2016 dataset support this additional contribu-
tion. This study proposed the iteration-partitioning framework to maximise the
potential of exploration-exploitation balance from the expected-improvement ac-
quisition function’s weighted version under the constraints of minimal computing
resources. Similarly, [182] required HPC (High-Performance Computing) resources
to perform this task. Another advantage of the proposed work is that this study
only required lower computing resources, less than [182]. Further, the approach is
suitable to resume in an altered optimisation process. This study alters the search
space in the proposed method.

The progression of Chapter 4 is the necessity of lower computational cost of
the final model in comparison with the model in Chapter 3. The advantage of the
model in Chapter 4 is more adjustable than in Chapter 3 to the low-cost computing

device.
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4.2 Method

4.2.1 Research Contributions and Novelty Statement

The first contribution from this research is the comparable classification perfor-
mance, using minor FLOPs neural-network architecture for the features classifica-
tion task. Then, the second contribution is generalising the proposed method to
various datasets. This study contributes and provides evidence that the proposed
Bayesian iteration-partitioning framework works both for (i) the Chest X-Ray
dataset and (ii) the skin cancer dataset.

The third contribution is that the proposed method ensures the maximum re-
sult has been achieved from the Bayesian-Optimisation exploitation process in the
quickest time possible. The trade-off between exploration and exploitation occurs
automatically and tend to exhibit stochastic-random behaviour. The proposed
method forces a more deterministic Bayesian-Optimisation, ensuring the maxi-
mum magnitude of results is achieved whilst minimising the time required. The
fourth contribution is that the research provides the proposed method’s applica-
bility to mobile devices into implementation. The results are empirically reported
and tested both on the Android simulator and the actual device (Samsung Galaxy
S8).

The fifth contribution is that all the source codes are shared publicly [127] for

further study, ensuring that the works are repeatable and well-documented.

4.2.2 The Existing Computational Cost for Neural Net-
work

A universal tool to measure computational cost is the FLOPs unit. This study
used the following definition of FLOPs [83]:“to refer to the number of floating point
operations executed”. Another measurement unit is the MACCs unit (multiply
accumulation operations). One MACC operation is described as one operation of
accumulation and one operation of addition in the accumulator [25]. Hence, one
MACC is equivalent to two FLOPs [74,77,79]'. Since the real-world application of

deep learning uses central processing unit and general purpose-graphical processing

IThe literatures measure MobileNetV1 architecture with different units, MACCs and FLOPs
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unit (GP-GPU), which are based on the von Neumann architecture [50,171], the
MACCs and FLOPs calculations also follow the von Neumann model.

An earlier study [162] presented in the NIPS 2018 workshop proposed the use
of FLOPs as the objective function to learn sparse neural networks. [162] directly
replaced L0 regularisation with a customised FLOPs objective. This FLOPs ob-
jective is applied during the training process 2. However, this thesis maintained
the use of loss function as the objective during the training process and AUROC
to measure the classification performance. Further, this study finalised the FLOPs
calculation to evaluate the computational cost from the neural network.

The advantage of measuring computational resources with FLOPs is that sev-
eral significant studies [71,80,161,162] in deep learning have used it to measure
the network’s computational cost. [144] reported that different mobile-device plat-
forms result in various execution times for a single face-detection algorithm. [144]
used the features extracted from the neural network. This study determined that
the use of time to measure the computational cost is not accountable because of
the evidence cited in [144].

4.2.3 The Proposed Approach for Reducing Computational
Cost

This research performed feature extraction from the Chest X-ray images dataset
[173] from an EfficientNet-B3 [161] backbone. This study took the features from
the last global average-pool layer to perform experiments. Fach feature vector
input was 1 x 1,536 in size. This research built a neural network backbone and
used extracted features to feed the network. Further, it used Bayesian optimisation
to approximate the sets of best hyperparameters and the best architectures for
the network with a chosen prior surrogate function [137]. The approximation
of a hyperparameter  that outputs the maximum magnitude from an objective

function f(z) and uses the search space x will be written as in Equation 4.1:

" = argmatge, f() (4.1)

Zhttps://github.com/AMLab-Amsterdam/L0_regularisation
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The design of Bayesian optimisation requires two components. First is the prior
surrogate function, which defines the assumptions and beliefs over the objective
function f(z). The second is the acquisition function, which defines the selection of
the next sample points for the objective function f(x). The challenge of Bayesian
optimisation is to find the trade-off between exploitation and exploration.

The exploitation aims for the maximum value from objective function f(x)
given the value of x, and exploration aims to gain more variability of x from
the search-space x. The Gaussian process [137] is a well-known standard prior
surrogate function for Bayesian optimisation. A Gaussian process can be defined
by both its mean function m(z) and the covariance function [137].

A critical property of Gaussian process is its covariance function, also called
the kernel k (x,x’), which measures the distance between & and @’. The kernel
function estimates the unknown value of f (z) given the preceding f(z); hence,
the kernel also measures the similarity between @’ and x. To achieve a better value
of z* in Equation 4.1, there are several acquisition functions that are available.

In the application, this research used the acquisition function to identify several
hyperparameters, such as the optimum number of neurons, the required level of
noise, the appropriate learning rate and the critical dropout factors. Since Bayesian
optimisation is a continuous stochastic function, the acquisition function « to

recommend next ., from k observations can be written in the form of [104]:

Thyq = argmaZzea(z; Dy) & (4.2)

where Dy, is the k-th observation from dataset D. The proper configurations of the
acquisition function « from Bayesian optimisation and the kernel function from the

Gaussian process; « (&, €) will maximise the output from the objective function

f(=).
4.2.3.1 The Kernel of Gaussian Process

Equation 4.3 defines a squared exponential kernel that is widely known as the RBF

kernel:

SEPR ”
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The Matérn kernel [137] in Equation 4.4 is also the generalisation form of the
RBF kernel.

(@, 4) = —— <\/l2_vd(:z:,:é))v K, (“f_”d(x,@) (4.4)

where d (x, %) is the Euclidean distance between point x and #.
The magnitude I > 0 is the length scale parameter; this parameter prescribes
the length of maximum extrapolation as I units away from the data. In the con-

dition of v — oo the Matérn kernel is identical to an RBF kernel.

4.2.3.2 The Partition of Iterations

This study proposes the partitioning of iterations; this effort is mainly to reduce
the required computational resources. The previous work [182] performed search-
space partitioning utilising HPC resources. The proposed work has the advantage
of lower computing cost. This study still used classical sequential model-based
optimisation, while [182] used distributed and parallel computational resources.
Another advantage of the proposed approach is that it can alter and supervise the

optimisation process. This includes resuming with altered settings of search space.

4.2.3.3 The Acquisition Function

The expected improvement (EI) is an example of the acquisition function for the
Bayesian optimisation. Suppose we have the black-box objective function f (x)
with the search-space x and the possible best magnitude achieved is f (z); then
this study can define the acquisition function aEI(xex) in Equation 4.5

aFEl (xex)=E {max (0, flz)—f (:v))}

(4.5)
—h-o(z) 0(h)+0(x) 6(h)

where h = % with p () is the mean and o () is the standard deviation; also

6 is the cumulative distribution function and ¢ is the probability density function.
The value of h is a utility function that measures the distance of the approx-
imation value to the current best performance value. The search within domain

x will be accomplished whenever the algorithm requires a new hyperparameter



CHAPTER 4. HYPERPARAMETERS AND NETWORK ARCHITECTURES LEARNING FOR
FEATURES CLASSIFICATION Page 66

tuning to maximise the outcomes. Another example of acquisition function is the

upper confidence bound (UCB), which can be defined in Equation 4.6
aUCB (xzex) = p(x) + 70 () (4.6)

where coefficient 7 is used to balance exploration and exploitation. Small 7 leads
to more exploitation, while large 7 provides more exploration from the unknown
points. However, 7 is only defined as any positive number in the literature; there
is no definition of the upper bound from the largest possible number that suits
the best exploration. Because of this, the study aimed to have better approach to
define the magnitude of exploitation-exploration required to improve the existing
problem.

The weighted version [51,152] of expected improvement [86,117] defines a better
solution to address this problem. The acquisition function [51,152] can be written

in the form of Equation 4.7.

w-h-o(x)-0(h)+(1—-w)-o(z) ¢ (h);for o(z) >0
awET (zex) :{ 0;for o () =0

This acquisition function defines a coefficient w to address the exploitation—exploration

(4.7)

balance. The w coefficient does not exist in the conventional EI [86,117] acqui-
sition function. The value of w € [0, 1] defines the lower and upper bounds that
are applicable to use, where w close to 0 will lead to the intention of exploitation
and w close to 1 will lead to better exploration. Figure 4.1 shows the value of w
to capture the next potential input for the acquisition function; the distribution
with small w tends to focus on the exploitation of specific points.

The study defines a further contribution, to make the proposed work distinct
with the common weighted expected improvement [51,152]; this study performed
search-space pruning in Algorithm 1. The proposed search-space pruning max-
imises the potential of the balanced exploration-exploitation process for the
problem. The maximisation occurs because this study used the pruned search-
space with high exploitation parameter (small w). The theoretical Figure 4.1
shows that small w with small input (x-axis) will potentially achieve higher mag-

nitude for the black-box function (y-axis). The pruned search-space is the proposed
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approach to feed the exploitation from the high probable regions of in-
puts. The theoretical arguments are supported in Figure 4.1 and Algorithm 1; the

evidence is from experiments documented in the Jupyter-notebook code.

Algorithm 1 Iteration Partitioning and Search Space Pruning
input : The Candidate Hyperparameters
output: The Classification Results from The Concatenated Iterations with Altered
Settings
*Stage 1: Exploration phase *

initialisation: split n — partitions of iterations
while iteration < (iterations/n)
optimise with high exploration *large w*
capture best search-space
return best potential search-space

end exploration

*Stage 2: Exploitation phase *

initialisation: pruning the search-space with only best potential
while iterations/n < (iterations + 1)

optimise with high exploitation *small w*
return high-probable best classification

end exploitation
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Figure 4.1: The Width of w and Balance of Exploration-Exploitation

4.2.3.4 Gaussian Noise

The noise injection in the neural network is similar to that used to perform data
augmentation [61]; also, it works as another form of regularisation to prevent
overfitting. Since the noise layer provides some degree of distraction to the original
input signals during the training process, it was intended to make the final model
more robust.

The provided Gaussian noise layer within the Keras library [41] is equipped with
a tuneable standard deviation hyperparameter. The other way to add noises is to
directly augment the noise vectors into the input vectors. Despite the potential
classification improvement because of the use of noises-augmentation, this method

would not significantly increase the required computational resources..

4.2.4 The Total FLOPs/MACCs Calculation

This study defines the total of required computational resources to perform classi-
fication in a neural network architecture as the relation between FLOPs/MACCs

and the number of epochs to train, depicted in Equations 4.8 and 4.9:

totalprops = (2n + 1) - baserrops + extractionprops (4.8)

totalyraccs = (2n + 1) - baseyacces + extractionyracos (4.9)
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where n is the number of training epoch, baserrops and baseyaccs are the
required computational resources to perform one-time pass-through of the base
neural network architecture. The multiplication of 2n to calculate the computa-
tional resources from the validation phase after the end of each epoch training, then
the finalisation (2n + 1) is performed to calculate the required computational re-
sources for the test phase. The extraction FLOPs is one-time pass-through
for the original network to perform feature extraction with the pre-
trained weights. This process is similar to that of [144], which also extracted
the features from Deep Network then performed feature classification in the mobile
platform.

The use of pre-trained weights is common to lift the classification performance;
previous works [49, 136] used ImageNet pre-trained weights to tune the network.
The use of pre-trained weights reduces the number of FLOPs; thus, it decreases
the total computational resources required. Since the primary objective is shifted
from ImageNet classification into a new classification task, the process is well-
known by the term “transfer-learning”. This term is used because different tasks
are assigned; for example, the first task is the ImageNet classification. Then, the
weights from the first task are used to train the network and classify other subjects
(e.g. chest cancer [136] and skin cancer [49]). However, this study used the pre-
trained weights from the Chest X-ray dataset with DenseNet-B3 to extract the

features rather than to perform transfer learning.

4.2.5 The Training Epochs and Total FLOPs Correlation

A classification task requires achieving optimal weights from a neural network,
which is closely related to the number of epochs required during the training
process. The calculation of the required computational resources in both FLOPs

and MACCs units are written in Equations 4.10 and 4.11, respectively:

trainingrrops = trainingEpochs - baseprops (4.10)

trammingy accss = trainingEpochs - basepy acos (4.11)
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In case a neural network classifier does not apply “deep features” to feed its
input; the network is not for application of Equations 4.8 and 4.9, but still requires
Equations 4.10 and 4.11.

4.3 Experiments and Results

This experiment designs a neural network “template” in the Keras wrapper [41] of
the Tensorflow [21] library to facilitate the hyperparameters learning with Bayesian
optimisation. This experiment modifies the Bayesian optimisation implementation
from the public repositories [72,125]. The “network-template” basically consists of
an input layer followed by a flattened layer. After the flattened layer, this experi-
ment inserted a Gaussian noise layer, aimed to achieve greater robustness. Then,
this experiment added a fully connected layer followed by a dropout layer and
final classification layer. The hyperparameters from the “template” network were
dynamically adjusted from the Bayesian-optimisation algorithm. The “template”
generates two types of network: (i) a network without a noise layer and (ii) a

network with noise layer.
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Table 4.1: Results Comparison with Previous Study under The Official
Splits

Variant of

ResNet-50 DenseNet-121 Features B.O Features B.O

Baltruschat Gundel Neural Network Neural Network

et al. [26] et al. without noise with noise

[64]

Cardiomegaly  0.875 0.883 0.8923 0.8919
Emphysema 0.895 0.895 0.9408 0.9399
Edema 0.846 0.835 0.8600 0.8604
Hernia 0.937 0.896 0.9278 0.9204
Pneumothorax 0.819 0.846 0.8902 0.8912
Effusion 0.822 0.806 0.8389 0.8394
Mass 0.820 0.821 0.8344 0.8357
Fibrosis 0.816 0.818 0.8417 0.8423
Atelectasis 0.763 0.767 0.7909 0.7907
Consolidation  0.749 0.745 0.7600 0.7616
Pleural 0.763 0.761 0.8074 0.8072
thickening
Nodule 0.747 0.758 0.7979 0.7978
Pneumonia 0.714 0.731 0.7341 0.7330
Infiltration 0.694 0.709 0.7046 0.7033
Average 0.806 0.807 0.8301 0.8296

base MACCs ~ 1,938.98M [159] 1,436.065M [159] 0.635M [166]  0.635M [166]
base FLOPs  3,877.95M [159] 2,872.13M [159]  1.27M [166] 1.27M [166]

This study used the ReLu activation function for the fully connected layer
and the sigmoid function for the final classification layer. Each layer’s numeric-
type hyperparameters were adjusted dynamically with the Bayesian optimisation
algorithm. This study performed two consecutive Bayesian optimisations with
weighted EI acquisition functions. For each stage, this study performed seven
point searches, then used the history for the next stage of optimisation. The
primary differences from the first and second stages is the search spaces and the
value of w coefficient used for the weighted EI. This study performed the vigorous
exploration with w = 0.9 for the first stage. Then, this study resumed a substantial

exploitation with w = 0.1 for the second stage.
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Table 4.2: Identical Split Comparison [139]

Third party [139] B.O.
Pathology of Features
Guan et al. [62] Neural Network

without Noise with Noise

Cardiomegaly 0.9097 0.9136 0.9091
Emphysema 0.8905 0.9538 0.9506
Edema 0.9185 0.9044 0.9018
Hernia 0.9064 0.9512 0.9384
Pneumothorax 0.8794 0.9100 0.9106
Effusion 0.8843 0.8915 0.8904
Mass 0.8707 0.8662 0.8651
Fibrosis 0.8208 0.8630 0.8583
Atelectasis 0.8225 0.8393 0.8393
Consolidation 0.8210 0.8196 0.8176
Pleural Thicken. 0.8127 0.8094 0.8050
Nodule 0.7691 0.8280 0.8302
Pneumonia 0.7614 0.7676 0.7665
Infiltration 0.7006 0.7343 0.7347
Average 0.8405 0.8608 0.8584

base MACCs 1,938.98M [159] 0.635M [166]  0.635M [166]
base FLOPs 3,877.95M [159] 1.27M [166] 1.27M [166]
extraction MACCs - 4,275M 4,275M
extraction FLOPs - 8,550M 8,550M
training MACCs 193,898M 4.445M 4.445M
training FLOPs 387,795M 8.89M 8.89M
total MACCs 193,808M 4,279.445M  4,279.445M
total FLOPs 387,795M 8,558.89M 8,558.89M

* This study found the third-party re-implementation [139] reported lower perfor-
mances than did [62]. Guan et al. [62] did not provide the official code and split
sets. The critical classification problems for the dataset [173] is that different splits
will lead to different performances [26]
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The search space was pruned for the second stage based on the results from the
first stage; this will provide stronger exploitation to the points of interests. The
results are shown in Tables 4.2 and 4.1.

This study shows that the proposed approach results in better outcomes than
in previous works [26,62,64]. This study measures the claim with two pieces of
evidence: (i) the classification performance and (ii) the required computational
resources of the final architecture.

To calculate the total required computational resources, this study required
that some variables be written in Equations 4.8 and 4.9. However, several works
[26,64] do not provide details with the number of the epochs used to train their
model to achieve the reported results. This study limits the calculation only with
the use of the final architectural model in Table 4.1 because of this. Nevertheless,
this study can discover more detail about the work of Guan et al. [62] in Table 4.2.

The work [62] mentions the use of ResNet50 in two branches (global and local);
for each branch, 50 epochs of training were performed. This study concludes the
work of [62], which performed 100 epochs of training of ResNet50 for both branches.
Conversely, this research performed only seven epochs with the proposed network,
which was optimised by Bayesian optimisation to achieve the reported results. In
terms of improved classification performance, the improvement rate in comparison
with [62] is depicted in Tables 4.3.A and 4.3.B.

Table 4.3.A: Improvement Rate

Name | Hernia | Pneumonia | Fibrosis | Edema | Emphysema | Cardiomegaly | Pleural Thick. | Pneumothorax
Rate +4.48% | 4+0.62% +4.22% —1.41% | +6.33% +0.39% —0.33% +3.06%
Table 4.3.B: Improvement Rate (cont.)
Consolidation Mass Nodule Atelectasis Effusion Infiltration Average
—0.14% —0.45% +5.89% +1.68% +0.72% +3.37% +1.81%

To have a more detailed calculation of the required computing resources, this
study calculated the real FLOPs from the EfficientNet B3 for both stage one and
stage two during training with the use of original input images. This research
calculated the one-epoch feature-extraction process, similar to Equation 4.8. One
crucial element is that the FLOPs required during training are not identical be-

tween the first and second stage; this is because of the different input size. This
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study refers to the literature [161] to calculate the required FLOPs for both train-
ing stages of EfficientNet-B3. [161] shows the calculation of EfficientNet-B0, which
multiplies the required FLOPs into 4.75 times with the use of twice input res-
olution. This means that 1,800 M FLOPs are required for the first stage, then
multiplied into 8,550 M FLOPs for the second stage.

This research takes the required computational resources to perform feature
extraction simply because this study needed greater transparency to calculate
the overall process. Importantly, the previous works [76, 143, 144] only counted
the final model computational resources and ignored the preliminary processes

considered in the sum of the total final.

4.3.1 The Generalisation of the Method for the Skin Can-
cer Classification

The 2016 ISIC dataset [65] for the classification task consists of 900 skin lesion
images for training and 379 images for testing. This research pre-processed and
converted the images into array format with the help of public code [70]. The
classification itself is a binary task, which aims to separate malignant cases from
benign. The dataset is highly imbalanced, where the training set consists of only
173 malignant cases and the test-set consists of 75 malignant cases. Reasonably,
the imbalance problem that affects the official evaluation metric is the average
precision (AP) [11].

The proposed approach outperforms the champion of the ISIC 2016 challenge,
both in terms of the classification performance and the required computational
results, as depicted in Table 4.4. The approach also achieves perfect performance
under the specificity metric as depicted in Table 4.5, also results in excellent per-
formance under the sensitivity metric as depicted in Table 4.6. The proposed
Bayesian-Optimisation approach in Table 4.4 4.5 and 4.6 were under a single
training session. However, they represent the superior performance for that par-
ticular metric. One primary advantage of the proposed method is the applicability
to optimise under specific metrics for each training session, the results in Table 4.4

,4.5 and 4.6 were under the sensitivity metric optimisation.
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A specific model that optimises a particular metric is beneficial for healthcare
cases. A model with good sensitivity will accurately classify the cases of the
positive disease, and a model with reasonable specificity will correctly identify
the healthy cases [158]. Sensitivity emphasises the disease over the healthy, while
specificity emphasises the healthy over the disease. Suppose the importance is
different between the disease cases and the healthy cases; the proposed model

fully support this particular metric optimisation.

Table 4.4: The Benchmark under Average Precision Metric

Estimated
Architectural Average
The Approach Computational | Precision Notes
FLOPs
raw images input (array)

. L without
Bayesian-Optimisation 1.5 M 0.727 specific / customized
Framework (ours) L

Feature Engineering
method
ResNet - 50 . .
Training-Optimisation 3,877.95M [159] | 0.709 Published in Q1 Journal [33]
CUMED 3.877.95M [159] | 0.637 ISIC 2016 Chall.enge Champion [185]
ResNet - 50 variant

Table 4.5: The Benchmark under Specificity Metric

Estimated
The Approach égigjﬁ;ﬁlﬂal Specificity
FLOPs
Bayesian-Optimisation 15 M 1.0
Framework (ours)
ARDT-DenseNet 2,872.13 M [159] | 0.756 [176]
DenseNet-100 2,872.13 M [159] | 0.742 [176]
ResNet-101 7,597.95 M [159] | 0.739 [176]
ResNet-50 3,798.98 M [159] | 0.714 [176]
GoogleNet 1,566 M [46] 0.689 [176]
VggNet 15,480.10 M [159] | 0.678 [176]
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Table 4.6: The Benchmark under Sensitivity Metric

Estimated
The Approach égﬁgﬁszzﬁial Sensitivity
FLOPs
Bayesian-Optimisation 15 M 0.819
Framework (ours)
ARDT-DenseNet 2,872.13 M [159] | 0.816 [176]
DenseNet-100 2,872.13 M [159] | 0.812 [176]
ResNet-101 7,597.95 M [159] | 0.804 [176]
ResNet-50 3,798.98 M [159] | 0.799 [176]
GoogleNet 1,566 M [46] 0.770 [176]
VggNet 15,480.10 M [159] | 0.768 [176]

4.3.2 The Applicability into Mobile Device

The research presented in the thesis needed to check whether the hypothesis sup-
porting the method is correct. The research employs an android simulator with an
integrated development environment to check the work’s applicability into mobile
devices, namely Android studio. Android studio enhances the capability to use
Java and Kotlin programming language to develop an Android phone application,
supported with different mobile devices settings.

The research exports the trained model in the chapter into the TensorFlow-
lite model. Then the research inferences the model to classify random data from
the dataset. The result of the inference process with the simulator is shown in
Figure 4.2 and 4.3. The setting for the Android’s environment was Android
5.0 (Lollipop) or higher version. The setting makes the application works on a
broader scope of devices (to date, roughly applicable to 91 percent of Android
devices, according to the Android studio’s statistic). The code in the research to
convert the model and run inference in mobile devices is publicly available [127].
The final Android application was tested in a real device Samsung Galaxy S8, and

it works as expected.
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Figure 4.2: The Mobile App Detects Cardiomegaly
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Figure 4.3: The Mobile App Detects Infiltration
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4.4 Discussion

This study proposes a framework to produce a lightweight final classification
model. It resulted in a final model with a comparable result classification with
less computational resources. The prior work [62] has a total of 387,795M FLOPs
from Equation 4.8. This study has a total of 8.89M FLOPs from Equation 4.10 of
the proposed work.

Additional calculation of this study adds the extra 8,550M FLOPs during the
extraction phase from EfficientNet-B3 [161], which makes the proposed final model
require 8,558.89M FLOPs. In summary, the proposed model requires 45.30 times
fewer FLOPs than [62], as shown in Table 4.2. Further, the proposed base archi-

tectures require more minor FLOPs than the works [26,64], as shown in Table 4.1.



Chapter 5

One-Class Classification

5.1 Introduction

The application of OCC is useful when (i) there is an imbalance in the dataset [58]
or (ii) there is a case in which the end user “may only be interested in a specific class
without considering other” [100]. In the context of medical images classification,
a dataset can have multiple labels but the subject of interest for the classification
might be the specific patterns.

A one-class classifier’s primary challenge is the lower classification performance
achieved than in binary classification; this statement is supported in the work of
Krawczyk et al. (2015) [96]: “Our initial assumption was, that OCC won’t be
superior to binarization for all cases, and that was confirmed”. One-class classifiers
also have a lower performance in comparison with multiclass classifiers [90] because
of the lack of labelled training patterns for other classes in the training process.

Perera and Patel (2019) [133] introduced the concept of descriptiveness and
the compactness. Descriptiveness is the measurement for differences of features
from one pattern compared with other patterns (interclass). Compactness is the
measurement for differences of features within samples inherently in one pattern
(intraclass) [133]. As previously mentioned, the standard one-class training pro-
cedure has a low descriptiveness; the training only consists of one pattern. [133]
proposed a novel training procedure with the appropriate loss function to support

both descriptiveness and compactness to tackle this problem.

79
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The motivation to propose this particular study was because of existing evi-
dence of some classes with rare samples in the medical images dataset (e.g. the
NIH Chest-X-Ray 14). Since the examples are rare, to form a good representation
pattern for a binary classifier might be difficult [103]. One solution is to train
the majority pattern in one classifier and re-present the minority as outliers [153].
However, in the dataset case (such as the NIH Chest-X-Ray 14), the majority
pattern is the negative samples. This condition might pose an overfitting problem
for specific classifiers [38], and training with only the target class (the minority
pattern) might produce better predictions [103].

This study in Chapter 5 proposes a one-class classifier method that requires
low computational resources and has competitive classification results compared
to multiclass classification. The main difference with Chapter 4 is the additional
inclusion of training examples and not only the number of epochs in calculating
the required FLOPs. However, this study in Chapter 5 still uses the FLOPs base
features-network listed in Table 4.1 and 4.2. The “template network” is also the
identical network from Chapter 4. The progression of Chapter 5 is a more focused
classification of the particular disease than the model in Chapter 4, also with the

less computational cost for the final model.

5.2 Method

5.2.1 Research Contribution and Novelty Statement

This research’s primary contribution is that it proposes a dual-branch network
architecture to train a one-class classifier without the presence of counterexamples.
This study can show the advantage of the proposed method to achieve better
results than previous studies [26,62,64]. It also requires fewer computational costs
during training. Other works [67,68] summarise the best classification performance
from several traditional classifiers, which were trained separately. The proposed
work summarises the best classification performance from a single neural network
with dual branches classifiers trained together.

Naturally, a one-class classifier has a lower performance than other classifier

types because of the lack of access to the counterexamples [90,96]. However, for
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Figure 5.1: Two Tier Learning [29]

this research, the study has access to the counterexamples. However, this study
opted not to use the counterexamples to show the advantages of the proposed

approach.

5.2.2 The Existing One Class Classification

Bellinger et al. [29] proposed a sub-concept learning method, entitling the method
as a “two-tiered multi classifier system”. The dataset [29] is a multilabel classi-
fication problem, consisting of rain-benign, rain-anomalous, non-rain-benign and
non-rain-anomalous classes. Similarly, the NIH Chest X-Ray [173] dataset con-
sists of 20,796 multilabel examples within the dataset; 18,5% of the total sum of
examples.

The approach proposed by Bellinger et al. [29] is a two-phase training method.
The first phase separates rain and non-rain with the binary classifier, then the two
one-class classifiers perform the classification between benign and anomalous in
the second stage. The method [29] is depicted in Figure 5.1. In the second phase,
the training proceeds without counterexamples. Krawczyk et al. [96] investigated

several one-class classifiers’ accuracy to decompose a multiclass classification sys-
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Figure 5.2: A Dual-Branch Network with Six Outputs
tem.

5.2.3 The Proposed Approach for One-Class Classification

Figure 5.2 depicts the proposed network. It is a single network with two main
branches. Figure 5.2 is generated automatically from the Keras [41] library. This
study used the features from the last global average-pool layer of an EfficientNet-
B3 [41] backbone with the chest X-ray 14 dataset [173] to perform experiments.
The experiments trained a one-class classifier for each of the 14 classes.

The “two-tiered multi classifier system” [29] did not explicitly address the con-
cept of descriptiveness and compactness [133]. This study also used extracted
features for the sub-concept learning process, whereas [29] used the original input
images for every phase of the “two-tiered multi classifier system”. Similarly, [95]
decomposed a multiclass classification problem from several OCC problems.

Since previous work [133] has emphasised the importance of descriptiveness and
compactness in the OCC system. This study intends to undertake the same anal-

ysis. However, this study proposes a different approach to address descriptiveness
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and compactness in the OCC problem.

This study proposes a network with dual branches; for every branch, this study
applies three different loss functions. In the left sigmoid output, this study applied
the Huber loss [35,81,108,112]. In the middle output, this study applied focal
loss [101], while in the right sigmoid output, this study applied an Euclidean
distance loss [155]. All loss functions maximise only the compactness by using
single-label training examples. In our understanding, the use of extracted features
from the EfficientNet-B3 preserved the descriptiveness.

Equation 5.1 depicts the Huber loss with the threshold. Suppose p is the
prediction. The Huber loss output will be the the mean squared error (MSE) for
the norm of p smaller or equal than the threshold. It outputs the the average mean
error (MAE) for the other value of p.

p?
L5(p) = 2 52 (5.1)
d|p| — =, otherwise.
2

Equation 5.2 depicts the focal-loss from literature [101].

Lroc(p) = —a (1= p) Yf log(p) (5.2)

Equation 5.3 depicts the Euclidean distance loss, which measures the distance
between the prediction and the ground-truth. Because the proposed work has
six loss functions in total, the network also outputs six validation values for each

training epoch.

n

2
Seuclidean(p) = \J Z (qz - yirue) (53)
i=1
The proposed algorithm uses the sum of those six validation outputs to tune the
network’s hyperparameters. The advantage of having six output loss functions in
two branches is that this study can choose the best performance from six nodes’

results.
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5.2.4 The Best Outputs from Two Branches

Algorithm 2 The Highest Accuracy for Dual-Branch Network
input : The learning-rate hyperparameters
output: The highest accuracy for dual-branch network

*start™*

initialisation: define grid of learning-rates for n epochs

while iteration < (n epochs)
optimise network with classification with the learning-rate inputs
capture the best classification between two branches

return: choose the best classification between two branches

*end*

Since the proposed work has six output terminal nodes, each trained model will
have six accuracies that correspond to loss functions. In addition, the proposed

method also chooses the result that outputs the highest accuracy.

5.2.5 The Fine-Grained Computational-Cost Evaluation

Suppose this study required a fine-grained calculation to factor the number of
training data into the computational-cost evaluation. Then, this study can use
the path of the classical research by Mizutani and Dreyfus (2001) [116]. The
work [116] decomposed the backpropagation algorithm, then performed a fine-
grained cost evaluation for each process from forward-pass and backwards-pass in

the algorithm.
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Table 5.1: Decomposition of Backpropagation Algorithm [116]

Backpropagation Algorithm

Forward Pass

Process 1 Node - input computation
Process 2 Activation or output evaluation
Process 3 Objective function evaluation
Backward Pass

Process 4 Node sensitivity

Process 5 Gradient computation

Process 6 Parameter updates

The literature [116] defines the approximate FLOPs in Equation 5.4.

cost (BackwardPass)
cost (ForwardPass)

Approximaterrops = (5.4)

where each of forward-pass and backwards-pass consists of three processes with

independent FLOPs calculation. The decomposition is depicted in Table 5.1

Table 5.2: The Notations [116]

Notation | Description

d Number of training examples

n Number of weights parameters

N Total number of layers, including the input layer

s A particular layer

Py Number of output neurons at the terminal layer N
Ps Number of neurons at the layer s, excluding the bias
T Cost to evaluate activation node f* (.)

Vs Cost to evaluate derivative fs()

Suppose d is the number of training examples; the other notation is shown
in Table 5.2. This study has the decomposition of backpropagation into six pro-
cesses. Calculating the computing cost for each process is bound to the d training
examples. Equations 5.4 and 5.5 are the mathematical perspectives from which to

calculate the cost of a backpropagation algorithm [116].
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N
Process; = 2dz (Ps_1+ 1) Py =2dn (5.5)

s=2

N
Processy; = d Y T, P,

s=2
Processs = dPy + 2d Py
N-1 N-1
Process, = dPy + d Z Piy (Ver+1)+2d Z P,P, 4
s=1 s=2

Processs = 2dn

Processg = 2n

Suppose this study wants to have a fine-grained FLOPs calculation for the com-
mon activation functions to determine 7. Then, this study can analyse it using
the mathematical equation from the corresponding functions. This study can eval-
uate from Equation 5.6 that ReLu only requires one FLOP (one operation), while

sigmoid requires four FLOPs (four operations).

RelLu(z) = max(0, x) (5.6)

1
Sigmoid(z) = T

This study can have a fine-grained FLOPs calculation for the derivation of sigmoid
activation functions to determine V. This study can evaluate from Equation 5.7
that the derivation requires 20 FLOPs (20 operations).

Sigmoid(z) = o (x) (5.7)
o' (x) = o (z) (1 -0 (x))

This study can determine from Equation 5.8 that the derivation of ReLu requires

only one FLOP (one operation).
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o' () :{

The derivation of ReLu is undefined for z = 0

RelLu(z) = o (x)

0;for x <0
1;for z > 0

(5.8)

It can also be concluded from Equation 5.5: suppose the study has two identical

networks N7 and Ny which were trained with the different number of examples d;

and dy. Then the study can formulate the computational cost required during N;

training with the ratio of examples as shown in Equation 5.9.

d
cost(Ny) = d—l - cost(Na)

2

5.3 Experiment and Results

(5.9)

Table 5.3: Identical Splits Comparison with Previous Work

Third party [139] The Proposed
& of One-Class
P Guan et al. [62] Features Classification
& Cost of Cost of
]® o Train Train
AUROC Examples Examples AUROC Examples Examples
FLOPs FLOPs
Cardiomegaly | 0.9097 304,295,765.28 M | 78,468 0.9151 2,466.75 M 1,950
Emphysema 0.8905 304,295,765.28 M | 78,468 0.9539 2,275.735 M | 1,799
Edema 0.9185 304,295,765.28 M | 78,468 0.9036 2,137.85 M 1,690
Hernia 0.9064 304,295,765.28 M | 78,468 0.9434 182.16 M 144
Pneumothorax | 0.8794 304,295,765.28 M | 78,468 0.9100 4,686.825 M | 3,705
Effusion 0.8843 304,295,765.28 M | 78,468 0.8917 11,715.165 M | 9,261
Mass 0.8707 304,295,765.28 M | 78,468 0.8668 5,044.82 M 3,988
Fibrosis 0.8208 304,295,765.28 M | 78,468 0.8651 1,464.87 M 1,158
Atelectasis 0.8225 304,295,765.28 M | 78,468 0.8398 10,114.94 M | 7,996
Consolidation | 0.8210 304,295,765.28 M | 78,468 0.8196 4,127.695 M | 3,263
Pleural thicken. | 0.8127 304,295,765.28 M | 78,468 0.8135 2,882.935 M | 2,279
Nodule 0.7691 304,295,765.28 M | 78,468 0.8297 5,534.375 M | 4,375
Pneumonia 0.7614 304,295,765.28 M | 78,468 0.7694 1,237.17 M 978
Infiltration 0.7006 304,295,765.28 M | 78,468 0.7352 17,601.21 M | 13,914

The results in this section are under assumptions that the use of batch size

equals one. This study performed the experiments to support the preliminary
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hypothesis: that the proposed approach can achieve an acceptable classification
performance for most training patterns, with fewer training examples and smaller
computational cost.

This study alters each pattern’s training and validation set using only positive
examples, and did not alter anything about the test set. It is precisely an identical
normal test set. Hence, this study can have a fair comparison with the multiclass
classifier. The study also has a preliminary hypothesis that negative examples
are not required since the experiment uses extracted features rather than original
images. Each feature is embedded with negative examples since the features are
extracted from a trained network. This behaviour would not be available for
original images input.

In term of the correlation of the AUROC value with the capability of the ex-
pert system itself, the literature [105] defines: “In general, an AUC of 0.5 suggests
no discrimination (i.e., ability to diagnose patients with and without the disease
or condition based on the test), 0.7 to 0.8 is considered acceptable, 0.8 to 0.9 is
considered excellent, and more than 0.9 is considered outstanding” [105]. Accord-
ing to the literature [43,69, 105, the baseline 0.5 is generally known for AUROC
metric.
works [26,62,64] are depicted in Tables 5.3 and 5.4.

The comparison of the proposed approach’s results with the previous

Table 5.4: The Official Splits Comparison with Previous Works

Variant of
ResNet-50 DenseNet-121 The Proposed
& Baltruschat Giindel One-Class
e et al. [26] et al. Features Classification
S [64]
Cost of Cost of Train Cost of Train
AUROC Examples AUROC Examples Examples AUROC Examples Examples
FLOPs FLOPs FLOPs
Cardiomegaly | 0.875 335,536,611.04 M | 0.883 253,181,337.36 M | 86,524 0.8933 2,159.355 M | 1,707
Emphysema 0.895 335,536,611.04 M | 0.895 253,181,337.36 M | 86,524 0.9410 1,800.095 M | 1,423
Edema 0.846 335,536,611.04 M | 0.835 253,181,337.36 M | 86,524 0.8604 1,743.17 M 1,378
Hernia 0.937 | 335,536,611.04 M | 0.896 | 253,181,337.36 M | 86,524 | 0.0253 | 178.365 M| 141
Pneumothorax | 0.819 335,536,611.04 M | 0.846 253,181,337.36 M | 86,524 0.8926 3,335.805 M | 2,637
Effusion 0.822 335,536,611.04 M | 0.806 253,181,337.36 M | 86,524 0.8406 10,953.635 M | 8,659
Mass 0.820 335,536,611.04 M | 0.821 253,181,337.36 M | 86,524 0.8365 5,103.01 M 4,034
Fibrosis 0.816 335,536,611.04 M | 0.818 253,181,337.36 M | 86,524 0.8375 1,582.515 M | 1,251
Atelectasis 0.763 335,536,611.04 M | 0.767 253,181,337.36 M | 86,524 0.7904 10,474.2 M 8,280
Consolidation | 0.749 335,536,611.04 M | 0.745 253,181,337.36 M | 86,524 0.7616 3,607.78 M 2,852
Pleural thicken. | 0.763 335,536,611.04 M | 0.761 253,181,337.36 M | 86,524 0.8080 2,836.13 M 2,242
Nodule 0.747 335,536,611.04 M | 0.758 253,181,337.36 M | 86,524 0.7984 5,955.62 M 4,708
Pneumonia 0.714 335,536,611.04 M | 0.731 253,181,337.36 M | 86,524 0.7350 1,108.14 M 876
Infiltration 0.694 335,536,611.04 M | 0.709 253,181,337.36 M | 86,524 0.7058 17,434.23 M | 13,782
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The results in Table 5.3 show that the proposed method has the advantages
of lower FLOPs; thus, it requires smaller training examples. A primary difference
between the proposed work and [62,139] is that the proposed approach requires
14 distinct classifiers. In contrast, [62,139] only requires one classifier. This study
of OCC did not perform averages from the results in Table 5.4 because it has an
independent classifier for each class. Comparison of this study’s one-class classifiers
results with its multiclass classifiers is depicted in Tables 5.5 and 5.6.

This study requires slightly more total FLOPs since it used the multiclass
classifiers’ pre-trained weights to obtain more optimal results. However, this effort
increased the required FLOPs because this study needed the multiclass’ FLOPs

to be considered.

Table 5.5: Identical Splits Comparison with Multiclass Classification

The Chapter 4 The Proposed
& Multiclass One-Class
“00\0 Features Classification Features Classification
Q‘v\’ AUROC | AUROC Cost of Train Cost of Train Total
without with Examples Examples AUROC Examples Examples FL dPs
Noise Noise FLOPs FLOPs :
Cardiomegaly | 0.9136 0.9091 99,654.36 M | 78,468 0.9151 2,466.75 M 1,950 126,788 M
Emphysema 0.9538 0.9506 99,654.36 M | 78,468 0.9539 2,275.735 M| 1,799 124,687.445 M
Edema 0.9044 0.9018 99,654.36 M | 78,468 0.9036 2,137.85 M 1,690 123,170.71 M
Hernia 0.9512 0.9384 99,654.36 M | 78,468 0.9434 182.16 M 144 101,658.12 M
Pneumothorax | 0.9100 0.9106 99,654.36 M | 78,468 0.9100 4,686.825 M| 3,705 151,209.435 M
Effusion 0.8915 0.8904 99,654.36 M | 78,468 0.8917 11,715.165 M | 9,261 228,521.175 M
Mass 0.8662 0.8651 99,654.36 M | 78,468 0.8668 5,044.82 M 3,988 155,147.38 M
Fibrosis 0.8630 0.8583 99,654.36 M | 78,468 0.8651 1,464.87 M 1,158 1115,767.93 M
Atelectasis 0.8393 0.8393 99,654.36 M | 78,468 0.8398 10,114.94 M | 7,996 210,918.7 M
Consolidation | 0.8196 0.8176 99,654.36 M | 78,468 0.8196 4,127.695 M | 3,263 145,059.005 M
Pleural thicken. | 0.8094 | 0.8050 | 99,654.36 M | 78,468 0.8135 | 2,882.935 M | 2,279 131,366.645 M
Nodule 0.8280 0.8302 99,654.36 M | 78,468 0.8297 5,534.375 M | 4,375 160,532.485 M
Pneumonia 0.7676 0.7665 99,654.36 M | 78,468 0.7694 1,237.17 M 978 113,263.23 M
Infiltration 0.7343 0.7347 99,654.36 M | 78,468 0.7352 17,601.21 M | 13,914 293,267.67 M

This study used Equation 5.9 to calculate the effect of the number of training
examples and Equation 4.10 to adjust the epochs’ number into the FLOPs calcula-
tion. The use of the number of training examples and the required epoch numbers
are taken into account in the FLOPs calculation did not appear in Chapter 4, such
as the results in Table 4.2. However, the other benchmarked research presented
in Chapter 4 also did not take the number of training examples, and the required

epoch numbers are taken into account into the FLOPs calculation
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Table 5.6: The Official Splits Comparison with Multiclass Classification

The Chapter 4 The Proposed
& Multiclass One-Class
\\0\00 Features Classification Features Classification
Q‘fr\’ AUROC | AUROC Cost of Train Cost of Train Total
without with Examples Examples AUROC Examples Examples FLOPs
Noise Noise FLOPs ) FLOPs
Cardiomegaly | 0.8923 0.8919 109,542.58 M | 86,524 0.8933 2,159.355 M | 1,707 133,295.485 M
Emphysema 0.9408 0.9399 109,542.58 M | 86,524 0.9410 1,800.095 M | 1,423 129,343.625 M
Edema 0.8600 0.8604 109,542.58 M | 86,524 0.8579 1,743.17 M 1,378 128,717.45 M
Hernia 0.9278 0.9204 109,542.58 M | 86,524 0.9253 178.365 M 141 111,504.595 M
Pneumothorax | 0.8902 0.8912 109,542.58 M | 86,524 0.8926 3,335.805 M | 2,637 146,236.435 M
Effusion 0.8389 0.8394 109,542.58 M | 86,524 0.8406 10,953.635 M | 8,659 230,032.565 M
Mass 0.8344 0.8357 109,542.58 M | 86,524 0.8365 5,103.01 M 4,034 165,675.69 M
Fibrosis 0.8417 0.8423 109,542.58 M | 86,524 0.8375 1,582.515 M | 1,251 126,950.245 M
Atelectasis 0.7909 0.7907 109,542.58 M | 86,524 0.7904 10,474.2 M 8,280 224,758.78 M
Consolidation | 0.7600 0.7616 109,542.58 M | 86,524 0.7608 3,607.78 M 2,852 149,228.16 M
Pleural thicken. | 0.8074 0.8072 109,542.58 M | 86,524 0.8080 2,836.13 M 2,242 140,740.01 M
Nodule 0.7979 0.7978 109,542.58 M | 86,524 0.7984 5,055.62 M 4,708 175,054.4 M
Pneumonia 0.7341 0.7330 109,542.58 M | 86,524 0.7350 1,108.14 M 876 121,732.12 M
Infiltration 0.7046 0.7033 109,542.58 M | 86,524 0.7058 17,434.23 M | 13,782 301,319.11 M

The total FLOPs columns in Tables 5.5 and 5.6 are the results from the mul-
ticlass FLOPs required to obtain the pre-trained weights added with the FLOPs
of the number of epochs and training examples in the calculation. In detail, the
number of epochs is 11, multiplied by the FLOPs listed in the cost of the examples

column.

5.3.1 Effectiveness of the pre-Trained Weights

This study provides other results to reach a conclusion about the effectiveness of
the pre-trained weights. Tables 5.8 and 5.7 depict this study’s results in identical
networks using random initialization versus pre-trained weights. Using the results
depicted in Table 5.8 and 5.7, this study can conclude that the pre-trained weights

significantly help the network increase classification performance.
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Table 5.7: Identical Splits Comparison Between from Scratch and Pre-
Trained Initialisation

AUROC
Pathology from scratch | pre-trained
Cardiomegaly 0.8574 0.9151
Emphysema 0.8607 0.9539
Edema 0.8162 0.9036
Hernia 0.8500 0.9434
Pneumothorax | 0.7771 0.9100
Effusion 0.8031 0.8917
Mass 0.7565 0.8668
Fibrosis 0.7085 0.8651
Atelectasis 0.6824 0.8398
Consolidation 0.7182 0.8196
Pleural thicken. | 0.6462 0.8135
Nodule 0.7027 0.8297
Pneumonia 0.6195 0.7694
Infiltration 0.5982 0.7352

Table 5.8: The Official Splits Comparison Between from Scratch and Pre-
trained Initialisation

Pathology AUROC .
from scratch | pre-trained
Cardiomegaly 0.7776 0.8933
Emphysema 0.8808 0.9410
Edema 0.8126 0.8579
Hernia 0.8738 0.9253
Pneumothorax | 0.8316 0.8926
Effusion 0.7429 0.8406
Mass 0.7136 0.8365
Fibrosis 0.7555 0.8375
Atelectasis 0.6332 0.7904
Consolidation 0.6971 0.7608
Pleural thicken. | 0.6606 0.8080
Nodule 0.6325 0.7984
Pneumonia 0.6737 0.7350
Infiltration 0.6208 0.7058

5.4 Discussion

The proposed one-class classifier approach provides competitive results compared

with traditional multiclass classifiers, which were trained under fully labelled set-



CHAPTER 5. ONE-CLASS CLASSIFICATION Page 92

tings. However, the study of more reliable network architecture variations to per-
form OCC requires further investigation. These experiments show that another
essential factor other than the network architecture is the weight initialisation.
Similarly, the weight initialisation method for the top layers to address the clas-
sification task has been done previously [53,54]. The proposed work’s primary
difference is in the previous works [53,54] use of an autoencoder for the back-
bone network. The proposed work used a dual-branch network. The previous
works [53,54] did not perform one-class training to address the multiclass classifi-
cation problem.

The early idea was to extend the descriptiveness and the compactness concepts
from [133]. Using one-class training is part of the proposed method to maximise
and stretch the compactness without ignoring the descriptiveness. The single
pattern used during training will converge into the smaller training loss; this means
a smaller distance to the ground truth for that single pattern.

However, since this study’s task was to address the multiclass classification
problem, it aimed also to have good descriptiveness so that the classifier had an ac-
ceptable decision boundary to distinguish the other patterns that were not trained
during the one-class pattern training. In this case, this study can summarise that
to maintain the descriptiveness, there are two essential factors.

The first is the features being used. this study uses the extracted features from
the previously multiclass classification problem, which means the features have
preserved some descriptiveness. The second is the weight initialisation; a proper
weight initialisation significantly improves classification performance.

The thesis has two significant differences from [133], the first is that this thesis
use a decision-based algorithm to determine best outputs from six loss functions,
whilst [133] used a customized join loss-function. The second is that this thesis
used a customized network, whilst [133] use AlexNet and VGG16.



Chapter 6

Conclusion

This chapter discusses the conclusions of the work in the thesis. Mainly, it sum-
marises the contributions from the work and the future works that have potential

to explore and provide the sustainability of the current results.

6.1 Summary of Contributions

Generally, the thesis has three significant contributions. First, it proposes an ap-
proach that can combine weights calculation algorithms for deep networks and
optimise training strategies from the state-of-the-art architecture. The findings
show that the proposed method can significantly improve classification perfor-
mance. In the initial research phase, the research used AUROC as the primary
metric to evaluate the result, mainly because of the similarity with other works.
However, one reviewer suggested different metrics to show the work’s advantages
during the manuscript submission review stages. The research used AU-PRC to
fulfil the request. This metric results exceptionally well on the hernia as the most
minority class.

This research also verifies the method with a private binary classification case
dataset—the glaucoma dataset—as discussed in Section 3.4.4. The glaucoma
dataset is available by contacting the previous scholarly work [91] listed in Ta-
ble 2.7. After verification, this study can conclude that the method performs well
on multiclass classification and binary classification problems. The research also

shares the chest X-ray classification code in the public repository. In summary,
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(1) This research publishes the method with a public dataset in the refereed jour-
nal [128]. (2) The research verifies the method with another private dataset. (3)
The research shares the code of the public dataset for reproducibility. One im-
portant aspect is that this study was able to benchmark the results with different
experiment settings, and those results were satisfactory. Hence, it was accepted in
a top-tier publication [128]. In summary, the method can achieve state-of-the-art
results for the chest X-ray dataset by improving the imbalance problem.

Second, the research proposes two-stage Bayesian optimisation training to per-
form competitive classification performance using minor FLOPs neural network
architecture. The findings show that the proposed method contributes and suits
both extracted features input and original images input. This study aims to have
a light multiclass classifier suitable for use in low-cost computing environments.
The findings show that the method can achieve classification performance compet-
itively with a significant advantage of the smaller computing resources required.
This study used FLOPs and MACCs units of measurement to assess the required
computational cost. One primary reason is that those two units have been used
in the notable works [71,80,161,162]. This research will help implement the chips
(SoC) system or the IoT platform under von Neumann architecture. In summary,
the method can achieve competitive performances with the bit of computational
cost required.

Third, the research proposes a dual-branch network architecture to train one-
class classifiers without counterexamples. The method is proper to use when in-
terested in a particular disease pattern rather than all the available patterns in the
dataset. The evidence indicates that the proposed one-class method has compet-
itive results compared with regular multiclass classifiers trained in fully labelled
settings. There are cases for which the end user needs to diagnose only the dis-
eases. Despite the competitive classification results for most diseases, performing
multiclass analysis may not be time-efficient or necessary. The findings show that
OCC with the extracted features achieved the best performance when the neural
network was initialised with pre-trained weights rather than the random initial-
isation. In summary, the method can achieve competitive performances without

counterexamples during training.
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Figure 6.1: The Chapters’ Progressions

6.2 The Progressions from Chapters

Figure 6.1 depicts the research’s progression for each chapter. In Chapter 3, the
research has successfully presented the method to improve classification perfor-
mance. The method generalises well from the Chest X-Ray dataset to the Glau-
coma dataset. However, the final model was still quite computationally expensive
to run on low-cost computing devices. In Chapter 4, the research evolves into
feature-based classification, mainly to reduce the computational cost. The method
also generalises well from the Chest X-Ray dataset into the Skin cancer dataset.
The model has been tested on the Android simulator and an actual Android mobile
phone. The test results show that it can classify diseases well on low-computing
platforms. In Chapter 5, the research focuses on single-class classifiers for each
disease. The outcome for this research is the advantage of low-cost computing ca-
pability, but with the superior performance for each particular disease, compared

to the features classification in Chapter 4.
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6.3 Future Works

Several aspects may improve the work in the thesis, which are currently beyond
our time budget. This study suggests future works involving process automation,
the multimodality of the data sources and the real-time expert system.

Prominent future work is automating the whole process into one integrated
system. Each of our approaches currently works partially as different parts of the
system. A future work that incorporates every process into an integrated modular
backbone will provide better applicability of the system. The implementation
is challenging because it may integrate large GPU clusters and SoC or the IoT
technology.

This research also encourages the study of medical images classification using
the multimodal dataset; the term multimodal refers to using different data sources
(e.g. images and text). The existing research has tended to use the dataset in a
single type of data-source fashion (e.g. fully labelled images setting). Further text
analysis into medical images dataset to improve the classification performance is a
promising research direction. The text-based dataset requires a smaller computa-
tional cost than does an image-based dataset. The simple reasoning for this is that
the text-based machine representation is the word embeddings composed of binary
numbers (zero and one). Conversely, the image-based machine representation is
floating numbers that require more computational cost in the arithmetic logic unit.
Hence, the extensive study in the direction will also extend the potentials to reduce
the overall training cost for an image classification algorithm.

The other aspect that needs further discussion is the real-time expert system.
This researcher was aware that the machine-learning approaches require the train-
ing process to transfer knowledge from the expert into the artificial intelligence
system. However, the training process itself is a bottleneck, especially when con-
sidering the consuming time to train the enormous image training data in the
deep-learning platform. A more simplified architecture to artificial intelligence
(AI) is required to update its knowledge in a real-time fashion. Hence, we can
have a more responsive system to the actual condition in the field of healthcare

services.



Appendix A

The Code Listing

The code from the proposed algorithms are listed below.

The code snippets from the file: createOneClassTrainLabel.ipynb. The modifica-

tion of the training labels into a single training label for each class is depicted in

Figure A.1.

In [5]:

import pandas as pd

¢ = len(train_onlyCols)
for i in range(c):

cleanIndices =

[]

name = train_onlyCols[i]
= "select * from train_only where train_only."+name+" == 1"
print(myStr)
= pysql(myStr)
theIndices.to_csv("oneClasslabel/"+name+".csv",index=False,sep=",")

myStr

thelndices

select
select
select
select
select
select
select
select
select
select
select

* O K K K K O X X X *

from
from
from
from
from
from
from
from
from
from
from

train_only
train_only
train_only
train_only
train_only
train_only
train_only
train_only
train_only
train_only
train_only

where
where
where
where
where
where
where
where
where
where
where

train_only.
.Mass

train_only

train_only.
train_only.
train_only.
train_only.
train_only.
train_only.
train_only.
train_only.
train_only.

Infiltration ==
Nodule == 1
Pneumonia
Pneumothorax == 1
Consolidation
Edema ==
Emphysema ==
Fibrosis
Pleural_Thickening == 1
Hernia ==

Figure A.1: Training Label Modification for One Class

The code snippets from the file: util.py. The modification of the weighted-

expected-improvement acquisition function is depicted in Figure A.2.
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@staticmethod
def weightedei(x, gp, y_max, xi, omega):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
mean, std = gp.predict(x, return_std=True)

z = (mean - y _max - xi)/std
return omega*(mean - y_max - xi) * norm.cdf(z) + (1 - omega)*std * norm.pdf(z)

Figure A.2: Weighted EI Acquisition Function

The code snippets from the file: calculateModel.ipynb. The calculation of a model
is depicted in Figure A.3.

In [4]: model.summary()

Model: "sequential®

Layer (type) Output Shape Param #
;;atl (Flatten) (None, 1536) 2]
densel (Dense) (None, 418) 630178
relul (Activation) (None, 410) 2}
dropoutl (Dropout) (None, 41@) 2]
OUTPUT (Dense) (None, 14) 5754

Total params: 635,924
Trainable params: 635,924
Non-trainable params: @

In [5]: from keras flops import get flops
flops = get flops(model, batch size=1)

WARNING: tensorflow:From C:\ProgramData\Anaconda3\lib\site-packages\tensorflo
de_def name (from tensorflow.python.framework.graph util impl) is deprecated
Instructions for updating:

Use "tf.compat.vl.graph util.tensor shape from node def name”

In [6]: print(f"FLOPS: {flops [/ 18 ** 6:.83} M")

FLOPS: 1.27 M

Figure A.3: Calculate FLOPs from The Model



Appendix B

The List of Repositories

The list of public repositories which were used.

https://github.com/fchollet /keras
https://github.com/brucechoul983/chexnet-keras
https://github.com/ien001/ag-cnn

https://github.com/arnoweng/chexnet

The code for Chapter 3: https://github.com/bayu-ladom-ipok/weOpen
https://github.com/AMLab-Amsterdam/L0_regularisation

https://github.com /fmfn /bayesianoptimization
https://github.com/jeffheaton/t81_558_deep_learning/
https://github.com/tokusumi/keras-flops

The code for Chapter 4: https://github.com/bayu-ladom-ipok /weOpenBayesianOpt

The code for Chapter 5: https://github.com/bayu-ladom-ipok /weOpenOneClass

99



Bibliography

1]
2]

[6]

7]

Atelectasis - https://www.nhlbi.nih.gov/health-topics/atelectasis.

Causes of death, australia, 2018 — australian bureau of statistics. https:
//www.abs.gov.au/statistics/health /causes-death/causes-death-australia/
2018. (Accessed on 12/06/2021).

Chronic  obstructive pulmonary disease (copd), impact - aus-
tralian  institute of health and welfare. https://www.aihw.
gov.au/reports/asthma-other-chronic-respiratory-conditions/

copd-chronic-obstructive-pulmonary-disease/contents/deaths. (Accessed on

12/06,/2021).

Chronic obstructive pulmonary disease (copd), impact - australian
institute of health and welfare. https://www.aihw.gov.au/reports/
chronic-respiratory-conditions/copd/contents/impact. (Accessed on
12/06/2021).

Chronic respiratory conditions - australian institute of health
and  welfare. https://www.aihw.gov.au/reports/australias-health/

chronic-respiratory-conditions. (Accessed on 12/06/2021).

Chronic respiratory conditions - https://www.aihw.gov.au/reports/australias-

health/chronic-respiratory-conditions.

Chronic respiratory diseases in australia:  their prevalence, conse-
quences and prevention, summary - australian institute of health and

welfare. https://www.aihw.gov.au/reports/chronic-respiratory-conditions/

100


https://www.abs.gov.au/statistics/health/causes-death/causes-death-australia/2018
https://www.abs.gov.au/statistics/health/causes-death/causes-death-australia/2018
https://www.abs.gov.au/statistics/health/causes-death/causes-death-australia/2018
https://www.aihw.gov.au/reports/asthma-other-chronic-respiratory-conditions/copd-chronic-obstructive-pulmonary-disease/contents/deaths
https://www.aihw.gov.au/reports/asthma-other-chronic-respiratory-conditions/copd-chronic-obstructive-pulmonary-disease/contents/deaths
https://www.aihw.gov.au/reports/asthma-other-chronic-respiratory-conditions/copd-chronic-obstructive-pulmonary-disease/contents/deaths
https://www.aihw.gov.au/reports/chronic-respiratory-conditions/copd/contents/impact
https://www.aihw.gov.au/reports/chronic-respiratory-conditions/copd/contents/impact
https://www.aihw.gov.au/reports/australias-health/chronic-respiratory-conditions
https://www.aihw.gov.au/reports/australias-health/chronic-respiratory-conditions
https://www.aihw.gov.au/reports/chronic-respiratory-conditions/chronic-respiratory-diseases-australia/contents/summary
https://www.aihw.gov.au/reports/chronic-respiratory-conditions/chronic-respiratory-diseases-australia/contents/summary

BIBLIOGRAPHY Page 101

[17]

[18]

[19]

[20]

chronic-respiratory-diseases-australia/contents/summary.  (Accessed on
12/06,/2021).
Diabetic retinopathy detection — kaggle. https://www.kaggle.com/c/

diabetic-retinopathy-detection. (Accessed on 12/10/2021).
Emphysema - https://www.healthdirect.gov.au/emphysema.
Endotect 2020. https://endotect.com/. (Accessed on 12/10/2021).

Isic challenge. https://challenge.isic-archive.com/landing/2016/39/. (Ac-
cessed on 12/01/2021).

Pleural effusion - https://www.healthdirect.gov.au/pleural-effusion.
Pneumonia - https://www.healthdirect.gov.au/pneumonia.

Pneumonia - https://www.nhlbi.nih.gov/health-topics/pneumonia.
Pulmonary edema: Medlineplus medical encyclopedia -

https://medlineplus.gov /ency /article/000140.htm.

The global economic burden of asthma and chronic obstructive pulmonary

disease.  The International Journal of Tuberculosis and Lung Disease,
20(1):11-23, 2016.

Collapsed lung — atelectasis — pneumothorax -
https://medlineplus.gov/collapsedlung.html, Oct 2020.

The lungs - https://www.health.qld.gov.au/news-events/podcast/my-
amazing-body-the-lungs, Oct 2020.

Faststats - asthma - https://www.cdc.gov/nchs/fastats/asthma.htm, Apr
2021.

Lung disease: Medlineplus medical encyclopedia -
https://medlineplus.gov/ency /article/000066.htm, Feb 2021.


https://www.aihw.gov.au/reports/chronic-respiratory-conditions/chronic-respiratory-diseases-australia/contents/summary
https://www.aihw.gov.au/reports/chronic-respiratory-conditions/chronic-respiratory-diseases-australia/contents/summary
https://www.aihw.gov.au/reports/chronic-respiratory-conditions/chronic-respiratory-diseases-australia/contents/summary
https://www.kaggle.com/c/diabetic-retinopathy-detection
https://www.kaggle.com/c/diabetic-retinopathy-detection
https://endotect.com/
https://challenge.isic-archive.com/landing/2016/39/

BIBLIOGRAPHY Page 102

[21] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael
Isard, et al. Tensorflow: A system for large-scale machine learning. In 12th

{USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 16), pages 265-283, 2016.

[22] Hina Amin. Cardiomegaly - https://www.ncbi.nlm.nih.gov/books/nbk542296/,
Nov 2020.

[23] Tro Armeni, Ozan Sener, Amir R. Zamir, Helen Jiang, Toannis Brilakis, Mar-
tin Fischer, and Silvio Savarese. 3d semantic parsing of large-scale indoor
spaces. In Proceedings of the IEEE International Conference on Computer

Vision and Pattern Recognition, 2016.

[24] Jay E. Aronson. Expert systems. In Hossein Bidgoli, editor, Encyclopedia
of Information Systems, pages 277-289. Elsevier, New York, 2003.

[25] Peter J. Ashenden. Case study: A pipelined multiplier accumulator. In The
Designer's Guide to VHDL, pages 337-354. Elsevier, 2008.

[26] Ivo M. Baltruschat, Hannes Nickisch, Michael Grass, Tobias Knopp, and
Axel Saalbach. Comparison of deep learning approaches for multi-label chest
x-ray classification. Scientific Reports, 9(1), April 2019.

[27] Gopi Battineni, Nalini Chintalapudi, and Francesco Amenta. Machine learn-
ing in medicine: Performance calculation of dementia prediction by support
vector machines (svm). Informatics in Medicine Unlocked, 16:100200, 2019.

[28] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-
up robust features (SURF). Comput. Vis. Image Underst., 110(3):346-359,
2008.

[29] Colin Bellinger, Shiven Sharma, and Nathalie Japkowicz. One-class classifi-
cation — from theory to practice: A case-study in radioactive threat detec-
tion. Fxpert Systems with Applications, 108:223 — 232, 2018.



BIBLIOGRAPHY Page 103

[30]

[32]

[33]

[34]

[35]

[36]

[37]

Eta S. Berner and Mark L. Graber. Overconfidence as a cause of diagnostic
error in medicine. The American Journal of Medicine, 121(5):S2-S23, May
2008.

Siddharth Bhatia, Yash Sinha, and Lavika Goel. Lung cancer detection: A
deep learning approach. In Jagdish Chand Bansal, Kedar Nath Das, Atulya
Nagar, Kusum Deep, and Akshay Kumar Ojha, editors, Soft Computing for
Problem Solving - SocProS 2017, Volume 2, Bhubaneswar, India, December
23-24, 2017, volume 817 of Advances in Intelligent Systems and Computing,
pages 699-705. Springer, 2017.

[. K. Bindoft, P. C. Tenni, G. M. Peterson, B. H. Kang, and S. L. Jackson.
Development of an intelligent decision support system for medication review.
Journal of Clinical Pharmacy and Therapeutics, 32(1):81-88, February 2007.

Titus J. Brinker, Achim Hekler, Alexander H. Enk, and Christof von Kalle.
Enhanced classifier training to improve precision of a convolutional neural
network to identify images of skin lesions. PLOS ONE, 14(6):€0218713, June
2019.

Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Aréchiga, and Tengyu Ma.
Learning imbalanced datasets with label-distribution-aware margin loss. In
Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-
Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural Infor-
mation Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, 8-1/ December 2019, Vancouver,
BC, Canada, pages 1565-1576, 2019.

Jacopo Cavazza and Vittorio Murino. Active regression with adaptive huber

loss. CoRR, abs/1606.01568, 2016.
The U.S. Census Bureau, Apr 2021.

Abhishek Chaturvedi, Prabhakar Rajiah, Alexender Croake, Sachin Saboo,
and Apeksha Chaturvedi. Imaging of thoracic hernias: types and complica-
tions. Insights into Imaging, 9(6):989-1005, November 2018.



BIBLIOGRAPHY Page 104

[38]

[40]

[41]

[42]

[44]

[45]

[46]

Nitesh V. Chawla, Nathalie Japkowicz, and Aleksander Kotcz. Editorial:
special issue on learning from imbalanced data sets. SIGKDD FExplor.,
6(1):1-6, 2004.

Ching-Chin Chern, Yu-Jen Chen, and Bo Hsiao. Decision tree-based classi-
fier in providing telehealth service. BMC' Medical Informatics and Decision
Making, 19(1), May 2019.

Davide Chicco and Giuseppe Jurman. The advantages of the matthews cor-
relation coefficient (MCC) over f1 score and accuracy in binary classification
evaluation. BMC Genomics, 21(1), January 2020.

Francois Chollet et al. Keras - https://github.com/fchollet /keras, 2015.

Bruce Chou. This project is a tool to build chexnet-like models, written in
keras:https://github.com /brucechoul983/chexnet-keras, Mar 2018.

Corinna Cortes and Mehryar Mohri. AUC optimization vs. error rate mini-
mization. In Sebastian Thrun, Lawrence K. Saul, and Bernhard Schélkopf,
editors, Advances in Neural Information Processing Systems 16 [Neural In-
formation Processing Systems, NIPS 2003, December 8-13, 2003, Vancouver
and Whistler, British Columbia, Canada/, pages 313-320. MIT Press, 2003.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge J. Belongie. Class-
balanced loss based on effective number of samples. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA,
USA, June 16-20, 2019, pages 9268-9277, 2019.

Xueqing Deng, Wenkai Li, Xiaoping Liu, Qinghua Guo, and Shawn Newsam.
One-class remote sensing classification: one-class vs. binary classifiers. In-
ternational Journal of Remote Sensing, 39(6):1890-1910, 2018.

Xuanyi Dong, Junshi Huang, Yi Yang, and Shuicheng Yan. More is less: A
more complicated network with less inference complexity. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 5840-5848, 2017.



BIBLIOGRAPHY Page 105

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern classification,
2nd Edition. Wiley, 2001.

Hoda Ahmed Galal Elsayed and Liyakathunisa Syed. An automatic early
risk classification of hard coronary heart diseases using framingham scor-
ing model. In Hani Hamdan, Djallel Eddine Boubiche, Homero Toral-Cruz,
Sedat Akleylek, and Hamid Mcheick, editors, Proceedings of the Second In-
ternational Conference on Internet of things and Cloud Computing, I1CC
2017, Cambridge, United Kingdom, March 22-23, 2017, pages 141:1-141:8.
ACM, 2017.

Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M. Swet-
ter, Helen M. Blau, and Sebastian Thrun. Dermatologist-level classification
of skin cancer with deep neural networks. Nature, 542(7639):115-118, 2017.

Xin Feng, Youni Jiang, Xuejiao Yang, Ming Du, and Xin Li. Computer
vision algorithms and hardware implementations: A survey. [Integration,
69:309-320, 2019.

Zhiwei Feng, Qingbin Zhang, Qingfu Zhang, Qiangang Tang, Tao Yang, and
Yang Ma. A multiobjective optimization based framework to balance the
global exploration and local exploitation in expensive optimization. J. Glob.
Optim., 61(4):677-694, 2015.

Alberto Fernandez, Salvador Garcia, Mikel Galar, Ronaldo C. Prati, Bartosz
Krawczyk, and Francisco Herrera. Learning from Imbalanced Data Sets.

Springer International Publishing, 2018.

M. F. Ferreira, R. Camacho, and L. F. Teixeira. Autoencoders as weight
initialization of deep classification networks applied to papillary thyroid car-
cinoma. In 2018 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), pages 629-632, 2018.

Mafalda Falcao Ferreira, Rui Camacho, and Luis F. Teixeira. Using autoen-

coders as a weight initialization method on deep neural networks for disease



BIBLIOGRAPHY Page 106

[56]

[57]

[59]

[61]

detection. BMC Medical Informatics and Decision Making, 20(S5), August
2020.

Jannik Fritsch, Tobias Kuehnl, and Andreas Geiger. A new performance
measure and evaluation benchmark for road detection algorithms. In Inter-

national Conference on Intelligent Transportation Systems (ITSC), 2013.

Adrian Galdran, Gustavo Carneiro, and Miguel Angel Gonzalez Ballester.
Balanced-mixup for highly imbalanced medical image classification. In Mar-
leen de Bruijne, Philippe C. Cattin, Stéphane Cotin, Nicolas Padoy, Ste-
fanie Speidel, Yefeng Zheng, and Caroline Essert, editors, Medical Image
Computing and Computer Assisted Intervention - MICCAI 2021 - 2/th In-
ternational Conference, Strasbourg, France, September 27 - October 1, 2021,
Proceedings, Part V, volume 12905 of Lecture Notes in Computer Science,
pages 323-333. Springer, 2021.

Inés M. Galvan, Josa M. Valls, Nicolas Lecomte, and Pedro Isasi. A lazy
approach for machine learning algorithms. In IFIP Advances in Information

and Communication Technology, pages 517-522. Springer US, 2009.

Long Gao, Lu Yang, Dooman Arefan, and Shandong Wu. One-class clas-
sification for highly imbalanced medical image data. In Po-Hao Chen and
Thomas M. Deserno, editors, Medical Imaging 2020: Imaging Informatics
for Healthcare, Research, and Applications, volume 11318, pages 342 — 347.
International Society for Optics and Photonics, SPIE, 2020.

Long Gao, Lei Zhang, Chang Liu, and Shandong Wu. Handling imbalanced
medical image data: A deep-learning-based one-class classification approach.
Artificial Intelligence in Medicine, 108:101935, 2020.

Nicolas Garcia-Pedrajas and Domingo Ortiz-Boyer. Improving multiclass
pattern recognition by the combination of two strategies. IEFE transactions

on pattern analysis and machine intelligence, 28:1001-6, 07 2006.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The
MIT Press, 2016.



BIBLIOGRAPHY Page 107

[62]

[65]

[66]

[67]

[68]

Qingji Guan, Yaping Huang, Zhun Zhong, Zhedong Zheng, Liang Zheng, and
Yi Yang. Thorax disease classification with attention guided convolutional
neural network. Pattern Recognition Letters, 131:38 — 45, 2020.

O. Guehairia, A. Ouamane, F. Dornaika, and A. Taleb-Ahmed. Feature
fusion via deep random forest for facial age estimation. Neural Networks,
130:238-252, October 2020.

Sebastian Giindel, Sasa Grbic, Bogdan Georgescu, Siqi Liu, Andreas Maier,
and Dorin Comaniciu. Learning to recognize abnormalities in chest x-rays
with location-aware dense networks. In Progress in Pattern Recognition,
Image Analysis, Computer Vision, and Applications - 23rd Iberoamerican
Congress, CIARP 2018, Madrid, Spain, November 19-22, 2018, Proceedings,
pages 757-765, 2018.

David A. Gutman, Noel C. F. Codella, M. Emre Celebi, Brian Helba,
Michael A. Marchetti, Nabin K. Mishra, and Allan Halpern. Skin lesion
analysis toward melanoma detection: A challenge at the international sym-
posium on biomedical imaging (ISBI) 2016, hosted by the international skin
imaging collaboration (ISIC). CoRR, abs/1605.01397, 2016.

Huong Ha, Santu Rana, Sunil Gupta, Thanh Nguyen, Hung Tran-The, and
Svetha Venkatesh. Bayesian optimization with unknown search space. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32, pages 11795-11804. Curran Associates, Inc., 2019.

Bilal Hadjadji, Youcef Chibani, and Yasmine Guerbai. Multiple one-class
classifier combination for multi-class classification. In 22nd International
Conference on Pattern Recognition, ICPR 2014, Stockholm, Sweden, August
24-28, 2014, pages 2832-2837. IEEE Computer Society, 2014.

Bilal Hadjadji, Youcef Chibani, and Yasmine Guerbai. Combining diverse
one-class classifiers by means of dynamic weighted average for multi-class
pattern classification. Intell. Data Anal., 21(3):515-535, 2017.



BIBLIOGRAPHY Page 108

[69]

[74]

[75]

[77]

J A Hanley and B J McNeil. The meaning and use of the area under a receiver
operating characteristic (ROC) curve. Radiology, 143(1):29-36, April 1982.

hazibzunair. adversarial-lesions/data_preprocess_isic2016.py at master
hasibzunair/adversarial-lesions - github. https://github.com /hasibzunair/
adversarial-lesions/blob/master/isic2016_scripts/data_preprocess_isic2016.

pyv, March 2020. (Accessed on 01/05/2022).

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep resid-
ual learning for image recognition. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016, pages 770-778, 2016.

Jeff Heaton. Applications of deep neural networks, 2020.

Juerg Hodler, Rahel A. Kubik-Huch, and Gustav K. von Schulthess, edi-
tors. Diseases of the Chest, Breast, Heart and Vessels 2019-2022. Springer
International Publishing, 2019.

Syed Mohammad Minhaz Hossain, Kaushik Deb, Pranab Kumar Dhar, and
Takeshi Koshiba. Plant leaf disease recognition using depth-wise separable

convolution-based models. Symmetry, 13(3), 2021.

Fujun Hou and Evangelos Triantaphyllou. An iterative approach for achiev-

ing consensus when ranking a finite set of alternatives by a group of experts.

Eur. J. Oper. Res., 275(2):570-579, 2019.

A. Howard, M. Sandler, B. Chen, W. Wang, L. Chen, M. Tan, G. Chu, V. Va-
sudevan, Y. Zhu, R. Pang, H. Adam, and Q. Le. Searching for mobilenetv3.
In 2019 IEEE/CVF International Conference on Computer Vision (ICCV),
pages 1314-1324, Los Alamitos, CA, USA, nov 2019. IEEE Computer Soci-
ety.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:

Efficient convolutional neural networks for mobile vision applications, 2017.


https://github.com/hasibzunair/adversarial-lesions/blob/master/isic2016_scripts/data_preprocess_isic2016.py
https://github.com/hasibzunair/adversarial-lesions/blob/master/isic2016_scripts/data_preprocess_isic2016.py
https://github.com/hasibzunair/adversarial-lesions/blob/master/isic2016_scripts/data_preprocess_isic2016.py

BIBLIOGRAPHY Page 109

[78]

[79]

[30]

[81]

[82]

[84]

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In IFEE

Conference on Computer Vision and Pattern Recognition, 2018.

Gao Huang, Shichen Liu, Laurens van der Maaten, and Kilian Q. Wein-
berger. Condensenet: An efficient densenet using learned group convolutions,
2018.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Wein-
berger. Densely connected convolutional networks. In CVPR, pages 2261
2269. IEEE Computer Society, 2017.

Peter J. Huber. Robust estimation of a location parameter. In Springer
Series in Statistics, pages 492-518. Springer New York, 1992.

S. S. Jaipurkar, W. Jie, Z. Zeng, T. S. Gee, B. Veeravalli, and M. Chua. Au-
tomated classification using end-to-end deep learning. In 2018 40th Annual
International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), pages 706709, July 2018.

Jim Jeffers, James Reinders, and Avinash Sodani. Chapter 10 - vectorization
advisor. In Jim Jeffers, James Reinders, and Avinash Sodani, editors, Intel
Xeon Phi Processor High Performance Programming (Second Edition), pages
213-250. Morgan Kaufmann, Boston, second edition edition, 2016.

Jing Jiang, Huaifeng Zhang, Dechang Pi, and Chenglong Dai. A novel multi-
module neural network system for imbalanced heartbeats classification. Ez-
pert Systems with Applications: X, 1:100003, 2019.

Justin M. Johnson and Taghi M. Khoshgoftaar. Survey on deep learning
with class imbalance. Journal of Big Data, 6(1):27, Mar 2019.

Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global
optimization of expensive black-box functions. J. Glob. Optim., 13(4):455-
492, 1998.



BIBLIOGRAPHY Page 110

[87]

[90]

[91]

[92]

[94]

Piotr Juszczak. Learning to recognise : a study on one-class classification
and active learning. PhD thesis, Delft University of Technology, Netherlands,
2006.

Ryoji Kadota, Hiroki Sugano, Masayuki Hiromoto, Hiroyuki Ochi, Ryusuke
Miyamoto, and Yukihiro Nakamura. Hardware architecture for HOG feature
extraction. In Jeng-Shyang Pan, Yen-Wei Chen, and Lakhmi C. Jain, editors,
Fifth International Conference on Intelligent Information Hiding and Mul-
timedia Signal Processing (IIH-MSP 2009), Kyoto, Japan, 12-14 September,
2009, Proceedings, pages 1330-1333. IEEE Computer Society, 2009.

Jalil Kazemitabar, Arash Amini, Adam Bloniarz, and Ameet S Talwalkar.
Variable importance using decision trees. In I. Guyon, U. V. Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, volume 30, pages 426-435.

Curran Associates, Inc., 2017.

Shehroz S. Khan and Michael G. Madden. One-class classification: taxonomy
of study and review of techniques. Knowl. Eng. Rev., 29(3):345-374, 2014.

Wai Ginn Khong. Surface edge detection using convolutional neural net-
work application: Image classifications of healthy and glaucoma-diseased
eyes. Master’s thesis, Curtin University - School Of Electrical Engineering,
Computing And Mathematical Sciences, 2019.

Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, and Samuel Rota
Bulo. Deep neural decision forests. In 2015 IEEE International Conference
on Computer Vision (ICCV), pages 1467-1475, 2015.

Hiral Kotadiya and Darshana Patel. Review of medical image classification
techniques. In Xin-She Yang, Simon Sherratt, Nilanjan Dey, and Amit Joshi,
editors, Third International Congress on Information and Communication

Technology, pages 361-369, Singapore, 2019. Springer Singapore.

Kamran Kowsari, Rasoul Sali, Lubaina Ehsan, William Adorno, Asad Alj,
Sean Moore, Beatrice Amadi, Paul Kelly, Sana Syed, and Donald Brown.



BIBLIOGRAPHY Page 111

Hmic: Hierarchical medical image classification, a deep learning approach.

Information, 11(6), 2020.

[95] Bartosz Krawczyk, Mikel Galar, Michal WoZniak, Humberto Bustince, and
Francisco Herrera. Dynamic ensemble selection for multi-class classification

with one-class classifiers. Pattern Recognition, 83:34 — 51, 2018.

[96] Bartosz Krawczyk, Michal Wozniak, and Francisco Herrera. On the useful-
ness of one-class classifier ensembles for decomposition of multi-class prob-
lems. Pattern Recognition, 48(12):3969-3982, December 2015.

[97] Alex Krizhevsky. Convolutional deep belief networks on cifar-10, 2010.

[98] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classifica-
tion with deep convolutional neural networks. Commun. ACM, 60(6):84-90,
2017.

[99] D. Li, J. Zhang, Q. Zhang, and X. Wei. Classification of ecg signals based on
1d convolution neural network. In 2017 IEEE 19th International Conference

on e-Health Networking, Applications and Services (Healthcom), pages 1-6,
2017.

[100] W. Li, Q. Guo, and C. Elkan. A positive and unlabeled learning algorithm
for one-class classification of remote-sensing data. IEFEE Transactions on
Geoscience and Remote Sensing, 49(2):717-725, 2011.

[101] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar.
Focal loss for dense object detection. pages 2999-3007, 10 2017.

[102] Zhijian Liu, Haotian Tang, Yujun Lin, and Song Han. Point-voxel CNN for
efficient 3d deep learning. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, ed-
itors, Advances in Neural Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems 2019, NeurlPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, pages 963-973, 2019.



BIBLIOGRAPHY Page 112

103]

[104]

[105]

[106]

[107]

[108]

109

[110]

111

Sebastian Maldonado and Claudio Montecinos. Robust classification of im-
balanced data using one-class and two-class svm-based multiclassifiers. In-
tell. Data Anal., 18(1):95-112, 2014.

Gustavo Malkomes and Roman Garnett. Automating bayesian optimiza-
tion with bayesian optimization. In Samy Bengio, Hanna M. Wallach, Hugo
Larochelle, Kristen Grauman, Nicolo Cesa-Bianchi, and Roman Garnett,
editors, Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada, pages 5988-5997, 2018.

Jayawant N. Mandrekar. Receiver operating characteristic curve in diagnos-
tic test assessment. Journal of Thoracic Oncology, 5(9):1315 — 1316, 2010.

Larry M. Manevitz and Malik Yousef. One-class svms for document classi-
fication. J. Mach. Learn. Res., 2:139-154, 2001.

Larry M. Manevitz and Malik Yousef. One-class svms for document classi-
fication. J. Mach. Learn. Res., 2:139-154, March 2002.

R. Matsuoka, S. Ono, and M. Okuda. Transformed-domain robust multiple-
exposure blending with huber loss. IEEE Access, 7:162282-162296, 2019.

Andrew Maxwell, Runzhi Li, Bei Yang, Heng Weng, Aihua Ou, Huixiao
Hong, Zhaoxian Zhou, Ping Gong, and Chaoyang Zhang. Deep learning
architectures for multi-label classification of intelligent health risk prediction.
BMC Bioinformatics, 18(S14), December 2017.

Mike May. Eight ways machine learning is assisting medicine. Nature
Medicine, 27(1):2-3, January 2021.

A. Menegola, M. Fornaciali, R. Pires, F. V. Bittencourt, S. Avila, and
E. Valle. Knowledge transfer for melanoma screening with deep learning.
In 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI
2017), pages 297-300, April 2017.



BIBLIOGRAPHY Page 113

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

Gregory P. Meyer. An alternative probabilistic interpretation of the huber
loss, 2020.

Randolph A. Miller, Harry E. Pople, and Jack D. Myers. Internist-i,
an experimental computer-based diagnostic consultant for general internal
medicine. New England Journal of Medicine, 307(8):468-476, August 1982.

E. Miranda, M. Aryuni, and E. Irwansyah. A survey of medical image classi-
fication techniques. In 2016 International Conference on Information Man-
agement and Technology (ICIMTech), pages 5661, 2016.

S. Mirjalili, S. H. Sardouie, and N. Samiee. A novel algorithm based on
decision trees in multiclass classification. In 2018 25th National and 3rd In-
ternational Iranian Conference on Biomedical Engineering (ICBME), pages
1-6, 2018.

E. Mizutani and S.E. Dreyfus. On complexity analysis of supervised MLP-
learning for algorithmic comparisons. In IJCNN'01. International Joint Con-
ference on Neural Networks. Proceedings (Cat. No.01CH37222). IEEE.

Jonas Mockus. The Bayesian Approach to Local Optimization, pages 125—
156. Springer Netherlands, Dordrecht, 19809.

G.B. Moody and R.G. Mark. The impact of the mit-bih arrhythmia database.
IEEFE Engineering in Medicine and Biology Magazine, 20(3):45-50, 2001.

Inés C. Moreira, Igor Amaral, Inés Domingues, Anténio Cardoso, Maria Joao
Cardoso, and Jaime S. Cardoso. Inbreast: Toward a full-field digital mam-
mographic database. Academic Radiology, 19(2):236 — 248, 2012.

Mulyanto Mulyanto, Muhamad Faisal, Setya Widyawan Prakosa, and Jeng-
Shiou Leu. Effectiveness of focal loss for minority classification in network

intrusion detection systems. Symmetry, 13(1), 2021.

M. E. Munich, P. Pirjanian, E. Di Bernardo, L. Goncalves, N. Karlsson, and
D. Lowe. Sift-ing through features with vipr. IEEE Robotics Automation
Magazine, 13(3):72-77, 2006.



BIBLIOGRAPHY Page 114

[122] L. Nanni, S. Brahnam, S. Ghidoni, and A. Lumini. Bioimage classification
with handcrafted and learned features. IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics, 16(3):874-885, 2019.

[123] Keisuke Nemoto, Ryuhei Hamaguchi, Tomoyuki Imaizumi, and Shuhei
Hikosaka. Classification of rare building change using cnn with multi-class
focal loss. In IGARSS 2018 - 2018 IEEFE International Geoscience and Re-
mote Sensing Symposium, pages 46634666, 2018.

[124] A. Nguyen, D. Moore, I. McCowan, and M. Courage. Multi-class classifica-
tion of cancer stages from free-text histology reports using support vector
machines. In 2007 29th Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society, pages 5140-5143, 2007.

[125] Fernando Nogueira. Bayesian Optimization: Open
source  constrained  global  optimization tool for Python -

https://github.com/fmfn/bayesianoptimization, 2014—.

[126] Bayu A. Nugroho. An aggregate method for thorax diseases classification -
https://arxiv.org/abs/2008.03008, 2020.

[127] Bayu Adhi Nugroho.  Github - bayu-ladom-ipok/weopenbayesianopt:
weopenbayesianopt. https://github.com /bayu-ladom-ipok/
weOpenBayesianOpt. (Accessed on 12/23/2021).

[128] Bayu Adhi Nugroho. An aggregate method for thorax diseases classification.
Scientific Reports, 11(1), February 2021.

[129] Department of Health amp; Human Services. Emphysema -
https://www.betterhealth.vic.gov.au/health /conditionsandtreatments/emphysema,
Nov 2014.

[130] Ademola S. Ojo, Simon A. Balogun, Oyeronke T. Williams, and Olusegun S.
Ojo. Pulmonary fibrosis in COVID-19 survivors: Predictive factors and risk
reduction strategies. Pulmonary Medicine, 2020:1-10, August 2020.


https://github.com/bayu-ladom-ipok/weOpenBayesianOpt
https://github.com/bayu-ladom-ipok/weOpenBayesianOpt

BIBLIOGRAPHY Page 115

[131]

132]

[133]

[134]

[135]

[136]

[137]

Jefferson Tales Oliva and Joao Luis Garcia Rosa. Differentiation between
normal and epileptic EEG using k-nearest-neighbors technique. In Lecture
Notes in Computer Science, pages 149-160. Springer International Publish-
ing, 2016.

Xi Peng, Zhigiang Tang, Fei Yang, Rogério Schmidt Feris, and Dimitris N.
Metaxas. Jointly optimize data augmentation and network training: Adver-
sarial data augmentation in human pose estimation. CoRR, abs/1805.09707,
2018.

P. Perera and V. M. Patel. Learning deep features for one-class classification.
IEEE Transactions on Image Processing, 28(11):5450-5463, 2019.

Kemal Polat and Salih Giines. A novel hybrid intelligent method based on
c4.5 decision tree classifier and one-against-all approach for multi-class clas-
sification problems. FEzxpert Systems with Applications, 36(2, Part 1):1587—
1592, 2009.

Pranav Rajpurkar, Jeremy Irvin, Robyn L. Ball, Kaylie Zhu, Brandon Yang,
Hershel Mehta, Tony Duan, Daisy Ding, Aarti Bagul, Curtis P. Langlotz,
Bhavik N. Patel, Kristen W. Yeom, Katie Shpanskaya, Francis G. Blanken-
berg, Jayne Seekins, Timothy J. Amrhein, David A. Mong, Safwan S. Halabi,
Evan J. Zucker, Andrew Y. Ng, and Matthew P. Lungren. Deep learning for
chest radiograph diagnosis: A retrospective comparison of the CheXNeXt
algorithm to practicing radiologists. PLOS Medicine, 15(11):e1002686, nov
2018.

Pranav Rajpurkar, Jeremy Irvin, Kaylie Zhu, Brandon Yang, Hershel Mehta,
Tony Duan, Daisy Ding, Aarti Bagul, Curtis Langlotz, Katie Shpanskaya,
Matthew P. Lungren, and Andrew Y. Ng. Chexnet: Radiologist-level pneu-
monia detection on chest x-rays with deep learning. CoRR, abs/1711.05225,
2017.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes
for machine learning. Adaptive computation and machine learning. MIT
Press, 2006.



BIBLIOGRAPHY Page 116

138

[139]

[140]

141]

[142]

[143]

144]

[145]

Murali Ravuri, Anitha Kannan, Geoffrey J. Tso, and Xavier Amatriain.
Learning from the experts: From expert systems to machine-learned di-
agnosis models. In Finale Doshi-Velez, Jim Fackler, Ken Jung, David Kale,
Rajesh Ranganath, Byron Wallace, and Jenna Wiens, editors, Proceedings of
the 3rd Machine Learning for Healthcare Conference, volume 85 of Proceed-
ings of Machine Learning Research, pages 227243, Palo Alto, California,
17-18 Aug 2018. PMLR.

[an  Ren. This is a reimplementation of ag-cnn -
https://github.com/ien001/ag-cnn, Nov 2019.

Dezso Ribli, Anna Horvéth, Zsuzsa Unger, Péter Pollner, and Istvan Csabai.
Detecting and classifying lesions in mammograms with deep learning. CoRR,
abs/1707.08401, 2017.

Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke,
Shoaib Ahmed Siddiqui, Alexander Binder, Emmanuel Miller, and Marius
Kloft. Deep one-class classification. In Jennifer Dy and Andreas Krause, edi-
tors, Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages 4393-4402,
Stockholmsmassan, Stockholm Sweden, 10-15 Jul 2018. PMLR.

Takaya Saito and Marc Rehmsmeier. The precision-recall plot is more infor-
mative than the roc plot when evaluating binary classifiers on imbalanced

datasets. PLOS ONE, 10(3):1-21, 03 2015.

Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and
Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks.
In CVPR, pages 4510-4520. IEEE Computer Society, 2018.

S. Sarkar, V. M. Patel, and R. Chellappa. Deep feature-based face detec-
tion on mobile devices. In 2016 IEEE International Conference on Identity,
Security and Behavior Analysis (ISBA), pages 1-8, 2016.

Chiara Scelfo, Chiara Longo, Marina Aiello, Giuseppina Bertorelli, Ernesto
Crisafulli, and Alfredo Chetta. Pulmonary hernia: Case report and review
of the literature. Respirology Case Reports, 6(8):e00354, October 2018.



BIBLIOGRAPHY Page 117

[146]

[147)

[148]

[149]

[150]

[151]

[152]

[153]

Emily Seto, Kevin J. Leonard, Joseph A. Cafazzo, Jan Barnsley, Caterina
Masino, and Heather J. Ross. Developing healthcare rule-based expert sys-
tems: Case study of a heart failure telemonitoring system. International
Journal of Medical Informatics, 81(8):556-565, August 2012.

Bobak Shahriari, Alexandre Bouchard-Coté, and Nando de Freitas. Un-
bounded bayesian optimization via regularization. In Arthur Gretton and
Christian C. Robert, editors, Proceedings of the 19th International Confer-
ence on Artificial Intelligence and Statistics, AISTATS 2016, Cadiz, Spain,
May 9-11, 2016, volume 51 of JMLR Workshop and Conference Proceedings,
pages 1168-1176. JMLR.org, 2016.

Dinggang Shen, Guorong Wu, and Heung-Il Suk. Deep learning in medical
image analysis. Annual review of biomedical engineering, 19:221—248, June

2017.

Connor Shorten and Taghi M. Khoshgoftaar. A survey on image data aug-
mentation for deep learning. J. Big Data, 6:60, 2019.

Edward H. Shortliffe and Bruce G. Buchanan. A model of inexact reasoning
in medicine. Mathematical Biosciences, 23(3):351-379, 1975.

I. Siegert, R. Bock, A. Wendemuth, and B. Vlasenko. Exploring dataset sim-
ilarities using pca-based feature selection. In 2015 International Conference
on Affective Computing and Intelligent Interaction (ACII), pages 387-393,
2015.

Andras Sobester, Stephen J. Leary, and Andy J. Keane. On the design
of optimization strategies based on global response surface approximation
models. J. Glob. Optim., 33(1):31-59, 2005.

D. Sotiropoulos, C. Giannoulis, and G. A. Tsihrintzis. A comparative study
of one-class classifiers in machine learning problems with extreme class im-
balance. In IISA 2014, The 5th International Conference on Information,
Intelligence, Systems and Applications, pages 362-364, 2014.



BIBLIOGRAPHY Page 118

154]

[155]

[156]

[157]

[158]

[159]

[160]

161]

[162]

[163]

Paolo Spagnolo, Elisabetta Balestro, Stefano Aliberti, Elisabetta Coc-
concelli, Davide Biondini, Giovanni Della Casa, Nicola Sverzellati, and
Toby M Maher. Pulmonary fibrosis secondary to COVID-19: a call to arms?
The Lancet Respiratory Medicine, 8(8):750-752, August 2020.

Trudie Strauss and Michael Johan von Maltitz. Generalising ward’s method
for use with manhattan distances. PLOS ONE, 12(1):1-21, 01 2017.

Masashi Sugiyama. Introduction to Statistical Machine Learning. Elsevier,
2016.

Ronald Summers. https://nihcc.app.box.com/v/ chestxray-nihce, Sep 2017.

Amelia Swift, Roberta Heale, and Alison Twycross. What are sensitivity
and specificity? Fvidence-Based Nursing, 23(1):2—4, 2020.

Oleg Sémery. https://pypi.org/project/tensorflowev/, Dec 2019.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler,
Andrew Howard, and Quoc V. Le. Mnasnet: Platform-aware neural architec-
ture search for mobile. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages
2820-2828. Computer Vision Foundation / IEEE, 2019.

Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for con-
volutional neural networks. In Kamalika Chaudhuri and Ruslan Salakhut-
dinov, editors, Proceedings of the 36th International Conference on Machine

Learning, volume 97 of Proceedings of Machine Learning Research, pages

6105-6114, Long Beach, California, USA, 09-15 Jun 2019. PMLR.

Raphael Tang, Ashutosh Adhikari, and Jimmy Lin. Flops as a di-
rect optimization objective for learning sparse neural networks. CoRR,
abs/1811.03060, 2018.

Tao Ban and S. Abe. Implementing multi-class classifiers by one-class clas-
sification methods. In The 2006 IEEE International Joint Conference on
Neural Network Proceedings, pages 327-332, 2006.



BIBLIOGRAPHY Page 119

164]

[165]

[166]

[167]

168

169

[170]

171]

[172]

David M. J. Tax and Robert P. W. Duin. Support vector domain description.
Pattern Recognit. Lett., 20(11-13):1191-1199, 1999.

David M. J. Tax and Piotr Juszczak. Kernel whitening for one-class classi-
fication. In Seong-Whan Lee and Alessandro Verri, editors, Pattern Recog-
nition with Support Vector Machines, First International Workshop, SVM
2002, Niagara Falls, Canada, August 10, 2002, Proceedings, volume 2388 of
Lecture Notes in Computer Science, pages 40-52. Springer, 2002.

Tokusumi. keras-flops - https://github.com/tokusumi/keras-flops, Aug 2020.

Hamed Valizadegan, Quang Nguyen, and Milos Hauskrecht. Learning clas-
sification models from multiple experts. Journal of Biomedical Informatics,
46(6):1125-1135, 2013. Special Section: Social Media Environments.

Eduardo Valle, Michel Fornaciali, Afonso Menegola, Julia Tavares, Flavia
Vasques Bittencourt, Lin Tzy Li, and Sandra Avila. Data, depth, and design:
Learning reliable models for skin lesion analysis. Neurocomputing, 383:303—
313, 2020.

Bram van Ginneken. Fifty years of computer analysis in chest imaging: rule-
based, machine learning, deep learning. Radiological Physics and Technology,

10(1):23-32, Mar 2017.

B. Venkataramanaiah and J. Kamala. ECG signal processing and KNN
classifier-based abnormality detection by VH-doctor for remote cardiac
healthcare monitoring. Soft Computing, 24(22):17457-17466, July 2020.

Dani Voitsechov and Yoav Etsion. Control flow coalescing on a hybrid
dataflow/von neumann GPGPU. In Proceedings of the 48th International
Symposium on Microarchitecture. ACM, December 2015.

Jian Wang, Hengde Zhu, Shui-Hua Wang, and Yu-Dong Zhang. A review of
deep learning on medical image analysis. Mobile Networks and Applications,

26(1):351-380, November 2020.



BIBLIOGRAPHY Page 120

[173]

174]

175

[176]

[177]

[178]

[179)

Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri,
and Ronald Summers. Chestx-ray8: Hospital-scale chest x-ray database and
benchmarks on weakly-supervised classification and localization of common
thorax diseases. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition(CVPR), pages 3462-3471, 2017.

Xinyu Weng, Nan Zhuang, Jingjing Tian, and Yingcheng Liu. A py-
torch reimplementation of chexnet:https://github.com/arnoweng/chexnet,
Dec 2017.

S. C. Wong, A. Gatt, V. Stamatescu, and M. D. McDonnell. Understand-
ing data augmentation for classification: When to warp? In 2016 Interna-
tional Conference on Digital Image Computing: Techniques and Applications
(DICTA), pages 1-6, 2016.

Jing Wu, Wei Hu, Yuan Wen, Wenli Tu, and Xiaoming Liu. Skin lesion
classification using densely connected convolutional networks with attention
residual learning. Sensors, 20(24), 2020.

Rikiya Yamashita, Amber Mittendorf, Zhe Zhu, Kathryn J. Fowler, Cyn-
thia S. Santillan, Claude B. Sirlin, Mustafa R. Bashir, and Richard K. G.
Do. Deep convolutional neural network applied to the liver imaging report-
ing and data system (LI-RADS) version 2014 category classification: a pilot
study. Abdominal Radiology, 45(1):24-35, November 2019.

Wenjie Yang, Houjing Huang, Zhang Zhang, Xiaotang Chen, Kaiqi Huang,
and Shu Zhang. Towards rich feature discovery with class activation maps
augmentation for person re-identification. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June
16-20, 2019, pages 1389-1398, 2019.

Yongxin Yang, Irene Garcia Morillo, and Timothy M. Hospedales. Deep neu-
ral decision trees. In ICML Workshop on Human Interpretability in Machine
Learning (WHI), 2018.



BIBLIOGRAPHY Page 121

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

Li Yao, Jordan Prosky, Eric Poblenz, Ben Covington, and Kevin Lyman.
Weakly supervised medical diagnosis and localization from multiple resolu-
tions. CoRR, abs/1803.07703, 2018.

Son Youn-Jung, Kim Hong-Gee, Kim Eung-Hee, Choi Sangsup, and Lee Soo-
Kyoung. Application of support vector machine for prediction of medication
adherence in heart failure patients. Healthc Inform Res, 16(4):253-259, 2010.

M. Todd Young, Jacob D. Hinkle, Ramakrishnan Kannan, and Arvind Ra-
manathan. Distributed bayesian optimization of deep reinforcement learning
algorithms. J. Parallel Distributed Comput., 139:43-52, 2020.

Hwanjo Yu. SVMC: single-class classification with support vector machines.
In Georg Gottlob and Toby Walsh, editors, IJCAI-03, Proceedings of the
FEighteenth International Joint Conference on Artificial Intelligence, Aca-
pulco, Mexico, August 9-15, 2003, pages 567-574. Morgan Kaufmann, 2003.

Hwanjo Yu. Single-class classification with mapping convergence. Mach.
Learn., 61(1-3):49-69, 2005.

Lequan Yu, Hao Chen, Qi Dou, Jing Qin, and Pheng-Ann Heng. Automated
melanoma recognition in dermoscopy images via very deep residual networks.
IEEE Transactions on Medical Imaging, 36(4):994-1004, 2017.

Chuanhai Zhang, Wallapak Tavanapong, Gavin Kijkul, Johnny Wong,
Piet C. de Groen, and JungHwan Oh. Similarity-based active learning for
image classification under class imbalance. In 2018 IEEFE International Con-
ference on Data Mining (ICDM), pages 1422-1427, 2018.

Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz.
mixup: Beyond empirical risk minimization. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30
- May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.

Jianshu Zhang, Jun Du, Yongxin Yang, Yi-Zhe Song, Si Wei, and Lirong Dai.

A tree-structured decoder for image-to-markup generation. In Hal Daumé II1



BIBLIOGRAPHY Page 122

[189]

[190]

191]

and Aarti Singh, editors, Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pages 11076-11085. PMLR, 13-18 Jul 2020.

Ran Zhang, Xin Tie, Zhihua Qi, Nicholas B. Bevins, Chengzhu Zhang, Dal-
ton Griner, Thomas K. Song, Jeffrey D. Nadig, Mark L. Schiebler, John W.
Garrett, Ke Li, Scott B. Reeder, and Guang-Hong Chen. Diagnosis of coron-
avirus disease 2019 pneumonia by using chest radiography: Value of artificial
intelligence. Radiology, 298(2):E88-E97, February 2021.

Zhilu Zhang and Mert R. Sabuncu. Generalized cross entropy loss for training
deep neural networks with noisy labels. In Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Process-
ing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada,
pages 8792-8802, 2018.

B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning
deep features for discriminative localization. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2921-2929, June
2016.



	Acknowledgements
	Abstract
	Chapter 1: INTRODUCTION
	Challenges and Gaps
	Thesis Objectives and Chapters' Contributions
	Structure of the Thesis

	Chapter 2: BACKGROUND AND LITERATURE REVIEW
	Chest Diseases
	The Taxonomy of Chest Diseases
	A Brief Overview of Chest Diseases
	Chest Diseases Classifications

	A Taxonomy and History of the Healthcare Expert System
	The Rule-Based Expert System for Health Care
	Applications of Traditional Machine-Learning Methods for Health Care
	The Convolutional Network Applications for Health Care
	The DenseNet-121 Network
	EfficientNet
	The Conclusion: Traditional Classifiers Versus Neural Networks

	The Binary, Multiclass and One-Class Classification Overview
	Binary Classification
	Multiclass Classification
	One-Class Classification

	The Computational Cost of the Use of Features for Classification Task
	The Datasets of Medical Images
	Discussion

	Chapter 3: IMBALANCE CLASSIFICATION: THE AGGREGATE METHOD FOR CHEST CANCER CLASSIFICATION
	Introduction
	Method
	The Existing Weights Function and Network Architecture
	Proposed Weights Function and Network Architecture
	The Weighted Cross-Entropy
	The Weighted Focal Loss
	Progressive Image Resizing
	The Network Backbone
	Baseline
	Performance Evaluation


	Research Contribution and Novelty Statement
	Experiments and Results
	Backbone Network Training
	Weighted Binary Cross-Entropy with Effective Number of Samples
	Weighted Focal Loss with Positive and Negative Pattern
	Generalisation of the Weights Formula into the Glaucoma Classification Problem

	The Intuitive Theoretical Background and Evidence from Experiment
	The Imbalance Metric Evaluation
	Third-Phase Training Saturation
	Discussion

	Chapter 4: HYPERPARAMETERS AND NETWORK ARCHITECTURES LEARNING FOR FEATURES CLASSIFICATION
	Introduction
	Method
	Research Contributions and Novelty Statement
	The Existing Computational Cost for Neural Network
	The Proposed Approach for Reducing Computational Cost
	The Kernel of Gaussian Process
	The Partition of Iterations
	The Acquisition Function
	Gaussian Noise

	The Total FLOPs/MACCs Calculation
	The Training Epochs and Total FLOPs Correlation

	Experiments and Results
	The Generalisation of the Method for the Skin Cancer Classification
	The Applicability into Mobile Device

	Discussion

	Chapter 5: ONE-CLASS CLASSIFICATION
	Introduction
	Method
	Research Contribution and Novelty Statement
	The Existing One Class Classification
	The Proposed Approach for One-Class Classification
	The Best Outputs from Two Branches
	The Fine-Grained Computational-Cost Evaluation

	Experiment and Results
	Effectiveness of the pre-Trained Weights

	Discussion

	Chapter 6: CONCLUSION
	Summary of Contributions
	The Progressions from Chapters
	Future Works

	Appendix A: THE CODE LISTING
	Appendix B: THE LIST OF REPOSITORIES
	Bibliography

