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Abstract

Urbanisation alters landscapes, introduces wildlife to novel stressors, and fragments habi-
tats into remnant ‘islands’. Within these islands, isolated wildlife populations can experience
genetic drift and subsequently suffer from inbreeding depression and reduced adaptive
potential. The Western tiger snake (Notechis scutatus occidentalis) is a predator of wetlands
in the Swan Coastal Plain, a unique bioregion that has suffered substantial degradation
through the development of the city of Perth, Western Australia. Within the urban matrix,
tiger snakes now only persist in a handful of wetlands where they are known to bioaccumu-
late a suite of contaminants, and have recently been suggested as a relevant bioindicator of
ecosystem health. Here, we used genome-wide single nucleotide polymorphism (SNP) data
to explore the contemporary population genomics of seven tiger snake populations across
the urban matrix. Specifically, we used population genomic structure and diversity, effective
population sizes (Ng), and heterozygosity-fithess correlations to assess fitness of each pop-
ulation with respect to urbanisation. We found that population genomic structure was stron-
gest across the northern and southern sides of a major river system, with the northern
cluster of populations exhibiting lower heterozygosities than the southern cluster, likely due
to a lack of historical gene flow. We also observed an increasing signal of inbreeding and
genetic drift with increasing geographic isolation due to urbanisation. Effective population
sizes (N,) at most sites were small (< 100), with N, appearing to reflect the area of available
habitat rather than the degree of adjacent urbanisation. This suggests that ecosystem man-
agement and restoration may be the best method to buffer the further loss of genetic diver-
sity in urban wetlands. If tiger snake populations continue to decline in urban areas, our
results provide a baseline measure of genomic diversity, as well as highlighting which
‘islands’ of habitat are most in need of management and protection.
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Introduction

Urbanisation, the anthropogenic transformation of natural ecosystems via the growth of cities
[1], introduces wildlife to a myriad of stressors such as dynamic availability of resources [2],
pollution [3, 4], novel environments [5, 6] and human disturbance [7]. These novel stressors
affect the behaviour, physiology and health of wildlife [8], and consequently create strong
selection pressures driving evolution [9-11]. Additionally, urban development fragments habi-
tats resulting in remnant patches becoming isolated islands in a matrix of urbanisation [12—
14]. The less-mobile, philopatric or more habitat-specialist species may persist only in these
islands and not the surrounding matrix, and thus face the random genetic pressures inherent
to isolated populations of such species with reduced or non-existent gene flow between sub-
populations [15, 16].

Isolated populations are expected to experience increased levels of genetic drift-stochastic
loss of alleles through time-and differentiation, in conjunction with reduced genetic diversity
within populations [16]. In instances where the remnant population is small, a reduction in
genetic diversity can potentially lead to signs of inbreeding depression [17, 18]. This inbreed-
ing depression, the overexpression of deleterious recessive alleles in homozygotes, can also
lead to a reduction in individual fitness [19, 20], while genetic drift can lead to reduced adap-
tive potential [16, 21]. Consequently, urban ‘island’ populations are in a fitness and adaptation
arms race against the constant stressors of urbanisation.

The Australian city of Perth is built on the Swan Coastal Plain (SCP); a bioregion character-
ised by banksia woodland on sand dunes, intersected by north-south connected chains of
ephemeral wetlands. Since 1850, urban development and agriculture in the SCP led to the loss
70% of the original wetland area [22], with most of the remaining wetlands suffering from
severe degradation. Tiger snakes (Notechis scutatus) are a ~ 1 m elapid snake restricted to the
cooler, wetter climates of Australia [23]; they prefer wetland habitats on the mainland, yet
numerous populations exist on very dry off-shore islands [24]. Tiger snakes were once consid-
ered under threat of extinction for a number of reasons, but primarily the destruction and deg-
radation of wetland habitats due to urbanisation [25]. Although tiger snakes are still regionally
common, there is anecdotal evidence of their decline in some cities and on some islands. For
example, Eastern tiger snakes (N. scutatus scutatus) were once locally abundant in greater Syd-
ney but now only persist on the outskirts of the city [26].

The loss of tiger snakes across some of their distribution is not enough to label the species
with conservation concern; however, snakes can be useful indicators of ecosystem health [27-
29]. Perturbation of their populations can thus inform land managers of the integrity of the
environment. Prior to urbanisation, Western tiger snakes (N. scutatus occidentalis) in the SCP
likely moved among ephemeral wetlands as these environments dried throughout the warmer
months, but now populations only persist around, and appear restricted to, several large lakes
and river edges with sufficient fringing vegetation (DL pers. obs.). Despite persisting in these
fragmented wetland habitats thus far, they are exposed to and bioaccumulate a suite of con-
taminants that likely contribute to poorer health and decreased survival of individuals [30-32].
However, the degree to which small population sizes, geographic isolation and inbreeding
effects contribute to population health in these urban and peri-urban populations has not yet
been investigated.

To address these knowledge gaps, we assessed the population structure and patterns of
genomic diversity in tiger snake populations persisting in and around the city of Perth in
Western Australia. We included a ‘recently-introduced’ off-shore island population to allow
for a comparison with the genomic structure of a true island population. Analyses included
calculating and comparing the effective population sizes across populations to explore the

PLOS ONE | https://doi.org/10.1371/journal.pone.0259124  October 29, 2021

2/21


https://doi.org/10.1371/journal.pone.0259124
https://www.ecolsoc.org.au/awards/holsworth/
https://www.arc.gov.au/

PLOS ONE

Top predator snake shows genomic signatures of natural and anthropogenic barriers to gene flow

impacts of genetic drift and isolation, and compare individual heterozygosity to a body condi-
tion index [33, 34] to investigate the potential relationship between fitness and heterozygosity.
We predicted that the major river systems that divide Perth (Fig 1) would be barriers to gene
flow between the northern and southern localities, as observed in other species [35], and that
those populations more isolated by urbanisation would show lower levels of genomic diversity,
higher pairwise genomic differentiation and stronger signals of inbreeding, which would cor-
relate with lower fitness. This study explores the contemporary population genomics of a large
elapid persisting in wetlands threatened by ever-increasing urbanisation, and highlights which
populations are at risk of extirpation in the future.

Materials and methods
Study sites and sample collection

We sampled 150 tiger snakes from six wetlands around Perth: Loch McNess (n = 22; within
Yanchep National Park, 31°32’45" S, 115°40°50" E), Lake Joondalup (n = 23; 31°45’37" S, 115°
47°36" E) and Herdsman Lake (n = 57; 31°55’14", S 115°48’18" E), located north of the Swan/
Canning River system, and Bibra Lake (n = 29; 32°05’33", S 115°49’31" E), Kogolup Lake
(n=10;32°07°40", S 115°50°05" E) and Black Swan Lake (n = 9;32°28°32", S 115°46°22" E)
located south of the Swan/Canning River system. These study sites represent the northern
extremity of the Western tiger snake distribution (Fig 1). We also collected nine samples from
Carnac Island, approximately 7 km off-shore (Fig 1). Carnac Island is a small freshwater-
devoid island (19 ha) with the tiger snake population thought to originate from human intro-
duction approximately 90 years ago, with the suspected source population coming from the
nearby mainland [24, 36]. Kogolup Lake, Black Swan Lake and Carnac Island were surveyed
less than the other sites (a few days compared with several weeks), which resulted in lower
sample sizes for these sites.

We took ventral scale clips from each snake collected from the six mainland sites during
September-October 2020. We stored individual scales in 95% ethanol at -20°C until extrac-
tion. The Carnac Island tiger snakes also had scale clips collected from April 2018-January
2020 that were stored in 95% ethanol at 4°C until extraction. We also included two additional
snakes from eastern Australia, > 2000 km from the Perth populations, as outgroup samples.
Tiger snakes from the mainland sites were sampled under Curtin University’s Animal
Research Ethics approval: ARE2018-23 and ARE2020-6; and Western Australia’s Department
of Biodiversity, Conservation and Attractions permits: FO25000149 and FO25000294-2. The
nine tiger snakes from Carnac Island were sampled under the University of Adelaide’s Animal
Research Ethics permits: S-2016-111; and Western Australia’s Department of Biodiversity,
Conservation and Attractions permits: 01-000069-3, FO25000008, and FO25000008-2.

DNA extraction, sequencing and bioinformatics pipeline

Tissue samples were sent to the DArTseq laboratory in Canberra, ACT for DNA extraction,
library preparation and double-digest restriction-site associated DNA next-generation
sequencing. Briefly, the library preparation consisted of DNA digestion using the restriction
enzymes PtsI and Hpall, as these enzymes had previously been used for tiger snake RAD-seq
library preparation. Following digestion, adapter ligation and PCR amplification, DNA librar-
ies were sequenced on a single lane of an Illumina Hiseq 2500 platform. The DArTseq proprie-
tary bioinformatic pipeline [38] was used to demultiplex, clean, and filter reads, then map
reads to the Notechis scutatus reference genome (NCBI PR]J: PRJEB27871) and call single-
nucleotide polymorphisms (SNPs). Detailed methods covering DArTseq library preparation,
sequencing, read filtering and SNP calling have been provided in previous publications
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Fig 1. Map the studied populations of Notechis scutatus occidentalis and land-use of Perth, Western Australia. Red points represent
individual Western tiger snakes, and yellow points represent Eastern tiger snakes (Notechis scutatus scutatus). Grey shading represents the
current distribution extent of the species (light = Western, dark = Eastern; modified from the TUCN Red List of Threatened Species [37]). Land-
use was classified by the 2016 Australian Land Use and Management Classification (Australian Bureau of Agricultural and Resource Economics
and Sciences, Canberra. CC BY 3.0.).

https://doi.org/10.1371/journal.pone.0259124.g001

[39, 40]. We received a SNP-by-sample matrix consisting of 161 samples and 22542 SNPs,
which was read into R v4.0.3 for subsequent SNP filtering and analysis.

SNP filtering

We used a custom R script to prune unwanted SNPS and retain SNPs of interest. To remove
potential bias due to sequencing or genotyping errors, we retained SNPs with total read

depth > 10 and < 100, as well as those with high DArTseq reproducibility scores (no

SNP < 100% reproducible in technical replicates). Reads that did not map to the reference
genome in the DArTseq pipeline were also discarded. To account for bias due to linkage dis-
equilibrium [41], we filtered out SNPs in close proximity to one another, by retaining just one
SNP from each RAD locus. We also retained only SNPs that were genotyped in a high propor-
tion of samples (callrate > 0.95), had a minor allele count > 3, and observed

heterozygosity < 0.6. Finally, we removed any sample that had > 20% missing data. This pro-
duced a large, high-quality SNP-by-sample matrix, with a low overall level of missing data
(1%). Once filters had been applied we retained 4688 SNPs from 159 Western and two Eastern
tiger snake individuals.
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As a preliminary measure to investigate whether our filtered dataset was appropriate for
inferring relationships between individuals and populations, we created and visually inspected
a hierarchical clustering dendrogram based on Nei’ genetic distance (S1 Fig). All individuals
fell within their sampled localities, and populations clustered in line with expected geographic
distances and landscape barriers, including the two individuals from eastern Australia, sug-
gesting that the retained SNP dataset was adequate for further analysis. The eastern individuals
were then removed from subsequent analyses. As further confirmation of data integrity, we
investigated pairwise kinship coefficients within each population. To ensure relatedness
between individuals was not high enough to impact our data analysis or interpretation, we cal-
culated pairwise kinships via the ‘beta.dosage’ function of the hierfstat package (version 0.7)
[42, 43]. Four pairwise values from a total of 2604 comparisons had kinships > 0.25 but < 0.3
(commonly values of 0.25 indicate full siblings), therefore no individuals were removed.

Regional population structure

To investigate genomic distance between individuals we calculated the individual pairwise
genetic distances using the ‘prevosti.dist’ function in the poppr package (version 2.9.1) [44].
We visualised these distances via the ‘cmdscale’ function, plotting the first two dimensions of
the genetic distance matrix in a multidimensional scaling plot-where the distances between
points are approximately equal to the dissimilarities. We then calculated pairwise population
genomic differentiation values (G’ ) among all sampling localities using the ‘pairwi-
se_Gst_Hedrick’ function of the mmod package (version 1.3.3) [45], and obtained p values for
all population pairs using the StAMPP package (version 1.6.2) [46]. The G st metric is an Fsr
analogue representing a standardised measure of allelic isolation that corrects for the number
of subpopulations being considered.

To explore genomic structure and assess potential gene flow among populations, we
searched for genomic groups using the TESS3 algorithm-a spatially explicit ancestry estima-
tion model from the tess3r package (version 1.1) [47, 48]. The ‘tess3’ function incorporates the
latitudes and longitudes of each sampled individual to account for the influence of isolation-
by-distance on ancestry coefficients, with large drops or plateaus in the scree plot identifying
useful values of K for inference of population genetic structure (S2 Fig). We considered K val-
ues of 2, 3 and 4 most useful for describing the high-level genetic structure across the region,
as these values showed the largest reductions in cross-entropy, with a plateau starting to form
at K > 4. For finer-scale investigation of population structuring we also plotted ancestry coefti-
cients of K = 5, 6 and 7 (S3 Fig). To confirm whether there SNPs under putative selection were
driving patterns of population structure, we conducted a genome scan for outlier loci using
the “pvalue’ function. This outlier test uses overall differentiation to discern if a portion of
SNPs have greater allele frequency differences than expect from a neutral distribution [49]. We
used K = 4 as we considered this the most useful for inference, and a Benjamini-Hochberg cor-
rection to achieve a false discovery rate of one in 10 000.

To investigate isolation-by-distance, we calculated the multilocus spatial autocorrelation
for the mainland, and subset of northern and southern populations of snakes, respectively.
The spatial autocorrelation analysis was conducted in GENALEX (version 6.5) add-on in Excel
[50, 51].

Population genomic diversity

To investigate patterns of within population genomic diversity, we calculated standard genetic
diversity metrics for all a-priori populations using the GENALEX in Excel. The diversity metrics
included mean values for the number of alleles (N,), effective number of alleles (Ag),
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information index (I), observed heterozygosity (Hp), expected heterozygosity (Hg), and the
fixation index (Wright’s inbreeding coefficient, Fis). We also calculated the number of private
alleles in each population as an additional measure of genetic distinctiveness. To standardise
the number of private alleles for different sample sizes among populations we bootstrapped
private allele calculations by resampling nine individuals per population 100 times, and taking
the mean and SE of all bootstraps.

Heterozygosity-fitness correlations

As individual heterozygosity is often related to individual fitness [21, 52, 53], we modelled the
relationship between individual heterozygosity and body condition of all genotyped individu-
als. Previous work has shown that approximately 50% of the variation in snake body condition
estimates results from stored body fat, while organ mass such as muscle and liver account for
the remainder [54, 55]. To determine body condition we calculated a scaled mass index (SMI)
for each snake using the formula: SMI = Wi(") b, where W, and L; are the weight and
snout-vent length (SVL) of individuals, Ly is the arithmetic mean length of all sampled individ-
uals, and bgy, is the scaling exponent estimated by the standardised major axis regression of
mass on length of all sampled individuals [56, 57]. We consider the SMI to be an estimate of
fitness with higher values corresponding to fitter individuals [33]. To increase accuracy of
body condition calculations, we excluded snakes with obvious gastric food items or pregnancy.
We also excluded Carnac Island snakes as this population was sampled in summer, a time
when these individuals potentially have low body condition (from low prey and water avail-
ability). Based on 91 snakes, L used in the equation was 757.1 mm, and the bgy4 was 2.98. To
explore evidence of heterozygosity-fitness correlations we ran a general linear mixed model
(GLMM) using the ‘glmer’ function of the lme4 package (version 1.25) [58]; with SMI as the
response variable, individual heterozygosity and site as fixed predictor variables and to account
for sex-biased differences, sex as a random factor. We used a histogram of the model residuals
to confirm the assumptions of linearity.

In addition, we compared body condition with ¢* —a proxy for identity disequilibrium
(inbreeding) [53, 59]. A g2 = 0 means no variance of inbreeding in the sample. With the
inbreedR package (version 0.3.2) [60], we used the ‘r2_wf function to calculate the expected
correlation between inbreeding level (f) and body condition, and the ‘r2_hf to calculate the
correlation between inbreeding level (f) and individual heterozygosity.

Effective population size

The effective population size (N,) of a site represents the estimated number of breeding adults
in a single generation of an ideal population that shows the same degree of genetic diversity as
the measured population [61, 62]. Theoretically, small estimates of N, reflect small, isolated
populations suffering increased drift and lower fitness (e.g. through inbreeding), whereas large
values of N, reflect large and genetically diverse populations [63, 64]. An effective population
size can also be used to estimate adult census size [65]. To estimate N, of each population we
used the widely-used linkage disequilibrium method, as it is considered one of the most suitable
for single-sample datasets [62]. N, estimates were calculated using the NEESTIMATOR v2.1 [66].

Results
Regional population structure

We found expected levels of genomic differentiation between populations, based on geo-
graphic distance and landscape barriers between sites (Table 1). Carnac Island was the most
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Table 1. Pairwise values of population genomic differentiation (G” s1) of Notechis scutatus occidentalis around Perth, Western Australia.

Site Yanchep

Yanchep (n = 22) 0
Lake Joondalup (n = 23) 0.14
Herdsman Lake (n = 57) 0.24
Bibra Lake (n = 29) 0.24
Kogolup Lake (n = 10) 0.22
Black Swan Lake (n=9) 0.26
Carnac Island (n =9) 0.40

Lake Joondalup Herdsman Lake Bibra Lake Kogolup Lake Black Swan Lake Carnac Island

0
0.18 0
0.20 0.21 0
0.19 0.20 0.07 0
0.22 0.23 0.14 0.13 0
0.38 0.38 0.31 0.29 0.29 0

All non-zero values are highly significant (p < 0.001).

https://doi.org/10.1371/journal.pone.0259124.t001

differentiated from other populations (pairwise G’ st = 0.29-0.40). The most geographically
distant pair of sites, Yanchep and Black Swan, exhibited a moderate level of differentiation
(G"s1 = 0.26). Black Swan Lake was less differentiated from Kogolup and Bibra Lakes (G" sy =
0.13-14) than Yanchep was to Herdsman Lake (G’ st = 0.23), despite these pairs of locations
being a similar geographic distance from one another (~45 km). Analysis of spatial autocorre-
lation identified significant values of the autocorrelation coefficient  persisting for distances
up to 38 km (54 Fig). We found a difference in the decay of spatial autocorrelation between the
northern and southern clusters, with the northern cluster intercepting r = 0 at about 30 km
and the southern cluster intercepting = 0 at about 12 km.

The outlier test identified 131 (2.8% of 4688) SNPs as being under putative selection. These
loci demonstrate significantly higher or lower among-population genetic differentiation than
expected under neutrality, many of which are possibly driven by the differentiation between
Carnac Island and the mainland populations. While this small number of SNPs is unlikely to
have substantially influenced our observed population structure, these loci could be responsi-
ble for influencing fitness under differing environmental conditions, and thus provide a basis
for further study.

The multidimensional scaling plot (Fig 2) showed four main population clusters of tiger
snakes in the Perth region, representing (1) Carnac Island, (2) Herdsman Lake, (3) Yanchep
and Joondalup lakes, and (4) all three lakes (Bibra, Kogolup and Black Swan Lakes) on the
southern side of the Swan River. 24.5% of the total variation was explained by the first two
axis. The Carnac Island cluster separated strongly from the other three clusters on both the
first and second coordinate.

Investigation of the cross-entropy scree plot produced using the tess3r package indicated a
likely number of ancestral linages at 2 < K < 4 (S2 Fig). Plotting ancestry coefficients for all
individuals at each of these K values highlights the genomic separation of the northern lakes
from the southern lakes (K = 2), with Herdsman Lake separating from the two other northern
lakes at K = 3, and Carnac Island separating from the southern lakes at K = 4 (Fig 3). With
finer-scale population splitting, Lake Joondalup separates from the northern lakes (K = 5)
while Kogolup Lake and Black Swan Lake share ancestry with Carnac Island (54 Fig). At K=6,
Black Swan Lake separates from the southern lakes, and Kogolup Lake is only recognised as a
unique different population at K = 7 (at which point all a-priori populations cluster separately).
S5 Fig visualises the hierarchical population genomic structure for K values between 2 and 6.

Genomic diversity and health

Genomic diversity was generally lower in populations north of the river than in populations
south of the river, with the Carnac Island population having the highest heterozygosity of all
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Fig 2. Multidimensional scaling plot of genetic distance between Notechis scutatus occidentalis individuals from Perth, Western
Australia. Each population has been given a unique icon. Axis one explained 15.1% and axis one explained 9.4% of the total variance.

https://doi.org/10.1371/journal.pone.0259124.9002

studied populations (Table 2). Observed heterozygosity, specifically, was 25-33% lower in the
northern populations. Observed heterozygosity did not differ from expected heterozygosity in
most populations, although Carnac Island showed a slightly lower Ho (0.13) than He (0.14).
Carnac Island had the highest relative number of private alleles (328). The signal of inbreeding
(i.e. Fys values) increased with the level of geographic isolation in a-priori populations; the true
island population (Carnac Island) had the highest Fis value (0.05), with the mainland popula-
tions most impacted by urbanisation having higher Fig values (0.04-0.02) than less disturbed
populations (< 0). While these values are close to zero, they likely reflect genome-wide pat-
terns and differences between populations, with low values not unexpected when using a low
minor allele frequency threshold.

The three northern populations, Yanchep, Lake Joondalup and Herdsman Lake, had lower
mean body conditions compared to the southern populations (Fig 4). The GLMM (r* = 0.43)
showed no evidence for a significant relationship between individual heterozygosity and body
condition (F: 0.51, df; 1, p = 0.48); however, there was a strong effect of site (F: 3.22, df: 5,
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p =0.01). A Tukey HSD test found the greatest, and only significant, difference in body condi-
tion was between Herdsman Lake and Black Swan Lake snakes (p = 0.03; S1 Table). Of the
snakes with body condition data, the inbreeding among loci was significantly different from
zero (¢ = 0.025 + 0.003 S. E., p = 0.01). We found a high correlation between inbreeding level
(f) and heterozygosity (* = 0.94), strongly suggesting that heterozygosity is a good proxy for
inbreeding. Furthermore, we found no correlation between inbreeding level (f) and body con-
dition (r* = 0.07).
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Table 2. Genetic diversity estimates of seven populations of Notechis scutatus occidentalis around Perth, Western Australia.

Site Ny Ag I Ho He Fis Private alleles

Yanchep (n = 22) 1.32 (0.01) 1.14 (<) 0.13 (<) 0.08 (<) 0.08 (<) 0.00 (<) 55.79 (0.89)
Lake Joondalup (n = 23) 1.33 (0.01) 115 (<) 0.14 (<) 0.09 (<) 0.09 (<) 0.02 (<) 56.27 (0.53)
Herdsman Lake (1 = 57) 1.39 (0.01) 1.15 (<) 0.14 (<) 0.09 (<) 0.09 (<) 0.04 (<) 69.49 (0.73)
Bibra Lake (n =29) 1.45 (0.01) 1.20 (<) 0.19 (<) 0.12 (<) 0.12 (<) 0.03 (<) 81.73 (0.86)
Kogolup Lake (n = 10) 1.39 (0.01) 1.19 (<) 0.18 (<) 0.12 (<) 0.12 (<) -0.02 (<) 68.17 (0.59)
Black Swan Lake (1 =9) 1.38 (0.01) 1.19 (<) 0.18 (<) 0.12 (<) 0.12 (<) -0.02 (<) 111.30 (0.46)
Carnac Island (n =9) 1.41 (0.01) 1.25 (0.01) 0.21 (<) 0.13 (<) 0.14 (<) 0.05 (0.01) 328.03 (0.97)

Presented as mean values across all SNPs; (<), standard error < 0.01; Na, no. of alleles; A, effective number of alleles; I, information index; Ho, observed heterozygosity;

He, expected heterozygosity; Fis, fixation index (Wright’s inbreeding coefficient).

https://doi.org/10.1371/journal.pone.0259124.t1002

Effective population size

We found the largest N, at Herdsman Lake (95% CI N, = 152-162), with the smallest effective
population size at Black Swan Lake (95% CI N, = 24-26; Table 3). The effective population size
at Kogolup Lake was ‘infinite’, likely due to small sample size preventing calculation of N,. The
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Fig 4. Mean body condition of mainland Notechis scutatus occidentalis populations around Perth, Western Australia. Body condition is
presented as scaled mass index (SMI). gpc, grams per cmy; filled diamonds are the population mean; error bars represent 95% confidence intervals;
dashed line is mean SMI of 215.7 gpc at the mean population SVL of 757.1 mm; Ho is the mean observed heterozygosity for each population.

https://doi.org/10.1371/journal.pone.0259124.9004
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Table 3. Effective population size (N,) of seven populations of Notechis scutatus occidentalis around Perth, West-
ern Australia.

Site N, Overall Parametric 95% CI

Yanchep 92 0.056 86-99
Lake Joondalup 110 0.053 104-118
Herdsman Lake 156 0.021 152-162
Bibra Lake 84 0.042 82-87
Kogolup Lake INF 0.138 3581-INF
Black Swan Lake 25 0.170 24-26
Carnac Island 90 0.168 82-101

95% CI represent both upper and lower confidence intervals; INF, ‘infinite’, usually a result of not enough
information to obtain a reliable estimate. Overall * represents a composite measure of average linkage-

disequilibrium across all pairs of loci.

https://doi.org/10.1371/journal.pone.0259124.t1003

r* —a sample-size bias corrected value of linkage-disequilibrium across all loci pairs-was lower
in the northern populations than in the southern populations.

Discussion
Regional population structure

Population genomic analysis generally supported our a-priori predictions. At the highest hier-
archical level, we identified population clusters that aligned with geographic regions north and
south of the Swan/Canning River systems (hereafter the northern and southern cluster).
Broadly, our findings reflect the results of Ottewell, Pitt [35], who found that the quenda (Isoo-
don fusciventer), a small marsupial persisting in Perth bushland patches, showed a similar pat-
tern of genomic differentiation on either side of the major rivers. Although tiger snakes are
capable swimmers [67, 68] they are unlikely to swim across the width of the Swan/Canning riv-
ers, and these rivers have likely been historic natural landscape barriers reducing gene flow
among tiger snake populations in this region.

Finer-scale patterns identified populations at Herdsman Lake and Carnac Island as being
more genetically distinct within these broader clusters, likely due to a combination of genetic
drift and isolation. At K = 3, Herdsman Lake is recovered as a distinct cluster, potentially due
to isolation from a sea of urban infrastructure; at K = 4, Carnac Island is distinct, likely due to
its isolation by 7 km of ocean. We also observed increased genomic distinction in populations
reflecting the history and level of surrounding urbanisation. Remnant patches of habitat pro-
vide connectivity and allow for persistence of wildlife in urban areas [35, 69]; however, as
Western tiger snakes prefer wetland habitats, they are unlikely to disperse through the urban
matrix or use remnant vegetation patches without waterways. Consequently, populations per-
sisting in wetland habitats now surrounded by urban infrastructure are essentially fragmented
islands.

Within the northern cluster, Joondalup and Yanchep populations were less differentiated
than were Joondalup and Herdsman. The Herdsman Lake population is closest to the city cen-
tre and has been within the urban footprint for the longest of all our study sites [70], suggesting
that urban development has led to reduced gene flow between this population and the remain-
ing northern populations, with resultant isolation and/or genetic drift. Herdsman Lake was
naturally an ephemeral swamp, but since the 1850s, it has been subjected to stock grazing,
market cropping, and attempted draining for land reclamation until it was finally dredged and
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modified to be a compensation basin for urban drainage [71, 72]. As Perth’s urban footprint
has grown over the last two centuries, tiger snakes may have contracted from the surrounding
inter-linking wetlands into the Herdsman Lake reserve. Yanchep and Joondalup wetlands are
the northern and southern extremities of the Spearwood Dune System chain of lakes [73], and
tiger snakes would have had historic population connectivity along this dune system. Urban
development began around Joondalup Lake in the 1970s [70], and based on the current land-
use (Fig 1) and our results, the Yanchep and Joondalup wetland populations may still be con-
nected. However, continuing urban development around Joondalup Lake may result in this
population developing similar genomic characteristics to the Herdsman Lake population in
the near future.

As expected, Bibra and Kogolup lake populations were very closely related. These lakes are
part of the Beeliar Regional Park, a chain of wetlands and woodlands currently managed as
conservation land [74]. The Beeliar Regional Park is the only remaining connected wetland
and woodland ecosystem in the Perth metropolitan area and should provide population con-
nectivity for tiger snakes as long as it remains undeveloped. While there is likely to be some
level of mortality due to the presence of arterial roads through the region, it appears there may
still be some connectivity between these populations based on the close relationship shared by
the Beeliar wetland populations and the Black Swan population.

Interestingly, the southern cluster exhibited a lack of spatial autocorrelation at 12 km, com-
pared to 30 km in the northern cluster. While there appears to be a clear difference in the patterns
between subregions, interpreting these differences is difficult without more detailed sampling at
intervals of equal distance between populations. This is potentially very difficult to achieve as tiger
snakes may not be present at many locations other than those already sampled in this study. The
differences may also be partly the result of lower levels of genomic variation present in the north-
ern cluster, with less variation leading to increased spatial autocorrelation of genotypes.

Genomic diversity and health

As predicted, the northern cluster of tiger snakes had lower genomic diversity than the south-
ern cluster, reflecting a similar pattern seen in quenda [35]. Yanchep is near the northern
extent of the Western tiger snakes species range (Fig 1). As edge populations often harbour
lower diversity than core populations [75], we suspect the relatively low diversity in the north-
ern cluster is probably caused by the Swan/Canning river system isolating populations at the
northern edge of the species range from gene flow and increasing genetic drift. Interestingly,
genomic diversity was not lowest in the two sites with the highest genomic differentiation and
geographic isolation, Herdsman Lake and Carnac Island, suggesting that isolation of ~90-150
years has not increased genetic drift in these populations.

Although none of the studied populations appeared to be strongly inbred, we found that Fig
values closely reflected contemporary isolation of populations. For example, Carnac Island is
insular and Herdsman Lake is isolated due to urbanisation and showed the highest signal of
inbreeding, whereas the study sites with the most habitat connectivity (Yanchep, Kogolup and
Black Swan) showed no signal of inbreeding. Inbreeding depression reduces individual fitness,
survival and reproduction and can lead to rapid decline and extirpation of populations [17, 20,
76]. Despite small Fig values, population-level changes may not be seen for many generations
in longer-lived vertebrates [18, 77]-such as tiger snakes, estimated at 10 years [78]. Thus, we
expect to see inbreeding increase through time, especially in sites that become completely iso-
lated from urbanisation.

Phenotypic signatures of inbreeding depression can be measured in wild populations using
heterozygosity-fitness correlations. We found a strong correlation between inbreeding (f) and
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heterozygosity, justifying our use of heterozygosity as a proxy for inbreeding. Our model
found no effect of individual genomic heterozygosity on snake body condition, despite the
broad pattern of the northern cluster sharing both lower heterozygosity and lower body condi-
tion (Fig 4). Body condition is a single measurement of fitness and low heterozygosity can
translate to many other measures of fitness such as reduced body size in neonates [34], higher
parasitism [79] and reduced survival probability [19]. Populations with low heterozygosity
may be experiencing changes in other life history traits that could directly or indirectly affect
fitness. Similar to Sovic et al. [52], our results show that body condition was strongly influ-
enced by site. This suggests site-specific environmental stressors such as differences in prey
availability [80], anthropogenic disturbance [81] or physiological changes from bioaccumula-
tion of contaminants [32, 82, 83] are probably more important factors than heterozygosity for
reducing body condition in tiger snakes from our study sites.

In addition, our use of genome-wide loci, possibly includes many loci in non-coding
regions of the genome [84], which would possibly conceal the signal from SNPs under selec-
tion. The outlier test identified 131 loci that are potentially influencing fitness in different
environments in the Perth region, and these candidate loci can be investigated in future anal-
yses. However, as many traits that contribute to local adaptation are polygenic and may not
exhibit high Fgr values, we suggest that a genotype-environment association analysis would
be a better method for investigating adaptive genomic architecture [85, 86]. Further investi-
gation sampling tiger snake populations across their entire distribution-covering a range of
native and urban wetland areas-would help identify SNPs that play a role in urban
adaptation.

The above results demonstrate that contemporary genomic diversity in Western tiger
snakes is more affected by population edge effects in conjunction with historical landscape iso-
lation (Swan/Canning river playing the major role in population isolation and Yanchep at the
northern edge experiencing lowered diversity) as opposed to fragmentation and isolation from
urbanisation. The health of the northern SCP wetlands are continuously being threatened by
anthropogenic water abstraction and climate change [87] in conjunction with ever-encroach-
ing urbanisation [88]. Eventually, the larger urban wetlands (such as Herdsman Lake) will be
the only islands of refuge for the northern cluster of tiger snakes. The northern SCP population
already shows the lowest genomic diversity-hence adaptive potential-and poorest body condi-
tion, and thus is most likely at risk of future extirpation as urbanisation amplifies isolation as
well as introducing novel environmental stressors.

Effective population sizes

The largest estimates of N, came from the largest wetlands: Herdsman and Joondalup Lakes,
despite these populations having relatively lower heterozygosity values and positive inbreeding
coefficients. In contrast, the Black Swan population (the smallest lake) showed the lowest N,
value despite high genomic diversity and no evidence of inbreeding. Rather than indicating
isolation and genetic drift, our N, estimates appear to reflect the area and quality of available
habitat at each locality. Similarly, Wood, Rose [65] found that despite high levels of isolation
due to urbanisation, a population of the wetland snake Thamnophis sirtalis tetrataenia had the
largest N. compared to other studied populations, suggesting that habitat restoration and
enhancements may have facilitated high adult abundance at this locality. While Fraser, Iron-
side [89] suspect that large available habitat is responsible for maintaining large population
sizes in deer populations isolated by urbanisation. Together, these results suggest that the qual-
ity and area of suitable habitat at our sampling sites is driving the effective population sizes of
tiger snakes.
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The N, estimate for Kogolup Lake population was infinite, and the lower parametric confi-
dence interval was 3581 (Table 3). As our sample size for that population was n = 10, the infi-
nite estimate is likely due to a small sample size; however, an infinite estimate can also mean
there is no evidence for drift in that population, or the N, is actually large (>1000). Conse-
quently, our dataset is unable to distinguish whether or not the population is ‘very large’. The
regional population structure, negative inbreeding coefficients, and current landscape connec-
tivity between Black Swan, Bibra and Kogolup Lakes suggest that together these populations
actually represents a broader Beeliar Regional Park meta-population, and we speculate that the
infinite N, estimates could be a result of a large population and therefore not likely to suffer
from genetic drift in the near future. Without increasing the sample size and recalculating the
effective population size, we cannot confirm this population size. However, if the Kogolup
Lake N, is actually large then the lower bound may provide useful information about plausible
N. estimates [66, 90].

In conservation genetics, small population sizes limit adaptive potential [91]. Specifically,
N, > 100 is recommended to avoid inbreeding depression over the next five generations, while
N, > 1000 is recommended to maintain evolutionary potential; populations below this N, will
suffer a reduced ability to evolve to cope with environmental change over time [63]. Four of
our seven study populations are at an N, <100 (Table 3), and Joondalup and Herdsman lakes
were not substantially higher than N, = 100. Since most of our study populations are already
showing signals of inbreeding, are completely isolated, or are in the process of becoming iso-
lated due to urbanisation, ultimately all these populations are at risk of genetic degradation. If
N_ is strongly influenced by area and quality of available habitat, then habitat conservation,
management and restoration may be the best method to buffer the further loss of genetic
diversity in urban island tiger snake populations.

On the origin of Carnac Island snakes

The Carnac Island tiger snakes showed a high level of genetic distinctiveness; this is not sur-
prising given this population lives on an off-shore island. The Carnac Island population, unex-
pectedly also had the highest level of genomic diversity, and the highest frequency of private
alleles (328 compared to 56-111 in mainland populations). For a population that was sus-
pected to be introduced ~ 90 year ago, and shares ancestry with the geographically-closest pop-
ulations of the southern cluster (Black Swan Lake), this is surprising. Considering the small
size of Carnac Island (19 ha), we expected the tiger snake population to show low genomic
diversity as island populations are renowned for having lower genetic diversity compared to
adjacent mainland populations [92-94], even when the island introduction is less than 100
years [76]. A large founding population could have resulted in high heterozygosity [92, 95],
however just ~ 40 adult snakes [36] were speculated to have been released on Carnac Island.
Maintaining a large population size over time would also be necessary, as extended bottlenecks
in the population size would have led to reductions in genetic diversity [95, 96]. It is possible
that the founding population was sourced from many genetically diverse populations (e.g.
including the east coast subspecies), if that was the case however, we would expect the Carnac
Island snakes to separate from our sampled populations at lower K values, and the geographi-
cally closest sampled populations to show little-to-no shared ancestry with Carnac Island in
our admixture plots.

Surprisingly, we found the Carnac Island population had more than three to five times the
private alleles compared to the mainland populations, much more than we would expect from
de novo mutations over 90 years of isolation. We propose three hypotheses: (1) the snakes orig-
inated from other unsampled populations and the mutations are ancestral; (2) the mutation

PLOS ONE | https://doi.org/10.1371/journal.pone.0259124  October 29, 2021 14/21


https://doi.org/10.1371/journal.pone.0259124

PLOS ONE

Top predator snake shows genomic signatures of natural and anthropogenic barriers to gene flow

rates have increased as a response to novel selection pressures [97], since the ecosystem on
Carnac Island is very different to the habitat tiger snakes usually prefer on the mainland. This
hypothesis could be supported by the phenotypic plasticity shown in the population [24], if
epigenetically-driven plasticity has increased genome evolution [98]; or (3) the snakes are a
naturally-occurring remnant population that is much older than 90 years, and the mutations
are de novo. This hypothesis could be supported by Black Swan Lake’s—the geographically-clos-
est sampled population-shared ancestry, and tiger snakes naturally occurring on the nearby
Garden Island [99], historically part of the land-bridge that connected these islands to the
mainland roughly 6000 years ago [100].

Conclusions

Urbanisation modifies ecosystems around the world, creating a range of stressors for wildlife
living in cities. By investigating population genomic structure of species persisting in urban
environments, we can gain useful information for conservation management of urban wildlife.
Here, we genotyped urban and peri-urban populations of tiger snakes with the aim of under-
standing natural and anthropogenic influences on genomic diversity and population connec-
tivity. We found that the major river system that runs through our urban study area has been a
strong historical barrier to gene flow, resulting in the partial isolation of populations to the
north of the river from the remainder of the species distribution. These northern populations
also exhibited lower genomic diversity and lower body condition than southern populations,
suggesting that they are most at risk of extirpation as urbanisation further encroaches upon
their sensitive wetland habitats. As we expected, the populations most exposed to isolation—
both geographic and urban-showed the strongest signal of inbreeding, although the mainte-
nance of large effective population sizes appears to be driven primarily by the amount of avail-
able habitat. Together, these findings suggest that that increasing population connectivity and
maximising the area of habitat in urban areas will help improve the adaptive capacity of urban
wildlife. We also recommend further investigation into the genomic architecture of adaptation
to urbanisation in this species, which will improve our understanding of the genetic and physi-
ological pathways by which species adapt to urban environments.

Supporting information

S1 Fig. Hierarchical clustering dendrogram representing genetic distance relationships
between Notechis scutatus occidentalis populations around Perth, Western Australia. Cal-
culated using 4688 single-nucleotide polymorphisms from across the genome. Note that these
relationships do not necessarily reflect a true phylogeny.

(TIF)

S2 Fig. Cross-entropy scree plot used to identify hierarchical population structuring in the
genomic dataset for Notechis scutatus occidentalis. Lower values of the cross-entropy crite-
rion indicate a better fit to the data.

(TIF)

$3 Fig. Admixture bar plot comparing population structure in Notechis scutatus occidenta-
lis from Perth, Western Australia. Each tick mark on the x-axis represents an individual
snake, which are grouped by sampling locations. The dashed line represents the biogeographic
barrier of the Swan/Canning Rivers separating the northern and southern sampling localities.
The y-axis represents the fraction of individuals’ genome that originates from a particular
ancestral population, each of which has been given a unique colour.

(TTF)
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S4 Fig. Spatial autocorrelation of multilocus genotypes for Notechis scutatus occidentalis
from Perth, Western Australia at five distance classes. Cluster indicates the population used
for analysis. Global is all mainland snakes, Northern and Southern are the populations either
side of the Swan/Canning River system. The probability value at each distance class shows the
proportion of permuted r values greater than the observed value in that distance class, based
on 999 permutations of the SNP by sample matrix.

(TIF)

S5 Fig. Hierarchical population genomic structure of Notechis scutatus occidentalis around
Perth, Western Australia. Unique colours in each panel represent an ancestral cluster. Black
points indicate sampling sites. The dashed line represents the Swan/Canning River systems,
while the dashed ring outlines Carnac and Garden Islands.

(TIF)

S1 Table. Tukey HSD pairwise post-hoc test comparing body condition among six popula-
tions of Notechis scutatus occidentalis around Perth, Western Australia.
(DOCX)
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