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PORTFOLIO-SELECTION PROBLEMS

Raphael Ndem Nkomo, PhD

University of Johannesburg, 2015

Abstract: This thesis contributes to the problem of equity portfolio management using

computational intelligence methodologies. The focus is on generating automated financial

reasoning, with a basis in computational finance research, through searching a space of

semantically meaningful propositions. In comparison with classical financial modelling, our

proposed algorithms allow continual adaptation to changing market conditions and a non-

linear solution representations in most cases. When compared with other computational

intelligence approaches, the focus is on a holistic design that integrates financial research with

machine learning. The major aim of the thesis is to develop portfolio allocation techniques

for learning investment-decision making that can easily adapt to changes in market processes

together with speed and accuracy. We evaluate the algorithms developed in out-of-sample

trading framework using historical data sets. The testing is designed to be realistic; for

instance, considering factors such as transaction costs, stock splits and data snooping. To

demonstrate the robustness of our approach we perform extensive historical simulations

using previously untested real market datasets. On all data sets considered, our proposed

algorithms significantly outperform existing portfolio allocation techniques, sometimes in a

spectacular way, without any additional computational demand or modeling complexity.

Before proceeding any further, we stress that setting up abstract and complex mathe-

matical models is neither the intention nor the scope of this thesis. Our aim rather is to

investigate empirically and possibly capture any existing nonlinearities or non-stochasticities

that are apparent in the dynamics of cross sectional returns of stock prices. In doing so we

iii



utilise some novel techniques, which are mostly based on such methodologies that have been

used successfully in the physical sciences were the deterministic dynamics of the phenomena

are more easily detected. Our intention is to provide an additional empirical analysis frame-

work that could shed new light in the investigation of the nature of financial time-series data

generating processes.
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1.0 GENERAL INTRODUCTION

1.1 INTRODUCTION

The conventional investment wisdom over the last several decades has been that securities

markets were extremely effi cient in reflecting information not only about individual stocks but

also about the stock market as a whole. In this environment, portfolio managers were advised

to Buy-and-Hold good-quality stocks for the long run with the hope that securities markets

will rise over time. The accepted view was that because information arose stochastically,

the news spread very quickly and was incorporated into the prices of securities without any

material delay. Therefore, no systematic investment programme, including technical analysis

and fundamental analysis, would enable an investor to achieve returns greater than those

that could be obtained by holding a randomly selected portfolio of individual stocks, at least

not without taking additional risk.

However, the amount of evidence showing the disadvantage that traditional, long-term,

Buy-and-Hold investors currently face is staggering. After the 2008 financial crisis and the

resulting poor performance delivered by most fund managers, there is renewed search for

reliable active investment strategies that can outperform not only the market but also the

best stock.

In recent years the growth of theoretically well grounded algorithms for Online PS prob-

lems has been significant. These online portfolio selection (PS) algorithms have demonstrated

good finite sample properties with a performance that generally exceeds both the market

and the best stock even after accounting for modest transaction costs. More specifically,

algorithms such as Universal Portfolio (Cover (1991)), Exponential Gradient (Hembold et

al. (1998)) and Online Newton Step (Agarwal et al. (2006)) have demonstrated that the
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wealth achieved through a sequential rebalancing strategy possesses explicit lower bounds

given a suffi ciently long period of time.

Although very elegant in their mathematical formulation, most existing state-of-the art

algorithms have displayed very disappointing performance in practical applications when

compared to some alternative algorithms derived from simple heuristics like the Anticor

algorithm of Borodin et al. (2006). The aim of this thesis is therefore to present a set of new

Online PS procedures within the context of algorithmic trading that are both theretically

well founded and empirically very robust. Our approach is completely nonparametric as it

assumes no knowledge of the underlying statistical distribution that generates stock prices.

Our goal throughout the thesis will be to find a PS scheme such that the investor’s wealth

grows at a pace that could have been achieved using an optimal strategy that benefited

from the full knowledge of the underlying distribution. This, of course, is a very ambitious

undertaking but we will show that the newly proposed Online portfolio-selection algorithms

demonstrate very good finite-horison performance when applied to a wide range of stock

market datasets.

1.2 MECHANICS OF ONLINE LEARNING FOR PORTFOLIO

SELECTION

Online learning for PS is a model of induction that operates in a sequence of consecutive

rounds with the main goal of maximising the expected log return over a sequence of trading

periods. After each observation, the portfolio manager predicts a portfolio weights vector,

which is a way to allocate his available capital amongst investable assets. This portfolio-

weight-vector prediction problem is based on all available information including previous

market sequences of stock price relatives. The quality of the portfolio manager’s prediction

is generally assessed by a loss function that measures the discrepancy between the predicted

answer and the correct one. The manager’s ultimate goal is to minimise the cumulative

wealth loss suffered over the long run, which is equivalent to maximising his total wealth.

To achieve this goal, the portfolio manager may update the hypothesis after each round
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so as improve the odds to be more accurate in later rounds. Once the portfolio manager

has made the prediction, he or she receives feedback indicating the actual outcome of stock

market returns. Then, the portfolio manager calculates his or her period profit or loss and

must decide to modify or not the portfolio weight prediction mechanism for the next period,

presumably improving the chances of making an accurate prediction in subsequent rounds.

Table 1.1 shows the general framework as followed by most Online learning algorithms for

Portfolio Selection (PS).

Table 1.1 General Mechanincs of Online PS Algorithm

Input matrix of price relative

Output vector of portfolio weights

Initialise uniform distribution of weights vector

for t = 1, 2, ...n do

1 portfolio manager computes portfolio weights

2 market reveals the vector of price relatives

3 portfolio manager incurs a profit or loss

4 portfolio manager updates the prediction rules

end

Online learning for PS algorithms presents many attractive features compared to their

most popular counterparts like the auto-regressive moving average (ARMA) and the auto-

regressive integrated moving average (ARIMA) models. First, by readily tackling the vast

amounts of historical data that are available in the financial markets, Online learning algo-

rithms can provide insight into the forecasting problem at the core of traditional portfolio

choice formulations. Second, Online learing algorithms provide a framework for bypassing

stock returns forecasting issues altogether and making direct portfolio allocation choices.

Third, many Online algorithms can give strong guarantees on performance even when the

instances are not generated by any known distribution. As long as a reasonably good predic-

tion function exists, the Online learning algorithm will learn to predict correct stock prices.
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These good prediction functions must come from a previously determined set that depends

on the algorithm. Fourth, because Online learning algorithms continually receive feedback,

the algorithms are able to adapt and learn in diffi cult market situations. Fith, Online learn-

ing algorithms for PS problems are nonparametric in nature as they make no statistical

assumptions regarding the origin of the sequence of stock prices.

However, a principal diffi culty or weakness faced by Online PS algorithms is that of

following a rigid (black box) methodology. Since history provides only a single realised tra-

jectory of stock prices, making repeated use of the same historical data leads to retrospective

bias and excessive optimistic estimates of past performance that vanish when a system is put

into deployment. In order to avoid this well-known data snooping bias, we obtain realistic

estimates of performance by following a sequential validation methodology, which attempts

to reproduce as closely as is feasible the steps that would have been taken in real-life decision

making processes.

1.3 TAXONOMY OF ONLINE PORTFOLIO SELECTION ALGORITHMS

Before delving into a detailed description of our proposed online algorithms for PS, we stress

that setting up abstract and complex mathematical models is neither the intention nor the

scope of this thesis. Our aim rather is to investigate empirically and possibly capture any

existing nonlinearities or non-stochasticities that are apparent in the dynamics of cross sec-

tional returns of stock prices. In doing so we utilise some novel techniques, which are mostly

based on such methodologies that have been used successfully in the physical sciences were

the deterministic dynamics of the phenomena are more easily detected. Our intention is to

provide an additional empirical analysis framework that could shed new light in the inves-

tigation of the nature of financial time-series data generating processes. Another important

point to stress at this early stage is that there are some "irritating" but useful repetitions

throughout this thesis. The decision not to do away with these repetitions was based on

maintaining a good flow of ideas as the various chapters were individually written and sent

to various journals for possible publication.
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This section sets out our work within the broader context of some of the more recent

work on Online learning for PS problems.

PS algorithms based on Online machine-learning techniques can be classified into four

main groups (see Li et al. (2013) for a detailed description). This classification includes

“Follow-the-Winner”, “Follow-the-Loser”, “Pattern-Matching” and “Meta-Learning Algo-

rithms”algorithms.

The first group comprises the so-called, "Follow-the-Winner" strategy that increases

the relative weights of better performing stocks with the belief that this performance will

carry over into subsequent periods. This class is generally referred to as momentum based

strategies since these algorithms implicitly bet on some form of price continuation. Of course,

historical performance here could be measured along many, lines including historical price

performance, historical earnings revisions or any other firm fundamental attributes etc...A

well known strategy in this group is the so called Buy-and-Hold which will be employed in

this thesis as an aggregation scheme to combine portfolio of strategies.

The second group is referred to as "Follow-the-Loser" approach where the portfolio man-

ager takes a contrarian view on the recent performance of stock prices. The strategy here

is simply to increase the relative weights of recent losers stocks by transferring the weights

from the winners to losers. The implicit assumption in following this strategy is that market

participants more often do overreact to stock price news, which ultimately results in stock

prices being over/under priced with the likelihood of price reversal as the price discovery

reasserts itself.

The third approach is called "Pattern-Matching"-based approach. This similarity-driven

approach designs a portfolio based on instances of similarity between the most recent price

sequence and the whole historical path of price relatives. This strategy is very appealing

because it can capture both price reversals and price continuation that seem to cohabitate

in financial markets. We will propose new similarity-driven learning to trade sequential PS

algorithm that are very competitive within the class of log-optimal algorithms.

The last group is referred to as "Meta-Learning" algorithms. These algorithms essentially

recombine any existing base algorithms with the objective of creating a final portfolio by

adaptively combining the portfolios suggested by the base algorithms. In particular, Puja
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et al. (2011) show that the meta algorithms for PS will be universal; i.e., competitive with

the best constant rebalanced portfolio (CRP) chosen in hindsight, if any base algorithm in

the pool is universal. This result is quite an important one as it allows us to combine our

proposed algorithms with those that have been shown to be universal (Blum et al. (1997),

Cover (1991), Kalai et al. (2005)) and obtain an algorithm that is universal.

1.4 MAIN CONTRIBUTIONS

The main aim of this thesis is to introduce a general framework for the design and analysis

of new Online learning algorithms for PS problems. Our framework includes algorithms with

features that include mean reversion, pattern matching and combination strategies. These

algorithms emerge from a new view on statistical learning, phase-space reconstruction and

spectral analysis, which are the common thread in the analysis of Online PS algorithms as

discussed here.

The first main contribution comes from the empirical analysis of some of the more promis-

ing Online PS algorithms collected from recent publications. Our analysis shows some rather

surprising results when one takes into account more recent and previously untested datasets.

Our main finding here is that the vast majority of selected algorithms performed remark-

ably well on older datasets but the claim that these existing state-of-the-art algorithms are

robust and perform well on more broader datasets is rather exagerated in our view. The

performance of some state-of-the-art algorithms on more recent market data including those

in the UK, South Africa, the US and Canada has been poor at best.

Our next important contribution is to present a new heuristic approach to Online PS that

could be used to extend all existing state-of-the-art algorithms. We introduce a state-space

model via the Kalman Filter algorithm to filter price-cycle oscillations out of the current

share prices and compute the trend-adjusted price relative (TAPR). The TAPR helps to

de-noise the stock price data in order to account for the possibility of multi-period mean

reversion in stock prices (see Li et al. (2012)). We build on the existing state-of-the-art

PS algorithms in general, and the Anticor (Borodin et al.,2006) algorithm in particular and
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use ideas from signal processing and statistical learning to demonstrate the superiority of

our new methodology. Our proposed methodology naturally results in Online PS algorithms

that perform exceedingly well on all datasets, including most recent ones. To our knowledge,

this is the first time that a research has combined ideas from signal processing with Online

learning algorithms to select portfolios in an optimal way.

The third main contribution presents newly developed Online PS, including the Delay

Coordinate Embedding Algorithm for PS (DCEPS), the Multivariate Singular Spectrum

Analysis for PS (MSSAPS) and the Support Vector Stock Selection Machines (SVSS). As in

Gyorfi et al. (2006) our proposed algorithms have their foundations in the similarity-driven

nonparametric Online learning methodology. Our new algorithms allow us to construct

asymptotically optimal investment strategies in the financial market without prior knowledge

of the statistical properties of stock prices. Extensive historical simulations demonstrate that

these new state-of-the-art algorithms perform exceedingly well on all datasets. We consider

these new Online PS algorithms as very robust investment strategies.

1.5 OUTLINE OF THE THESIS

The present thesis is divided into nine main chapters which are organised as follows; Chap-

ter I presents a General Introduction to the thesis while Chapter II summarises the general

mathematical foundation that underpin sequential algorithms for PS. Chapter III describes

in detail the data that will be used in the thesis together with the evaluation of some perfor-

mance measures that will be necessary to gauge the robustness of proposed PS algorithms.

In chapter IV, we present an empirical survey of some of the most promising PS algorithms

found in the litterature. In Chapter V, VI, VII and VIII we present a detailed analysis of

our proposed portfolio allocation strategies and their applications. The conclusion to the

thesis is presented in Chapter IX.
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1.5.1 Chapter II: Mathematical Formulation

This chapter lays down the theoretical foundations of the considerable task faced by machine-

learning algorithms in their attempts to formulate robust and practical answers to PS prob-

lems. We start by formulating the static PS problem as a single period investment strategy.

The investor in this setting distributes his capital at the beginning of each trading period

according to a portfolio vector bt = (b1
t , b

2
t , ..., b

m
t ). The jth component bjt of bt denotes the

proportion of the investor’s capital invested in asset j at time t. Starting with an initial

wealth S0 = 1, if one uses a portfolio b and the stock vector is x, the one-period wealth

relative is S = S0

m∑
j=1

bjxj = b>x. Because S is a random variable, there is some controversy

over the choice of the best distribution for maximising S. Investors are generally constrained

to constant fractions of wealth allocated across the various assets and maximising the log-

mean of portfolio wealth is the best criterion to use for the long-term investment. Such a

portfolio is said to be log-optimal. We formulate the log-optimal investment problem in con-

tinuous and discrete time processes. The discrete time multi-period formulation leads to a

convex optimisation problem that provides the basis for most online learning algorithms for

PS problems. In fact, one can achieve an even higher growth rate for long-run investments

if the tuning of the porfolio is allowed to change dynamically after each trading period.

1.5.2 Chapter III: Market Assumptions, Data Description and Performance

Measurements

Before testing our algorithms with data from real financial markets we make some simplifying

assumptions that are not found in real-markets. As in Gyorfi et al. (2008) we assume that

assets are available in the desired quantities at a given price at any trading period. We

also assumed that all trades are done at the closing price of that day. Transaction costs are

taken into account and we assume a round-trip trading cost per trade of 10 basis points, to

incorporate an estimate of price slippage and other costs as a single friction coeffi cient. Also,

the set of assets involved is fixed: no new assets are allowed to be introduced in the market.
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1.5.3 Chapter IV: Online Learning Algorithms for PS: An Empirical Survey

This chapter provides an empirical survey of some of the more promising online PS tech-

niques. The algorithms surveyed have all demonstrated excellent finite sample performance

using older datasets (see Table 1.2). Our main aim was to provide a timely survey, using

more recent datasets, to assess the acclaimed robustness of some of the earlier published

works in both machine-learning and data-mining fields. Table 1.2 is drawn from Li et al.

(2012) and shows a performance comparison of some of the most promising PS algorithms.

Our empirical survey will therefore focus exclusively on those algorithms that have shown

the most growth in portfolio wealth.

Table 1.2: Performance Comparison of Selected PS Algorithms

1.5.4 Chapter V: Kalman Filtering and Online Learning Algorithms for PS

This chapter proposes new Online learning algorithms for PS based on an alternative measure

of price relative called the Trend-Adjusted Price Relative (TAPR). The TAPR is derived from

a simple state-space model of stock prices (using the Kalman Filter recursive algorithm) and

we prove that the TAPR, unlike the standard raw price relative widely used in the machine

literature, has well-defined and desirable statistical properties that make it better suited for

nonparametric mean-reversion strategies. We find that the statistical evidence of out-of-

sample predictability of stock returns is stronger once stock price trends are adjusted for
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high persistence.

1.5.5 Chapter VI: Sequential Portfolio Selection Algorithms Via Delay Coor-

dinate Embedding

This chapter presents a novel non-universal, nonparametric statistical learning algorithm for

PS problems based on Takens delay coordinate embedding theorem. Our delay coordinate

embedding algorithm for PS (DCEPS) allows one to construct asymptotically log-optimal

strategies for sequential investment in the financial market. We find that the statistical

evidence of out-of-sample predictability of stock returns is stronger once stock prices are re-

constructed in a phase-space coordinates. Our DCEPS algorithm is evaluated against some

existing benchmark Online portfolio allocation techniques using six up-to-date real-market

datasets. The DCEPS algorithm outperforms existing state-of-the-art allocation techniques,

sometime in a spectacular way in these datasets without any additional computational de-

mand or modelling complexity.

1.5.6 Chapter VII: Sequential Portfolio Selection Algorithms Via Multivariate

Singular Spectrum Analysis

In recent years a powerful statistical technique known as Singular Spectrum Analysis (SSA)

has been developed and successfully applied to many real-life problems in areas such as

meteorology, oceanology, market research, medicine, economics and finance. Despite these

successes, there is surprisingly no research to our knowledge that has applied this robust

statistical technique to online PS algorithms.This chapter bridges this gap and presents a

novel non-universal, nonparametric statistical learning algorithms for PS problems based on

multivariate singular spectrum analysis. Our multivariate singular spectrum algorithm for

PS (MSSAPS) allows one to construct asymptotically log optimal strategies for sequential

investment in the financial market. Our approach is evaluated against benchmark Online

portfolio allocation techniques using six up-to-date real-market datasets. Our methods out-

perform existing state-of-the-art portfolio allocation techniques, sometime in a spectacular

way in these datasets.
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1.5.7 Chapter VIII: Low-Regret Stock Selection in Online Learning Algorithms

In this chapter we propose a nonparametric empirical PS framework that explicitely separates

the stock selection from the portfolio construction. Our new Online PS methodology follows

three important steps that allow us to construct optimal investment strategies in the financial

market. In the first step we use state-of-the-art Online, low-regret binary classification

algorithms (inspired by the Support Vector Machine algorithm) to help in the stock selection

process. The second step constructs the portfolio weight vector in the usual sense using

suitable heuristics along the lines of algorithms proposed by Borodin et al. (2006). In the

last step we combine the stock selection and portfolio construction outputs to derive our

final portfolio weights. One of the striking features of our new algorithm is that we make

no assumtpions about the statistical properties of stocks prices and the model itself requires

very few paramter tunings. Extensive historical simulations demonstrate that this algorithm

is indeed a very robust investment strategy.

1.5.8 Chapter IX: Conclusion Directions for Future Research

In Chapters IX we draw the main conclusion of our thesis and propose some directions for

future research.
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2.0 MATHEMATICAL FORMULATION

2.1 INTRODUCTION

This chapter lays down the theoretical foundations of the considerable task faced by machine-

learning algorithms in their attempts to formulate innovative and practical answers to the

PS problems.

Consider a market of m securities: these can be stocks, bonds, foreign currencies, or

commodities. In order to apply Online learning algorithms to stock selection problems we

consider a stock market model that has the same characteristics as the one investigated by,

amongst others, Gyorfi et al. (2008) and Algoet and Cover (1988). We consider a market

of m securities such that a market vector pt = (p1
t , p

2
t , ..., p

m
t ) represents the vector of prices

for j = 1, 2, ...,m securities. The change in security prices during the tth trading period

is represented as a stock market vector xt = (x1
t , x

2
t , ..., x

m
t ) ∈ R+

m where xt is the vector

m of non-negative numbers representing price relatives for the trading period t. The jth

component xjt ≥ 0 of xt expresses the ratio of two consecutive closing prices (from time t− 1

to time t) of asset j such that xjt =
pjt
pjt−1

. Thus an investment of d dollars in the jth security

just before the start of the tth trading period yields dxjt dollars by the end of the t
th trading

period

2.2 STATIC PORTFOLIO SELECTION

The static PS is defined as a single-period investment strategy. The investor in this setting

distributes his capital at the beginning of each trading period according to a portfolio vector
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bt = (b1
t , b

2
t , ..., b

m
t ). The jth component bjt of bt denotes the proportion of the investor’s

capital invested in asset j at time t. Throughout the thesis we assume that the portfolio

manager is not permitted any short sale of securities; that is the portfolio vector is such

that bt ≥ 0 and that the portfolio manager is always fully invested

(
m∑
j=1

bj = 1

)
, including

reinvestment of dividends. Starting with an initial wealth S0 = 1, if one uses a portfolio b

and the stock vector is x, the one-period wealth relative is

S = S0

m∑
j=1

bjxj = S0b
>x

We wish to maximise S in some sense. But S is a random variable, so there is controversy

over the choice of the best distribution for S. The standard theory of stock market investment

is based on the consideration of the first and second moments of S. The objective is to

maximise the expected value of S, subject to a constraint on the variance. Since it is easy

to calculate these moments, the theory is simpler than the theory that deals wth the entire

distribution of S. In this setting, the investor is assumed to make allocation decisions once

and for all at the beginning of a given period, based on estimated prospects for the risk and

return relationships of a universe of m investable assets over the horison. This is essentially

the mean-variance investment formulation as expressed by Markowitz (1952), which is widely

used by investment analysts worldwide (see Section 2.3).

2.3 MEAN-VARIANCE SOLUTION TO THE INVESTMENT PROBLEM

Markowitz (1952) introduced the basic formulation of the mean-variance investment problem.

In terms of the Markowitz (1952) formulation, the investor’s optimal portfolio allocation is

derived from a framework that includes expressions for the expected portfolio return and

variance in terms of the portfolio weights and expected returns, variances and covariances

of individual assets.
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Let Rt+1 ∈ Rm be a vector of random expected asset returns between times t and t+ 1.

Assume that the investor makes a forecast of the first two moments of the distribution of

future returns given the information available at time t

µt+1|t = Et [Rt+1] (2.1)

Σt+1|t = Covt [Rt+1] (2.2)

where Et [.] and Covt [.] respectively denote the expectation and covariance matrix of a

random variable conditioned on the information available at time t. For simplicity in this

section, since single-period modelling does not explicitly consider the consequences of time,

we drop the time subscripts on the above quantities, which we write simply as R, µ and Σ.

Likewise, the return on the risk-free asset during the period is denoted by rf .

Investors allocate their capital among the m assets, forming a portfolio w ∈ Rm where

each element wi, the weight of asset i, represents the fraction of total capital held in the

asset. The expected portfolio return and variance are given respectively by:

µ (w) = E [R (w)] = E
(
w>R

)
= w>E (R) = w>µ (2.3)

σ2 (w) = E
[
(R (w)− µ (w)) (R (w)− µ (w))>

]
= E

[(
w>R−w>µ

) (
w>R−w>µ

)>]
= E

[
w> (R− µ) (R− µ)>w

]
= w>E

[
(R− µ) (R− µ)>

]
w

= w>Σw

(2.4)

2.3.1 Optimisation Problem

An investor’s optimisation problem can therefore be formulated as one of maximising the

expected returns of the portfolio under a volatility constraint or, equivalently, minimising

the volatility of the portfolio under a return constraint. For ease of numerical computa-
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tions, Markowitz (1956) transformed this nonlinear optimisation problem into a quadratic

optimisation problem which can be formulated as follows:

w∗ (λ) = arg max w>µ−λ
2
w>Σw

s.t 1>w = 1
(2.5)

or equivalently,

w∗ (ϕ) = arg max 1
2
w>Σw−ϕ

2
w>µ|ϕ = λ−1

s.t 1>w = 1
(2.6)

where λ and ϕ represent risk aversion parameters. From a numerical point of view, the

second formulation has the advantage of being a standard quadratic programming problem

and therefore is the one mostly used by advocates of the mean-variance framework. Of course

if ϕ = 0 the problem reduces to one of finding the minimum variance portfolio and if ϕ =∞,

the investor problem is that of maximising the portfolio returns.

2.3.2 Analytical Solution

The first version of the optimisation problem in Equation 2.5 could be easily solved using

the method of Lagrange multiplier. The Lagrange function of the optimisation problem is:

L (w;λ0) = w>µ−λ
2

w>Σw + λ0

(
1>w − 1

)
(2.7)

The method of Lagrange multiplier works by taking the partial derivatives of equation

2.7 with respect to unknown variables (w and λ0) and setting them to zero. The solution

w∗ therefore verifies the following first order conditions:

{
∂wL (w;λ0) = µ−λΣw + λ01 = 0

∂λ0L (w;λ0) = 1>w−1 = 0
(2.8)

The first partial derivative in Equation 2.7 gives:

w = λ−1Σ−1 (µ+ λ01)

Substituting this last expression into the second part of Equation 2.8 gives:
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1>
(
λ−1Σ−1 (µ+ λ01)

)
−1 = 0 or λ0 =

1− 1>λ−1Σ−1µ

1>λ−1Σ−11

This leads to the final solution given by:

w∗ =
Σ−11

1>Σ−11
+

1

λ
×
(
1>Σ−11

)
Σ−1µ−

(
1>Σ−1µ

)
Σ−11

1>Σ−11
(2.9)

From equation 2.9 we can deduce the global minimum variance as the following:

wmv = w∗ (∞) =
Σ−11

1>Σ−11
(2.10)

One major practical diffi culty when implementing this framework is to precisely define

the vector of expected returns of the risky assets and the corresponding expected covariance

matrix of asset returns. As many financial professionals have experienced, using sample

mean and covariance is simply not a good alternative in this case as the optimised portfolios

are generally very sensitive to these inputs. In fact, using historical returns to estimate

parameters that can be used as inputs to obtain the set of effi cient portfolios depends on

whether the underlying economies giving rise to the observed outcomes of returns are strong

and stable. This, in general, is a very diffi cult statement to prove.

2.4 THE LOG-OPTIMAL PORTFOLIO SOLUTION

In Section 2.3 we reviewed some of the basic building blocs of the mean-variance frame-

work for PS problems. Although the theory behind mean-variance optimisation is relatively

straightforward, many finanical professionals have found its practical implementation very

diffi cult to achieve. The theory dictates that given estimates of the returns, volatilities,

and correlations of a set of investments and constraints on investment choices (for example,

maximum exposures and turnover constraints), it is possible to perform an optimisation

that results in the risk/return or mean-variance effi cient frontier However, the theory re-

mains silent on how to obtain these forward estimates of returns, volatilities and correlations

making it of little usage for practical applications.
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2.4.1 The Log-Optimal Portfolio in Continuous Time

One of the portfolio manager’s main aim in PS is to obtain an optimal wealth growth. It is

now well agreed that when the investment is constrained to have constant fractions of wealth

allocated across the assets, then maximising the log-mean of portfolio wealth is the best

criterion to use for long-term investment (see Gyorfi et al. (2007)). Such a portfolio is said

to be log-optimal. These portfolios were introduced in Latane (1959) and Kelly (1956) for

the case of discrete-time static portfolios and were more fully developed in Breiman (1961).

Log-optimal portfolios in continuous-time dynamic case, with constraints and transaction

cost can be found in textbooks such as Korn (1997).

Let’s consider a market consisting of a constant single risk-free asset which has the

following mathematical representation

dS (t) = rS (t) dt or S (t) = S (0) e

t∫
0

r(u)du
(2.11)

and m risky assets with the following geometric brownian motion equations

dSi (t) = Si (t)

[
µidt+

m∑
j=1

σijdWj (t)

]
(2.12)

and Si (0) > 0, i = 0, 1, ...,m. The interest rate r, the drift µi and volatility σij, are all

assumed to be constants and positive. The noise terms dWi (t) are differentials of independent

standard Brownian motions and the volatility matrix σ, given by σ = {σij}mi,j=1, is assumed

to be nonsingular. This is essentially the same setting as the one adopted by Fernholz (2002).

The trading strategy is defined as an adapted real-valued process

[v0 (t) , v1 (t) , ..., vm (t)]>

where vi (t) represents the number of shares per asset. The portfolio value, i.e. the total

potfolio wealth, at time t is given by

y (t) =
m∑
i=0

vi (t)Si (t) =
m∑
i=0

yi (t) (2.13)
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Here yi (t) , i = 0, 1, ...,m, denotes the value of the holdings per asset. These can also be

expressed in terms of the fraction αi (t) of yi (t) allocated to asset i, as follows

yi (t) = vi (t)Si (t) = αi (t) y (t) , i = 0, 1, 2, ...,m (2.14)

m∑
i=0

αi (t) = 1 (2.15)

A portfolio is self-financing if the changes in its value occurs only due to price changes,

and is described by

dy (t) =
m∑
i=0

vi (t) dSi (t) (2.16)

A well known result in stochastic portfolio theory (see Fernholz (2002)) it that

dy (t) = y (t)

[
α0rdt+

m∑
i=0

αi

(
µidt+

m∑
j=1

σijdWj (t)

)]
(2.17)

This is obtained by simply substituting (2.11) and (2.12) in (2.16) and making use of the

relations (2.14) and (2.15).

Equation 2.17 is equivalent to

dy (t) = y (t)

[
rdt

m∑
i=0

αi (µi − r) dt+
m∑
j=1

(
m∑
i=1

αiσij

)
dWj (t)

]
(2.18)

The portfolio value (2.18) is a controlled stochastic process with fractions of wealth

αi (t) , i = 0, 1, ...,m, as control variables. Assuming these to be constant over time, the opti-

mal growth of y(t) over the long run is achieved by maximising its log mean at some instant

of time t. Following the presentation in Luenberger (1998), we first derive the dynamics of

ln(y(t)) from (2.18) using Ito’s lemma as

d ln (y (t)) =

r +

m∑
i=1

αi (µi − r)− 1
2

m∑
j=1

(
m∑
i=1

αiσij

)2
 dt+

m∑
i=1

αi

m∑
i=1

σijdWj (t)

(2.19)
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maxE

[
ln
y (t)

y (0)

]
(2.20)

is achieved for some t (or equivalently, for every t > 0), subject to (2.19). After integrat-

ing (2.19) and taking the expectation of the result, one obtains

E

[
ln
y (t)

y (0)

]
=

r +

m∑
i=1

αi (µi − r)−
1

2

m∑
j=1

(
m∑
i=1

αiσij

)2
 t (2.21)

This shows that log-optimal fractions αi (t) , i = 0, 1, ...,m, solve the following problem:

max

r +
m∑
i=1

αi (µi − r)−
1

2

m∑
j=1

(
m∑
i=1

αiσij

)2
 (2.22)

∆ ln (y (k)) =

r +
m∑
i=1

αi (µi − r)− 1
2

m∑
j=1

(
m∑
i=1

αiσij

)2
T +

m∑
i=1

αi

m∑
i=1

σij
√
Tej (k)

(2.23)

where ej(k), j = 1, 2, ..., n, are gaussian i.i.d. random variables with zero mean and

variance one. It is clear from (2.23) that the values of αi, i = 1, 2, ..., n, such that

maxE [∆ ln (y (k))] (2.24)

or equivalently

maxE [∆ ln (y (k + 1))] (2.25)

is achieved for every k, are the log-optimal ones. This means that optimisation problems

(2.20), (2.24), and (2.25), all lead to solving (2.22).

2.4.2 The Log-Optimal Portfolio in Discrete Time

A general goal in PS problems is that of deriving an optimal growth in portfoli wealth. It

is a now well established result that when the investment is constrained to have a constant

fractions of wealth allocated across the assets, then maximising the log-mean of portfolio
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wealth is the best criterion to use for the long-term investment (see Latane (1959), Kelly

(1956), Breiman (1961) and Gyorfi et al. (2007)). To fully explore this fact and its various

implications, let us once more consider a market of m stock prices such that a market price

vector pt = (p1
t , p

2
t , ..., p

m
t ) represents the vector of prices for j = 1, 2, ...,m.

In particular we consider a stock market model that has the same characteristics as the

one investigated by amongst others, Gyorfi et al. (2007) and Algoet (1992).

We consider a market of m securities that has the same characteristics as the market

investigated by Gyorfiet al. (2006,2007,2008) and Algoet (1996). In this setting, the market

vector pt = (p1
t , p

2
t , ..., p

m
t ) represents the vector of prices for j = 1, 2, ...,m stocks. The change

in security prices during the tth trading period is represented as a stock market vector xt

= (x1
t , x

2
t , ..., x

m
t ) ∈ R+

m where xt is the vector m of non-negative numbers representing price

relatives for the trading period t. The jth component xjt ≥ 0 of xt expresses the ratio of two

consecutive closing prices of asset j such that xjt =
pjt
pjt−1

. Thus an investment of d dollars in

the jth security just before the start of the tth trading period yields dxjt dollars by the end

of the tth trading period

The investor in our model is allowed to distribute his or her capital at the beginning

of each trading period according to a portfolio vector bt = (b1
t , b

2
t , ..., b

m
t ). Here the jth

component bjt of bt denotes the proportion of the investor’s capital invested in asset j at

time t. Throughout this chapter we assume that the portfolio manager is not allowed any

short sale of securities, meaning that the portfolio vector is such that bt ≥ 0 and that the

portfolio manager is always fully invested

(
m∑
j=1

bjt = 1

)
, including reinvestment of dividends.

Let S0 denotes the investor’s initial capital. A PS algorithm is a mechanistic procedure

that produces any sequence of portfolios bn = (b1,b2, ...,bn) by specifying how to reinvest

the current wealth from trading period to trading period. Starting with an initial wealth S0,

after n trading periods, the investment strategy B achieves the wealth

Sn = S0

n∏
t=1

m∑
j=1

bjt
(
xt−1

1

)
xjt= S0 exp

{
n∑
i=1

log bᵀt
(
xt−1

1

)
xt

}
(2.26)
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this may be written as

Sn = S0 exp {nWn (B)} (2.27)

where Wn (B) denotes the average growth rate and is given by

Wn (B) =
1

n

n∑
i=1

log bᵀt
(
xt−1

1

)
xt. (2.28)

Given that the goal is to maximise Sn = Sn (B), this is equivalent to maximising the

following average growth rate

Wn (B) : b∗i
(
xi−1

1

)
= argb max E

{
log bᵀt

(
xt−1

1

)
xt | xi−1

1

}
(2.29)

It is important to notice that the PS problem in this setup is only a crude approxima-

tion of the corresponding real-life problem, as it includes no transaction costs and assumes

that money and units of securities are arbitrarily divisible. Although there are many more

assumptions that could be made in order to make the model more realistic, we nevertheless

think that this model is rich enough to form the basis for studying some of the essential

questions related to PS.

2.5 SOME BENCHMARK PORTFOLIO SELECTION ALGORITHMS

The complexity of equation (2.30) makes it very hard to find closed-form solutions for the PS

problem unless some structure is imposed a priori on the evolution of the portfolio weights.

This lack of close-form solution explains why market practitioners have adopted some rather

simplistic but intuitive PS rules in an attempt to derive optimal portfolio weights. The most

basic of PS algorithms is the so called Buy and Hold (BAHb) which buys stocks using some

constant portfolio b. This algorithm invests according to b on the first trading day, and then
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never re-invests any money after that. The proportion of capital invested in stock j at time

t is given by

b̃jt+1 =
xjtb

j
t

m∑
i=1

bitx
i
t

. (2.30)

In theory it is not diffi cult to imagine the existence of an optimal BAHb∗ strategy that

can only be achieved “in hindsight”. BAHb∗ is simply a portfolio b that assigns a weight of

1 to the “best”stock, and a weight of 0 to all others. Mathematically this is expressed as

b∗ = arg
b(.)

max retx (BAHb) (2.31)

where retx (BAHb) is simply the returns achieved by the Buy-and-Hold given the se-

quence of price relative x. When b is set such that the total available investment is initially

equally distributed amongst various assets b =
(

1
m
, 1
m
, ..., 1

m

)
the BAHb is referred to as the

uniform Buy-and-Hold or UBAHb

The BAHb strategy possesses at least two very attractive features. First, BAHb incurs

no additional transaction costs once the initial trade allocation has been placed in the market

unless the portfolio manager decides to make changes to his holdings. Second, the Buy-and-

Hold strategy does not suffer from any market impact or other stock market frictions, as

it requires no rebalancing. This, to some extent, explains why this strategy has been so

popularised amongst fund managers globally. However, the major drawback of the Buy-

and-Hold strategiy is that it performs well only when the overall market performs well.

Recent history typified by the global financial crunch of 2008 has demonstrated that severe

market corrections do occur with reasonable frequency and that when this happens a naive

Buy-and-Hold strategy can suffer precipitous losses.

An alternative approach to the static Buy-and-Hold is to dynamically change the portfolio

during the trading period. In this case the algorithm maintains a fixed portfolio b throughout

the entire trading period by appropriately (actively) re-investing money at the end of each

trading day. One example of active trading is constant rebalancing; namely, fix a portfolio b

and (re)invest capital each day according to b. We denote this constant rebalancing strategy
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by CBALb and let CBAL∗ denote the optimal (in hindsight)

CBALb∗ = arg
b(.)

max retx (CBALb) (2.32)

A major benefit of the constant rebalancing strategy lies in its ability to take advantage of

market fluctuations to achieve returns that are sometimes significantly greater than those of

BAH∗, although this might come at the expense of much higher transactions costs. CBAL∗

is always at least as good as the best stock and BAH∗, that is retx (CBAL∗b) ≥ retx (BAH∗b )

and in some real-market sequences, a constant rebalancing strategy will take advantage of

market fluctuations and significantly outperform the best stock. When b is set such that

the total available investment is initially equally distributed amongst various assets b =(
1
m
, 1
m
, ..., 1

m

)
the CBALb is referred to as the "uniform Buy-and-Hold or UCBALb”.
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3.0 MARKET ASSUMPTIONS, DATA DESCRIPTION AND

PERFORMANCE MEASUREMENTS

3.1 INTRODUCTION

Before testing our algorithms with data from real financial markets we make some simplifying

assumptions that are not found in real-markets.

3.2 ANOTHER LOOK AT THE MATHEMATICAL FORMULATION

Let S0 denotes the investor’s initial capital. Starting with an initial wealth S0, after n trading

periods, we showed in section 2.4.2 that the investment strategy B achieves the wealth

Sn = S0

n∏
t=1

m∑
j=1

bjt
(
xt−1

1

)
xjt= S0 exp

{
n∑
i=1

log bᵀt
(
xt−1

1

)
xt

}
this may be written as

Sn = S0e
nWn(B)

where Wn (B) denotes the average growth rate and is given by

Wn (B) =
1

n

n∑
i=1

log bᵀt
(
xt−1

1

)
xt.

Given that the goal is to maximise Sn = Sn (B), this is equivalent to maximising the

following average growth rate
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Wn (B) : b∗i
(
xi−1

1

)
= argb max E

{
log bᵀt

(
xt−1

1

)
xt | xi−1

1

}
The fundamental limits, determined in Algoet and Cover (1988), reveal that the so-called

log-optimum portfolio B∗ = {b∗ (.)}is the best possible choice.

If S∗n = Sn (B∗) denotes the capital achieved by a log-optimum portfolio strategy B∗,

after n trading periods, then for any other investment strategy B with capital Sn = Sn (B)

and for any stationary and ergodic process {Xn}∞−∞,

lim
n−→∞

sup
1

n
log

Sn
S∗n
≤ 0 almost surely

and

lim
n−→∞

1

n
logS∗n = W ∗almost surely

where

W ∗ = E
{

log
〈
b∗
(
X−1
−∞
)
,X0

〉}
is the maximal possible growth rate of any investment strategy. Thus (almost surely),

no investment strategy can have a faster rate of growth or cumulative annual growth rate

(CAGR) than W ∗. Of course, to determine a log-optimal portfolio, full knowledge of the

(infinitedimensional) distribution of the process is required.

3.3 MARKET ASSUMPTIONS

As in Gyorfi et al. (2008) we assume that assets are available in the desired quantities at a

given price at any trading period. We also assumed that all trades are done at the closing

price of a given day. Of course in real-markets application, investors are likely to buy at

the "bid" and sell at the "ask" resulting in a spread between the bid and the ask called the

"bid-ask spread". This is essentially the difference in price between the highest price that a

buyer is willing to pay for an asset and the lowest price for which a seller is willing to sell.
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Another assumption we make is that all the wealth achieved in the previous period is fully

invested in the next one, without any extra investment allowed. Transaction costs are taken

into account and we assume a base case round-trip trading cost per trade of 10 basis points,

to incorporate an estimate of price slippage and other costs as a single-friction coeffi cient.

Also, the set of assets involved is fixed; no new assets are allowed to be introduced in the

market. Another implicit assumption is that prices are not affected by our actions on the

market. Clearly this is not a realistic assumption since we are trading an enormous amount

of asset values, not negligible even in comparison with the full market. Finally, we adjust all

stock prices for dividend payments and stock splits.

3.4 DATA DESCRIPTION

Our empirical experiments entail performing numerical evaluations on six real datasets in

order to compare the performance of our proposed algorithms with some existing benchmark

methods. The first four datasets summarised in Table 3.1 are obtained from Bloomberg and

cover the period of January 2000 to December 2013. Bloomberg stock prices are adjusted

for stock splits, dividends and are given in local currencies. To our knowledge this datasets

has never been tested and possesses the advantage that it covers the subprime crisis period

of 2007 to 2009. This datasets covers about 4508 trading days that exclude weekends and

public holidays for the respective countries.

The first datasets is the TOP40 Index which consists of the largest 42 stocks by market

capitalisation listed on the Johannesburg Stock Exchange in South Africa. This datasets

contains price relatives of 4508 trading days, ranging from January 2000 to October 2013

and is by far the most liquid index available to the South African investor. The second

datasets, FTSE100 Index, is a share index of the 100 companies listed on the London Stock

Exchange with the highest market capitalisation. It is one of the most widely used stock

indices globally and is seen as a gauge of business prosperity in the United Kingdom. The

third datasets is that of the Toronto Stock Exchange referred to as the S&P/TSE 60 or simply

the TSE60 Index. This index represents the stock market index of 60 large companies listed
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on the Toronto Stock Exchange and it currently exposes the investors to about 10 industry

sectors. The fourth datasets is derived from the NASDAQ stock exchange. The NASDAQ is

a stock market index of 100 of the largest non-financial companies listed on the NASDAQ.

It is a modified capitalisation-weighted index. The companies’weights in the index are

based on their market capitalisations, with certain rules capping the influence of the largest

components. This index does not contain financial companies, and could include companies

incorporated outside the United States.

Table 3.1: Data Description

Data Set Region Time Frame Trade Days Stocks

TOP40 SA JAN-2000 - OCT-2013 4508 42

FTSE100 UK JAN-2000 - OCT-2013 4508 100

TSE60 CANADA JAN-2000 - OCT-2013 4508 60

NASDAQ US JAN-2000 - OCT-2013 4508 100

NYSE(O) US JUL-1962 - DEC-1984 5651 36

NYSE(N) US JAN-1985 - JUN-2009 6179 23

The last two datasets, NYSE (O) and NYSE (N), are from the New York Stock Exchange

in the US. These NYSE datasets have been widely analyzed in many previous studies (Cover

(1991); Helmbold et al. (1998); Borodin et al. (2004); Agarwal et al. (2006); Gyorfi et

al. (2006; 2008)) and recently by Li et al (2012). Although not very useful for practical

applications, these datasets provide a benchmark against which one can compare historical

simulation and testing of empirical data across many previously published state-of-the-art

Online PS strategies. The NYSE (O) for example contains 5651 daily price relatives of 36

stocks in the New York Stock Exchange (NYSE) for a 22-year period from July 3rd 1962 to

December 31st 1984. The NYSE(N) datasets is the one used by Li et al. (2012) that covers

the period from January 1st 1985 to June 30th 2009 and contains 6179 trading days and 23

stocks.
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3.5 PERFORMANCE MEASURES AND STRATEGY EVALUATION

This section provides a review of the methods for measuring portfolio performance and the

evidence on the performance of professionally managed investment portfolios. While the

literature goes back to before the 1960s, recent years have witnessed an explosion of new

methods for performance evaluation and new evidence on the subject. We think that several

forces have contributed to this renaissance. Early studies frequently attempt to distinguish

security selection versus market-timing abilities on the part of fund managers. Timing ability

is the ability to use superior information about the future realisations of common factors

that affect overall market returns. A PS strategy with timing ability may alter the asset

allocation between available stock prices just before significant moves. Selectivity refers to

the use of security-specific information, such as the ability to pick winning stocks or bonds

within an asset class.

The main idea in most of the classical measures of investment performance is quite simple.

The measures essentially compare the return of a managed portfolio over some evaluation

period to the return of a benchmark portfolio. The benchmark portfolio should represent

a feasible investment alternative to the managed portfolio being evaluated. If the objective

is to evaluate the investment ability of the PS strategy, as has typically been the case,

the benchmark should represent an investment alternative that is equivalent in all return-

relevant aspects to the managed portfolio being evaluated, except that it should not reflect

the investment ability of the manager. With this in mind, we propose the following simple

yet effective measures of performance to assess the proposed PS algorithms.

3.5.1 Jensen’s Alpha

Alpha is perhaps the most well-known of the classical measures of investment performance.

Using the market portfolio of the CAPM to form the market benchmark, Jensen (1968)

advocated the original version, or Jensen’s alpha. The most convenient way to define Jensen’s
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alphas is as the intercept, αJ , in the following time series regression:

rt = αJ + βrm,t + εt (3.1)

where rt is the strategy returns at time t and rm,t represents the market returns at time

t. αJ , β and εt represent the estimated intercept, the estimated slope of the regression and

the error term in that order.

This version of Jensen’s alpha remains the most popular performance measures in acad-

emic studies. However, the measure has some disadvantages. For example, alpha does not

control for nonsystematic sources of risk that could matter to investors (e.g., Fama, 1972).

3.5.2 Treynor—Mazuy Market-Timing Model

Classical models of market-timing use convexity in the relation between the strategy’s return

and the “market”return to indicate timing ability. In these models the manager observes a

private signal about the future performance of the market and adjusts the market exposure

or beta of the portfolio at the beginning of the period. Successful timing implies higher betas

when the market subsequently goes up, or lower betas when it goes down, leading to the

convex relation. The Treynor—Mazuy (1966) market-timing model is a quadratic regression:

rt = α + βrm,t + γr2
m,t + εt (3.2)

where as usual rt is the strategy returns at time t and rm,t represents the market returns

at time t. In this equation α represent the intercept, β shows the average sensitivity of the

strategy returns to the movements in the market returns γ is the convexity estimate. εt is

the residual term in this regression that is assumed to be white noise.

Treynor and Mazuy (1966) argue that γ > 0 indicates market-timing ability. When the

market is up the strategy will be up by a disproportionate amount and when the market is

down, the fund will be down by a lesser amount. Admati et al. (1986) formalised the model,

showing how it can be derived from a timer’s optimal portfolio weight, assuming normal

distributions and managers with exponential utility functions. These authors show that the
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timing coeffi cient γ is proportional to the product of the manager’s risk tolerance and the

precision of the signal about the future market returns.

3.5.3 Asymmetric Beta

A similar and widely used risk management tool that describes the risk of our strategies

with respect to the risk of the overall market is called Asymmetric Beta. Asymmetric Beta

measures the slope of the regression (the co-movement) between the market index and the

strategy for a given market mode. We define the bull and bear betas by the following

equations:

βbull =
Cov (r, rm)

V ar (rm)
|rm ≥ 0 (3.3)

βbear =
Cov (r, rm)

V ar (rm)
|rm < 0 (3.4)

The intuition behind the bull and bear betas is straightforward. In bull markets, the

strategy returns should go up faster than the market and in bear markets, they should fall

less than the market, not at all, or even go up in price. For a strategy with good market-

timing abilities we would expect βbull � βbear. It should be expected that measures of βbull

and βbear will give very similar results to those of Treynor—Mazuy market-timing model.

3.5.4 Total Portfolio Cumulative Wealth

Another criterion we use to evaluate the performance of our proposed strategy is the total

portfolio cumulative wealth, Sn, achieved by the strategy until the end of the whole trading

period n. Starting from a wealth of S0 we can calculate Sn as:

Sn =

n

S0

∏
i=1

(1 + ri) (3.5)

where rt represents the returns achieved by the portfolio on trading period t. Of course

in a risk-neutral world the portfolio manager will aim at maximising the terminal wealth as

this is directly linked to the investor’s utility.
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3.5.5 Annualised Percentage Yield

An equivalent criterion is annualised percentage yield (AY) which is defined as the effective

annual rate of return, taking into account the effect of compounding interest. The AY can

be calculated as

AY =

(
1 +

Sn
S0

)(252/n)

− 1 (3.6)

In this expression we assume that there are 252 trading days in a calendar year. AY

measures the average wealth increment that one strategy could achieve compounded in a

year. Typically, the higher the value of portfolio cumulative wealth or annualised percentage

yield, the more preferable the trading strategy is.

3.5.6 Sharpe Ratio

One important way to evaluate risk-adjusted returns in a portfolio is simply to calculate the

ratio between the annualised percentage yield (AY ) after subtracting the risk free rate rf

and the annualised standard deviation of daily returns to measure the volatility risk. This

is generally referred to as the Sharpe Ratio (SR) and measures the risk-adjusted returns

achieved by a strategy. We calculate the SR as

SR =
AY

STD
where STD =

√√√√ n∑
i=1

(ri − µ)2 (252) (3.7)

Higher Sharpe Ratios indicate better risk-adjusted returns performance of a trading strat-

egy. The Sharpe Ratio may also be inappropriate when returns are highly nonnormal. For

example, Leland (1999) shows that it is important to consider higher moments of the dis-

tributions if the performance measure is to accurately capture an investor’s utility function.

Furthermore, if the returns distributions are highly skewed, such as when options may be

traded, the Sharpe Ratio can be misleading
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3.5.7 Maximum Draw Down (MDD)

Another important measure of the risk embedded in the PS algorithm is the maximum

cumulative loss from a market peak to the following trough, often called the "maximum

drawdown (MDD)". The MDD is a measure of how sustained one’s losses can be. Large

drawdowns usually lead to fund redemptions, and so the MDD is the risk measure of choice

for many money management professionals and a reasonably low MDD is critical to the

success of any fund. Formally, let Sn denote the maximum cumulative wealth achieved by a

trading strategy from the beginning to time n. The Maximum Draw Down (MDD) at any

time n, is defined as

MDDn = max

[
0, max

1≤i≤n

(
Si
Sn
− 1

)]
(3.8)

This is an excellent way to measure the downside risk of different strategies.

3.5.8 Percentage of Profitable Trades

We define three other measures of risk that give an indication of how our strategy performs

in various market conditions. The first one is the percentage of time a strategy actually

generates a profit irrespective of the general market movements. We call this performance

measure PP and calculate it from the indicator function I as follows:

PP =

∑n

i=1
Iri>0

n
(3.9)

Where I is an indicator function taking the value of 1 when the strategy returns was

positive and zero otherwise. In a similar way we can calculate the percentage of time the

strategy is profitable in rising markets (PPUM) and in falling markets (PPDM) as follows:

PPUM =

n∑
i=1

I{rSi>0 and rMi>0}

n∑
i=1

IrMi>0

and PPDM =

n∑
i=1

I{rSi>0 and rMi<0}

n∑
i=1

IrMi<0

(3.10)
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where rSt is the strategy returns and rMt is the market returns in period t. It can be

easily demonstrated that for the market index PPUM = 1 and PPDM = 0. These two

performance measures are particularly important in so far as they show how the strategy

behaves in both bull and bear markets.

3.6 COMBINING STRATEGIES

Online learning algorithms for PS problems in general have few critical parameters that

need to be set/estimated by the portfolio manager. Unfortunately, the performance of these

algorithms depends significantly on the optimal choice of these parameters and this choice

is rather a diffi cult one and cannot be done with the benefit of hindsight. In traditional

quantitative modelling, the optimal choice is generally performed via the in sample-training

and out-of-sample testing paradigm. Of course there is nothing special about this traditional

optimal parameter choice procedure, as nothing guarantees that parameters that are optimal

in the training sample will be so in the more important test sample. Perhaps, a better

procedure for optimal parameter choice should be done in a dynamic fashion and works as

follows.

let us call St (Hw) the capital accumulated after tth trading period using the expert

Hw with initial capital S0 = 1. We refer to each wealth St (Hw) as an expert where w

represents the parameter or set of parameters that needs to be selected. In online trading

we can try to learn the parameter or combination of parameters that will generate the

maximum wealth growth. But similar to individual stocks, the various strategies, also called

experts, induce a rather volatile set of terminal wealth and standard expert combination

algorithms (Cesa-Bianchi et al., 1997) tend to fail. In this thesis, we will adaptively learn

and invest in some weighted average of all the expert algorithms indexed by the parameter or

combination of parameter choice. More specifically, we will uniformly distribute the available

capital amongst all the experts at the beginning of the trading experiment and will never

rebalance after the first period. This strategy reduces to a simple Buy-and-Hold of all the

chosen strategies. Therefore, we form a mixture of all experts using a positive probability
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distribution qw on the set of all possible parameters w of positive integers (see Gyorfi et al.

(2004) ). The investment strategy simply weights these experts Hw according to their past

performances and the qw such that after the tth trading period the investor wealth becomes:

St =
∑
w

qwSt (Hw) (3.11)

where St (Hw) is the capital accumulated after tth trading period using the expert Hw

with initial capital S0 = 1. We then form our final portfolio by weighting all expert portfolio

using the following

b
(
X t−1

1

)
=

∑
w qwSt−1 (Hw) bw

(
xt−1

1

)∑
w qwSt−1 (Hw)

(3.12)
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Table 3.2 presents a typical algorithm for combining experts when there is only one

parameter to optimise and where ALG stands for algorithm under consideration. Extension

to multiple parameter choice is very trivial

Table 3.2 Uniform Expert Combination ALG (X, w)

Input

Xn
1 : matrix of price relative

W : maximum allowed parameter value

Output

b: matrix of portfolio weights

Initialise b0 =
(

1
m
, ..., 1

m

)
: uniform distribution of weights vector

for t = 1, 2, ...n do

1 for w = 1, 2, ...,W do

2 find the portfolio weight vector bt = ALG(Xt
1, w)

3 end for

4 combine the expert’s portfoliios

bt =
∑
w q(w)st−1(Hw)bt(w)∑

w q(w)st−1(Hw)

5 update the portfolio wealth

St = St−1 × (bt.xt)

6 update the experts wealth

st (w) = st−1 (w)× (bt (w) .xt)

end for

3.7 TRADING COSTS AND MARKET IMPACTS

Because our algorithms are likely to generate a large number of daily transactions and because

transactions costs are very costly, we need to be concerned about the number of commissions

this portfolio will incur in actual market trading. Although these costs have been significantly

reduced in recent years due to technological advances and improved market liquidity (see
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Table 3.3), transaction costs remain an issue to be carefully analyzed if algorithms are to be

trusted for real-market applications. In this study we work on the assumption that there are

charges on all transactions equal to a fixed percentage of the amount transacted. We adopt

the proportional transaction cost model following Blum and Kalai (1999) and Borodin et al.

(2004), that is, rebalancing the portfolio on any given day incurs transaction costs for both

buy and sell orders.

Table 3.3 Broker’s Commission Estimates

OptionsHouse $4.75 Flat-Rate Stock Trades

E*Trade $9.99

TD Ameritrade Straightforward pricing with $9.99 for Internet equity trades

Interactive Brokers Stocks & ETFs - $0.0005 - $0.0035 per share. See site for details.

LOYALS3 $0 Online Stock Trades and IPO Investments

Scottrade $7.00 Online Stock Trades

Trade Station $0.006 per share or $6.99 flat

Source: http://www.nasdaq.com/investing/online-brokers/

At the beginning of the tth trading day, the portfolio manager rebalances the portfolio

from the previous closing price adjusted portfolio bt−1 to a new portfolio bt. Specifically, we

consider a transaction cost rate c ∈ (0, 1), so the transaction cost will be charged according

to

c

2

m∑
k=1

∣∣∣̃bkt − bkt ∣∣∣ (3.13)

Thus, with a transaction cost rate the total wealth achieved by the strategy becomes

ScT = S0

T∏
t=1

[
(bt,xt)

(
1− c

2

m∑
k=1

∣∣∣̃bkt − bkt ∣∣∣
)]

(3.14)
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In this thesis, our base-case transaction costs are assumed to cost a round-trip trading of

10 basis points per trade. This is equivalent to setting c = 0.1 in Equation 3.14. We assume

that 10 basis points per trade is enough to incorporate not only transaction costs but also

compensate our estimate of price slippage and other costs like market frictions. To get a

deeper understanding of the impact of transactions costs we provide simulation results that

aim at determining the levels at which the net-of-cost strategy performance equal or beat

both the market benchmark and the best stock.

All our algorithms also assume that all portfolio adjustments are implemented using the

quoted prices and that all transactions are implemented simultaneously using these prices.

This is of course an oversimplification of what really happens in actual trading where a time

delay is needed between updating of portfolio weights and actual trading. Although recent

technological advances have made computerised systems a natural candidate for fast order

execution, there is still no guarantee that market orders will be implemented instantly unless

the portfolio manager is happy to cross the bid-ask spread at every round of trading. These

trading frictions will necessarily generate discrepancies between the model returns and those

realised in actual trading.

An additional caveat is our assumption that all trades could be implemented using the

closing price. While in principle there is nothing special about the closing price (i.e. our

algorithms can trade at any time during the trading day) practical consideration related to

datasets gathering and availability dictated the use of closing prices. Our algorithms assume

that all portfolio adjustments are implemented using the quoted prices they receive as in-

puts. This means that all transactions are implemented simultaneously using the quoted

prices. With current online brokers a computerised system can issue all transaction or-

ders almost instantly but there is no guarantee that they will be all implemented instantly.

This trading “friction”will necessarily generate discrepancies between the input prices and

implementation prices.

A related problem that one must face when actually trading is the difference between

bid and ask prices. These bid-ask spreads (and the availability of stocks for both buying and

selling) are functions of stock liquidity and are typically small for large market capitalisation

stocks. We consider here only very large market cap stocks.
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3.8 CONCLUSION

Any report of abnormal returns using historical markets should be suspected of “data snoop-

ing”. In particular, all of our historical datasets are conditioned on the fact that all stocks

were traded every day and there were no bankrupcies or stocks that became virtually worth-

less in any of these datasets. Furthermore, when a datasets is excessively mined by testing

many strategies there is a substantial chance that one of the strategies will be successful by

simple over-fitting. To mitigate the risk of data snooping we calibrate our models using the

NYSE(O) data and use the same parameters for all other markets.
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4.0 MACHINE-LEARNING ALGORITHMS FOR PORTFOLIO

SELECTION: AN EMPIRICAL SURVEY

4.1 INTRODUCTION

In the last ten years or so, many machine-learning-inspired sequential PS algorithms have

been proposed in the litterature. These proposed algorithms have demonstrated that sequen-

tial portfolio rebalancing strategies can generate substantial wealth way above what could

be achieved by mere luck. Even more impressive is the fact that some of these algorithms

have shown that the wealth achieved by some systmatic rebalancing strategies could be guar-

anteed a certain minimum given a suffi ciently large amount of trading time. Although the

rigourous mathematical foundations that underpin these machine-learning algorithms are

now widely accepted, their finite sample properties are an ongoing challenge.

Several approaches to Online PS have been proposed in the machine-learning literature.

Cover (1991), for example, proposed the Universal Portfolios (UP) strategy that weights

all constant rebalanced portfolios, referred to as "experts", by their empirical probability

distribution generated from the performance of each expert. The regret achieved by Cover’s

UP is O (m log n), where m denotes the number of stocks and n denotes the number of

trading days. However, the implementation cost of the UP algorithm has been shown to

be exponential in the number of stocks and thus restricts the number of assets used in

real-market experiments. Although Kalai and Vempala (2002) presented a time-effi cient

implementation of Cover’s UP based on non-uniform random walks, the performance of the

UP algorithm has not been satisfactory enough in historical simulations.

The Exponential Gradient strategy (EG) of Helmbold et al. (1996, 1997) for Online PS

proposes a PS algorithm using multiplicative updates. To achieve this, the EG strategy tries
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to maximise the expected logarithmic portfolio daily return (approximated using the last

price relative) and minimise the deviation between next portfolio and last portfolio. One

straightforward interpretation of the EG algorithm is that it tends to track the stock with

the best performance in the last period but keep the new portfolio close to the previous

portfolio weights.

Borodin et al. (2004) propose a non-universal but empirically robust portfolio strat-

egy named Anti-Correlation (Anticor or simply AC). The Anticor strategy simply takes

advantage of the statistical properties of mean-reverting stock prices where the underlying

motivation is to bet on the consistency of positive lagged cross-correlation and negative au-

tocorrelation. Although they do not provide any theoretical guarantee, empirical results

showed that Anticor can outperform most existing state-of-the-art strategies in real-market

historical data.

Györfi et al. (2006) introduced a framework of Nonparametric Kernel-based learning

strategies for PS based on nonparametric prediction techniques of Gyorfiand Schäfer (2003).

Their algorithm first identifies a list of similar historical price relative sequences whose Euclid-

ean distance with the recent market window is smaller than a threshold and then optimises

the portfolio with respect to the list of observed realised returns following instances of simi-

larity. Following the same line, the Nonparametric Nearest Neighbor learning (NN) strategy

proposed in Gyorfi et al. (2008) aims to search for the Nearest Neighbors in historical price

relative sequences rather than search price relatives within a specified Euclidean ball.

Recently, Li et al. (2012, 2013) proposed the Confidence Weighted Mean Reversion

(CWMR) and the Passive Aggressive Mean Reversion (PAMR) strategies. These algorithms

actively exploit the mean reversion property and the second-order information of a portfolio.

These author’s algorithms have been empirically shown to be robust trading strategies as

they outperform many earlier state-of-the-art algorithms in historical simulations.

In general, the machine-learning literature regarding PS strategies distinguishes three

main categories of strategies. One of the most promising category of algorithms is the so

called "reversal" strategies. These strategies tend to buy stocks as they fall, and sell stocks

when they rise, giving rise to concave payoff curves. Concave strategies do very poorly in

strong, down or up market, but tend to do well in oscillating markets. Another promising
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category is referred to as "momentum" strategies, which buy stocks when they rise or sell

stocks when they fall. Naturally, these strategies do well in trending, down or up markets.

Finally, the third category is capable of capturing both momentum and reversal patterns in

the market.

This chapter provides an empirical survey of some of the more promising online PS tech-

niques. The algorithms surveyed have all demonstrated excellent finite sample performance

using older datasets (see Table 1.2). Our main aim is to provide a timely survey, using more

recent datasets, to assess the acclaimed robustness of some of the earlier published works in

both machine-learning and data mining fields. In doing so we will highlight the main limi-

tations presented by these so-called state-of-the-art PS algorithms and create the platform

against which we will introduce our own, newly developed Online PS algorithms.

4.2 KERNEL-BASED PORTFOLIO SELECTION ALGORITHM (GYORFI

ET AL. (2006))

4.2.1 Introduction

Gyorfi et al. (2006) proposed a nonparametric Kernel-based sequential investment strat-

egy for PS problems. Based on the nonparametric prediction of individual sequences of

Gyorfi and Schafer (2003), the Kernel-based algorithm proves that there exist completely

nonparametric investment strategies that can effectively find complex dependences in the

past data and use this information to produce a rapid growth of the investor’s capital. The

mechanics of the Kernel-based nonparametric sequential investment strategy consist of three

basic steps. The algorithm first identifies a list of similar historical price relative sequences

whose Euclidean distances to the recent market windows are smaller than a threshold. In

the second step, the algorithm constructs a vector of portfolio weights that maximises the

returns following observation of similar market sequences. Finally, the algorithm combines

the various portfolio "experts" according to the idea of UBAH. Section 4.2.2, 4.2.3 and 4.2.4

present a detailed analysis of these steps.
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4.2.2 Pattern Matching for Kernel-Based Algorithm

To better understand the Kernel pattern matching algorithm, let us assume that we are

given a parameter w, which represents a fixed window length and an integer called l (l

will be defined below). Let us further assume that x1,x2, ...are realisations of the random

vectors X1,X2, ...drawn from the vector of stationary and ergodic process {Xt}+∞
−∞. We call

xt−w+1
t ∈ Rm the most recent window of price relatives and xi−w+1

i−1 ∈ Rw×m, i = 1, 2, ...n

any preceding vector of price relative of the same sise as the most recent one To determine

the weight portfolio vector on the tth trading period, the portfolio manager iterates all

historical sequences of price relatives xi−w+1
i−1 of sise w ×m and determines instances where

xi−w+1
i−1 is similar in the Euclidian sense to the most recent window fo price relatives xt−w+1

t .

Mathematically, the nonparametric Kernel-based sample selection of Gyorfi et al. (2006)

identifies the similarity set by comparing two market windows via Euclidean distance; that

is:

J
{w,l}
t =

{
w + 1 ≤ i ≤ t− 1 :

∥∥xt−w+1
t − xi−w+1

i

∥∥ ≤ r
}

(4.1)

where in the general case r = G (c, l) , c ∈ R and l is an integer. In practice, Gyorfi et

al.(2006) select r such that r = c
l
,where l = 1, 2, ...L

4.2.3 Portfolio Optimisation for Kernel-Based Algorithms

Given fixed positive integers w, l, and all locations of historical matches, the Kernel-based

algorithm constructs a fixed portfolio vector to optimise the returns for the trading periods

following each matching period in the following way:

b(w,l)
(
X1
t−1

)
= arg max

b∈∆d

∏
i∈J
{w,l}
t

〈b,xi〉 (4.2)

If the product in equation (4.2) is void the Kernel algorithm sets b simply as b =(
1
m
, 1
m
, ..., 1

m

)
. This nonparametric Kernel-based sequential investment strategy has been

shown to guarantee an optimal asymptotic growth rate of capital for all stationary and
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ergodic markets by effectively exploiting hidden complicated dependences of asset prices on

the past evolution of the market sequences.

In practice on can assume that the log-optimal portfolio designed to the matches is a

convex programming problem, which can be simplified for semi log-optimal portfolio studied

in Gyorfi (2007), where one has a quadratic programming problem.

4.2.4 Parameter Choice and Combining Portfolio of Experts

The Kernel-based sequential PS algorithm requires two important parameters (w, l) that

need to be set by the portfolio manager before any trading takes place. In most instances

the performance of the algorithm depends on the optimal choice of these parameters and

fluctuates significantly, depending on which pairs of parameter one chooses. Because it is

impossible to know before hand what parameter set will generate optimal growth in wealth,

one reasonable approach is to uniformally allocate the initial capital amongst all the various

experts generated by each combination of (w, l) on the first day and never rebalance after-

ward. This uniform Buy-and-Hold strategy of all the experts allows Gyorfi et al. (2006) to

form a mixture of all experts using a positive probability distribution qw,l on the set of all pa-

rameter sets {(w, l) : w = 1, 2, ...,W = 10 and l = 1, 2, ..., L = 5} of positive integers. The

investment strategy simply weights these experts Hw,l according to their past performances

and the qw,l such that after the tth trading period the investor wealth becomes

St =
∑
w,l

qw,lSt
(
Hw,l

)
(4.3)

where St
(
Hw,l

)
is the capital accumulated after the tth trading period using the expert

Hw,l with initial capital S0 = 1. Gyorfiet al. (2006) then form the final portfolio by weighting

all expert portfolio using the following

b
(
X t−1

1

)
=

∑
w,l qw,lSt−1

(
Hw,l

)
hw,l

(
xt−1

1

)∑
w,l qw,lSt−1 (Hw,l)

(4.4)

There are, of course, many alternative ways to combine these expert portfolios. Algo-

rithms such as the Exponential Gradient (Helmbold et al. (1998)) or the Switching Portfolios

(Singer et al. (2003)) could be ideal candidates as they effi ciently allocate assets away from
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poor performing experts into winning experts. Although it has been shown that the wealth

generated by these algorithms is very competitive relative to the best constantly rebalanced

portfolio (BCRP), these alternative methods have the potential to add much more trans-

action cots than necessary. Combining portfolios of experts in this thesis will therefore be

done according to the methodology proposed by Gyorfi et al. (2006), as it has the major

advantage that no further parameter tuning is required.
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Table 4.2.1 shows a pseudo code implementation of the Kernel-based PS algorithm.

Table 4.2.1: KERNEL (X,w, l)

Inputs l : partitioning parameter

w : maximum window sise

b0 : initial portfolio weights

c: fixed constant parameter

Output bt : expert’s portfolio weights

for t = 1, 2, ..., n do

1 receive price relative xt

2 if t < w + 1 then

3 bt =
(

1
m
, 1
m
, ... 1

m

)
4 end if

5 for i = w + 1 to t− 1 do

6 if
∥∥xi−1

i−w − xt−1
t−w
∥∥ ≤ c

l
then

7 J
{w,l}
t = J

{w,l}
t ∪ {i}

8 end if

9 end for

10 if Nt == ∅ then

11 bt =
(

1
m
, 1
m
, ... 1

m

)
12 else

13 b
(w,l)
t = arg max

b∈∆d

∏
i∈J
{w,l}
t

〈b,xi〉

14 Combine experts using Equation 4.4

end
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4.2.5 Empirical Results

This section presents numerical results obtained by applying the Kernel-based algorithm

to six financial market datasets described in Chapter 3. The back-testing experiments in

this thesis will consist of running the signals through historical data, with the estimation of

parameters, signal evaluations and portfolio re-balancing performed daily. For the purpose of

our simulatoin we use the same settings as in Gyorfiet al. (2006). We set the L = 10,W = 5

and c = 0.1.

4.2.5.1 Analysis of the Kernel Cumulative Wealth The first experiment evaluates

the total wealth achieved by the Kernel-based learning-to-trade algorithm including a 10

basis points transaction cost.

Figure 4.2.1: Cumulative Wealth of the Kernel-based PS algorithm
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Figure 4.2.1 summarises the cumulative wealth achieved by the Kernel-based algorithms

on the six market datasets. The market index is calculated as an equally weighted Buy-and-

Hold portfolio on all stock available for that particular market.
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There are important observations that one can draw from Figure 4.2.1. Not only does

the Kernel-based PS algorithm demonstrate very good performance on old data (NYSE(O),

NYSE(N)), the performance seems to be carrying over to recent and previously untested

datasets. For example, on the South African TOP40 index datasets after trading for 15

years, the total wealth achieved by the Kernel strategy impressively increases from $1 to

almost $100, which is much higher than the $13.6 achieved by the market index in the same

trading period. Although similar impressive results are achieved for all data sets, it is also

evident that the growth in portfolio wealth is not as spectacular as reported by the authors

using older data sets. One simple explanation could be that stock markets globally are far

more effi cient than they were just a couple of year ago implying that the Kernel strategy is

less effective at exploiting equity market mispricings in recent data.

An alternative way to assess the performance of the Kernel-based PS strategy is to look

at the Compound Annual Growth Rate (CAGR) over the full sample. The model generates

a very impressive CAGR of around 40% and 49% using the TOP40 and the TSE60 datasets.

These impressive results compare very favourably with a CAGR of 21% and 18% for TOP40

and TSE60 market indices respectively. Similar wealth growth can be observed from all

other datasets including the NASDAQ, the NYSE(O) and the NYSE(N).

In addition to the final cumulative wealth growth over the full sample, we are also in-

terested in examining how the cumulative wealth changes over different trading sub-periods.

Table 4.2.2 shows the sub-periods CAGR generated by the proposed Kernel-based PS algo-

rithm. In Table 4.2.2, "full" simply means the cumulative annual growth rate of returns over

the full sample, while "1Yr, 2Yrs,..., 10Yrs" represent the cumulative returns generated by

the Kernel-based (simply called ALG) PS algorithm over the last year, last 2 years, etc... in

our trading sample
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Table 4.2.2: Kernel CAGR over different trading periods

FTSE100 TOP40 TSE60 NASDAQ NYSE(N) NYSE(O)

ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT

Full 0.29 0.13 0.40 0.21 0.49 0.18 0.34 0.19 0.30 0.15 1.26 0.16

1Yr 0.19 0.22 0.44 0.19 -0.06 0.12 0.84 0.39 0.67 0.33 0.57 -0.01

2Yrs 0.14 0.16 0.65 0.22 -0.04 0.09 0.18 0.21 0.08 -0.03 0.87 0.15

3Yrs 0.24 0.13 0.48 0.18 0.05 0.07 0.21 0.20 0.20 -0.07 1.59 0.23

4Yrs 0.33 0.17 0.43 0.20 0.08 0.09 0.23 0.22 0.36 0.02 1.56 0.19

5Yrs 0.39 0.24 0.46 0.23 0.32 0.16 0.27 0.30 0.41 0.05 1.66 0.20

7Yrs 0.28 0.13 0.50 0.18 0.27 0.10 0.16 0.17 0.43 0.08 1.83 0.20

10Yrs 0.34 0.16 0.48 0.24 0.47 0.15 0.24 0.19 0.41 0.07 2.67 0.19

15Yrs 0.30 0.14 0.45 0.23 0.58 0.17 0.29 0.20 0.34 0.07 2.49 0.13

From the results, we can see that the proposed Kernel strategy consistently surpasses

its respective benchmarks on all datasets, except the TSE60 in Canada. On the FTSE100,

the Kernel-based strategy outperformed the market index on 12 of the 14 test samples. The

performance of the Kernel-based PS algorithm has been impressive in recent times, with a

44% gain in 2013 and a 65% gain in 2012, using the TOP40 data set in South Africa. In the

case of the NASDAQ, for example, the Kernel-based algorithm achieved a CAGR of 84%

in 2013, which is significantly higher than the 39% achieved by the market index. This is

very impressive indeed, given that this is the index of the biggest 100 companies by market

capitalisation listed on the NASDAQ.

4.2.5.2 Kernel Strategy Risk Analysis We now evaluate the Kernel-based algorithm

against various risk measures that could shed more light on the performance of the algorithm.

These measures of risk include returns volatility, σ, maximum drawdown, MDD, and the risk-

adjusted return referred to as the annualised Sharpe Ratio, SR.

In Table 4.2.3, σ represents the annualised standard deviation of strategy returns. α

stands for the Jensen Alpha; β measures the sensitivity of the strategy returns relative to

the market benchmark excess returns; λ is a measure of the strategy market-timing ability;
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β ↑ is the sensitivity of the strategy in a rising market; and β ↓ represents the same measure

in a falling market. SR indicates the strategy Sharpe Ratio while MDD respresents the

strategy maximum drawdown. PP is the percentage of time the strategy generates positive

returns, PP↑ stands for the percentage of times the strategy generates positive returns in a

rising market and PP↓ is the percentage of times the strategy generates positive returns in

a falling market. ALG in Table 4.2.3 simply represents the kernel-based PS strategy. These

measures will be used throughout this thesis in similar tables.

Table 4.2.3: Risk Statistics of the Kernel-Based PS Algorithm

FTSE100 TOP40 TSE60 NASDAQ NYSE(N) NYSE(O)

ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT

σ 0.23 0.18 0.22 0.16 0.37 0.17 0.36 0.23 0.23 0.19 0.36 0.13

α 0.06 0.00 0.08 0.00 0.09 0.00 0.10 0.00 0.05 0.00 0.29 0.00

β 1.01 1.00 0.79 1.00 1.29 1.00 0.83 1.00 0.94 1.00 1.24 1.00

γ -0.51 0.00 0.22 0.00 0.50 0.00 -1.26 0.00 0.25 0.00 3.07 0.00

β ↑ 0.97 1.00 0.78 1.00 1.11 1.00 0.72 1.00 0.96 1.00 1.14 1.00

β ↓ 0.99 1.00 0.79 1.00 1.09 1.00 0.79 1.00 0.93 1.00 1.13 1.00

SR 0.95 0.40 1.34 0.82 1.09 0.62 0.79 0.56 0.92 0.44 2.24 0.64

MDD -0.41 -0.40 -0.25 -0.30 -0.51 -0.41 -0.56 -0.47 -0.63 -0.64 -0.61 -0.37

PP 0.54 0.55 0.55 0.56 0.54 0.56 0.53 0.54 0.54 0.55 0.52 0.53

PP↑ 0.81 1.00 0.77 1.00 0.75 1.00 0.74 1.00 0.78 1.00 0.72 1.00

PP↓ 0.23 0.00 0.28 0.00 0.27 0.00 0.29 0.00 0.25 0.00 0.30 0.00

Table 4.2.3 shows some risk evaluation results on the six datasets. As shown in this

table the Kernel-based strategy has a volatility of returns (as measure by the annualised

standard deviation of daily returns) that is higher than the one achieved by its respective

benchmarks. However, when returns are adjusted by volatility, we see that the Sharpe Ratios

generated by the Kernel-based algorithms are significantly higher than the respective stock

market indices. This is an indication that the Kernel-based strategy generates much better

risk adjusted returns.
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Furthermore, we observe that the maximum drawdown on the six stock datasets.compares

very well with that of their respective benchmarks except for the NYSE(O), which is twice

as high as that of the benchmark. Regarding the market-timing ability of the Kernel-based

sequential investment strategy we observe that the bull and bear market betas are not dis-

similar on all datasets. This seems to suggests that the Kernel strategy portfolio allocation

weights does anticipate very well subsequent market directions. However, please note that

the γ coeffi cient for the Trenor-Mazuy market timing regression is negative for the FTSE100

and the NASDAQ data sets.

4.2.6 Conclusion

The cumulative wealth growth results show that the Kernel-based PS algorithm achieves very

impressive cumulative returns on all datasets. Although it is commonly argued in finance

that no real financial instrument can guarantee a high return without risk, we believe that the

risk taken while investing with the Kernel-based PS model is fully justified by the returns

that the model generates. These encouraging results show that the Kernel-base portfolio

selecton algorithm is able to achieve a very good trade-off between return and risk. We

therefore concur with Gyorfi et al. (2006) that the Kernel-based sequential PS algorithm is

indeed a very robust investment strategy that can generate reasonable growth in portfolio

wealth without any knowledge about the probability distribution of stock prices. However,

we caution that the performance of the Kernel-based PS strategy has not been of the same

magnitude as the one reported by Gyorfi et al. (2006) suggesting that stock markets are

more effi cient in recent times than what the original paper seems to have suggested.

4.3 NEAREST-NEIGHBOUR ALGORITHM (GYORFI ET AL. (2008))

4.3.1 Introduction

Gyorfiet al. (2008) proposed another universal, nonparametric Nearest Neighbor (NN)-based

sequential investment strategy that has similar constructs as the Kernel-based algorithm
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discussed in the previous section. As in the case of the Kernel-based sequential PS algorithm,

the mechanics of the NN-based nonparametric investment algorithm consist of three basic

steps. First, the algorithm searches for the historical price relatives whose preceding market

windows are within the l Nearest Neighbors of the latest market window in terms of Euclidean

distance. In the second step the algorithm constructs a vector of portfolio weights that would

have maximised the returns following observation of similar market sequences. Finally, the

algorithm combines the experts according to the idea of the UBAH presented in the previous

section.

4.3.2 Nearest-Neighbor Pattern Matching

As usual, we consider a fixed window length, w, and a parameter l that determines the num-

ber of NN. We assume that x1,x2, ...are realisations of the random vectors . X1, X2, ...drawn

from the vector of stationary and ergodic process {Xn}+∞
−∞. let us call xn−w+1

n ∈ Rw×m the

most recent window of price relatives and xi−w+1
i−1 ∈ Rw×m, i = 1, 2, ...n any preceeding vector

of price relative to the same sise as the most recent one To determine the weight portfolio

vector on the nth trading period, the NN algorithm searches the price relatives whose pre-

ceding market windows xi−w+1
i−1 of sise w×m are within the l NN of the latest market window

xn−w+1
n of sise w × m in terms of Euclidean distance. Mathematically, the nonparametric

NN-based sample selection algorithm identifies the similarity set by comparing two market

windows via Euclidean distance, that is:

Ĵ(w,l)
n,s =

{
i;w + 1 ≤ i ≤ n such that xi−wi−1 is amongst the l̂ NN of xn−w+1

n in xw1 , ...,x
n−w
n−1

}
(4.5)

where l̂ = bplnc and pl is chosen such that lim pl
l→∞

= 0. In practice Gyorfi (2008) selects l̂

such that pl = 0.02 + 0.5 l−1
L−1

, l = 1, 2, ...L

4.3.3 Nearest-Neighbor Portfolio Optimisation

For fixed positive integers w, l, and after locating historical matches the Kernel-based al-

gorithm constructs a fixed portfolio vector to optimise the returns for the trading periods
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following each matching period in the following way..

b(k,l)
(
Xn−1

1

)
= arg max

b∈∆m

∏
i∈Ĵ

(w,l)
n,s

〈b,xi〉 (4.6)

Of course if the product in equation (4.6) is void, the NN algorithm sets b simply equal

to b =
(

1
d
, 1
d
, ..., 1

d

)
. This nonparametric sequential investment strategy has been shown

to guarantee an optimal asymptotic growth rate of capital for all stationary and ergodic

markets by effectively exploiting hidden complicated dependences of asset prices on the past

evolution of the market sequences. Table 4.3.1 shows a pseudo code implementation of the

NN-based PS algorithm.

52



Table 4.3.1: NN (X,l,W )

Inputs l : partitioning parameter

W : maximum window sise

Output bt : expert’s portfolio weights for the tth trading day

for t = 1, 2, ..., n do

1 receive price relative xt

2 if t < w + 1 then

3 bt =
(

1
m
, 1
m
, ... 1

m

)
4 end if

5 for i = w + 1 to t− 1 do

6 if xi−1
i−w is amongst the l̂ NN of xt−w+1

t then

7 J
{w,l}
t = J

{w,l}
t ∪ {i}

8 end if

9 end for

10 if Nt == ∅ then

11 bt =
(

1
m
, 1
m
, ... 1

m

)
12 else

13 b
(w,l)
t = arg max

b∈∆d

∏
i∈J
{w,l}
t

〈b,xi〉

end

4.3.4 Combining Portfolios of Experts

As in the case of the Kernel algorithm, the NN-based sequential PS algorithm requires two

important parameters (w, l) that need to be set in advance by the portfolio manager. The

experts are therefore combined in the same way as in section 4.2.4.
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4.3.5 Empirical Results

This section presents numerical results obtained by applying the NN-based algorithm to six

financial market datasets described in Chapter 2. For our simulatoin we use the same setting

as in the original thesis where L = 10 and W = 5;

4.3.5.1 Analysis of Cumulative Wealth The first experiment evaluates the com-

pounded wealth achieved by the NN-based learning-to trade algorithm including over the

full sample. As usual this test includes a 10 basis points transaction cost. Figure 4.3.1 shows

the total wealth achieved by the NN algorithm on the six market datasets. The market index

is calculated as an equally weighted Buy-and-Hold portfolio on all available stocks for the

market under consideration.

Figure 4.3.1: Performance of the Nearest-Neighbor algorithm for PS
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From Figure 4.3.1 we observe that not only does the NN-based PS algorithm demon-

strate very good performance on old data (NYSE(O), NYSE(N)), the performance has been
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impressive on recent and previously untested datasets. For example, on the South African

TOP40 index data set, the total wealth achieved by the NN strategy impressively increases

from $1 to almost $100. This wealth growth is much higher than the $13.6 achieved by the

market index over the same 15-years periods. Excluding the FTSE100, all other datasets

display impressive growth in portfolio wealth. Despite this impressive performance, it is

noticeable that the performance in recent datasets is significantly reduced compared to the

results reported in the original thesis (see Gyorfiet al. (2008)). While the algorithm achieved

a cumulative wealth of $4.32× 1010 in the NYSE(O), the model can only achieve $159 using

the FTSE100, $1620 using the NASDAQ and $87.1 using the TOP40 index in South Africa.

The NN algorithm also displays a very respectable CAGR of around 39% and 55% using

the TOP40 and TE60 datasets respectively (see Table 4.3.2). This compares very farourably

with a CAGR of 21% and 18% for both market indices. Similar CAGR can be observed from

all other datasets, including the NASDAQ, the NYSE (O) and the NYSE (N).

Table 4.3.2: Cumulative returns over different trading periods

FTSE100 TOP40 TSE60 NASDAQ NYSE(N) NYSE(O)

ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT

Full 0.22 0.13 0.39 0.21 0.55 0.18 0.45 0.19 0.54 0.15 1.98 0.16

1Yr 0.31 0.22 0.60 0.19 0.21 0.12 1.32 0.39 0.41 0.33 0.46 -0.01

2Yrs 0.14 0.16 0.70 0.22 0.31 0.09 0.54 0.21 0.91 -0.03 1.09 0.15

3Yrs 0.23 0.13 0.53 0.18 0.27 0.07 0.41 0.20 0.88 -0.07 2.54 0.23

4Yrs 0.24 0.17 0.43 0.20 0.23 0.09 0.46 0.22 0.87 0.02 2.53 0.19

5Yrs 0.34 0.24 0.42 0.23 0.47 0.16 0.57 0.30 0.83 0.05 2.57 0.20

7Yrs 0.24 0.13 0.42 0.18 0.20 0.10 0.37 0.17 0.78 0.08 2.33 0.20

10Yrs 0.30 0.16 0.43 0.24 0.42 0.15 0.46 0.19 1.06 0.07 3.48 0.19

15Yrs 0.24 0.14 0.43 0.23 0.61 0.17 0.49 0.20 0.97 0.07 3.95 0.13

In addition to the full sample cumulative wealth and the CAGR, we also examine how

the cumulative wealth changes from one trading sub-period to the next. Table 4.3.2 shows

the trend of the cumulative wealth achieved by the proposed NN algorithm over different
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trading sub-periods. From the results, we see that the proposed NN-based PS algorithm

has been quite impressive in recent years with a 60% gain in 2013 and 70% gain in 2012

using the TOP40 index in South Africa. In the case of the NASDAQ in the US, 2013 saw a

returns of 132% for the NN-based algorithm as compared to about 39% for the market index.

As argued earlier, this is indeed a very impressive performance given that this is the index

that comprises the biggest 100 companies by market capitalisation listed on the NASDAQ.

The same pattern can be seen on the Toronto Stock Exchange (TSE60) in Canada, where

the algorithm achieves an annualised compounded growth rate that is about 3 times that

achieved by its benchmark algorithm.

4.3.5.2 Performance Risk Analysis The NN risk measures are summarised in Table

4.3.3. As shown in this table, the NN-based strategy has a volatility of returns (as measured

by the annualised standard deviation of daily returns) that is much higher than the one

achieved by its respective benchmarks. However, we also notice that the Sharpe Ratio

generated by the NN-based algorithms is also significantly higher than the respective stock

market indices. This is an indication that the NN-based strategy generates much better

risk-adjusted returns.
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Table 4.3.3: Risk Statistics of the NN-Based PS Algorithm

FTSE100 TOP40 TSE60 NASDAQ NYSE(N) NYSE(O)

ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT

σ 0.26 0.18 0.23 0.16 0.46 0.17 0.42 0.23 0.35 0.19 0.48 0.13

α 0.04 0.00 0.06 0.00 0.11 0.00 0.14 0.00 0.13 0.00 0.38 0.00

β 1.08 1.00 0.93 1.00 1.38 1.00 0.89 1.00 1.08 1.00 1.25 1.00

γ -0.72 0.00 0.06 0.00 1.03 0.00 -1.38 0.00 -0.04 0.00 2.83 0.00

β ↑ 1.00 1.00 0.85 1.00 1.45 1.00 0.73 1.00 1.11 1.00 1.33 1.00

β ↓ 1.03 1.00 0.85 1.00 1.31 1.00 0.93 1.00 1.06 1.00 1.22 1.00

SR 0.64 0.40 1.22 0.82 1.04 0.62 0.93 0.56 1.21 0.44 2.35 0.64

MDD -0.49 -0.40 -0.32 -0.30 -0.64 -0.41 -0.60 -0.47 -0.53 -0.64 -0.54 -0.37

PP 0.53 0.55 0.55 0.56 0.53 0.56 0.53 0.54 0.54 0.55 0.54 0.53

PP↑ 0.79 1.00 0.77 1.00 0.70 1.00 0.74 1.00 0.75 1.00 0.69 1.00

PP↓ 0.21 0.00 0.27 0.00 0.30 0.00 0.29 0.00 0.28 0.00 0.36 0.00

Further, we observe that the maximum drawdown on the six stock market datasets

are higher than those achieved by the respective benchmarks. When the Top40 was up,

the NN-based algorithm had a positive returns 77% of the time while this number was

about 80% of the time in the FTSE100 in the UK. Also impressive is the fact that the NN

algorithm generates positive returns more that 20% of the time all datasets when the market

indices were negative. This suggests that the value add of the NN-based algorithm lies in

its ability to find stocks that are likely to rise more in a rising market or fall less in a falling

market. This could indicate that the NN-based PS algorithm possesses some market-timing

abilities. However, these market-timing skills displayed by the model are not felt accross all

the datasets. In fact, the results shows that the γ measure is negative for the FTSE100, the

NASDAQ and the NYSE(N).
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4.3.6 Conclusion

In summary, the simulation results demonstrate that the NN-based PS algorithm achieves

very impressive cumulative wealth growth on most datasets. These encouraging results show

that the NN-based PS algorithm is capable of achieving a very good trade-off between re-

turn and risk. We therefore concur with Gyorfi et al. (2006), who claim that the NN-based

sequential PS algorithm is indeed a very robust investment strategy that can generate sub-

stantial growth in portfolio wealth without any knowledge about the probability distribution

of stock prices.

4.4 CORRELATION-DRIVEN MEAN REVERSION PORTFOLIO

SELECTION ALGORITHM (LI ET AL (2011))

4.4.1 Introduction

In sections 4.2 and 4.3 we presented both the nonparametric Kernel-based algorithm (Gyorfi

et al. (2006)) and the NN-based (Gyorfiet al. (2008)) algorithm for sequential PS problems.

We argued that these pattern-matching PS algorithms follow some basic steps. First, the

algorithms identifiy an index of historical price relative sequences whose similarity to the

recent market windows are smaller than a pre-determined threshold. Then the algorithms

optimise the portfolio with respect to the list of similar sequences using the idea of the BCRP.

Although we argured that these methods are indeed empirically robust trading strategies,

their over reliance on the Euclidean distance for similarity measures between the latest

market window and the historical market windows present some important limitations. The

Euclidean distance measure exploits only the magnitude and not the direction of information

of the market windows’movements. As argued by Li et al. (2011), the use of the Euclidean

distance could result in signal missclassification. In other words, the Euclidian distance may

detect some similar appearances, that in fact may be in the opposite direction to what the

portfolio manager may be trying to achieve. To ensure that similarities are well aligned in

magnitude and direction, Li et al. (2011) introduce a novel learning-to-trade strategy for
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PS problems, termed "Correlation-driven Nonparametric learning" (CORN) algorithm. As

in the case of the Nearest Neighbor and the Kernel-based PS algorithms, CORN first seeks

to locate the market windows that are similar to the latest market window via a correlation

coeffi cient metric, and then constructs a log-optimum portfolio according to the idea of the

best constant rebalanced portfolio (Cover 1991) strategy.

4.4.2 CORN Pattern Matching

As usual we assume that x1,x2, ...are realisations of the random vectors X1,X2, ...drawn

from the vector of stationary and ergodic process {Xn}+∞
−∞. let us call xn−w+1

n ∈ Rw×m the

most recent window of price relatives and xi−w+1
i−1 ∈ Rw×m, i = 1, 2, ...n any preceeding vector

of price relative of the same sise as the most recent one where w is a fixed window length

To determine the weight portfolio vector on the nth trading period, the algorithm searches

for the price relatives whose preceding market windows xi−w+1
i−1 of sise w × m are similar

to the latest market window xn−w+1
n of sise w × m via a correlation coeffi cient metric ρ.

Mathematically, the nonparametric CORN-based sample selection Li et al. (2011) identifies

the similarity set by comparing two market windows via the correlation coeffi cient. The

vector Ĵw,ρn,i is defined as

Ĵw,ρn,i =
{
w < i < n; correl

(
xi−1
i−w,x

n−1
t−w
)
≥ ρ | − 1 ≤ ρ ≤ 1

}
(4.7)

is called matching time. If Ĵw,ρn,i == ∅,we simply set b =
(

1
m
, ..., 1

m

)
. Although Li et al.

(2011) did not explicitly address how higher dimentional correlations should be measured,

we propose the use of a multi dimentional correlation measure defined as follows. Given two

vectors X and Y of dimension w × m, our correlation coeffi cient is given by the following

equation

correl (X, Y ) =

∑
i

∑
j

(
Xij−X

) (
Yij−Y

)√(∑
i

∑
j

(
Xij−X

)2
)(∑

i

∑
j

(
Yij−Y

)2
)

where X and Y represent the average of X and Y of dimension w ×m.
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4.4.3 CORN Portfolio Optimisation

For the fixed positive integer w, the CORN-based PS strategy first locates intances of histori-

cal matches via a multi dimentional correlation measure. Once these instances are identified,

the CORN-based algorithm constructs a fixed portfolio vector to optimise the returns for

the trading periods following each matching period in the following way:

b(w,ρ)
(
Xn−1

1

)
= arg max

b∈∆m

∏
i∈Ĵw,ρn,i

〈b,xi〉 (4.8)

As usual, if the product in equation (4.8) is void the CORN algorithm sets b simply as

b =
(

1
m
, 1
m
, ..., 1

m

)
. This nonparametric sequential investment strategy has been shown to

effectively exploit hidden and complicated dependences of asset prices on the past evolution

of the market sequences (see Li et al. (2011). Table 4.4.1 shows a pseudo code of an

implementation of the CORN-based PS algorithm.
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Table 4.4.1: CORN (X,w, ρ)

Inputs w : the window length

ρ : correlation threshold

Output bt : expert’s portfolio weights for the tth trading day

for t = 1, 2, ..., n do

2 receive price relative xt

3 if t < w + 1 then

4 bt =
(

1
m
, 1
m
, ... 1

m

)
5 end if

6 for i = w + 1 to t− 1 do

7 if correl
(
xi−1
i−w,x

n−1
t−w
)
≥ ρ then

8 J
{w,ρ}
t = J

{w,ρ}
t ∪ {i}

9 end if

10 end for

11 if Nt == ∅ then

12 bt =
(

1
m
, 1
m
, ... 1

m

)
13 else

14 b(w,ρ) = arg max
b∈∆d

∏
i∈J
{w,ρ}
t

〈b,xi〉

end

4.4.4 Combining Portfolio of Experts

The CORN-based sequential PS algorithm requires two important parameters, w and ρ, that

need to be set in advance by the portfolio manager. The portfolio of experts can therefore

be mixed as presented in Chapter 3.

4.4.5 Empirical Results

For our empirical simulations we use slightly different parameter settings compared to those

found in the original thesis of Li et al. (2011). We set the pearson correlation coeffi cient to
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ρ = 0.30 and a maximum W = 10.

4.4.5.1 Analysis of Cumulative Wealth Figure 4.4.1 summarises the total wealth

achieved by the CORN algorithm, with the usual 10 basis points of transaction costs, on

the six market datasets. The market index is calculated as equal weighted Buy-and-Hold

portfolio on all stock available for that particular market.

Figure 4.4.1: Cumulative Wealth of the CORN PS Algorithm
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While the CORN-based PS algorithm demonstrates very good performance on old data

(NYSE(O), NYSE(N)), its performance on recent and previously untested datasets seems to

have been very mixed and disappointing to some extent. For example, using the FTSE100

data set, it took more than 2000 trading days before the algorithm achieved a cumulative

wealth that surpassed that of the simple Buy-and-Hold. Another disappointing fact is that

the recent performance on our previously untested data set is also very poor, as evidenced

by the TSE60. In fact the algorithm has not been able to generate any returns at all over

the past 5 years or so using the TSE60 index in Canada.
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Although CORN recent performance using some previously untested data set has been

disappointing, we note that the CORN algorithm has, however, achieved good CAGR over

the entire testing sample on all datasets. The CAGR is around 50% and 101% using the

TOP40 and TE60 datasets respectively (see Table 4.4.2). This compares very farourably

with a CAGR of 20% and 17% for both market indices. Similar CAGR patterns can be

observed from all other datasets, including the NASDAQ, the NYSE (O) and the NYSE

(N).

Table 4.4.2: Cumulative returns over different trading periods

FTSE100 TOP40 TSE60 NASDAQ NYSE(N) NYSE(O)

ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT

Full 0.30 0.13 0.50 0.20 1.01 0.17 0.41 0.18 0.64 0.15 3.46 0.16

1Yr 0.10 0.21 0.29 0.17 -0.01 0.11 0.70 0.39 0.89 0.29 0.24 -0.01

2Yrs 0.06 0.22 0.31 0.22 0.36 0.10 0.19 0.26 0.35 -0.04 0.87 0.16

3Yrs 0.02 0.12 0.30 0.17 0.25 0.05 0.13 0.18 0.37 -0.07 2.27 0.23

4Yrs 0.18 0.16 0.27 0.19 0.32 0.09 0.27 0.21 0.30 0.03 2.28 0.19

5Yrs 0.42 0.23 0.30 0.23 0.32 0.17 0.46 0.30 0.33 0.05 2.42 0.20

7Yrs 0.44 0.12 0.46 0.16 0.12 0.09 0.23 0.17 0.51 0.08 3.02 0.20

10Yrs 0.37 0.15 0.59 0.22 0.30 0.14 0.36 0.17 0.81 0.07 4.44 0.19

15Yrs 0.37 0.13 0.57 0.21 0.57 0.15 0.38 0.18 0.93 0.07 5.80 0.13

4.4.5.2 Performance Risk Analysis Next, Table 4.4.3 shows an evaluation of some

risk measures that an investor might be exposed to while using the CORN-based PS algo-

rithm. As shown in Table 4.4.3, the CORN-based strategy has a volatility of returns that

is unsurprisingly much higher than the one achieved by its respective benchmarks. At close

inspection, the portfolio weight output generate by the CORN-based strategy appears to

be very highly concentrated. The Sharpe Ratio generated by the CORN-based algorithms

is also somewhat higher than the respective stock market indices. On balance we could

argue that the CORN-based strategy is taking relatively higher risk to generate its superior
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outperformance.

Table 4.4.3: Risk Statistics of the CORN-Based PS Algorithm

FTSE100 TOP40 TSE60 NASDAQ NYSE(N) NYSE(O)

ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT

σ 0.30 0.18 0.28 0.16 0.58 0.17 0.42 0.23 0.38 0.19 0.54 0.13

α 0.01 0.00 0.06 0.00 0.25 0.00 0.12 0.00 0.14 0.00 0.53 0.00

β 1.19 1.00 1.14 1.00 1.62 1.00 1.23 1.00 1.09 1.00 1.45 1.00

γ 3.68 0.00 2.52 0.00 -1.21 0.00 -1.92 0.00 0.96 0.00 4.35 0.00

β ↑ 1.29 1.00 1.18 1.00 1.42 1.00 1.13 1.00 1.11 1.00 1.55 1.00

β ↓ 1.04 1.00 1.02 1.00 1.56 1.00 1.25 1.00 0.98 1.00 1.23 1.00

SR 0.78 0.37 1.33 0.78 1.37 0.59 0.87 0.53 1.32 0.44 2.90 0.64

MDD -0.44 -0.40 -0.34 -0.30 -0.77 -0.41 -0.68 -0.47 -0.61 -0.64 -0.37 -0.37

PP 0.54 0.56 0.55 0.57 0.56 0.58 0.55 0.56 0.55 0.55 0.59 0.53

PP↑ 0.79 1.00 0.78 1.00 0.75 1.00 0.81 1.00 0.75 1.00 0.72 1.00

PP↓ 0.22 0.00 0.26 0.00 0.30 0.00 0.23 0.00 0.30 0.00 0.43 0.00

Recall that the maximum drawdown encompasses both the period from the fund’s peak to

the fund’s valley (length), and the time from the fund’s valley to a new fund high (recovery).

From Table 4.4.3 , we observe that maximum drawdown on the six stock datasets are higher

when compared with that achieved by their respective benchmarks. The FTSE100 and the

NASDAQ experienced drawdowns of 60% and 68% over the sample period. These drawdowns

are significantly higher than those experienced by those respective market indices (40% and

47%). We also note that the percentage of time the CORN-based algorithm generate positive

returns (PP) is very similar to the percentage of time the varous indices generate positive

returns. This suggests that the superior growth in portfolio wealth achieved by the CORN-

based algorithm lies in its ability to find stocks that are likely to rise more in a rising market

or fall less in a falling market, as confirmed by the Gamma coeffi cients and the asymmetric

betas.
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4.5 ANTICOR ALGORITHM (BORODIN ET AL. (2004))

4.5.1 Introduction

In its original form, the Anticor (AC) algorithm of Borodin et al. (2004) provides re-

sults on historical stock prices that show that an algorithm derived from simple heuristics

can significantly outperform those that provide theoretical guarantees Unlike competing

state-of-the-art algorithms that are derived from sound mathematical and statistical learn-

ing theory, the AC algorithm is derived from simple heuristics. The algorithm evaluates

changes in stocks’ performance by dividing the historical sequence of past returns series

into equal-sized periods called windows, each with a length of w days where w is an ad-

justable parameter. According to the AC algorithm the wealth is transferred from recently

high-performing experts to anti-correlated low-performing experts. Specifically, whenever

the algorithm detects that stock i outperformed stock j during the last window, but i′s

performance in the last window is anti-correlated to j′s performance in the second-to-last

window (µ2 (i) ≥ µ2 (j) and Mcorr (i, j) > 0), it transfers wealth from stock i to stock j and

calculate new portfolio weights. Borodin et al. (2004) show historical simulation results or

some real-market datasets that demonstrate that the AC algorithm is indeed very robust in

those datasets based solely on the mean reversion principal.

4.5.2 Anticor Algorithm Design

For a window length w, we consider LX1 and LX2 as two w×mmatrices over two consecutive

time windows, which we compute as follows:

LX1 = (log (Xt−2w+1) , ..., log (Xt−w))T (4.9)

and

LX2 = (log (Xt−w+1) , ..., log (Xt))
T (4.10)

The jth column of LXk is denoted by LXk (j) and simply tracks the performance of

stock j in window k where k = 1, 2. Let µk (j) be the mean of LXk (j) and σk (j) be the
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corresponding standard deviation. The cross-covariance matrix between the columns vectors

of LXk is defined as follows

Mcov (i, j) =
1

w − 1
[LX1 (i)− µ1 (i)]T [LX2 (j)− µ2 (j)] (4.11)

and the corresponding cross-correlation matrix is given by

MCorr (i, j) =


MCov(i,j)
σ1(i)σ2(j)

, σ1 (i) , σ2 (j) 6= 0

0 otherwise

(4.12)

The reversion to mean strategy of Borodin et al. (2004) states that if µ2 (i) ≥ µ2 (j) and

Mcorr (i, j) > 0 the proportion of wealth to be moved from stock i to stock j is defined as:

claimi→j = Mcorr (i, j) + max (−MCorr (i, i) , 0) + max (−MCorr (j, j) , 0) (4.13)

Therefore whenever the anticor algorithm detects that stock i has outperformed stock j

during the last window but i′s performance in the last window is not anti-correlated to j′s

performance in the second-to-last window (µ2 (i) ≥ µ2 (j) and Mcorr (i, j) > 0), it transfers

wealth from stock i to stock j and calculate new portfolio weights. The simple logic here is

that there will be price reversal in the direction of the underperforming stock.

From the reversal to the mean conditions the model calculates the transfers of stock i to

stock j as

transferi→j = bt−1 (i)
claimi→j∑
j claimi→j

(4.14)

Using these transfer values, the portfolio is defined to be:

bt (i) = bt−1 (i) +
∑
i6=j

(transferj→i − transferi→j) (4.15)

In Table 4.5.1, we show a pseudo code implementation of the proposed Anticor (AC).
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Table 4.5.1: Anticor (X, w)

w: window sise

b0: initial portfolio weights b0 =
(

1
m
, ..., 1

m

)
X: matrix of price relatives

for t = 1, 2, ...

1 Return the current portfolio bt if t < 2w

2 compute LX1 = (log (Xt−2w+1) , ..., log (Xt−w))T

3 compute LX2 = (log (Xt−w+1) , ..., log (Xt))
T

4 compute µ1 = average (LX1) and µ2 = average (LX2)

5 computeMcov (i, j) = 1
w−1

[LX1 (i)− µ1 (i)]T [LX2 (j)− µ2 (j)]

6 computeMCorr (i, j) =


MCov(i,j)
σ1(i)σ2(j)

, σ1 (i) , σ2 (j) 6= 0

0 otherwise

7 Initialise claimi→j = 0

8 if µ2 (i)≥ µ2 (j) and Mcorr (i, j)> 0

9 claimi→j= Mcorr (i, j) + max (−MCorr (i, i) , 0) + max (−MCorr (j, j) , 0)

10 transferi→j= bt−1 (i)
claimi→j∑
j claimi→j

11 bt (i) = bt−1 (i) +
∑
i6=j

(transferj→i − transferi→j)

end

4.5.3 Expert Combination

The AC-based sequential PS algorithm requires one important parameter , the window length

w, that needs to be set in advance by the portfolio manager. Because historical simulations

demonstrate that the performance of the AC algorithm critically depends on the choice of

this window sise parameter we form the expert combination in the usual way.
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4.5.4 Empirical results

This section presents numerical results obtained by applying the AC-based algorithm to six

financial market datasets described in Chapter 3. As usual, the back-testing experiments in

this section will consist of running the signals through historical data, with the estimation

of parameters, signal evaluations and portfolio re-balancing performed on a daily basis. For

our simulatoin we set the maximum window sise W = 30.

4.5.4.1 Analysis of the Anticor Cumulative Wealth The first experiment evaluates

the compounded wealth achieved by the AC-based learning-to trade algorithm, including a

10 basis points transaction cost over the entire sample period. Figure 4.5.1 summarises

the total wealth achieved by the AC algorithm on the six market datasets. As in previous

cases, the market index is calculated as equal weighted Buy-and-Hold portfolio on all stock

available for that particular market.

Figure 4.5.1: Cummulative Wealth of the Anticor algorithm
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Figure 4.5.1 shows that the AC-based PS algorithm demonstrates very good perfor-

mance on old data (NYSE(O), NYSE(N)) as well as on more recent and previously untested

datasets. For example, on the South African TOP40 index data set, the total wealth achieved

by the AC strategy impressively increases from $1 to almost $454. This wealth growth is

much higher than the $13.6 achieved by the market index over the same 15-year periods.

During that period, the best stock generates $87.8 and the best constantly rebalanced port-

folio in hindsight only achieves a growth in wealth of $115. We also notice that all other

datasets display similar impressive growth in portfolio wealth. Figure 4.5.1 also shows that,

from a start of $1, the algorithm achieved a cumulative wealth of $4.17×107 in the NYSE(O),

$682 using the FTSE100, $2670 using the NASDAQ.

In Table 4.5.2 we show the cumulative returns achieved by the AC algorithm over some

selected trading periods. The AC algorithm also displays a very impressive CAGR of around

53% and 67% using the TOP40 and TE60 datasets respectively (see Table 4.5.2). This

compares very farourably with a CAGR of 21% and 18% for both market indices. Similar

CAGR can be observed from all other datasets, including the NASDAQ, the NYSE (O) and

the NYSE (N).

Table 4.5.2: Cumulative returns over selected trading periods

FTSE100 TOP40 TSE60 NASDAQ NYSE(N) NYSE(O)

ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT

Full 0.34 0.13 0.53 0.20 0.67 0.17 0.48 0.18 0.68 0.15 1.19 0.16

1Yr 0.01 0.21 0.18 0.17 0.01 0.11 0.29 0.39 0.69 0.29 0.25 -0.01

2Yrs 0.17 0.22 0.16 0.22 0.10 0.10 0.14 0.26 -0.12 -0.04 0.50 0.16

3Yrs 0.13 0.12 0.26 0.17 0.11 0.05 0.07 0.18 -0.15 -0.07 0.73 0.23

4Yrs 0.20 0.16 0.39 0.19 0.14 0.09 0.13 0.21 -0.06 0.03 0.57 0.19

5Yrs 0.34 0.23 0.58 0.23 0.33 0.17 0.39 0.30 -0.01 0.05 0.65 0.20

7Yrs 0.23 0.12 0.55 0.16 0.20 0.09 0.30 0.17 0.13 0.08 0.81 0.20

10Yrs 0.29 0.15 0.59 0.22 0.32 0.14 0.32 0.17 0.43 0.07 0.89 0.19

15Yrs 0.29 0.13 0.62 0.21 0.45 0.15 0.39 0.18 0.56 0.07 1.07 0.13
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Despite this impressive performance on all datasets and over the full sample, recent

performance of the AC algorithm has been subdued. The AC-based PS algorithm has been

pedestrian in recent times, with a 1% gain in 2013 and a 20% gain in 2012 using the TSE60

index in Canada. The same pattern can be seen in the FTSE100 in the UK. where the

algorithm achieves an annualised compounded growth rate that was much less than its

benchmark algorithm in 2013.

4.5.4.2 Anticor Performance Risk Analysis Table 4.5.3 shows some of the AC risk

measures for the six datasets under consideration. From the results, we see that the AC-

based strategy has a volatility of returns that is higher than the one achieved by its respective

benchmarks. However, the Sharpe Ratio generated by the AC-based algorithms are also

significantly higher than the respective stock market indices. This is an indication that the

AC-based strategy generates much better risk-adjusted returns.

Table 4.5.3: Risk Statistics of the AC-Based PS Algorithm

FTSE100 TOP40 TSE60 NASDAQ NYSE(N) NYSE(O)

ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT ALGC MKT

σ 0.29 0.18 0.25 0.16 0.32 0.17 0.34 0.23 0.37 0.19 0.30 0.13

α 0.04 0.00 0.07 0.00 0.14 0.00 0.08 0.00 0.13 0.00 0.24 0.00

β 1.22 1.00 1.11 1.00 1.31 1.00 1.13 1.00 1.22 1.00 1.29 1.00

γ 1.85 0.00 2.34 0.00 -0.61 0.00 0.82 0.00 1.61 0.00 1.88 0.00

β ↑ 1.28 1.00 1.19 1.00 1.33 1.00 1.18 1.00 1.31 1.00 1.31 1.00

β ↓ 1.23 1.00 1.07 1.00 1.31 1.00 1.09 1.00 1.13 1.00 1.28 1.00

SR 0.93 0.37 1.54 0.78 1.55 0.59 1.10 0.53 1.40 0.44 2.53 0.64

MDD -0.58 -0.40 -0.30 -0.30 -0.55 -0.41 -0.54 -0.47 -0.85 -0.64 -0.32 -0.37

PP 0.57 0.56 0.58 0.57 0.58 0.58 0.56 0.56 0.56 0.55 0.56 0.53

PP↑ 0.83 1.00 0.81 1.00 0.82 1.00 0.84 1.00 0.80 1.00 0.79 1.00

PP↓ 0.23 0.00 0.26 0.00 0.25 0.00 0.20 0.00 0.27 0.00 0.29 0.00
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Further, we observe that maximum drawdown on the six stock datasets are somewhat

higher when compared with that achieved by its respective benchmarks. We also note that

the percentage of time the AC-based algorithm generate positive returns (PP) is very similar

to the percentage of time the varous indices generate positive returns. However, when the

market index was up, the AC-based algorithm generated positive returns more than 80% of

the time on all datasets. This suggests that the value add of the AC-based algorithm lies in

its ability to find stocks that are likely to rise more in a rising market or fall less in a falling

market. This argument is well supported by the positive sign and significant value of the

estimated γ coeffi cients for the majority of data analysed.

4.5.4.3 Anticor Brokerage Costs Analysis Figure 4.5.2 shows the performance of

the AC algorithm net of brokerage commissions against some benchmark strategies on our

six datasets.

Figure 4.5.2: Transaction Cost Analysis for Anticor Algorithm
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Figure 4.5.2 clearly demonstrates that the AC investment algorithm can tolerate rea-

sonable proportional commission rates and still beat competing benchmarks, including the

best stock, the equally weighted market index and best constantly rebalanced portfolio in

hindsight called the BCRP*. The graphs in Figure 4.5.2 depict the total returns of the

AC algorithm for a varying proportional commission factor, c = 0.1%, 0.2%; For example,

with a commission cost of c = 0.1% or 10 basis points (10 bps), the algorithm still beat the

best stock, the market and the BCRP* portfolio in three out of the six markets data under

consideration. In fact, even with c < 0.15% our algorithm beats all its respective market

indices on all datasets.

4.5.5 Conclusion

In summary, the simulation results have demonstrated that the AC-based PS algorithm

achieves very impressive cumulative wealth growth on all datasets, even after accounting

for moderate brokerage commissions. These encouraging results show that the AC-base PS

algorithm is capable of achieving an excellent trade-off between return and risk. In our view

the AC-based PS algorithm is indeed a very robust investment strategy that can effectively

exploit the mean reversion properties of various stock market data.

Despite this impressive empirical performance, an extensive body of behavioural finance

literature has documented that price reversals are hardly the only feature at play in equity

markets. It has been argued that price momentum and reversals tend to coexist in world

stock markets in the short term. In a comprehensive investigation, Conrad and Kaul (1998)

find both momentum and contrarian profits in the U.S. market, depending on the time

horison investigated. Balvers and Wu (2006) also demonstrate that mean reversion and

momentum can simultaneously occur on the same set of assets in 18 developed countries.

It is therefore possible that in the presence of both price reversal and price continuation,

the original AC algorithm will fail to perform optimally. To correct this shortcoming we

provide in Chapter 5 an important modification to the AC algorithm that can deal with

both momentum as well as reversal in a comprehensive way.
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4.6 CONFIDENCE WEIGHTED MEAN REVERSAL (LI ET AL. (2013))

4.6.1 Introduction

Li et al. (2013) proposed the Confidence Weighted Mean Reversion (CWMR) PS algorithm.

The proposed strategy is inspired by Confidence Weighted learning originally proposed for

classification problems (Dredze et al. 2008; Dredze et al. 2010; Crammer et al. 2008;

Crammer et al. 2009). The basic idea of Confidence Weighted algorithm is to maintain a

Gaussian distribution for the classifier, and to sequentially update the classifier distribution

according to the Passive Aggressive Online learning algorithm. CWMR helps exploit not

only the first order information but also the second order portfolio information in terms of

the variance of portfolio weights.

4.6.2 CWMR Algorithm Design

On the ith day the idea of the CWMR is to model the portfolio vector bi as a Gaussian

distribution, bi v N (µ,Σ). Σ is a diagonal covariance matrix with nonzero diagonal elements

σ2 and zero for off-diagonal elements. Furthermore, Σ could be understood as the confidence

the portfolio manager has in the portfolio mean valueµ. After the price relative xi is revealed,

the portfolio increases its wealth by a factor of bixi. The portfolio daily total return can be

viewed as a random variable of a Gaussian distribution, D v N
(
µ.xi,x

>
i Σxi

)
.

For the mean reversion principle to apply the idea behind the CWMR is to select a

portfolio in such a way that D ≤ ε in a probabilistic sense. The portfolio manager must

adjust the distribution to ensure the probability of a profitable portfolio is higher than a

confidence level θ ∈ [0, 1]. Therefore

Pr
bvN(µ,Σ)

(D ≤ ε) = Pr
bvN(µ,Σ)

(b.xi ≤ ε) ≥ θ. (4.16)

The intuition behind this is quite simple. If the expected return using the ith price relative

is less than a threshold with high probability, the actual return for the ith + 1 trading day is

most likely to be high with correspondingly high probability, since the price relative tends

to reverse. Then, the algorithm chooses the distribution closest (in the KL divergence sense)
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to the current distribution N (µi,Σi). On the ith + 1 trading day, the algorithm sets the

parameters of the distribution by solving the following optimisation problem

(
µi+1,Σi+1

)
= arg

µ,Σ
maxDKL (N (µ,Σ) ‖N (µi,Σi))

s.t PrbvN(µ,Σ) (µ.xi ≤ ε) ≥ θ

µ ∈ ∆m

(4.17)

After some simple manipulations Li et al. (2013) show that the final optimisation problem

becomes

(
µi+1,Σi+1

)
= arg

µ,Σ
max 1

2

[
log
(

det Σi
det Σ

)
+ tr

(
Σ−1
i Σ

)
+ (µi − µ)>Σ−1

i (µi − µ)
]

s.t ε− log (µ.xi) ≥ Φ−1 (θ) x>i Σxi

µ.1 = 1, µ ≥ 0

(4.18)

Table 4.6.1 shows the pseudo code of the CWMR algorithm
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Table 4.6.1: CWMR (X,φ, ε)

Inputs X : the matrix of price relative

φ : the confidence parameter

ε : the sensitivity parameter

Initialise µ0= 1
m

1,Σ0= 1
m2 I,S0= 1

Output b : expert’s portfolio weights

for i = 1, 2, ..., n do

1 receive xt

2 Calculate the daily return and cumulative return:

Si=Si−1 (bixi)

3 Calculate the following variables

Mi=µixi,Vi=x>i Σixi,xi=
1>Σixi
1>Σi1

4 Update the portfolio distribution:

λi+1 as above

µi+1=µi−λi+1Σi
xi−xi1

Mi

Σi+1=
(
Σ−1
i + 2λi+1φdiag2 (xi)

)−1

5 Normalise µi+1 and Σi+1

b(φ,ε) = arg
µ∈∆m

min
∥∥µ− µi+1

∥∥2

Σi+1= Σi+1

m2Tr(Σi+1)

end

4.6.3 Combining Portfolio of Experts

The CWMR-based sequential PS algorithm requires two important parameters (φ, ε) that

need to be set in advance by the portfolio manager. In practice, Li et al. (2012) and

our own historical simulations show that the CWMR-based PS algorithm is very robust to

the parameter φ and we will therefore set φ = 2 for the remainder of the thesis. Setting

the confidence parameter to a constant simply means that the performance of the CWMR

algorithm critically depends on the choice of the sensitivity parameter ε. We therefore form

the expert combination as seen in Section 3.4.
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4.6.4 Empirical Results

4.6.4.1 Analysis of Cumulative Wealth As usual our first experiment evaluates the

compounded wealth achieved by the CWMR-based algorithm over the full sample. Figure

4.6.1 summarises the total wealth achieved by the CWMR algorithm on the six market

datasets. Here again, the market index is calculated as equal weighted Buy-and-Hold port-

folio on all stock available for that particular market.

Figure 4.6.1: Performance of the CWMR-based algorithm
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One striking observation that could be drawn from Figure 4.6.1 is that while the CWMR-

based PS algorithm demonstrates very good performance on old data (NYSE(O), NYSE(N)),

the performance is very poor using recent and previously untested datasets. For example, the

total wealth achieved by the CWMR on the NYSE(O) and the NYSE(N) strategies impres-

sively increased from $1 to an astronomical 6.63×1015 and 1.73×106 respectively. On more

recent datasets, the performance is very disappointing, with a growth in compounded wealth

that appears very volatile and has underperformed market indices in recent years. Even in
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the case of the TSE60 where the CWMR-base PS algorithm has generated an impressive

compounded wealth of 1.64×105 over the long-term, its short term performance has been

disappointing at best. Over the past 4 years the model has lost about 30% of wealth value

while the market has increased by about 40%. The post 2008 financial crisis performance

has been truly disappointing for this algorithm as it continues to experience losses accross

all datasets. It is therefore diffi cult to justify the claim made by Li et al. (2013) that the

CWMR is a very robust investment strategy that could be effectively implemented by port-

folio managers. It is clear from Figure 4.6.1 that the CWMR-based algorithm results can

not be easily generalised to multiple data sets. To confirm our finding we ran the CWMR on

many other European stock market data sets. The countries considered included the Nordic

countries (Denmark, Finland, Norway, Sweden), Germany, the United Kingdom, Switzer-

land, France, France, Italy, Portugal and Spain. For all these countries the performance of

the CWMR-based algorithm has been disappointing at best, especially in recent years.

Table 4.6.2: Cumulative returns over different trading periods

FTSE100 TOP40 TSE60 NASDAQ NYSE(N) NYSE(O)

ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT

Full 0.33 0.13 0.27 0.20 1.31 0.17 0.58 0.18 0.76 0.15 4.08 0.16

1Yr 0.07 0.21 -0.23 0.17 -0.03 0.11 0.57 0.39 1.64 0.29 0.66 -0.01

2Yrs -0.09 0.22 -0.20 0.22 -0.08 0.10 0.14 0.26 0.14 -0.04 0.73 0.16

3Yrs -0.15 0.12 -0.09 0.17 -0.14 0.05 0.02 0.18 0.00 -0.07 1.52 0.23

4Yrs -0.07 0.16 0.19 0.19 -0.09 0.09 0.19 0.21 0.18 0.03 1.49 0.19

5Yrs 0.03 0.23 0.42 0.23 0.20 0.17 0.56 0.30 0.21 0.05 1.74 0.20

7Yrs 0.02 0.12 0.25 0.16 0.14 0.09 0.33 0.17 0.29 0.08 2.16 0.20

10Yrs 0.22 0.15 0.35 0.22 0.24 0.14 0.37 0.17 0.67 0.07 3.69 0.19

15Yrs 0.21 0.13 0.40 0.21 0.49 0.15 0.49 0.18 0.78 0.07 4.80 0.13

In addition to the final cumulative wealth and the CAGR, we are also interested in

examining how the cumulative wealth changes over different sub-samples. Table 4.6.2 shows

the CAGR generated by the proposed CWMR algorithm over various sub-periods of trading.
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In the case of the NYSE(O) and NYSE(N), we can see that the proposed CWMR strategy

consistently surpasses its benchmarks returns over the entire period but this can not be

generalised to the rest of our datasets.

4.6.4.2 Performance Risk Analysis Table 4.6.3 shows the various risk measures on

the six datasets. As shown in this Table, the CWMR-based strategy has a volatility of

returns that is significantly higher than the one achieved by its respective benchmarks. We

also notice that both the beta and the drawdowns are much higher with the CWMR-based

algorithm when compared to earlier Online learning procedures. To us this is an indication

that the CWMR-based strategy generates much worse risk adjusted returns on these new

datasets.

Table 4.6.3: Risk Statistics of the CWMR-Based PS Algorithm

FTSE100 TOP40 TSE60 NASDAQ NYSE(N) NYSE(O)

ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT

σ 0.45 0.18 0.34 0.16 0.54 0.17 0.52 0.23 0.47 0.19 0.50 0.13

α 0.03 0.00 0.02 0.00 0.30 0.00 0.10 0.00 0.16 0.00 0.58 0.00

β 1.50 1.00 1.26 1.00 1.51 1.00 1.37 1.00 1.28 1.00 1.45 1.00

γ 2.97 0.00 0.42 0.00 -1.37 0.00 1.38 0.00 2.16 0.00 4.17 0.00

β ↑ 1.58 1.00 1.29 1.00 1.41 1.00 1.47 1.00 1.38 1.00 1.61 1.00

β ↓ 1.43 1.00 1.20 1.00 1.47 1.00 1.28 1.00 1.08 1.00 1.38 1.00

SR 0.70 0.37 0.68 0.78 1.69 0.59 1.00 0.53 1.28 0.44 3.35 0.64

MDD -0.75 -0.40 -0.62 -0.30 -0.56 -0.41 -0.68 -0.47 -0.78 -0.64 -0.31 -0.37

PP 0.55 0.56 0.56 0.57 0.57 0.58 0.55 0.56 0.54 0.55 0.57 0.53

PP↑ 0.77 1.00 0.76 1.00 0.75 1.00 0.78 1.00 0.74 1.00 0.73 1.00

PP↓ 0.27 0.00 0.28 0.00 0.32 0.00 0.26 0.00 0.30 0.00 0.38 0.00

4.6.4.3 CWMR Brokerage Costs Analysis Figure 4.6.2 shows the performance of

the CWMR algorithm net of brokerage commissions against some benchmark strategies for
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our six datasets.

Figure 4.6.2: Brokerage Cost Analysis for the CWMR PS Strategy
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Figure 4.6.2 seems to show that the CWMR investment algorithm can tolerate moderate

proportional commission rates and still beat competing benchmarks algorithms on some

datasets. Although the CWMR trading algorithm beats the overall stock market indices for

all brokerage commissions below 10 basis points, the comparison with the best stock and

the best constantly rebalanced portfolio (in hindsight) is very ambiguous. Only in three

out of six datasets - the NYSE-OLD, the NYSE-NEW and the TSE60 - does the CWMR

performace compare favourably with those of the best stock and the BCRP* for moderate

transaction costs. Therefore, the performance of the CWMR trading algorithm appears to

be data dependent and any generalisation to different datasets need to be taken with due

care. In fact, in the next chapter we proposed a simple heuristic-based modifications of this

algorithm that improves the performance of this base algorithm, quite dramatically, in some

cases, in all datasets and for all periods considered.
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4.7 PASSIVE-AGGRESSIVE MEAN REVERSION (LI ET AL. (2012))

4.7.1 Introduction

The last algorithm surveyed in this chapter is the Passive Aggressive Mean Reversion

(PAMR) strategy of Li et al. (2012). PAMR exploits the mean reversion property of stock

prices by adapting the Online Passive Aggressive (PA) learning algorithm of Shalev-Shwartz

et al. (2003) and Crammer et al. (2006). The Online Passive Aggressive learning was

originally proposed for classification tasks. Loosely speaking, the basic idea of Passive Ag-

gressive for classification is to passively keep the previous solution if the loss is zero, while

the algorithm aggressively updates the solution whenever the suffering loss is nonzero. Using

the theoretical foundations of the Online passive aggressive learning (Crammer et al. 2006),

PAMR’s key idea is to design a loss function in order to take advantage of the mean rever-

sion property. The loss function works as follows; if the expected return based on last price

relative is larger than a threshold, the loss will linearly increase; otherwise, the loss is zero.

Given a portfolio vector b and a price relative vector xt, the PAMR mathematically defines

the following loss function for the tth trading day

ltε (b; xt) =

{
0 b.xt ≤ ε

b.xt − ε otherwise
(4.19)

The intuition behind this loss function is quite simple and works as follows; Firstly, if the

portfolio daily return is below a certain threshold, the algorithm tries to keep the previous

portfolio such that it passively reverts to the mean to avoid unecessary churn. Secondly, if

the portfolio daily return is above the threshold, the algorithm will actively rebalance the

portfolio to ensure that the expected portfolio daily return is below the threshold in the

belief that the stock price relatives will revert in the next trading day. In the formulation

above, 0 ≤ ε ≤ 1 is the mean reversion (also called "sensitivity") parameter. Therefore,

according to the PAMR paradigm the next period weight vector is derived via the following

optimisation problem

bt+1 =

{ arg
bε∆m

min 1
2
‖b− bt‖2

st lε (b; xt) = 0
(4.20)
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4.7.2 Algorithm Design and Closed-Form Solution

The formulation in Equation 4.20 attempts to find an optimal portfolio by minimising the

deviation from the last portfolio bt under the condition of satisfying the constraint of zero

loss. On the one hand, the model passively keeps the last portfolio, that is, bt+1 = bt when-

ever the portfolio’s daily return is below the threshold ε. In that case the model anticipates a

high likelihood of mean reversal in the next period; therefore, avoiding unecessary portfolio

rebalancing and transaction costs. On the other hand, whenever the loss is nonzero, the

algorithm aggressively updates the solution by forcing it to strictly satisfy the constraint

lε (bt+1; xt). This simply means that when the portfolio’s daily return is above the thresh-

old, ε, the algorithm actively rebalances the portfolio weights. Li et al. (2012) proposed the

following closed-form solution for the PAMR algorithm.

bt+1 = bt − τ t (xt − xt1) (4.21)

where

xt =
xt1

m
, and τ t =

ltε
‖xt − xt1‖2 (4.22)

The Passive Aggressive Mean Reversion (PAMR) algorithm of Li et al. (2012) has been

proven to be a very robust investment strategy, as it exploits the mean reversion property

of financial markets. Table 4.7.1 displays the pseudo code of PAMR algorithm.
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Table 4.7.1: PAMR (x,ε)

Inputs ε : the sensitivity parameter

Output b : expert’s portfolio weights

for t = 1, 2, ..., n do

1 receive xt

2 Suffer a loss ltε = max (0,btxt − ε)

3 Set parameter τ t = ltε
‖xt−xt1‖2

4 Set parameter x = xt
m

5 Update portfolio weights bt+1 = bt − τ t (xt − xt1)

end

4.7.3 Expert Aggregation

The PAMR-based sequential PS algorithm requires one important parameter ε, the mean

reversion parameter, that needs to be set in advance by the portfolio manager. Because the

performance of the algorithm depends on an appropriate choice of this parameter and this

performance can fluctuate significantly depending on which pairs of parameter one chooses

our approach is to uniformally allocate the initial capital amongst all the various discretised ε

parameters on the first day and never rebalance afterward. This expert combination strategy

is very similar to those implemented so far in this chapter.

4.7.4 Empirical Results

4.7.4.1 Analysis of Cumulative Wealth Figure 4.7.1 shows the total wealth achieved

by the PAMR algorithm for the six market datasets. As usual, the market portfolio is

calculated as equal weighted Buy-and-Hold portfolio on all stock available for that particular

market.
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Figure 4.7.1: Cumulative Wealth Growth of the PAMR algorithm
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One striking observation from the historical simulations is that the CWMR and PAMR

display very similar portfolio growth in wealth despite the differences in their respective algo-

rithms. In fact, a simple pearson correlation coeffi cient between the returns series generated

by the two Online PS strategies exceed 80% on all datasets. Therefore the conclusions drawn

earlier for the CWMR are directly applicable to the PAMR-based PS algorithm. As in the

CWMR-based algorithm, the PAMR impressive performance on older datasets (NYSE(O),

NYSE(N)) has not carried over on recent and previously untested datasets. In fact, on more

recent datasets, the performance is very disappointing with a compounded wealth that ap-

pears very volatile and has underperformed market indices in recent years. Even in the case

of the TSE60 where the PAMR-base PS algorithm has generate and impressive compounded

wealth of 1.64×105 over the long-term, its short term performance has been disappoint-

ing. Over the past 4 years the model has lost about 30% of wealth while the market has

increased by about 40%. It is indeed very diffi cult to see this strategy as very robust in-
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vestment strategy that could be effectively implemented by portfolio managers. In the next

chapter we propose simple and intuitive extensions of this algorithm that seems very robust

for all datasets and all sample periods.

Table 4.7.2: CAGR on Selected Trading Periods

FTSE100 TOP40 TSE60 NASDAQ NYSE(N) NYSE(O)

ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT

Full 0.33 0.13 0.29 0.20 1.34 0.17 0.49 0.18 0.73 0.15 4.00 0.16

1Yr 0.13 0.21 -0.22 0.17 0.07 0.11 0.43 0.39 1.82 0.29 0.56 -0.01

2Yrs -0.05 0.22 -0.20 0.22 -0.06 0.10 0.04 0.26 0.23 -0.04 0.69 0.16

3Yrs -0.11 0.12 -0.06 0.17 -0.15 0.05 -0.03 0.18 0.05 -0.07 1.45 0.23

4Yrs -0.05 0.16 0.22 0.19 -0.06 0.09 0.15 0.21 0.22 0.03 1.44 0.19

5Yrs 0.05 0.23 0.45 0.23 0.24 0.17 0.47 0.30 0.27 0.05 1.65 0.20

7Yrs 0.03 0.12 0.26 0.16 0.17 0.09 0.27 0.17 0.34 0.08 2.11 0.20

10Yrs 0.23 0.15 0.39 0.22 0.27 0.14 0.32 0.17 0.69 0.07 3.67 0.19

15Yrs 0.22 0.13 0.45 0.21 0.52 0.15 0.42 0.18 0.78 0.07 4.84 0.13

In addition to the final cumulative wealth and the CAGR, we also examine how the cumu-

lative wealth changes over different trading sub-periods. Table 4.7.2 shows the trends of the

cumulative wealth by the proposed PAMR algorithm together with the performance of re-

spective indices over the sub-periods considered. In the case of the NYSE(O) and NYSE(N),

we can see that the proposed PAMR strategy consistently surpasses its benchmarks returns

over the entire period. However, the performance of the PAMR-based algorithm has not kept

pace with that generated by simple Buy-and-Hold on recent datasets. In fact the PAMR has

been a losing strategy of late on all datasets.

4.7.4.2 Performance Risk Analysis Table 4.7.3 shows a table of risk statistics gen-

erated by the PAMR algorithm for the six datasets. The PAMR-based strategy seems to

have a volatility of returns that is significantly higher than the one achieved by its respective

Buy-and-Hold benchmarks. Although the long-term Sharpe Ratios seems to indicate that
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the PAMR generates better risk-adjusted returns than their respective benchmarks, we be-

lieve this can be a misleading conclusion. In our view, the PAMR-based strategy generates

much worst risk adjusted returns especially using our new datasets.

Table 4.7.3: Risk Statistics of the PAMR-Based PS Algorithm

FTSE100 TOP40 TSE60 NASDAQ NYSE(N) NYSE(O)

ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT

σ 0.44 0.18 0.34 0.16 0.55 0.17 0.51 0.23 0.45 0.19 0.50 0.13

α 0.03 0.00 0.03 0.00 0.30 0.00 0.06 0.00 0.15 0.00 0.57 0.00

β 1.51 1.00 1.27 1.00 1.53 1.00 1.39 1.00 1.27 1.00 1.45 1.00

γ 2.73 0.00 0.05 0.00 -1.00 0.00 2.35 0.00 1.89 0.00 4.69 0.00

β ↑ 1.58 1.00 1.27 1.00 1.46 1.00 1.52 1.00 1.34 1.00 1.63 1.00

β ↓ 1.44 1.00 1.21 1.00 1.47 1.00 1.28 1.00 1.08 1.00 1.37 1.00

SR 0.71 0.37 0.72 0.78 1.70 0.59 0.90 0.53 1.28 0.44 3.31 0.64

MDD -0.75 -0.40 -0.67 -0.30 -0.60 -0.41 -0.70 -0.47 -0.75 -0.64 -0.31 -0.37

PP 0.55 0.56 0.55 0.57 0.57 0.58 0.55 0.56 0.54 0.55 0.57 0.53

PP↑ 0.76 1.00 0.76 1.00 0.74 1.00 0.78 1.00 0.74 1.00 0.73 1.00

PP↓ 0.27 0.00 0.28 0.00 0.33 0.00 0.26 0.00 0.30 0.00 0.38 0.00

4.7.4.3 PAMR Brokerage Costs Analysis Figure 4.7.2 shows the performance of the

PAMR-based PS selection algorithm net of brokerage commissions against some benchmark

strategies on our six datasets. This performance is very similar to the one presented in the

previous section. We can therefore draw very similar conclusions as in the case of the CWMR

algorithm..
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Figure 4.7.2: Brokerage Cost Analysis for the PAMR Algorithm
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4.8 SUMMARY

This chapter has conducted an empirical survey on the most promising online PS problem.

After presenting the mathematical foundation of each individual algorithms, we have ana-

lyzed each of the algorithms empirically using both existing (old) datasets and some recent

data that have never been tested previously . The simulation results have demonstrated

that all the surveyed PS algorithms (exept the Anticor) achieve less impressive cumulative

wealth growth on all new and previously untested datasets compared to what the results

were on old reported datasets. Table 4.8 summarizes the cummulative performance of all

the algorithms surveyed and for all the data sets.
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Table 4.8: Performance comparison

FTSE100 NASDAQ NYSE(O) NYSE(N) TOP40 TSE60

Market 5.00E+00 1.07E+01 1.82E+01 1.42E+01 1.37E+01 6.12E+00

Best Stock 4.76E+01 2.15E+02 8.48E+01 5.33E+01 8.78E+01 2.78E+01

UBCRP 5.63E+00 1.05E+01 3.18E+01 2.67E+01 1.36E+01 9.18E+00

BCRP* 5.48E+01 5.92E+02 1.21E+02 2.49E+02 1.15E+02 5.83E+01

Anticor 6.82E+01 2.67E+02 4.17E+07 5.59E+05 4.54E+02 1.51E+03

CWMR 6.02E+01 6.87E+02 6.63E+15 1.73E+06 3.19E+01 1.64E+05

FNN 1.44E+01 1.33E+02 3.70E+12 2.01E+05 1.00E+02 4.81E+03

Kernel 3.59E+01 5.55E+01 8.68E+07 7.34E+02 1.00E+02 2.44E+02

NN 1.59E+01 1.62E+02 4.32E+10 6.38E+04 8.71E+01 4.24E+02

PAMR 6.05E+01 3.07E+02 4.62E+15 1.20E+06 3.92E+01 1.95E+05

For comparison purposes, Table 4.8 also includes the performance of the various market

indices as well as the performance of the best stock for the respective markets. The table

also includes the performance of the uniform best constantly rebalanced portfolio for each

country surveyed as well as the best constantly rebalanced portfolio in hindshight. Although

the PAMR and the CWMR strategies generated excellent long term wealth growth overall,

this performance is yet to be experienced on more recent data. It is well possible that stock

markets are more effi cient than history suggests and therefore the need of finding more robust

trading strategies is more compelling than never. The remainder of this thesis is dedicated

to finding such strategies that can perform exceeding well on all or most data surveyed.
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5.0 KALMAN FILTERING AND ONLINE LEARNING ALGORITHMS

FOR PORTFOLIO SELECTION PROBLEMS

5.1 INTRODUCTION

The conventional investment wisdom over the last several decades has been to Buy-and-

Hold good-quality stocks for the long run with the hope that these securities will rise over

time. It has been generally believed that security markets are extremely effi cient in reflecting

information not only about individual stocks but also about the stock market as a whole. The

accepted view was that because information arises stochastically and is incorporated into the

prices of securities without any material delay, neither technical analysis nor fundamental

analysis would enable an investor to achieve returns greater than those that could be obtained

by holding a randomly selected portfolio of individual stocks, at least not without taking

additional risk. However, the amount of evidence showing the disadvantage that traditional,

long-term, Buy-and-Hold investors currently face is staggering. After recent bear markets

and the resulting poor performance delivered by most fund managers, there is renewed search

for reliable active investment strategies that can outperform not only the market but also

the best stock.

In recent years the growth of theoretically well grounded algorithms for Online PS prob-

lems has been significant. These algorithms have demonstrated good finite sample properties

with a performance that generally exceeds both the market and the best stock even after ac-

counting for transaction costs. As argued in Chapter 4, algorithms such as the nonparametric

Kernel-based PS algorithm (Gyorfi et al. (2006)), the Passive Aggressive-base sequential PS

(Li et al. (2012)) and the Anticor algorithm (Borodin et al. (2004)) have demonstrated

an impressive wealth growth in historical simulations. However, the empirical simulatons
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presented in Chapter 4 also suggest that the excellent performance generated by most of

these algorithms can not be generalised for all datasets and all time frames.

This chapter presents a new heuristic approach to Online PS that significantly improves

the performance of all the algorithms presented in Chapter 4 and for all datasets and time

periods. We build on the existing state-of-the-art algorithms for PS but use ideas from signal

processing and statistical learning to demonstrate the superiority of our new methodology.

Unlike most existing Online learning algorithms that use the raw price relative as the input

in the programme trading algorithm, we propose an alternative measure of price relative that

is more consistent with portfolio manager’s best practice. We use a state-space model via

the Kalman Filter algorithm to filter price-cycle oscillations out of the current share prices

and compute the Trend Adjusted Price Relative (TAPR). The TAPR helps to de-noise the

stock price data in order to account for the possibility of multi-period mean reversion in

stock prices as argued by Li et al. (2012). To our knowledge, this is the first time that

research has combined ideas from signal processing with Online learning algorithms to select

portfolios in an optimal way.

To demonstrate the usefulness of our methodology we evaluate our algorithm against

some benchmark Online portfolio allocation techniques using previously untested market

datasets. Our algorithm substantially outperforms existing Online stock selection techniques

without much additional computational demand or modelling complexity.

5.2 MATHEMATICAL MODEL

The stock market model considered in this chapter is the same as the one presented in

Chapter 2. We consider a market ofm assets such that a market vector x = (x1,x2, ...,xm) ∈

Rm
+ is the vector ofm numbers representing price relatives for a given trading period. The jth

component xj of x expresses the ratio of two consecutive closing prices of asset j, such that

xt,i =
pt,i
pt−1,i

≥ 0 and each element pt,i represents the closing price of asset i on period t and

pt−1,i is the closing price of stock i on period t− 1. Thus, an investment in asset i on period

t increases by a factor of xt,i. The investor distributes his capital at the beginning of each
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trading period according to a portfolio vector b = (b1,b2, ...,bm), where the jth component

bj of b denotes the proportion of the investor’s capital invested in asset j. Throughout this

thesis we assume that the portfolio vector b has non negative components, which means that

the investment strategy is self- financing and that both consumption of capital and short

selling is not permitted. Mathematically this simply means that
m∑
j=1

bj = 1 and bj ≥ 0.

Starting with an initial wealth S0, we showed in the previous chapter that after n trading

periods, the investment strategy achieves the wealth

Sn = S0

n∏
i=1

〈
bi
(
xi−1

1

)
,xi
〉

= S0 exp

{
n∑
i=1

log
〈
bi
(
xi−1

1

)
,xi
〉}

(5.1)

Sn = S0 exp {nWn (B)} (5.2)

where Wn (B) denotes the average growth rate and is given by

Wn (B) =
1

n

n∑
i=1

log
〈
bi
(
xi−1

1

)
,xi
〉
. (5.3)

This is essentially a log utility function whose expected value needs to be maximised

given a suitable choice of non-negative portfolio vectors bi
(
xi−1

1

)
. Therefore maximising

Sn = Sn (B) is equivalent to maximising the average growth rate whose expression is given

by

Wn (B) : b∗i
(
xi−1

1

)
= argb maxE

{
log
〈
bi
(
xi−1

1

)
,xi
〉
| xi−1

1

}
(5.4)

This is a nonlinear convex optimisation problem for which closed-form solutions are

not easily available. The search for an acceptable solution has lead many researchers in

the machine-learning community to suggest various deterministic or randomised rules that

explicitly determine a sequence of portfolio weights with the aim of maximising the investor’s

wealth without prior knowledge of the statistical distribution of stock prices. The current

research study proposes many such algorithms.
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5.3 TREND ADJUSTED PRICE RELATIVES

The generally accepted practice in published state-of-the-art algorithms (see Borodin et al.

(2004); Li et al.(2012))) is to use the raw price relative as the main argument in the machine-

learning algorithm. Raw price relative for security i is defined as the ratio of two consecutive

closing prices xt,i =
pt,i
pt−1,i

at time t . However, raw price relatives and their logarithms

are notoriously volatile time series and there is very little to believe that the mean reversion

characteristics will be effective in the very next periods, if at all. While the academic research

community has adopted the raw price relative as the primary input argument in machine-

learning systems, market practitioners have always applied some smoothing to stock prices

before proceeding to any statistical analysis.

Many stochastic processes, including stock prices, have inherent noise that obscures the

true underlying values. To be successful in today’s market place, portfolio managers need

to see through all the market noise that occurs on a daily basis and be able to identify the

trend in stock prices. Classical approaches to this problem have been to apply a moving

average, as in Li et al. (2012), or an exponential moving average to the time-series to obtain

a smoothed values. We believe that it is potentially risky to use the simple moving averages

on time-series because they most likely will change the statistical properties of the time-series

under consideration during period of highten volatility. Appropriate smoothing of price data

can eliminate some of the market noise and allow the portfolio manager to focus on trading

more persistent patterns. In order to reduce the impact of these noises in smoothing stock

prices we use the scalar Kalman Filter (KF).

The KF is an optimal filter that provides us with clearer stock price resolution and allow

us to isolate the peak excursions when the stock price significantly departs from its "true"

unobserved component. When the stock price significantly departs from its trend price, we

anticipate that the move is unsustainable and take the view that short-term price will reverse

from these peaks. Therefore, critical to our analysis is not how much the price moves from

one period to the next as assumed by comparable studies, but instead, how far apart the

stock price is from its Kalman trend.

To illustrate why TAPR and raw price relative can lead to two very distinct conclusions,

91



we plot in Figure 5.1 two actively traded stock prices in the Johannesburg Stock Exchange

together with their respective trend derived from a simple moving average filter. There are

clearly periods where both stocks lie above, below or in opposite sides of their respective

moving averages. On the surface, it seems as though the higher the stock price is from its

moving average, the more bullish the market is (and the lower it goes, the more bearish). In

practice, however, the reverse is generally true. Extremely high readings are a warning that

the market may soon reverse to the downside as this tend to reveal that traders are far too

optimistic. When this occurs, fresh new buyers are often few and far between. Meanwhile,

very low readings signify the reverse; the bears are in the ascendancy and a bottom is near.

To illustrate this idea further we consider the following simple example: At time t, for

example, stock A rises by about 3% while stock B falls by 1%. According to the standard

mean reversion paradigm (Borodin et al. (2004); Li et al.(2012) are good examples), most

Online learning algorithms will likely start transferring wealth away from stock A and into

stock B, given the outperformance of stock A over B most. However, we believe this is

a premature and potentially misleading interpretation of the dynamics of these stocks, as

stock A comes from a very over sold position (A is below its moving average plotted in red

in Figure 5.1) and is simply "catching up". Our proposed algorithm acknowledges this fact

and will instead recommend transferring more wealth away from stock B and into stock A.

As a consequence the distance between a stock price and its moving average (or trend) is

the critical input into our proposed algorithm.
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Figure 5.1: Impact of smoothing on two stock prices
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In this chapter we use the Kalman Filter as the appropriate filtering methodology, given

its well-known robustness to noisy data. Using the Kalman Filter helps us to filter out very

volatile and cyclical components of stock prices and derive what we refer to as the TAPR.

If pt represents the stock price at time t and pkt the filtered or unobserved "true" price (as

defined below) at time t, the TAPR is simply expressed as

TAPR =
pt
pkt

The TAPR ratio is used in this thesis to judge how over sold or over bought the stock

of a corporation is relative to its own unobserved true price. The farther away the price

relative is from its own trend, the more attractive the stock will be for purchase or for sale

in our model. Because our algorithm takes a bet only when a given stock price significantly

deviates from its trend, this new measure of price relative is therefore expected to yield

better mean reversion characteristics compared to traditional counterparts.
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5.3.1 Statistical Properties of the TAPR

Let us assume that the stock price process is governed by a state-space representation where

the measurement equation is given by:

pt = Mpkt + vt (5.5)

where M is known and vt ∼ N (0, P ) with P known. For simplicity we assume that the

prices process pkt is uncorrelated with the innovation vt. Equation 5.5 essentially describes

the relationship between the observed stock price pt and the unobserved "true" stock price

pkt .

Now, Let us assume that there is a transition equation that follows an autoregressive

AR(1) process and given by

pkt = p0 + φpkt−1 + wt (5.6)

where |φ| < 1 is assumed known and wt ∼ N (0, Q) with Q known.

From Equation 5.5 we obtain the following ratio:

pt
pkt

= M +
vt
pkt

(5.7)

Equation 5.7 represents our measure of the TAPR centred around the known constant co-

effi cientM . TAPR is dominated by the behaviour of the ratio vt
pkt
whose statistical properties

could be easily defined .

From the specification of the transition equation it is easy to demonstrate that the mean

E
(
pkt
)

= p0
1−φ and the variance V ar

(
pkt
)

= Q
1−φ2 therefore pkt ∼ N

(
p0

1−φ ,
Q

1−φ2

)
. In Appendix

A we prove (using the Taylor expansions around g (.)) that given two random variables vt

and pkt where p
k
t has support 0,∞) the function G = g

(
vt, p

k
t

)
= vt

pkt
, has the following

approximates for E (G) and V ar (G).

E

(
vt
pkt

)
=
Evt
Epkt

−
Cov

(
vt, p

k
t

)
E2pkt

+
V ar

(
pkt
)
Evt

E3pkt
(5.8)

V ar

(
vt
pkt

)
≈ E2vt
E2pkt

[
V ar (vt)

E2vt
− 2

Cov
(
vt, p

k
t

)
Evt Epkt

+
V ar

(
pkt
)

E2pkt

]
(5.9)
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We therefore provide the following expression for the mean and variance of the ratio pt
pkt

E

(
pt
pkt

)
= M (5.10)

With some abuse of notation we can calculate V ar
(
pt
pkt

)
as:

V ar

(
pt
pkt

)
= aV ar(vt) + bV ar(pkt ), where a =

E2vt
E2pktE

2vt
, b =

E2vt
E2pktE

2pkt
(5.11)

The ratio of the observed stock price to its unobserved component (Kalman trend ) is

such that

pt
pkt
∼ N

(
M,aR + b

Q

1− φ2

)
(5.12)

This last expression demonstrates that the statistical properties of the TAPR pt
pkt
are

well established and that these in a sense assure better mean reversion characteristics. This

finding is the main motivation why we would expect historical simulations that use the new

price relative measure to outperform the base line models that rely on raw price relative as

used in most empirical analyses. In fact, the last equation shows that 95% of time we will

have the relationship below

M − 2

(
aR + b

Q

1− φ2

)
≤ TAPR ≤M + 2

(
aR + b

Q

1− φ2

)
(5.13)

and whenever our TAPR is outside those bounds we can expect a reversal in the very

next period.

5.3.2 The Scalar Kalman Filter Algorithm

To fully specify our measure of TAPR, we now explain the basic steps needed to derive the

Kalman Filter-based price trend, pkt .

The Kalman Filter is a recursive algorithm that produces estimates of a time series

of unobservable variables (along with parameter estimates for the theoretical model that

generates the data) using a related but observable time series of variables. The estimates
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of the unobservable variables are updated at each time step based on the revelation of new

observable data. The Kalman Filter uses the current observation to predict the next period’s

value of unobservable stock price and then uses the realisation of the next period to update

that forecast. The linear Kalman Filter is optimal; i.e. it has the minimum Mean Squared

Error estimator if the observed variable and the noise are jointly Gaussian.

Let us assume p1, p2, ..., pt are the observed values of the stock prices for a given firm at

time 1, 2, ..., t. We assume that pt depends on an unobservable quantity pkt , known as the

state of nature or the true stock price. The Kalman Filter recursive estimation algorithm

works as follows:

At time t0 the process starts with an initial estimate pk∗0 for pkt which has a mean of µ0

and a variance:

P = E
(
pk0 − pk∗0

)2
(5.14)

At time t1 and before any measurement is taken (or before any stock price is revealed)

the state price is given by:

pk1 = φpk∗0 (5.15)

its variance is given by:

P = E
(
pk1 − pk1

)2
= E

[
φpk0 + µ0 − φpk∗0

]2
= φ2P +Q, (5.16)

and the transition equation is given by:

p1 = Mpk1 (5.17)

Still at time t1 and after the measurement p1 becomes available:

pk∗1 = pk1 +K [p1 − p1] = pk1 +K
[
p1 −Mpk1

]
(5.18)

96



whereK is the kalman gain. After p1 becomes available, the variance of the measurement

needs to be updated in the following way:

P =
[
pk1 − pk∗1

]2
=
[
p1 − pk1 −K

[
p1 −Mpk1

]]2
(5.19)

P =
[
pk1 − pk1 −K

[
Mpk1 + w1 −Mpk1

]]2
= P (1−KM)2 +RK2 (5.20)

The value of the Kalman gain (K) that minimises the variance is:

K = MP
(
PM2 +R

)−1
(5.21)
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Table 5.1 shows the 5 equations needed for a recursive estimation of the multivariate

Kalman Filter.

Table 5.1 KF( µt−1,
∑

t−1, µt, zt)

Inputs A,B,R all constant parameters

Output µt,
∑

t

1 µ = Aµt−1 +Bµt−1

2
∑

= A
∑

t−1 A
ᵀ +R

3 Kt =
∑

tC
ᵀ
t

(
Ct
∑

tC
ᵀ
t +Qt

)−1

4 µt = µt +Kt (zt − Ctµt)

5
∑

t = (I −KtCt)
∑

t

Table 5.2 shows a pseudo code implementation to the Kalman-induced TAPR algorithm

Table 5.2: TAPR (Price, φ,M, P )

|φ| < 1: autoregressive coeffi cient of the state equation

M : coeffi cient in the measurement equation

Initialise the Kalman Filter parameters (Q,R,Z)

Output: xt

for t = 1, 2, ...n do

1 Z = φẐ

2 P = φ2P +Q

3 K = MP
[
PM2 +R

]−1
: Kalman gain

4 Ẑ = Z +K
[
Pt −MZ

]
5 P = P [1−KM ]2 +RK2

6 xt = Price
Ẑt
: Trend Adjusted Price Relative

end
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5.3.3 TAPR Parameter Settings

This section briefly explains the TAPR parameter settings that will be used throughout

this thesis. There are four key parameters in the proposed Kalman Filter-induced TAPR

algorithms. The first parameter is the variance, R, of the innovation in the state equation

(Equation 5.5). We set R = 100 throughout this thesis. The second parameter is the

coeffi cient M in the state equation, which will be set arbitrarily to M = 0.5. The third

paramter represents the variance of the white noise parameter, Q, in the transition equation.

Throughout this thesis we will assume thtQ = 1000. The last parameter is the autoregressive

coeffi cient, φ, in the transition equation (Equation 5.6). For simplicity purpose we set

this parameter as: φ = 0.95. Despite these simple settings, we acknowledge that the best

parameters are often datasets dependent. In all our experiments, we decided to simply

set these parameters empirically without trying to optimise their values. An alternative

and more effi cient way to set these parameters is to estimate their values using well known

routines like Gibbs Sampling. It is therefore likely that the parameters choice made in this

section might be suboptimal and lead to lesser wealth growth than what could be achieve

via a more robust parameter estimation.

5.4 ONLINE PORTFOLIO SELECTION ALGORITHMS VIA TREND

ADJUSTED PRICE RELATIVES

This section analyses the empirical validity of our proposed mean reversion principle via

the TAPR. To do so, we revisit some of the Online PS algorithms surveyed in Chapter

4 and propose a set of new and powerful algorithms that substantially outperform those

presented in Chapter 4. We show that our novel approach is in fact general enough and

can improve the performance of most existing state-of-the-art PS algorithms without any

additional modelling complexity.
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5.4.1 Momentum Anticor (MAC) Algorithm via TAPR

In this section, we revisit the Anticor (AC) algorithm of Borodin et al. (2004) and proposes

very important and significant extensions. It will be shown that the new proposed algorithms

can exploit both mean reversion and momentum features of stock prices.

In its original form, the AC algorithm provides results on historical stock prices that

show that an algorithm derived from simple heuristics can significantly outperform those

that provide theoretical guarantees. Borodin et al. (2004) show historical simulation results

or some real-market datasets that demonstrate that the AC algorithm is indeed very robust

in those datasets based solely on the mean reversion principal.

Despite this impressive empirical performance, an extensive body of behavioral finance

literature has documented that price reversal is hardly the only feature at play in equity

markets. It has been argued that price momentum and reversals tend to coexist in world

stock markets in the short term. In a comprehensive investigation, Conrad and Kaul (1998)

find both momentum and contrarian profits in the U.S. market, depending on the time

horison investigated. Balvers and Wu (2006) also demonstrate that mean reversion and

momentum can simultaneously occur on the same set of assets in 18 developed countries.

This coexistence of both momentum and reversal means that an exclusive focus on mean

reversion is likely to generate suboptimal portfolio allocations. It is therefore possible that

in the presence of both price reversal and price continuation, the original AC algorithm will

fail to perform optimally. To correct this shortcoming we provide an important modification

to the AC algorithm that can deal with both momentum as well as reversal in the following

way.

As in Borodin et al. (2004), our proposed algorithm evaluates changes in stock perfor-

mance by dividing the historical sequence of past returns series into equal-sized periods called

windows, each with a length of w days where w is an adjustable parameter. Our algorithm

also transfers wealth from one group of experts to another group of experts depending on

the most recent performance and the strength and direction of correlation over subsequent

windows.

For a window length w, we consider LX1 and LX2 as two w × n matrices over two
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consecutive time windows, which we compute as follows:

LX1 = (log (Xt−2w+1) , ..., log (Xt−w))T and LX2 = (log (Xt−w+1) , ..., log (Xt))
T (5.22)

The jth column of LXk is denoted by LXk (j) and simply tracks the performance of

stock j in window k where k = 1, 2. Let µk (j) be the mean of LXk (j) and σk (j) be the

corresponding standard deviation. The cross-covariance matrix between the columns vectors

of LXk is defined as follows:

Mcov (i, j) =
1

w − 1
[LX1 (i)− µ1 (i)]T [LX2 (j)− µ2 (j)] (5.23)

and the corresponding cross-correlation matrix is given by:

MCorr (i, j) =


MCov(i,j)
σ1(i)σ2(j)

, σ1 (i) , σ2 (j) 6= 0

0 otherwise

(5.24)

The reversion to mean strategy of Borodin et al. (2004) states that if

µ2 (i) ≥ µ2 (j) and Mcorr (i, j) > 0 (5.25)

the proportion of wealth to be moved from stock i to stock j is defined as:

claimi→j = Mcorr (i, j) + max (−MCorr (i, i) , 0) + max (−MCorr (j, j) , 0) (5.26)

To account for the possibility of short term reversal as well as momentum we expand the

benchmark AC algorithm as follows. If

µ2 (i) ≥ µ2 (j) and Mcorr (i, j) ≤ 0

the proportion of wealth to be moved from stock i to stock j is defined as

claimi→j = −Mcorr (i, j) + max (MCorr (i, i) , 0) + max (MCorr (j, j) , 0) (5.27)
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Therefore whenever our algorithm detects that stock i outperformed stock j during the

last window but i′s performance in the last window is not anti-correlated to j′s performance

in the second-to-last window it transfers wealth from stock j to stock i (the model is adding

into the holding of stock i) and calculate new portfolio weights. The simple logic here is that

there will be price continuation in the direction of the outperforming stock.

From both the reversal to the mean and the price continuation conditions we calculate

the transfers of stock i to stock j as:

transferi→j = bt−1 (i)
claimi→j∑
j claimi→j

(5.28)

Using these transfer values, the portfolio is defined to be:

bt (i) = bt−1 (i) +
∑
i6=j

(transferj→i − transferi→j) (5.29)

and we call the resulting algorithm the Momentum-Anticor or MAC. In Table 5.3, we

show a pseudo code implementation of the proposed KMAC algorithm where the TAPR is

derived from the scalar Kalman Filter algorithm.
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Table 5.3: KMAC (Pr ice, w, φ,M, P )

w: window sise

φ: autoregressive coeffi cient of the state equation

M : coeffi cient in the measurement equation

b0: initial portfolio weights b0 =
(

1
m
, ..., 1

m

)
Initialise the Kalman Filter parameters (Q,R,Z, V )

for t = 1, 2, ...

1 Estimate the true price Zt using the following procedure

2 xt=TAPR (Pr ice, φ,M, P )

3 Return the current portfolio bt if t < 2w

4 compute LX1 = (log (Xt−2w+1) , ..., log (Xt−w))T

5 compute LX2 = (log (Xt−w+1) , ..., log (Xt))
T

6 compute µ1 = average (LX1) and µ2 = average (LX2)

7 computeMcov (i, j) = 1
w−1

[LX1 (i)− µ1 (i)]T [LX2 (j)− µ2 (j)]

8 computeMCorr (i, j) =


MCov(i,j)
σ1(i)σ2(j)

, σ1 (i) , σ2 (j) 6= 0

0 otherwise

9 Initialise claimi→j = 0

10 if µ2 (i)≥ µ2 (j) and Mcorr (i, j)> 0

11 claimi→j= Mcorr (i, j) + max (−MCorr (i, i) , 0) + max (−MCorr (j, j) , 0)

12 else if µ2 (i) ≥ µ2 (j) and Mcorr (i, j) ≤ 0

13 claimi→j= −Mcorr (i, j) + max (MCorr (i, i) , 0) + max (MCorr (j, j) , 0)

14 transferi→j= bt−1 (i)
claimi→j∑
j claimi→j

15 bt (i) = bt−1 (i) +
∑
i6=j

(transferj→i − transferi→j)

end

The pseudo code presented in Table 5.3 is clearly a generalisation of the AC algorithm.

Because it accounts for both price reversals and price momentum, we expect our KMAC
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to perform significantly better than the original AC algorithm. Further to that, Table

5.3 also allows us to derive a new class of algorithms that could form the basis for valid

investment strategies. For example, if the portfolio manager uses only the original AC

Algorithm together with the TAPR we refer to this algorithm as the Kalman Anticor (KAC)

algorithm. Of course the derived KAC algorithm will not exploit the joint coexistance of both

mean reversals and momentum but will still represent an improvement from the benchmark

AC algorithm. Similarly, if a portfolio manager uses the raw price relative as the main

argument, together with our proposed generalised AC Algorithm, we refer to this version as

the Momentum Anticor or MAC. The empirical simulations below will show the results of

this new class of algorithms, including the MAC, the KAC and the KMAC together with

the originally proposed AC algorithm.

5.4.2 Combining Portfolio of Experts

Our proposed Anticor-based Online PS algorithms require an important fine tuning para-

meter, namely the window length w. Because it is impossible to know ex ante what window

sise will generate better out of sample performance our approach is simply to select different

window periods, called experts, and allow them to compete. As in Gyorfi et al. (2004) we

form a mixture of all experts using a positive probability distribution qw on the set of all

window lengths w of positive integers. The investment strategy simply weights these experts

Hw according to their past performances and the qw such that after the tth trading period

the investor wealth becomes:

St =
∑
w

qwSt (Hw) (5.30)

where St (Hw) is the capital accumulated after tth trading period using the expert Hw

with initial capital S0 = 1. We then form our final portfolio by weighting all expert portfolio

using the following:

b
(
X t−1

1

)
=

∑
w qwSt−1 (Hw)hw

(
xt−1

1

)∑
w qwSt−1 (Hw)

(5.31)
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5.5 EMPIRICAL RESULTS

This section presents numerical results obtained by applying all the Anticor-based algo-

rithms, including the MAC, the KAC and the KMAC, using six financial market datasets

described in Chapter 3. As usual, the back-testing experiments in this section will consist of

running the signals through historical data, with the estimation of parameters, signal evalu-

ations and portfolio re-balancing performed on a daily basis. For our simulatoin purpose we

set the maximum window sise W = 30.

5.5.1 Analysis of Cumulative Wealth

The first experiment evaluates the compounded wealth achieved by the AC-based learning-

to trade algorithms including a c = 10 basis points transaction cost over the entire sample

period. Figure 5.2 summarises the total wealth achieved by the new class of algorithms on

the six market datasets.

On the NYSE (N) datasets for example, after trading for 22 years, the total wealth

achieved by the AC strategy and the MAC strategy impressively increases from $1 to almost

$560K and $640K, respectively, which are much higher than the best stock that achieves

$84.82 and the market index that achieves a mere $31.82. For the same datasets the per-

formance of the KAC and KMAC are even more impressive. In the case of the KAC, for

example, 1$ rises to $6.5-million after 6431 days of trade while the KMAC rises to an impres-

sive $23.0-million during the same time frame. Our proposed methodology therefore achieves

a growth in wealth that is more than 41 times that achieved by its benchmark algorithm.

This dominance of our proposed algorithms relative to their benchmarks is also evident in

all other datasets and time frames as shown in Table 5.4. Both KAC and KMAC achieve

considerably better results than the market index, the best stock in the market, as well as

all their benchmark AC algorithm for all data sets.

105



Figure 5.2: Performance of Selected AC-based Algorithms
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Besides the preceding results, we are also interested in examining how the total wealth

achieved by various strategies changes over different trading periods. Table 5.4 shows the

total wealth achieved by the KMAC (simply called ALG in Table 5.4). From Table 5.4,

we first observe that our proposed KMAC algorithm consistently outperforms not only the

benchmark index but also the AC over most trading sub-samples and all datasets. It is also

interesting to note that, although the market drops sharply due to the financial downturn in

2008, the proposed KMAC algorithms are still able to achieve excellent results in all datasets,

which is especially more impressive in the later part of the South Africa Top40 datasets. All

these impressive results demonstrate the usefulness and robustness of the proposed learning-

to-trade algorithm.
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Table 5.4: CAGR of the KMAC Algorithm

FTSE100 TOP40 TSE60 NASDAQ NYSE(N) NYSE(O)

ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT

Full 0.44 0.13 0.57 0.20 0.79 0.17 0.68 0.18 0.69 0.15 1.55 0.16

1Yr -0.07 0.21 0.12 0.17 -0.01 0.11 0.36 0.39 1.51 0.29 0.58 -0.01

2Yrs 0.04 0.22 0.07 0.22 0.09 0.10 0.10 0.26 -0.25 -0.04 0.73 0.16

3Yrs 0.09 0.12 0.22 0.17 0.08 0.05 0.13 0.18 -0.17 -0.07 0.93 0.23

4Yrs 0.16 0.16 0.36 0.19 0.13 0.09 0.13 0.21 -0.04 0.03 0.74 0.19

5Yrs 0.41 0.23 0.54 0.23 0.35 0.17 0.48 0.30 -0.04 0.05 0.77 0.20

7Yrs 0.23 0.12 0.46 0.16 0.18 0.09 0.40 0.17 0.11 0.08 1.02 0.20

10Yrs 0.30 0.15 0.57 0.22 0.34 0.14 0.43 0.17 0.40 0.07 1.24 0.19

15Yrs 0.34 0.13 0.64 0.21 0.48 0.15 0.52 0.18 0.54 0.07 1.51 0.13

Despite this impressive long-term performance on all datasets we notice that the KMAC-

based PS algorithm has been quite subdued in recent times on some datasets. For example

the algorithm achieves a 1% gain in 2013 and a 20% gain in 2012 using the TSE60 index

in Canada. The same pattern can be seen in the FTSE100 in the UK, where the algorithm

achieves an annualised compounded growth rate that was much less than its benchmark

algorithm in 2013.

5.5.2 KMAC Performance Risk Analysis

Table 5.5 shows some of the KMAC risk measure on the six datasets. From the results,

we see that the KMAC-based strategy has a volatility of returns that is higher than the

one achieved by its respective benchmarks. However, the Sharpe Ratio generated by the

algorithm is also significantly higher than the respective stock market indices. This is an

indication that the KMAC-based strategy generates much better risk adjusted returns.
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Table 5.5: Risk Statistics of the KMAC-Based PS Algorithm

FTSE100 TOP40 TSE60 NASDAQ NYSE(N) NYSE(O)

ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT

σ 0.41 0.18 0.32 0.16 0.42 0.17 0.50 0.23 0.44 0.19 0.37 0.13

α 0.13 0.00 0.11 0.00 0.20 0.00 0.10 0.00 0.14 0.00 0.30 0.00

β 1.44 1.00 1.24 1.00 1.48 1.00 1.37 1.00 1.29 1.00 1.35 1.00

γ 2.01 0.00 1.60 0.00 -0.90 0.00 2.69 0.00 2.39 0.00 4.03 0.00

Bl ↑ 1.56 1.00 1.27 1.00 1.49 1.00 1.53 1.00 1.46 1.00 1.42 1.00

Br ↓ 1.39 1.00 1.19 1.00 1.49 1.00 1.28 1.00 1.13 1.00 1.26 1.00

SR 1.28 0.37 1.47 0.78 1.55 0.59 1.14 0.53 1.32 0.44 2.63 0.64

MDD -0.63 -0.40 -0.47 -0.30 -0.57 -0.41 -0.60 -0.47 -0.90 -0.64 -0.37 -0.37

PP 0.57 0.56 0.57 0.57 0.57 0.58 0.56 0.56 0.56 0.55 0.57 0.53

PP↑ 0.81 1.00 0.80 1.00 0.78 1.00 0.81 1.00 0.79 1.00 0.79 1.00

PP↓ 0.26 0.00 0.27 0.00 0.28 0.00 0.26 0.00 0.28 0.00 0.31 0.00

Further, we observe that the maximum drawdown on the six stock datasets are higher

when compared with that achieved by their respective benchmarks. For example, we also note

that the percentage of time the KMAC-based algorithm generates positive returns (PP) is

very similar to the percentage of time the varous indices generate positive returns. However,

when the market index was up, the KMAC-based algorithm generated positive returns more

than 80% of time on all datasets. These impressive results suggest that the value add of the

KMAC-based algorithm lies in its ability to find stocks that are likely to rise more in a rising

market or fall less in a falling market. This fact is also confirmed by the Gamma coeffi cient

in Table 5.5 and the asymmetric betas. Excluding the TSE60 in Canada, the KMAC-based

PS algorithm demonstrates very impressive market-timing abilities. On the NASDAQ for

example, when the market was up by 1%, the KMAC on average gained 1.53%. And when

the market was down, the KMAC lost on average 1.28%. Similar asymmetric behaviour can

be seen with all other datasets.

This impressive empirical performance clearly demonstrates that mean reversion and

momentum can simultaneously occur on the same set of assets in the six markets in studied
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here. It is therefore evident that in the presence of both price reversal and price continuation,

the original AC algorithm fails to perform optimally. To correct this shortcoming we have

provided an important modification to the AC algorithm that seems to deal quite effectively

with both momentum as well as reversal in comprehensive way. In our view the KMAC-based

PS algorithm is indeed a very robust investment strategy.

5.5.3 KMAC Brokerage Costs Analysis

In this thesis we work on the assumption that there are charges on all transactions equal to

a fixed percentage of the amount transacted. We adopt the proportional transaction cost

model following Blum and Kalai (1999) and Borodin et al. (2004); that is, rebalancing the

portfolio on any given day incurs transaction costs for both buy and sell orders.

At the beginning of the tth trading day, the portfolio manager rebalances the portfolio

from the previous closing price adjusted portfolio bt−1 to a new portfolio bt. Specifically, we

consider a transaction cost rate c ∈ (0, 1). Thus, with transaction cost rate the total wealth

achieved by the strategy becomes:

ScT = S0

T∏
t=1

[
(bt,xt)

(
1− c

2

m∑
k=1

∣∣∣̃bkt − bkt ∣∣∣
)]

(5.32)

Transaction costs are therefore taken into account and we assume that a round-trip

trading cost per trade of 10 basis points might just be enough to incorporate an estimate of

price slippage and other costs as a single market friction coeffi cient.

Figure 5.3 shows the performance of the KMAC algorithm net of brokerage commissions

against some benchmark strategies on our six datasets. In general, the potential outperfor-

mance of the KMAC strategy could be heavily affected if the commissions paid in order to

execute every transaction is high or if the prices of stocks that are selected for inclusion in

the portfolio rise systematically between investment decision and complete trade execution.
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Figure 5.3: KMAC Brokerage Cost Analysis
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Figure 5.3 clearly demonstrates that our proposed KMAC investment algorithm can toler-

ate moderate proportional commission rates and still beat competing benchmarks, including

the best stock, the Buy-and-Hold equally weighted market index and best constantly rebal-

anced portfolio in hindsight called BCRP*. The graphs in Figure 5.3 depict the total returns

of the KMAC algorithm for varying proportional commission factors c = 0.1%, 0.2%, ... It

does clearly appear that our strategy can withstand reasonable brokerage commissions. For

example, with a commission cost of c = 0.1% or 10 basis points (10 bps), the algorithm still

beat the best stock, the market and the BCRP* portfolio in all markets we consider. In fact

even with c < 0.25% our algorithm beats all its respective market indices on all data set.
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5.6 PAMR AND CWMR VIA TAPR

This section applies the TAPR concepts developed earlier to some of the PS algorithms sur-

veyed in Chapter 4. We observed in Chapter 4 that the so called state-of-the-art learning

to select portfolio strategies in general and the PAMR and CWMR in particular, gener-

ally performed better on older datasets than on more recent and previously untested stock

prices. This clearly shows that in their current specification these algorithms cannot easily

be implemented by a portfolio manager. We also found that although the cumulative wealth

achieved by these state-of-the-art approaches is higher over the full sample, their more recent

performance is significantly lower than that achieved over the long-term.

Earlier in this chapter, we argued that many stochastic processes, including stock price

relatives, have inherent noise that obscures the true underlying values. Therefore, applying

raw price relatives, as has become the norm in the Online trading algorithms, is likely to

be suboptimal. To be successful in today’s market place, portfolio managers need to see

through all the market noise that occurs on a daily basis and be able to identify the trend of

prices. Classical approaches to this problem have been to apply a moving average, as in Li et

al. (2012), or an exponential moving average to asset price time series to obtain a smoothed

values.

We made the point that what matters to the investor is not the magnitude of the stock

price change relative to its value in the previous period but its distance relative to some

expected stock price in the current period. More specifically, when a stock deviates signifi-

cantly from its expected value (or unobserved true value) as measured by the TAPR ratio,

there is a corresponding high likelihood that this over or undervaluation will revert back to

some equilibrium. Because our algorithm takes a bet only when a given stock price signifi-

cantly deviates from its expected (trend) value, our new measure of price relative is therefore

expected to yield better mean reversion characteristics and better perfomance where most

state-of-the-art PS algorithms fail.

To further demonstrate the validity of our claim, we use two existing state-of-the-art

trading strategies, namely the PAMR (Li et al. (2012)) and the CWMR (Li et al. (2013)),

that have shown unimpressive performance on more recent datasets. Our strategy in rela-
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tively simple and intuitive (see Table 5.6 for a pseudo code). For each algorithm called ALG

(PAMR, CWMR, etc...) we start by estimating the "true" unobserved stock price for market

data. We then calculate the TAPR and use that as input into the Online PS algorithm. The

new derived algorithms are referred to as the KPAMR and KCWMR. We combine the expert

in the usual way.

Table 5.6: ALG (X, w, params)

Inputs: X: price relative

w: window sise

params: required parameters

Output: b: portfolio weight matrix

Initialise: b1 = 1
m

1;

(Q,R,Z, V ): kalman Filter parameters

for t = 1, 2, ..., n

1 Receive xt

2 Calculate daily cumulative returns: St = St−1 × (bt.xt)

3 Estimate the unobserved true price pkt

4 Calculate the TAPR: xt = pt
pkt

5 Update the portfolio weights for the following algorithms

bt+1 =

 CWMR (X,φ, ε)

PAMR (X, ε)

end

5.7 EXPERIMENTAL RESULTS

In this section, we present the results of our experiments using the six market datasets

discussed in Chapter 3.
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5.7.1 Parameter choices

Parameter choices had to be made for all algorithms before performing any historical sim-

ulations. Table 5.7 below summarizes the various algorithms used for comparison together

with some parameter choices.

Table 5.7: Parameter Settings

1 Market: Market strategy is simply the uniform BAH approach

2 Best-Stock: Best stock in the market that is a hindsight strategy;

3 BCRP*. Best Constant Rebalanced Portfolios strategy in hindsight;

4 Kernel (W,L, c):. Nonparametric kernel-based moving window

strategy with the parameter W = 5, L = 10, c = 1 (Gyorfi et al. [2006])

5 NN(W,L). Nonparametric nearest-neighbor-based strategy with parameter

W = 5, L = 10, pl = 0.02 + 0.5 l−1
L−1

(see Gyorfi et al. [2008]).

6 CORN(W, ρ): We fix ρ = 0.3 and W = 5

7 CWMR(φ, ε): We set φ = 2, and ε = 0.5

8 PAMR(ε): We set ε = 0.5

Figure 5.3 and Figure 5.4 show the wealth accumulated by the PAMR and CWMR

strategies via the TAPR input variable. We call these new algorithms the K-PAMR and the

K-CWMR. We see that the TAPR-based alogrithms performs exceptionally well, not only

against their benchmark equivalents but also amongst other state-of-the-art algorithms as

shown in Chapter 2.
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Figure 5.3: K-PAMR Cummulative Wealth

0 1000 2000 3000 4000
10­1

100

101

102

103
To

ta
l w

ea
lth

FTSE100

K­PAMR
FTSE100

0 1000 2000 3000 4000
10­1

100

101

102

103

104
NASDAQ100

K­PAMR
NASDAQ100

0 1000 2000 3000 4000 5000 6000 7000
10­2

100

102

104

106

108

1010
NYSE­NEW

K­PAMR
NYSE­NEW

0 1000 2000 3000 4000 5000 6000
10­5

100

105

1010

1015

1020

Number of Days Traded

To
ta

l w
ea

lth

NYSE­OLD

K­PAMR
NYSE­OLD

0 1000 2000 3000 4000
10­1

100

101

102

103

104

Number of Days Traded

TOP40

K­PAMR
TOP40

0 1000 2000 3000 4000
10­2

100

102

104

106

108

Number of Days Traded

TSE60

K­PAMR
TSE60

K-CWMR and K-PAMR algorithms peform best on all datasets analyzed within the class

of algorithms surveyed. For example, on the NYSE (O) datasets after trading for 22 years,

the total wealth achieved by the K-CWMR strategy and the K-PAMR strategies impressively

increased from $1 to almost an astronomical $1.27×1018 and $6.62×1017, respectively. The

performance of these two algorithms is 192 and 143 times that achieved by their respective

benchmarks, the CWMR and the PAMR using the NYSE(O) datasets. This result clearly

shows that our proposed algorithms are competitive with the best base algorithm in all the

experimental setups.
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Figure 5.4: K-CWMR Cummulative Wealth Growth
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Figure 5.5 and Figure 5.6 show the performance sensitivity of the K-PAMR and K—

CWMR-based PS selection algorithms net of brokerage commissions against some benchmark

strategies on our six datasets.
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Figure 5.5: K-PAMR Brokerage Cost Analysis
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Figure 5.5 and 5.6 clearly demonstrate that our proposed K-PAMR and K-CWMR in-

vestment algorithms can tolerate reasonable proportional commission rates and still beat

competing benchmarks, including the best stock, the Buy-and-Hold equally weighted mar-

ket index and best constantly rebalanced portfolio in hindsight called BCRP*. As usual

Figure 5.5 and 5.6 depict the total returns of the K-PAMR and K-CWMR algorithms for

varying proportional commission factors c = 0.1%, 0.2%, ...
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Figure 5.6: K-CWMR Brokerage Costs Analysis
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5.7.2 Performance Comparison

Table 5.8 shows that all the TAPR-based strategies achieve considerably better results than

the market index, the best stock in the market, as well as all their state-of-the-art benchmark

equivalent strategies. Among all compared algorithms, the proposed K-CWMR, K-PAMR

and K-MAC algorithms always achieve the best total wealth on all datasets, and are sub-

stantially better than the market index and the best stock in the market.
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Table 5.8: Performance Comparison of PS Algorithms.

FTSE100 NASDAQ NYSE(N) NYSE(O) TOP40 TSE60

BEST STOCK 4.76E+01 2.15E+02 8.48E+01 5.33E+01 8.78E+01 2.78E+01

MARKET 5.00E+00 1.07E+01 1.82E+01 1.42E+01 1.37E+01 6.12E+00

UCRP 5.63E+00 1.05E+01 3.18E+01 2.67E+01 1.36E+01 9.18E+00

BCRP* 5.48E+01 5.92E+02 1.21E+02 2.49E+02 1.15E+02 5.83E+01

AC 6.82E+01 2.67E+02 5.59E+05 4.17E+07 4.54E+02 1.51E+03

MAC 1.81E+02 1.66E+03 6.33E+05 1.30E+09 6.52E+02 4.15E+03

CWMR 6.02E+01 6.87E+02 1.73E+06 6.63E+15 3.19E+01 1.64E+05

PAMR 6.05E+01 3.07E+02 1.20E+06 4.62E+15 3.92E+01 1.95E+05

K-AC 1.35E+02 5.00E+02 4.29E+06 2.58E+09 7.81E+02 1.06E+04

K-MAC 1.58E+03 1.74E+03 1.39E+06 2.52E+09 1.20E+03 8.79E+03

K-CWMR 4.41E+02 4.30E+03 2.86E+08 1.27E+18 1.22E+03 1.02E+06

K-PAMR 3.70E+02 1.21E+03 2.30E+08 6.62E+17 1.13E+03 7.23E+05

CORN 4.14E+01 1.37E+02 3.20E+05 3.61E+14 3.43E+02 2.16E+04

KERNEL 3.59E+01 5.55E+01 7.34E+02 8.68E+07 1.00E+02 2.44E+02

NN 1.59E+01 1.62E+02 6.38E+04 4.32E+10 8.71E+01 4.24E+02

5.8 CONCLUSION

We have presented a new Online approach to PS, which builds on existing state-of-the-art

PS algorithms. Our algorithms combine powerful Online PS algorithms with ideas from

signal processing and statistical learning to produce portfolios that substantially outper-

form their benchmark equivalents on the real market datasets. Historical simulations have

demonstrated that suitable heuristics can achieve significant growth in portfolio wealth as

compared to theoretically well-grounded approaches. De-trending price series and using the

ratio of stock prices to their Kalman Filter trend improves the performance of the algorithm

quite spectacularly in some cases. This impressive performance using data that are widely
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available casts some doubts on the market effi ciency hypothesis at least on its weakest form.

Only in the presence of weakly ineffi cient markets can these algorithms give the very good

performance that we show in the examples. As argued by Gyorfi et al. (2006), this superior

performance on datasets available to all investors may partially be explained by the fact that

the dependence structures of the markets revealed by the proposed investment strategies are

quite complex and, even though all information we use is publicly available, the way this

information is exploited remains hidden from most traders.
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6.0 DELAY COORDINATE EMBEDDING AND SEQUENTIAL

PORTFOLIO SELECTION ALGORITHMS

6.1 INTRODUCTION

In Chapter 4 of this thesis we presented a survey of some of the most effective (in terms

of overall wealth growth) Online PS algorithms within the machine-learning literature. We

showed that the so called state-of-the-art learning to trade PS strategies generally perform

exceedingly well, but this performance is generally limited to older datasets. Using more

recent and previously untested datasets, we found that not only the cumulative wealth

achieved by these state-of-the-art approaches is significantly less impressive but, also, their

more recent performance has been considerably poor, with some algorithms significantly

underperforming their benchmarks in recent years. In Chapter 5 we introduced a new class

of algorithms based on the idea of TAPR. Our algorithms combine powerful Online PS

algorithms with ideas from signal processing and statistical learning to produce portfolios

that substantially outperform their benchmark equivalents on real-market datasets. This

new proposed class of algorithms was shown to achieve significantly better performance on

all datasets than its equivalent benchmark algorithms. However, the main limitation shown

by all the existing state-of-the-art algorithms as well as the new class proposed in this thesis

is their implicit assumption that a representation of stock price time series in low dimension

can capture all the complex and recurring patterns.

In truth, economic and financial time-series data may conceal complex recurring pat-

terns. For example, system variables may cycle aperiodically along low-dimensional so-called

"strange attractors" that are diffi cult to detect directly from time-series data. This situation

occurs more regularly where the time series may appear mathematically random. To gain

120



more insights into this pheonomenon, let us consider the time-series data shown in Figure 6.1

(panels (a), (b) and (c)). The data in panel (a) and panel (b) are generated by deterministic

dynamic models while panel (c) is generated as a white noise. In particular, panel (a) plots

one of the three variables from the Ikeda dynamical system while panel (b) plots one of the

three variables from the Henon dynamical system. It is easy to see that the data from the

Ikeda and Henon dynamical systems are not easily distinguished from the white noise as

their underlying deterministic structures are well concealed.

Figure 6.1: Time series data and reconstructed attractors: (a) Ikeda Map,

(b) Henon Map, (c) White Noise

"Phase space reconstruction" or Delay coordinate embedding is a method for uncloaking

deterministic structures in time series data. Specifically, it reconstructs attractors present in
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real-world dynamical systems using time series data on a single variable (Broomhead, King,

1985; Schaffer, Kott, 1985; Kott et al, 1988; Williams, 1997). It is now acknowledged that the

occurrence of irregular and complicated behaviour that is seemingly induced by the action of

external random perturbations can be explained by using the theory of deterministic chaos.

Previously, irregularity in stock price time series had been explained by traditional linear

stochastic models, which assumed that such signals were projections of a superposition of

external random influences on otherwise linear dynamical rules.

This chapter presents a novel non universal, nonparametric learning-to-trade sequential

PS algorithm called "Delay Coordinate Embedding algorithm for PS (DCEPS)". As in Gyorfi

et al. (2006) and Li et al. (2012), our proposed DCEPS algorithm has its foundations in the

similarity-driven non parametric Online learning algorithms. Our new algorithm allows us to

construct asymptotically optimal investment strategies in the financial market without prior

knowledge of the statistical properties of stock prices. To this end the DCEPS approach to

prediction has two main steps; first the DCEPS algorithm attempts to identify the state of

the system at some time t, then the algorithm searches the past history of observations for

"similar" states in order to predict possible future outcomes. By studying the evolution of

the observable outputs following the similar states the DCEPS algorithm infers informations

about the future path of the system.

The main novelty here is that our DCEPS algorithm builds on Takens delay coordinate

embedding theorem, which allows us to construct a data matrix of overlapping samples and

therefore increase the precision of parameter estimates. The underlying intuition is that the

dynamics of the entire system are embedded in the history of each stock price series. Unlike

existing state-of-the-art similarity-driven PS algorithms (Gyorfi et al. (2006, 2007, 2008),

Li et al. (20112)), the DCEPS is derived from a time-delay embedding of multiple time

series that allows us to capture nonlinear information found in complex dynamical systems

of stock returns. By creating a time-lagged version of the original stock returns series, our

methodology allows the portfolio manager to discover hidden patterns normally not detected

in a linear space. It turns out that the new DCEPS algorithm is in fact a generalisation

of some earlier state-of-the-art Online PS selection algorithms, including the CORN (Li et

al. (2012)) and the NN (Gyorfi et al. (2008)) algorithms where pattern identification is
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performed in lower dimension.

To demonstrate the robustness of this new methodology we evaluate our DCEPS al-

gorithm against benchmark Online portfolio allocation techniques using six stock market

datasets of which four were previously untested. In all these datasets our algorithm substan-

tially outperforms existing state-of-the-art Online stock selection techniques without much

additional computational demand or modelling complexity.

The rest of the chapter is organised as follows. In Section 6.2 the mathematical model

is described, and related results are surveyed briefly. In Section 6.3, we briefly review the

theory of state-space reconstruction. Embedding parameters are described in Section 6.4.

In section 6.5 we present the mechanics of our delay coordinate embedding for portfolio

selection. Section 6.6 deals with expert combination while Section 6.7 presents our empirical

results. Section 6.9 concludes this chapter.

6.2 MATHEMATICAL MODEL

The mathematical background in this chapter is very similar to the one built earlier in

Chapter 2 of the thesis. We will repeat the arguments here for self containment.

In this chapter, we consider a market of m stock prices such that a market vector pt =

(p1
t , p

2
t , ..., p

m
t ) represents the vector of prices for j = 1, 2, ...,m. The change in security prices

during the tth trading period is represented as a stock market vector xt = (x1
t , x

2
t , ..., x

m
t ) ∈ R+

m

where xt is the vector m of non-negative numbers representing the TAPR for the trading

period t. Using the same set up as the one in Chapter 3, we can show that starting with an

initial wealth S0, after n trading periods, the investment strategy B achieves the wealth:

Sn = S0

n∏
i=1

m∑
j=1

bjt
(
xt−1

1

)
xjt= S0 exp

{
n∑
i=1

log bᵀt
(
xt−1

1

)
xt

}
(6.1)

We showed earlier that the fundamental problem in investment is that of maximising

Sn (B) , which is equivalent to maximising the following average growth rate

Wn (B) : b∗i
(
xi−1

1

)
= argb max E

{
log bᵀt

(
xt−1

1

)
xt | xi−1

1

}
(6.2)
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Instead of trying to directly maximise the complex average growth rate, Wn (B) , the

practice in the machine-learning community is design algorithms that will achieve asymp-

totically the same growth rate in wealth without any strong assumptions regarding the

statistical properties governing stock prices. This is exactly what the DCEPS will achieve

in this chapter.

Several Online PS algorithms have been proposed in the literature including Kelly (1956);

Breiman (1961); Cover (1991); Ordentlich and Cover (1996); Helmbold et al. (1996); Borodin

and El-Yaniv (1998); Borodin et al. (2000, 2004); Stoltz and Lugosi (2005); Hazan (2006);

Györfi et al. (2006); Blum and Mansour (2007); Levina and Shafer (2008); Györfi et al.

(2008)). Li et al. (2012) provide a comprehensive survey and an intuitive grouping of several

major PS algorithms.

The current chapter builds on the so-called "Pattern-Matching" or similarity-driven PS

strategies. Similarity-driven PS strategies aim to optimise the trading strategy by detecting

potentially similar information from historical market sequences of price relative. Some

of the more popular similarity-driven PS strategies include the Kernel-based PS algorithm

(Gyorfi et al. (2006)), the Nonparametric Nearest Neighbor (Gyorfi et al. (2008)) and the

Correlation-driven non parametric empirical PS algorithm (CORN) of Li et al. (2012).

6.3 THEORY OF STATE-SPACE RECONSTRUCTION

Traditionally, the behaviour of financial time series has been analyzed using linear stochastic

models. There is now considerable evidence that linear stochastic models are not able to

account for all the complex behaviour observed in stock prices (see Mantegna and Stanley,

(2000) or Johnson et al. (2003)). It is now widely accepted that the complex nature of

financial time series can be attributed to the fact that financial markets are nonlinear sto-

chastic, chaotic or a combination of both. For example, Osborne (1959) and Malkiel (1990)

characterised financial time series using the theory of Brownian motion while Mandelbrot
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(1998) proposed a fractional Brownian motion to characterise and analyze financial time se-

ries. In other studies, financial time series have been characterised using nonlinearity (Brock

et al.(1991)), chaos and fractals (Hsieh (1991), Lorenz (1993), Peters (1996)), scaling be-

haviour (Mantegna and Stanley (1995) and (1996)), and self-organised criticality (Bak and

Chen (1991); Shlesinger et al (1993)).

6.3.1 Mathematical Foundations of the State-Space Reconstruction

The theory of embedding is a way to move from a temporal time series of measurements to

a state space ”similar” -in a topological sense-to that of the underlying dynamical system

we are interested in analysing. The mathematical basis of continuous dynamical modelling

is formed by differential equations of the following type:

dx

dt
= F (x,α) (6.3)

where the real variable t denotes time, x =(x1, x2, . . . , xn) represents the state variables

of the system, depending on time t and on the initial conditions. αj are parameters of the

system and F = (F1,F2, . . . ,Fn) is a nonlinear function of these variables and parameters.

In experimental studies, it is not always possible to measure the complete state of a system.

When analysing a dynamical system only a few observable quantities are available which, in

the absence of noise, are related to the state-space coordinates by:

s (t) = h(x (t)) (6.4)

where h is an unknown nonlinear function called measurement function.

State-space reconstruction techniques were comprehensively analyzed by Packard et al.

(1981) and Takens (1981). Takens(1981) for example, proved that under certain conditions

the dynamics on the attractor of the underlying system has a one-to-one correspondence

with measurements of a limited number of variables. This argument suggests that by mea-

suring few variables we are able to reconstruct a one-to-one correspondence between the

reconstructed state space and the original, which means that it is possible to identify unam-

biguously the original state space from measurements.
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In order to explain the relationship that occurs between the reconstructed and the real

state space, let us consider the following dynamical system (see Strozzi et al (2007))

dx

dt
= F (x) ; x = (x1, x2, . . . , xn) (6.5)

We can define y = (y1, y2, . . . , yn) as follows:

y = (x1, dx1/dt, d
2x1/dt

2, . . . , dn−1x1/dt
n−1)

then the equations of motion take the form

dyj
dt

= yj+1 (6.6)

dyn
dt

= G(y1, y2, . . . , yn) (6.7)

for some function G. This new coordinate system allows us to proceed from the state

space (x1, x2, . . . , xn) to the space of derivatives (x1, dx1/dt, d
2x1/dt

2, . . . , dn−1x1/dt
n−1) in

order to model the dynamics of the time series. Takens (1981) shows that instead of deriv-

atives, {s(t), .s(t), ..s(t), ..., } one can use delay coordinates, {s(t), s(t + ∆t), s(t + 2∆t), ...},

where ∆t is a suitably chosen time delay. In fact, looking at the following approximation of

the derivative of s(t):

ds (t)

dt
∼=

s (t+ ∆t)− s (t)

∆t
(6.8)

d2s (t)

dt2
∼=

s (t+ 2∆t)− 2s (t+ ∆t) + s (t)

2∆t2
(6.9)

it is clear that the new information brought from every new derivative is contained in

the series of the delay coordinates. The advantage of using delay coordinates instead of

derivatives is that in the case of high dimensions high-order derivatives will tend to amplify

considerably the noise in the measurements. Restating in simpler terms, observed mea-

surements are real-valued projections of unknown nonlinear combinations of the underlying

state variables of the system and, therefore, completely retain all information of the state

variables.
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The theoretical justification for our new complex nonlinear PS system is therefore based

on the Takens (1981) delay embedding theorem. In fact, Takens (1981) proved that if the

dimension of the embedding space is large enough, then the reconstructed phase-space (RPS)

is topologically equivalent to the original state space that generated the time series in the

first place. Therefore, characterisations and predictions based on the RPS are considered

valid and similar to those made if the original state space were available. We will use this

characterisation and prediction based on the reconstructed phase-space for multiple time

series of stock prices with a varying embedding dimension d and an embedding lag τ . The

choice of these two parameters will be dealt with in subsequent sections.

6.3.2 State-Space Reconstruction

Reconstruction of the state space implicitly assumes that the past observed measurements

of a time series contain information about the unobserved state variables that can be used to

define a state at the present time. This is typically done using delay coordinates. Assuming a

predictive reconstruction, the τ -dimensional delay coordinate vector at some time t is defined

by

xt= (xt, xt−τ , dxt−2τ , . . . , xt−(d−1)τ ) (6.10)

A major limitation of the embedding theory is that Takens’theorem has been proven in

the case of noise-free systems only. Unfortunately, there is always a certain amount of noise,

σ(t), in real data such as stock prices. Such noise can appear in both the measurements and

the dynamics (see Diks (1999)). Dick (1999) argues that observational noise similar to that

studied here-i.e. s(t) = h(x(t))+σ(t)-does not affect the evolution of the dynamical system,

whereas dynamical noise acts directly on the state of the dynamical system influencing its

evolution; for example: dx/dt = F(x, α) + σ(t). Because stock prices are inherently noisy

and the effects of a relatively small amount of observational noise may put severe restrictions

on the characterisation and estimation of the properties of the underlying dynamical system

we use the linear filters approach in order to remove the observational noise.
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6.4 EMBEDDING PARAMETERS

In real applications, the appropriate choice of the time delay τ and the calculation of an

embedding dimension, d, are fundamental for estimating Equation 6.10. Much of research

on state-space reconstruction has centred on the problems of choosing the time-delay and

the embedding-dimension which constitutes the parameters of the reconstruction for delay

coordinates.

6.4.1 Chosing the Optimal Time Delay

If the time delay chosen is too small, there is almost no difference between the elements of

the delay vectors, since all points are accumulated around the bisectrix of the embedding

space: this is called redundancy (Casdagli et al., 1991). However, when τ is very large, the

different co-ordinates may be almost uncorrelated. In this case the reconstructed trajectory

may become very complicated, even if the underlying ”true” trajectory is simple: this is

called "irrelevance". Unfortunately no rigorous way exists of determining the optimal value

of τ .

Two common methods for choosing such a τ are the autocorrelation function and average

mutual information. The basis of each of these approaches is heuristic and it is not guaranteed

for the values obtained using the different approaches to converge.

6.4.1.1 Autocorrelation Function The autocorrelation function measures the expec-

tation of observing the xn + τ at a time τ later when xn is observed. It is a second-order

moment function and is given by

Cτ =

N∑
n=1

(xn − x) (xn+τ − x)

σ2
(6.11)

where

x =
1

N

N∑
n=1

(xi) and σ2 =
1

N − 1

N∑
n=1

(xi − x)2 (6.12)
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are the mean and variance of the data signal respectively. The autocorrelation function of

deterministic systems decays exponentially with increasing lag. Using a τ at which Cτ attains

its first zero makes the coordinates linearly uncorrelated and, hence, a good approximation

for the optimal τ . Some authors note that in some cases such a criterion completely removes

any connection between coordinates making proper reconstruction impossible (Kantz and

Schreiber, (1997)).

6.4.1.2 Mutual Information The average mutual information uses ideas from Infor-

mation Theory to define an optimal time delay τ . The average mutual information is the

amount of information (in bits) learned by measurements of xn through measurements of

xn+τ and is given by:

Iτ =
∑

xn,xn+τ

p (xn, xn+τ ) log2

p (xn, xn+τ )

p (xn) p (xn+τ )
(6.13)

where p (x) and p (x, y) are the probability and joint probability functions respectively.

Fraser and Swinney (1986) suggest that the first τ where the first minimum of Iτ occurs

ensures attractor unfolding in a time delay embedding. Iτ is the nonlinear equivalent of Cτ

that can be used to determine the value τ that makes coordinates independent enough in a

time delay reconstruction but still correlated to each other.

6.4.2 Choice of the Optimal Embedding Dimension

Moreover, similar problems are encountered for the embedding dimension. Working in a

dimension larger than the minimum required by the data will lead to excessive requirements

in terms of the number of data points and computation times necessary when investigating

different questions such as, for example, invariants calculation, prediction, etc. Furthermore,

noise by definition has an infinite embedding dimension, so it will tend to occupy the addi-

tional dimensions of the embedding space where no real dynamics is operating and, hence,

it will increase the error in the subsequent calculations. On the other hand, by selecting an

embedding dimension lower than required, we would not be able to unfold the underlying

dynamics; i.e. the calculations would be wrong since we do not have an embedding.
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6.4.2.1 Singular Value Decomposition (SVD) SVD attempts to find consistency in

the results by trying a range of values of the embedding dimension d. One constructs a

trajectory matrix from the data using a time delay τ = 1. By decomposing the trajectory

matrix into orthogonal coordinate space, one hopes that the corresponding distribution of

singular values persists for all embedding dimensions greater than some minimum value.

Thus, a rational basis for selecting the embedding dimension is established. However, Mees

et al. (1987) have noted that the use of SVD in dimension estimation is limited because the

number of singular values may depend on the details of the embedding and quality of the

data as much as they do on the dynamics of the system.

6.4.2.2 False Nearest Neighbours Another method for determining the minimum em-

bedding dimension is the false nearest neighbour (FNN) method of Kennel et al. (1992).

The idea behind FNN is that if two points are neighbours in a reconstructed space of dimen-

sion d and fail to remain neighbours in dimension d+ 1, then they are false. The necessary

minimum embedding dimension occurs at that dimension when all true nearest neighbours

are found; that is, they do not significantly separate in moving to a higher dimension. This

assures that embedded points have state space neighbours that are a result of the dynamics

and not an artefact of being projected in low-dimensional space.

6.5 DELAY COORDINATE EMBEDDING FOR PORTFOLIO SELECTION

(DCEPS)

This section provide a detailed analysis of the basic steps needed to implement our DCEPS

algorithm.

The mechanics of the DCEPS-based nonparametric sequential investment strategy con-

sists of four basic steps. In the first step we perform a multivariate phase-space reconstruction

of the stock price returns in our universe. At each time step t the algorithm identifies a list

of similar historical price relative sequences whose measure of similarity with the most re-

cent market window are within a given pearson correlation threshold. In the third step,
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the DCEPS-based PS algorithm constructs a vector of portfolio weights that maximises the

returns following observation of similar market sequences. Finally, the algorithm combines

the various portfolio "experts" according to the idea of the constantly rebalanced portfolio.

6.5.1 Phase-Space Reconstruction of Multiple Trend-Adjusted Price Relatives

The Reconstructed Phase-Space (RPS) is a time-delay embedding of a given time series that

allows us to capture nonlinear information found in complex dynamical systems of stock

returns. Our technique creates a time-lagged version of a the original stock returns in order

to discover hidden patterns normally not detected in a linear space. This novel approach

provides the basis for our data-mining-based stock-selection process.

To illustrate the concept of reconstructed phase-space for Online PS, we generalise the

specific problem of time series prediction when only a scalar time series is available. Very

often, a high dimensional physical system is only observable through a single scalar variable.

The method of time-delay embedding is widely applied to estimate the evolution of the

underlying vector field. From a scalar time series of TAPR {xt}nt=1 of n observations, we

reconstruct a vector time series with evolution topologically equivalent to the original system

via the following transformation

xt −→
(
xt, xt−τ , xt−2τ , ..., xt−(d−1)τ

)
(6.14)

The embedding window is thus:

τ d = (d− 1) τ (6.15)

In this way we obtain d observations from the vector xt, skipping every τ th values .

Vectors of xt are filled with repeated observations from xt in the sense that two vectors xt

and xt+τ will have almost the same elements.

Our approach uses a generalisation of this scalar RPS for a multivariate time series

of stock trend adjusted price relatives (TAPR) and defines the multivariate phase-space

reconstructed time series as
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x =



x1

x2

.

.

.

xm


=



x1,t, x1,t−τ , x1,t−2τ , ..., x1,t−(d−1)τ

x2,t, x2,t−τ , x2,t−2τ , ..., x2,t−(d−1)τ

.

.

.

xm,t, xm,t−τ , xm,t−2τ , ..., xm,t−(d−1)τ


(6.16)

As an example, consider two stocks s1 and s2, whose ordered squences of price relatives

range from 1 to 10 and from 11 to 20. Embedding two ordered sequences of numbers

(i.e.,xs1(t) = {1, 2, 3, ..., 10} and xs2(t) = {11, 12, 13, ..., 20} ) for time delay τ = 2 and d = 3

produces two 6× 3 matrices-RCs1 and RCs2:

RCs1 =



1 3 5

2 4 6

3 5 7

4 6 8

5 7 9

6 8 10


and RCs2 =



11 13 15

12 14 16

13 15 17

14 16 18

15 17 19

16 18 20



The 3D figure below (Figure 6.2) shows an example of an RPS from a 2-time series

representing historica stock prices. Each original time series is time-delay embedded with an

embedding dimension of 3 and an embedding lag of 2 to create the RPS. Generalising this

set up to multiple time series of stock prices is trivial.
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Figure 6.2: Cubic Representation of the RPS

In order to unfold the dynamics from s1 and s2 effectively, we need to choose very carefully

the value of parameters τ and d. As argued earlier, a number of procedures exist, such as

the Average Mutual Information criterion and the autocorrelation function for the time

delay and the False Nearest Neighbours criterion for the embedding dimension. Despite the

extensive literature regarding the optimal choice of the embedding dimension and embedding

lag when considering only a scalar time series the multivariate case presents significantly

more challenges given the possibilty of multiple paramter values for τ and d. One simple

way to avoid the complexity associated with multiple-parameter estimates is to reconstruct

the multivariate time series with the same embedding lag and embedding dimension but

allow the model to circle through a range of τ and d. In fact, our historical simulations

shows that the model performance is not very sensitive to the parameter τ . For this reason

we decided to set τ = 1 while 1 ≤ d ≤ 10.

6.5.2 Pattern Matching

This section deals with the pattern search step where we use a multivariate version of the

RPS from stock price time series data as the basis for our data-mining-based stock selection

process. At any given trading instance t, we consider a window length k, and an embedding

dimension d with τ = 1. We call x {d}t−1
t−k the most recent window of price relative for a
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given embedding dimension d and a window length k (1 ≤ k ≤ 10). For simplicity we will

write x {d}t−1
t−k = xt−1

t−k for the rest of this chapter. It is important to notice that x
t−1
t−k has

a cubic dimension k × d ×m and if we set d = 1 we could always resise the vector xt−1
t−k as

a k ×m matrix. In this case the DCEPS algorithm is reduced to the CORN algorithm of

Li et al. (2012) or the NN algorithm of Gyorfi et al (2008) with minor modifications. It is

therefore reasonable to consider the DCEPS-based PS algorithm as a generalisation of most

existing similarity-driven PS algorithms, including those proposed by Gyorfi et al. (2008)

and Li et al. (2013).

Now let us consider any other discretised return vectors, xi−1
i−k, in the whole history of

the market sequence whose correlation with the most recent window return vectors, xt−1
t−k, is

larger than or equal to ρ. Such time instant

Ni =
{
k < i < t; correl

(
xi−1
i−k, x

t−1
t−k
)
≥ ρ | 1 ≤ d ≤ 10, − 1 ≤ ρ ≤ 1

}
is called matching time. If Ni == ∅,we simply set b =

(
1
m
, ..., 1

m

)
.

In order to search for matching patterns with the most recent window, we use a multi-

dimentional version of the pearson correlation measure as a measure of similarity. In order

to identify complex market conditions including mean reversion and momentum, the most

common measure of similarity has been the use of the Euclidian distance metric. However,

given that mean reversion and trend-following price relatives have essentially opposite effects,

it is therefore likely that using a directionless measure like the Euclidian distance metric,

could result in poor predictive signals (see Li et al. (2012)). In our view the Euclidean

distance that forms the basis of most similarity-driven algorithms for PS cannot optimally

exploit the full information content of complex market patterns as it concentrates only

on the strength and not the direction information of the market movements. Li et al.

(2012) illustrate this point clearly and propose the use of the standard pearson correlation

as a measure of similarity instead of the Euclidian distance. In this chapter we propose

a correlation measure that generalises standard pearson correlation by measuring both the

direction and strength of instances of similarities in higher dimensions. Given two vectors

X and Y of dimension k ×m, our correlation coeffi cient is given by the following equation
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ρ = correl (X,Y) =

∑
i

∑
j

(
Xij −X

) (
Yij −Y

)√(∑
i

∑
j

(
Xij −X

)2
)(∑

i

∑
j

(
Yij −Y

)2
)

where X and Y represent the average of X and Y of dimension k ×m. To obtain a 2D

vector from a 3D structure we simply calculate the average of xt−1
t−k along the d dimension.

Different values of ρ will likely generate different paths in cumulative portfolio wealth. The

search for highly correlated matching historical patterns (higher values of ρ) will generate

a smaller number of matching instances, making the optimisation potentially sensitive to

fewer inputs and, therefore, unreliable. A threshold value of ρ closer to −1 will generate

too many matching instances with the risk that many of these might be spurious. In this

chapter we decided to set the threshold value to any positive correlation between the most

recent discretised window and any window of the same length in the entire history of TAPR

(ρ = 0.5).

After locating these historical matches the DCEPS algorithm constructs a fixed portfolio

vector to optimise the returns for the trading periods following each matching feature.

h
(
xt−1

1

)
= arg max

b∈∆d

∏
k<i<t,d>0,τ>0

〈b,XNi〉 (6.17)

6.5.3 DCEPS Portfolio Optimisation

To optimise the return for the trading periods following each matching sequence Gyorfi et

al. (2008) and Li et al. (2012) propose a strategy to learn the optimal portfolio by following

the idea of the BCRP (Cover 1991). The idea is to invest in a portfolio that would have

maximised (in the BCRP sense) the portfolio returns following instances of similar matches.

However, our own simulations show that portfolios generated along these lines display a very

high degree of concentration and in most case the total available capital ends up being in-

vested in one stock only. This, of course, renders these strategies unrealistic and unactractive

for practical applications. This chapter proposes an alternative optimisation procedure that

can generate both robust as well as diversified portfolios with empirical performance that

easily surpasses that of existing state-of-the-art algorithms in most datasets.
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To find the portfolio weights that maximise the returns for the trading periods following

each match we use the intuition provided by the PAMR of Li et al. (2012). The PAMR

algorithm has been proven to be a very robust investment strategy, as it exploits the mean

reversion property of financial markets. Using the theoretical foundations of the Online

passive aggressive learning (Crammer et al. 2006). As shown earlier, PAMR’s key idea is to

formulate a loss function that can effectively exploit the short-term mean reversion property

of stock prices. Given a portfolio vector b and a price relative vector xt, the PAMR defines

the following loss function for the tth trading day

lε (b; xt) =

{
0 b.xt ≤ ε

b.xt − ε otherwise
(6.18)

Where 0 ≤ ε ≤ 1 is the mean reversion parameter. Therefore according to the Passive

Aggressive paradigm the optimisation problem can be formulated as

bt+1= arg
bε∆m

min
1

2
‖b− bt‖2 (6.19)

st lε (b; xt) = 0

The formulation set out above attempts to find an optimal portfolio by minimising the

deviation from the last portfolio bt under the condition of satisfying the constraint of zero

loss. This loss is zero when the portfolio return is less than the reversion threshold ε, and

otherwise the loss grows linearly with respect to the daily return.

The PAMR algorithm has a very simple and intuitive interpretation; On the one hand,

the model specification above passively keeps the last portfolio; that is, bt+1= bt, whenever

the portfolio daily return is below the threshold ε. In that case the model anticipates a

high likelihood of mean reversal in the next period, therefore avoiding unecessary portfolio

rebalancing and transaction costs. On the other hand, whenever the loss is nonzero, the

algorithm aggressively updates the solution by forcing it to strictly satisfy the constraint

lε (bt+1; xt). This simply mean that when the portfolio daily return is above the threshold,

ε, the algorithm actively rebalances the portfolio weights. Li et al. 2012 propose the following
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solution for the PAMR algorithm:

bt+1 = bt − τ t (xt−xt1) (6.20)

where

xt =
xt1

m
, and τ t =

ltε
‖xt − xt1‖2 (6.21)

Our use of the PAMR-based optimization paradigm is therefore quite straightforward.

After identifying similar sequences from the most recent window of TAPR we form a portfolio

that has the highest likelihood of mean reverting in the very next period.

Table 6.1 displays the pseudo code of our implementation of the DCEPS algorithm.

137



Table 6.1: Pseudo Code of the DECPS(x, d, k)

Inputs d : the embedding dimension

k : the window length of the recent past

ε = 0.1 : the sensitivity parameter

ρ = 0.5 : correlation coeffi cient threshold

x : multivariate RPS of TAPR

Output bt : expert’s portfolio weights for the tth trading day

for t = 1, 2, ..., n do

1 receive xt, TAPT

2 if t ≤ w + 1 then

3 bt =
(

1
m
, 1
m
, ... 1

m

)
4 end

5 for i = w + 1 to t− 1 do

6 if correl
(
xi−1
i−k,x

t−1
t−k
)
≥ ρ then

7 Ni = corr
w+1≤i≤t−1

{
xi−1
i−k,x

t−1
t−k
}
≥ ρ

8 end if

9 end for

10 if Ni == ∅ then

11 bt =
(

1
m
, 1
m
, ... 1

m

)
12 end if

13 else

14 Suffer a loss ltε = max (0,btxt − ε)

15 Set parameter τ t = ltε
‖xt−xt1‖2

16 Update portfolio weights bt+1= bt − τ t (xt − xt1) , x = xt
m

end

Our nonparametric DCEPS algorithm, therefore, uses ideas from nonlinear time-series

prediction approach with a time-delay embedding technique to help us make accurate pre-
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dictions of future stock returns. Because we are able to discover hidden structures in the

reconstructed phase-space of the stock price time series, our prediction on future stock price

movements is expected to generate superior growth in portfolio wealth when compared to

existing PS algorithms. Similar to the Nearest Neighbour (NN) algorithm of Gyorfi et al.

(2008) our algorithm is a pattern-driven learning-to-trade strategy that optimises the trading

strategy by mining potentially similar patterns from historical market sequences in a higher

dimensional space.

6.5.4 Discussion on Parameter Settings

The discussion so far in this chapter has focussed on explaining the various steps that should

be taken by the portfolio manager in the design of the DCEPS. We showed that the DCEPS

follows many steps, each of which involves different parameters or set of parameter. The

DCEPS algorithm has four parameters that need to be fine tuned by the portfolio manager.

Two of these parameters, the sensitivity parameter ε and the correlation coeffi cient are set

to constant values as shown in Table 6.1. Of course, there are many ways to optimise these

parameters and our discussion here should be indicative and not conclusive of what these

parameters should be in practice. The second set of parameters includes the embedding

dimension d and the window length k which are floating parameters which are set in the

next section.

6.5.5 Mixture of Experts

Our proposed DCEPS algorithm has three main parameters that need to be fine tuned by

the portfolio manager. These are the window length k and the embedding dimension d. We

therefore mix the experts the usual way.
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6.6 EMPIRICAL RESULTS

This section presents numerical results obtained by applying the DCEPS-based algorithm to

six financial market datasets described in Chapter 2. As usual, the back-testing experiments

in this section will consist of running the signals through historical data, with the estimation

of parameters, signal evaluations and portfolio re-balancing performed on a daily basis.

6.6.1 Analysis of Cumulative Wealth

The first experiment evaluates the compounded wealth achieved by the DCEPS-based learn-

ing to trade algorithm including a 10-basis-points transaction cost over the entire sample

period. Figure 6.3 shows the total cumulative wealth achieved by the DCEPS algorithm on

the six market datasets. The market index is calculated as an equal-weighted Buy-and-Hold

portfolio on all stock available for that particular market. Figure 6.3 demonstrates that

the DCEPS-based PS algorithm achieves very good performance on old data (NYSE(O),

NYSE(N)) as well as on more recent and previously untested datasets. For example, on

the South African TOP40 index data set, the total wealth achieved by the DCEPS strategy

impressively increased from $1 to almost $454 over the trading period (from January 2000

to October 2013). This wealth growth is much higher than the $13.6 achieved by the market

index over the same 13 years periods. During that period, the best stock generated $87.8

and the best constantly rebalanced portfolio in hindsight only achieved a growth in wealth

of $115. We also notice that all other datasets display similar impressive growth in portfolio

wealth. Figure 6.3 also shows that, from a start of $1, the algorithm achieved a cumula-

tive wealth of $4.17 × 107 in the NYSE(O), $682 using the FTSE100 and $2670 using the

NASDAQ.
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Figure 6.3: DCEPS Performance Comparison
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Table 6.2 presents some sub-periods’cumulative performance of the DCEPS algorithm

against respective benchmarks for the data set considered. From these results it is easy to

see that our proposed algorithm significantly outperforms the respective market indices on

all datasets and for most sub periods. Over the full sample, the DCEPS algorithm displays

a very impressive CAGR of around 64% and 168% using the TOP40 and TE60 datasets

respectively. This compares very farourably with a CAGR of 20% and 17% for both market

indices. Similar CAGR can be observed from all other datasets including the NASDAQ, the

NYSE (O) and the NYSE (N).
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Table 6.2: Cumulative returns over different trading periods

FTSE100 TOP40 TSE60 NASDAQ NYSE(N) NYSE(O)

ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT

Full 0.57 0.13 0.64 0.20 1.68 0.17 0.76 0.18 1.18 0.15 5.55 0.16

1Yr 0.05 0.21 0.01 0.17 -0.31 0.11 0.53 0.39 8.22 0.29 1.10 -0.01

2Yrs -0.16 0.22 -0.12 0.22 -0.15 0.10 0.02 0.26 0.24 -0.04 1.17 0.16

3Yrs -0.09 0.12 0.08 0.17 -0.19 0.05 0.03 0.18 0.15 -0.07 1.84 0.23

4Yrs -0.03 0.16 0.44 0.19 -0.15 0.09 0.16 0.21 0.13 0.03 1.53 0.19

5Yrs 0.20 0.23 0.79 0.23 0.22 0.17 0.71 0.30 0.15 0.05 1.73 0.20

7Yrs 0.21 0.12 0.70 0.16 0.14 0.09 0.50 0.17 0.33 0.08 2.39 0.20

10Yrs 0.35 0.15 0.81 0.22 0.30 0.14 0.47 0.17 0.88 0.07 3.80 0.19

15Yrs 0.31 0.13 0.82 0.21 0.61 0.15 0.67 0.18 1.08 0.07 5.26 0.13

It is however noticeable that recent performance of the DCEPS algorithm has been less

impressive as evidenced by the one-year, 2-year, 3-year and 4-year CAGR. The performance

of the DCEPS-based PS algorithm has been pedestrian in recent times with a 1% gain in 2013

and a 20% gain in 2012 using the TSE60 index in Canada. The same pattern can be seen

in the FTSE100 in the UK where the algorithm achieves an annualised compounded growth

rate that was much less than its benchmark algorithm in 2013. There are many reasons

that could be attributable to this recent poor performance. One of the reason could be that

some market participants are increasingly employing mean reversion strategies resulting in

a slow erosion of the DCEPS potential profit. Another reason could be due to the 2008

financial crisis and the ensuing price dislocation brought about by the significant sell off

in asset prices. Such events could take years or decades to be completely absorbed in the

financial market place.

6.6.2 Performance Risk Analysis

Table 6.3 shows some of the DCEPS risk measures on the six datasets considered. From the

results, we see that the DCEPS-based strategy has a volatility of returns that is higher than
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the one achieved by its respective benchmarks. However, the Sharpe Ratios generated by

the DCEPS-based algorithms are also significantly higher than the respective stock market

indices. This is an indication that the DCEPS-based strategy generates much better risk

adjusted-returns.

Table 6.3: Risk Statistics of the DCEPS-Based PS Algorithm

FTSE100 TOP40 TSE60 NASDAQ NYSE(N) NYSE(O)

ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT

σ 0.54 0.18 0.43 0.16 0.61 0.17 0.69 0.23 0.54 0.19 0.54 0.13

α 0.13 0.00 0.11 0.00 0.39 0.00 0.17 0.00 0.25 0.00 0.69 0.00

β 1.57 1.00 1.31 1.00 1.62 1.00 1.43 1.00 1.38 1.00 1.57 1.00

γ 2.00 0.00 2.35 0.00 -2.98 0.00 1.78 0.00 2.56 0.00 3.11 0.00

β ↑ 1.63 1.00 1.45 1.00 1.55 1.00 1.53 1.00 1.54 1.00 1.65 1.00

β ↓ 1.53 1.00 1.20 1.00 1.69 1.00 1.28 1.00 1.16 1.00 1.49 1.00

SR 0.98 0.37 1.20 0.78 1.79 0.59 1.05 0.53 1.57 0.44 3.60 0.64

MDD -0.74 -0.40 -0.59 -0.30 -0.71 -0.41 -0.73 -0.47 -0.92 -0.64 -0.35 -0.37

PP 0.56 0.56 0.57 0.57 0.57 0.58 0.55 0.56 0.59 0.55 0.64 0.53

PP↑ 0.73 1.00 0.74 1.00 0.73 1.00 0.74 1.00 0.75 1.00 0.78 1.00

PP↓ 0.33 0.00 0.36 0.00 0.37 0.00 0.32 0.00 0.39 0.00 0.49 0.00

Further, we observe that maximum drawdown on the six stock datasets is much higher

than those achieved by their respective benchmarks. The maximum drawdown is -74% for

FTSE100, -59% for the TOP40, -71% for the TSE60 and -73% for the NASDAQ100. We also

note that there is very little difference between the percentage of time the DCEPS-based

algorithm and the respective market indices all generated positive returns (PP) returns.

However, when the market index was up, the correspondong DCEPS-based algorithm gen-

erated positive returns more than 70% of time on all datasets. And when the market was

down the DCEPS-based PS algorithm generated positive returns more than 30% of the time

for all datasets. This suggests that the value add of the DCEPS-based algorithm lies in its
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ability to find stocks that are likely to rise more in a rising market or fall less in a falling

market.

6.6.3 DCEPS Brokerage Costs Analysis

Because our portfolio is likely to handle a large number of daily transactions and that

transactions are not without costs, we should therefore be concerned about the amount of

commissions this portfolio will incur in actual market trading. The model of transaction we

use is very similar to the one introduced in Chapter 3.

The graphs in Figure 6.4 depict the total returns of the DCEPS algorithm for varying

proportional commission factor c = 0.1%, 0.2%, ... .Figure 6.5 shows that the DCEPS invest-

ment algorithm can tolerate relatively small proportional commission rates and still beat

competing benchmarks including the best stock, the equally weighted market index and best

constantly rebalanced portfolio in hindsight called BCRP*

Figure 6.4: DCEPS Transaction Cost Analysis for Selected Markets
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Figure 6.4 also shows the break-even commissions against the best stock, the market

and the best constantly rebalanced portfolio in hindsight depends on the market considered.

However, for all markets considered, our proposed DCEPS PS scheme performs very well

even after adjusting for brokerage commissions. For example, with a commission cost of

c = 0.1% or 10 basis points, the algorithm still beat the best stock, the market and the

BCRP* portfolio in all markets we considered. In the case of TSE60 in Canada, our proposed

algorithm still outperforms the best stock, the BCRP* and the overal uniform buy and hold

at a commission cost of c = 0.4%. In fact even with c < 0.25% our algorithm beats all its

respective market indices.

In summary, the simulation results have demonstrated that the DCEPS-based PS algo-

rithm achieves very impressive cumulative wealth growth for all datasets. These encouraging

results show that the DCEPS-based PS algorithm is capable of achieving an excellent trade-

off between return and risk. In our view the DCEPS-based PS algorithm is a very robust

investment strategy.

6.7 CONCLUSION

In this chapter, we have presented a new Online approach to PS algorithm called DCEPS.

Building on Takens(1981) delay embedding theorem, DCEPS combines powerful Online PS

algorithms with ideas from signal processing and statistical learning to produce portfolios

that substantially outperform their benchmarks equivalent on real-market datasets. This

impressive performance generated by the DCEPS-based PS algorithm using data that are

widely available again casts some doubt on the market effi ciency hypothesis, at least on

its weak form. However, we caution against extrapollating the performance of the DCEPS

strategy given its recent poor performance. Despite outperforming most existing state-of-

the-art PS algorithms on all data sets we believe that the recent algorithm poor performance

is a concern to us.
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7.0 MULTIVARIATE SINGULAR SPECTRUM ANALYSIS AND ONLINE

PORTFOLIO SELECTION

7.1 INTRODUCTION

In 1983 Meese and Rogoff published a thought-provoking paper where they claimed that a

simple random walk model could outperform both linear stochastic time series and structural

econometric models in predicting the exchange rates. The main investment argument in their

thesis (see Meese and Rogoff (1983)) was that securities markets are extremely effi cient in

reflecting market information and, therefore, no statistical model can enable an investor to

achieve returns greater than those that could be obtained by simply buying and holding

a randomly selected portfolio of individual asset classes, at least not without taking higher

risk. This is the so called "Effi cient Market Hypothesis (EMH)". In spite of the popularity of

this EMH in academic circles, a considerable number of publications has now demonstrated

that asset prices are to some extent predictable at least at the portfolio level.

One of the most popular tool used by investment managers in order to predict short

term movements in stock prices is time series analysis. Although there are some notable

exceptions, time-series models used for forecasting are often based on the restrictive assump-

tions of normality, stationarity and linearity. However, quite often financial and economic

time-series data are non-Gaussian and may be generated by processes that are nonstationary

and/or nonlinear; hence, methods that do not depend on these assumptions are likely to be

useful for modelling and forecasting financial time series data. It is widely admitted in the

econometric literature that nonlinearity is an intrinsic and fundamental feature of foreign

exchanges rates and stock returns (see for instance Hsieh (1991), Ammermann and Patterson

(2003), Beine et al. (2008)).
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Moreover, most existing models are also essentially parametric and require the specifica-

tion and estimation of models that are usually linear as the basis for analysis and forecasting.

More precisely, recent years have witnessed the emergence of a new strand of research

in asset price forcasting driven by advances in machine-learning theory. Both theoretically

well grounded algorithms, as well as algorithms based on simple heuristics, have been shown

to exist in the field of Online learning for PS problems. Algorithms such as Universal

Portfolio (Cover (1991)), Exponential Gradient (Hembold et al. (1998)) and Online Newton

Step (Agarwal et al. (2006)) have not only demonstrated that Online portfolio rebalancing

strategies can generate considerable wealth, but also that the wealth achieved by these

universal algorithms is guaranteed a certain minimum given suffi cient trading time. More

recently, algorithms by Gyorfi et al. (2004,205,206) and Li et al. (2012a, 2012b, 2013) have

shown very impressive performance with a growth in portfolio wealth that is significantly

higher than what could be achieved by investing in the broader market index. What is even

more impressive and could represent a major challenge for the EMH is that this growth in

portfolio wealth was achieved using only publically available information in the form of stock

price relative.

Despite the impressive performance generated by these new machine-learning algorithms,

important unresolved issues remain. The main characteristics of asset prices is that they

are made up of several components, including a slow component (trend) that influences

asset price long-term behaviour, a periodical or oscillatory and a random component (noise)

that influence its short-term dynamics. This complex structure of asset prices makes it

very diffi cult for existing state-of-the-art portfolio allocation techniques to fully exploit the

dependency structure as well as the nonlinearities found in stock prices. Our view is that

successful nonlinear time-series modelling would improve forecasts and produce a richer

notion of stock price cycle dynamics than linear time-series models allow. Therefore, we

need a reliable statistical method to summarise and understand nonlinearities suitable for

time series of stock prices. We therefore depart from stock prices statistical assumptions and

methods used by most existing state-of-the-art PS algorithms by constructing models based

on Singular Spectrum Analysis (SSA), which does not embody the assumptions of normality,

stationarity and linearity and is, therefore, a good candidate for modelling and forecasting
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stock market returns data.

This chapter proposes a non-universal, nonparametric similarity-driven empirical PS al-

gorithm based on the idea of multivariate singular spectrum analysis (MSSA).

Singular Spectrum Analysis (SSA) and its multivariate extension, MSSA, are nonlinear

statistical model that have gained successful application in the various sciences such as mete-

orological, biomechanical, hydrological, physical sciences, engineering economics and finance

(see Khan and Poskitt (2010)). We term our new algorithm "Multivariate Singular Spec-

trum Analysis for PS" or MSSAPS. MSSAPS not only exploits effective higher-dimentional

statistical correlations between market windows via the delay-embedding feature, but also

benefits from the exploration of powerful nonparametric machine-learning techniques. One

of the striking feature of MSSAPS is that we make no assumtpion about the statistical

properties of stock prices and the model itself requires very few paramters to finetune.

Our proposed MSSAPS algorithm makes an important contribution to the growing lit-

erature on Online PS strategies; the MSSAPS algorithm builds on Takens (1981) delay-

coordinate-embedding theorem, which allows us to decompose stock prices time series into

additive primary components, including trend, cycle and oscillatory components. Unlike

existing state-of-the-art similarity-driven PS algorithms, the MSSAPS is derived from a

time-delay embedding of multiple time series that allows us to capture potential nonlinear

information found in complex dynamical systems of stock returns. Our technique creates a

time-lagged version of a the original stock returns in order to discover hidden patterns nor-

mally not detected in a linear space. We find that the statistical evidence of out-of-sample

predictability of stock returns is stronger in our model specification as compared to most

state-of-the-art algorithms in the literature.

To demonstrate the robustness of our methodology we evaluate our MSSAPS algorithm

against benchmark Online portfolio allocation techniques using six stock market datasets of

which four were previously untested. On all these datasets and for all sub periods considered

our algorithm substantially outperforms the existing state-of-the-art Online stock selection

techniques.

The rest of the chapter is organised as follows. In Section 7.2, the mathematical model is

described, and some related results are surveyed briefly. In Section 7.3, we present the spec-
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tral decomposition of time series data and their time-domain reconstruction. Multivariate

singular spectrum analyis is described in Section 7.4.and its application to portfolio selection

problems is presented in Section 7.5. Section 7.6 briefly describes our parameter choice and

expert combination is presented in Section 7.7. Section 7.8 presents our empirical results

adjust for brokerage and commissions. Some conclusions are drawn in Section 7.10.

7.1.1 Scope of Our Study

In Chapter 4 of this thesis, we surveyed several Online PS algorithms that have been pro-

posed in the literature including Kelly (1956), Breiman (1961), Cover (1991), Ordentlich

and Cover (1996), Helmbold et al. (1996), Borodin et al. (2000, 2004), Györfi et al.

(2006,2008) and Li et al. (2012,2013). Building on the work of Li et al. (2012) we pro-

posed a particularly interesting class of machine-learning algorithms for PS problems, the

so called “Pattern-Matching" algorithms. We argued that similarity-driven (alos referred to

as pattern-matching) empirical PS strategies aim to optimise the trading strategy by de-

tecting potentially similar information from historical market sequences of price relative. A

major advantage of these algorithms lies in their nonlinear structure because they possess

the ability to identify both momentum and reversal pattern in historical stock prices.

However, a fundamental shortcoming of existing state-of-the-art similarity-driven PS

algorithms in general is their failure to explicitely recognise that stock prices are made up

of several components including a slow component (trend), a periodical or oscillatory and a

random component (noise). The slow component mainly influences the long-run behaviour

of stock prices while the oscillatory and random parts are those components that influence

the short-run dynamics of the stock price time series. Earnings-growth policy, for example,

focuses on the forces that influence long-run behaviour of stock prices whereas market cycle

theory focuses on the forces that influence short-run dynamics. This complex structure

of asset prices makes it very diffi cult for all existing state-of-the-art Online learning PS

algorithms to fully exploit the dependency structure and the non-linear features found in

stock prices. Successful application of non-linear time series modelling is more likely to

improve forecasts and produce a richer notion of stock price cycle dynamics as compared
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to what linear time series models would allow. Therefore, there appears to be a need for a

reliable statistical method that will understand and summarise the basic components found

in time series of stock prices, hence the justification for the current research.

7.2 SPECTRAL DECOMPOSITION AND TIME-DOMAIN

RECONSTRUCTION

Applying statistical-learning techniques to PS algorithms is now widely accepted by the

academic community as well as by market practitioners. Tools like Fourier transforms,

wavelet analysis or maximum entropy methods have been applied by traders with various

degrees of success to model and predict the behaviour of stock prices. The classic methods of

analysis such as Fourier analysis, regression analysis, or wavelet analysis tend to decompose

the initial function into a series using a fixed system of basic functions such as sines and

cosines, which produce strong periodicity property. These classic methods have been less

successful in modelling and forecasting stock prices as they fail to explicitely account for

nonlinear behaviour of stock price dynamical systems.

In recent years a novel non parametric technique known as Singular Spectrum Analysis

(SSA) has been developed in the field of time-series analysis. SSA incorporates elements of

classical time-series analysis, multivariate statistics, multivariate geometry, dynamical sys-

tems and signal processing (Golyandina et al, 2001) with the goal of looking for nonlinear,

non-stationary, and intermittent or transient behaviour in an observed time series. This

method has gained successful application in scientific fields such as meteorology, biomechan-

ics, hydrology, physical sciences, economics, finance and engineering (see Khan and Poskitt

(2010)).

7.2.1 Literature Review of Singular Spectrum Analysis (SSA)

SSA was independently developped by Broomhead and King (1986) and Fraedrich (1986).

Broomhead and King (1986) applied SSA to the problems of dynamical systems theory and

150



laid the mathematical basis used for singular spectrum analysis by combining singular value

decomposition (SVD) and embedding theorems. Fraedrich (1986) used observed weather and

climate variables to provide information for descriptions of the properties of the attractors

of these dynamical systems and to obtain an estimate of the smallest number of variables

necessary to explain the system dynamics. Ormerod and Campbell (1997) investigated the

applicability of SSA to economic time series. A thorough description of the theoretical and

practical foundations of the SSA method, with many examples, can be found in Golyandina

et al. (2001). For a comparison between SSA and other techniques for forecasting time series,

see for example Hassani (2007) and Hassani et al. (2009, 2010a). It has been shown that the

results obtained by the SSA method are more accurate than those obtained by ARIMA and

GARCH models (Hassani et al., 2009). For a wide variety of applications across different

types of economics and financial time series see Hassani and Thomakos (2010). The SSA

technique has also been used for filtering financial data and stock market data in Hassani et

al. (2010b). Despite this growing popularity of SSA and its multivariate extension, there has

been surprisingly little research on the application of these advanced mathematical statistics

tools in Online learning for PS. The present chapter fills that void.

The basic idea behind SSA as applied in this chapter is that it is a tool that embeds

single or multiple time series into a higher dimensional matrix, which is then decomposed

into a set of base functions or constituent components. The application of SSA consists of

four basic steps.

7.2.2 Embedding

The first step in the SSA is the embedding of the time series. This step consists of organising

the scalar time series entries in a trajectory matrix.

Let x = (x1, x2, ..., xN) be a time dependent signal of stock prices, where N is the

number of samples of the data. From this one-dimentional time series, we first create a

multidimensional space by using the process of embedding (Broomhead and King, (1986)).

This is easily accomplished by decomposing the time series in a sequence of lagged copies

of itself. Let L be the length for these lagged vectors such that 1 < L < N , L is called
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the embedding dimension (Elsner and Tsonis, (1996)) and the number of lagged vectors will

depend on the embedding dimension as K = N − L + 1. The matrix that is built from the

organisation of the lagged vectors is called the trajectory matrix. The resulting trajectory

matrix X is topologically equivalent to the original system:

X =



x1

x2

.

.

.

xL


=



x1 x2 . . . xK

x2 x3 . . . xK+1

. . . .

. . . .

. . . .

xL xL+1 . . . xN


(7.1)

The main characteristics of this matrix are that the anti-diagonals of the matrix present

the same values and are symmetrical around the main diagonal; that is, Xij= xi+j+1, where

1 ≤ i ≤ K and 1 ≤ j ≤ L. The behaviour of this trajectory matrix is therefore that of the

so-called Hankel matrix.

7.2.3 Singular Value Decomposition

One of the major implications of the Takens (1981) delay-embedding theorem is that geomet-

rical invariants such as the eigenvalues of fixed and periodic points, generalised dimensions,

Lyapunov exponents, and other topological features of the original state space are preserved

in the reconstructed space. Thus, one can study the dynamical behaviour in the recon-

structed state space instead of the true state space.

The second step is the decomposition of the Hankel matrix (Equation 7.6) in its singular

spectrum by using Singular Value Decomposition (SVD). SVD is a decomposition of the

form:

X =

r∑
i=1

√
λiuivi. (7.2)

where λi is the eigen values ofXX>, r is the rank ofX and ui and vi are the ith eigenvector

of XX> and X>X. In general, σi =
√
λip i is called the singular value of the matrix X.
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Expression 7.7 can be converted to matrix notation as:

X = UΣV> (7.3)

where Σ is the diagonal matrix containing all the singular (or eigen) values in descending

order andU andV are the matrices containing the set of orthonormal vectors (eigen vectors)

ui and vi respectively. Given that the eigenvectors ofX arise from the autocorrelation matrix

XX>, the components that present the most coherence in the data will be weighted by

singular values with higher values. This way, the decomposition of the trajectory matrix in

its singular spectrum is very useful for identifying trends in the data. Because the signal in

the time series is correlated with its own lagged copies, it will be represented by the largest

eigen values and, therefore, eigen values with less weight could be identified as noise.

7.2.4 Rank Reduction and Grouping

The third step is the application of a rank reduction to the trajectory matrix by recover-

ing fewer amounts of singular values from the decomposition. In analyzing the dynamical

components of the time series, different singular values can be grouped to recover physical

behaviours identified in the decomposition. For noise reduction, the rank that represents

most of the signal has to be identified before the rank reduction step. In general, the process

consists of recovering a small subset of singular values compared to the full rank of the tra-

jectory matrix. Let k be the desired rank for the trajectory matrix. This can be obtained

by doing:

Xk= UkΣkV
>
k (7.4)

where Xk is the recovered rank-reduced trajectory matrix. The recovered matrix is

rank = k and presents the lowest possible Frobenius norm.

7.2.5 Diagonal averaging

Finally, the time series is recovered from the rank-reduced trajectory matrix. The process

of recovering the time signal X̃k is easily achieved by averaging in the anti-diagonals of Xk.
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Golyandina et al. (2001) introduced an operator that is helpful in describing the diagonal

averaging of the recovered matrix. The operator works as follows: let i + j − 1 = n. and

N = L+K − 1, then the element n of xk is

X̃k (n) =



1
n

n∑
i=1

Mk (l, n− l − 1) for 1 ≤ n ≤ L

1
L

L∑
i=1

Mk (l, n− l − 1) for L+ 1 ≤ n ≤ K

1
K+L−1

L∑
i=n−K+1

Mk (l, n− l − 1) for K + 1 ≤ n ≤ N

(7.5)

This operation retrieves the component of the initial time series that was recovered after

the rank reduction of the trajectory matrix. It is especially this ability of SSA to distinguish

noise components from those of trend signals that is of great interest to us, as that can be

applied in the filtering of data, which is desirable for a great number of reasons such as

data presentation, modelling and so forth. As such, the purpose of SSA is not inherently to

identify or build any particular model of the time series investigated. It is rather to provide

information on the deterministic and stochastic parts of behaviour in the data, even when

the time series is short and noisy (Ormerod and Campbell, 1997) All these properties are

very desirable in the analysis of time series data obtained specifically from process plants,

therefore justifying the application of SSA in this research. Table 7.1 presents the pseudo

code for the SSA implementation.
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Table 7 1: SSA (yT , L)

Inputs yT = (y1, ..., yT ) : single time series of stock prices

L : the window length

Output RCs : Reconstructed Components of yT

Initialise the parameter K = T − L+ 1

Step 1 Compute the Trajectory Matrix

Transfer yT into a multi-dimentional matrix X1, ..., XK

where Xi = (yi, ..., yi−L+1)> and X = [X1, ..., XK ]

Step 2 Compute the Matrix C = XX>

Step 3 Perform a Singular Value Decomposition of C = XX>

and find P and Λ such that XX> = PΛP>

where Λ = diag(λ1, ..., λL) with λ1 ≥ λ2 ≥, ...,≥ λL

and P = (P1, ..., PL) is the corresponding eigen vectors

Step 4 Select a group l (1 ≤ l ≤ L) of eigen vectors

If I = {i1, i2,, ..., il} then XI = {Xi1, ..., XiL}

Step 5 Reconstruction of the one-dimentional time series

Compute the matrix X̃ =
∥∥∥X̃i,j

∥∥∥ =
l∑

k=1

PikP
>
ikX

Average over the diagonals of X̃

end

7.3 MULTI-CHANNEL SINGULAR SPECTRUM ANALYSIS

Our main motivation for using multiple SSA (MSSA) comes from the fact that it is a nonpara-

metric technique that works with arbitrary statistical processes, whether linear or nonlinear,

stationary or non-stationary, Gaussian or non-Gaussian. Given that the dynamics of stock

prices has usually gone through structural changes during the time period under considera-

tion, we need to make certain that the method of prediction is not sensitive to the dynamical

variations. Moreover, contrary to the traditional methods of time series forecasting like au-
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toregressive or structural models that assume normality and stationarity of the series, MSSA

method is non-parametric and makes no prior assumptions about the data.

MSSA combines two useful approaches to statistical analysis: (1) it determines major

directions in the system’s phase space that are spanned by the multivariate time series;

and (2) it extracts major spectral components by using data-adaptive filters. In particular,

MSSA can separate distinct spectral components in a multivariate data set of limited length

and in the presence of relatively high noise levels. Ghil et al. (2002) provide an overview

and a comprehensive set of references to both the theory and applications of MSSA.

7.3.1 Mathematical Formulation of the MSSA

Let x = {xd (n) : d = 1, 2, ..., D, n = 1, 2, ..., N} be a multivariate time series of stock prices

with D channels of length N . We assume that each stock price has been normalised so

that the starting value is 100. Following the original embedding ideas of Takens (1981), the

starting point of MSSA is to embed each stock price into an M -dimensional phase space by

using lagged copies Xd (n) = [xd (n) , ...,xd (n+M − 1)], n = 1, 2, ..., N −M + 1. From this

we form the full augmented trajectory matrixX = (X1,X2, ...,XD) which hasD×M columns

of lengthN−M+1 The MSSA algorithm then computes the covariance matrix C = X>X/N

of X and its eigen decomposition. Next, we diagonalise the appropriately symmetrised

covariance matrix Λ = E>CE to yield a diagonal matrix Λ that contains the real eigenvalues

λk of C and a matrix E whose columns are the associated eigenvectors ek. The eigen vectors

form a new orthogonal basis in the embedding space of X, and the corresponding eigen

values give the variance in the direction of ek. The spectral decomposition determines the

directions of greatest variance successively, from largest to smallest, subject to the condition

that each new direction be orthogonal to all the preceding ones.

Projecting the time series X onto the eigenvectors, A = XE yields the corresponding

principal components (PCs) as the columns of A. The PCs have the same length N −M + 1

as X and are uncorrelated at zero lag; they can be considered as filtered components of the

time series x, with data-adaptive filters that are given by the eigenvectors. This filtering
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property becomes more obvious when one looks at the following equation

ak (n) =

D∑
d=1

M∑
m=1

xd (n+m− 1) edk (m) (7.6)

with k = 1, 2, ..., D ×M , n = 1, 2, ...N −M + 1 and ak are the columns of matrix A.

Our MSSA, however, goes beyond a pure identification and quantification of coupled

behavior. We also allow to reconstruct the dynamical behaviour that the coupled subsystems

share and that is associated with a specific eigenvalue-eigenvector pairs. The PCs, which

are already filtered versions of the original time series, are not appropriate for this purpose,

since they combine the properties of all the channels in the data set. Moreover, the PCs

have a reduced length N −M + 1 and do not allow a unique localisation in time. A way

to reconstruct the individual components of the system’s behavior that is optimal in the

least-squares sense is given by the transformation

rdk (n) =
1

Mn

Un∑
m=Ln

ak (n−m+ 1) edk (m) (7.7)

The rdk are referred to as reconstructed components (RCs) and represent that part of

channel xd that corresponds to the eigenelement pair (λk, ek). The values of the normalisation

factor Mn and the summation bounds Ln and Un for the central part of the time series,

M ≤ n ≤ N −M + 1, are simply (Mn, Ln, Un) = (M, 1,M). In particular, the time series

can be completely reconstructed by the sum of all its RCs:

xd (n) =
D×M∑
k=1

rdk (n) (7.8)

The major advantage that MSSA holds is, therefore, the decomposition of the time series

into the various components that constitute the basis of the time series. These components

can be investigated in turn to identify major trends in the data, remove components that can

be classified as pure noise and extract oscillatory components present in the data. Because

MSSA takes cross-correlations into account, the individual RCs of the different time series

are connected, as they represent the same spectral part.

One of the major disadvantage of MSSA is its computational complexity. In general,

using MSSA helps one to turn a small data set into a huge amount of data. For example,
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performing MSSA on a 100×100 matrixX with lag L = 10 results in a 1000×1000 matrix of

eigenvector, 1000 eigenvalues, a 100×1000matrix of principal components, and a 100×100000

matrix of reconstructed components. These high computational requirements are, of course,

unsuitable for Online PS algorithms where the sise of the problem could be multiples of

that shown here. To reduce this enormous amount of output, and to make larger problems

computationally feasible, we propose a variant of the traditional MSSA algorithm. In our

proposed MSSA strategy we sequentially decompose each individual stock price using the

singular spectrum analysis discussed earlier, with a fixed lag for all our securities. This step

allows us to separate the long-term trend of each stock price from the short-term dynamics.

Of course the implicit assumption of our multiple singular spectrum analysis is that the stock

pricres cross-correlations be set to zero. Because our focus is on short term portfolio selecton

algorithms, we believe this simplification will not materially affect the final results of our

analysis will make very large problems in Online PS computationally feasible. We further

derive an equivalent Trend Adjusted Price Relative (TAPR) that has the major advantage

of putting more emphasis on those components that matter the most for our stock price

forecasts. Our new setting clearly represents a major departure from existing state-of-the-

art machine-learning algorithms whose main input to the algorithms is the raw price data

including its redundant long-term trend. Table 7.2 shows a pseudo code for our multi-channel

singular spectrum analysis.
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Table 7.2: MSSA (YT , L) pseudo code

Inputs yT =
(
y1
T , ...,y

D
T

)
: multiple time series of stock prices

L : the window length

Output RC ∈ RT×D : Reconstructed Components of yT

Initialise the parameter K ⇐= T − L+ 1

for s = 1, 2, ... to D

3 for t = 1 to T

4 RCs
t ⇐= SSA (yst , L)

5 RC (t, s)⇐= last value of RCs
t

6 end

end

7.4 MULTIVARIATE SINGULAR SPECTRUM FOR PS (MSSAPS)

This section details the application of the multivariate singular specturm analyis to PS

(MSSAPS).

The MSSAPS algorithm follows the general construct of all Online learning for PS al-

gorithms. To derive the portfolio weight vector at time t the portfolio manager makes a

prediction about the future evolution of the market sequence and the appropriate portfolio

weight vect bt. As usual, this prediction is based only on past information, including past

stock price sequences. After this initial prediction the market reveals the vector of price

relative vector xt ∈ Rd from which the portfolio incurs a period return of bTt xt which could

be a profit (bTt xt ≥ 0) when or a loss (bTt xt < 0). The portfolio manager then updates his or

her portfolio cumulative returns according to St= St−1

(
bTt xt

)
and makes a new prediction

before proceeding to the next round. Of course the objective of the portfolio manager is

to maximise his or her total wealth in the long run, without any assumed knowledge of the

statistical properties of the stock prices. This typical problem specification has its origins

in the perceptron algorithm (Rosenblatt 1958) and has now been studied extensively in the
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machine-learning community where some Online algorithms have been shown to achieve very

robust performance in historical simulations.

In order to make a prediction regarding the future evolution of the market sequence and

the resulting portfolio weight vector b the MSSAPS algorithm follows three steps that allow

us to construct asymptotically optimal investment strategies in the financial market.

The first step consists of decomposing the time series of stock prices into the various

components including trend and oscillatory components using multivariate singular spectrum

analysis. The main purpose here is to derive a measure of trend adjusted price relative, also

called "detrended price relative", that enables more effective pattern identification in the

whole historical evolution of the price series.

In the second step the MSSAPS searches the entire history of stock prices for matching

(similar) features with the most recent window of detrendend price relative.

The last step of our algorithm designs a fixed portfolio vector that optimises the return

for the trading periods following each matching instance. More particularly, MSSAPS seeks

to locate the market windows that are similar to the most recent market window via a

generalised correlation coeffi cient metric, and, thereafter, constructs a log-optimum portfolio

according to the idea of the best constant rebalanced portfolio (Cover 1991) strategy. The

specific optimisation routine we employed here is an adaptation of the idea of the passive

aggressive mean reversion strategy of Li et al. (2012). The basic steps followed by our

proposed nonparametric Online PS algorithms are detailed below.

7.4.1 Pattern Formation

Our proposed MSSAPS algorithm starts by creating a time-lagged version of the original

individual stock price relative in order to discover hidden patterns normally not detected in

a linear space. This approach provides the basis for our data-mining-based stock selection

process. As argued in the previous chapter, the theoretical justification for this new complex

nonlinear PS system is based on the Takens (1981) delay-embedding theorem. In fact, Takens

(1981) proved that if the dimension of the embedding space is large enough, then the RPS is

topologically equivalent to the original state space that generated the time series. Therefore,
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characterisations and predictions based on the RPS are considered valid and similar to those

made if the original state space had been available.

Our first task in the pattern formation is to decompose stock price series using the MSSA

algorithm proposed in Table 7.2. To this aim we set the embedding dimension d = 5 and the

embedding lag τ = 1. Alternative values for these two parameters do not seem to impact by

much on the overall performance of our algorithm. At time t we call xt−1
t−k ∈ Rk×m the most

recent window of TAPR for a given window length k (1 ≤ k ≤ 10).

Now let us consider any other discretised return vectors, xi−1
i−k, in the whole history of

the market sequence whose correlation with the most recent window return vectors, xt−1
t−k, is

larger or equal to ρ. Such time instant:

Ni =
{
k < i < t; correl

(
xi−1
i−k,x

t−1
t−k
)
≥ ρ | 1 ≤ k ≤ 10, − 1 ≤ ρ ≤ 1

}
is called matching time. If Ni == ∅,we simply set b =

(
1
m
, ..., 1

m

)
.

In order to search for matching patterns with the most recent window, we use a multi-

dimentional version of the pearson correlation measure as a measure of similarity (Section

6.5.2). Given two vectors X and Y of dimension k ×m,our correlation coeffi cient is given

by the following equation

correl (X,Y) =

∑
i

∑
j

(
Xij−X

) (
Yij −Y

)√(∑
i

∑
j

(
Xij −X

)2
)(∑

i

∑
j

(
Yij −Y

)2
)

where X and Y represent the average of X and Y of dimension k ×m.

After locating these historical matches the MSSAPS algorithm constructs a fixed portfolio

vector to optimise the returns for the trading periods following each matching.feature.

h
(
xt−1

1

)
= arg max

b∈∆d

∏
k<i<t,d>0,τ>0

〈b,XNi〉 (7.9)

7.4.2 Portfolio Optimisation

To optimise the return for the trading periods following each matching sequence we use the

routine proposed in Section 6.5.3. Table 7.3 displays the pseudo code of our implementation
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of the MSSAPS algorithm.

Table 7.3: Pseudo Code of the MSSAPS(P, k) Algorithm

Inputs P : stock price matrix

k (1 ≤ k ≤ 10) : window

ε =: the sensitivity parameter

ρ =: correlation coeffi cient threshold

Output b : expert’s portfolio weights for the tth trading day

Step 1 RC ⇐= MSSA (P,L)

Step 2 x⇐= P
RC

Step 3 Reconstruct the state space of xt using multivariate time delay embedding

for t = 1, 2, ..., n do

1 if t ≤ w + 1 then

2 bt =
(

1
m
, 1
m
, ... 1

m

)
3 end

4 for i = w + 1 to t− 1 do

5 calculate Ni = correl
w+1≤i≤t−1

{
xi−1
i−k,x

t−1
t−k
}
≥ ρ

9 if Ni == ∅ then

10 bt =
(

1
m
, 1
m
, ... 1

m

)
11 else

12 Suffer a loss ltε = max (0,btxt − ε)

13 Set parameter τ t = ltε
‖xt−xt1‖2

14 Update portfolio weights bt+1 = bt − τ t (xt − xt1) , x = xt
m

end

Our nonparametric MSSAPS algorithm, therefore, uses ideas from nonlinear time-series

prediction approach with a time-delay embedding technique in order to make accurate pre-

dictions of future stock returns. Because we are able to discover hidden structures in the

reconstructed phase spaces of the stock price time series our prediction on future stock price

movements is expected to generate superior growth in portfolio wealth when compared to
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existing PS algorithms. Similar to the Nearest Neighbour (NN) algorithm of Gyorfi et al.

(2008) our algorithm is a pattern-driven learning-to-trade strategy that optimises the trading

strategy by mining potentially similar patterns from historical market sequences in a higher

dimensional space.

7.4.3 Discussion on Parameter Settings

The discussion so far in this chapter has focussed on explaining the various steps that should

be taken by the portfolio manager in the design of the MSSAPS. From the previous sections

we showed that the MSSAPS follows four steps, each of which involves different parameters

or set of parameter. In this section we discuss some alternative parameters settings that

could help the portfolio manager implement our new strategy. Of course, there are many

ways to optimise these parameters and our discussion here should be indicative and not

conclusive of what these parameters should be in practice.

The very first step in the implementation of our proposed nonparametric Online PS

algorithms is the stock price decomposition phase using MSSA. The main objective of this

step is to separate the long-term trend in stock prices from its short dynamics. Applying SSA

to each time series of stock price requires an input of the embedding dimension d. Owing

to the computational complexity of re-estimating the trend for all stock prices as new data

become available we decided to set the embedding dimension as d = 4 for all stock prices

and for all markets under consideration. Other embedding dimension values could generate

better performance.

The second step in the implementation of the MSSAPS consists of searching the entire

history of stock prices for matching features with the most recent window, k, of detrendend

price relatives. In practice, the window sise has to be set in advance by the portfolio manager

as different values of window (expert) k are likely to generate different terminal wealth

growth. Setting an optimal window sise could be very complicated in practice as a window

sise that has worked well in the past is not guaranteed similar performance in the future. A

more robust approach is simply allocate, at time t = 0, the available capital amongst a fairly

large numbers of experts indexed by the window sise (1 ≤ k ≤ 10 for example) and never
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rebalance after that. This is the preferred methodology of this chapter.

In the third step, we first discretise the most recent return vectors, xi−1
i−k, and search the

whole history of the market sequence for instances where the correlation with the most recent

window return vectors, xt−1
t−k, is larger than or equal to a pearson correlation coeffi cient ρ

(−1 ≤ ρ ≤ 1). As usual, different values of ρ will likely generate different paths in cumula-

tive portfolio wealth. The search for highly correlated matching historical patterns (higher

values of ρ) will generate a smaller number of matching instances, making the optimisation

potentially sensitive to fewer inputs and, therefore, unreliable. A threshold value of ρ closer

to −1 will generate too many matching instances with the risk that many of these might be

spurious. In this chapter we decided to set the threshold value to any positive correlation

between the most recent discretised window and any window of the same length in the entire

history of TAPR (ρ = 0.5).

The fourth step of our algorithm designs a fixed portfolio vector that optimises the return

for the trading periods following each matching instance according to the idea of the PAMR

strategy of Li et al. (2012). The main parameter here is the mean reversion parameter, ε,

of the PAMR algorithm. Important issues around this sensitivity parameter have been dis-

cussed elsewhere. See Li et al. (2012). Using similar arguments as in the case of the window

sise, we choose to allocate, at time t = 0, the available capital amongst a fairly large numbers

of experts indexed by a discretised mean reversion parameter ε (0 ≤ ε < 1 for example) and

never rebalance after that.

7.4.4 Mixture of Experts

Our proposed MSSAPS algorithm has therefore two main parameters that need to be fine

tuned by the portfolio manager: the window length , k, and the mean reversion parameter

ε. The experts are mixed in the usual way.
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7.5 EMPIRICAL RESULTS

This section presents numerical results obtained by applying the MSSAPS-based algorithm

to six financial market datasets as described in Chapter 2. As usual, the back-testing ex-

periments in this section will consist of running the signals through historical data, with the

estimation of parameters, signal evaluations and portfolio re-balancing performed on a daily

basis.

7.5.1 Analysis of Cumulative Wealth

The first experiment evaluates the compounded wealth achieved by the MSSAPS-based

learning-to-trade algorithm including a 10 basis points transaction cost over the entire sam-

ple period. Figure 7.1 summarises the total cumulative wealth achieved by the MSSAPS

algorithm on the six market datasets. The market index is calculated as an equal weighted

Buy-and-Hold portfolio on all stock available for that particular market.

Figure 7.1: MSSAPS Cumulative Performance Comparison
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Figure 7.1 demonstrates that the MSSAPS-based PS algorithm achieves very good per-

formance on old data (NYSE(O), NYSE(N)), as well as on more recent and previously

untested datasets. For example, on the South African TOP40 index data set, the total

wealth achieved by the MSSAPS strategy impressively increases from $1 to almost $1207.

This wealth growth is much higher than the $13.6 achieved by the market index over the

same 15-year periods. During that period, the best stock generates $87.8 and the best con-

stantly rebalanced portfolio in hindsight achieves only a growth in wealth of $115. In general,

the performance of our algorithm on all datasets is very impressive when one compares it

to the market index performance in the same period . The annualised percent yield (AY )

depicts the same picture (Table 7.4). On an annualised basis, the MSSAPS algorithm has

achieved at least three times the performance of its benchmark in the case of the NASDAQ

in the US. This performance is also very impressive given that this is the index of the biggest

100 companies by market capitalisation listed on the NASDAQ. The same pattern can be

seen in the TSE60 in Canada, where our methodology achieved an annualised compounded

growth rate that is more than 10 times that achieves by its benchmark algorithm. It is worth

noting that performance of the MSSAPS has been quite impressive of late as can be seen in

the fourth row of Table 7.4. This one-year performance correspond to the period starting

October 2012 to October 2013 for all the recent data sets. During that period the MSSAPS

algorithm deliver 31% returns in the UK FTSE100 and 26% in the South African TOP40

index. This represents a significant improvement compared to existing state-of-the-art PS

algorithm.
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Table 7.4: CAGR over Selected Trading Periods

FTSE100 TOP40 TSE60 NASDAQ NYSE(N) NYSE(O)

ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT

Full 0.73 0.13 0.74 0.20 0.78 0.17 0.69 0.18 0.91 0.15 1.99 0.16

1Yr 0.31 0.21 0.26 0.17 -0.24 0.11 0.03 0.39 9.54 0.29 1.40 -0.01

2Yrs 0.30 0.22 0.27 0.22 -0.10 0.10 -0.04 0.26 0.13 -0.04 1.54 0.16

3Yrs 0.43 0.12 0.34 0.17 0.01 0.05 -0.01 0.18 0.06 -0.07 1.30 0.23

4Yrs 0.55 0.16 0.41 0.19 0.06 0.09 0.02 0.21 -0.01 0.03 0.97 0.19

5Yrs 0.84 0.23 0.61 0.23 0.36 0.17 0.35 0.30 -0.03 0.05 1.00 0.20

7Yrs 0.58 0.12 0.74 0.16 0.12 0.09 0.35 0.17 0.11 0.08 1.25 0.20

10Yrs 0.55 0.15 0.86 0.22 0.30 0.14 0.41 0.17 0.41 0.07 1.36 0.19

15Yrs 0.58 0.13 0.92 0.21 0.45 0.15 0.59 0.18 0.61 0.07 1.61 0.13

7.5.2 MSSAPS Performance Risk Analysis

Table 7.5 shows some of the MSSAPS risk measures on the six datasets considered. From the

results, we see that the MSSAPS-based strategy has a volatility of returns that is higher than

the one achieved by its respective benchmarks. However, the Sharpe Ratio generated by

the MSSAPS-based algorithms are also significantly higher than the respective stock market

indices. This is an indication that the MSSAPS-based strategy generates much better risk-

adjusted returns.
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Table 7.5: Risk Statistics of the MSSAPS-Based PS Algorithm

FTSE100 TOP40 TSE60 NASDAQ NYSE(N) NYSE(O)

ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT

σ 0.41 0.18 0.38 0.16 0.48 0.17 0.61 0.23 0.51 0.19 0.46 0.13

α 0.16 0.00 0.11 0.00 0.20 0.00 0.12 0.00 0.22 0.00 0.37 0.00

β 1.43 1.00 1.26 1.00 1.55 1.00 1.45 1.00 1.30 1.00 1.44 1.00

γ 0.77 0.00 3.59 0.00 -2.97 0.00 2.71 0.00 0.68 0.00 2.41 0.00

β ↑ 1.48 1.00 1.36 1.00 1.49 1.00 1.62 1.00 1.35 1.00 1.46 1.00

β ↓ 1.41 1.00 1.20 1.00 1.60 1.00 1.36 1.00 1.22 1.00 1.35 1.00

SR 1.36 0.37 1.46 0.78 1.28 0.59 1.04 0.53 1.39 0.44 2.45 0.64

MDD -0.67 -0.40 -0.41 -0.30 -0.77 -0.41 -0.59 -0.47 -0.95 -0.64 -0.39 -0.37

PP 0.57 0.56 0.57 0.57 0.56 0.58 0.56 0.56 0.56 0.55 0.56 0.53

PP↑ 0.77 1.00 0.74 1.00 0.74 1.00 0.77 1.00 0.73 1.00 0.72 1.00

PP↓ 0.32 0.00 0.33 0.00 0.32 0.00 0.29 0.00 0.36 0.00 0.37 0.00

Further, we observe that maximum drawdown (row called MDD in Table 7.5) on the

six stock datasets is.much higher than that achieved by their respective benchmarks. The

maximum drawdown is -74% for FTSE100, -59% for the TOP40, -71% for the TSE60 and

-73% for the NASDAQ100. We also note that there is very little difference between the

percentage of time the MSSAPS-based algorithm and the respective market index generate

positive returns (PP) returns. However, when the market index was up, the MSSAPS-based

algorithm generated positive returns more than 70% of time on all datasets. When the

market was down the MSSAPS-based PS algorithm generated positive returns more than

30% of the time on all datasets. These results suggest that the value add of the MSSAPS-

based algorithm lies in its ability to find stocks that are likely to rise more in a rising market

or fall less in a falling market.

In summary, the simulation results have demonstrated that the MSSAPS-based PS algo-

rithm achieves very impressive cumulative wealth growth on all datasets. These encouraging

results show that the MSSAPS-inspired PS algorithm is capable of achieving an excellent

trade-off between return and risk. In our view the MSSAPS-based PS algorithm is a very
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robust investment strategy.

7.5.3 MSSAPS and Brokerage Costs Analysis

The MSSAPS investment algorithm can tolerate relatively small proportional commission

rates and still beat competing benchmarks, including: the best stock,;the equally weighted

market index; and the best constantly rebalanced portfolio in hindsight, called BCRP*.

The graphs in Figure 7.2 depict the total returns of the MSSAPS algorithm for varying

proportional commission factor c = 0.1%, 0.2%, ... It does clearly appear that our strategy

can withstand reasonable brokerage commissions. For example, with a commission cost of

c = 0.1% or 10 basis points (10 bps), the algorithm still beat the best stock, the market

and the BCRP* portfolio in all markets we considered. In fact even with c < 0.25% our

algorithm beats all its respective market indices. As discussed in Chapter 3 some current

online brokers charge very small proportional commissions. This means that a large investor

can scale up the investment and suffer only a small proportional transaction rate, which can

be as low as 0.05% for a round trip.

Figure 7.2: Transaction Cost Analysis for Selected Markets
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7.6 CONCLUSION

In this chapter, we have presented a new Online approach to PS algorithm called MSSAPS.

Building on Takens (1981) delay-embedding theorem, MSSAPS combines powerful Online

PS algorithms with ideas from signal processing and statistical learning to produce portfolios

that substantially outperform their benchmarks equivalent on real-market datasets even after

accounting for modest but reasonable brokerage commissions.
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8.0 DYNAMIC STOCK SELECTION AND MACHINE LEARNING

ALGORITHMS FOR PORTFOLIO SELECTION

8.1 INTRODUCTION

The emergence of research in PS driven by advances in machine-learning theory is enabling

investors to achieve returns greater than those that could be obtained by simply buying and

holding a randomly selected portfolio of individual stock prices, even after accounting for

trading costs. Both theoretically well grounded algorithms as well as algorithms based on

simple heuristics have been shown to exist in the field of Online learning for PS problems.

Algorithms such as Gyorfi et al. (2004, 2005, 2006), Borodin et al. (2006) and Li et al.

(2012a, 2012b, 2013) have shown very impressive performance with a growth in portfolio

wealth that, in most cases, is significantly higher than any that could have been achieved

by investing in the broader market index using only publically available information in the

form of stock price relative.

Despite this promising performance, existing state-of-the-art machine-learning PS algo-

rithms still face some limitations that do not allow them to fully exploit the complex structure

observed in stock prices. One of the major limitations is related to the fact that all existing

state-of-the-art Online PS algorithms focus only on the PS problem, also referred to as the

portfolio construction problem. Their exclusive focus on the portfolio weight vector ignores

the basic fact that for an institutional portfolio manager, the stock selection problem is as

important (if not more important than) as the portfolio construction problem. This chapter

is primarily dedicated to the stock selection problem and we show a very flexible way to

combine the stock selection and portfolio construction problems.

The importance of stock selection strategies cannot be overstated in financial markets.
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Investment management companies employ a large number of fundamental analysts whose

role is to look at the financial ratios of a company and determine the financial strength of its

balance sheet and income statement, the potential market value of the company equity and

finally the future potential of the company that will drive its stock price. Determining what

the company is worth at today’s market price enables the analyst to make a decision to either

buy or sell equity stocks of the company. However, stock selection based on fundamental

analysis is not the only tool available to professional money managers. There is now a large

number of professional money managers who subscribe not only to the fundamental analysis

paradigm but also to technical or quantitative analysis for which machine-learning techniques

are gaining momentum.

This thesis has so far demonstrated that machine-learning algorithms that formulate the

investment problem as a weight vector prediction problem can generate substantial growth in

portfolio wealth, way above what a radomly generated portfolio could achieve. However, it is

relatively easy to argue that the Online learning-inspired portfolio weight-vector prediction

is only a partial representation of the portfolio management problem faced by professional

investors. In actual applications, fund managers care as much about the portfolio construc-

tion problem as they care about their stock selection abilities. The objective of the present

chapter is therefore two folds: first we propose a new nonparametric empirical stock selec-

tion model that builds on Support Vector Machines (SVM) and, second, we propose a new

framework to recombine the stock selection and any pre-existing Online PS (interchangeably

called "portfolio construction" or "portfolio optimisation") algorithm in one simple and

flexible framework.

SVMs were originally developed by Vapnik (1998) (for a detailed introduction to the sub-

ject see Burges (1998) and Evgeniou et al. (2000)). The biggest difference between SVMs and

other traditional methods of learning is that SVMs do not focus on an optimisation protocol

that makes few in-sample errors as other techniques like classical regressions do. Tradition-

ally, most learning algorithms have focused on minimising in-sample errors generated by the

model. These methods are based on what is called "Empirical Risk Minimisation" (ERM).

The goal of SVM is different. It does not seek to reduce the empirical risk of making just a

few mistakes, but focuses on building reliable models that perform very well out-of-sample.
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This principle is called "structural risk minimisation". In other words, the SVM searches a

structural model that has little risk of making mistakes with future data.

A general limitation of SVM-based directional prediction is that the input variables lie

in a high-dimensional feature space. Given that stock markets generally consist of several

hundreds of stocks, this could lead to the high dimensionality of the variables to be trained.

To deal with this problem, we first conduct a dimension reduction of our feature space in

order to acquire an effi cient and discriminative representation before proceeding to the clas-

sification step. A common unsupervised feature extraction method is Principal Component

Analysis Pearson (1995) by which principal components are obtained through an eigen analy-

sis of the covariance matrix of original data. The PCA has been widely used to deal with

high dimensional datasets in many areas, such as protein dynamics reduction, spectral-data

reduction, and pattern recognition.

In comparison with classical financial modelling, our approach allows continual adapta-

tion to changing market conditions and a nonparametric solution-representation. One of the

striking feature of our new algorithm is that we make no assumptions about the statisti-

cal properties of stock prices and the model itself requires very few paramters to fine tune.

Compared with other state-of-the-art empirical PS approaches, the focus here is on a holistic

design that integrates robust stock-selection procedures with portfolio construction assisted

by machine-learning. A major aim of the chapter is, therefore, to develop methodologies for

learning investment-decision models for portfolio management that can adapt with market

processes, the application’s performance and the environment.

To demonstrate the robustness of our methodology we evaluate our proposed algorithm

against benchmark Online portfolio allocation techniques using six stock market datasets of

which four were previously untested. We evaluate the methods developed in out-of-sample

trading over historical data. The testing is designed to be realistic; for instance, we take

into account factors such as transaction costs, stock mergers and data snooping issues. In

all these datasets our algorithm substantially outperforms existing state-of-the-art Online

stock-selection techniques-sometime in a spectacular fashion.

The rest of the chapter is organised as follows. After a quick literature review (Section

8.2), we present the mathematical model in Section 8.3. In Section 8.4, we present the general
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foundation of our online stock selection algorithm using SVM. In section 8.5 we present the

main mathematical tool for understanding and designing SVMs. Section 8.6 presents our

support vector machine for portfolio selection (SVMPS). Numerical results based on various

datasets are described in Section 8.7. Section 8.8 concludes this chapter.

8.2 LITERATURE REVIEW

In recent years, many attempts have been made at predicting the direction of the broad

market indices using a time series adaptations of the Support Vector Machine (Huang et al,

(2005)) paradigm. Kim (2003), for example, showed that the SVM outperformed the artificial

neural networks in predicting future direction of a stock market using an experiment with

the Korean composite stock price index 200 (KOSPI 200). Huang et al (2005 ) reported

remarkable performance with high hit ratios using a SVM-based model to predict Nihon

Keisai Shimbun Index 225 (NIKKEI 225) in a single period. Since the SVM implements the

structural risk minimisation principle, it often achieves better generalisation performance

and lower risk of overfitting than the artificial neural networks (Cortes and Vapnik,(1995)).

Recently, Fan and Palaniswami, (2001) utilised a SVM algorithm to perform stock se-

lection. In Tay and Cao (2003), SVMs are applied to the problem of forecasting several

futures contracts from the Chicago Mercantile Market. Kim, (2003) uses SVMs to predict

the direction of change in the daily Korean composite stock index. Their experimental re-

sults show that SVMs outperform other methods and that SVM should be considered as a

promising methodology for financial time-series forecasting. In a similar way, Huang et al.

(2005) investigated the predictability of financial movement direction with SVM by forecast-

ing the weekly movement direction of NIKKEI 225 index. The methodology used by these

authors demonstrated some promising results. Van Gestel et al. (2001) used an SVM for

one-step-ahead prediction of the 90-day T-bill rate in secondary markets and the DAX 30.

SVMs were used for regression purposes instead of classification, and the feature vector was

based on lagged returns of the index, bond rates, S&P500, FTSE and CAC40.

Applying computational intelligence and machine-learning to stock selection is nothing
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new. Levin (1995), for example, applied artificial neural networks to select valuable stocks.

Chu et al.(1996) used fuzzy multiple-attribute decision analysis to select stocks for portfolios.

However, these approaches have some drawbacks in solving the stock-selection problem.

For example, the fuzzy approach usually lacks learning ability, while the neural networks

approach has an overfitting problem and is often easy to trap into local minima. In order

to overcome these shortcomings, the SVM approach is used in this thesis for stock selection

problems.

Perhaps, the work most related to the one presented in this chapter is the work of Fan

and Palaniswami (2001) and Ruei-Shan (2008), where an SVM classifier is applied to the

stock markets in Australia and Taiwan. The SVM outputs are used to rank the best long

stocks in these markets. This is achieved by assigning the top 25% to the positive class and

the remaining 75% to the negative class. These authors achieve significant excess returns in

long-only equally weighted portfolios.

8.3 MATHEMATICAL MODEL

As usual, we consider a market ofm securities that has the same characteristics as the market

investigated by Gyorfiet al. (2006,2007,2008) and Algoet (1996). In this setting, the market

vector pt = (p1
t , p

2
t , ..., p

m
t ) represents the vector of prices for j = 1, 2, ...,m stocks. The change

in security prices during the tth trading period is represented as a stock market vector xt

= (x1
t , x

2
t , ..., x

m
t ) ∈ R+

m where xt is the vector m of non-negative numbers representing price

relatives for the trading period t. The jth component xjt ≥ 0 of xt expresses the ratio of two

consecutive closing prices of asset j such that xjt =
pjt
pjt−1

. Thus an investment of d dollars in

the jth security just before the start of the tth trading period yields dxjt dollars by the end

of the tth trading period

The investor in our model is allow to distribute his or her capital at the beginning of each

trading period according to a portfolio vector bt = (b1
t , b

2
t , ..., b

m
t ). Here the jth component bjt

of bt denotes the proportion of the investor’s capital invested in asset j at time t. Throughout

this chapter we assume that the portfolio manager is not allowed any short sale of securities,
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meaning that the portfolio vector is such that bt ≥ 0 and that the portfolio manager is

always fully invested

(
m∑
j=1

bjt = 1

)
, including reinvestment of dividends.

Define stock i individual contribution to the total portfolio returns as

cit = bit · xit (8.1)

At time t, the overall contribution to the portfolio from all the stocks in our universe can be

expressed as

ct = bt
(
xt−1

1

)
◦ xt ∈ R1×m (8.2)

where ◦ represents an entry-wise (also called "Hadamart") product

Let V be a m-dimensional subspace of {0, 1}n, such that the unitary vector −→I t =

(1, 1, ..., 1) ∈ V . Standard linear algebra shows that it is possible to find a (k−1)-dimensional

space W such that
〈−→

I t,W
〉

= V . However, this choice is not unique. Because
−→
I t is an

all-one vector in unitary vector space and without loss of generality we can write ct as

ct =
−→
I t ◦

(
bt
(
xt−1

1

)
◦ xt

)
= b̃t

(
xt−1

1

)
◦ xt ∈ R1×m (8.3)

In practice and for reasons that will become clearer later on, it helps to consider
−→
I t

as a binary vector space in the subspace of subspace of {0, 1}m. In that case we can write

Equation 8.3 as

ct = b̃t
(
xt−1

1

)
◦ xt,where b̃t =

bt
(
xt−1

1

)
◦ It

m∑
j=1

bjt
(
xt−1

1

)
◦ Ijt

and

(
m∑
j=1

b̃jt = 1

)
(8.4)

As in Equation 8.3, Equation 8.4 represents the stock prices’ individual contributions

to the portfolio total returns where the vector b̃t represents the new normalized portfolio

weight vector. b̃t itself is made up of two important components: the first one, bt
(
xt−1

1

)
, is

as usual the portfolio vector derived from any Online PS algorithm and can be regarded as

the result of the portfolio construction problem. The second element, It, can be understood

as the manager controlled variable that helps him or her decide what stocks could/shoul be

included in the portfolio. In the case where It is a unitary vector, the manager is allowed
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to hold all stock in the universe selected provided that the weight vector, bt, allocated to

those stocks is strictly greater than zero. It is therefore evident in this framework that the

portfolio allocation through the weight vector bt is no longer the sole criterion for investment

decisions. Given stock j, the portfolio manager will take a position on stock j only when

the portfolio construction as expressed in the weight vector bjt and the stock selection found

in Ijt all provide positive signals on stock j.

Let S0 denote the investor’s initial capital. A PS algorithm is a mechanistic procedure

that produces any sequence of portfolios b̃n =
(
b̃1, b̃2, ..., b̃n

)
by specifying how to reinvest

the current wealth from trading period to trading period. Starting with an initial wealth S0,

after n trading periods, the investment strategy B achieves the wealth:

Sn = S0

n∏
i=1

m∑
j=1

b̃jt
(
xt−1

1

)
xjt= S0 exp

{
n∑
i=1

log b̃ᵀt
(
xt−1

1

)
xt

}
(8.5)

where b̃t
(
xt−1

1

)
=
[−→

I t ◦ bt

] (
xt−1

1

)
denotes the portfolio vector chosen by the investor on

the tth trading period, upon observing the past behaviour of the market represented by xt−1
1

. b̃1 is a constant portfolio vector such that every asset receives the same initial investment;

that is, b̃1 = 1
m
, ..., 1

m
.

Equation 8.5 may be written as:

Sn = S0 exp {nWn (B)} (8.6)

where Wn (B) denotes the average growth rate and is given by:

Wn (B) =
1

n

n∑
i=1

log b̃ᵀt
(
xt−1

1

)
xt. (8.7)

Given that the goal is to maximise Sn = Sn (B), Equation 8.7 is equivalent to maximising

the following average growth rate:

Wn (B) : b̃∗i
(
xi−1

1

)
= argb̃ max E

{
log
[−→

I t ◦ bt

]ᵀ (
xt−1

1

)
xt | xi−1

1

}
(8.8)
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Equation 8.8 shows the final optimisation problem as faced by investment managers.

The portfolio manager in our specification has to solve two seemingly independent but ul-

timately inter-connected optimisation problems. More particularly, both the stock selection

problem-that is finding optimal values for
−→
I t and the portfolion construction (finding the

optimal value of bt)-must be simultaneously determined by the portfolio manager. In this

specification,
−→
I t solves the stock selection problem at time t while bt deals with the portfolio

construction problem. Of course when
−→
I t is an unitary vector space, the problem in Equa-

tion 8.8 is a special case of to the standard Online learning portfolio optimisation problem

which could be approximated using any of the algorithms already discussed in the preceeding

chapters of this thesis.

We therefore conclude that the complex problem faced by money managers is far from

being that of determing an optimal weighting scheme only, but also that of choosing what

stocks should be bought or sold. Therefore, focussing exclusively on one part of the problem

will fail to adequately resolve fund mangers anxieties.

Our proposed nonparametric Online PS algorithm follows two steps. In the first step,

we offer an empirical framework to apply the SVM strategy and predict the cross-sectional

directional movement of stock prices in our universe using the features estimated in the first

step. The second step of our algorithm proposes a new recombination algorithm that demon-

strates excellent historical performance. In this step, we combine the SVM technique with

conventional Online learning portfolio selection models to form our final strategy portfolio.

This combined strategy is compared with the benchmark historical average strategy so as to

evaluate the predictive power of this proposed strategy.

8.4 ONLINE STOCK SELECTION ALGORITHM USING SUPPORT

VECTOR MACHINES

In many supervised learning problems in general and SVM in particualar feature selection is

criticially important. More precisely, selecting relevant features for support vector machine

(SVM) classifiers is important for a variety of reasons, including generalization performance,

178



computational effi ciency, and constraints and interpretational issues. Traditionally stock

trading strategies using SVM have used technical or fundamental company attributes to

xtract features and learn SVM parameters independently. This chapter proposes a purely

statistical method based on principal component analysis for feature extraction. Instead of

pre-defining an arbitrary number of fundamental features to be included in a classifier we

extract the features from a linear-beta multi-factor stock pricing model (see Section 8.4.1)

for a given training set. After the feature set is determined, the SVM is trained once daily,

in order to adjust to changing market conditions. Portfolios are formed by ranking stocks

using the classifier output. The highest ranked stocks are used for long positions and the

lowest ranked ones could be used for short sales.

8.4.1 A Linear-Beta Multi-Factor Stock-Pricing Model

Our support vector stock selection machine has its foundations in the so-called "linear beta

multifactor pricing models". According to the linear-beta-pricing-models paradigm, few

economy-wide factors are suffi cient to represent the systematic risk that one faces by investing

in affected securities. The logical conclusion is that the expected return on an asset is a linear

function of its factor betas (Ross (1976), Connor (1984)). Although the linear-beta-pricing-

model do not define what the economy-wide factors are, one example of factors could be the

market portfolio as in the standard Capital Asset Pricing Model (CAPM) of Sharpe (1964)

and Lintner (1965). Another example of factors is seen in the work of Fama and French (1993)

who showed that size and book-to-market are suffi cient to capture all economy-wide pervasive

sources of risk. In this chapter we will identify the pervasive risk factors based on statistical

analysis of historical return data using Principal Component Analysis, also called PCA (see

Connor and Korajczyk (1988) and Lehmann and Modest (1988)). Our factor model aims

to capture the returns of assets through a set of statistical factors or components, extracted

purely from historical price data. These factors are the drivers behind asset returns and are

responsible for the co-variation across different assets.

Let us now consider an economy with a large collection of assets prices. The econo-

metrician has observations on the returns on m of the assets in the economy. Denote by
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Rt = [R1t, R2t, ..., Rmt]
′ the vector of gross total returns for m securities at time t. We also

denote by ΣR = E
[
(Rt − E [Rt]) (Rt − E [Rt])

′] the covariance matrix of the return vector
and by ft = [f1t, f2t, ..., fmt]

′ the vector of time-t values taken by the K factors.

According to the linear factor model paradigm, the return-generating process for a se-

curity is driven by the presence of the various common factors and the security’s unique

sensitivities to each factor (factor loadings). Because the returns on the N securities are

generated according to a linear factor model with the same K factors we can write mathe-

matically:

Rit = αi +

m∑
j=1

βijfjt + µit = αi + f>t βi + µit (8.9)

αi is the expected level of return for stock i if all factors have a value of zero, fj represents

the value of the jth factor that impacts the return on stock i and βij stands for the beta

(sensitivity) of stock i′s return to the jth factor given by:

βi = Σ−1
F E [(Rit − E [Rit]) (ft − E [ft])] (8.10)

and ΣF is the variance-covariance matrix of ft given by

ΣF = E
[
(ft − E [ft]) (ft − E [ft])

′] (8.11)

µi a random error term with mean equal to zero and variance equal to σ2
εi

For our purpose, statistical factors here will be extracted such that the factors are as-

sumed to capture all systematic behaviour:

E
(
fiµj

)
= 0 for all stocks and indexes

E
(
µiµj

)
= 0 for all i and j such that i 6= j

(8.12)

that is common factor and asset-specific returns are uncorrelated and the asset-specific

returns across different assets are also uncorrelated.

Sharpe (1964) and Lintner (1965) developed the first linear beta pricing model, the

CAPM. Merton (1973) derived the first linear-multi-beta pricing model by examining the
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intertemporal portfolio choice problem of a representative investor in continuous time. Long

(1974) proposed a related multibeta pricing model in discrete time.

If an investor holds a well-diversified portfolio, residual risk will tend to go to zero

and only systematic risk will matter. The only terms in the Equation 8.10 that affect the

systematic risk in a portfolio are bij. Because the investor is assumed to be concerned

with expected return and risk. Under these assumptions and following Connor (1984) the

following proposition can easily be proven

Proposition 1. Suppose that there are n assets whose rates of return are governed by m < n

factors according to the equation

rit = ai +
m∑
j=1

bijfj , for i = 1, 2, ..., n (8.13)

Then there are constants λ0, λ1, ..., λm such that

µi = λ0 +
m∑
j=1

bijλj , for i = 1, 2, ..., n (8.14)

Proof. We recall that each random factor fj is simply an investable portfolio of nominated

assets that best represents the sector or component of randomness we want to model. In

particular, we can construct n special portfolios {pi}ni=1, where the strategy for portfolio

pi say, is invest bij in the portfolio representing factor j for j = 1, ...,m; and invest the

remaining 1−
m∑
j=1

bij at the risk free rate. Upon doing this we have effectively constructed n

portfolios whose return rates are given by

rpi =

(
1−

m∑
j=1

bij

)
r0 +

m∑
j=1

bijfj , for i = 1, 2, ..., n (8.15)

If we compare equation 8.14 with the model for the return rates of the individual portfo-

lios in Equation 8.16 we can consider making a suitable combination of the special portfolio

pi and asset i and for it to be free of all risk. Before we make this combination we examine

the risk-free components of the two. Specifically, if:

ai <

(
1−

m∑
j=1

bij

)
r0 (8.16)

181



then our strategy is to invest long one unit in pi and invest short one unit in ri. This

strategy is cost-free and risk-free yet it provides a positive return

rpi − ri =

(
1−

m∑
j=1

bij

)
r0 − ai > 0. (8.17)

This represents an arbitrage opportunity, which is not allowed. Hence, we conclude that

Equation 8.17 cannot hold. In a similar manner we can argue that.

ai >

(
1−

m∑
j=1

bij

)
r0 (8.18)

cannot hold. Thus we have

ai =

(
1−

m∑
j=1

bij

)
r0. (8.19)

and thus,

ri =

(
1−

m∑
j=1

bij

)
r0 +

m∑
j=1

bijfj = r0 +
m∑
j=1

bij (fj − r0) for i = 1, 2, ..., n . (8.20)

Taking expectations leads to the results:

µi = λ0 +
m∑
j=1

bijλj , for i = 1, 2, ..., n , (8.21)

where λ0 = r0 and λj = µfj − r0, for j = 1, 2, ...,m.

It can be shown that these results hold true for the more general case where:

ri = ai +
m∑
j=1

bijfj + εi , for i = 1, 2, ..., n (8.22)

To get a better understanding of the implications of this framework we will demonstrate

the expected returns that must arise from the model with a two-index model . Suppose that

the following two-index model describes returns: .

ri = ai + bi1f1 + bi2f2 + εi (8.23)
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with the usual condition E (εiεj) = 0 for all i and j such that i 6= j. As argued earlier if

an investor holds a well-diversified portfolio, residual risk will tend to go to zero and only

systematic risk will matter. The only terms in the Equation 8.23 that affect the systematic

risk in a portfolio are bi1 and bi2. Because the investor is assumed to be concerned with

expected return and risk, he or she need be concerned with only three attributes of any

portfolio (p): Rp, bi1 and bi2.

Let us hypothesise the existence of the three widely diversified portfolios shown in the

following table:

Portfolio Expected Returns bi1 bi2

A 15 1 0.6

B 14 0.5 1

C 10 0.3 0.2

It is straightforward to see that the equation of the plane in Rp, bi1 and bi2. space defined

by these three portfolios is:

Ri = 7.75 + 5bi1 + 3.75bi2

Given a vector of portfolio weights w, the expected return and risk measures of any

portfolio of these three portfolios are given by:

Rp =
3∑
i=1

wiRi

bp1 =
3∑
i=1

wibi1

bp2 =
3∑
i=1

wibi2

3∑
i=1

wi = 1

Because a weighted combination of points on a plane (where the weights sum to one)

also lies on the plane, all portfolios constructed from portfolios A, B, and C lie on the plane

described by portfolios A, B, and C. What happens if we consider a new portfolio not on

this plane? For example, assume a portfolio E exists with an expected return of 15%, a bi1
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of 0.6, and a bi2 of 0.6. Compare this with a portfolio (call it D) constructed by placing

equal weighting on portfolio A,B and C. The sensitivities on this portfolio are:

bp1 = 1
3

(1) + 1
3

(0.5) + 1
3

(0.3) = 0.6

bp2 = 1
3

(0.6) + 1
3

(1) + 1
3

(0.2) = 0.6

The risk for portfolio D is identical to the risk on portfolio E. The expected return on

portfolio D is:

1

3
(15) +

1

3
(14) +

1

3
(10) = 13

Alternatively, because portfolio D must lie on the plane described earlier, we could have

obtained its expected return from the equation of the plane:

Ri = 7.75 + 5 (0.6) + 3.75 (0.6) = 13

By the law of one price, two portfolios that have the same risk cannot sell at different

expected returns. In this situation it would pay arbitrageurs to step in and buy portfolio E

while selling an equal amount of portfolio D short. Buying portfolio E and financing it by

selling D short would guarantee a riskless profit with no investment and no risk. We can see

this quite easily. Assume the investor sells $100 worth of portfolio D short and buys $100

worth of portfolio E.

The arbitrage portfolio involves zero investment, has no systematic risk (bi1 and bi2), and

earns $2. Arbitrage would continue until portfolio E lies on the same plane as portfolios A, B,

and C. Therefore, all investments and portfolios must be on a plane in expected return, (bi1

and bi2 for our simple example) space or hyperspace. If an investment were to lie ABOVE or

BELOW the plane, an opportunity would exist for riskless arbitrage. The arbitrage would

continue until all investments converged to a plane.

8.4.2 Eonometric Estimation of Linear-Beta Stock Pricing Models

The econometric methods that have been used to evaluate linear-beta pricing models (Equa-

tions 8.14 and 8.15) using historical return data on a large cross-section of stocks remains
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a highly debated issue. Jagannathan et al. (2010) provide a detailed analysis of the main

econometric approaches available to the portfolio manager in estimating the main two equa-

tions of the linear-beta multifactor pricing model. In general, three approaches have been

suggested in the literature for examining linear beta pricing models. These econometric

methods include the cross-sectional regressions method, maximum-likelihood (ML) methods

and generalised method of moments (GMM).

Fama and MacBeth (1973) developed the two-pass cross-sectional regression method to

examine whether the relation between expected return and factor betas are linear. Betas

(Equation 8.14) are estimated using time series regression in the first pass and the relation

between returns and betas (Equation 8.15) are estimated using a second pass cross-sectional

regression.

Gibbons (1982) showed that the classical maximum likelihood method can be used to

estimate and test linear beta pricing models when stock returns are i.i.d and jointly normal.

Kandel (1984) developed a straightforward computational procedure for implementing the

maximum-likelihood method.

MacKinlay and Richardson (1991) show how to estimate the parameters of the CAPM by

applying the GMM to its beta representation. These authors illustrate the bias in the tests

based on standard maximum-likelihood methods when stock returns exhibit contemporane-

ous conditional heteroscedasticity and show that the GMM estimator and the maximum-

likelihood method are equivalent under conditional homoscedasticity. An advantage of using

the GMM is that it allows estimation of model parameters in a single pass, in this manner

avoiding the error-in-variables problem.

As in Fama and MacBeth (1973), the current chapter proposes a two-pass cross-sectional

analysis to examine predictability of future stock returns from historical returns and their

factor betas. During the first-pass regression we estimate both the sensitivities (beta) and

the latent factors using a PCA (see Equation 8.14). Of course any macroeconomic or fun-

damental factors could be used here to estimate the factor sensitivities using time series

analysis for each individual stock. This first step therefore uses the factor loading as feature

inputs in the second pass analysis. In the second pass we estimate the optimal separating

hyperplane(Equation 8.15) using SVM.
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8.4.3 Beta Estimation Via Principal Component Analysis

In most SVM applicatoins to financial market data, the feature space has in most cases

been determined by firm-specific attributes (Tay and Cao, (2001), Yang et al., (2002) and

Ince and Trafalis (2004)). Many of these firm-specific attributes might be related to an

asset’s risk, including market capitalisation (sise), dividend yield, growth, price-earnings

ratio (P/E), and so on. However, these fundamental characteristics present many drawbacks:

First, using accounting data in general generates rules that may differ significantly across

firms. Second, reporting dates differ accross companies and constructing time-synchronised

inter-firm comparisons is actually a diffi cult exercise. Third, there is no rigorous theory

that provides guidance as to which traditional accounting variables should be related to

an appropriate measure of risk for computing the risk-return trade-off. Even if historical

empirical relationships can be uncovered, without the foundation of a rigorous theory, one

must be concerned that any historical correlation might be spurious and subject to sudden

and material change. Given these problems our approach is to use a statistical factor model

to jointly estimate the principal components and the factor loading and use these estimates

as inputs to our support vector stock selection model.

PCA is a vector space transformation used to reduce multidimensional datasets to lower

dimensions. New variables are created as a linear combination of the original data. Each

of the new variables (principal components) is constructed to be uncorrelated with all oth-

ers. Each successive principal component explains a decreasing amount of variation in the

datasets.

PCA is realised with a eigen decomposition on a covariance matrix or a correlation matrix

of assets values (standardised). Consider a collection of n observations of m asset returns.

Let x denote the resulting n ×m data matrix, and assume without loss of generality that

x has full column rank. PCA main goal is to find a linear combination of the observed

asset returns that "explains" as much as possible of the observed variability of the data (See

Theil (1971)). Let P denote this n× m matrix of the eigenvectors of xx> that correspond

to the m non-zero eigenvalues (sorted in descending order) of xx>. (Since xx> is positive

semi-definite, exactly m of its eigenvalues are positive and the remaining n−m are zero.)
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One can show that the first "principal component" (PC) of x, maximises the explained

variance of the multivariate regression of x on any linear combination of the columns of

x. Similarly, the second PC maximises the explained variability in the data, given the

explanation already provided by the first PC. Since the eigenvectors are mutually orthogonal,

all of the PCs are uncorrelated with each other, a very appealing feature for orthogonal

regressoin. Note that PCs are not unique up to sign; i.e., multiplying a PC by −1 has no

effect on the explanatory power of the PC.

One may write x = P×A, whereA is them×mmatrix of "loadings" of the data on each

of the PC. The fraction of the data variance explained by each of the successive PCs is given

by λi/
∑
λi where λi is the ith (sorted) eigenvalue of xx>, i = 1, . . . ,m. The cumulative frac-

tion of the data variance explained by the first j PCs is given by (λ1 + λ2 + ...+ λj) /
∑
λi.

In empirical practice, when the data are correlated, the first few PCs tend to capture most

of the variability. The leading PCs, then, can be used to represent the "meta-dimensions"

in which the data fall. One could also say that the number of leading PCs; for example,

those that capture between 50% and 90% of the total variance, represents the effective

dimensionality of the data, which will be well less than in general. Table 8.1 shows a pseudo

code implementation of the principal component analysis.
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Table 8.1: β = PCA (x)

Inputs x matrix of stock returns

0 < γ ≤ 1: fraction of total variance explained by PCA

Output β structure containing factor Loadings

for t = 2× n, 2× n+ 1, ...

1: D = x1
t−1

t

t∑
i=1

x1
i : standardise returns

2: C = 1
m−1

D×D>: covariance matrix

3: Calculate the eigen values and eigen vectors of C

5: Sort the eigen values, λi,t, in descending order

6: Calculate the variance explained by each of the successive PC

7: (λ1,t + ...+ λj) /
∑
λi: cumulative fraction of variance explained

8: β {t} ←− associated eigen vectors such that (λ1,t + ...+ λj) /
∑
λi ≥ γ

end

8.4.4 Some Practical Considerations

PCA estimation is always done looking back at all available data from the trade date, thus

simulating decisions, which might take place in real trading. We start with the first 252

days of trading data. Although this expanding window estimation procedure includes much

older datasets at each estimation step, we believe there are at least two major advantages

presented by our strategy. First, our methodology allows the portfolio manager to include all

information available to him or her in the form of stock prices. Second, using an expanding

window estimation technique also us to avoid the problem of chosing an optimal lookback

window period.

A more important issue is that of selecting an optimal number of orthogonal factors.

This leads to two possibilities: First, we take into account a fixed number of eigenvalues to

extract the factors. Figure 8.4 shows the total variability in each data set explained by the

first 20 principal components. It appears that the percentage of variance explained by the
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first 20 latent factors varies considerably with time. As a result we decided to take a variable

number of eigenvectors, depending on the estimation date, in such a way that a sum of the

retained eigenvalues exceeds a given percentage (set to 95%) of the trace of the correlation

matrix. The latter condition is equivalent to saying that the truncation explains a given

percentage of the total variance of the system.

Figure 8.4: Total Variance Explained by the Largest 20 Eigen Values
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8.5 OPTIMAL SEPARATING HYPERPLANE VIA SUPPORT VECTOR

MACHINES

This section propose a new SVM-inspired nonparametric Online stock selection algorithm,

called Support Vector Stock Selection (SVSS). Not only does SVSS explicitly allow the sepa-

ration of the stock selection and the portfolio construction problem, the algorithm also con-

structs investment strategies that have excellent historical performance in simulated trading

without any assumptions being made about the statistical properties of stock prices.
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8.5.1 Theoretical Foundations of Support Vector Machines

Since the publication of the Perceptron algorithm by Rosenblatt (1957), several machine-

inspired algorithms have been proposed for classification problems. Among them is the

SVM (Vapnik, 1995), which is known to improve the generalisation performance for binary

classification tasks. Indeed, one of the key problem in machine-learning is the control of the

generalisation ability of the models, and the margin idea introduced in SVMs appears to be

a nice way to control it (Vapnik, 1995).

A classifier can frequently be represented as a function f (x) : Rd → R. In a two-

class case, a point is assigned to the positive class if f (x) ≥ 0, and to the negative class

otherwise. A classifier function f (x) is linear if it can be expressed as f (x;w, b) = w>x+ b

where w, b are parameters of the function and > denotes the transpose operator. A set of

points (xi, yi) , i = 1, 2, ..., l, where yi ∈ {−1, 1} are class labels, is called linearly separable

if a linear classifier can be found so that yif (xi) > 0, for all i = 1, 2, ...l.

A hyperplane w>x + b = 0, ‖w‖ = 1 is called a γ−margin separating hyperplance if

yi
(
w>x+ b

)
≥ γ, for all (xi, yi) in a set S. Here γ > 0 is the margin and any separating

hyperplane can be converted into this form. Suppose y
(
w>x+ b

)
≥ 1, then by setting

w∗ = w
‖w‖ and b

∗ = b
‖w‖ , we obtain a γ−margin separating hyperplane with γ = 1

‖w‖ .

Let us assume for a moment the data points xt ∈ Rd, and labels yt ∈ {1,−1} are

separated by the perceptron algorithm. The Perceptron algorithm maintains a weight vector

w ∈ Rd and classifies xt according to the rule:

yt = sign
(
w>xt + b

)
(8.24)

where b denotes the offset (intercept) parameter. The perceptron separates its domain

Rd into two halfspaces;
{
x|w>x+ b > 0

}
and its complement. If ŷt = yt then no updates

are made. On the other hand, if ŷt 6= yt the weight vector is updated as:

w ←− w + ytxt and b = b+ yt

SVM can therefore be thought of as a method for constructing a special kind of rule,

called a linear classifier, in a way that produces classifiers with theoretical guarantees of
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good predictive performance (the quality of classification on unseen data). The theoretical

foundation of this method is given by the statistical learning theory of Vapnik (1995) and

the so-called Novikov theorem.

Theorem 2. Novikov’s Theorem (see Novikov (1962)). Let S, |S| = l be a training set i.e.

a set of points with class labels, and let R = max ‖xi‖ . Suppose that there exist a γ−margin

separating hyperplane (w, b) such that yi
(
w>x+ b

)
≥ γ, for all 1 ≤ i ≤ l. Then the number

of mistakes made by the Online perceptron algorithm on S is at most
(

2R
γ

)2

This theorem proves that for a linearly separable set of points the number of mistakes

made by the Perceptron algorithm is directly proportional to the ratio of the volume of the

data to the measure of separation of the classes, γ. Although the Novikov’s theorem bounds

the number of errors made by the Perceptron algorithm we point that this is indeed the case

only in the training sample. But in classifying stock price regimes we are interested in the

accuracy of a classifier on unseen data, as this will have some correlation with the strategy’s

cumulative wealth growth. Such a number clearly cannot be computed exactly, but it turns

out it can be bounded, as in the case of the support vector machines.

Definition 3. The Vapnik-Chervonenkis (VC) dimension of a set of classifiers is the max-

imum number h of points that can be separated into all possible 2h ways using classifiers in

this set. If for any n there exists a set of n points that can be separated into two classes in

all possible ways, the VC dimension of this set of functions is said to be infinite.

Intuitively, VC dimension measures the complexity of the classifiers in the set. If the

classifiers are simple, they have small VC dimensions. If they are complicated, the VC

dimension is large. For example, the VC dimension of hyperplanes in Rd is known to be d

+ 1. The following two results bound the VC dimension of the set of γ-margin separating

hyperplanes and the probability of misclassifying an unseen instance with such a hyperplane

chosen on the training data.

Theorem 4. Let x ∈ X belong to sphere of radius R. Then the set of γ-margin separating
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hyperplanes has VC dimension h bounded by:

h ≤ min

((
R

γ

)2

, d

)
+ 1 (8.25)

Corollary 5. With probability 1-η the probability of a test example not being separated

correctly by a γ−margin hyperplane has the bound

Perror ≤
m

l
+
E

2

(
1 +

√
1 +

4m

lE

)
(8.26)

where E = 4
h(ln 2l

h
+1)−ln η

4

l
, m is the number of training samples not separated correctly

by the γ−margin hyperplane, and h is the bound of the VC dimension given in the previous

theorem.

The result of the corollary is vital for our stock selection process. It shows that the

bound on the probability of making a mistake on unseen stock price data is proportional

to the VC dimension of the set of classifiers. In other words, everything else being equal, a

classifier with a lower VC dimension is likely to be a better out-of-sample predictor of stock

returns. Since the upper bound on VC dimension is inversely proportional to the margin, the

strategy for building a good stock price classifier is to have as large a margin as possible while

keeping the number of errors on the training set low. Given that the probability of making

a mistake is inversely proportional to the sise of the margin, our strategy is therefore to

find a classifier with the largest margin that still correctly separates the training points. The

maximal-margin separating hyperplane in this chapter is found by using the SVM algorithm.

8.5.2 Mechanics of the SVM

In many applications, including stock price forecasting, SVM has been shown to generate re-

markable generalisation properties. The SVM algorithm is based on the idea of the structural

risk minimisation principle, which seeks to minimise an upper bound of the generalisation

error rather than the empirical error commonly implemented in many econometric and sta-

tistical models. Therefore, SVM not only minimises training error but its learning capacity

is limited by VC dimension so as to reduce the probability of over-fitting the model.
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8.5.2.1 Linearly Separable Problems Consider a two-class, linearly separable classi-

fication problem as shown in Figure 8.1. According to the idea of large margin classifiers,

the decision boundary should be as far away from the data of both classes as possible. We

can achieve this by maximising the margin between the origin and the line w>x = k. This

implies that d = 2
‖w‖ . Let {x1, x2, ..., xn} be our data (represented here by the cross-sectional

values of the beta coeffi cients) set and let yi ∈ {1,−1} be the class label of x. The decision

boundary should classify all points correctly, that is yi
(
w>x+ b

)
≥ 1 for i = 1, 2, ..., n. The

decision boundary can be found by solving the following constrained optimisation problem.

minimise 1
2
‖w‖2

subject to yi
(
w>x+ b

)
≥ 1 for i = 1, 2, ..., n.

This is a constrained optimisation problem. Solving it requires some new tools. Suppose

we want to minimise f(x) subject to g(x) = 0 A necessary condition for x0 to be a solution: ∂
∂x

(f(x) + αg(x)) |x=x0 = 0

g(x) = 0

where α is the lagrange multiplier

Figure 8.1: Large Margin Classification

193



For multiple constraints gi(x) = 0, i = 1, . . . ,m, we need a Lagrange multiplier αi for

each of the constraints


∂
∂x

(
f(x) +

n∑
i=1

αigi(x)

)
|x=x0 = 0

s.t. gi(x) = 0

The case for the inequality constraint gi(x) ≤ 0 is similar, except that the Lagrange

multiplier αi should be positive

Now let us rewrite our optimisation problem as:

minimise 1
2
‖w‖2

subject to 1− yi
(
w>x+ b

)
≤ 0 for i = 1, 2, ..., n.

The Lagrangian could be written as:

L =
1

2
w>w +

n∑
i=1

αi
(
1− yi

(
w>xi + b

))
Setting the gradient of L w.r.t. w and b to zero, we have:


w +

n∑
i=1

αi (−yi)xi = 0 =⇒ w =
n∑
i=1

αiyixi
n∑
i=1

αiyi = 0

If we substitute w =
n∑
i=1

αiyixi into L, we have:

L = 1
2

n∑
i=1

αiyix
>
i

n∑
j=1

αjyjxj +
n∑
i=1

αi

(
1− yi

(
n∑
j=1

αjyjx
>
j xi + b

))
= 1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
>
i xj +

n∑
i=1

αi −
n∑
i=1

αiyi
n∑
j=1

αjyjx
>
j xi − b

n∑
i=1

αiyi

= −1
2

n∑
i=1

n∑
j=1

αiαjyiyjx
>
i xj +

n∑
i=1

αi

We note that this new expression of the Lagrangian is a function of αi only, and we use

this to formulate the so called "dual problem". The original problem is known as the primal

problem. The objective function of the dual problem needs to be maximised!

The maximisation of the dual problem is therefore:
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max W (α) =
n∑
i=1

αi − 1
2

n∑
i=1

n∑
j=1

αiαjyiyjx
>
i xj

subject to αi ≥ 0
n∑
i=1

αiyi = 0

This is a quadratic programming (QP) problem for which a global maximum of αi can

always be found. Finding αi allows us to recover w as w =
n∑
i=1

αiyixi

Many of the αi are zero, which indicates that w is a linear combination of a small number

of data points. This “sparse” representation can be viewed as data compression. xi with

non-zero αi are called SVs. The decision boundary is determined only by the SV. Let tj

(j = 1, ..., s) be the indices of the s support vectors. We can write

w =
s∑
j=1

αtjytjxtj

For testing with a new data z, compute

w>z + b =
s∑
j=1

αtjytj

(
x>tjz

)
+ b

and classify z as class 1 if the sum is positive, and class 2 otherwise Note: w need not

be formed explicitly. To solve the quadratic programming problem we use the very popular

sequential minimal optimisation (SMO).

8.5.2.2 Nonlinearly Separable Problems and Soft Margin Hyperplane We can

allow “error” ξi in classification; it is based on the output of the discriminant function

w>x+ b. ξi approximates the number of misclassified samples (see Figure 8.2)
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Figure 8.2: SVM and Slack Variables

If we minimise Σi, ξi, ξi can be computed by


w>x+ b ≥ 1− ξi yi = 1

w>x+ b ≤ -1 + ξi yi = −1

ξi ≥ 0

ξi are “slack variables” in the optimisation process. We note that ξi = 0 if there is no

error for xi. ξi is an upper bound of the number of errors. To reformulate the optimisation

problem we introduce a parameter C that represents a tradeoff parameter between the error

and the margin. The optimisation problem becomes:

minimise 1
2
‖w‖2 + C

n∑
i=1

ξi

subject to yi
(
w>x+ b

)
≥ 1− ξi, ξi ≥ 0

The dual of this new constrained optimisation problem is
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max W (α) =
n∑
i=1

αi − 1
2

n∑
i=1

n∑
j=1

αiαjyiyjx
>
i xj

subject to C ≥ αi ≥ 0
n∑
i=1

αiyi = 0

Finding αi allows us to recover w as w =
s∑
i=1

αtiytixti . This is very similar to the opti-

misation problem in the linear separable case, except that there is an upper bound C on αi

now. Once again, a QP solver can be used to find αi.

8.5.2.3 Extension to nonlinear Decision Boundary So far, we have only considered

a large-margin classifier with a linear decision boundary. In order to generalise the classifier

to a nonlinear decision boundary, the trick use by the SVM algorithm is to transform xi to

a higher dimensional space. Given the space of input point xi we define the feature space

as the space of φ(xi) after transformation. Therefore, a linear operation in the feature space

is equivalent to a nonlinear operation in the input space. Classification can become easier

with a proper transformation.

Figure 8.3: Nonlinear to Linear Mapping Function

Computation in the feature space can be costly because it is high dimensional. The

feature space is typically infinite-dimensional the so-called "Kernel Trick" makes the calcu-

lations less tedious.

Recall the SVM optimisation problem:
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max W (α) =
n∑
i=1

αi − 1
2

n∑
i=1

n∑
j=1

αiαjyiyjx
>
i xj

subject to C ≥ αi ≥ 0
n∑
i=1

αiyi = 0

The data points only appear as inner product As long as we can calculate the inner

product in the feature space, we do not need the mapping explicitly Many common geometric

operations (angles, distances) can be expressed by inner products Define the Kernel function

K by K (xi, xj) = φ(xi)
>φ(xj). Example of such Kernel functions are:

Table 8.2: Kernel Functions

Polynomial Kernel with degree d K (x, y) =
(
x>y + 1

)d
Radial basis function Kernel with width σ K (x, y) = exp

(
−‖x− y‖2 / (2σ2)

)
Sigmoid with parameter κ and θ K (x, y) = tanh

(
κx>y + θ

)
which yield the final optimisation problem as follows

max W (α) =
n∑
i=1

αi − 1
2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi, xj)

subject to C ≥ αi ≥ 0
n∑
i=1

αiyi = 0

Of course the same modification must apply for testing the new data z. z is classified as

class 1 if f ≥ 0,and as class 2 if f < 0, where w =
s∑
i=1

αtiytiφ (xti) and f = w>φ (z) + b =

s∑
j=1

αtjytjK
(
xtj , z

)
+ b

8.5.3 Some Practical Considerations

The second step in the estimation of our Support Vector Stock Selection (SVSS) model is to

construct an optimal separating hyperplane in the hidden feature space of factor loadings,

using SVM techniques. Following Fan and Palaniswami, (2001), we assign a target class

yi ∈ {−1, 1} of each stock to indicate its expected performance in the following way. At any

given trading period t we rank the expected performance of stocks in ascending order, with
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the top 25% (or lower quartile called Q1) being labelled as expected high-performing stock

and assigned a class = +1 and the others stocks labelled as expected low-yielding stocks

and assigned a class = −1. We approximate the expected returns by the average returns

of individual stock returns over the recent past. The lookback period for this averaging

is given by a parameter called the window sise, w. The estimated factor loading from

PCA of historical stock price returns up to time t − 1 are the feature inputs to the SVM.

There are two additional parameters that need to be chosen by the portfolio manager in our

nonlinear SVM setting. The first involves the choice of the kernel function. As discussed

previously, the SVM literature provides many candidate kernel functions that could be chosen

for different problem formulations. Fortunately, our historical simulations demonstrate that

our model is not too dependent on which kernel function we use. Our historical simulations

are done with a Gaussian kernel. The second deal with the parameter C that represents a

tradeoffparameter between the error and the margin. Generally, increasing C would improve

classification accuracy on the training set, but also tends to lead to over-fitting problems.

Although this parameter plays an important role in the performance of SVMs (Tay and Cao,

2001) we decided to use default setting values in the Matlab environment. Matlab default

values were also used for all other parameters in order to avoid some form of over-fitting

8.6 SUPPORT VECTOR MACHINE FOR PORTFOLIO SELECTION

(SVMPS) ALGORITHM

So far in this chapter we have presented a very effi cient algorithm with theorectical guarantees

for the stock selection problem inspired by the idea of SVM for classification. However,

investing in the equity market requires not only the stock selection problem, but also involves

portfolio allocation decision. Portfolio allocation is understood as the process of choosing the

proportions of various stocks to be held in a portfolio, in such a way as to make the portfolio

better than any other according to some criterion. All the models described in previous

chapters of this thesis have been shown to be theoretically well-founded and empirically

robust portfolio allocattion algorithms. One such PS algorithm is the so-call KMAC (see
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Chapter 3), which builds on the idea of the TAPR and the Anticor (AC) algorithm of Borodin

et al., (2006).

Given the SVM-inspired stock selection algorithm presented in this chapter and the

KMAC PS algorithm a natural problem of how to combine these independent framework

emerges. It turns out that one can recombine these two algorithms very effectively in a

simple and intuitive way.

At time t, the portfolio manager is faced with two independent but related problems-the

stock selection and portfolio optimisation/allocation problems. While the stock selection

is encapsulated in the binary vector It ∈ {0, 1} of length m the portfolio optimisation is

represented by a weight vector bt (xt1) of length m. An effective but yet intuitive way to

combine these two important problems is for the portfolio manager to invest in stock i only

when there is some "agreement" (It,j = 1 and bt,j (xt1) > 0) between the stock selection and

portfolio optimisation outputs. The final portfolio weight vector, b̃t (xt1), is therefore given

by:

b̃t,j =
bt,j (xt1) ◦ It,j
m∑
j=1

bt,j (xt1) ◦ It,j

and

(
m∑
j=1

b̃t,j = 1

)
(8.27)

The final portfolio weights vector in Equation 8.27, b̃t, is therefore expressed as a complex

combination of the stock selection and portfolio optimisation weights. In the case of total

or partial "disagreement" between the stock selection and the portfolio construction outputs

(It,j = 0 or bt,j (xt1) = 0 for j = 1, 2, ...,m) we will arbitralily set b̃t =
(

1
m
, ..., 1

m

)
.

This simple and flexible representation presents major benefits. By designing individual

and independent strategies for the portfolio construction and the stock selection, the portfolio

manager is afforded full control over what stocks to buy or sell together with the respective

quantities. Very often, fund managers have subjective insights into the workings of a business

and the implied direction of its stock price. This insight cannot be easily taken into account

if a typical "black box" Online PS algorithm is the sole tool available to the fund manager.

Perhaps the most significant property of our proposed methodology is that it provides the

fund manager with theorectical bounds in terms of the mistake he or she can make in the
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test sample while selecting stocks via the SVM algorithm. Our framework therefore seems

to speak directly to the way portfolio managers construct their funds in real life. We expect

this algorithm to provide very consistent performance relative to its peers and view it as a

very effective way to manage clients’assets.

Table 8.2 presents the pseudo code for our final Support Vector Machine for PS (SVMPS)

problems

Table 8.3: SVMPS(x, w, k)

Inputs w: window sise for the SVM for stock selection

k: window sise for the KMAC

x ∈ RT×m matrix of price relatives

Output b̃ Final portfolio weight vector

Initialise β ←− PCA (x): structure of estimated factor loading

b←− KMAC (x, k)

for t = k, k + 1, ...

1: ERt ←− 1
w

w∑
i=1

xt−w+1
t

2: z←− rank(ERt)

3: yi,t ←−
{

+1 if zi∈Q1(z)
−1 otherwise : vector of responses

4: βtrain ←− β {t− 1} and βtest ←− β {t}

5: svm ←− svmtrain(βtrain,yt): train SVM

6: It ←− svmclassify(svm,βtest): predicted classes

7: Retain only the predicted classes such that Ii,t = 1

8: b̃t =
bt(xt1)◦It
m∑
j=1

bt(xt1)◦It

9: if b̃t = 0

10: b̃t =
(

1
m
, ..., 1

m

)
11: end if

end for end
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8.6.1 Mixture of Experts

Our proposed SVMPS algorithm has two main parameters that need to be fine tuned by the

portfolio manager. The first parameter is the window-length , k, applicable to the KMAC

PS algorithm while the second parameter is the window-length w for the SVM-inspired stock

selection algorithm.

As usual we argue that there is no universally agreed method to select the optimal

window-sise parameter k and w. Our strategy is simply to define a large number of experts,

each expert indexed by its window sise parameters k and w such that:

{E (k, w) : 1 ≤ k ≤ 10, 1 ≤ w ≤ 10}

As in Gyorfi et al. (2006) we form a mixture of all experts using a positive probability

distribution qk,w on the set of all pairs (k, w) of positive integers. The investment strategy

simply weights these experts Hk,w according to their past performances and the qk,w such

that after the ith trading period the investor wealth becomes:

Si =
∑
k,w

qk,wSi
(
Hk,w

)
(8.28)

where Si
(
Hk,w

)
is the capital accumulated after i trading period using the expert Hk,w

with initial capital S0 = 1. We then form our final portfolio by weighting all expert portfolio

using the following:

b
(
Xi−1

1

)
=

∑
k,w qk,wSi−1

(
Hk,w

)
hk,w

(
xi−1

1

)∑
k,w qk,wSi−1 (Hk,w)

(8.29)

8.6.2 Trading Costs

As usual, at the beginning of the ith trading day, the portfolio manager rebalances the

portfolio from the previous closing price adjusted portfolio bi−1 to a new portfolio bi .

Specifically, we consider a transaction cost rate c ∈ (0, 1), so the transaction cost will be
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charged according to:

c

2

∑
k

∣∣∣∣∼bkt−bkt

∣∣∣∣ (8.30)

Thus, with the transaction cost rate the total wealth achieved by the strategy becomes

ScT = S0

T∏
i=1

[
(bi,xi)

(
1− c

2

∑
k

∣∣∣∣∼bkt−bkt

∣∣∣∣
)]

(8.31)

8.7 EMPIRICAL RESULTS

This section presents numerical results obtained by applying the SVMPS-based algorithm to

six financial market datasets described in Chapter 3. As usual, the back-testing experiments

in this section will consist of running the signals through historical data, with the estimation

of parameters, signal evaluations and portfolio re-balancing performed on a daily basis.

8.7.1 Analysis of Cumulative Wealth

For the first experiment we evaluate the compounded wealth achieved by the SVMPS-based

learning-to trade algorithm, including a 10 basis-point transaction cost over the entire sample

period. Figure 8.5 summarises the total cumulative wealth achieved by the SVMPS algo-

rithm for the six market datasets. The market index is calculated as an equally weighted

Buy-and-Hold portfolio on all stock available for that particular market. Figure 8.5 demon-

strates that the SVMPS-based PS algorithm achieves very good performance on all datasets,

including the more recent and previously untested stock market data. For example, on the

South African TOP40 index data set, the total wealth achieved by the SVMPS strategy im-

pressively increases from $1 to almost $3006. Not only is the wealth growth much higher than

the $13.6 achieved by the market index over the same 15-year periods, but also this wealth is

significantly higher than that demonstrated by existing state-of-the-art PS algorithms. Dur-

ing that period, the best stock generates $87.8 and the best constantly rebalanced portfolio

in hindsight achieves only a growth in wealth of $115. In the case of the FTSE100 in London
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1$ rises to $2359 after 15 years. This rise appears spectacular when one compares it to the

market index performance in the same period (see Figure 8.5). One impressive fact to note is

that, unlike most of the algorithms presented earlier, the performance of the SVMPS-based

PS algorithm seems to be very strong in recent times as well. We view this as a good sign

that the strategy is very robust accross different markets and time frames.

Figure 8.5: SVMPS Performance Comparison
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Table 8.4 presents the full sample and some selected sub-periods cumulative performance

of the SVMPS algorithm against respective benchmarks in the data set considered. From

these results it is easy to see that our proposed algorithm significantly outperforms the

respective market indices for all datasets and for most time periods. Over the full sample,

the SVMPS algorithm displays a very impressive CAGR of around 50% and 101%, using the

TOP40 and TE60 datasets respectively. This compares very farourably with a CAGR of 20%

and 17% for both market indices. Similar CAGR can be observed from all other datasets,

including the NASDAQ, the NYSE (O) and the NYSE (N). Table 8.4 also presents the year
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by year cumulative performance of the SVMPS algorithm against its respective benchmarks

for the data set considered. At the height of the financial crisis in 2008, for example, our

proposed methodology outperformed in all considered markets except the FTSE100 in the

UK. For most datasets, the cumulative annualised growth rate for the SVMPS-based PS

algorithm surpasses that achieved by the respective market indices for most subsamples

under consideration.

Table 8.4: Cumulative Returns Over Subsample Trading Periods

FTSE100 TOP40 TSE60 NASDAQ NYSE(N) NYSE(O)

ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT

Full 0.30 0.13 0.50 0.20 1.01 0.17 0.41 0.18 0.64 0.15 3.46 0.16

1Yr 0.10 0.21 0.29 0.17 -0.01 0.11 0.70 0.39 0.89 0.29 0.24 -0.01

2Yrs 0.06 0.22 0.31 0.22 0.36 0.10 0.19 0.26 0.35 -0.04 0.87 0.16

3Yrs 0.02 0.12 0.30 0.17 0.25 0.05 0.13 0.18 0.37 -0.07 2.27 0.23

4Yrs 0.18 0.16 0.27 0.19 0.32 0.09 0.27 0.21 0.30 0.03 2.28 0.19

5Yrs 0.42 0.23 0.30 0.23 0.32 0.17 0.46 0.30 0.33 0.05 2.42 0.20

7Yrs 0.44 0.12 0.46 0.16 0.12 0.09 0.23 0.17 0.51 0.08 3.02 0.20

10Yrs 0.37 0.15 0.59 0.22 0.30 0.14 0.36 0.17 0.81 0.07 4.44 0.19

15Yrs 0.37 0.13 0.57 0.21 0.57 0.15 0.38 0.18 0.93 0.07 5.80 0.13

8.7.2 Risk Analysis

Table 8.5 shows some of the SVMPS risk measures for the six datasets considered. From

the results, we see that SVMPS-based strategy has an annualised volatility of returns, σ,

that is higher than the one achieved by its respective benchmarks. However, when returns

are adjusted for risk (volatility), the Sharpe Ratio (SR) generated by the SVMPS-based

algorithms are generally significantly higher than the one generated by the respective stock

market indices. The SVMPS-based strategy therefore generates much better risk-adjusted

returns.
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Table 8.5: Risk Statistics of the SVMPS-Based PS Algorithm

FTSE100 TOP40 TSE60 NASDAQ NYSE(N) NYSE(O)

ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT ALG MKT

σ 0.30 0.18 0.28 0.16 0.58 0.17 0.42 0.23 0.38 0.19 0.54 0.13

α 0.01 0.00 0.06 0.00 0.25 0.00 0.12 0.00 0.14 0.00 0.53 0.00

β 1.19 1.00 1.14 1.00 1.62 1.00 1.23 1.00 1.09 1.00 1.45 1.00

γ 3.68 0.00 2.52 0.00 -1.21 0.00 -1.92 0.00 0.96 0.00 4.35 0.00

β ↑ 1.29 1.00 1.18 1.00 1.42 1.00 1.13 1.00 1.11 1.00 1.55 1.00

β ↓ 1.04 1.00 1.02 1.00 1.56 1.00 1.25 1.00 0.98 1.00 1.23 1.00

SR 0.78 0.37 1.33 0.78 1.37 0.59 0.87 0.53 1.32 0.44 2.90 0.64

MDD -0.44 -0.40 -0.34 -0.30 -0.77 -0.41 -0.68 -0.47 -0.61 -0.64 -0.37 -0.37

PP 0.54 0.56 0.55 0.57 0.56 0.58 0.55 0.56 0.55 0.55 0.59 0.53

PP↑ 0.79 1.00 0.78 1.00 0.75 1.00 0.81 1.00 0.75 1.00 0.72 1.00

PP↓ 0.22 0.00 0.26 0.00 0.30 0.00 0.23 0.00 0.30 0.00 0.43 0.00

Further, the SVMPS-based PS algorithm generates maximum drawdowns on five out of

six stock datasets.that are very similar to those generated by the respective uniform Buy-

and-Hold benchmarks. The maximum drawdown is -44% for FTSE100 against -40% for the

FTSE100 benchmark, -34% against -30% for the TOP40, -77% against -41% for the TSE60,

-68% against -47% for the NASDAQ100. When the market index was up, the SVMPS-based

algorithm generated positive returns more than 75% of the time on average for all datasets.

And when the market was down the SVMPS-based PS algorithm generated positive returns

about 30% of the time on average on all datasets. Another important indicator is given by

the strength and direction of the market-timing parameter, γ. This parameter is positive

and statistically significant for all datasets except for the TSE60 in Canada. This suggests

that the value add of the SVMPS-based algorithm lies in its ability to find stocks that are

likely to rise more in a rising market or fall less in a falling market.

In summary, the simulation results seem to demonstrate that the SVMPS-based PS algo-

rithm achieves very impressive cumulative wealth growth on all datasets. These encouraging

results show that the SVMPS-based PS algorithm is capable of achieving an excellent trade-
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off between return and risk. In our view the SVMPS-based PS algorithm is indeed a very

robust investment strategy.

8.7.3 SVMPS and Brokerage Costs Analysis

As in the case of most algorithms presented in this thesis, the performance of the SVMPS

algorithm is determined not only by the quality of the investment strategy but also by the

terms of execution. The potential outperformance of the SVMPS strategy will be heavily

affected if the commissions paid in order to execute every transaction are high or if the

prices of stocks that are selected for inclusion in the portfolio rise systematically between

investment decision and completion of trade execution.

Figure 8.6 shows that the SVMPS investment algorithm can tolerate relatively small

proportional commission rates and still beat competing benchmarks-including the best stock,

the equally weighted market index and best constantly rebalanced portfolio in hindsight

called BCRP*. The graphs in Figure 8.6 depict the total returns of the SVMPS algorithm

for varying proportional commission factor c = 0.1%, 0.2%, ... It appear that our strategy

can withstand reasonable brokerage commissions. For example, with a commission cost of

c = 0.1% or 10 basis points (10 bps), the algorithm still beat the best stock, the market

and the BCRP* portfolio in all markets we considered. In fact, even with c < 0.25%, our

algorithm beats all its respective market indices.
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Figure 8.6: Transaction Cost Analysis for Selected Markets
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8.8 CONCLUSION

In this chapter, we have presented a new Online approach to PS algorithms called SVMPS.

Building on PCA and SVM, SVMPS produces portfolios that substantially outperform their

benchmarks equivalent on real-market datasets even after accounting for modest but reason-

able brokerage commissions. To arrive at these portfolios SVMPS treats the stock selection

and portfolio construction problems faced by professional portfolio managers as two distinct

but equally important problems. The rationale for this is quite simple to grasp. An On-

line learning PS model can be good at optimally allocating the available capital amongst

securities, but the non-Quantitative managers may know things about different stocks that

are not captured by the model. Therefore, we need to blend Quantitative and Fundamental
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approaches into a Hybrid approach. Any reasonable approach to investing needs to consider

ways in which Quantitative techniques could enhance a Fundamental manager’s portfolio

performance. The solution proposed in this chapter does exactly that. Although we did not

explicitely use fundamental data files in our stock selection approach, the portfolio manager

could use firm-specific attributes or any other information to select candidate stocks and

simply override the output of our SVM based stock selection output. Our approach is not

only novel, but it is also very flexible and allows the portfolio manager to have full con-

trol on how to design better portfolios using both state-of-the-art Online machine-learning

algorithms and stock selection algorithms that can possess out-of-sample bounds.
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9.0 SUMMARY AND DIRECTIONS FOR FUTURE RESEARCH

9.1 SUMMARY

This thesis has developed and empirically analyzed a rich set of new, original and robust

Online PS algorithms. The proposed algorithms are simple in nature, easy to implement,

and have very few parameters that are easy to set. Our empirical studies show that all our

proposed algorithms not only substantially beat the market and the best stock, but also

consistently surpass a variety of so-called state-of-the-art PS algorithms.

The first contribution, Chapter 4, was to empirically analyse some existing Online PS

algorithms using both existing and more recent and previously untested datasets, including

the South African datasets. Instead of covering as many algorithms as one can possibly do

(see Li et al. (2013)), this thesis took a deeper look at those algorithms that have been

shown to be very robust investment strategies with very good finite-horison performance.

The algorithms studied in this chapter have been shown to outperform, by an exponential

factor, both the best stock and the best constant rebalanced portfolio benchmark. The

algorithms surveyed in this chapter included the nonparametric Kernel-based sequential

investment strategies of Gyorfi et al. (2006), the nonparametric Nearest Neighbor-based

sequential investment strategies of Gyorfi et al. (2008), Correlation-Driven Nonparametric

learning algorithm for PS (Li et al. (2011)), the Anticor algorithm (Borodin et al. (2006)),

the Passive Aggressive Mean Reversion strategy for PS (Li et al. (2012a)) and the Confidence

Weighted Mean Reversion strategy for PS (Li et al. (2013)). The main finding in this chapter

was that all the selected algorithms performed remarkably well for old datasets but more

recent and previously untested data have shown to be more challenging.

Applying numerically intensive algorithms to data dating back to the 1970s or 1980s
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amounts to some kind of "data snooping" itself as both the techniques and the computa-

tional power could not have been available to test these algorithms at that particular time.

As the computational power required to participate successfully in today’s financial markets

continues to grow exponentially, more and more portfolio managers are implementeing com-

plex algorithms and by default eroding some of the complex ineffi ciencies that might have

been present. Our ultimate view is that any Online PS algorithm should be evaluated on its

ability to perform on recent and previously untested datasets. That is what we have done

throughout this thesis.

In Chapters 5, 6, 7 and 8 some heuristic preprocessing procedures of the relative price

sequences are suggested. We notice that by transforming the relative price sequences we loose

information, which means that the asymptotic growth rate cannot be increased. The only

advantage of such procedures might be that they improve the performance for finite time

horizon. These procedures are motivated by some optimization criteria, which are usually

far from the growth optimality. The main power of the log-optimal strategies is that they

can utilize the significant hidden cross-correlation between the assets.

In Chapter 5, we studied and analyzed the Online PS problem by introducing a novel idea

called the Trend-Adjusted Price Relatives (TAPR). Using TAPR allowed us to derive a whole

new family of algorithms that combine powerful Online PS algorithms with ideas from signal

processing and statistical learning. Our new algorithms produce portfolios that substantially

outperform their benchmark equivalents for real-market datasets More particularly, three

new Online PS algorithms, the ACM, the KAC and the KACM were introduced, described

and their empirical performance has been thoroughly analyzed. The empirical results of

these new algorithms were investigated through a rich set of numerical experiments using six

major stock market datasets. The results emphasised the relevance of the proposed set of

new Online PS algorithms and underlined the relevance of their specification to outperform

existing benchmark PS algorithms.

In Chapter 6 we presented a novel nonparametric learning-to-trade sequential PS al-

gorithm called "Delay Coordinate Embedding algorithm for PS" (DCEPS). Our proposed

DCEPS algorithm built on Takens (1981) delay coordinate embedding theorem, which al-

lowed us to construct a data matrix of overlapping samples in order to increase the precision
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of parameter estimates. We derived the DCEPS algorithm from a time-delay embedding of

multiple time series in order to capture nonlinear information found in complex dynamical

systems of stock returns. Our technique created a time-lagged version of the original stock re-

turns in order to discover hidden patterns normally not detected in a linear space. The main

conclusion here was that the DCEPS algorithm outperformed all existing state-of-the-art PS

algorithm for all datasets and for most risk measures.

Another novel nonparametric similarity-driven empirical PS algorithm was introduced

in Chapter 7. We termed this new algorithm multivariate singular spectrum analysis for

PS or MSSAPS. As in the case of the DCEPS, the MSSAPS builds on Takens (1981) delay

coordinate embedding theorem in order to discover hidden patterns normally not detected in

a linear space. We showed that the MSSAPS not only exploits effective higher-dimensional

statistical correlations between market windows via the delay embedding feature, but also

benefits from the exploration of powerful nonparametric machine-learning techniques. As in

most of the algorithms proposed in this thesis the MSSAPS made no assumtpions about the

statistical properties of stocks prices and the algorithm itself requires very few paramters

to be fine tuned. The empirical results from our data simulations demonstrated that the

MSSAPS is a very robust investment strategy that outperforms existing state-of-the-art PS

algorithms.

A significant constribution we made to the growing literature on Online learning for

PS came from Chapter 8. We presented a new Online approach to PS algorithm called

the SVMPS. Most existing state-of-the-art PS algorithms implicitely assume that portfo-

lio managers only face one important investment decision, namely the decision related to

effi cient resource allocation, also called portfolio construction. In truth, all investment man-

agers consider the stock selection problem as important as the portfolio construction. the

SVMPS in our view is the first and only algorithm we know of that tries to combine both

stock selection and portfolio construction in the design of Online PS algorithms. Building

on multifactor linear beta models and SVM, SVMPS produces very stable portfolios with

consistent returns that substantially outperform existing state-of-the-art algorithms on real-

market datasets after accounting for reasonable brokerage commissions. To arrive at these

portfolios, the SVMPS treats the stock selection and portfolio construction problems as two
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distinct but equally important problems. The solution proposed in this chapter is not only

novel, but it is also very flexible and allows the portfolio manager to have full control on

how to to select stock with out-of-sample bounds on the number of mistakes.

9.2 DIRECTIONS FOR FUTURE RESEARCH

In the light of what emerged in the study and the development of novel algorithms presented

in this thesis, we think there are unanswered questions that could form the basis fo future

research.

9.2.1 Volatility Clustering and Pattern Selection

In the Pattern-Matching based PS algorithms (DCEPS and MSSAPS), effi ciently recognising

patterns in a portfolio of stock prices is one of the most important and very challenging

undertakings. One area of research could be to exploit the idea of volatility clustering and

search for patterns in similar volatility regimes. There are a number of models that capture

this tendency. Some of the better known are the ARCH (Engle, (1982)), GARCH (Bollerslev,

(1986)) and EGARCH (exponential generalised autoregressive conditional heterskedastic)

models by Nelson (1991)). Essentially, this ARCH family of models sets the volatility in

such a way that volatile markets tend to have more volatility in their future and quiet

markets tend to stay quiet (see Mandelbrot (1963)) until some random volatility shock hits

the market. It is therefore likely that Pattern-Matching in the volatility space could be less

noisy and provide better stock portfolio predictions than the traditional ones derived from

stock market returns only.

9.2.2 Stock Market Regime Shifts and Pattern Filtering

Financial markets often change their behaviour abruptly and more often than not these

changed behaviours of asset prices persist for many periods. Regime-switching models can

capture these sudden changes of behaviour. Models with regimes shifts have been used to
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characterise bull and bear markets or calm versus turbulent markets. This pattern has been

found since the earliest studies of regime switches on equity returns (Hamilton and Susmel

(1994)), who found that for excess equity returns, there is a high volatility regime that has,

on average, low returns. This regime naturally corresponds to bear markets. Therefore,

alpha signals can be generated more effectively by developing models that are adapted to

take account of different market regimes.

It is therefore reasonable to expect that if the market portfolio exhibits regime switches,

then portfolios of stocks would also switch regimes and the regimes and behaviour within

each regime of the portfolios should be related across portfolios (see Perez-Quiros and Tim-

mermann (2000) and Gu (2005)). One could exploit these regime changes in Online learning

algorithms for PS in a simple and intuitive way. We could start by modelling the market

portfolio to infer its current state and use that information to create today’s portfolio vector

from similar historical states. The main advantage is that if the patterns are obtained from

similar historical regimes, the response is likely to be estimated more precisely. We expect

this state dependent Online learning for PS strategies to generate better performance.

9.2.3 Directional Predictions and Online Learning for PS Algorithms

Most of the studies in stock price forecasting have focused more on the accurate forecasting

of the value of stock returns as this genenrally is one of the inputs into the mean variance

analysis. However, some recent studies have suggested that trading strategies derived from

the forecasts of the direction of stock market change may be more effective and gener-

ate higher profit. Relevant research on this topic includes Breen, Glosten and Jaganathan

(1989), Leitch and Tanner (1991), Wagner, Shellans and Paul (1992), Pesaran and Timmer-

man (1995), Kuan and Liu (1995), Larsen and Wozniak (1995), Womack (1996), Gencay

(1998), Leung Daouk and Chen (1999), Elliott and Ito (1999) White (2000), Pesaran and

Timmerman (2001), and Cheung, Chinn and Pascual (2003). Leung et al. (2000) found that

the classification models based on the directional forecast of stock returns outperform those

based on the level of stock returns in term of both predictability and profitability.

As argued earlier, the particular problem addressed by traditional machine-learning-
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based PS strategies is the construction of effi cient distribution of wealth among several assets

with the view of achieving maximal growth in wealth. Almost all existing prediction schemes

focus solely on price relative and ignore other useful side information, such as general stock

market directional forecast. Cover and Ordentlich (1996) presented a model to incorporate

side information in a universal portfolio setting. One direction for future research will be

therefore to combine Online PS algorithms with additional information provided by the

directional forecast of the general stock market. One way to achieve this goal would be

to derive the optimal asset weights subject to the stock market directional forecast. More

generally, what is missing in this thesis is an analytical model that better explains why our

active trading strategies are so successful.

9.3 GENERAL CONCLUSION

Any report of abnormal returns using historical markets has to overcome the suspicion of

"data snooping". In other words, when a datasets is excessively mined by testing many

strategies there is a substantial chance that one of the strategies will be successful by simple

overfitting. In this thesis, we have largely mitigated the risk of such "data snooping" by

applying the algorithms on a larger set of data accross different geographical locations.

Another mitigating factor is the sensitivity of the proposed algorithms to some parameter

choices. In general, our algorithms have at least one parameter (the maximal window sise

W) to be set by the fund manager before trading is executed. All the experiments conducted

here have indicated that the algorithm’s performance is robust with respect to the applicable

parameters, using the the expert’s combination paradigm.

Another data-snooping hazard is related to the so-called survivorship bias. The idea here

is that stocks selected for the various market experiments are all known to have survived

for the full period under consideration, including the dotcom buble of the early 2000 and

the financial crisis of 2008. Although we acknowledge this as a potential weakness in any

historical backtest analyis, we are also quick to mention that our algorithms were fully

developed using only the NYSE(O) and NYSE(N) and the application to all remaining
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datasets was obtained after the algorithms were fixed.

In conclusion we argue that the impressive performance generated by our PS algorithm

using data that are widely available casts some doubt on the market effi ciency hypothesis

at least in its weak form specification. Only in the presence of weakly ineffi cient markets

can these algorithms give the exceptional performance that we have demonstrated in these

examples. While consistently beating the market is considered to be already a great chal-

lenge, our approach to PS has clearly indicated that beating the best stock is an achievable

goal. However, it is important to point that the algorithms presented here are intended to

show investment decisions that would have been made had a strategy been utilised in the

past. Without adhering to best practices as presented here, the algorithms can also lead to

misleading results.
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.0 STATISTICAL PROPERTIES OF RATIO OF RANDOM VARIABLES

Consider two random variables R and S where S has support [0,∞[. Let G = g (R, S) = R
S
,

our goal is to find an approximation for E (G) and V ar (G) using the Taylor expansion

around g (.).

For any function f (x, y) the bivariate first order Taylor expansion about θ is

f (x, y) = f (θ) + f
′

x (θ) (x− θx) + f
′

y (θ) (y − θy) + remainder

Let θ = (EX,EY ), the simplest approximation for E (f (X, Y )) is therefore

E (f (x, y)) = f (θ) + f
′

x (θ) (0) + f
′

y (θ) (0) +O
(
n−1
)
≈ f (EX,EY )

The second order Taylor expansion is

f (x, y) = f (θ) + f
′
x (θ) (x− θx) + f

′
y (θ) (y − θy)

+
{
f
′′
xx

(
θ (x− θx)2 + 2f

′′
xy (x− θx) (y − θy) + f

′′
yy (θ) (y − θy)2)}+ residual

So a better approximation is given by

E (f (X, Y )) = f (θ) +
{
f
′′

xx (θ)V ar (X) + 2f
′′

x y (θ)Cov (X, Y ) + f
′′

yy (θ)V ar (Y )
}

+ residual

For

g =
R

S
, g
′′

RR = 0, g
′′

RS = −S−2, g
′′

SS =
2R

S3
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Then E
(
R
S

)
is approximately

E

(
R

S

)
u E (g (R, S)) ' ER

ES
− Cov (R, S)

E2S
+
V ar (S)ER

E3S

Using the first order Taylor expansion, the variance is

V ar (f (X, Y )) = E
{

[f (X, Y )− E (f (X, Y ))]2
}

' E
{

[f (X, Y )− f (EX,EY )]2
}

= E
{[
f
′
x (θ) (X − θx)− f

′
y (θ) (Y − θy)

]2}
+O (n−1)

' f
′
x (θ)2 V ar (X) + 2f

′
x (θ) f

′
y (θ)Cov (X, Y ) + f

′
y (θ)2 V ar (Y )

Since

g
′

R = S−1, g
′

S = − R
S2
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