
COPYRIGHT AND CITATION CONSIDERATIONS FOR THIS THESIS/ DISSERTATION

o Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

o NonCommercial — You may not use the material for commercial purposes.

o ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

How to cite this thesis

Surname, Initial(s). (2012). Title of the thesis or dissertation (Doctoral Thesis / Master’s
Dissertation). Johannesburg: University of Johannesburg. Available from:
http://hdl.handle.net/102000/0002 (Accessed: 22 August 2017).

http://www.uj.ac.za/
https://ujdigispace.uj.ac.za/

A framework for offloading decision making to

conserve battery life on mobile devices

by

Herman Marius Barnardt

submitted in fulfillment of the requirements for the degree

Magister Scientiae

in

Information Technology

for the

Faculty of Science at the

University of Johannesburg

Supervisor: Prof. M. Coetzee

Declaration

I, Herman Marius Barnardt, hereby declare that:

 The work in this dissertation is my own work;

 All sources used and referred to have been documented and recognised;

 This document has not previously been submitted in full or partial fulfilment of

the requirements for an equivalent or higher qualification at any other

recognised educational institution.

Herman Marius Barnardt

Abstract

The increased use of mobile devices has led to the creation of complex mobile

applications that require more resources than are readily available on mobile

devices. As resources such as processing power and storage are found on the

cloud, resources of mobile devices can be increased by using cloud-based mobile

augmentation. However, some resources, specifically battery life, and bandwidth

cannot be augmented.

To augment mobile device resources such as battery life, offloading can be used.

This research discusses offloading methods and examines the approaches used in

related research. It is found that most of the energy consumed when offloading is

due to network communication, as opposed to computation when executing locally.

When offloading to the cloud consumes less energy than local execution, the battery

life of a mobile device can be conserved. Choosing between offloading and local

execution is called an offloading decision. To make offloading decisions that

conserve battery life, the decision-making process is explored. A challenge identified

when making offloading decisions is accurately estimating the energy consumption

of tasks when offloading and when executing locally. As the energy consumption

profile of each device differs according to the capabilities of the device, this aspect is

explored.

The research conducted in this dissertation proposes the Switch framework. The

Switch framework conserves the limited battery life on mobile devices by estimating

the consumption of energy of a task and choosing the least expensive option. A

software-based device-specific energy consumption profile is created for this

purpose. Switch is evaluated using the Switch prototype, which has been designed

according to the specifications of the framework. The prototype is evaluated by

comparing the estimated energy consumption against the measured energy

consumption. The evaluation of the framework suggests that Switch can successfully

be used to conserve battery life on mobile devices by making intelligent offloading

decisions.

Table of Contents

Chapter 1: Introduction 1

1.1. Introduction 1

1.2. Description of problem area 2

1.3. Motivation 3

1.4. Problem statement 3

1.4.1. Research objective 3

1.4.2. Research questions 4

1.5. Research methodology 5

1.5.1. Defining the research strategy and methodologies used 6

1.5.2. Research methodologies applied in this research 7

1.6. Important terms 8

1.6.1. Battery life 8

1.6.2. Bandwidth 8

1.6.3. Cloud-based mobile augmentation 8

1.6.4. Energy consumption profile 8

1.7. Layout of this document 8

1.7.1. Introduction 9

1.7.2. Part 1: Literature Review 9

1.7.3. Part 2: Model & Prototype 10

1.7.4. Conclusion 11

1.8. Conclusion 11

Part 1: Literature Review 12

Chapter 2: Mobile device and resource usage 13

2.1. Introduction 13

2.2. Mobile devices 14

2.2.1. Definition: Mobile devices 14

2.2.2. Hardware 14

2.2.3. Software 17

2.2.4. Increased use of mobile devices 20

2.3. Mobile device resources 21

2.3.1. Computing power 21

2.3.2. Memory 21

2.3.3. Storage 22

2.3.4. Display 22

2.3.5. Bandwidth 22

2.3.6. Battery 23

2.3.7. Comparison of modern mobile devices 24

2.4. Conclusion 26

Chapter 3: Augmenting mobile device resources 27

3.1. Introduction 27

3.2. Mobile resource augmentation 28

3.2.1. Hardware 28

3.2.2. Software 30

3.2.3. Offloading 30

3.3. Constrained resources of mobile devices 35

3.3.1. Bandwidth 36

3.4. Battery life 36

3.4.1. Effect of bandwidth on battery life 36

3.4.2. Effect of mobile device usage on battery life 38

3.5. Requirements for conserving battery life when offloading 41

3.6. Conclusion 42

Chapter 4: Cloud-based Mobile Augmentation 44

4.1. Introduction 44

4.2. Cloud computing 45

4.2.1. Definition: Cloud computing 45

4.2.2. Characteristics of the cloud 45

4.2.3. Cloud architecture 47

4.2.4. Service models 48

4.2.5. Deployment models 50

4.3. Mobile Cloud Computing 51

4.3.1. Definition: Mobile cloud computing 51

4.3.2. Mobile cloud computing architecture 52

4.3.3. Cloud-based mobile augmentation 53

4.3.4. Cloud-based mobile augmentation models 54

4.3.5. Distant fixed cloud-based mobile augmentation 56

4.3.6. Advantages of cloud-based mobile augmentation 58

4.3.7. Challenges of mobile cloud-based augmentation 59

4.4. Conclusion 60

Chapter 5: Offloading 63

5.1. Introduction 63

5.2. Definition: Offloading 64

5.3. Methods of offloading 65

5.3.1. Client-server communication 65

5.3.2. Virtualization 66

5.3.3. Mobile agents 68

5.3.4. Comparison of offloading methods 69

5.4. Connection protocols 70

5.4.1. Wi-Fi 71

5.4.2. Bluetooth 71

5.4.3. 3G 72

5.4.4. 4G 73

5.4.5. Comparison of connection protocols 73

5.5. Offloading approaches 75

5.5.1. Offloading steps 75

5.5.2. Comparison of mobile cloud computing offloading frameworks 76

5.6. Challenges of offloading 81

5.6.1. Low bandwidth 81

5.6.2. Availability 82

5.6.3. Heterogeneity 82

5.6.4. Security 82

5.7. Conclusion 83

Chapter 6: Decision Making 85

6.1. Introduction 85

6.2. Definition: Decision making 85

6.3. Decision making 86

6.3.1. Goal 86

6.3.2. Options 86

6.3.3. Factors 86

6.4. Factors influencing offloading decision 87

6.4.1. Communication 87

6.4.2. Computation 92

6.5. Comparison of decision-making for offloading approaches 95

6.5.1. CloneCloud 95

6.5.2. MAUI 99

6.5.3. Comparison of decision-making for offloading approaches 102

6.5.4. Energy consumption profiling 104

6.6. Conclusion 105

Part 2: Model & Prototype 108

Chapter 7: Switch: A framework for offloading decision making 109

7.1. Introduction 109

7.2. Requirements for conserving battery life when offloading 110

7.2.1. Intelligent offloading decision making 110

7.2.2. Multiple network support 111

7.2.3. Lightweight 111

7.2.4. Portable 111

7.3. Switch energy consumption profile 112

7.4. Switch offloading decision 114

7.5. Switch architecture 115

7.5.1. Switch operation 117

7.5.2. Switch profiler 119

7.5.3. Switch decision making component 119

7.5.4. Energy consumption profile 119

7.5.5. Mobile application and cloud component 119

7.6. Conclusion 120

Chapter 8: Energy consumption profile of mobile devices 121

8.1. Introduction 121

8.2. Energy consumption profile models 121

8.3. The conditions of the evaluation 122

8.3.1. Environment 122

8.3.2. Experiments 124

8.4. Results 125

8.4.1. Communication 125

8.4.2. Computation 138

8.5. Energy consumption profile 139

8.6. Conclusion 141

Chapter 9: Switch: Prototype 143

9.1. Introduction 143

9.2. Switch components 143

9.2.1. Switch Profiler 144

9.2.2. Energy consumption profile 146

9.2.3. Decision making component 148

9.3. Implementation and evaluation 148

9.3.1. Results 148

9.3.2. Evaluation 154

9.4. Conclusion 156

Chapter 10: Conclusion 158

10.1. Introduction 158

10.2. Revisiting the research objectives and questions 158

10.2.1. What resources are constrained on mobile devices, and which of them

can be augmented? 158

10.2.2. What are the requirements of a framework that can conserve battery life

on mobile devices by using offloading? 159

10.2.3. How can an offloading decision be designed to conserve the battery life

of a mobile device? 159

10.2.4. Does the framework proposed by this dissertation conserve battery life

on mobile devices? 161

10.3. Limitation of this research 162

10.4. Research contribution and future work 163

10.5. Conclusion 164

References & Appendix 166

References 167

List of Figures
Figure 1.1 Dissertation Layout 9

Figure 3.1 Power consumption under different available bandwidth 37

Figure 3.2 Power consumption during a GSM phone call 39

Figure 3.3 Power consumption during the average use of an email application 38

Figure 3.4 Average power consumption when sending an SMS 39

Figure 3.5 Average power consumption when web browsing over Wi-Fi and GRPS

 39

Figure 3.6 Basic architecture of the decision-making component integration with

mobile app 42

Figure 4.1 The basic layout of cloud computing 47

Figure 4.2 Service-oriented cloud computing architecture 48

Figure 4.3 The architecture of mobile cloud computing 53

Figure 5.1 Client-server communication. 66

Figure 5.2 Virtual machine migration. 67

Figure 5.3 Mobile agents. 68

Figure 5.4 CloneCloud execution model 77

Figure 5.5 MAUI execution model 78

Figure 6.1 Energy Consumption: Wi-Fi vs. 3G 88

Figure 6.2 Energy consumption compared to the elapsed time 90

Figure 6.3 An example of a CloneCloud trace (a) and profile tree (b) 96

Figure 6.4 MAUI offloading decision making process 102

Figure 7.1 Architecture of Switch 116

Figure 7.2 Interaction between Switch and a mobile app 118

Figure 8.1 100 KB file downloaded over 3G 126

Figure 8.2 100 KB file downloaded over 3G 127

Figure 8.3 1 MB file downloaded over 3G 126

Figure 8.4 1 MB file downloaded over 3G 127

Figure 8.5 10 MB file downloaded over 3G 127

Figure 8.6 10 MB file downloaded over 3G 128

Figure 8.7 100 KB file uploaded over 3G 127

Figure 8.8 100 KB file uploaded over 3G 128

Figure 8.9 1 MB file uploaded over 3G 128

Figure 8.10 1 MB file uploaded over 3G 129

Figure 8.11 1 MB file uploaded over 3G 128

Figure 8.12 10 MB file uploaded over 3G 129

Figure 8.13 100 KB file downloaded over 4G 130

Figure 8.14 100 KB file downloaded over 4G 130

Figure 8.15 1 MB file downloaded over 4G 130

Figure 8.16 1 MB file downloaded over 4G 131

Figure 8.17 10 MB file downloaded over 4G 131

Figure 8.18 10 MB file downloaded over 4G 131

Figure 8.19 100 KB file uploaded over 4G 131

Figure 8.20 100 KB file uploaded over 4G 132

Figure 8.21 1 MB file uploaded over 4G 132

Figure 8.22 1 MB file uploaded over 4G 132

Figure 8.23 10 MB file uploaded over 4G 132

Figure 8.24 10 MB file uploaded over 4G 133

Figure 8.25 100 KB file downloaded over Wi-Fi 134

Figure 8.26 100 KB file downloaded over Wi-Fi 134

Figure 8.27 1 MB file downloaded over Wi-Fi 134

Figure 8.28 1 MB file downloaded over Wi-Fi 135

Figure 8.29 10 MB file downloaded over Wi-Fi 135

Figure 8.30 10 MB file downloaded over Wi-Fi 135

Figure 8.31 100 KB file uploaded over Wi-Fi 135

Figure 8.32 100 KB file uploaded over Wi-Fi 136

Figure 8.33 Downloading 1 MB over 3G, 4G and Wi-Fi 137

Figure 8.34 Battery life consumed over length of local computation 138

Figure 8.35 3G rate of consumption 139

Figure 8.36 4G rate of consumption 139

Figure 8.37 Wi-Fi rate of consumption 139

Figure 8.38 Computation rate of consumption 139

Figure 9.1 Class diagram of the Switch framework 144

Figure 9.2 checkNetwork method 145

Figure 9.3 startLocalMonitoring and stopLocalMonitoring methods 145

Figure 9.4 startNetworkMonitoring and stopNetworkMonitoring methods 146

Figure 9.5 estimateLocalCost and estimateOffloadingCost methods 147

Figure 9.6 estimateWiFiConsumption, esimate4gConsumption and

estimate3gConsumption methods 147

Figure 9.7 shouldOffload method 148

List of Tables

Table 2.1 Comparison of mobile platforms 19

Table 2.2 Comparison of modern mobile devices 25

Table 3.1 Comparison of Samsung Galaxy S7 Edge & Samsung Galaxy S6 Edge 29

Table 3.2 Comparison of offloading approaches 34

Table 4.1 Comparison of offloading approaches 57

Table 5.1 Comparison of offloading methods 69

Table 5.2 Comparison of connection protocols 74

Table 5.3 A comparative review of MAUI and CloneCloud 80

Table 6.1 Comparison of MAUI and CloneCloud 103

Table 8.1 Samsung Galaxy S7 Edge Hardware specifications 122

Table 9.1 Steganographic file encoding results 150

Table 9.2 Steganographic file decoding results 152

Table 9.3 Prime number counting results 153

Table 9.4 Percentage error calculation for the CPU model 155

Table 9.5 Error rate calculation for the 3G model 155

Table 9.6 Error rate calculation for the 4G model 156

Table 9.7 Error rate calculation for the Wi-Fi model 156

List of Equations

Equation 6.1 Offloading decision making equation 87

Equation 6.2 Communication cost equation 92

Equation 6.3 Computation cost equation 94

Equation 6.4 Offloading decision making equation with substituted values 94

Equation 6.5 CloneCloud power consumption estimation 97

Equation 6.6 CloneCloud local execution power estimation 97

Equation 6.7 CloneCloud offloading power estimation 98

Equation 6.8 MAUI local execution power estimation 100

Equation 6.9 MAUI MAUI offloading power estimation 101

Equation 7.1 CPU energy consumption equation 112

Equation 7.2 3G communication energy consumption equation 112

Equation 7.3 4G communication energy consumption equation 113

Equation 7.4 Wi-Fi communication energy consumption equation 113

Equation 7.5 Switch offloading decision 114

Equation 7.6 Local cost estimation 114

Equation 7.7 Offloading cost estimation 114

Equation 8.1 3G energy consumption model 140

Equation 8.2 4G energy consumption model 140

Equation 8.3 Wi-Fi energy consumption model 140

Equation 8.4 Local execution energy consumption model 141

Equation 9.1 Formula for percentage error 155

Equation 9.2 Formula for percentage accuracy 155

1

Chapter 1: Introduction

1.1. Introduction

In recent years there has been an increase in the use of mobile devices over

traditional computers. The growth in mobile computing capabilities has led to

rising user expectations with regards to the functionality that should be provided

by mobile applications. Unfortunately, the development of mobile applications

that are powerful enough to meet the user expectations is hindered by the

resource constraints of mobile devices (Fakoor et al., 2012).

Developments in recent years have yielded advances in the capabilities of

mobile devices, thereby reducing some of their available resources.

Computational power, memory, storage and battery life are traded to enable the

mobility and flexibility of mobile devices. Limitations on mobile device

resources, in turn, prevent the development of mobile applications that are able

to provide the functionality expected by the users (Bahl et al., 2012). Thus, by

meeting certain user expectations, other mobile device requirements pay a

price.

To address mobile device resource constraints, cloud computing has provided a

viable solution. Mell and Grance (2009), define cloud computing as a model that

provides pervasive access to a shared pool of resources that can rapidly

become available and be released with minimal management effort or service

provider interaction. Some of the resources provided by the cloud include

networks, servers, storage, applications, and services (Mell and Grance, 2009).

Fortunately, the resources that are lacking in mobile devices are abundantly

available on the cloud. Cloud computing can ensure that the problems faced by

mobile developers can be overcome by augmenting the limited resources of

mobile devices with the resources from the cloud. Cloud-based mobile

augmentation (CMA) enables the development of applications that both support

more complex application capabilities when executed by traditional computers,

as well as the mobility enabled by mobile devices (Abolfazli et al., 2014).

2

Using the cloud to augment mobile devices is not a new idea, as several ways

exist that can incorporate the cloud with mobile devices (Christensen, 2009;

Cuervo et al., 2010; Hung et al., 2012), indicating that cloud computing is a

viable option to augment mobile devices resources.

The goal of this research is to create a framework that conserves battery life on

mobile devices by making intelligent offloading decisions. To achieve this,

mobile devices and cloud computing, specifically mobile cloud computing, are

examined to provide an understanding of the limitations of mobile devices and

how the cloud can be used to augment mobile devices. This examination is

used to identify the requirements of the proposed framework. Thereafter,

offloading is discussed to gain an understanding of and to evaluate different

offloading approaches. Next, the decision-making process is reviewed to

identify the factors that influence offloading decision making. The proposed

framework enables developers to conserve battery life on mobile devices by

making the offloading decision based on the state and hardware of the mobile

device.

In section 1.2 the problem domain is defined, section 1.3 gives a brief

motivation for this research. Section 1.4 states the problem to be addressed by

this research. The research methodology used throughout this document is

defined in section 1.5. Section 1.6 gives a brief list of important terms used

throughout the research. In section 1.7 the layout of this document is discussed.

Finally, the chapter is concluded.

1.2. Description of the problem area

Mobile devices have become a ubiquitous and convenient method of

communication. The increased usage of mobile devices has led to an increase

in the complexity of mobile applications expected by users. The development of

complex mobile applications is hindered by the limited resources of mobile

devices. Resource constraints can be countered by using a cloud-based mobile

augmentation. Unfortunately, resource constraints of mobile devices such as

battery life cannot be addressed by using the cloud (Abolfazli et al., 2014; Dinh

et al., 2013). In addition, frameworks that have been defined to support software

3

developers to add cloud augmentation to their mobile applications are complex

and require hardware components.

1.3. Motivation

Battery life is the most important resource of a mobile device, as when the

battery is completely discharged it cannot be used. Research has shown that

the offloading of code from a battery powered device can conserve its battery

life (Chun et al., 2011; Kumar and Lu, 2010; Rudenko et al., 1998). To the

knowledge of the researcher, there does not exist an offloading framework that

can be integrated with a mobile app to conserve battery life, which does not

require the use of an external energy consumption monitor.

1.4. Problem statement

Battery life and bandwidth are resources that cannot be augmented by cloud

computing. These resource constraints prevent the development of applications

that provide similar application functionality to traditional devices such as

desktop and laptop computers. Therefore, the problem addressed by this

dissertation is the conservation of battery life of mobile devices.

To be able to address the research problem, the primary research objective and

research questions are specified next.

1.4.1. Research objective

The primary objective of this dissertation is to propose a framework that can

support offloading decisions to conserve battery life. The framework is software-

based and should be easily integrated with existing mobile applications. The

main focus of this dissertation is to identify the factors that influence the battery

life consumption of mobile devices and to accurately estimate the energy

consumption cost of a task.

To achieve the research objective, a number of research questions must be

answered. The next section identifies the research questions that will guide this

research toward addressing the problems identified.

4

1.4.2. Research questions

Based on the objectives identified in the previous section research questions

answered in this dissertation are discussed next.

What resources are constrained on mobile devices, and which of them a.

can be augmented?

In order to address this research question, an understanding of the capabilities

of mobile device resources and the factors that influence them is required. The

role of cloud-based augmentation needs to be investigated to address resource

constraints. To address this research question in more detail, the following

secondary research questions are defined:

1. Which mobile devices resources can be augmented, and which cannot?

2. What methods can be used to augment the resources on mobile

devices?

3. How are mobile devices resources augmented by using the cloud?

What are the requirements of a framework that can conserve battery life b.

on mobile devices by using offloading?

To be able to evaluate the success of a framework that conserves battery life by

leveraging the cloud, a set of requirements need to be specified.

How can an offloading decision be designed to conserve the battery life c.

of a mobile device?

In order to use offloading to conserve battery life on mobile devices, an

offloading decision needs to be made. The factors that play a role should be

identified as well as the design of the offloading decision. To address this

research question in more detail the following secondary research questions are

identified:

1. What is offloading and what approaches can be used to offload from

mobile devices?

2. How can energy consumption be measured?

3. Which factors should be taken into account when estimating energy

consumption?

5

Does the framework proposed by this dissertation conserve battery life d.

on mobile devices?

The proposed framework needs to be evaluated in order to answer this

question. The success of the offloading decision is based on the accuracy of the

energy consumption estimates. The secondary research questions identified to

address this question is:

1. What tasks and evaluation criteria can be used to determine the

effectiveness of the proposed framework?

2. To what extent does the proposed framework meet the identified

evaluation criteria and which deficiencies and be identified?

The primary contribution of this dissertation is a portable software framework

that can be used to make offloading decisions to conserve battery life on mobile

devices. The question listed above serve to narrow the scope and guide the

course of this dissertation.

1.5. Research methodology

To address the objectives of this dissertation, the questions posed in the

previous section needs to be further broken down over the course of this

dissertation to gain an understanding of the problem domain and provide the

basis for a solution. To achieve this, a scientific and well-accepted approach

must be followed to ensure the validity of this research.

Research can be defined as the activity of thoroughly and analytically

investigating an area, with the goal of discovering or revising facts, theories, or

applications and disseminating the knowledge discovered. Research

methodologies are thus the means by which a discipline acquires and

constructs knowledge. Scientific research methodologies consist of successive

stages with the purpose of providing answers to questions that arise from

scientific theories or observations (Olivier, 2009).

Empirical research makes use of empirical evidence to gain knowledge by

means of observation or experience, whether direct or indirect. By quantifying

evidence, a researcher answers empirical questions that are clearly defined and

answerable with the evidence that is collected. Computer science can be seen

6

as the study of phenomena related to computers, and thus a more empirical

approach to research can be followed. Quantitative research is defined as the

methodical empirical investigation of observable phenomena via statistical,

mathematical or computational techniques, with the goal of to develop and

employ mathematical models, theories and/or hypotheses pertaining to the

phenomena (Demeyer, 2011).

Literature reviews, surveys, experiments, models, languages, case studies,

prototypes, arguments and mathematical proofs are some of the approaches

that can be used to perform research (Olivier, 2009). The approach used in this

dissertation is dependent on the goal to be achieved where a careful analysis of

the problem will assist to identify which approach to use.

1.5.1. Defining the research strategy and methodologies used

Defining a framework that can be used to conserve battery life on mobile

devices by leveraging the cloud is the primary goal of this research. The

research strategy chosen to achieve this goal uses the framework as a primary

research method and literature review, prototype, and arguments as secondary

methods. Each of these methods is described next (Olivier, 2009).

Literature review a.

An understanding of all the concepts that contribute to the research problem is

necessary to provide a starting point for a solution. To gain the necessary

understanding, the researcher must take a methodical approach when

investigating the problem domain and all concepts closely related to it (Olivier,

2009).

Framework b.

The understanding gained during the literature review enables formulation and

proposal a framework in a concise manner (Glass et al., 2004). A framework

provides a simplified overview of a proposal and can include relevant elements

such as processes, structures, and definitions. This high-level overview enables

the understanding, evaluation, and manipulation of the proposed solution

(Olivier, 2009).

7

Prototype c.

The implementation of a prototype serves as a proof of concept for the model.

The prototype demonstrates that the model is viable and can be implemented.

A prototype can also provide new insights into the model, which a review of the

model could not provide (Olivier, 2009).

Argument d.

Arguments enable the logical evaluation of alternative solutions, statements,

facts, and ideas. The evaluation of alternative solutions enables the logical

determination, given the relevant evidence, of compatibility of the solutions with

the problem domain.

1.5.2. Research methodologies applied in this research

Literature review a.

This literature review from chapter 2 to 6 explores mobile devices, the resource

available on mobile devices, the resources available on the cloud and how the

resources available on mobile devices can be augmented with the resources

available on the cloud. The dissertation further explores offloading and decision

making, focussing on the factors that should be taken into account when

making offloading decisions. In each case, a critical evaluation of literature

leads to the identification of features of the approach followed by the

researcher.

Framework b.

This dissertation proposes the Switch framework to address the problem

statement. The framework identifies the components and the interaction

between the components required to successfully address the problem

statement. The understanding gained in the literature review is used as a

foundation for the creation of the framework.

Prototype c.

A prototype of the Switch framework is implemented as a proof of concept. The

identified components and the interactions between them are used in the

creation of the prototype.

8

Arguments d.

The Switch prototype is used to perform a critical evaluation of the Switch

framework against any identified requirements.

1.6. Important terms

To avoid misunderstanding, the terminology used in throughout the dissertation

is now briefly defined.

1.6.1. Battery life

Battery life is the amount of power that is available on the mobile device. It is

usually presented as a percentage (Carroll and Heiser, 2010).

1.6.2. Bandwidth

Bandwidth is the throughput of the network the mobile device is currently

connected to (Kumar and Lu, 2010).

1.6.3. Cloud-based mobile augmentation

Cloud-based mobile augmentation is the process of increasing, enhancing, and

optimizing computing capabilities of mobile devices by leveraging the resource

available on the cloud (Abolfazli et al., 2014).

1.6.4. Energy consumption profile

An energy consumption profile characterizes the energy usage of a device,

during the execution of different tasks on the device (Ahmad et al., 2015).

1.7. Layout of this document

This dissertation is structured to follow the research methodology suggested by

Olivier (2009). Therefore, each section builds naturally upon the preceding

sections so that the end outcome and the reasoning behind it are clear. This

section presents the structure of this dissertation and the flow of concepts from

each chapter to the next. The four sections of this document are illustrated in

figure 1.1.

9

Figure 1.1 Dissertation Layout

Each of the sections is described as follows:

1.7.1. Introduction

Chapter 1 of the dissertation introduces the reader to the nature of the problems

to be addressed, the objectives required to be addressed and the questions that

must be satisfied to achieve the objectives. This section also serves to

introduce the reader to the research methodology used and the structure of the

research and the resulting document, this dissertation.

1.7.2. Part 1: Literature Review

Part 1 of this dissertation focuses on the review of relevant literature to form the

basis for Part 2. This section is broken down into 5 chapters which review

current, relevant literature on a topic related to the problem domain. Each

chapter is briefly discussed in the sections below.

Chapter 2 a.

Chapter 2 defines mobile devices and the resources available on mobile

devices. This chapter indicates that mobile devices are being used more often

10

as end-users’ primary device, instead of traditional computers. The increased

use lead to demands of more complex applications on resource-limited mobile

devices.

Chapter 3 b.

Chapter 3 discusses the options available to increase the resources available

on mobile devices and determines that the most reliable method of increasing

the resources on a mobile device is augmenting the resources by offloading.

Chapter 4 c.

Chapter 4 briefly discusses cloud computing and the potential that lies therein.

The background knowledge of cloud computing is used to discuss mobile cloud

computing and the different ways mobile devices can access resources on the

cloud.

Chapter 5 d.

Chapter 5 discusses offloading, focussing on offloading from mobile devices to

the cloud or mobile cloud. The methods that are available to offload, the

connection protocols used to connect mobile devices to the networks required

for offloading, the challenges that need to be overcome when offloading and the

factors that influence the offloading decision were also discussed.

Chapter 6 e.

Chapter 6 discusses decision making in general, offloading decisions in

particular and the factors that influence the offloading decision, how the factors

are measured in current research and how the factors are measured in the

implementations in this dissertation.

1.7.3. Part 2: Framework & Prototype

Part 2 of this research addresses the second and third actions of the research

methodology suggested by Olivier (2009) by presenting the culmination of this

research in the form of a framework which is evaluated by the implementation of

a prototype. The sections below discuss the chapters of Part 2.

11

Chapter 7 a.

Chapter 7 provides an understanding of the components of the model designed

to achieve the research goal, how the components of the framework

communicate and gives a broad view of the challenges of implementing a

prototype based on the model.

Chapter 8 b.

Chapter 8 discusses the experiments used to evaluate real-world energy

consumption during communication and computation and the results gathered

from these experiments. The data gathered from the experiments are used to

inform the prototype implemented in this dissertation.

Chapter 9 c.

Chapter 9 evaluates the framework presented in chapter 7 by documenting the

prototype that is implemented in Android to make accurate offloading decisions

that conserve battery life. This chapter is informed by the data gathered from

the experiments done in chapter 8.

1.7.4. Conclusion

This chapter revisits the research objective and questions and evaluates the

effectiveness of this research in achieving the objectives by answering the

research questions. This chapter also serves to evaluate any shortcomings

encountered during the course of this research.

1.8. Conclusion

This chapter introduces the problem domain of this dissertation. The research

objectives are identified and the research questions are extracted from the

objectives. The questions are used to limit the scope of the research and

provide a means for evaluating the outcome of the research. The research

methodology used in this dissertation is discussed and how the methodology

shapes the structure of this research and dissertation. The next chapter is the

first chapter in Part 1 of this dissertation.

12

Part 1:
Literature Review

13

Chapter 2: Mobile device and resource
usage

2.1. Introduction

Today, the prolific use of mobile devices is recognised as an integral part of our

lives. Statistics show that around 7.7 billion mobile devices are currently being

used throughout the world. The number is predicted to rise to 12.1 billion in

2018, where 2.1 billion of these devices are smart devices (Radicati, 2014).

Mobile devices are used more often than ever before, not only to make calls

and send text messages but also to access the Internet, listen to music and

watch videos. As these activities are all resource intensive operations it is not

surprising that the biggest consumer problem with mobile devices is the lifespan

of the battery (Ferreira et al., 2011; Reed, 2014).

Mobile devices generally all suffer from limited CPU, memory, storage capacity,

and battery life; where battery life has been identified as the most limiting factor

(Reed, 2014). Many other factors such as backlighting, wireless connections,

and processor speed all have an impact on the energy consumption of the

device. These limitations may cause the mobile operating system to ask the

application to shut down or slow program execution. The focus of current

research is to provide interventions that can optimize resource usage to ensure

that an application can perform its task without any interruption (Abolfazli et al.,

2012, 2014; Chun et al., 2011; Cuervo et al., 2010; Satyanarayanan et al.,

2011; Wang et al., 2018).

In order to address these concerns, section 2.2 defines and discusses mobile

devices in order to place them in the context of this research. As more and

more complex mobile applications are executed on mobile devices, section 2.3

describes the limitations of mobile device resources that prevent the use of

complex applications. The chapter also proceeds to describe possible solutions

to overcome these limitations. In section 2.4, restrictions on mobile devices are

re-examined to find possible methods to reduce remaining restrictions. Finally,

the chapter is concluded.

14

2.2. Mobile devices

The rate at which mobile devices are adopted makes this technology the most

popular communication medium in history (Humphreys et al., 2013). Mobile

devices are an important part of modern day life as they are used by a variety of

users, who make use of both simple and complex mobile applications to fulfil

their personal and business needs. In order to understand the characteristics

that make them resource-limited, mobile devices are discussed next. First, a

definition is given, then their components and properties and finally their use are

described.

2.2.1. Definition: Mobile devices

As the features of mobile devices are constantly changing, it is difficult to define

the term "mobile device". For the purposes of this research, the following

definition is used:

A mobile device is a handheld device hosting a mobile operating system that

supports applications called apps. The device is battery powered and can

access data and voice networks, via Wi-Fi (IEEE, 2016) or cellular networks.

Such devices typically have cameras, GPS (GPS.gov, 2008) and Bluetooth

(Bluetooth SIG, 2014) radios, and other sensors such as accelerometers and

light sensors (Christensen, 2009; CIO Council, 2013; Souppaya and Scarfone,

2013).

Even though mobile device manufacturers are continuously creating new

devices with more advanced specifications, there are underlying properties that

all modern mobile devices share (Souppaya and Scarfone, 2013). A discussion

of the properties of mobile devices is provided next and is divided into two

sections namely hardware and software.

2.2.2. Hardware

Over the past number of years, the hardware capabilities of mobile devices

have grown exponentially. In a fast competing world, mobile device

manufacturers compete for the same set of consumers. Therefore, the

components of mobile devices from different manufacturers may not be the

15

same, but they have many similar hardware components or properties (Ali et al.,

2015; Souppaya and Scarfone, 2013). Next, a list of eight such properties,

ranging from small form factor to storage, are described.

Small form factor a.

Mobile devices move around with the user of the device. Mobility is possible

because devices are handheld and thus easily portable. The physical display

size of the most recent devices ranges from 4 inches (Apple iPhone SE) to 7

inches (BLU Studio 7.0 II) (Apple, 2016a; Blu, 2016; Moon, 2014).

Wireless connection b.

Mobile devices have at least one network interface that allows access to a

network for data communication. The standard connection protocols used are

cellular networks (3G (ITU, 2011) or 4G (ITU, 2014)) and Wi-Fi. The specific

network interface card and related connection protocol grants the mobile device

access to network infrastructure, and through the infrastructure access to the

Internet. The cellular network also provides voice communication, which allows

the device to make and receive phone calls.

Local built-in storage c.

Mobile devices have built-in storage, generally ranging between 16GB and

64GB, which is used by the mobile operating system and mobile apps. Without

sufficient storage, a mobile device cannot function. The storage on mobile

devices is similar to the storage on traditional computers. Applications cannot

be installed on the device if there is not sufficient storage.

Battery d.

Mobile devices are portable because they do not require a physical connection

to a power source as they use batteries. The size of mobile device batteries is

limited because the device needs to be small enough to be handheld. The

larger the battery, the longer the mobile devices can be powered. Because of

size limitations on the battery, the battery life of the device is limited (Carroll and

Heiser, 2010). The technical specifications of mobile devices given by device

manufacturers include how long a device can be powered by the battery under

different conditions. For example:

16

 Stand-by time is when the device is switched on and connected to a

cellular network, but not in use. Stand-by time typically lasts a couple of

days.

 Talk time is when the device is continuously being used to make a phone

call. Talk time is rarely longer than a day. Talk time is indicative of how

long the device will stay powered when in use.

Network services e.

A mobile device connects to a wireless network infrastructure and the Internet

using a cellular network interface. However, a mobile device typically has

additional hardware components that enable communication using Bluetooth,

Near Field Communication (NFC) (Minihold, 2011) and GPS. These additional

network connections allow the device to connect to or create other networks

such as personal area networks.

Digital camera/video recording devices f.

Modern mobile devices are used for more than making phone calls and sending

messages. Consumers connect to the Internet to share pictures and videos on

social media sites, using cameras for this purpose. The cameras on a mobile

device can also be used by a barcode scanner, augmented reality and user

identification apps (Dixon et al., 2013; Huang and Mow, 2013; Pan et al., 2013).

Microphone g.

Mobile devices can be used both as mobile phones, mobile video cameras, and

mobile sound recorders. To record the sound for a video, enable the phone call

or record sound, a microphone is required.

Storage h.

Mobile devices require built-in storage to operate. However, some devices

support additional removable storage, generally ranging between 8GB and

64GB. Devices can be also be used as external storage for other devices such

as traditional computers. A mobile device can be connected to a traditional

computer, and files from the computer can be stored on the mobile device.

17

These hardware components determine the power, size, and capabilities of the

mobile device. To make the device useful, the capabilities of the mobile device

are further leveraged by the software on the device, discussed next.

2.2.3. Software

Manufacturers of mobile devices not only decide on the hardware components

of devices but also what software is natively installed. Applications are

developed by the manufacturer to support specific hardware components. For

example, Samsung installs an application to count steps, and monitor the user’s

heart rate, using a special sensor (Samsung, 2014a). The software on the

device is not limited to what the manufacturer natively provides, as the user can

choose from more than two million apps to install, depending on the mobile

operating system that exists (Statista, 2017). Software found on mobile devices

namely the operating system and apps are discussed next, where after a

comparison between mobile platforms functionality is given.

Operating System a.

Mobile devices are more than just phones, they are mobile computers and

therefore an operating system (OS) is required to manage the applications on

the device and the hardware in the device. There are a number of operating

systems that have been developed for mobile devices, discussed next (Grønli et

al., 2014).

i. Android

Google (Google, 2014a) released Android (Google, 2014b) in November 2007.

It is the most widely used mobile operating system to date (IDC, 2014). The

goal of Android is to be an open source platform for software development on

mobile devices. Android is based on the Linux (Linux, 2012) kernel and uses

Java (Oracle Corporation, 2014) as a programming language for the

developers. Google also created Java libraries that are used in the development

of applications for Android. The Android platform is more than an operating

system, as it includes a development environment and a custom virtual

machine. As of July 2017, there are 2 800 000 Android apps on the Google Play

Store (Google, 2014c; Statista, 2017).

18

ii. iOS

iOS or iPhone OS, (Apple, 2014a) is the closed source and proprietary

operating system for mobile Apple devices. When the iPhone was released in

2007, it revolutionized the mobile device market. iOS supports Objective-C

(Apple, 2014b), an extension of the C language, Swift (Apple, 2016b), and

mobile libraries to enable the development of mobile applications. Over the

years, there have been many improvements in the language, mobile libraries,

and the platform. As the first mobile operating system for smart devices, iOS

initially had the most apps and the largest market share but has since been

overtaken by Android. As of July 2017, there are 2 200 000 apps on the Apple

App Store (IDC, 2014; Statista, 2017).

iii. Windows Phone

Windows Phone (Microsoft, 2014a) is the successor to Windows Mobile from

Microsoft. The platform is closed source and proprietary and has the third

largest installed base on smartphones following Android and iOS. Applications

that run on Windows Phone are written in .NET managed code, such as C#

(Microsoft, 2014b). Consequently, many developers familiar with the Microsoft’s

desktop development suite can easily move to Windows Phone development

(Wilcox and Voskoglou, 2014).

Mobile applications b.

A mobile app executes above the operating system of the mobile device and is

developed using specific tools defined for that platform. Each of the three

mobile platforms has its own store for the applications. iOS has the Apple Store

(Apple, 2014c), Android has the Play Store (Google, 2014c) and Windows

Phone has the Marketplace (Microsoft, 2014c). There are countless applications

for mobile devices, and there are more and more being developed (Grønli et al.,

2014).

Some mobile apps are free to download and install, while others must be

purchased. Mobile apps were originally created to support simple functions

such as email, calendar, contacts, the stock market and weather information.

Currently, public demand and the availability of developer tools has driven the

19

creation of more complex mobile apps such as mobile games, banking and

finance, medical monitoring, GPS and location-based services, order-tracking

and ticket purchases (Abolfazli et al., 2014; Dinh et al., 2013).

The number of mobile apps being developed for a platform is directly related to

the number of users because apps are developed to target the largest

consumer groups. A survey has shown that 71% of mobile app developers use

Android, 57% use iOS and 21% use Windows Phone. Because Windows Phone

uses the same development suite as Windows desktop development, there is a

larger number of developers than the market share warrants (Wilcox and

Voskoglou, 2014).

Comparison of mobile operating systems c.

A comparison between the mobile operating systems and the associated

platforms has been done by Grønli et al (2014) and is summarised in Table 2.1.

The table gives an overview of the software architecture, the application

development and the developer support for the top three mobile operating

systems.

Table 2.1 Comparison of mobile platforms

 Android iOS Windows Phone

Software architecture

Development
language

Java Objective-C .NET C#

Packaging Android package file
(APK)

Apple application
package (IPA)

Windows Phone
package (XAP)

Persistent storage
and database
support

Local SQL database
support and local file
access

Local SQL database
support and local file
access

Local SQL database
support and local file
access

Application development

Debugger
availability

Excellent Very good Excellent

Deployment speed Relatively fast Fast Relatively fast

Default deployment
application size

Large Medium Large

Developer support

Developer
community and
support

Very large Very large Average

Market share % 84.7% 11.7% 2.5%

20

Integrated
development
environment
availability

Excellent –
supported by major
IDE’s

Very good support
through Apple
Xcode

Very good, but
limited to Microsoft
Visual Studio

Development tools
cost

Free
Small fee for Play
Store

Free for emulator
Small fee for device
and App Store

Free for emulator
Small fee for
Marketplace

The table shows that Android and iOS compare relatively well with each other in

most aspects, with Windows Phone in a distant third place. The only aspect in

which there is a clear leader is market share percentage, where Android is a

clear winner.

A study done by the International Data Corporation (IDC) shows that Android’s

market share is growing and other mobile platforms’ market shares are

shrinking (IDC, 2014). Android’s large market share is due to the lower price of

mobile devices hosting Android as an operating system, and the large variety of

vendors that produce mobile devices for Android. In addition, more developers

are attracted to Android because the platform is open source and the

developers can gain access to system components (Page, 2014).

Due to the pervasiveness of Android, the experimentation performed in this

dissertation aims to use Android as a platform, because it has the largest

market share of all mobile platforms (IDC, 2014). The openness of Android is

also well-suited to the collection of data relevant to the research. Given the

capabilities of mobile devices, it is not surprising that the number of mobile

device users is increasing, as discussed next.

2.2.4. Increased use of mobile devices

In recent years there has been an increase in the use of mobile devices over

traditional computers (Fernando et al., 2013). Advances in mobile computing

have further led to an increase in the complexity of mobile applications

expected by users, requiring more powerful mobile devices. Unfortunately, the

development of mobile applications to meet the requirements of users is

hindered by the resource constraints inherent to mobile devices (Fakoor et al.,

2012).

21

Mobile devices are becoming more ubiquitous in modern day society. These

devices are always connected to the Internet and for many users, are the

primary access method to the Internet. The limited resources of mobile devices

prevent the creation of applications that have the functionality required by users.

Typical resources and their limitations are discussed next.

2.3. Mobile device resources

The hardware components of a mobile device determine the resources of the

device, and thus which resources the applications on the device can use.

Hardware components such as the processor differ from device to device, and

from manufacturer to manufacturer. There are a number of resources to

consider, which are discussed next.

2.3.1. Computing power

The computing power of mobile devices is determined by the CPU processor of

the device. There are two types of CPU processors namely single-core and

multi-core. Multi-core or dual-core processors are becoming more common in

current mobile devices, providing very high speed and the doubling of

processing power. A more powerful CPU enables the user to run more

processor intensive tasks, however, a more powerful CPU also negatively

impacts the battery consumption of the device. Consequently, the battery life of

a device limits the energy available to the processor. The limited energy

available to the CPU processor restricts the amount of computation that can be

done (Wang et al., 2014).

2.3.2. Memory

The memory on a mobile device is similar to the memory on a traditional

computer. The more memory a device has, the more applications it can

simultaneously run and the faster the device can respond to user requests

(Kayande and Shrawankar, 2012). The memory standards for mobile devices

are set by JEDEC (JEDEC, 2014a). The current standard LPDDR3 (Low Power

Double Data Rate) (JEDEC, 2012) was adopted in 2013. The newer standard,

published in August 2014, LPDDR4 (JEDEC, 2014b) has been met by

Samsung, resulting in performance increases and lower power consumption

22

rates. Samsung has proposed a variant on LPDDR4, called LPDDR4x that is

identical to LPDDR4 except that it uses less power (Reza, 2015). LPDDR4 and

its variants are used in the flagship products of most manufacturers and will

become the standard for memory for mobile devices in 2017 (Triggs, 2015).

2.3.3. Storage

The storage on mobile devices is used to store installed applications and

associated media files on devices. Storage is also used to store pictures and

videos taken using the camera. The capacity of storage is limited by the size of

the device. Due to this limitation, most devices can support additional storage in

the form of microSD cards ranging between 8GB and 128GB (Jagtap et al.,

2014; SD Assocation, 2014).

2.3.4. Display

The current technology used by the screens or displays of mobile devices is

Organic Light-Emitting Diode (OLED). The size of a mobile device display is

limited by its small form factor (Chen et al., 2012). The display is used

extensively, as it is active whenever the device is in use. Consequently, the

display consumes the most battery life of all the hardware components. The

brightness of the display can either be automatically set by the device,

dependent on the ambient brightness, or it can be manually set by the user. The

higher the brightness, the more power the display consumes (Carroll and

Heiser, 2010).

2.3.5. Bandwidth

Mobile devices can access networks through various network interfaces, using

different network connection protocols. The bandwidth available to the device is

dependent on the network interface and connection protocol used (Dinh et al.,

2013; Fernando et al., 2013; Jagtap et al., 2014). Next, the type of network

interface a mobile device can connect through is discussed.

Wi-Fi a.

Wi-Fi (IEEE, 2016) is one of the most commonly used connection protocols, as

most mobile devices have a network interface to connect to Wi-Fi networks. Wi-

Fi was proposed in 1997 and since then has gone through various iterations of

23

improvements. The original protocol, 802.11-1997, supported speeds up to 2

Mbps. Three standard rollups have been released. 802.11-2007 supports

speeds of up to 54 Mbps, 802.11-2012 supports speeds up to 150 Mbps, and

802.11-2016 supports speeds up to 866.7 Mbps. Such a connection is generally

preferred to be used for resource-intensive processing, as it consumes less

battery power (Dinh et al., 2013; Fernando et al., 2013; Ma et al., 2013).

Cellular networks b.

Most mobile devices support 3G (ITU, 2011) and more recently 4G (ITU, 2014)

networks. Mobile devices can connect to mobile networks if they are in the

range of the telecommunications provider’s signal. The signal that is provided

determines the protocol that can be used. Each type of signal supports a

different bandwidth. For example, 3G has a bandwidth of at least 200Kbps up to

several megabits per second and the newer 4G has a bandwidth of up to

100Mbps. Unfortunately, cellular networks are not reliable as the connection

and bandwidth depend on a fluctuating signal strength, which can consume

more battery life. Another factor that should be considered when using cellular

networks is the monetary cost of the data (Alomari et al., 2011; Fernando et al.,

2013; Parkvall and Astely, 2009).

Bluetooth c.

Bluetooth is used to directly connect mobile devices to each other. The range

for Bluetooth is around 10m, depending on the physical objects between the

devices. Bluetooth has a bandwidth of up to 800Kbps. Bluetooth connections do

not consume large amounts of energy because of the limited range and

bandwidth (Cherry, 2008; Fernando et al., 2013; Want et al., 2013).

2.3.6. Battery

The battery of a mobile device is one of the most important hardware

components. When the battery is completely discharged, the mobile device

stops functioning. The size of the battery is directly related to the charge the

battery provides and the time the device can be powered. Lithium-ion batteries

are widely used by many devices, including mobile devices. The latest mobile

devices use Lithium-ion batteries (Carroll and Heiser, 2010; Xiaolu et al., 2012).

As products need to pass rigorous safety tests, battery technology has not

24

advanced much in recent years. Lithium-ion is generally low-cost, easily

reproducible and fairly safe. Incidents of battery fire and explosions rarely occur,

considering how many lithium-ion batteries are made and sold every year

(Fowler and Mozur, 2016).

2.3.7. Comparison of modern mobile devices

Table 2.2 shows a comparison of the latest devices from different

manufacturers, gathered from the manufacturer’s websites (Apple, 2016c; HTC,

2016; Microsoft, 2016a; Samsung, 2016a).

To clarify some of the columns in the table:

 Stand-by time: how long the phone can be on and connected to a

network without being used

 Talk time: how long the phone can sustain a phone call

 Music play time: how long the device can continuously play music

The times given are the official longest times which are provided by the

manufacturer and are difficult to replicate in real-world conditions. The table

shows that most modern devices have very similar hardware components. The

largest differences found are with the display, battery and the different battery

usage times. Comparing the battery of the Samsung Galaxy S7 Edge

(Samsung, 2016a) and the Microsoft Lumia 650 (Microsoft, 2016a), it is clear

that the Samsung’s battery is more powerful. This is due to the fact that the

Samsung device has the larger screen, requiring a more powerful battery.

Throughout this dissertation, experimentation is performed using the Samsung

Galaxy S7 Edge, because it is a top-of-the-range mobile device which hosts

Android, the preferred mobile operating system for all experimentation

performed in this dissertation.

The resources found on mobile devices are quite extensive. However, they are

limited by the size of the device and batteries. When a resource such as battery

life or bandwidth is limited, mobile devices cannot execute tasks as quickly or

25

efficiently as traditional computers. A large body of research is currently being

conducted on how such resources can be extended.

26

Table 2.2 Comparison of modern mobile devices

Device
Operating
System

CPU RAM Storage
Display
Size

Network Battery
Stand-by
Time

Talk
Time

Music
Play
Time

Samsung
Galaxy
S7 Edge

Android 6.0
(Marshmallow)

Exynos
8890 Octa
(4x2.3 GHz
Mongoose
& 4x1.6
GHz
Cortex-A53)

4GB
32GB
64GB +
microSD

5.5”

2G, 3G,
4G(LTE)
Wi-Fi
Bluetooth
NFC

3600
mAh

Not
specified

Up to 36
hours

Up to
66 hours

HTC 10
Android 6.0.1
(Marshmallow)

Qualcomm
MSM8996
Snapdragon
820 Quad-
core
(2x2.15
GHz Kryo &
2x1.6 GHz
Kryo)

4GB
32GB
64GB +
microSD

5.2”

2G, 3G,
4G(LTE)
Wi-Fi
Bluetooth
NFC

3000
mAh

Up to
456
hours

Up to 27
hours

Not
specified

Apple
iPhone 7

iOS 10.0.1

Apple A10
Fusion
Quad-core
2.34 GHz

2GB
32GB
128GB
256GB

4.7”

2G, 3G,
4G(LTE)
Wi-Fi
Bluetooth
NFC

1960
mAh

Up to
240
hours

Up to 14
hours

Up to 40
hours

Microsoft
Lumia
650

Microsoft
Windows 10

Qualcomm
Snapdragon
212 Quad-
core 1.3
GHz
Cortex-A7

1GB
16GB +
microSD

5”

2G, 3G,
4G(LTE)
Wi-Fi
Bluetooth
NFC

2000
mAh

Up to
624
hours

Up to 16
hours

Not
specified

27

2.4. Conclusion

This chapter defined mobile devices as battery-powered handheld devices that

can constantly be connected to voice and data networks. These devices are

supported by a mobile operating system, have a variety of mobile apps

available and are used more and more frequently, therefore becoming a

ubiquitous part of modern day life.

The increased usage of mobile devices has created a need for applications that

can do everything as efficiently and quickly as a traditional computer. However,

this is impossible due to the mobility of mobile devices, as they do not have the

same resources as traditional computers. Resources on mobile devices such as

processing power and storage are determined by their hardware components.

Due to the small form factor of mobile devices, the size and power of hardware

components are limited. Because mobile devices are battery powered, the

battery life is one of the most important resources of mobile devices. When a

mobile device has no battery life remaining, it cannot be used.

There are several ways in which resources of mobile devices can be increased

or used more effectively. For example, the hardware components of a mobile

device can be upgraded to give the device access to more resources, or mobile

apps can be modified to use resources more effectively. Chapter 3 defines

mobile resource augmentation in more detail.

28

Chapter 3: Augmenting mobile device
resources

3.1. Introduction

The previous chapter identified that mobile devices are very sophisticated and

can be used for real-world complex solutions such as government, corporate,

healthcare, education, and engineering applications. Even though there is a

significant improvement in mobile device capabilities, the computing

requirements of e.g. corporate users are not achieved.

So far it has been pointed out that energy or battery life is the one resource that

limits all the other resources of a mobile device. Currently, the energy

requirements of a mobile device are supplied by lithium-ion batteries that can

last only a few hours if the mobile device is used computationally. Research

shows that battery capacity is only increasing at a rate of 5 to 10% a year as

battery cells are excessively dense. Furthermore, the fact that mobile devices

need to be lightweight and compact prevent the use of heavy long-lasting

batteries. The possible loss of human life if high capacity batteries should

explode further confines battery manufacturers to low capacity batteries (Ben et

al., 2009).

This chapter continues the literature review by identifying that the limitations

posed by the resources of mobile devices require new approaches such as

augmentation (Abolfazli et al., 2014). By leveraging augmentation, more

complex and intense mobile operations can become a reality. The

enhancement of the computation capabilities of mobile devices is not new as

approaches such as load sharing, remote execution, cyber foraging, and

computation offloading have been the focus of recent research (Abolfazli et al.,

2014; Bahl et al., 2012; Kumar et al., 2013).

In section 3.2, mobile resource augmentation is discussed. Resources that

cannot be augmented on mobile devices are discussed in section 3.3. In section

3.4, battery life, a resource that cannot be augmented is discussed by focussing

29

on elements that can increase battery life usage. This discussion aims to

identify requirements for conserving battery life when offloading. Section 3.5

proposes such a set of requirements. Finally, the chapter is concluded.

3.2. Mobile resource augmentation

Developments in recent years have yielded advances in the capabilities of

mobile devices, and have reduced some of the resource constraints of mobile

devices (Bahl et al., 2012). However, by meeting one requirement, there is

always another that pays the price. Computational power, memory, storage and

battery life have been traded to enable the mobility and flexibility of mobile

devices, leading to limited resources on mobile devices (Bahl et al., 2012).

There are three approaches that can be used to reduce the use of resources on

mobile devices or to increase the resources available on the device (Kumar et

al., 2013; Kumar and Lu, 2010; Smailagic and Ettus, 2002). They are classified

according to hardware, software and offloading, discussed next.

3.2.1. Hardware

The hardware of a mobile device determines the resources that are available on

the device. The companies that design the devices develop hardware

components that either increase the resources available on the device or

enhance how the resources are used (Smailagic and Ettus, 2002).

Advances in the augmentation of resources provided by hardware can best be

illustrated by comparing the Samsung Galaxy S7 Edge (Samsung, 2016a) and

its predecessor the Samsung Galaxy S6 Edge (Samsung, 2016b). The

comparison between the devices released a year apart, is shown in Table 3.1.

30

Table 3.1 Comparison of Samsung Galaxy S7 Edge & Samsung Galaxy S6 Edge

Device Operatin

g System

CPU RAM Storage Display

Size

Network Battery

Samsung

Galaxy

S7 Edge
Android

6.0

(Marshmall

ow)

Exynos

8890 Octa

(4x2.3 GHz

Mongoose

& 4x1.6

GHz

Cortex-A53)

4GB

32GB

64GB +

microSD

5.5”

2G, 3G,

4G(LTE)

Wi-Fi

Bluetooth

NFC

3600

mAh

Samsung

Galaxy

S6 Edge

Android

5.0.2

(Lollipop)

Exynos

7420 Octa

(4x2.1 GHz

Cortex-A57

& 4x1.5

GHz

Cortex-A53)

3GB 32GB

64GB

128GB

5.1” 2G, 3G,

Wi-Fi

Bluetooth

NFC

2600

mAh

When comparing the devices, it is clear that the Samsung Galaxy S7 is more

advanced. The Samsung Galaxy S7 Edge uses a more recent version of the

Android mobile operating system, has a better CPU, a larger display, and a

larger battery. The microSD card slot has been added after it was removed from

the S6 series. Both devices can connect to all available networks. A review of

these mobile devices found that battery life is one of the Galaxy S7 Edge's

strongest features as the battery of the Galaxy S6 Edge drained quickly

during average to heavy use, and could not make it through a day. During a

performance test, the Galaxy S6 Edge lasted an only 12 hours, but the

Galaxy S7 Edge lasted almost fifteen hours with full screen playing standard

definition video (GSMArena, 2016).

The hardware approach is widely used and has led to the recent increase in the

capabilities of mobile devices. However, hardware resources are not under the

control of the users or developers of mobile devices.

3.2.2. Software

The software deployed on the mobile device determines how hardware

components and thus resources are used. Software developers can program

31

mobile apps to use as little resources as possible, but no resources can be

added to the device without including access to a resource pool such as the

cloud (Kumar and Lu, 2010).

An example of such a software approach has been implemented on the

Samsung Galaxy S5 (Samsung, 2014b). The Samsung Galaxy S5 has a built-in

ultra-power savings mode that reduces the battery consumption to 16.8mW.

The power saving is achieved by limiting access to most applications, turning

the display to black and white and turning off two of the four CPU cores

(Whitwarm, 2014).

The software approach is used by both the designers of the mobile device and

the developers of the applications for these mobile devices. The effectiveness

of the methods that can be used to conserve the resources on mobile devices

varies, but can be used to create more powerful applications.

3.2.3. Offloading

Offloading is the process of moving a computational task from a resource-poor

client to a resource-rich server (Kumar et al., 2013). A computational task is

thus migrated from the mobile device to another computational resource in

order to perform the computation there. Results are then sent back when the

computation is complete. The definition of computational tasks to offload can be

done either prior to execution or dynamically during runtime.

The most important question to address is at what point computation can be

offloaded. Such a decision can either be based on the statistics of the

application or the surrounding environment (Imai, 2012). The offloading of a

computational task from a mobile device to another computational resource

results in the decrease of the use of resources on the mobile device. A study

conducted in 1998 with laptop computers connected to a wireless network

proved that battery life can be conserved in this manner. Rudenko and others

(1998) thus illustrated that the effectiveness of offloading is not only applicable

to modern mobile devices.

Although offloading is implemented in software, it is discussed separately from

the current discussion on software, as offloading does not use resources on the

32

device, but rather resources in the cloud or on a server. The discussion of

offloading is divided into two sections according to the origin of resources.

Offloading computational tasks from mobile devices can be done using two

types of servers namely cyber-foraged servers and cloud servers (Chun et al.,

2011; Cuervo et al., 2010; Kemp et al., 2012; Liang et al., 2018; Parkkila and

Porras, 2011; Satyanarayanan et al., 2011; Yousafzai et al., 2016).

Cyber-foraging a.

Cyber-foraging uses resources from nearby devices that are either mobile or

stationary. Cyber-foraging augments the computing resources of a wireless

mobile device by exploiting nearby servers. Such infrastructure may be

discovered and used opportunistically at different locations in the course of a

user’s movements.

Nearby devices create a network to which the client device can connect to.

Resources available via cyber-foraging include processing power, memory, and

storage. Depending on the setup and location of all devices, some resources

should not be used in certain situations. For example, storage should not be

used in a public space (Parkkila and Porras, 2011).

Parkkila and Porras (2011) implemented a mobile offloading application using

cyber-foraging. Their approach used the Scavenger (Kristensen, 2010) system,

designed for cyber-foraging. Scavenger, developed at the Aarhus University in

Denmark, consists of two software components namely a daemon running on

all devices that act as servers, and a client library for creating client applications

(Kristensen, 2010; Parkkila and Porras, 2011). Offloading happens when the

client executes a task and a nearby server is found, regardless of whether

resources are available on the client. The system searches for nearby servers,

and if a server is found, the task is executed by the server and the result is sent

back to the client (Parkkila and Porras, 2011).

Cloud b.

By offloading processes onto the cloud, mobile devices are augmented with the

all resources made available by the cloud. Cloud computing is a model for

enabling pervasive, convenient, on-demand access to a pool of various

33

resources, such as computing power, storage, and memory (Kumar and Lu,

2010; Mell and Grance, 2009). Offloading to the cloud from a mobile device is a

very active field of research, with several research groups focusing on solutions

that offload processes from mobile devices to the cloud. Three are discussed

and compared in Table 3.2. (Chun et al., 2011; Cuervo et al., 2010;

Satyanarayanan et al., 2011).

i. MAUI

MAUI (Mobile Assistance Using Infrastructure) (Cuervo et al., 2010), is an

offloading approach that focuses on the optimization of energy consumption

and execution times of mobile applications. The focus of MAUI is to address the

limitations posed by battery life for mobile devices. MAUI enables the fine-

grained energy-aware offload of either mobile processes or mobile elements

without much programmer effort, as code annotations indicate which methods

can be executed remotely. Thus applications need to be modified so that they

can be offloaded. This approach is limited to the Microsoft .NET platform

(Microsoft, 2016b) which limits the type of applications that can be offloaded.

First, the application code is replicated and placed on the cloud server.

Thereafter the MAUI system evaluates the code and serializes and profiles all

methods to determine the offloading cost.

The offloading cost is determined before the execution of a task that can be

offloaded. Part of the MAUI solver is the profiler that determines the cost and

decides whether to run the method locally or remotely. The profiler used by the

MAUI solver takes three factors into consideration when determining the cost of

offloading, namely:

 The device’s energy consumption characteristics

 The program characteristics, such as the running time and resource

needs of individual methods

 The network characteristics of the wireless environment, such as the

bandwidth, latency, and packet loss.

The decision made by the MAUI solver ensures that the execution takes the

least amount of time and consumes the least amount of energy. The offloading

occurs over Wi-Fi or mobile networks.

34

ii. Cloudlets

Cloudlets (Satyanarayanan et al., 2011) take a local approach to cloud

offloading. Using the cloud to augment mobile device resources is not without

its costs, namely bandwidth and time consumption. Cloudlets leverage the local

network all mobile devices can connect to, instead of the wide area network, the

Internet. Cloudlets are smaller instances of the cloud, defined by specialised

hardware that is connected to the local network. Mobile devices offload to a

Cloudlet, instead of the cloud, via Wi-Fi. The Cloudlet is connected to the

distant cloud and can, in turn, offload the task should more resources be

required.

This approach reduces bandwidth and time consumed. Less bandwidth is used

due to the fact that a mobile device and Cloudlet are connected to the same

local network, and less time is used as the processing of the offloaded task

does not occur on a distant cloud. What is being offloaded is determined

dynamically. A virtual instance of the mobile device is uploaded to the Cloudlet,

and when a task is offloaded to the Cloudlet, the virtual device executes the

task exactly as the mobile device would, and processing can return to the

mobile device at any point. Cloudlets are only used over Wi-Fi and are focussed

on reducing bandwidth and time consumption.

iii. CloneCloud

CloneCloud (Chun et al., 2011) is an offloading approach that removes the

need to duplicate a mobile application’s code. CloneCloud creates a virtual

machine of the device and runs the virtual machine on the cloud. Whenever a

process is executed, the application moves the state of the device to the virtual

machine and the execution continues from where the device stopped executing.

A static analyser evaluates the methods of the application offline and the

appropriate methods or parts of the code are marked so that they can be

offloaded.

If one of the marked methods is executed, a profiler decides whether or not the

process should be offloaded. The profiler gathers the data regarding the

execution of the method and determines whether or not the method should be

35

executed locally or be offloaded to the cloud. The profiler used in CloneCloud

uses execution time and energy consumed by the mobile device to inform the

decision. This approach has shown some energy conservation. The application

state is offloaded over both mobile networks and Wi-Fi. The developer marks

methods that can be offloaded during development, this means the code

partitioning is static.

iv. Comparison of offloading solutions

The approaches to offloading from mobile devices can become very technical.

Table 3.2 gives a simplified comparison of the different approaches discussed.

To clarify some of the columns used in the table:

 Communication protocol: what networks are used for communication

between the client and server?

 Optimization factor: what aspects are being optimized?

 Code partitioning: when are the methods replicated to the cloud?

o Static partitioning is done during development.

o Dynamic partitioning occurs at runtime.

 Use of a profiler for decisions

Table 3.2 Comparison of offloading approaches

A large number of a research project that aims to optimise or reduce the

amount of battery life a mobile app consumes shows the importance of the

Approach Communication

Protocol

Optimization

Factor

Code

Partitioning

Operating

System

Use of

a

profiler

MAUI Wi-Fi, 3G Energy,

Execution

Time

Dynamic Windows

Phone

Yes

Cloudlets Wi-Fi Latency,

Bandwidth

Dynamic N/A No

CloneCloud Wi-Fi, 3G Energy Static Android Yes

36

effect of battery life on the performance of mobile devices. The solutions

presented demonstrates that:

 The offloading of processes should not be limited to one network

 Cannot be used in all cases as mobile devices are not always connected

to a Wi-Fi network and are not always connected to a stable mobile

network.

Other factors that influence the creation of a mobile app that can leverage the

cloud is:

 When the offloading decision is made

 The amount of data that is required to be sent to the cloud.

The increased use of mobile devices has forced manufacturers to extend the

capabilities of these devices, but due to the limited size of mobile devices, there

is only so much that can be done. Improvements in hardware capacity

increases resources available on mobile devices. Even though these resources

are used as effectively as possible by software developers, they still do not

meet the needs of users, who use complex mobile apps. It is thus clear that the

cloud can be used to increase the resources of a mobile device without adding

new hardware.

Both MAUI and CloneCloud use profilers to inform offloading decisions that

collect data and creates a model. The profiler is defined as an app running on a

mobile device. The profiler not only allows the measurement of, for example,

energy consumption, but the data collected by the profiler can also be used to

estimate the energy consumption under different circumstances. In order to

provide a clear understanding of the resources that can be augmented by the

cloud, a discussion on mobile device resources that cannot be augmented

using the cloud is given next.

3.3. Constrained resources of mobile devices

Mobile devices that make use of cloud resources are called cloud-based mobile

augmented devices. By using the cloud in such a way, most of the resource

constraints on mobile devices such as storage, memory and computing power

37

can be removed (Al-mousa and Alzoubi, 2017; Bahl et al., 2012). However,

some resources on mobile devices cannot be augmented and therefore can

become constrained, namely bandwidth and battery life (Kumar and Lu, 2010).

The limitations on bandwidth are briefly discussed next, thereafter battery life

usage is discussed in more detail.

3.3.1. Bandwidth

Bandwidth specifies the data transfer rate of a network, measured in millions of

bits per second or Mbps. Bandwidth is dependent on the availability of network

connections, which are provided by the cellular provider or are static, such as

Wi-Fi (IEEE, 2016). The hardware components of a mobile device determine

the connection protocols that can be used such as Wi-Fi, 3G, 4G, and

Bluetooth. Bandwidth is thus not controlled by the user or by developers (Toma

et al., 2018), therefore battery life, the last and most important constraint to be

considered is discussed next.

3.4. Battery life

Battery life is one of the resources that users complain about the most (Kumar

and Lu, 2010). Unfortunately, the size of a mobile device, and thus the size of

its batteries are limited. The size of a battery translates directly into the amount

of power it can store and the time it can power the device. Trends in battery

technology show that these limitations remain a real fixture, and energy inhibits

mobile device development and use (Ben et al., 2009; Carroll and Heiser, 2010;

Cuervo et al., 2010). The effect of both bandwidth and mobile device usage on

battery life depletion is now further described in order to determine which

hardware components and factors need to be considered to reduce battery life

usage.

3.4.1. Effect of bandwidth on battery life

The variety of connection protocols available to mobile devices ensures that

devices are almost always connected to the Internet in some way or another.

Studies have shown that most users are almost always under the cover of some

network with Wi-Fi networks being the most prolific at 50% of the time (Barbera

38

et al., 2013). The network to which the mobile device is connected to

determines the bandwidth available on the mobile device.

The available bandwidth has a large impact on the power consumption of a

mobile device. For example, a study was done to measure power consumption

when streaming videos under different network connections. Results showed

that depending on bandwidth, energy consumption can be doubled in the

presence of packet loss and increased propagation delay. Figure 3.1 shows the

effect on power consumption under varying bandwidths. The mobile device is

connected to Wi-Fi, but the bandwidth was lowered using third party software

(Ma et al., 2013; Satyanarayanan et al., 2011).

Figure 3.1 Power consumption under different available bandwidth

As shown in Figure 3.1, available bandwidths ranging between 4800Kbps and

200 Kbps dramatically impacts the power consumption of a mobile device. To

the left, a bandwidth of 4800Kbps is highly effective, requiring very little

additional energy. The lowest bandwidth of 200Kpbs to the right needs almost

500J to complete the task, thus using 300J unnecessarily. Therefore, the lower

the bandwidth, the less reliable the network connection becomes. A poor

network connection loses more packets than a good network connection,

requiring communication to continue until all the packets are received. The

more packets are lost, the longer the network connection is required to be

maintained, and the more power is consumed. Poor network connections also

take longer to send and receive packets, which further requires the network

communication to be maintained (Ma et al., 2013).

39

Although bandwidth is one of the resources that restrains mobile application

development, the availability of stable networks cannot be influenced by the

developers. Developers can only control how and when the network is

accessed in order to conserve the remaining battery life. The inability of

developers to influence bandwidth thus excludes it from the scope of this

dissertation. Next, the effect of mobile device usage on energy consumption is

discussed.

3.4.2. Effect of mobile device usage on battery life

The hardware components of mobile devices use battery power to different

extents. A study on the power consumption of smartphones shows that the

device display consumes the most power, followed by network modems if

network communication and computation is required (Carroll and Heiser, 2010).

Figures 3.2, 3.3, 3.4, and 3.5 below shows a breakdown of the power

consumption by different hardware components for different tasks. Figure 3.2

shows the power consumption when making a phone call, Figure 3.3 shows the

power consumption when sending an SMS, Figure 3.4 the power consumption

when using an email application over both Wi-Fi and cellular networks. Lastly,

Figure 3.5 shows the power consumption when using a mobile device to browse

the Internet.

Figure 3.2 Power consumption during a Figure 3.3 Power consumption during

the GSM phone call average use of an email application

40

Figure 3.4 Average power consumption Figure 3.5 Average power consumption

when when sending an SMS web browsing over Wi-Fi and GRPS

It is important to note that hardware components such as brightness (backlight),

graphics and LCD are used to display images on a device’s screen, each

generally using a substantial amount of power. The network communication is

either GSM or Wi-Fi, and computation is the usage of the device’s CPU.

Figure 3.2 shows that when a phone call is made using a GSM connection,

shown 2nd from the left, the most power is consumed. In this case, the power

required by the display is very low, as the screen of the device is turned off

when making a phone call.

Figure 3.3 shows the power consumption for sending an SMS. Here, the display

consumes the most power, depending on the brightness of the screen. The

GSM radio and CPU further contribute to power consumption.

Figure 3.4 shows the power consumption when using an email application over

a cellular network and over Wi-Fi. Again, the display uses the most power. The

communication, be it the GSM radio or the Wi-Fi radio, further contribute to

power consumption, with the CPU in third place.

Figure 3.5 shows the power consumption when browsing the web. Again, the

display consumes the most power, with the communication in second place and

the CPU in third.

From this evaluation, it is clear that besides the display, communication and

computation use the most power. When considering the effect of offloading on

41

battery life, mobile device usage is important to consider. Previous studies have

shown that offloading can reduce the battery usage of mobile devices (Cuervo

et al., 2010; Rudenko et al., 1998; Xiao et al., 2011). This is not true in all

cases, as the available bandwidth and complexity of the task play a large role in

the amount of energy consumed (Kumar and Lu, 2010).

By augmenting mobile device resources with cloud-based resources such as

storage or CPU, mobile device resources are placed under more strain. For

example, when a process is offloaded, data needs to be sent to the cloud

server, requiring the use of more bandwidth and battery life. As more processes

are offloaded, more bandwidth and battery life are used. If conditions are right,

battery life can be conserved by offloading, depending on the bandwidth,

complexity of the task and the size of the data to be transferred (Kumar and Lu,

2010). When offloading, the amount of power required for communication is

determined by the size of the data to be communicated and the available

bandwidth. The amount of power required to execute a task locally is

determined by the complexity of the task. It is important to note that offloading

can conserve battery life when the power consumption of the computation is

greater than the power consumption of the communication (Barbera et al.,

2013).

The central problem facing mobile devices and mobile device application

development are the limited resources on mobile devices. Fortunately, the

majority of resources on mobile devices such as storage or computational

power can be augmented using the cloud. Even though bandwidth and total

battery life cannot be influenced by the user or developer, developers and users

can influence how much battery life is consumed.

Conserving battery life is the focus of this dissertation. The battery life of mobile

devices should be used in such a way that the least amount of energy is

consumed to complete a task. Applications that consume the least amount of

battery life when executing a task have to meet some requirements. The

requirements that the solution proposed in this dissertation are discussed in the

next section.

42

3.5. Requirements for conserving battery life when

offloading

Battery life is a resource that cannot be augmented by cloud computing, and

cannot be influenced by users or developers. This limitation can prevent the

development of mobile applications that provide similar functionality as

traditional devices such as desktop and laptop computers.

This research aims to propose a software profiler to inform offloading decisions

to conserve battery life in an attempt to address the limited battery life problem.

The goal is achieved by developing a profiler, which estimates the amount of

battery life needed when executing a task, and a decision-making component

that uses the estimates the profiler provides to decide whether or not a task

should be offloaded. Before a process is executed either locally or in the cloud,

a comparison is done between the expected energy consumption when

executing the process locally and the expected energy consumption when

offloading the process. The process is executed where the least amount of

battery life is consumed.

This dissertation proposes that an intelligent offloading decision-making

component is needed that should meet certain requirements:

 Make intelligent offloading decisions: When offloading decisions are

made, the decision-making component must consider all factors that can

influence the energy consumption of the mobile device, and choose the

option that consumes less energy.

 Both Wi-Fi and cellular networks need to be supported: Both Wi-Fi and

cellular networks should be enabled as a Wi-Fi network may not always

be available. Wi-Fi would be the preferred network to use because it is

stable, has the relatively high bandwidth, and consumes less power.

 Be lightweight: The solution should consume as little energy as possible

and execute as quickly as possible, as lightweight processes will not

have a detrimental impact on user experience or battery life.

 Portable: The solution should be deployable on any device and

integrated into any app with minimal effort.

43

Figure 3.6 shows the basic architecture of how the decision-making component

is used. The decision-making component is installed as part of a mobile

application. Whenever certain methods are called, the decision-making

component gathers all relevant data from the mobile device and application and

determines whether or not the method should be offloaded or not. If the method

should be offloaded, the application communicates with the mobile application’s

cloud component, otherwise, the method is executed on the device.

Figure 3.6 Basic architecture of the decision-making component integration with the

mobile app

To define a decision-making component that meets the stated requirements,

cloud computing and the use of cloud computing, different methods of

offloading, decision-making methods and optimization need to be investigated.

3.6. Conclusion

Previous research shows that the offloading of processes from a mobile device

to the cloud can alleviate most of the resource restrictions of mobile devices

such as computing power and storage. The resources that remain constrained

are bandwidth and battery life. Battery life is one of the last major bottlenecks

when it comes to the development of the next generation of applications. It is

thus necessary to optimize the use of the battery life to make it last as long as

possible.

Unfortunately, the bandwidth available on the mobile device is determined by

device connection protocols and infrastructure of networks. The process of

offloading thus increases the amount of work to be done by the remaining

44

resources such as bandwidth and battery life, however sometimes the act of

offloading can conserve the battery life of the mobile device.

This research proposes a profiler to address the problem of limited battery life

on mobile devices. The profiler gathers data regarding the current state of the

device and uses the state to estimate energy consumption when offloading and

when executing locally, the decision-making component compares the two

estimates and decides whether or not the task should be offloaded. To be able

to address the requirements discussed above, cloud computing, mobile cloud

computing, offloading, decision-making algorithms and optimization strategies

need to be investigated.

The chapter identifies main topics to be discussed and directs the next research

as follows, chapter 4 expands on cloud computing and mobile cloud computing

and cloud-based mobile augmentation, chapter 5 describes offloading, and

finally, chapter 6 investigates all factors that influence decision making.

45

Chapter 4: Cloud-based Mobile
Augmentation

4.1. Introduction

The previous chapter identified that mobile device resources such as storage

and processing power can be augmented by using the cloud. Due to its inherent

nature, battery life is the one resource of a mobile device that cannot be

augmented. In this regard, a large body of research is being conducted into

techniques and frameworks to conserve battery life by offloading computation to

the cloud (Chun et al., 2011; Cuervo et al., 2010; Kemp et al., 2012; Parkkila

and Porras, 2011; Satyanarayanan et al., 2011; Yousafzai et al., 2016). This

chapter extends the literature review further by giving a background on cloud

computing and related developments to show the potential that lies therein.

The augmentation of mobile device resources is made possible by the

availability of computing on demand via the cloud. Users are provided with

access to computational power and storage, at a price, without the need to

purchase expensive hardware components (Armbrust et al., 2010).

As offloading to the cloud is a very general concept, this chapter discusses

cloud computing, mobile cloud computing (MCC) and cloud-based mobile

augmentation (CMA). A review of cloud computing determines what type of

cloud, private, public, community or hybrid (Mell and Grance, 2009) should be

used and where the resource should be located (Abolfazli et al., 2014).

The chapter commences with a discussion on cloud computing in section 4.2.

The definition, services that can be deployed in the cloud, models used to

deploy the cloud and the characteristics of cloud computing are discussed. The

background gained from the first section of this chapter is used as a foundation

for concepts used in mobile cloud computing (MCC), discussed in section 4.3.

The advantages of using cloud computing to augment mobile devices, the

manner in which the augmentation can be achieved, as well as some of the

challenges associated with developing mobile cloud computing applications are

discussed. Finally, the chapter is concluded.

46

4.2. Cloud computing

During the past ten years, Internet technologies have grown at a fast rate.

These new developments, the increasing costs of hardware and the need to

analyse data has created a niche for cloud computing (S. Zhang et al., 2010).

This section discusses the definition, architecture, services, deployments, and

characteristics of cloud computing.

4.2.1. Definition: Cloud computing

Cloud computing can be used to refer to many different aspects of the cloud

computing model. For the purposes of this research, the following definition is

used:

Cloud computing is a model for enabling pervasive, convenient, on-demand

access to a pool of various resources such as computing power, storage and

memory, that can be made available quickly with minimal interaction and effort

from cloud service providers and their management (Abolfazli et al., 2014;

Buyya et al., 2009; Mell and Grance, 2009; Wang et al., 2010).

In general, a cloud consists of hardware and software that is exposed over the

Internet, which can be accessed by consumers, sometimes at a price.

Consumers using the cloud gain access to computing as a utility, similar to

water and electricity. Consumers thus pay to use something that someone else

provides (Buyya et al., 2009). The definition given can be expanded by

including the characteristics of the cloud, discussed next.

4.2.2. Characteristics of the cloud

Cloud computing provides various services that can be made available to

consumers in different ways. The cloud, irrespective of the services deployed

on it or the consumers, have certain essential characteristics that are part of the

definition of cloud computing (Mell and Grance, 2009). The characteristics, on-

demand self-service, broad network access, rapid elasticity and measured

service are discussed next.

47

 On-demand self-service a.

Seen from the perspective of consumers, cloud resources such as storage and

processing power are limitless. The illusion of limitless resources is achieved by

the delivery of more resources than what is needed without human interaction.

When a consumer requires more resources, the cloud provides those resources

(Armbrust et al., 2010).

 Broad network access b.

Cloud services are exposed using standard protocols and methods to allow

consumers to access these services from any client. The client can be thin or

thick, thus including the range of devices from mobile devices to standalone

desktops (Mell and Grance, 2009).

 Resource pooling c.

Limitless resource pooling is achieved by pooling resources of various physical

machines and dispensing it as necessary to consumers. Physical machines can

be in different locations but can be still be used by any consumers without any

need for human interaction (Mell and Grance, 2009).

 Rapid elasticity d.

Capabilities of the cloud, such as access to resources and services, can rapidly

be expanded to meet the needs of consumers without human interaction. The

elasticity of capabilities expands or shrinks according to the demand of

consumers or their clients (Armbrust et al., 2010).

 Measured service e.

Resource usage can be monitored, managed, and logged to provide

transparency for both the provider and consumers of the utilized service. The

measurement of utilized services allows the provider to be able to meet the

resource demands of consumers based on the usage in the past (Mell and

Grance, 2009).

The characteristics of the cloud allow for greater flexibility in the provisioning of

services. As this is supported without any human interaction, cloud services can

48

be highly available, without the need for humans to monitor the usage of these

services and permit requests for increases in resources.

Cloud services are accessed through the Internet. The communication between

the consumer and the cloud provider, and the architecture of the cloud, are

discussed next.

4.2.3. Cloud architecture

The cloud is supported by physical hardware and provides access to its clients

via the Internet or a network (Mell and Grance, 2009). The basic model for

cloud computing is shown in Figure 4.1.

Figure 4.1 The basic layout of cloud computing

As shown in Figure 4.1, the cloud has a number of services that are provided to

consumers via the Internet. The layers of services that are provided by the

cloud are all stacked on top of a physical hardware layer. For most large cloud

providers, the hardware layer is a data center (Dinh et al., 2013).

The given model can be expanded and changed to suit the needs of the

provider or client. For example, services exposed by a cloud provider to a

consumer can, in turn, be provided by another party. This means that a cloud

49

provider can both be a provider and consumer, leading to more layers between

the consumer and the provider to create service brokers (Tsai et al., 2010). The

services provided by the cloud are discussed next.

4.2.4. Service models

There are three basic service models that are associated with cloud computing

namely, Infrastructure as a Service, Platform as a Service and Software as a

Service (Mell and Grance, 2009). These service models are expanding with the

continual growth of the cloud computing field (Zhou et al., 2010), and can be

contained in the “Everything as a Service” service model (Schaffer, 2009). In

this section, the service models of cloud computing are discussed. Figure 4.2,

(Dinh et al., 2013), shows the layers of these models with related examples.

Figure 4.2 Service-oriented cloud computing architecture

Each of the service models in Figure 4.2 is discussed next.

 Infrastructure as a Service a.

Infrastructure as a Service (IaaS) provides access to hardware via operating

systems on an on-demand basis, by providing the consumer with virtual

machines. The provider handles the requests from consumers if there are

resources, i.e. physical machines available (Longo et al., 2011). Examples of

IaaS are Amazon Elastic Cloud Computing (Amazon, 2014a) and Simple

Storage Service (S3) (Amazon, 2014b).

50

 Platform as a Service b.

Platform as a Service (PaaS) service model is a step above the infrastructure.

The users of PaaS have direct control over applications that they deploy onto

the cloud platform but have no say in the underlying infrastructure. The

consumer is allowed to use the cloud provider’s hardware to develop and

deploy software (S. Zhang et al., 2010). Examples of PaaS are Microsoft Azure

(Microsoft, 2014d) and the Google App Engine (Google, 2014d).

 Software as a Service c.

Software as a Service (SaaS) provides users with access to software that has

been deployed to the cloud. This service can be consumed by web browsers or

a specific program interface. There is no limit to what software that can be

exposed as over the cloud as a service (Wang et al., 2010). An example of

SaaS is Microsoft’s OneDrive (Microsoft, 2014e) that allows users to share files

across multiple devices simultaneously.

 X as a Service d.

Everything (X) as a Service (XaaS), as the name suggests, represents any and

everything that can be represented as service. The term is clearly required

when one looks at a part of the list of services that are provided by the cloud:

Hardware as a Service (HaaS), Communication as a Service (CaaS),

Databases as a Service (DBaaS), Security as a Service (SaaS), Identity

Management as a Service (IMaaS), and Desktop as a Service (DaaS)

(Schaffer, 2009).

The basis formed by the three basic service models has allowed the expansion

of the services provided by the cloud to encompass more than has been

mentioned. The ability of the cloud to provide anything as a service makes it an

invaluable tool. Accordingly, the provision of hardware can be used to augment

mobile devices that are resource constrained. The software provided as a

service can be incorporated into the new software, or it can be used to provide

the functionality of the software to many users. The cloud can be used to

provide anything as a service to the consumers as may be required. The

services on the cloud are provided to a consumer group, where the size of this

group is determined by the deployment model used, discussed next.

51

4.2.5. Deployment models

Services that are provided by the cloud can be deployed using different models,

namely, Private, Community, Public and Hybrid clouds (Mell and Grance, 2009).

These models and the intended consumers are discussed in this section.

 Private cloud a.

Private clouds are deployed for private use and are usually consumed by

employees and customers of a specific organization. Private clouds can be

provided and maintained by an external company or it can be done in-house.

 Community cloud b.

Community clouds are used by a group of people or organisations that have a

shared goal or concerns or are required to meet a specific set of regulations.

 Public cloud c.

Public clouds provide services to the general public. Consumers gain access to

services, be they computational power or a word processor, on a pay as you

use basis or according to a contract.

 Hybrid cloud d.

Hybrid clouds combine any of the above models. The private and public models

can be combined to give employees full access to the services and allow the

public to use the services that they have purchased.

The deployment model that is used limits the intended consumer pool. Service

providers have access to a flexible environment to deliver their services

because of the combination of deployment models that is available with the

hybrid cloud deployment model.

With an understanding of cloud computing and the services provided by the

cloud, one can see that cloud computing and mobile computing naturally

complement each other. The combination of these two technologies is called

mobile cloud computing, discussed in the following section.

52

4.3. Mobile Cloud Computing

Mobile Cloud Computing (MCC) was introduced not long after the introduction

of cloud computing. Entrepreneurs see mobile cloud computing as a profitable

alternative that can be used to provide new experiences to users through

mobile applications (Dinh et al., 2013). This section discusses the definition of

mobile cloud computing, and mobile cloud computing architecture.

4.3.1. Definition: Mobile cloud computing

Mobile cloud computing is more an extension of cloud computing rather than a

new field. The mobile cloud is formed by using cloud computing technologies

and infrastructure with mobile devices to either consume or produce services

that are made available on the cloud. For example, the mobile device can be

thin clients using cloud resources or mobile devices themselves can be

resource providers of the cloud.

Mobile cloud computing is defined as an integration of cloud computing with

mobile environments to bring new capabilities to mobile devices. Mobile cloud

applications move computing power and data storage away from mobile phones

into the cloud or onto a server. Mobile cloud computing refers to an

infrastructure where data storage and data processing happens on a server.

(Dinh et al., 2013).

Mobile cloud computing supports three types of interactions with mobile devices

namely consumption, providing and offloading, which is discussed next

(Alizadeh and Hassan, 2013; Fernando et al., 2013).

Consumption a.

Consumption is based on the server-client architecture model. The client, in this

case, a mobile device, executes an application that runs on a resource-rich

server. The device is seen as an extremely thin client (Fernando et al., 2013).

53

Providing b.

Providing sees other mobile devices as resource providers in the cloud to

create a mobile peer-to-peer network. The consuming application uses the

resources of a nearby device, either mobile or stationary (Marinelli, 2009).

Offloading c.

Offloading enables applications on mobile devices to execute some procedure

or function on the cloud. Offloading uses resources which are abundant on the

cloud while allowing the device to conserve its limited resources, and can in

some cases save time, thus improving the user experience (Abolfazli et al.,

2014).

The definition of mobile cloud computing indicates that the cloud can provide

resources to mobile devices, especially resources that are lacking on the

device. The devices can also be seen as part of the resource pool that the cloud

makes available. The following section discusses the layout and architecture of

mobile cloud computing to show how the mobile cloud is defined.

4.3.2. Mobile cloud computing architecture

Knowledge about mobile cloud computing does not lead to an understanding of

how it works. This section aims to further expand this concept by investigating

the architecture of mobile cloud computing and how mobile devices gain access

to the cloud.

The greatest difference between the architecture and layout of mobile cloud

computing and cloud computing is the client, and how the client connects to the

Internet. Figure 4.3 by Dinh et al. (2013) shows how the mobile devices fit into

the layout of mobile cloud computing.

54

Figure 4.3 The architecture of mobile cloud computing

Mobile devices shown on the left, connect to the Internet using one of the types

of connections available. Connections are facilitated by network operators via

satellite, access points or cell phone towers. Network operators are connected

to the Internet through their Internet service providers, shown in the middle. To

the right, cloud providers are shown who host their services on the Internet.

Mobile devices can access cloud services once the devices have Internet

access.

When connected to the Internet, mobile devices can access the resources on

the cloud in a similar manner to traditional computers. There are some

challenges associated with using mobile cloud computing, discussed later in

this chapter.

Having access to the cloud allows mobile devices to offload processes, or to

store information on the cloud. By offloading processes or data, the device is

augmented with cloud resources. This is called cloud-based mobile

augmentation and is discussed in the next section.

55

4.3.3. Cloud-based mobile augmentation

Cloud-based Mobile Augmentation (CMA) is defined as the state-of-the-art

mobile augmentation model that makes use of cloud computing technologies

and principles to increase, improve, and optimize the computing capabilities of

mobile devices by executing resource-intensive mobile application components

in the resource-rich cloud-based resources. (Abolfazli et al., 2014). Various

CMA models are discussed next.

4.3.4. Cloud-based mobile augmentation models

CMA models are determined by the manner in which the client can access

resources, which devices are used to create the resource pool cloud and where

these devices are (Mell and Grance, 2009). There are four CMA models namely

distant fixed, proximate fixed, proximate mobile and hybrid. The models were

defined according to the location of the resources that form the cloud (Abolfazli

et al., 2014). For each of these models, an example is given.

Distant fixed a.

Distant fixed, one of the most frequently used models, uses both public and

private clouds. Here, resources are provided by distant servers accessed via

the Internet. By using this approach, the developer does not have to concern

him-/herself with details that are already provided by the cloud provider (Huang

et al., 2010). The location of the servers can be anywhere but are seen as being

far away and immovable.

One of the approaches that use this method is CloneCloud (Chun et al., 2011).

CloneCloud moves processes from the mobile device to the cloud. A virtualized

clone of a device is created and run on the server. By using static and dynamic

analysis, the threads of the application are distributed between the device and

the cloud. The evaluation of this system has shown a dramatic decrease in

execution time.

Proximate fixed b.

Proximate fixed uses nearby traditional computers that are inactive or are not

using all of their available resources. The computers that are near the mobile

56

devices are configured to provide their resources or services to nearby mobile

devices. This technique uses a local server instead of the distant cloud to

augment the resources on the device (Abolfazli et al., 2014; Satyanarayanan et

al., 2011). The resources used by proximate fixed are on local computers, thus

the resources are close but immovable.

Cloudlets (Satyanarayanan et al., 2011), is one of the approaches that are

based on the proximate fixed technique. The researchers that developed this

approach used a nearby computer or cluster of computers as a resource pool. If

the process that is offloaded to the cloudlet requires more resources than what

the cloudlet can provide, the task is offloaded to the cloud. This approach was

developed to counteract the delay incurred when communicating directly with

the cloud from the mobile device.

Proximate mobile c.

Proximate fixed, also known as cyber-foraging, uses other nearby mobile

devices for offloading. Here, a complex or computationally intensive task can be

accomplished when the mobile device does not have access to the cloud

(Marinelli, 2009). Resources can be found on nearby mobile devices, making

such resources close and mobile.

Market-Oriented Mobile Cloud Computing (MOMMC) (Abolfazli et al., 2012) is

an approach that uses the proximate mobile method. MOMCC is based on

Service Oriented Architecture and uses services developed by programmers.

The services are added to a Universal Description Discovery and Integration

(UDDI) server. The UDDI provides developers with the services to create an

application that can use other nearby devices. End users of applications that

use the UDDI can register their devices as possible servers. The applications

developed by using services on the UDDI server automatically searches for

nearby devices that have been registered as possible servers. If a server is

found, services are offloaded and the result is sent back. The results from this

approach have not been conclusive.

57

Hybrid d.

Hybrid addresses techniques that use more than one of the above-mentioned

categories to augment mobile devices. These techniques aim to reduce the

disadvantages of the different approaches (Bahl et al., 2012).

MOCHA (Soyata et al., 2012) uses the hybrid approach to support a facial

recognition application that uses the hardware of a mobile device. The mobile

device communicates with a nearby cloudlet, and if the cloudlet requires more

resources, it communicates with the distant cloud. When implemented, this

approach showed significant energy consumption and time improvements, over

using only either a mobile device or a standard cloud configuration. However,

the development and setup of the environment are time-consuming.

The different models described here show that there are many ways to augment

mobile devices with cloud computing. Alternatives to the cloud include the use

of local computers as resources pools, the pooling of mobile device resources

to complete a common task or a hybrid approach that uses one or more of

these approaches. It can be noted that these techniques are highly dependent

on the goal of the application. For instance, if an application is developed to be

used in a foreign country, the proximate mobile method should be used

because a mobile user would not want to spend large amounts of money on

data to complete a task.

This research chooses to focus on the distant fixed model, which is not

dependant on nearby devices for resources. There is no need to set up local

servers and resources are not limited. The augmentation of mobile devices

using the distant fixed approach supports the creation of more complex

applications for mobile devices. Augmentation gives mobile devices the ability

to execute tasks that require more resources than is available or it reduces the

time required to execute a task. Examples of the distant fixed model are now

described in more detail

4.3.5. Distant fixed cloud-based mobile augmentation

Research in distant fixed models aims to reduce the complexity and overhead

of utilising the cloud. There are a number of approaches that make use of this

model namely CloneCloud (Chun et al., 2011), Elastic Application (Sokol and

58

Hogan, 2013), VEE (Manjunatha et al., 2010), Virtualised screen (Kumar and

Lu, 2010), μCloud (Chun and Maniatis, 2009), WhereStore (Kamara et al.,

2010) and Wukong (Singh et al., 2012).

CloneCloud and MAIU, mentioned before, is now described in more detail to

highlight potential challenges with regards to cloud augmentation and battery

life. Both approaches have been found to prolong battery life the most (Abolfazli

et al., 2014). Table 4.1 gives a comparison of MAUI and CloneCloud.

CloneCloud a.

CloneCloud achieves CMA by creating virtual instances of a mobile device on

the cloud. The virtual device on the cloud allows the transfer of methods and

parts of code directly to the cloud without the developer of the application to

mark code as being executable on the cloud. However, for the virtual instance

of the device to execute the code from the physical device, the state of the

physical device has to be transferred to the cloud. The amount data that

specifies the state of the device, or the application, may be large and lengthen

the time the method takes to execute or how much battery life is used while

executing the method (Chun et al., 2011).

MAUI b.

MAUI requires developers to mark methods as offloaded and to duplicate the

method on the cloud. By using this approach to CMA, MAUI does not require

the creation of virtual devices on the cloud and allows the use of traditional

cloud infrastructure. By not using virtual devices MAUI does not need to transfer

as much data to the cloud before executing. The MAUI framework can only be

used once the developer has created the necessary endpoints on the cloud and

has indicated that the methods can be offloaded (Cuervo et al., 2010).

Table 4.1 Comparison of offloading approaches

Approach Comm.

Protocol

Optimization

Factor

Code

Partitioning

Operating

System

CMA

approach

Initial data

transfer

MAUI Wi-Fi,

3G

Energy,

Execution

Time

Dynamic Windows

Phone

Distant

fixed

Low

59

CloneCloud Wi-Fi,

3G

Energy Static Android Distant

fixed

High

The distant fixed cloud-based augmentation approaches discussed above,

show some of the challenges that will be faced by this research by using such

an approach. The challenges identified are limiting the amount of data

transferred and reducing the amount of work that has to be done by the

developer to use the framework proposed in this research. The advantages of

using cloud-based mobile augmentation are discussed next.

4.3.6. Advantages of cloud-based mobile augmentation

Mobile cloud computing is used to alleviate the hardware restrictions on mobile

devices. It stands to reason that using mobile cloud computing provides

developers with some advantages, discussed next.

Extendable battery lifetime a.

The battery life of a mobile device is one of its greatest limitations (Kumar and

Lu, 2010). The ability to save or extend this limited resource is one of the

greatest advantages of using cloud-based mobile augmentation. This

conservation can be achieved by offloading tasks from the mobile device to the

cloud to either reduce the time it will take to execute the task or to reduce the

power needed by the device by not requiring it to execute complex tasks

(Smailagic and Ettus, 2002).

Resource augmentation b.

The advantages of using mobile devices come at a price, which is limited

processing power, storage space and memory and battery life. The cloud, on

the other hand, provides most of these resources. Mobile devices can use the

cloud to augment these limited resources to allow the creation of mobile

applications that have access to resources equalling traditional computers

(Guan et al., 2011).

Improved reliability c.

Mobile applications that use cloud computing access the cloud to store

duplicates of user-application information in such a way that the user can

60

continue using the application from a different device, or in some cases

platform, without requiring the transfer of data. Backups of stored user

information improve the reliability of the applications (X. Zhang et al., 2010).

The access to greater resource pools and the ability to extend the battery life of

mobile devices can allow the creation of more powerful applications and

increase the flexibility of mobile devices. The storage of user information and

data on the cloud improves the reliability of an application or device. Using

cloud-based mobile augmentation does not just provide advantages, there are

challenges that have to be overcome. The challenges are discussed next.

4.3.7. Challenges of mobile cloud-based augmentation

The largest difference between mobile cloud computing and cloud computing is

the type of device that accesses the resources on the cloud. With cloud

computing, the device is a traditional computer, and with mobile cloud

computing the device is a mobile device. There are several challenges

associated with using mobile devices and the cloud together, which is

discussed next (Abolfazli et al., 2014).

Dependency on high-performance networking infrastructure a.

To access the cloud, a connection to a network is required. Mobile devices do

not have access to consistently wired connections that traditional computers

have. Mobile devices require a reliable, high bandwidth, high performance and

robust connection to leverage the power of the cloud effectively. The availability

or lack of availability is a challenge when using and developing mobile cloud

computing applications.

Excessive communication overhead and traffic b.

The increased usage of mobile devices and mobile cloud computing has led to

mobile network congestion, which is making it more expensive to communicate

using mobile devices. Resource intensive actions are typically selected to be

offloaded. These tasks are expensive to offload because of the amount of data

that is sent to the cloud and the amount of data being received. Overcoming

and managing the network communication is one of the challenges of using

mobile cloud computing.

61

Unauthorized access to offloaded data c.

Once data is offloaded from a device, be it mobile or stationary, the data is no

longer under the control of the owner, but rather under the control of the cloud

provider. The cloud provider could gain access to the information or rearrange

data in such a way that the data is exposed on a public cloud. Controlling

access to data that has been offloaded is a challenge of using mobile cloud

computing. The data and the access methods to the data need to be secured

with the use of suitable security protocols.

Application development complexity d.

The development of mobile cloud computing applications requires both the

development of a mobile app for the mobile device and a companion application

to process resources on the cloud. A challenge is thus the dual development of

these applications, each conforming to different standards, to achieve the same

task.

Paid infrastructures e.

Cloud providers provide a utility that allows consumers to access services that

they do not normally have access to, for a price. Utilities are provided to either

the developer or consumer, who each have to pay the cloud provider to access

the utility. The additional expense of using cloud computing is a challenge of

using mobile cloud computing (Buyya et al., 2009).

The challenges outlined in this section show that the development of

applications that use mobile cloud computing requires additional work.

However, the advancements in the different fields, networking, security and

mobile cloud computing are working on removing these challenges or at least

reducing them (Alomari et al., 2011). The challenges are exactly that,

challenges, they are not insurmountable.

4.4. Conclusion

This chapter set out to give a background on cloud computing, mobile cloud

computing, and cloud-based mobile augmentation.

62

The first section discussed the definition of cloud computing, the services that

can be provided by the cloud, how the consumers can get access to these

services and what characteristics the cloud has. Cloud computing provides

services, be it hardware or software, to consumers on an on-demand basis

without excessive user interaction. Cloud computing can also be seen as a

utility as it provides computational power to consumers that do not have it. The

characteristics of the cloud focus on meeting consumer demands without any

human interaction, to make it possible to provide services on the cloud to as

many people as possible. The services provided by the cloud can be exposed

due to the architecture of the cloud. The services can be combined in countless

ways and can be exposed as service of their own. This can be summarized in

the phrase “X as a Service” or everything can be a service. The cloud can be

deployed using different models that allow different groups of consumers to

access the cloud. The deployment model allows the provider to determine how

large or small the consumer base will be and who can have access to it. The

groups can also be combined using a hybrid deployment model.

The second section of the chapter discussed the definition of mobile cloud

computing, cloud-based mobile augmentation, the techniques used to augment

mobile devices and the advantages of using the cloud with mobile devices.

Mobile cloud computing is the use of cloud computing technologies with mobile

devices. The mobile cloud is used by mobile devices to produce or consume

services or to offload tasks to the cloud. The architecture and layout of mobile

cloud computing do not differ that much from the architecture and layout of

traditional cloud computing. The main difference is the client and how the client

communicates with the cloud servers. Cloud-based mobile augmentation or

augmentation, in brief, is the process of increasing, enhancing, and optimizing

computing capabilities of mobile devices by leveraging the cloud and the

resources made available by the cloud. The techniques used to augment mobile

devices using the cloud are categorized into four models based on the type of

cloud being used and the location of the resources. These categories use the

cloud, nearby computers, nearby mobile devices and a hybrid of these

approaches. Each of these is viable and has different applications. This

research uses the distant fixed approach of cloud-based mobile augmentation.

63

This chapter discussed 3 approaches that use the distant fixed approach.

CloneCloud uses virtual instances of the physical mobile devices on the cloud

to offload. MAUI requires the creation of more traditional cloud resources to

offload functionality from the mobile device. The approaches used require either

more data to be transferred to the cloud or more work from the developers to

use the frameworks.

The advantages of using mobile cloud computing counteract the disadvantages

of using mobile devices. The storage of users’ data and information on the

cloud increases the reliability of the applications. The greatest advantage of

using mobile cloud computing is the ability to offload from the mobile device to

the cloud to allow the conservation of one of the scarcest resources on mobile

devices i.e. battery life. The advantages gained by using mobile cloud

computing comes at the price of challenges that have to be faced when creating

or using applications that use mobile cloud computing.

The advantages gained by using cloud-based mobile augmentation come at the

price of certain challenges, this chapter discussed those challenges. By using

the cloud, a reliance is created on the availability of Internet access and thus to

various networks that connect the mobile device to the Internet. The networks

used are unreliable and create overhead when communication occurs between

the device and the cloud. To allow applications to leverage the availability of

resources on the cloud requires the developers to create applications that are

capable of doing so, this can lead to increased complexity. The last challenge

that should be overcome when implementing a CMA framework is the monetary

cost of using a cloud provider. Offloading is discussed in more detail the next

chapter.

64

Chapter 5: Offloading

5.1. Introduction

Current research in mobile cloud computing focuses on techniques that can be

used to support resource-demanding mobile applications. In chapter 3, it was

identified that mobile resource augmentation can be performed using hardware,

software and offloading. Increasing the resources available on mobile devices

by upgrading or replacing the hardware can be expensive, and not all devices

are upgradeable. Mobile augmentation achieved by offloading can be used by

any mobile device that is connected to the Internet and provides access to the

limitless resources available on the cloud. Offloading is a technique that is used

to overcome the limitations of mobile devices in terms of computation, memory

and battery life. The mobile cloud can provide resources to create more

powerful applications even though the battery life of a mobile device and the

bandwidth of the connection cannot be augmented.

Offloading, especially offloading from a mobile device to the cloud, is a

challenging task to accomplish. Developing a framework that uses offloading to

conserve battery life on mobile devices requires an understanding of the

different approaches that can be used. The level at which offloading should

occur, the requirements of the cloud server, the identification of offload-able

components and what data is required on the cloud are some of the factors that

should be considered when creating a mobile cloud computing offloading

framework.

The aim of this chapter is to give an overview of offloading and how it can be

used to alleviate the limited resources on mobile devices. To achieve this aim,

offloading is defined in section 5.2. With offloading defined, the various methods

of offloading are discussed and compared in section 5.3. Section 5.4 discusses

the connection protocols that can be used to connect to the Internet, and using

the connection to the Internet, the offloading of tasks to the cloud. Section 5.5

compares offloading frameworks used in mobile cloud computing. Section 5.6

covers the challenges when offloading from mobile devices to the mobile cloud.

Finally, the chapter is concluded.

65

5.2. Definition: Offloading

Offloading is not a new idea, as offloading capabilities available to traditional

computers have now become available to mobile devices due to the

advancements in mobile device technologies (Dinh et al., 2013; Souppaya and

Scarfone, 2013). The ability to offload processes to the cloud, and to augment

the resources on mobile devices, is of key importance to the continual

development of mobile devices and applications. Some resources cannot be

physically transferred to the mobile device, thus the tasks that the mobile device

needs to execute is moved to the cloud where the cloud resources can be used.

Offloading is defined as the process of moving a task from a resource-poor

client to a resource-rich server. In this case, the server is the cloud and the

client a mobile device. (Kumar et al., 2013).

Offloading differs from a traditional cloud-server-client architecture, where a thin

client always needs to offload the processing to the server. Offloading also

differs from grid or multi-processor computing where tasks are migrated in order

to balance the load on different processors. Offloading moves processing tasks

to a server that does not need to be in the vicinity of the client (Kumar et al.,

2013). Thus mobile devices are not required to sacrifice mobility when using the

cloud, because the cloud is remote.

The use of offloading with mobile devices has been enabled by the recent

advances in mobile device technology as most modern mobile devices have

near constant access to the Internet (Dinh et al., 2013). Consequently, mobile

devices have access to the cloud because of the increase in the use of the

cloud and the developments made in the provisioning of services by the cloud,

made possible by virtualization (Kumar et al., 2013).

The methods that can be used to offload tasks from mobile devices are

discussed next (Abolfazli et al., 2014).

66

5.3. Methods of offloading

The offloading of tasks from mobile devices has extensively been researched.

Research has shown there are three main directions that these methods take

namely, client-server communication, virtualization, and mobile agents

(Fernando et al., 2013). The methods and a comparison between these

methods are discussed next.

5.3.1. Client-server communication

Client-server communication takes place between the mobile device and the

cloud provider by using protocols such as Remote Procedure Call (RPC) (Flinn

et al., 2002; Marinelli, 2009), Remote Method Invocation (RMI) (Flinn et al.,

2002; Marinelli, 2009) or by using sockets (Balan et al., 2003; Fernando et al.,

2013).

These communication methods are well established and are considered to be

stable by developers. A drawback of using these communication methods is

that procedures that are remotely called, or the methods that are remotely

invoked, need to be installed on the server prior to execution, which hinders the

mobile and flexible nature of mobile devices. Because the application needs to

communicate with a specific server that has the procedures or methods

installed, network congestion can be created (Fernando et al., 2013).

Figure 5.1 (Fernando et al., 2013) illustrates the communication between a

server and a client when using client-server communication to offload. The

client sends the call to execute a procedure or method and if necessary the

server returns the result of the execution.

67

Figure 5.1 Client-server communication.

The communication between the mobile device (the client) and the server (the

cloud) is straightforward. The server exposes a number of procedures that can

be called remotely. The client accesses the server’s procedures, provides the

necessary data as parameters, and calls the procedure. The server returns a

result if necessary.

The client-server method is well established and has been proved to be

compatible with mobile devices. The difficulty of implementing this approach

comes when deciding whether or not to offload a task as the state of the device,

and the connected network’s information needs to be considered when deciding

whether or not the process should be offloaded.

5.3.2. Virtualization

Virtual machine migration is the process of transferring a duplicate of the

memory instance of a virtual machine from the source to a destination without

stopping the execution of processes running on the virtual machine (Clark et al.,

2005). The memory pages of the original machine have to be transferred to the

destination machine before the execution can be transferred, to provide an

illusionary seamless migration (Cuervo et al., 2010; Fernando et al., 2013;

Satyanarayanan et al., 2011).

Virtualization does not require the alteration or duplication of code. Because the

execution is moved to a duplicate virtual machine, the physical server is

insulated. However, the duplication and creation of the virtual machine are time-

68

consuming and there may exist compatibility issues between virtual machines.

The lack of resources on mobile devices can also be a hindrance for the

resource intensive task of virtual machine migration (Fernando et al., 2013).

Figure 5.2 (Fernando et al., 2013) shows the communication between the

original and destination virtual machine and the layers of the virtual machine.

The mobile device communicates with the virtualized hardware layer to transfer

the memory, and with the operating system and application to execute the

process.

Figure 5.2 Virtual machine migration.

The communication between the mobile device and server occur via a network,

which is usually the Internet for cloud-based servers. Virtual machine migration

requires large amounts of data to be transferred to the cloud before processes

can be offloaded. The state of the mobile device is sent to the cloud where the

virtual mobile device is hosted. Once the state has been restored to the virtual

device the computationally intensive task is executed, and the state after the

process has been executed is sent back to the physical mobile device.

Virtualization of mobile devices and the applications that run on them allows

continuous execution when offloading. Because the server is executing the

process as if the mobile device was executing the process, there is no need to

create code for the server and code for the client. The resource usage,

however, limits the size of the applications that can be developed, because the

69

mobile device does not have enough resources to continue executing and to

transfer the application execution.

5.3.3. Mobile agents

Unlike the previous approaches, mobile agents offload tasks not to the cloud,

but to nearby devices. The client can, depending on the number of servers and

resources available on them, partition tasks so that different partitions of a task

is executed on different servers (Kristensen, 2010).

The use of mobile agents supports dynamic deployment because all the code

that needs to be executed is already on nearby devices. The execution can

occur on such devices at the cost of time and battery life. However, because the

mobile agent's approach uses different devices as servers, security is

questionable. Because nearby devices are being used, they need to be

managed (Fernando et al., 2013).

Figure 5.3, (Fernando et al., 2013), shows the communication between the

client and the server. The server contains the mobile agent that communicates

with the service. The server responds to the client the result of the task or part

of the task that was sent for execution.

Figure 5.3 Mobile agents.

The mobile device communicates with other nearby mobile devices and moves

a task to the device to be executed. The server device has a mobile agent that

listens for requests from client devices. When a request is made, the server

executes the required services and returns the result, if there is one, to the

client. Unlike with other methods, the network that the mobile device connects

70

to does not have to be the Internet. The server and client devices are near each

other, meaning the communication can take place via a local Wi-Fi network or

the devices can create a connection using Bluetooth.

Using mobile agents for offloading is very dynamic, has offline capabilities, but

the lack of security and the limited resources does not allow the creation of

powerful applications. The mobile agent approach is used more to conserve the

resources on the client and not used to augment the resources of the client.

5.3.4. Comparison of offloading methods

Each of the offloading methods has different advantages and disadvantages.

This section provides a comparison between the methods, shown in Table 5.1.

The results of the comparison provide a motivation for the choice of the method

for this research (Christensen, 2009; Clark et al., 2005; Cuervo et al., 2010;

Fernando et al., 2013; Satyanarayanan et al., 2011).

Table 5.1 compares not only the methods but also the server type and location

for the client-server and virtualization approach. For each of the methods, the

amount and location of the resources are compared, as well as the size of the

communication required to use the given approach and the complexity of the

code to use the approach.

Table 5.1 Comparison of offloading methods

 Resources Resource
location

Communication
size

Coding
complexity

Client-server
(Using the

cloud)

Nearly
limitless

Distant Small High

Client-server
(Using a local

server)

Limited Nearby Small High

Virtualization
(Using the

cloud)

Nearly
limitless

Distant Large None

Virtualization
(Using a local

server)

Limited Nearby Large None

Mobile
Agents

Limited Nearby Small Some

71

From an evaluation of Table 5.1, the trade-offs between the different offloading

methods are clearly shown. At the expense of communication size, offloading

can be achieved without the need to increase code complexity, using

virtualization. The client-server method increases code complexity but does not

require any unnecessary communication to the server. Mobile agents do not

increase code complexity to the same extent than the client-server approach

does and does not require more data to be transferred, however, the resources

are not guaranteed and is not a reliable option.

The method chosen for the implementation in this dissertation is client-server

communication using the cloud. Client-server is selected because it does not

require large amounts of data to be transferred before operations can be

offloaded. The server on the cloud is chosen because it provides the most

resources and is constantly available. The drawback of using the client-server

communication method is the coding complexity. However, because the

implementation in this dissertation is done in Android, the same code can be

used in a Java server-side application.

This discussion shows that processes can be offloaded from a mobile device to

a server, whether the server is the cloud, a local computer or nearby mobile

device. All these methods require communication with the server and

communication requires connection protocols, which are discussed below.

5.4. Connection protocols

To be able to offload computation, the ability to connect to the Internet or a

network is required. There are various connection protocols available on mobile

devices that enable them to connect to the Internet. Protocols such as Wi-Fi,

Bluetooth, 3G, and 4G are all used in offloading solutions. Each of these

connection protocols is now discussed their implementation and advantages.

Finally, a comparison is made between the discussed connection protocols to

determine which protocols can reliably be used for offloading.

72

5.4.1. Wi-Fi

Most modern mobile devices have a built-in Wi-Fi radio providing the device

with access to Wi-Fi networks, and through the networks, access to the Internet.

Wi-Fi has a 100m range and can transfer data at 20Mbps. Research has shown

that a mobile device can download a 6GB file and upload a 5.6GB file using Wi-

Fi before being completely discharged (Dinh et al., 2013; Fernando et al., 2013;

Kalic et al., 2012).

MAUI, an offloading solution discussed previously in chapter 3, uses Wi-Fi as

the connection protocol to offload fine-grained energy-aware mobile code to the

cloud. MAUI utilises managed code to reduce the burden on programmers with

regards partitioning the program while maximizing the energy savings. A

smartphone application’s code is duplicated and the copy is executed from the

cloud infrastructure. The methods in the application are profiled and serialized

to determine the cost of offloading. The offloading is done via RPC and

although MAUI works via both 3G and Wi-Fi, the focus was on Wi-Fi. The

results from the creators, Cuervo et al, shows that MAUI can reduce energy

consumption (Cuervo et al., 2010).

5.4.2. Bluetooth

Like Wi-Fi, most modern devices have Bluetooth radios. These radios allow

devices to connect to each other or to a Bluetooth network. The typical range of

a Bluetooth radio is 10m depending on the strength and type of the device, and

the physical objects between devices (Fernando et al., 2013). Using Bluetooth,

a mobile device can download a 4GB and upload a 5.6GB file before completely

losing charge (Kalic et al., 2012). The most recent Bluetooth protocol, Bluetooth

4.0, has been extended to include the Bluetooth Low Energy (Bluetooth LE)

protocol. The entire Bluetooth 4.0 protocol is backward compatible, and the

Bluetooth LE protocol is used to create a network between long-lasting sensors

(Want et al., 2013).

As offloading is being used more often, more congested mobile networks would

be created. A solution to the congestion problem is suggested by (Han et al.,

2012). They suggest using opportunistic communication to offload data to the

73

network or server when the device is connected to a device that has the

capability. If a specific device has the content of an application, that device can

offload the content to other devices that use a shared application, using

opportunistic communication. The solution suggests that if Bluetooth is used as

the communication protocol, opportunistic communication can be done without

incurring a monetary cost, while at the same time ensuring that the mobile

networks are not congested. Using Bluetooth to find and initialize

communication between devices has been shown to be the most cost-effective

for battery life. Bluetooth communication, in general, uses less battery life than

the other communication protocols, but it does not support large bandwidths.

5.4.3. 3G

3G, or Third Generation, is the third generation of mobile telecommunications.

Protocols that meet the 3G standard include, Edge, HSDPA and HSDPA+

(3GPP, 2017) The standard defines that 3G has at least a 200kbps transfer

rate. 3G is used by most devices for wireless voice telephony, mobile Internet

access, fixed wireless Internet access, video calls and mobile TV technologies.

The infrastructure that cellular networks use is owned and controlled by a

service provider and access to the network is sold to consumers. 3G enables a

mobile device to download 3GB and upload 1.4GB of data before being

completely discharged (Alomari et al., 2011; Fernando et al., 2013; Kalic et al.,

2012).

Mobile commerce (m-commerce) is a business model that leverages mobile

devices for commercial purposes, such as, payments, messaging and ticketing.

M-commerce applications use the mobility of mobile devices to fulfil the

previously mentioned task. (Yang et al., 2010), suggest an m-commerce

application based on cloud computing that uses 3G. The application on the

mobile device communicates with the server’s web service via 3G. The web

service grants users access to their m-commerce information from virtually

anywhere. M-commerce uses the 3G communication protocol and cloud

computing to increase the speed and security of m-commerce. The main

advantage of 3G over Wi-Fi is the nearly ubiquitous Internet access (Cuervo et

al., 2010).

74

5.4.4. 4G

4G, or Fourth Generation, is the fourth generation of mobile

telecommunications, and the successor of 3G. The 4G standard supports the

same services as 3G. The increased speed of connections using 4G enables

more services and is ideal for mobile cloud computing. There are currently two

4G implementations namely Long Term Evolution Advanced and Mobile WiMAX

(Parkvall and Astely, 2009).

4G is the successor of 3G with all the advantages of 3G but also increased

bandwidth. Because 4G is the successor to 3G, most of the applications that

use 3G can also use 4G. Subramanian et al (2014) have developed an

application that uses the increased bandwidth of 4G. The application proposed

is an m-health application that uses a mobile device and certain accessories to

monitor a patient and to offload the information to a server that also has the

patient’s medical records. The information stored on the cloud can be accessed

by the patient’s physician and can be used to increase the speed at which

decisions are made. Because the application deals with the lives of patients,

physicians need access to the latest medical records as soon as possible,

which is made possible by using 4G.

The variety of connection protocols allow developers to create applications that

require constant network access. Because mobile devices have the hardware to

connect to more than one of these networks, developers can use different

protocols at different times.

5.4.5. Comparison of connection protocols

Mobile devices can connect to all of the networks discussed, where a specific

network is better suited for certain tasks. Table 5.2 compares the connection

protocols. The table compares the range, speed, and energy consumption after

two hours of use (Alomari et al., 2011; Cuervo et al., 2010; Fernando et al.,

2013; Kalic et al., 2012; Parkvall and Astely, 2009; Want et al., 2013).

75

Table 5.2 Comparison of connection protocols

 Maximum
range

Maximum
throughput

Energy
consumption
(Download)

Energy
consumption

(Upload)

Wi-Fi

100m 866.7 Mbps 38% 38%

Bluetooth

10m 2 Mbps 19% 19%

3G (HSDPA)

N/A 7.2 Mbps 38% 34%

4G (LTE)

N/A 100 Mbps N/A N/A

From the comparison, it is clear that maximum throughput affects the energy

consumed. Bluetooth, which uses the least amount of data, has the lowest

energy consumption. Higher throughputs consume significantly more energy.

However, throughput is not the only factor that plays a role. Comparing Wi-Fi

and 3G, the energy consumption is the same for downloading which is a slight

difference between the results from uploading. However, the throughput of 3G

is almost a third of W-Fi. These factors will be taken to into account in the

experimentation in this dissertation.

For this research, the communication protocol to be used between proposed

components is both Wi-Fi and cellular networks, i.e. 3G and 4G. Wi-Fi is

selected because the connection provided is stable and it has a relatively high

bandwidth. However, as Wi-Fi is not mobile, cellular networks are also selected

because they can be used when the device is not connected to a Wi-Fi network.

Bluetooth is disregarded because of the low bandwidth.

The connection protocols have different advantages, where multiple advantages

can be gained by using more than one connection protocol based on what is

required at that point in time. The process of offloading, no matter the

connection protocol, provides mobile devices with access to the resources on a

server. Unfortunately, no advantage comes without some disadvantages or

challenges. The next section discusses and evaluates various offloading

approaches.

76

5.5. Offloading approaches

Offloading from a mobile device follows the same basic steps, however how

these steps are completed differ based on the framework used. This section

discusses the steps taken when offloading and compares different frameworks

(Akherfi et al., 2016).

5.5.1. Offloading steps

The steps that are taken when offloading are application partitioning,

preparation and making the offloading decision (Akherfi et al., 2016) discussed

in this section.

Application partitioning a.

Partitioning the application divides the application into two component

categories. The first contains application components that can be offloaded and

the second contains the components that cannot be offloaded. Dividing the

application into the categories can happen in different ways depending on the

framework chosen. Methods can be marked by the developer as being offload-

able, or the methods or components can be identified using source code

analysis with performance prediction or the application profiling. If the

partitioning happens during development the accuracy of the partitioning is

limited because it does not take the actual execution into account (Akherfi et al.,

2016).

Preparation b.

The next step, preparation performs all actions required for the components

marked as offload-able to enable their use in mobile applications. This includes

the selection of a remote server, the transfer, and installation of the code, as the

start of proxy processes that receive and execute tasks on behalf of the mobile

device. Setting up the cloud server is the first part of the preparation, there is

also a seconding optional step, the transfer of data from the mobile device to

the server. The data transferred in the second step can include the data

required to execute the cloud on the server, and the data that describes the

state of the mobile device (Akherfi et al., 2016).

77

Offloading decision c.

The final step before offloading is the offloading decision. Whether or not the

offload-able component is offloaded depends typically on the execution context.

If the decision is taken at runtime, more precise information is available, for

example, the state of the device’s network connection and the estimated energy

consumption for transferring data at that time. Making the decision at runtime

enables the re-evaluation of the decision whenever the state of the mobile

device changes. However, runtime decision making does include some

overhead costs that are not incurred when making the decision during

development (Akherfi et al., 2016; Al-mousa and Alzoubi, 2017).

The steps that are required to offload an application or a component of an

application does not vary, however, there are differences in how the steps are

achieved depending on the framework chosen. The offloading frameworks are

discussed next.

5.5.2. Comparison of mobile cloud computing offloading

frameworks

There exist many mechanisms to achieve offloading, however, there are two

framework categories that are prevalent when offloading tasks from mobile

devices, namely frameworks based on virtual machine cloning, such as

CloneCloud and frameworks based on code offloading, such as MAUI (Akherfi

et al., 2016). MAUI and CloneCloud and the respective framework mechanisms

are evaluated and compared in this section. The offloading steps of MAUI and

CloneCloud are now examined.

CloneCloud a.

The offloading steps taken in CloneCoud, shown in figure 5.4. are discussed to

further evaluate the solution presented by Chun et al. (Chun et al., 2011).

78

Figure 5.4 CloneCloud execution model

i. Partitioning

CloneCloud achieves partitioning by combining static program analysis with

program profiling to produce a set of offload-able components while meeting

some constraints, such as methods that require resources available only on the

mobile device should be pinned to the device. CloneCloud uses thread level

granularity for partitioning of applications. Static analysis is used to discover

constraints on components, whereas profiling is used to build a cost model for

offloading and execution. Partitioning and integration of application are

performed at the application level (Chun et al., 2011).

ii. Preparation

The preparation step is achieved by creating a virtual instance of the mobile

device on the cloud and transferring the necessary data to the clone before

offloading. Initially, a duplicate of the smartphone’s software is created in the

cloud. The state of the smartphone and the clone is synchronized periodically or

on-demand. As the partitioning happens at thread level all the threads are

suspended and the states of the threads are transferred to the cloud. In figure

5.4 the Cloud VM is created in this step (Chun et al., 2011).

iii. Offloading decision

The offloading decision is made at runtime, once the decision has been made to

offload the second step in the preparation occurs, namely the thread states are

transferred. CloneCloud is based on virtual machine instance migration to the

cloud server. Figure. 5.4 shows the CloneCloud execution model. After the

79

execution of offloaded components, results from the execution on the clone are

reintegrated back into the smartphone state (Chun et al., 2011).

MAUI b.

The offloading steps taken in MAUI, shown in figure 5.5, are now discussed to

evaluate the solution presented by Cuervo et al. (Cuervo et al., 2010).

Figure 5.5 MAUI execution model

i. Partitioning

Partitioning is achieved in MAUI by developers who mark methods as

offloadable during development. MAUI offloads code so the developer is

required to create a cloud counterpart to the methods that are marked

offloadable (Cuervo et al., 2010).

ii. Preparation

MAUI prepares for offloading by ensuring that the application is available on

both the mobile device and the cloud server and also that proxies, solvers, and

profilers are installed on the mobile device and the cloud server (Cuervo et al.,

2010).

iii. Offloading decision

The MAUI profiler is used to create an initial profile of the mobile device

characteristics, and continually monitors changes to the device and the network

to update the profile if the profile is not kept current wrong decisions can be

made. The offloading decision is taken at runtime. The framework chooses

80

which components should be remotely executed according to the decision of

the MAUI solver. The decision is based upon the input of the MAUI profiler.

Figure 5.5 shows the MAUI execution model.

Comparison of mobile cloud computing offloading frameworks c.

The comparison of MAUI and CloneCloud offloading is given in table 5.3. Both

MAUI and CloneCloud achieve offloading, but by using different mechanisms.

Both frameworks make use of dynamic decision making. MAUI uses information

that is gathered by the MAUI profiler and then fed to the MAUI solver to

determine whether or not a method should be offloaded. CloneCloud uses a

built-in profiler to migrate threads to the clone on the cloud. Virtual machine

cloning is expensive in terms of computation and storage on the cloud, but such

costs can be covered by the use of container technology (Bernstein, 2014). As

stated before, code offloading moves the burden of identifying offloadable

components to the developer. Thread level granularity introduces complexity, as

there is more information required to be transferred and the migration of the

result back into the local instance can negatively influence the user experience.

81

Table 5.3 A comparative review of MAUI and CloneCloud

Framework Comm.

Protocol

Optimization

Factor

OS CMA

approach

Initial

data

transfer

Partitioning Preparation Decision Offloading

mechanism

Contribution Level of

granularity

MAUI Wi-Fi,

3G

Energy,

Execution

Time

Windows

Phone

Distant

fixed

Low Individual

method

annotation

Two

versions of

a mobile

application

are created

Dynamic Code Energy-

aware code

offload

Method

CloneCloud Wi-Fi,

3G

Energy Android Distant

fixed

High Static

program

analysis and

program

profiling

A duplicate

of mobile

device’s

software

stored on

the cloud

server

Dynamic Virtual

machine

cloning

Elastic

execution

between

mobile

devices and

the cloud

Thread

82

The solution proposed by this dissertation uses code offloading on a method

level of granularity to reduce complexity. Decisions making is discussed in the

next chapter in more detail. The challenges associated with offloading and

enabling offloading are discussed next.

5.6. Challenges of offloading

Offloading provides many advantages when applied to traditional computers.

When offloading is done from a mobile device, the number of advantages

greatly increases. To gain the advantages of offloading, certain challenges need

to be overcome, as discussed next.

Offloading requires at least two types of devices to be implemented namely a

server and client. For this research, the two devices are the cloud and the

mobile device. The challenges facing offloading is two-sided; from the viewpoint

of mobile communication, and from the viewpoint of computing (Dinh et al.,

2013). The challenges discussed here are focussed from the viewpoint of the

mobile device. The challenges related to the server-side components and the

challenges of mobile cloud augmentation were discussed in the previous

chapter.

The challenges discussed below are related to mobile device communication

which hinders offloading. The challenges discussed are low bandwidth,

availability, heterogeneity, and security.

5.6.1. Low bandwidth

The ability of mobile devices to connect to the Internet and other networks has

been well established. The first challenge that needs to be overcome when

offloading is the bandwidth available to the mobile device. Cellular networks are

nearly everywhere but do have an associated cost and do not have the reliable

bandwidths. In contrast, Wi-Fi can provide network access at greater bandwidth

but does not cover such a large area as the mobile networks (Cuervo et al.,

2010; Dinh et al., 2013).

83

5.6.2. Availability

The availability of network connections is the second challenge that needs to be

overcome. Because mobile devices are resource constrained, the importance of

network availability increases as devices may not be capable to complete

complex tasks without offloading. As previously stated, mobile data networks

provide nearly complete coverage, but areas without network access can still

exist. Wi-Fi access points provide network access when the user is in the

limited range, forcing a mobile user to use Wi-Fi, which severely limits the

mobility of the user (Dinh et al., 2013; Huerta-Canepa and Lee, 2010).

5.6.3. Heterogeneity

The heterogeneity of the different types of networks that can be used to offload

is the third challenge that needs to be overcome. The different networks and

communication protocols need to be considered when the offloading server is

created. Different servers have different requirements and meeting these

requirements can have influenced the capabilities of the application. (Dinh et al.,

2013)

5.6.4. Security

The security of the data being stored, sent or processed is the fourth challenge.

The security on a mobile device can be augmented by third-party applications

but there is still a risk involved in having sensitive data on a small mobile

device. Not only is the device vulnerable to cyber-attacks but also to physical

threats, the device can destroy or stolen quite easily (Dinh et al., 2013;

Oberheide et al., 2007).

The challenges discussed here are daunting, but the widespread use of

offloading shows that the challenges can be, and have been overcome as

advances in the fields relating to these challenges are reducing the impact and

the size of the challenges.

The last component of the proposed solution, namely the decision to be taken

when offloading should occur, is of utmost importance. The factors that

influence the offloading decision making are discussed in the next chapter.

84

5.7. Conclusion

This chapter discussed offloading, focussing on the offloading from mobile

devices to the cloud or mobile cloud. The methods that are available to offload,

the connection protocols used to connect mobile devices to the networks

required for offloading, the challenges that need to be overcome when

offloading and the factors that influence the offloading decision were also

discussed.

The use of offloading with mobile devices is an extension of the offloading used

by traditional computers. By using offloading to augment mobile devices with

the resources available on the cloud, more complex applications can be

developed for mobile devices.

The methods available to offload processes from mobile devices to the cloud

can be categorized into three overarching methods. These are Client-Server,

Virtualization, and Mobile Agents. These methods each have advantages and

disadvantages, and each uses a different computer or device as a server. The

advantages and disadvantages make the approaches more useful in some

situations and less so in others. In the case of the solution proposed by this

dissertation, the client-server method is best suited.

The connection protocols available are discussed as they are integral to

offloading. The different protocols are all used by mobile devices and have been

used to create applications that offload processes from mobile devices. The

variety of connection protocols can be used in concert to keep a device

connected to a network continuously. The examples of applications that use the

different communication protocols made the different advantages clear.

Offloading frameworks typically take one of two approaches when offloading.

The first is virtual machine cloning, which relies on creating a virtual instance of

the mobile device and migrating threads and data regarding the state from the

physical device to the cloud for execution, once execution is completed the

thread is migrated back to the physical device and merged into the application.

85

The second approach is code offloading, which relies on the creation of a

function on a cloud server that executes instead of the local method.

CloneCloud uses the first approach, whereas MAUI uses the second approach.

Offloading is used to increase the resources of the client but the increase of

resources comes with some challenges. These challenges, focussing on the

mobile device, are discussed. The low bandwidth and availability of network

connections on the devices cannot be influenced by users but should be

considered by app developers. The difference of the networks that can be used

on mobile devices should be also be considered because the requirements of

the connection protocols vary. Lastly, the security of the data being offloaded

should be considered because once the data leaves the device the owner is no

longer control of what happens to the data.

The goal of the offloading of processes is to augment mobile devices with cloud

resources, where offloading becomes necessary because of the limited

resources on mobile devices. As limited resources are not always conserved

when processes are offloaded, the decision of whether or not a process should

be offloaded is discussed in chapter 6.

86

Chapter 6: Decision Making

6.1. Introduction

Studies (Barbera et al., 2013; Kumar and Lu, 2010) have shown that offloading

can be used to conserve the battery life of mobile devices in the right

circumstances. As discussed in the previous chapter, offloading is the process

of moving the execution of a process from a resource-poor client to a resource-

rich server. Before a process is executed, a decision has to be made to either

offload the process or execute the process on the mobile device. The decision

maker evaluates the circumstances and chooses whether or not to offload. The

decision made can conserve the battery life of the mobile device and extend the

length of time the mobile device can be used.

The previous chapter discussed offloading and the fact that the right offloading

decision can conserve battery life. This chapter completes the literature review

by defining decision making and identifying the factors that can influence the

offloading decision. To achieve these aims, section 6.2 defines decision making

and section 6.3 discusses the process of decision making. In section 6.4 the

factors that influence the offloading decision are discussed. Section 6.5

discusses and evaluates the decision-making process followed in related

research. Finally, the chapter is concluded.

6.2. Definition: Decision making

The study of decision making influences many intellectual disciplines such as

mathematics, statistics, economics, political science, sociology, psychology and

computer science (Kahneman and Tversky, 2000).

Decision making is the process of identifying and choosing an option between

several alternative options based, on certain factors and the goal of the decision

maker. The decision making process results in a final choice that determines

the actions of the decision maker (Kahneman and Tversky, 2000; Zsambok and

Klein, 2014)

87

The main goal of this research is to develop a component that can make

offloading decisions to conserve battery life, which can be integrated with an

existing application. An offloading decision can be considered as good if the

offloading of a task conserves more energy than when a local computation is

performed.

The definition indicates that there are three components that are required to

make decisions namely goals, options, and factors. These components are

discussed next.

6.3. Decision making

A decision-making component chooses between options based on certain

factors to achieve a goal, identified next.

6.3.1. Goal

Decisions are made to reach a goal (Kahneman and Tversky, 2000). In this

dissertation, the goal is to consume as little energy as possible by choosing the

less expensive option in terms of energy consumed.

6.3.2. Options

The options or choices for this research are between deciding to offload or not

to offload. The decision is made based on factors that influence the energy

consumption cost of each option.

6.3.3. Factors

Factors that influence the energy cost of offloading and local execution include

the size of the data (being sent and received), the bandwidth available, the

communication protocol that is used, the complexity of the code and the

duration of executing the processes locally (Kumar and Lu, 2010).

The factors ultimately determine whether or not the decision maker achieves

the goal. The factors and how they are measured are discussed next.

88

6.4. Factors influencing the offloading decision

The offloading of a mobile task is a trade-off between the energy consumed

when executing locally, and the energy needed for offloading the task, as well

as uploading and downloading the relevant data (Kumar and Lu, 2010). It is

expressed as the equation in equation 6.1.

Equation 6.1 Offloading decision-making equation 𝐸𝑙𝑜𝑐𝑎𝑙 − 𝐸𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 = 𝐸𝑠𝑎𝑣𝑖𝑛𝑔 𝐸𝑠𝑎𝑣𝑖𝑛𝑔 > 0

Where:

 𝐸𝑙𝑜𝑐𝑎𝑙 represents the cost of local execution.

 𝐸𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 represents the energy used by offloading the task.

 𝐸𝑠𝑎𝑣𝑖𝑛𝑔 > 0 determines that energy will be saved if the task is offloaded.

The factors can be divided into two categories. The first is communication,

which consists of the size of the data, the bandwidth and the communication

protocol used. The second is a computation, which consists of code complexity

and the time needed to execute (Kumar and Lu, 2010). The factors and how

they are measured are discussed next. After each of the categories are

discussed, the equations that represent the energy costs are presented.

6.4.1. Communication

Communication represents the cost of offloading a process. This factor

determines how much battery life is used if all the necessary information is sent

to the cloud and the result is returned. The cost of the communication mainly

depends on the length of time of the communication. The length of the

communication is determined by two factors namely the size of the data and the

available bandwidth. A third factor is the communication protocol used where

the communication protocol determines how much energy is used to

communicate (Cuervo et al., 2010; Kalic et al., 2012; Ma et al., 2013).

89

Figure 6.1 Energy Consumption: Wi-Fi vs. 3G

Figure 6.1 shows the power consumption when transferring data via Wi-Fi and

3G. The blue bars, to the left of each grouping, represent the energy consumed

when transferring 10KB files and the red bars represent transferring 100KB

files. The Round-Trip-Time (RTT) given is the time a message takes to be sent

to the server and the time for the server’s response to return. The longer the

RTT is, the longer the connection is required to stay open. The comparison of

the two files in each case shows that the larger the file, the more power is

consumed. The first two data sets show the power consumption when

transferring data via Wi-Fi, whereas the third data set shows the consumption

when transferring data via 3G. It is clear that a 3G connection consumes more

energy than a Wi-Fi connection.

Size of data a.

Both the size of the data and available bandwidth determines the length of the

communication (Kumar et al., 2013). The longer the communication, the more

power is used. The effect on energy consumption of communication is shown in

Figure 6.1. The size of the data that is transferred determines the time the

connection is required to be open. The larger the size of the data transferred,

the longer the connection is kept open. The data transferred consists of the

objects sent and received, and the size of the headers associated with the

communication protocol (Cuervo et al., 2010).

0

500

1000

1500

2000

2500

3000

Wi-Fi (RTT: 25ms) Wi-Fi (RTT: 50ms) 3G (RTT: 220ms)E
n

e
rg

y
 C

o
n

s
u

m
e
d

 b
y
 U

p
lo

a
d

 (
m

J
)

10KB 100KB

90

The objects which are sent can either be primitive or composite data types.

Primitive data types have set sizes and are used to store a single value.

Composite data types are more complex and can store many different related

values. At runtime, the values of the composite data type are set, which allows

the measurement of the size of the composite data type (Cleveland, 1993; Sale,

1977).

The size of the data to be communicated can be measured using different

methods. The first method examines the attributes of an object and totals the

size of the primitive data types. If the objects are instances of composite data

types, the calculation is done recursively for all of the objects that are sent and

all of the attributes. The size of the objects sent and received does not include

the size of the transportation headers. This method can be used to estimate the

size of the data to be communicated before the communication takes place

(JavaWorld, 2003).

The second method monitors the connection and counts the number of bytes

that are transferred. This measurement takes into account transportation

headers and does not have to calculate the size of the serialized objects being

transferred. However, the measurement is made after the communication takes

place (StackOverflow, 2014).

This research chooses the second approach for the experiments performed

because the loss of packets is taken into account by measuring the size of the

communication, as opposed to calculating the size of the communication.

Communication protocol b.

The communication protocol used directly affects the bandwidth available.

Cuervo et al (2010) have done studies on the effects on power usage between

mobile data networks. The results of these studies are shown in Figure 6.1.

Mobile devices connect to different types of networks using the appropriate

communication protocol, which determines the maximum bandwidth. However,

the energy cost for each communication protocol differs. Figure 6.2 below

91

shows the energy consumption of a mobile device when communicating using

different communication protocols to upload and download (Kalic et al., 2012).

Figure 6.2 Energy consumption compared to the elapsed time

Figure 6.2 shows the energy usage for different connection protocols. A mobile

device can continuously communicate via Bluetooth, on the far right, for more

than 10 hours. However, the same mobile device can only download via Wi-Fi,

in the middle (third from the left), for a little over 5 hours, and upload, first on the

left, for even less time. Figure 6.2 illustrates the point that the energy

consumption differs from communication protocol to communication protocol.

Bandwidth c.

As previously stated, the greater the bandwidth, the less time the

communication needs. Figure 6.1 shows the power consumption under different

available bandwidth (Ma et al., 2013). The bandwidth available determines the

time required to keep open the connection, which determines how much battery

life is used.

The available bandwidth is determined by the connection protocol used and the

signal strength. The higher the bandwidth, the shorter the time needed by the

92

communication. For instance, sending a 1 megabyte package over a connection

with 1 Mbps bandwidth takes 8 seconds, whereas sending the same package

over a 1 Kbps bandwidth connection takes longer than 2 hours (Kalic et al.,

2012).

Bandwidth determines the maximum speed at which packets can be

transferred. The bandwidth available on a network is calculated by sending

packets through the network and measuring the time the packets take to reach

their destinations.(Johnsson et al., 2006; Johnsson and Bjorkman, 2008).

The underlying network influences the speed by which packets are sent. The

Internet is a TCP/IP network (Transmission Control Protocol/Internet Protocol)

(Wright and Stevens, 1995) that uses a slow start algorithm to reduce

congestion (Zhang et al., 2012). Once a connection is opened to the server a

congestion window is opened, for each acknowledgment received the

congestion windows is enlarged. The maximum speed at which the

communication can take place is determined by the congestion window up to a

certain point, and then the bandwidth. The use of the slow start algorithm limits

the speed of transferring smaller files because the communication is over

before the congestion window’s size meets the bandwidth maximum (Zhang et

al., 2012).

Available bandwidth is to be measured in this dissertation by downloading and

uploading files to the server, and measuring the time the communication takes.

The slow start algorithm can limit the available bandwidth calculation. If a small

file is used to measure the bandwidth, the communication is done before the

congestion window’s size reaches the actual bandwidth limit.

Size of data, bandwidth and communication protocol influences how long the

communication takes place. The longer the connection is open, the more

battery life is used. The energy cost of communication can be measured by

multiplying the length, in time, of the communication with energy usage per

second.

The communication cost is expressed in equation 6.2.

93

Equation 6.2 Communication cost equation 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 = 𝑠𝑖𝑧𝑒𝑏𝑎𝑛𝑑𝑤𝑖𝑡𝑑ℎ 𝐸𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 × 𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛/𝑠𝑒𝑐𝑜𝑛𝑑

Where:

 𝑠𝑖𝑧𝑒 represents the size of the data that is uploaded and downloaded.

 𝑏𝑎𝑛𝑑𝑤𝑖𝑡𝑑ℎ represents the current available bandwidth.

 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 is the length of time the transfer of data takes at the

current bandwidth.

 𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛/𝑠𝑒𝑐𝑜𝑛𝑑 represents the energy consumption per

second for different connection protocols.

 𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛/𝑠𝑒𝑐𝑜𝑛𝑑 is a constant per device, per connection protocol.

The cost of the communication needs to be compared to the cost of executing a

process locally. The comparison determines whether or not the process should

be offloaded. The computation of a mobile task, which is the cost of not

offloading, is discussed next.

6.4.2. Computation

Computation determines how much battery life is used to execute a mobile task

locally (Kumar and Lu, 2010). The cost of computation is determined by the

complexity of the procedure to be executed and the length of time the execution

takes.

Code complexity a.

Complexity encompasses many properties, such as the number of paths

through the code, the number of operations and the number of variables, of a

piece of code. Each of the properties affects the interactions between

components. There is a difference between the complex and complicated code.

Complicated code is difficult to understand, whereas complex code has many

interactions between different components (De Silva et al., 2012; Henry and

Kafura, 1981; Yu and Zhou, 2010).

94

Several methods exist to measure the complexity of a program or part thereof.

McCabe’s cyclomatic complexity (De Silva et al., 2012), Halstead complexity

measures (Halstead, 1977) and Big-O notation (Stephens, 2013), are

discussed.

i. McCabe’s cyclomatic complexity

McCabe introduced the cyclomatic complexity measure. Cyclomatic complexity

determines the number of linear paths through the code. Each if statement in

the code creates a different path. A program’s code is more complex the more

paths there are through the code. Cyclomatic complexity is also an indicator of

testability and maintainability (De Silva et al., 2012).

ii. Halstead’s complexity measures

Halstead’s complexity measures are based on the number of operands and

operators in a module. Operands are objects in the module on which operators

execute operations. The metrics gathered by Halstead’s measure can be used

to determine the volume, difficulty, effort, time to program and the number of

delivered bugs (Halstead, 1977).

iii. Big-O notation

Big-O notation measures the scalability of code, how long execution takes as

the number of input values increase. Big-O notation is not a direct measure of

complexity but does give an indication of complexity and how long execution

takes. Common results from big-O investigations include O(1), O(n), O(n2),

O(log(n)), and O(nlog(n)).The order of the function determines how the number

of input values (n), influence the execution time. For instance order of 1 (O(1))

means that the execution takes the same amount of time regardless of the

number of input values and order of N (O(n)) means that the execution time is

directly related to the number of input values (Stephens, 2013).

The more complex code takes longer to execute. Complexity influences an

application’s execution time, but cannot accurately estimate the execution time.

The code complexity gives an indication of execution time in terms of the

95

number of inputs, however, the hardware on which the code is executed and

the number of inputs vary and cannot be predicted.

Length of time to execute b.

Execution time is influenced by the hardware resources available. When

executing locally on a mobile device resources are limited and the task will take

more time to complete. However, when the task is offloaded to the cloud, the

abundance of resources reduces the length of execution time.

Time to execute can easily be measured. The current time is stored before the

application or code is executed and again after the execution. The time to

execute is calculated by subtracting the time in the beginning from the time at

the end (StackOverflow, 2010).

Java and Android have the ability to provide the current time of the system in

milliseconds. By using the time in milliseconds, the time to execute can

accurately be measured. Time to execute is measured, in the implementations

in this dissertation, by using the current time in milliseconds for accuracy. Time

to execute is multiplied with an energy cost of the processor per second to

result in the energy cost of not offloading.

The computation cost is expressed in equation 6.3.

Equation 6.3 Computation cost equation 𝐸𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 × 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛/𝑠𝑒𝑐𝑜𝑛𝑑

Where:

 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 is the length of time the local execution takes.

 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛/𝑠𝑒𝑐𝑜𝑛𝑑 represents the energy consumption

per second for local processing.

Given the expression of 𝐸𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 and 𝐸𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 the trade of between

local execution and offloading can be expressed as:

96

Equation 6.4 Offloading decision making equation wdecision-making values 𝐸𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 − 𝐸𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝐸𝑠𝑎𝑣𝑖𝑛𝑔 𝐸𝑠𝑎𝑣𝑖𝑛𝑔 > 0

It is important to note that 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛/𝑠𝑒𝑐𝑜𝑛𝑑 is a constant that

is device specific. Next, a review of related research on offloading decisions is

given to provide a foundation for this research.

6.5. Comparison of decision-making for offloading

approaches

A large body of research focuses on implementations that can make offloading

decisions. Of these, the researcher identified that the most representatives is

MAUI and CloneCloud (Chun et al., 2011; Cuervo et al., 2010). Their goals,

options, and factors are discussed and evaluated in this section to provide a

foundation for the proposed solution.

6.5.1. CloneCloud

CloneCloud (Chun et al., 2011) creates a virtual instance of a mobile device and

offloads the state of the device to the virtual instance when a method needs to

be executed on the cloud. The goal of CloneCloud is to conserve battery life.

The options are between deciding to offload or not to offload. The factors that

influence the offloading decisions are execution time and energy usage on the

mobile device. The profiler and optimization solver used by CloneCloud are

discussed below (Chun et al., 2011).

Profiler a.

CloneCloud creates profile trees, as shown in Figure 6.3 (b), through random

executions of the application, while running the profiler. The two trees, one for

local execution and one for execution on the clone on the cloud, are compared

and if the execution on the cloud is less expensive in terms of battery life, the

method is offloaded to the cloud. Each node of a tree represents a method

invocation in the execution; it is rooted at the starting method invocation of the

application. Specific method calls in the execution are represented as edges

from the node of the caller method invocation to the nodes of the callees. Each

97

node is annotated with the cost of its particular invocation in the cost metric,

such as execution time in the case of CloneCloud. In addition to its called-

method children, every non-leaf node also has a leaf child called its residual

node. The residual node represents the cost of running the body of code

excluding the costs of the methods called by it. Each edge is annotated with the

amount of data that will be transferred to and from the cloud if the edge were to

be a migration point. (Chun et al., 2011).

Figure 6.3 An example of a CloneCloud trace (a) and profile tree (b)

Figure 6.3 (a) shows the method trace of the execution of the method main. In

main the method, a is called twice. The first invocation of a invokes methods b

and c. The second invocation of the method a invokes no other methods. Figure

6.3 (b) shows the profile generated from the execution of the main. The tree

nodes in figure 6.3 (b) contain the execution time of the corresponding method

in the trace (the length of the square bracket on the left of figure 6.3 (a)). Node

main’ and node a’ are residual nodes, which hold the difference between the

value of their parent node and the sum of their sibling nodes.

The profile tree is filled by temporarily creating an application-method entry and

exit points during each profile run on both platforms. The execution-time cost

metric is collected from timings of method entry and exit points. Migration costs

and edge weights are calculated by simulating migration at each profiled

method and calculating the time the migration takes. The execution-time cost

metric represents the length of time local execution takes whereas the migration

cost represents the length of time migration takes. These metrics are multiplied

98

by the power estimation function to give an estimate of energy consumption

(Chun et al., 2011).

CloneCloud calculates the power consumption by using a model that can be

expressed as:

Equation 6.5 CloneCloud power consumption estimation 𝑝𝑜𝑤𝑒𝑟𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 𝑃(𝐶𝑃𝑈, 𝑆𝑐𝑟𝑒𝑒𝑛, 𝑁𝑒𝑡𝑤𝑜𝑟𝑘)

Where

 𝐶𝑃𝑈 represents whether or not the CPU on the mobile device is active

 𝑆𝑐𝑟𝑒𝑒𝑛 represents whether or not the screen is on

 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 represents whether or not the mobile device is transmitting data

of the network

The computation cost of each node is calculated by taking the average time of

execution with the estimated power consumption per second. The estimated

power consumption per second is calculated by considering:

 CPU activity.

 Display state.

 Network state.

The function used to estimate power consumption is compared to the

measurements taken from an external power meter.

The migration cost is calculated by considering:

 The size of the state before migration takes place.

 The time required to suspend and resume the thread being migrated.

 The size of the state when migrating from the cloud takes place.

A pre-calculated per-byte cost is used with the size of the state to calculate the

migration cost (Chun et al., 2011).

The local computation cost is calculated by using the formula:

Equation 6.6 CloneCloud local execution power estimation 𝐸𝑙𝑜𝑐𝑎𝑙 = 𝑃(𝑡𝑟𝑢𝑒, 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒) × 𝑙𝑜𝑐𝑎𝑙𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒

99

The offloading cost is calculated a by using the formula:

Equation 6.7 CloneCloud offloading power estimation 𝐸𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 = 𝑃(𝑓𝑎𝑙𝑠𝑒, 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒) × 𝑐𝑙𝑜𝑢𝑑𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 + 𝑃(𝑡𝑟𝑢𝑒, 𝑡𝑟𝑢𝑒, 𝑡𝑟𝑢𝑒)× 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒

Where:

 𝑙𝑜𝑐𝑎𝑙𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 represents the length of time of local execution.

 𝑃(𝑡𝑟𝑢𝑒, 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒) represents the power consumption when the CPU is

active, the screen is on and the device’s network is idle.

 𝑐𝑙𝑜𝑢𝑑𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 represents the length of time execution takes on

the cloud.

 𝑃(𝑓𝑎𝑙𝑠𝑒, 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒) represents the power consumption when the device

is idle and the screen is on.

 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 represents the length of time it takes for a thread to

migrated to and from the cloud.

 𝑃(𝑡𝑟𝑢𝑒, 𝑡𝑟𝑢𝑒, 𝑡𝑟𝑢𝑒) represents the power consumption during migration,

the CPU is active, the screen is on, and the device is sending/receiving

data.

The formulas given above are used to populate the profile trees used by the

optimization solver, discussed next.

Optimization Solver b.

The purpose of the optimizer is to decide which application methods to offload,

so as to minimize the expected cost of the partitioned application. Given a

particular execution E and its two profile trees T on the mobile device and T’ on

the clone, the task can be pictured as optimally replacing annotations in T with

those in T’, to minimize the total node and weight cost of the hybrid profile tree.

The decision evaluates 𝐸𝑙𝑜𝑐𝑎𝑙 and 𝐸𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 to determine whether or not a

method should be offloaded.

The output of the optimizer is a value assigned to binary decision variables 𝑅(𝑚) , where 𝑅(𝑚) = {0,1} and 𝑚 is every method in the application. If the

optimizer chooses 𝑅(𝑚) = 1 the partitioner places a migration point at the entry

100

into the method, and a re-integration point at the exit from the method. If the

optimizer chooses 𝑅(𝑚) = 0, method m is unmodified in the application binary.

Every invocation of a method is either offloaded or not offloaded, for simplicity’s

sake (Chun et al., 2011).

6.5.2. MAUI

MAUI (Cuervo et al., 2010) developed for Windows Phone is divided into two

components, the Profiler and Solver. The Profiler is used to gather data about

the state of the mobile devices and all factors, where the Solver uses the data

gathered to make the offloading decision. The goal of using MAUI is to reduce

execution time and energy usage. The options are between deciding to offload

or not to offload. The factors that influence the decision are the device’s energy

usage characteristics, the application’s characteristics (running time and

resource requirements of individual methods) and the characteristics of the

wireless network the device is connected to (bandwidth, latency, and packet

loss). The two components are discussed in the next sections (Cuervo et al.,

2010).

Profiler a.

The Profiler gathers information regarding the device, the application, and the

network to inform the MAUI Solver. The device profile, program profile and

network profile are used to estimate power consumption on the mobile device.

The profiles and how they are created are discussed next.

i. Device profile

The device profile is defined by information that is collected when tasks

consume energy as they execute on the mobile device. The measurements that

are used to create the profile are obtained by attaching an external power meter

to the mobile device during the execution of various tasks. The CPU usage with

the measured power consumption is used to create a linear model. The linear

model is validated by comparing the prediction of energy consumption with the

actual measurements produced by a hardware power monitor. The external

power meter is also used to create models for the consumption when

transferring data over different networks (Cuervo et al., 2010).

101

ii. Program profile

The application profile consists of:

 The size of data that is required to be sent to the server.

 The size of the data that is returned after the execution.

 The number of CPU cycles required to execute the method locally.

The number of CPU cycles and length of time of local execution is used with the

device profile to estimate the cost of local execution. The size of data that is

sent and received from the cloud is used with the device and network profiles to

calculate the cost of offloading.

The program profile continuously monitors the application as it executes and

updates the program profile with every new execution. During the execution of

the application, the length of time between offloads influences the amount of

data that is required to be transferred to the cloud. For example, if a method

was just offloaded, the cloud already has the state of the device. If the next

method to be executed is also offloaded, there is no need to transfer the entire

state data again (Cuervo et al., 2010).

iii. Network profile

The network profile consists of the average throughput from the application to

the server. The average throughput is the only factor stored in the network

profile because the round trip time, bandwidth and packet loss all influence the

throughput. The throughput is calculated by sending a 10KB file to the server

and measuring the length of time it takes to complete. Whenever a method is

offloaded the network profile is updated with the latest throughput calculated. If

a minute passes without a method being offloaded a 10KB file is uploaded

again to update the network profile (Cuervo et al., 2010).

The local computation cost is calculated by using the formula:

Equation 6.8 MAUI local execution power estimation 𝐸𝑙𝑜𝑐𝑎𝑙 = 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐶𝑃𝑈𝑐𝑦𝑐𝑙𝑒𝑠 × 𝑒𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐶𝑃𝑈𝑐𝑦𝑐𝑙𝑒

102

The offloading cost is calculated a by using the formula:

Equation 6.9 MAUI MAUI offloading power estimation 𝐸𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 = 𝑠𝑖𝑧𝑒𝑂𝑓𝑆𝑡𝑎𝑡𝑒𝐷𝑎𝑡𝑎𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 × 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡

Where:

 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐶𝑃𝑈𝑐𝑦𝑐𝑙𝑒𝑠 represents the number of local CPU cycles to

execute a task, as measured by the program profile

 𝑒𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐶𝑃𝑈𝑐𝑦𝑐𝑙𝑒 represents the energy consumption cost for

each local CPU cycle, as measured by the device profile

 𝑠𝑖𝑧𝑒𝑂𝑓𝑆𝑡𝑎𝑡𝑒𝐷𝑎𝑡𝑎 represents the size of the state data, as measured by

the program profile

 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 represents the average throughput available on

the device, as measured by the network profile

 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡 represents the energy cost per second to transfer

data to the cloud, as measured by the device profile

Solver b.

The decision made by the MAUI solver is globally defined across the application

and not on a per-method basis, the data gathered by the Profiler is used to

calculate the cost of offloading the state at a certain point before a method is

called and that is compared to the cost of executing the method locally.

Because a global approach is used, the solver can determine when the same

data will need to be transferred multiple times if a ‘per method’ approach is

used. By partitioning the application, the state of the entire process at a certain

point in time can be offloaded without needing to return to the mobile device. As

the application runs, the solver is re-run periodically for two reasons: to adapt to

changing environmental conditions, and also to learn from the historical

behaviour of the program. The MAUI solver is invoked asynchronously from the

mobile device to avoid affecting the interactive performance of the application.

Figure 6.3 shows the simplified approach that MAUI takes (Cuervo et al., 2010).

103

Figure 6.4 MAUI offloading decision-making process

In figure 6.3, each vertex represents a method and its computational and

energy costs, and each edge represents the size of the method’s state and the

energy consumed to transfer the state to the cloud. In the example given in

figure 6.3, executing the FindMatch method will consume 18.1 million CPU

cycles, using 872 mJ of power. For the same method, 182KB of data is required

to be transferred to the cloud, which consumes 1006mJ (Cuervo et al., 2010).

MAUI and CloneCloud are compared in the next section.

6.5.3. Comparison of decision-making for offloading

approaches

MAUI and CloneCloud both aim to reduce power consumption on mobile

devices by offloading tasks to the cloud. The reduction in power consumption is

achieved by offloading tasks that will consume more power when executed

locally compared to the power consumption of transferring the necessary data

to the cloud for remote execution. The methods that should be offloaded are

decided by the solvers in each case. To make the decision, the local cost and

the offloading cost are calculated and compared.

When estimating the cost of local execution, MAUI considers the length of time

of local execution and the number of CPU cycles, where CloneCloud only

considers the length of time execution. Considering the number of CPU cycles

is not necessary as it has a direct relation with the duration of execution.

When estimating the cost of offloading, both MAUI and CloneCloud consider the

size of the data that has to be transferred to and from the cloud. The size of the

104

data is converted to the length of time the communication will take in both

cases. MAUI uses the throughput of the network available to calculate the

duration of the communication. CloneCloud measures the cost of transmitting

data to create a per byte cost that is used to populate a profile tree. Table 6.1

shows a comparison of the approaches used by MAUI and CloneCloud.

Table 6.1 Comparison of MAUI and CloneCloud

 Local
computation
factors

Offloading
factors

Energy
consumption
profile
creation
method

Energy
consumption
model

MAUI

Duration of
local execution

Number of CPU
cycles

Size of data

Available
throughput

Hardware-
based

Linear model

CloneCloud

Duration of
local execution

Size of data

Hardware-
based

Method

The duration of local execution and offloading alone is not indicative of energy

consumption. The durations are used with the device profile’s linear model, in

the case of MAUI, and the energy consumption model, in the case of

CloneCloud. Both models are created by evaluating the results from

measurements taken from an external power monitor. The MAUI linear model

uses the duration of CPU usage or the number of CPU cycles to estimate

energy consumption, where the method used by CloneCloud takes more

factors, such as whether the screen is on, if the CPU is active and whether the

device’s network radio is in use, into account as well. The durations calculated

by the profilers from each approach are substituted into the energy consumption

models to estimate the cost of either offloading or local execution. The energy

consumption model is crucial to the offloading decision making.

Measuring the duration of local execution and measuring the size of data being

transferred are trivial exercises given the tools available to developers. The

accuracy of energy consumption estimation is thus based on the accuracy of

105

the energy consumption profile used. The methods of profiling the energy

consumption of a mobile device are discussed next.

6.5.4. Energy consumption profiling

Profiling the energy consumption of a mobile device characterizes the energy

consumption when the mobile device is in use. To create a profile of a device’s

energy consumption two approaches can be used, namely software based and

hardware based energy consumption profiling. The two approaches are

discussed in this section (Ahmad et al., 2015).

Software-based energy consumption profiling a.

Software-based energy consumption profiling uses a software module to collect

a component's power usage statistics to construct power models to estimate

energy consumption. The energy profiler estimates the energy consumption

either at the process, thread, path, or source-code line level. Software-based

profiling can use measurements that can come from a mobile app, the operating

system of the mobile device or in some cases the battery used by the mobile

device (Ahmad et al., 2015).

Hardware-based energy consumption profiling b.

Hardware-based energy consumption profiling utilizes external hardware

equipment to obtain voltage and current readings to estimate the power

consumed by a mobile phone against system activities. Measurements taken by

the external hardware can be taken at various granularities, namely application,

path/line, process, or thread. The measurements taken can be used to create

models in a deterministic or statistical manner. The deterministic approach

approximates mobile power consumption based on the power state machine.

The power state machine modelling method also estimates mobile power

consumption by employing the per-state energy model and hardware

component transition states. Statistical power modelling uses pre-built statistical

models to estimate software/mobile power consumption (Ahmad et al., 2015).

Proposed energy consumption profile c.

Both MAUI and CloneCloud use hardware-based approaches when creating

energy consumption profiles. Hardware-based approaches are expensive,

106

labour intensive and are not scalable when compared to software-based

approaches (Ahmad et al., 2015).

This research now identifies the following additional requirements for the

proposed solution to address the identified energy consumption profile:

 Software-based: To enable developers to create and use an energy

consumption profile on any device, a software-based energy

consumption profiling method should be used.

 Continuously monitor factors: The factors that influence energy

consumption should be continuously monitored to ensure the decisions

made are correctly at any point in time.

 Lightweight: The model representing the proposed energy consumption

profile should be lightweight, to prevent the excessive consumption of

additional energy and do not negatively impact the user experience.

MAUI and CloneCloud are large frameworks that enable the conservation of

battery life on mobile devices by supporting offloading. The inclusion of large

frameworks into the application environment of mobile apps can be time-

consuming and increase complexity. To address these concerns, the solution

proposed by this dissertation is developed to be portable so that it can be

included into any mobile app to support the making of offloading decisions,

without constraining the mobile device.

6.6. Conclusion

This chapter discussed general decision making, the factors that influence

offloading decisions, and the factors that are measured by current research and

how these factors are measured by the implementation in this dissertation.

Decision making is the process of choosing between options based on factors

and the goal of the decision maker. The decision maker in the case of this

dissertation is the decision-making component and the choice is between

offloading and not offloading, to conserve battery life. When making the

offloading decision, the cost of offloading is compared with the cost of local

execution. The factors that influence the costs, namely the size of data,

107

bandwidth, communication protocol, code complexity and time to execute

locally, are identified and discussed.

The cost of local execution is influenced by the code complexity and the time to

execute. The code complexity cannot easily be used to determine the power

consumption of a method, whereas the length of time, which is influenced by

the code complexity, can directly be used in the calculations of power

consumption. The cost of offloading is influenced by the size of the data, the

available bandwidth and the communication protocol used. The size of the data

and the available bandwidth can be used to determine the duration of the

communication, and based on the connection protocol in use can determine the

power consumption.

The cost of offloading is measured against the local processing cost to make

the decision. The cost of offloading is calculated by multiplying the time of

communication with the energy usage per second by the communication

protocol. The cost of local processing is calculated by multiplying the time to

execute with the energy usage per second of computation.

Previous chapters have shown that, besides display, communication and

computation are the most expensive hardware components to use. The

offloading decision is the choice between communicating the required data to

and from the cloud and using the data locally to execute.

Related research has shown that offloading can be used to reduce the energy

consumption of mobile devices. MAUI uses a profiler and solver to collect data

and make informed offloading decisions. The profile continuously gathers data

regarding the current state of the device, such as the available bandwidth. The

information gathered by the profiler is used with the energy consumption profile

created by using linear regression on measurements taken from an external

power meter, to estimate the cost of local execution and the cost of offloading.

The MAUI solver uses these costs to determine whether or not a method should

be offloaded.

108

CloneCloud also uses a profiler to collect data regarding the state of the mobile

device. The size of the state that is required to be transferred and the duration

of local execution is measured by the profiler and used in conjunction with an

energy consumption estimation function. The energy consumption estimation

function is created by creating a model from data collected from an external

power meter. The data gathered by the profiler is used by an optimizer to make

the offloading decision.

The research identifies that an energy consumption profile characterizes the

energy consumption when the mobile device is in use. The two approaches that

can be used to create an energy consumption profile is hardware based and

software based approaches. Hardware-based approaches result in profiles that

are highly accurate. However, the creation of a hardware-based profile is labor-

intensive and is not scalable. Software-based approaches result in less

accurate profiles. However, software-based energy consumption profiles enable

the monitoring of the application on many different granularities and it does not

require expensive external power meters.

The evaluation of related approaches highlights the importance of energy

consumption profiles. This chapter concludes the background information

required throughout the dissertation. The next chapter introduces the Switch

framework proposed by this dissertation that defines a portable software-based

energy consumption profile.

109

Part 2:

Model & Prototype

110

Chapter 7: Switch: A framework for
offloading decision making

7.1. Introduction

Part 2 of the dissertation now commences by introducing the Switch framework

as a solution to the research problem posed by in this dissertation. Switch can

assist developers to determine whether or not a task should be offloaded to the

cloud in order to reduce energy consumption so that the battery life of a mobile

device is conserved.

This research to this point identified that due to their mobility, mobile devices do

not have the same resources as traditional computers. In this regard, battery life

is seen as one of the most important resources of mobile devices that need to

be conserved. Developers and end users cannot increase the battery life on

mobile devices, however, they can influence how the battery life is used. In

order to support developers with a software-based solution, this research

identifies that a software framework could be used to reduce the battery life

consumption of a mobile app. A set of four requirements were identified to be

met by this research.

To be able to define a software framework, four techniques were identified that

are used to augment mobile devices namely using the cloud, nearby computers,

nearby mobile devices and a hybrid of these approaches. This research then

identified that the distant fixed approach would be more suitable. To provide a

solid foundation for this research, MAUI, and CloneCloud, examples of the

distant fixed approach were discussed in more detail. The distant fixed

approach offloads tasks to the cloud using either client-server communication or

virtualization. After consideration of related work, the researcher chose the

client-server communication approach.

Next, it was identified that offloading frameworks could either make use of

virtual machine cloning or code offloading. This research focuses on code

offloading where a function is executed on a cloud server instead of the local

method, similar to what MAUI does. Important considerations when offloading

111

are low bandwidth, availability of network connections and different network

types. To determine if a method should be executed on a cloud server, the cost

of offloading is compared with the cost of local execution. This decision is

influenced by the size of data, bandwidth, communication protocol, code

complexity and time to execute locally. As such factors are difficult to constantly

measure, the concept of a profiler was investigated. A device-specific energy

consumption profile can characterize the energy consumption of a mobile

device. As a hardware-based is labor-intensive and not scalable, this research

decided to make use of a software-based approach that does not require

expensive external power meters and enables the monitoring of the application

on various levels of granularity.

The result of the literature review leads to the identification of a software

framework that can support accurate battery consumption costs by making use

of a device-specific energy consumption profile. Next, section 7.2 discusses and

expands on the requirements of the Switch framework identified in chapter 3. In

section 7.3 the energy consumption profile and the role it plays in the framework

is discussed. Section 7.4 discusses the offloading decision process used by

Switch. The architecture of the Switch framework and the interactions between

the different components are discussed in section 7.5. Section 7.6 discusses

the challenges of implementing the proposed. Finally, the chapter is concluded.

7.2. Requirements for conserving battery life when

offloading

In order to achieve the aim of the research, the requirements identified in

chapter 3 are now revisited and further discussed.

7.2.1. Intelligent offloading decision making

The making of offloading decisions is a relatively simple action. However, only

by making precise energy consumption estimates, the goal of battery life

conservation can successfully be achieved. To be able to support precise

offloading decisions, all of the identified factors that influence the energy

consumption of a mobile device should be taken into account. As every mobile

device is uniquely defined with respect to hardware and software resources and

112

capabilities, these factors in their turn influence the energy consumption profile

of any specific mobile device. This research proposes to make use of a mobile

device specific energy consumption profile per network type to support

intelligent decisions.

The energy consumption profile needs to address the following requirements:

 To enable developers to create and use an energy consumption profile

on any device, a software-based energy consumption profiling method

should be used.

 The factors that influence energy consumption should be continuously

monitored to ensure the decisions made are correctly at any point in

time.

 To be lightweight, the energy consumption profile should provide a

simple model to estimate energy consumption.

7.2.2. Multiple network support

As mobile devices can make use of multiple types of networks, they all need to

be supported when offloading decisions are made. Multiple network support can

be achieved by defining an energy consumption profile for each network type.

7.2.3. Lightweight

When integrated with a mobile app, the Switch framework should consume as

little battery life as possible and execute as efficiently as possible. Thus, the

Switch framework should be lightweight with respect to communication

overhead and CPU usage. Lightweight communication can be achieved by not

requiring Switch to communicate with external sources whereas lightweight

CPU usage can be achieved by simplifying the estimation of energy

consumption.

7.2.4. Portable

The Switch framework should be able to integrate into any mobile app that

needs to support offloading. This integration will enable the creation of an

energy consumption profile of a specific device.

113

An important factor to be used by this research is that of the energy

consumption profile, defined next.

7.3. Switch energy consumption profile

For this purposes of this research, an energy consumption profile is defined that

can support accurate estimations of battery life usage per mobile device.

An energy consumption profile is created from measurements taken during the

execution of different tasks on a specific mobile device, such as executing a

computationally intensive process for a set amount of time or downloading a file

over a specific network. The collected data is simplified into four linear models

that represent battery life usage. An energy consumption profile per network

can enable an accurate estimation of battery life usage when communicating

over a specific network.

To achieve the desired accuracy, the energy consumption profile used by

Switch is described by four linear models as follows:

The energy consumption when the CPU of the mobile device is in use is

displayed in equation 7.1.

Equation 7.1 CPU energy consumption equation 𝐸𝐶𝐶𝑃𝑈 = 𝑙𝑜𝑐𝑎𝑙𝑅𝑎𝑡𝑒(𝑡𝑖𝑚𝑒) + 𝑙𝑜𝑐𝑎𝑙𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Where:

o 𝑙𝑜𝑐𝑎𝑙𝑅𝑎𝑡𝑒 and 𝑙𝑜𝑐𝑎𝑙𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 are device specific constants

o 𝑡𝑖𝑚𝑒 is the length of time the CPU will be active

o

The energy consumption when communicating with the 3G cellular network is

displayed in equation 7.2.

Equation 7.2 3G communication energy consumption equation 𝐸𝐶3𝐺 = 𝑡ℎ𝑟𝑒𝑒𝐺𝑅𝑎𝑡𝑒(𝑡𝑖𝑚𝑒) + 𝑡ℎ𝑟𝑒𝑒𝐺𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Where:

o 𝑡ℎ𝑟𝑒𝑒𝐺𝑅𝑎𝑡𝑒 and 𝑡ℎ𝑟𝑒𝑒𝐺𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 are device specific constants

114

o 𝑡𝑖𝑚𝑒 is the length of time the 3G network radio will be active

The energy consumption when communicating with the 4G cellular network is

displayed in equation 7.3.

Equation 7.3 4G communication energy consumption equation 𝐸𝐶4𝐺 = 𝑓𝑜𝑢𝑟𝐺𝑅𝑎𝑡𝑒(𝑡𝑖𝑚𝑒) + 𝑓𝑜𝑢𝑟𝐺𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Where:

o 𝑓𝑜𝑢𝑟𝐺𝑅𝑎𝑡𝑒 and 𝑓𝑜𝑢𝑟𝐺𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 are device specific constants

o 𝑡𝑖𝑚𝑒 is the length of time the 4G network radio will be active

The energy consumption when communicating with Wi-Fi is displayed in

equation 7.4

Equation 7.4 Wi-Fi communication energy consumption equation 𝐸𝐶𝑊𝑖−𝐹𝑖 = 𝑤𝑖𝑓𝑖𝑅𝑎𝑡𝑒(𝑡𝑖𝑚𝑒) + 𝑤𝑖𝑓𝑖𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Where:

o 𝑤𝑖𝑓𝑖𝑅𝑎𝑡𝑒 and 𝑤𝑖𝑓𝑖𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 are device specific constants

o 𝑡𝑖𝑚𝑒 is the length of time the Wi-Fi radio will be active

The models defined above are used to estimate the battery life usage on a

method level of granularity, however, the models are created by monitoring the

relevant hardware components of the mobile device. Models created by

measuring the energy consumption of hardware components are more flexible

as they are not bound to a specific app. An application that monitors the

operating system is used to sample the energy consumption of the specific

devices.

Currently, the energy consumption profile is created manually, however with

further investigation and experimentation the process can be automated. Due to

the energy consumption required to analyse the automatically gathered data the

115

task of generating the consumption model should be done remotely on the

cloud.

The creation of the energy consumption profile used in this dissertation is

discussed in the next chapter.

7.4. Switch offloading decision

The Switch offloading decision-making process is presented in this section. The

decision, and the methods used to estimate the costs are discussed.

The offloading decision is simply the comparison of the estimated energy

consumption when executing locally and the estimated energy consumption

when offloading. The offloading decision made by Switch is determined as

shown in equation 7.5

Equation 7.5 Switch offloading decision 𝑠ℎ𝑜𝑢𝑙𝑑𝑂𝑓𝑓𝑙𝑜𝑎𝑑 = 𝐸𝑙𝑜𝑐𝑎𝑙(𝑡𝑖𝑚𝑒) > 𝐸𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔(𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ, 𝑠𝑖𝑧𝑒)

Where:

 𝑠ℎ𝑜𝑢𝑙𝑑𝑂𝑓𝑓𝑙𝑜𝑎𝑑 is a true or false value that determines whether or not

offloading should occur

 𝐸𝑙𝑜𝑐𝑎𝑙 represent the calculation of the cost of local execution

 𝐸𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 represents the calculation of the cost of offloading

The cost of local execution is determined as shown in equation 7.6.

Equation 7.6 Local cost estimation 𝑙𝑜𝑐𝑎𝑙𝐶𝑜𝑠𝑡 = 𝑙𝑜𝑐𝑎𝑙𝑅𝑎𝑡𝑒(𝑡𝑖𝑚𝑒) + 𝑙𝑜𝑐𝑎𝑙𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Where:

 𝑙𝑜𝑐𝑎𝑙𝑅𝑎𝑡𝑒 and 𝑙𝑜𝑐𝑎𝑙𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 are the constants provided by the CPU

energy consumption model

 𝑡𝑖𝑚𝑒 is the duration of local execution

The cost of offloading is determined as shown in equation 7.7.

116

Equation 7.7 Offloading cost estimation 𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔𝐶𝑜𝑠𝑡 = 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑅𝑎𝑡𝑒 (𝑠𝑖𝑧𝑒𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ) + 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Where:

 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑅𝑎𝑡𝑒 and 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 are constants provided by the energy

consumption models. The network model used is determined by the network

the device is currently connected to.

 𝑠𝑖𝑧𝑒 represents the size of the data that is transferred from and to the cloud

 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ is the current available bandwidth.

It is important to note that this research follows an approach to offload code to

the cloud if energy can be saved, even if it may not result in a major saving.

Another approach would be to enable the use of offloading if certain battery

thresholds per device are passed. The offloading decision-making process is

not overly complex but is essential in achieving the goal of this research. Given

the understanding of the decision-making process and the energy consumption

profile and the models, the architecture of the Switch framework is now

discussed.

7.5. Switch architecture

Switch is an Android-based framework that can be integrated into any Android

mobile application. The contribution of Switch is to support developers, to

enable them to to make offloading decisions without requiring the integration of

a large framework in both the app and the cloud. In order to achieve this, the

energy consumption of the mobile device needs to be sourced, the offloadable

tasks should be identified, and the duration of local execution and the size of

the data communicated when offloading should be measured.

The architecture of Switch is shown in Figure 7.1 consisting of a number of

components. A mobile app is loaded onto the Android OS. The Switch

component is called from within the mobile app and consists of the Decision-

Making component, the Profiler, and the Energy Consumption Profile

component.

117

Figure 7.1 Architecture of Switch

First, before offloading decisions can be made, the energy consumption profile

model needs to be determined for the specific mobile device in an offline

manner. A number of tests are run for each network type the device is

connected to. Similar sets of tests are executed for local execution. Historical

averages of the local and cloud execution costs are stored. The results are

examined and the model is created. If offloading decisions become unreliable

after some time passes, this phase can be executed again. The creation of the

energy consumption profile is shown by the communication between the Profiler

and the Energy Consumption Profile in figure 7.1 (a).

To make use of Switch, a mobile app developer defines a mobile app with any

number of methods. Offloadable methods are identified and their server-side

counterparts are created in the cloud. Traditionally, the developer would decide

whether or not the method is to be offloaded. However, by integrating Switch,

such decisions are made on a per execution basis. The communication

between the mobile app and Switch is shown in figure 7.1 (b).

118

Within Switch, the Decision-Making component makes the offloading decision

by utilising the Profiler component and the Energy Consumption Profile, shown

in figure 7.1 (c) and (d). The Profiler component continuously monitors the state

of the mobile device and the app. The Energy Consumption Profile component

contain models that are used to estimate the energy consumption when

provided with a set of variables. The estimated costs determine the outcome of

the decision made by the decision-making component. If the decision is made

to offload the app communicates with the cloud, shown in figure 7.1 (e).

7.5.1. Switch operation

There are two phases to be considered namely the initial and operational

phase. In the initial phase discussed above, the energy consumption profile is

created. This step must be performed before Switch can be used to make

offloading decisions.

Figure 7.2 represents the operational phase of Switch where communication

between the mobile app and Switch takes place. The sequence of method calls

during app startup and when executing an offloadable method is given.

The initial network check is shown in Figure 7.2 (a). The network check

determines the current network the mobile device is connected to and

calculates the available bandwidth by timing the download and upload of a file.

The network check is performed when the checkNetwork method is called by

the mobile app.

In figure 7.2 (b) the mobile app calls methods in Switch to determine whether or

not the task should be offloaded. Once the shouldOffload method has been

called, the decision-making component retrieves the network state from the

profiler by calling the getNetworkState method. The decision-making

component then sends the stored averages of the method to the energy

consumption profile to calculate estimated energy consumption, calling the

estimateOffloadingCost and estimateLocalCost methods. The estimates

provided are used to make the offloading decision, the result of the decision is

returned to the mobile app.

119

Figure 7.2 Interaction between Switch and a mobile app

The sequence of method calls diverges in figure 7.2 (c) based on the result of

the shouldOffload method. If the method should be offloaded the mobile app

communicates with its cloud component, and if the method should not be

offloaded the local method is executed. The startNetworkMonitoring,

stopNetworkMonitoring, startLocalMonitoring, and the stopLocalMonitoring

methods are exposed by Switch, to update the historical averages of a method.

Figure 7.2 is referred to in the next discussion of the Switch decision-making

component, Switch profiler, energy consumption profile, mobile app, and the

cloud component.

120

7.5.2. Switch profiler

The profiler gathers data regarding the state of the mobile device and monitors

the mobile app during runtime. Information is gathered both from the operating

system and by monitoring the mobile app. During app startup as shown in figure

7.2 (a), a call is made to the Switch profiler to collect data regarding the current

network state. When an offloadable method is executed, as shown in figure 7.2

(c), the profiler starts monitoring the resource usage of the mobile device. After

the execution completes the monitoring is stopped. The data is used to update

network state and the average size of communication or duration of local

execution.

7.5.3. Switch decision-making component

When an offloadable method is executed as shown in figure 7.2 (b), the

decision-making component is called to determine whether the method should

be offloaded. The offloading decision-making process is initiated, the necessary

data is collected and used to estimate the offloading and local execution costs,

the estimated costs are used to make the offloading decision. Each execution of

an offloadable method is used to update the averages of that method, as shown

in figure 7.2 (c).

7.5.4. Energy consumption profile

The energy consumption profile contains the energy consumption models that

are used to estimate battery life consumption. The estimates are calculated with

parameters provided by the decision making the profile as shown in figure 7.2

(b).

7.5.5. Mobile application and a cloud component

The mobile app and the cloud component makes use of Switch. However,

Switch does not influence the development of these components or the

communication between them. The mobile application can, for example, use a

local cloud or use cyber-foraging while still using Switch. However, Switch is

designed to only make offloading decisions when offloading occurs over Wi-Fi

or cellular networks.

121

The architecture discussed ensures that Switch is lightweight, and also ensures

that the communication between the mobile application and the cloud

component of the application use Wi-Fi, 3G or 4G, the networks that the

solution are required to support.

7.6. Conclusion

This chapter discusses the requirements of Switch, the architecture of Switch

and the challenges of implementing it. The basic requirements of Switch are

intelligent offloading decisions, support for both Wi-Fi and cellular networks, and

being a lightweight solution that is portable. Intelligent offloading decisions are

made by taking all factors into account and using an accurate energy

consumption profile. For Switch to support multiple networks the energy

consumption profile should cater for the different networks. Switch should be

lightweight as to not increase the drain on battery life and to not interfere with

the user experience. The portability of Switch allows the integration of the

framework into any mobile app on any device.

Switch is used to make the offloading decision for mobile apps that use

offloading. The Switch framework is integrated into existing applications without

interfering with their execution or communication. The profiler gathers data

regarding the mobile device and makes the offloading decision.

This chapter provides an understanding of the components of Switch, how they

communicate, and interact with a mobile app. The next chapter presents the

Switch energy consumption profile.

122

Chapter 8: Energy consumption profile of
mobile devices

8.1. Introduction

This chapter demonstrates the initial phase of the Switch framework, namely

the creation of an energy consumption profile for a specific mobile device. The

Samsung Galaxy S7 Edge is chosen as the device to test the Switch framework

prototype.

To be able to create an energy consumption profile, a number of experiments

are performed to collect energy consumption data for different network usage

and CPU intensive tasks. The manner in which data is collected and the

analysis of the collected data is discussed in this chapter.

Section 8.2 discusses models used by the energy consumption profile. The

environment of the evaluation is discussed in section 8.3. The experiments

used to sample energy consumption are discussed in section 8.4. Section 8.5

discusses the results of the experiments, and finally, the chapter is concluded.

8.2. Energy consumption profile models

An energy consumption profile describes the energy consumption of a mobile

device that is formalised using a linear model. The energy consumption profile

created in this research consists of four distinct linear models, where each

defines a different type of execution.

The first model describes energy consumption when performing tasks locally

and is created by sampling the energy consumption of the CPU of the mobile

device. The second, third and fourth models describe the energy consumption

when communicating via a specific network. For each of the network models,

the model is created by sampling the energy consumption of the network radio

of the mobile device when it is connected to a specific network. The four models

are used in conjunction with historical execution data of methods and the

current state of the device to estimate energy consumption.

123

The data needed to create a model requires a means to measure the energy

that is consumed by a task. The energy consumption sampling process used in

this dissertation is discussed next.

8.3. The conditions of the evaluation

This research determines energy consumption by using third-party software that

can be installed on the mobile device. The environment and the set of tests to

be executed in the environment are discussed in this section.

8.3.1. Environment

The study considers the mobile device being tested, its network connections

and the software used to take measurements on the device.

Device under test a.

The device under test is the Samsung Galaxy S7 Edge, SM-G900F, mobile

device. The device runs Android 6.0.1. The hardware of the device is shown in

Table 8.1 (Samsung, 2014b).

Table 8.1 Samsung Galaxy S7 Edge Hardware specifications

Feature Specifications

Operating System Android 6 (Marshmallow)

CPU
Qualcomm MSM8996 Snapdragon 820 - Quad-core
(2x2.15 GHz Kryo & 2x1.6 GHz Kryo)

RAM 4 GB

Storage 32GB + microSD

Display Size 5.5”
Network 2G, 3G, 4G(LTE) Wi-Fi Bluetooth NFC

Battery 3600 mAh

The Samsung Galaxy S7 Edge is chosen because its hardware is

representative of most modern mobile devices, considering the number of

networks that can be connected to and the power of the processor. The

Samsung Galaxy S7 Edge can connect to 4G networks and has a powerful

processor. Power consumption is determined by the length of computation time

and communication. The assumption is that the stronger the processor or

higher the bandwidth of the network that the device connects to, the shorter the

length of time required for communication or computation.

124

Third-party measuring software b.

Software is used to measure the power usage, length of time of computation

and communication, the network signal strength and size of communication

data, both for upload and download conditions. Measurements are made using

software in order to create a power consumption profile on different devices,

without dismantling the device and attaching measurement hardware.

The measurements of signal strength and battery life are made using two apps.

The Network Signal Info Pro app, developed by KAIBITS Software, (KAIBITS,

2015), is used to get accurate readings of the networks the device is connected

to. The GSam Battery Monitor app, developed by GSam Labs, (GSam Labs,

2013) is used to monitor the battery life usage and the length of computation

time. These third-party apps have been chosen out of a large number of

contenders, due to their accuracy and usefulness, after a careful review by the

researcher.

i. Network Signal Info Pro

Network Signal Info Pro is an app used to evaluate energy consumption that

measures the current signal strength of the device. The app is installed on the

device and measures the strength of the connection of the current network the

device is connected to. When in use, the app automatically connects to different

signal strengths, as the device is moved to different locations with stronger or

weaker signal strength. The signal strength is given as a percentage and in

decibel milliwatts (dBm).

ii. GSam Battery Monitor

GSam Battery Monitor is an app used to evaluate energy consumption that

measures how much battery life or energy is used. The app gives the

percentage of battery life consumed by each app on the device, between two

points in time. Whenever the energy expenditure of the device drops a complete

percentage point, the first point in time is selected. The experiment is continued

and after another percentage point drop is recorded, the second point in time is

selected. Thus, the app gives the percentage of battery life consumed during

the experiment.

125

8.3.2. Experiments

The power consumption of the device being tested is evaluated by executing

several tasks and measuring the power consumption and the length of time

required for either communication or computation. Computation and

communication are tested separately, both tests are discussed in this section.

Communication a.

The power consumption of the device when it is communicating is tested on

different networks that can be used to access the Internet and the cloud. For

each network, files of differing sizes are downloaded and uploaded at various

signal strengths. The signal strength, network type, length of communication,

size of communication and power consumption is recorded.

 Signal strength: How strong is the connection to the network? Signal

strength is measured by Network Signal Info Pro and the results are

recorded in dBm.

 Network type: Which network is the device connected to? Network type

can either be HPSA, 4G or Wi-Fi.

 Length of communication: How long did it take to execute the

experiment? The length of time of communication is measured in

seconds.

 Size of communication: How much data is uploaded or downloaded

during the experiment? The size of the communication is measured in

bytes. The differences between the file size and the size of

communication are caused by packet loss during the experiment.

 Power consumption: How much power did the experiment take? GSam

Battery Monitor is used to measure how much battery life is consumed.

The result is given as a percentage of total device battery life consumed.

The files are downloaded and uploaded to the SAP Hana Cloud Platform (SAP,

2017a, 2017b), using a trial account. The mobile connections, 3G and 4G are

provided by MTN (MTN, 2017), using Afrihost (Afrihost, 2017a, 2017b) data.

126

The Wi-Fi connections are made to an ADSL line over the Telkom (Telkom,

2017) infrastructure connected to an Afrihost 2MB line.

Computation b.

The power consumption of the device when it is performing computational tasks

is measured after specifying an amount of time and allowing the application to

calculate prime numbers for the specified time duration. Calculating primes is

selected as the computational test because it is a very complex task that uses a

large amount CPU power. The amount of time selected corresponds with the

time the CPU is used, and this is recorded as well as the percentage of battery

life consumed.

 Length of computation: How long did it take to execute the experiment?

The length of time of computation is measured in seconds.

 Power consumption: How much power did the experiment take? GSam

Battery Monitor is used to measure how much battery life is consumed

and the result is given as a percentage of total device battery life

consumed.

8.4. Results

The results of the study are divided into two sections. Firstly, communication is

discussed by considering the results recorded when downloading and uploading

files at different signal strengths and on different networks. Secondly,

computation is discussed by reviewing the results when tasks are executed on

the device.

8.4.1. Communication

The results of the experiments when measuring the power consumption of the

device when it is communicating are discussed in this section. The results are

divided into sections according to the different types of networks, namely, 3G,

4G, and Wi-Fi. Each subsection is divided into two parts, namely the upload and

download of data. The results for both downloaded and uploaded data is further

separated into sections corresponding to the size of data used in the

experiments. Under each section, the percentage battery life consumed is

127

compared to the length of time the communication lasted and signal strength is

compared to the length of time of the communication.

The subsections are structured as follows:

 Network type (3G, 4G, Wi-Fi)

o Download

 100 KB

 1 MB

 10 MB

o Upload

 100 KB

 1 MB

 10 MB

o Evaluation

The results recorded reflect the average of executing the same the test five

times. The complete data set is attached in Appendix A.

3G a.

The results of downloading and uploading files over the 3G network are

discussed in this section.

i. Download

To measure the energy consumption of downloading data from the cloud, files

of size 100 KB, 1 MB, and 10 MB are downloaded and the results are

measured. In Table A.2, Table A.3 and Table A.4 in Appendix A show the

averages of downloading a 100 KB, 1 MB and 10 MB file five times at each of

the listed signal strengths. These results are summarized in the following

figures.

100 KB

Figure 8.1 shows the length of time of the communication over the battery life

consumed, the battery life consumed increases from 0.028% to 0.046% as the

length of time increases from 1.2 seconds to 4.5 seconds. Very little battery life

128

is consumed because of the of the small file size. Figure 8.2 shows the length of

time of the communication against signal strength, as the signal strength

increase from -109 dBm to -83 dBm the length of time of communication

decreases from 4.5 seconds to 1.2 seconds.

Figure 8.1 100 KB file downloaded over 3G Figure 8.2 100 KB file downloaded over 3G

1 MB

Figure 8.3 shows the length of time of the communication over the battery life

consumed, the battery life consumed increases from 0.04% to 0.074% as the

length of time of communication increases from 4.3 seconds to 7.6 seconds.

Figure 8.4 shows the length of time of the communication against signal

strength, as the signal strength increases from -109 dBm to -83 dBm the length

of time of communication decreases from 8.6 seconds to 4.3 seconds.

Figure 8.3 1 MB file downloaded over 3G Figure 8.4 1 MB file downloaded over 3G

10 MB

Figure 8.5 shows the length of time of the communication over the battery life

consumed, the battery life consumed increases from 0.242% to 0.344% as the

length of time of communication increases from 44.4 seconds to 86.4 seconds.

0

0.01

0.02

0.03

0.04

0.05

B
a
tt
e
ry

 L
if
e
 (

%
)

Time (seconds)

0

1

2

3

4

5

-1
0
9

-1
0
7

-1
0
5

-1
0
3

-1
0
1

-9
9

-9
7

-9
5

-9
3

-9
1

-8
9

-8
7

-8
5

-8
3

T
im

e
 (

s
e
c
o
n
d
s
)

Signal Strength (dBm)

0

0.02

0.04

0.06

0.08

B
a
tt
e
ry

 L
if
e
 (

%
)

Time (seconds)

0

2

4

6

8

10

-109 -105 -101 -97 -93 -89 -85

T
im

e
 (

s
e
c
o
n
d
s
)

Signal Strength (dBm)

129

Figure 8.6 shows the length of time of the communication against signal

strength.

Figure 8.5 10 MB file downloaded over 3G Figure 8.6 10 MB file downloaded over 3G

ii. Upload

To measure the energy consumption of uploading data to the cloud, files of size

100 KB, 1 MB, and 10 MB are uploaded and the results are measured. The

results of the uploading of the files are displayed in Table A.5, Table A.6 and

Table A.7 in Appendix A.

100 KB

Figure 8.7 shows the length of time of the communication over the battery life

consumed, the battery life consumed increases from 0.02% to 0.05% while the

length of time of communication increases from 2.1 seconds to 5.9 seconds.

Figure 8.8 shows the length of time of the communication against signal

strength, the length of time of communication decreases from 5.9 seconds to

2.1 seconds while the signal strength increases from -109 dBm to -83 dBm.

Figure 8.7 100 KB file uploaded over 3G Figure 8.8 100 KB file uploaded over 3G

0

0.1

0.2

0.3

0.4

B
a
tt
e
ry

 L
if
e
 (

%
)

Time (seconds)

0

20

40

60

80

100

-83 -87 -91 -95 -99 -103-105

T
im

e
 (

s
e
c
o
n
d
s
)

Signal Strength (dBm)

0
0.01
0.02
0.03
0.04
0.05
0.06

B
a
tt
e
ry

 L
if
e
 (

%
)

Time (seconds)

0
1
2
3
4
5
6
7

-1
0
9

-1
0
7

-1
0
5

-1
0
3

-1
0
1

-9
9

-9
7

-9
5

-9
3

-9
1

-8
9

-8
7

-8
5

-8
3

T
im

e
 (

s
e
c
o
n
d
s
)

Signal Strength (dBm)

130

1 MB

Figure 8.9 shows the length of time of the communication over the battery life

consumed, the battery life consumed increases from 0.06% to 0.09% while the

length of time of communication increases from 6.8 seconds to 13.2 seconds.

Figure 8.10 shows the length of time of the communication against signal

strength, the length of time of communication decreases from 6.8 seconds to

13.2 seconds while the signal strength increases from -109 dBm to -83 dBm.

Figure 8.9 1 MB file uploaded over 3G Figure 8.10 1 MB file uploaded over 3G

10 MB

Figure 8.11 shows the length of time of the communication over the battery life

consumed, the battery life consumed increases from 0.242% to 0.342% while

the length of time of communication increases from 43.9 seconds to 87.3

seconds. Figure 8.12 shows the length of time of the communication against

signal strength, the length of time of communication decreases from 43.9

seconds to 87.3 seconds while the signal strength increases from -109 dBm to -

83 dBm.

Figure 8.11 1 MB file uploaded over 3G Figure 8.12 10 MB file uploaded over 3G

0

0.02

0.04

0.06

0.08

0.1

B
a
tt
e
ry

 L
if
e
 (

%
)

Time (seconds)

0

2

4

6

8

10

12

14

-109 -105 -101 -97 -93 -89 -85

T
im

e
 (

s
e
c
o
n
d
s
)

Signal Strength (dBm)

0

0.1

0.2

0.3

0.4

B
a
tt
e
ry

 L
if
e
 (

%
)

Time (seconds)

0

20

40

60

80

100

-109 -105 -101 -97 -93 -89 -85

T
im

e
 (

s
e
c
o
n
d
s
)

Signal Strength (dBm)

131

iii. Evaluation

The results given in the above sections show that there is a direct relationship

between the length of time of communication and the battery life consumed,

and there exists an indirect relationship between the signal strength and the

length of time the communication last.

Comparing download and upload for the different file sizes shows that they

follow the same pattern, however, uploading is a slightly more expensive

operation, in terms of battery life consumed.

4G b.

The results of downloading and uploading files over 4G are discussed in this

section.

i. Download

To measure the energy consumption of downloading data from the cloud, files

of size 100 KB, 1 MB, and 10 MB are downloaded and the results are

measured. In Table A.8, Table A.9 and Table A.10 in Appendix A show the

averages of downloading a 100 KB, 1 MB and 10 MB file five times at each of

the listed signal strengths. These results are summarized in the following

figures.

100 KB

Figure 8.13 shows the length of time of the communication over the battery life

consumed, the battery life consumed increases from 0.02% to 0.03% while the

length of time of communication increases from 0.4 seconds to 0.7 seconds.

Figure 8.14 shows the length of time of the communication against signal

strength, the length of time of communication decreases from 0.7 seconds to

0.4 seconds while the signal strength increases from -117 dBm to -87 dBm.

132

Figure 8.13 100 KB file downloaded over 4G Figure 8.14 100 KB file downloaded over 4G

1 MB

Figure 8.15 shows the length of time of the communication over the battery life

consumed, the battery life consumed increases from 0.04% to 0.066% while the

length of time of communication increases from 3.9 seconds to 6.6 seconds.

Figure 8.16 shows the length of time of the communication against signal

strength, the length of time of communication decreases from 6.6 seconds to

3.9 seconds while the signal strength increases from -117 dBm to -87 dBm.

Figure 8.15 1 MB file downloaded over 4G Figure 8.16 1 MB file downloaded over 4G

10 MB

Figure 8.17 shows the length of time of the communication over the battery life

consumed, the battery life consumed increases from 0.248% to 0.34% while the

length of time of communication increases from 37.4 seconds to 54.6 seconds.

Figure 8.18 shows the length of time of the communication against signal

strength, the length of time of communication decreases from 54.6 seconds to

37.4 seconds while the signal strength increases from -117 dBm to -87 dBm.

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

B
a
tt
e
ry

 L
if
e
 (

%
)

Time (seconds)

0

0.2

0.4

0.6

0.8

T
im

e
 (

s
e
c
o
n
d
s
)

Signal Strength (dBm)

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

B
a
tt
e
ry

 L
if
e
 (

%
)

Time (seconds)

0

1

2

3

4

5

6

7

-117-113-109-105-101 -97 -93 -89

T
im

e
 (

s
e
c
o
n
d
s
)

Signal Strength (dBm)

133

Figure 8.17 10 MB file downloaded over 4G Figure 8.18 10 MB file downloaded over 4G

ii. Upload

To measure the energy consumption of uploading data to the cloud, files of size

100 KB, 1 MB, and 10 MB are uploaded and the results are measured. The

results of the uploading of the files are displayed in Table A.11, Table A.12 and

Table A.13 in Appendix A.

100 KB

Figure 8.19 shows the length of time of the communication over the battery life

consumed, the battery life consumed increases from 0.03% to 0.04% while the

length of time of communication increases from 2.4 seconds to 4.3 seconds.

Figure 8.20 shows the length of time of the communication against signal

strength, the length of time of communication decreases from 4.3 seconds to

2.4 seconds while the signal strength increases from -117 dBm to -87 dBm.

Figure 8.19 100 KB file uploaded over 4G Figure 8.20 100 KB file uploaded over 4G

1 MB

Figure 8.21 shows the length of time of the communication over the battery life

consumed, the battery life consumed increases from 0.06% to 0.08% while the

length of time of communication increases from 5.7 seconds to 8.8 seconds.

0

0.1

0.2

0.3

0.4

B
a
tt
e
ry

 L
if
e
 (

%
)

Time (seconds)

0

10

20

30

40

50

60

T
im

e
 (

s
e
c
o
n
d
s
)

Signal Strength (dBm)

0

0.01

0.02

0.03

0.04

0.05

B
a
tt
e
ry

 L
if
e
 (

%
)

Time (seconds)

0

1

2

3

4

5

-117-113-109-105-101 -97 -93 -89

T
im

e
 (

s
e
c
o
n
d
s
)

Signal Strength (dBm)

134

Figure 8.22 shows the length of time of the communication against signal

strength, the length of time of communication decreases from 8.8 seconds to

5.7 seconds while the signal strength increases from -117 dBm to -87 dBm.

Figure 8.21 1 MB file uploaded over 4G Figure 8.22 1 MB file uploaded over 4G

10 MB

Figure 8.23 shows the length of time of the communication over the battery life

consumed, the battery life consumed increases from 0.256% to 0.35% while the

length of time of communication increases from 39.5 seconds to 59 seconds.

Figure 8.24 shows the length of time of the communication against signal

strength, the length of time of communication decreases from 59 seconds to

39.5 seconds while the signal strength increases from -117 dBm to -87 dBm.

Figure 8.23 10 MB file uploaded over 4G Figure 8.24 10 MB file uploaded over 4G

iii. Evaluation

The results given in the above sections show that there is a direct relationship

between the length of time of communication and the battery life consumed,

and there exists an indirect relationship between the signal strength and the

length of time the communication last.

0

0.02

0.04

0.06

0.08

0.1

B
a
tt
e
ry

 L
if
e
 (

%
)

Time (seconds)

0

10

20

30

40

50

60

-8
9

-8
5

-8
1

-7
7

-7
3

-6
9

-6
5

-6
1

-5
7

-5
3

-4
9

-4
5

T
im

e
 (

s
e
c
o
n
d
s
)

Signal Strength (dBm)

0

0.1

0.2

0.3

0.4

A
c
h
s
e
n
ti
te

l

Achsentitel

0
10
20
30
40
50
60
70

A
c
h
s
e
n
ti
te

l

Achsentitel

135

Comparing download and upload for the different file sizes shows that they

follow the same pattern, however, uploading is a slightly more expensive

operation, in terms of battery life consumed.

Wi-Fi c.

The results of downloading and uploading files over Wi-Fi are discussed in this

section.

i. Download

To measure the energy consumption of downloading data from the cloud, files

of size 100 KB, 1 MB, and 10 MB are downloaded and the results are

measured. In Table A.14, Table A.15 and Table A.16 in Appendix A show the

averages of downloading a 100 KB, 1 MB and 10 MB file five times at each of

the listed signal strengths. These results are summarized in the following

figures.

100 KB

Figure 8.25 shows the length of time of the communication over the battery life

consumed, the battery life consumed increases from 0.01% to 0.05% while the

length of time of communication increases from 1.2 seconds to 9.8 seconds.

Figure 8.26 shows the length of time of the communication against signal

strength, the length of time of communication decreases from 9.8 seconds to

1.2 seconds while the signal strength increases from -89 dBm to -45 dBm.

Figure 8.25 100 KB file downloaded over Wi-Fi Figure 8.26 100 KB file downloaded over

Wi-Fi

1 MB

0
0.01
0.02
0.03
0.04
0.05
0.06

1
.2

7
6

4

1
.7

2
3

6

2
.4

2
2

8

3
.4

7
0

6

4
.2

3
0

6

4
.8

4
0

4

5
.7

5
8

2

6
.4

0
1

7
.0

4
3

2

8
.0

9
0

8

8
.6

9
1

2

9
.8

6
0

6B
a
tt
e
ry

 L
if
e
 (

%
)

Time (seconds)

0

2

4

6

8

10

12

14

-8
9

-8
5

-8
1

-7
7

-7
3

-6
9

-6
5

-6
1

-5
7

-5
3

-4
9

-4
5

T
im

e
 (

s
e
c
o
n
d
s
)

Signal Strength (dBm)

136

Figure 8.27 shows the length of time of the communication over the battery life

consumed, the battery life consumed increases from 0.04% to 0.132% while the

length of time of communication increases from 5.7 seconds to 48.4 seconds.

Figure 8.28 shows the length of time of the communication against signal

strength, the length of time of communication decreases from 48.4 seconds to

5.7 seconds while the signal strength increases from -89 dBm to -45 dBm.

Figure 8.27 1 MB file downloaded over Wi-Fi Figure 8.28 1 MB file downloaded over Wi-Fi

10 MB

Figure 8.29 shows the length of time of the communication over the battery life

consumed, the battery life consumed increases from 0.136% to 0.23% while the

length of time of communication increases from 51.8 seconds to 82.6 seconds.

Figure 8.30 shows the length of time of the communication against signal

strength, the length of time of communication decreases from 82.6 seconds to

51.8 seconds while the signal strength increases from -89 dBm to -45 dBm.

Figure 8.29 10 MB file downloaded over Wi-Fi Figure 8.30 10 MB file downloaded over Wi-

Fi

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14

5
.7

0
3

8

7
.4

1
4

8

1
0
.5

5
3
8

1
3
.6

8
4
6

1
7
.6

7
7
2

2
0
.1

8
7
6

2
4
.2

0
2
2

2
9
.3

5
3
2

3
2
.3

1
7

3
6
.6

7
2
6

4
2
.6

3
1
6

4
8
.4

2
9
6

B
a
tt
e
ry

 L
if
e
 (

%
)

Time (seconds)

0

10

20

30

40

50

60

-8
9

-8
5

-8
1

-7
7

-7
3

-6
9

-6
5

-6
1

-5
7

-5
3

-4
9

-4
5

T
im

e
 (

s
e
c
o
n
d
s
)

Signal Strength (dBm)

0

0.05

0.1

0.15

0.2

0.25

5
1
.8

1
6
6

5
5
.3

7
9
4

5
7
.8

1
5
6

6
0
.7

3
7

6
5
.3

1
4
8

6
7
.9

1
0
8

7
0
.5

5
3
8

7
3
.4

8
3
4

7
8
.0

8
8
6

8
0
.3

7
9
8

8
1
.9

2
4
6

8
2
.6

5
2
8

B
a
tt
e
ry

 L
if
e
 (

%
)

Time (seconds)

0

20

40

60

80

100

-8
9

-8
5

-8
1

-7
7

-7
3

-6
9

-6
5

-6
1

-5
7

-5
3

-4
9

-4
5

T
im

e
 (

s
e
c
o
n
d
s
)

Signal Strength (dBm)

137

ii. Upload

To measure the energy consumption of uploading data to the cloud, files of size

100 KB, 1 MB, and 10 MB are uploaded and the results are measured. The

results of the uploading of the files are displayed in Table A.17, Table A.18 and

Table A.19 in Appendix A.

100 KB

Figure 8.31 shows the length of time of the communication over the battery life

consumed, the battery life consumed increases from 0.01% to 0.02% while the

length of time of communication increases from 5.4 seconds to 9.5 seconds.

Figure 8.32 shows the length of time of the communication against signal

strength, the length of time of communication decreases from 9.5 seconds to

5.4 seconds while the signal strength increases from -89 dBm to -45 dBm.

Figure 8.31 100 KB file uploaded over Wi-Fi Figure 8.32 100 KB file uploaded over Wi-Fi

The experiments are done using natural network connectivity. Uploading 1 MB

and 10 MB files over the Wi-Fi network does not complete.

iii. Evaluation

The results given in the above sections show that there is a direct relationship

between the length of time of communication and the battery life consumed,

and there exists an indirect relationship between the signal strength and the

length of time the communication last.

Comparing download and upload for the different file sizes shows that they

follow the same pattern, however, uploading is a slightly more expensive

operation, in terms of battery life consumed.

0

0.005

0.01

0.015

0.02

0.025

5
.4

0
0

2

5
.5

2
4

5
.6

0
9

5
.6

8
6

6

5
.9

1
3

6
.6

5
8

2

7
.7

5
1

2

7
.9

2
1

2

8
.2

8
9

6

8
.4

9
6

4

8
.8

2
7

9
.5

1
6

8B
a
tt
e
ry

 L
if
e
 (

%
)

Time (seconds)

0

2

4

6

8

10

12

-8
9

-8
5

-8
1

-7
7

-7
3

-6
9

-6
5

-6
1

-5
7

-5
3

-4
9

-4
5

T
im

e
 (

s
e
c
o
n
d
s
)

Signal Strength (dBm)

138

Comparison d.

The results from the experiments show that the longer the communication lasts,

the more battery life is consumed. For each of the networks the stronger the

signal strength the less time the communication lasts.

The different networks all conform to the same pattern, however, the battery

consumed by the different networks differs when executing the same task.

Figure 8.33 shows the energy consumption for the different networks when

downloading a 1 MB file.

In Figure 8.33 all the networks have a similar best point in terms of percentage

battery life consumed and length of time of communication. Wi-Fi increases at a

slower pace than the mobile networks, however, it does use the most battery

life and take the longest time at the worst signal strength. The mobile networks

increase at almost the pace, however, 4G does not have the same peak as 3G.

Figure 8.33 Downloading 1 MB over 3G, 4G and Wi-Fi

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 10 20 30 40 50 60

B
a
tt
e
ry

 L
if
e
 (

%
)

Time (seconds)

3G

4G

Wi-Fi

139

The comparison shows that in most cases with strong signal strength, Wi-Fi is

the less expensive network to use in terms of energy consumption. The cellular

networks, however, consume battery life at almost the same rate. The available

bandwidth on the networks determine the length of time of the communication

because Wi-Fi is generally more stable and has a higher bandwidth it will

consume less battery life than the cellular networks, in the same manner, 4G

that has a higher available bandwidth than 3G will consume less power

because the communication will not need to last as long.

The results of the communication results show that with the network the mobile

device is connected to, the signal strength of the network and the size of the

communication an estimated energy consumption can be calculated.

8.4.2. Computation

The results from the experiments when measuring the power consumption of

the device when it is performing computations is discussed in this section. The

percentage of battery life consumed is compared to the length of time the

computation lasted. The results shown are the averages for executing the

experiment 3 times.

Table A.17 shows the results of the computational experiments. Figure 8.34

shows the percentage battery life consumed over the length of time the

computation lasted.

140

Figure 8.34 Battery life consumed over the length of local computation

In Figure 8.34 the battery life consumed increases as the length of time of time

of computation increases. The battery life consumed increases from 0.001%

when the CPU is active for 1 second to 0.094% when the CPU is used for 90

seconds.

The results of the computational experiments show that the longer the

computation lasts, the more battery life is consumed. The results show that with

the length of time of the computation the battery life consumed during

computation can be calculated.

The data gathered is now used to create the Switch energy consumption profile.

8.5. Energy consumption profile

The data gathered for the Samsung Galaxy S7 Edge is used to create the linear

models that are representative of the energy consumption when communicating

over the different networks and when computing locally.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

B
a
tt
e
ry

 L
if
e
 (

%
)

Time (seconds)

141

Figure 8.35 3G rate of consumption Figure 8.36 4G rate of consumption

Figure 8.37 Wi-Fi rate of consumption Figure 8.38 Computation rate of

consumption

Figure 8.35 shows all the points of the length of time of communication and

battery life consumed for 3G, both uploaded and downloaded. A linear line is

fitted to the data points to get the average rate of consumption over time for the

network. The equation of the fitted line for 3G is: 𝑦 = 0,004𝑥 + 0,0293. The

equation provided can now be substituted into the 𝐸𝐶3𝐺 energy consumption

model in the energy consumption profile. The model used in the prototype is

shown in equation 8.1.

Equation 8.1 3G energy consumption model 𝐸𝐶3𝐺 = 0,004(𝑡𝑖𝑚𝑒) + 0,0293

Figure 8.36 shows all the points of the length of time of communication and

battery life consumed for 4G, both uploaded and downloaded. A linear line is

fitted to the data points to get the average rate of consumption over time for the

network. The equation of the fitted line for 4G is: 𝑦 = 0,0059𝑥 + 0,0207. The

equation provided can now be substituted into the 𝐸𝐶4𝐺 energy consumption

model in the energy consumption profile. The model used in the prototype is

shown in equation 8.2:

0

0.1

0.2

0.3

0.4

0 50 100

B
a
tt
e
ry

 L
if
e

(%
)

Time (seconds)

0

0.1

0.2

0.3

0.4

0 20 40 60 80

B
a
tt
e
ry

 L
if
e
 (

%
)

Time (seconds)

0

0.05

0.1

0.15

0.2

0.25

0 50 100

B
a
tt
e
ry

 L
if
e
 (

%
)

Time (seconds)

0

0.02

0.04

0.06

0.08

0.1

0 50 100

B
a
tt
e
ry

 L
if
e
 (

%
)

Time (seconds)

142

Equation 8.2 4G energy consumption model 𝐸𝐶4𝐺 = 0,0059(𝑡𝑖𝑚𝑒) + 0,0207

Figure 8.37 shows all the points of the length of time of communication and

battery life consumed for Wi-Fi, both uploaded and downloaded. A linear line is

fitted to the data points to get the average rate of consumption over time for the

network. The equation of the fitted line for Wi-Fi is: 𝑦 = 0,0025𝑥 + 0,0105. The

equation provided can now be substituted into the 𝐸𝐶𝑤𝑖𝑓𝑖 energy consumption

model in the energy consumption profile. The model used in the prototype is

shown in equation 8.3.

Equation 8.3 Wi-Fi energy consumption model 𝐸𝐶𝑤𝑖𝑓𝑖 = 0,0025(𝑡𝑖𝑚𝑒) + 0,0105

Figure 8.38 shows all the points of the length of time of computation and battery

life consumed for local computation. A linear line is fitted to the data points to

get the average rate of consumption over time for the network. The equation of

the fitted line for computation is: 𝑦 = 0,0011𝑥 − 0,0024. The equation provided

can now be substituted into the 𝐸𝐶𝐶𝑃𝑈 energy consumption model in the energy

consumption profile. The model used in the prototype is shown in equation 8.4.

Equation 8.4 Local execution energy consumption model 𝐸𝐶𝐶𝑃𝑈 = 0,0011(𝑡𝑖𝑚𝑒) − 0,0024

The rates of consumption are used to estimate the energy consumption on a

Samsung Galaxy S7 Edge, SM-G900F, which increases the accuracy of the

estimation of battery life consumed. The energy consumption models presented

above are used in the energy consumption profile in the Switch prototype.

8.6. Conclusion

This chapter discusses the experiments used to evaluate real-world energy

consumption during communication and computation and the results gathered

from these experiments.

143

The experiments for communication are executed by downloading and

uploading files of varying sizes to and from the cloud. The size of uploaded and

downloaded data, length of time of the communication, signal strength and

battery life consumed are recorded. The results of the communication

experiments show that there exists a direct relation between the length of the

communication and the battery life consumed and there exists an indirect

relation between the signal strength and the length of time of communication.

The experiments for computation are completed by calculating the number of

primes for a set amount of time. The length of time of the computation and the

battery life consumed is recorded. The results of the experiments show that

there exists a direct relation between the length of time of computation and

battery life consumed.

The manual creation of the energy consumption profile has laid the groundwork

for the automatic creation of energy consumption profiles for various devices,

however, this is not covered in the scope of this research.

The gathered results are used to create the energy consumption models. For

each of the networks and for local computation a line is fitted to the collected

data. The equation for the fitted line represents the model.

144

Chapter 9: Switch: Prototype

9.1. Introduction

In this chapter, the Switch framework is evaluated by creating a prototype of

Switch that can be integrated with a mobile app that supports offloading. The

purpose is to determine if the battery life usage can be reduced by intelligently

offloading tasks to the cloud. A comparison of the actual energy consumption

to the estimated energy consumption can determine the accuracy of the

offloading decision.

The implementation of the device-specific energy consumption profile, profiler,

offloading decision and mobile app is presented. The integration of Switch and

subsequent executions of the tasks of the mobile app are used to collect data in

order to evaluate the prototype.

In Section 9.2 the components of Switch are discussed and presented

programmatically. The mobile apps that the Switch prototype are integrated

with, and the results of the integration and execution, are discussed in section

9.3. Finally, the chapter is concluded.

9.2. Switch components

The components of the Switch framework, namely the profiler, energy

consumption profile, and decision-making component, are discussed and

presented in this section. Figure 9.1 shows the UML class diagram of the

components of the Switch framework.

145

Figure 9.1 Class diagram of the Switch framework

9.2.1. Switch Profiler

The profiler collects data regarding the execution of the application and the

current state of the mobile device. The methods made available by the profiler

are, checkNetwork, startLocalMonitoring, stopLocalMonitoring,

startNetworkMonitoring, and stopNetworkMonitoring, are now discussed.

checkNetwork a.

checkNetwork consists of two parts. The first queries the mobile operating

system to determine which network the device is currently connected to. The

second determines the available bandwidth on the network, this calculation is

done by downloading and uploading files to and from a remote server and

timing the duration of the communication. This method is shown in figure 9.2.

146

Figure 9.2 checkNetwork method

startLocalMonitoring & stopLocalMonitoring b.

startLocalMonitoring, shown in figure 9.3, is used to collect and store data

before local execution. The stored data is used in stopLocalMonitoring, shown

in figure 9.3, to calculate the duration of local execution.

Figure 9.3 startLocalMonitoring and stopLocalMonitoring methods

startNetworkMonitoring & stopNetworkMonitoring c.

startNetworkMonitoring, presented in figure 9.4, is used to collect and store data

before network communication. The stored data is used in

stopNetworkMonitoring, shown in figure 9.4, to calculate the available

bandwidth and the size of the data communicated by the method.

function checkNetwork() {

 networkType = getNetworkType();

 storeNetworkType(networkType);

 startNetworkMonitoring();
 downloadFile();

 uploadFile();

 stopNetworkMonitoring();
}

function startLocalMonitoring() {

 beforeTime = getCurrentTime();

 storeBeforeLocalTime(beforeTime);
}

function stopLocalMonitoring(methodName) {
 afterTime = getCurrentTime();

 beforeTime = getStoredBeforeLocalTime();

 duration = (afterTime - beforeTime) / 1000;

 decisionMakingComponent.storeMethodDuration(methodName, duration);

}

147

Figure 9.4 startNetworkMonitoring and stopNetworkMonitoring methods

9.2.2. Energy consumption profile

Using the energy consumption profile and the length of time of communication

and computation the prototype can estimate the energy consumption. The

estimateLocalCost and estimateOffloadingCost methods are used by Switch to

estimate energy consumption when offloading over the different networks and

when executing locally, the methods are shown in figure 9.5. The

estimateLocalCost represent the equation 8.4 energy consumption model,

function startNetworkMonitoring() {

 beforeTime = getCurrentTime();

 storeBeforeNetworkTime(beforeTime);

 beforeBytesDownload = getBytesDownloaded(applicationId);
 storeBeforeNetworkDownloadBytes(beforeBytesDownload);

 beforeBytesUpload = getBytesUploaded(applicationId);

 storeBeforeNetworkUploadBytes(beforeBytesUpload);
}

function stopNetworkMonitoring(methodName) {

 afterTime = getCurrentTime();

 beforeTime = getStoredBeforeNetworkTime();

 durationInSeconds = (afterTimeDownload - beforeTimeDownload) / 1000;

 afterBytesDownload = getBytesDownloaded(applicationId);

 beforeBytesDownload = getStoredBeforeNetworkDownloadBytes();

 downloadSizeInBits = (afterBytesDownload - beforeBytesDownload) * 8;

 decisionMakingComponent.storeMethodDownloadSize(methodName,

 downloadSizeInBits);

 downloadBandwidth = downloadSizeInBits / durationInSeconds;

 downloadBandwidthKbps = downloadBandwidth / 1000;
 downloadBandwidthMbps = downloadBandwidthKbps / 1000;

 storeDownloadBandwidth(downloadBandwidthMbps);

 afterBytesUpload = getBytesUploaded(applicationId);
 beforeBytesUpload = getStoredBeforeNetworkUploadBytes();

 uploadSizeInBits = (afterBytesUpload - beforeBytesUpload) * 8;

 decisionMakingComponent.storeMethodUploadSize(methodName,
 uploadSizeInBits);

 uploadBandwidth = uploadSizeInBits / durationInSeconds;
 uploadBandwidthKbps = uploadBandwidth / 1000;

 uploadBandwidthMbps = uploadBandwidthKbps / 1000;

 storeUploadBandwidth(uploadBandwidthMbps);
}

148

RATE_LOCAL and CONSTANT_LOCAL are values used to draw the line fitted

to the collected data.

Figure 9.5 estimateLocalCost and estimateOffloadingCost methods

The methods used by estimateOffloadingCost, namely

estimateWiFiConsumption, esimate4gConsumption and

estimate3gConsumption are shown in figure 9.6. The methods each represent a

linear model, estimate3gConsumption is a representation of equation 8.1,

estimate4gConsumption represents equation 8.2 and

estimateWiFiConsumption represents equation 8.3. The constants and rates

used in these methods are determined by the line fitted to the data collected for

each network.

RATE_LOCAL = 0.0011
CONSTANT_LOCAL = 0.0024

function estimateLocalCost(time) : double {

 return RATE_LOCAL * time + CONSTANT_LOCAL
}

function estimateOffloadingCost(networkType, time) : double {

 switch (networkType)

 case WIFI: return estimateWiFiConsumption(time)
 case FOURG: return estimate4gConsumption(time)

 case TREEG: return estimate3gConsumption(time)
}

149

Figure 9.6 estimateWiFiConsumption, esimate4gConsumption and
estimate3gConsumption methods

9.2.3. Decision-making component

The decision-making component makes the offloading decision. The offloading

decision is made by the shouldOffload method, as shown in figure 9.7.

Figure 9.7 shouldOffload method

The next section discusses the application the Switch prototype is integrated

with and the results of using the prototype.

RATE_WIFI = 0.0025

CONSTANT_WIFI = 0.0127

RATE_4G = 0.0059

CONSTANT_4G = 0.0207

RATE_3G = 0.004
CONSTANT_3G = 0.0293

function estimateWiFiConsumption(time) : double {

 return RATE_WIFI * time + CONSTANT_WIFI

}

function estimate4gConsumption(time) : double {

 return RATE_4G * time + CONSTANT_4G
}

function estimate3gConsumption(time) : double {

 return RATE_3G * time + CONSTANT_3G
}

function shouldOffload(methodName) : boolean {

 computationTime = getStoredComputationTime(method);

 localCost = consumptionProfile.estimateLocalCost(computationTime);

 downloadSize = getStoredDownloadSize(methodName);
 downloadBandwidth = profiler.getStoredDownloadBandwidth();

 downloadTime = downloadSize / downloadBandwidth;

 uploadSize = getStoredUploadSize(methodName);

 uploadBandwidth = profiler.getStoredUploadBandwidth();

 uploadTime = uploadSize / uploadBandwidth;

 communicationTime = downloadTime + uploadTime;

 network = profiler.getNetworkType();

 offloadingCost =

consumptionProfile.estimateOffloadingCost(network,communicationTime);

 return localCost > offloadingCost;

}

150

9.3. Implementation and evaluation

The goal of evaluating Switch is to compare the calculated estimated energy

consumption and the measured energy consumption. This section discusses

and evaluates the experiments and the results of the experiments executed with

the prototype.

9.3.1. Results

The functions discussed earlier are used to determine whether or not a task

should be offloaded. The solution is implemented in both a steganography

mobile application and a prime number calculation mobile application that each

illustrates different constraints with respect to data communication that Switch

needs to consider.

 Steganography is used because it is a computationally intensive task and

when offloaded it requires the transfer of large amounts of data.

 Prime number generation is used because it is a computationally

intensive task that requires very little data to be communicated.

The mobile apps that are used to evaluate the prototype offload to a Heroku

container (Heroku, 2017a).The Heroku container used for the evaluation is on

the free tier, it has 512MB of memory, and has 1x CPU share and between 1x

and 4x compute share (Heroku, 2017b). Although the resources available in

the container used for offloading is not limitless it does surpass the available

resources on the mobile device.

As mentioned, Switch is evaluated for both local computations and offloading

over different types of networks where the estimated energy consumption is

compared to the actual energy consumption. When estimating the energy

consumption for offloading, the available bandwidth is measured and used to

estimate the length of time of communication. The length of time of

communication is used to estimate the energy consumption. The available

bandwidth is used instead of the signal strength because the signal strength is

not a reliable indicator of how long communication lasts.

151

To determine the estimation of energy consumption for the execution of a local

task, the length of time of computation is measured. The actual energy

consumption is measured by using GSam Battery Monitor, the same software

that was used to create the energy consumption profile. The same methodology

is used to measure the energy consumption for each of the tasks used to

evaluate the prototype.

Steganography mobile application

Task 1 – Steganographic file encoding a.

The first task used is the steganographic encoding a 1.4 megabyte file into a 5

megabyte image. Offloading this task require the image and the file to be

uploaded and the encoded image to be downloaded. The task is executed

locally, over Wi-Fi, 4G, and 3G.

i. Local

Executing the file encoding task locally takes the device 7.391 seconds, using

the power consumption estimation functions, the task should consume 0.057%

battery life. Measuring the energy consumption for this task, return the actual

energy consumption of 0.058%.

ii. 3G

Executing the file encoding task over HPSA completes in 51 seconds. The

bandwidth available over HPSA for downloading at the time of the experiment is

2.6179 Mbps and 2.3104 Mbps for uploading. The prototype estimates the

energy consumption is 0.1768%. The actual energy consumption is 0.177%.

iii. 4G

Executing the file encoding task over 4G completes in 34 seconds. The

bandwidth available over 4G for downloading at the time of the experiment is

8.0353 Mbps and 5.8963 Mbps for uploading. The prototype estimates the

energy consumption is 0.0983%. The actual energy consumption is 0.098%.

152

iv. Wi-Fi

Executing the file encoding task over Wi-Fi completes in 104 seconds. The

bandwidth available over Wi-Fi for downloading at the time of the experiment is

1.416 Mbps and 0.6462 Mbps for uploading. The prototype estimates the

energy consumption is 0.2578%. The actual energy consumption is 0.258%.

v. Comparison

The data collected from the executions of this task is shown in table 9.1. The

estimated cost of task execution is compared to the actual cost that was

measured.

Table 9.1 Steganographic file encoding results

 Time Estimated cost Measured cost

Local 7.291 seconds 0.057% 0.058%

HPSA 51 seconds 0.1768% 0.177%

4G 34 seconds 0.0983% 0.098%

Wi-Fi 104 seconds 0.2578% 0.258%

A large amount of data required to be transferred skews this task to be

executed locally. It only takes 7.291 seconds to execute the task and consumes

0.058% of the battery life. As can be expected, it takes much longer to offload a

task using a Wi-Fi connection and this consumes more battery life. Even though

a task executed using a 4G connection takes 34 seconds to complete, it is still

much slower than a local execution and consumes more battery life.

From the results, it is clear that the estimated energy consumption is relatively

accurate when compared to the actual battery life as measured by software.

Task 2 – Steganographic file decoding b.

The second task is to decode a 5 megabyte image. The encoded file contains a

1.4 megabyte file. Offloading this task requires the image to be uploaded and

the encoded file to be downloaded. The task is executed locally, over Wi-Fi, 4G,

and 3G.

153

i. Local

Executing the file decoding task locally takes the device 2.304 seconds, using

the power consumption estimation functions, the task should consume 0.0013%

battery life. Measuring the energy consumption for this task, return the actual

energy consumption of 0.001%.

ii. 3G

Executing the file decoding task over 3G completes in 30 seconds. The

bandwidth available over 3G for downloading at the time of the experiment is

1.3434 Mbps, and 1.312 Mbps for uploading. The prototype estimates the

energy consumption is 0.1825%. The actual energy consumption is 0.183%.

iii. 4G

Executing the file decoding task over 4G completes in 10 seconds. The

bandwidth available over 4G for downloading at the time of the experiment is

9.0265 Mbps, and 6.0004 Mbps for uploading. The prototype estimates the

energy consumption is 0.075%. The actual energy consumption is 0.076%.

iv. Wi-Fi

Executing the file decoding task over Wi-Fi completes in 114 seconds. The

bandwidth available over Wi-Fi for downloading at the time of the experiment is

4.0074 Mbps, and 0.7109 Mbps for uploading. The prototype estimates the

energy consumption is 0.1846%. The actual energy consumption is 0.185%.

v. Comparison

The data collected from the executions of this task is shown in table 9.2.

Table 9.2 Steganographic file decoding results

 Time Estimated cost Measured cost

Local 2.304 seconds 0.0011% 0.001%

HPSA 30 seconds 0.1825% 0.183%

4G 10 seconds 0.075% 0.076%

Wi-Fi 114 seconds 0.1846% 0.185%

Comparing the results of this tasks with the results from the first task shows that

in each instance this task consumes less battery life. The decrease in battery

154

life consumption can be attributed to the decrease in the amount of data that is

required to be transferred from 11.4 megabytes to 6.4 megabytes. As with the

first task, the amount of data that is required to be transferred skews the task to

be executed locally. Local execution takes 2.304 seconds and consumes

0.001% of the battery life. The fastest alternative when offloading, 4G, takes 10

seconds and consumes 0.076% battery life. Due to the lower bandwidth

available on Wi-Fi during testing the execution is even slower, 114 seconds,

and consumes much more battery life, 0.185%.

Prime number calculation mobile application

Task 3 – Prime number counting c.

The third task used to evaluate Switch is calculating the number of primes there

are between zero and ten million (10 000 000). Offloading this tasks requires

the upload of an integer (4 bytes) and the download of an integer.

i. Local

Executing the prime number counting task locally takes the device 31 seconds,

using the power consumption estimation functions, the task should consume

0.0317% battery life. Measuring the energy consumption for this task, return the

actual energy consumption of 0.032%.

ii. 3G

Executing the prime number counting task over 3G completes in 16 seconds.

The bandwidth available over 3G for downloading at the time of the experiment

is 3.8563 Mbps, and 2.0361 Mbps for uploading. The prototype estimates the

energy consumption is 0.0293%. The actual energy consumption is 0.03%.

iii. 4G

Executing the prime number counting task over 4G completes in 12 seconds.

The bandwidth available over 4G for downloading at the time of the experiment

is 9.1174 Mbps, and 7.3823 Mbps for uploading. The prototype estimates the

energy consumption is 0.0207%. The actual energy consumption is 0.02%.

155

iv. Wi-Fi

Executing the prime number counting task over Wi-Fi completes in 10 seconds.

The bandwidth available over Wi-Fi for downloading at the time of the

experiment is 3.5499 Mbps, and 1.1372 Mbps for uploading. The prototype

estimates the energy consumption is 0.0127%. The actual energy consumption

is 0.013%.

v. Comparison

The data collected from the executions of this task is shown in table 9.3.

Table 9.3 Prime number counting results

 Time Estimated cost Measured cost

Local 31 seconds 0.0317% 0.032%

HPSA 16 seconds 0.0293% 0.03%

4G 12 seconds 0.0207% 0.02%

Wi-Fi 10 seconds 0.0127% 0.013%

The amount data to be transferred for this task is extremely small and the task

is computationally complex, this skews the task toward offloading. Due to the

complexity of the task execution on the mobile device takes 31 seconds and

consumes 0.032% battery life. The battery life consumed when offloading over

4G is 0.02% and only takes 12 seconds. Over Wi-Fi, the same operation takes

10 seconds and consumes 0.013% battery life.

9.3.2. Evaluation

The three tasks executed to evaluate the Switch prototype were selected

because they are computationally intensive and used different quantities of data

to be communicated to and from the cloud.

When comparing the estimated cost for local execution with the cost when

offloading, for each of the networks, for the first and second tasks, the prototype

suggests that local execution conserves battery life. Manual inspection of the

measured energy consumption shows that it is the least expensive option.

For the third task, the prototype suggests offloading in all cases when

comparing the energy consumption estimates. Again, manual inspection of the

156

measured energy consumption values shows that local execution is the least

expensive option.

The estimated energy consumption and the measured energy consumption

values are nearly identical, as shown in tables 9.1, 9.2 and 9.3. The differences

between the values are attributed to the difficulty in accurately measuring

energy consumption on Android devices.

In order to evaluate the prototype, one needs to evaluate the accuracy of

energy consumption estimates. Therefore, the accuracy of the energy

consumption models is now evaluated.

Switch experimentation percentage error a.

For each of the models, the average percentage error is calculated. The

percentage error is used to show the difference between estimated values and

measured values (Helmenstine, 2017).

The formula used to calculate the percentage error is shown in equation 9.1.

Equation 9.1 Formula for percentage error 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟 = |𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑|𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 × 100

For each of the energy consumption models, for each of the tasks, the

percentage error is calculated and averaged to give the average percentage

error for the models. The inverse of the percentage error shows the accuracy of

the model. The accuracy percentage is calculated using the formula shown in

equation 9.2.

Equation 9.2 Formula for percentage accuracy 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 = 100 − 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟

The calculation of the percentage of errors for the CPU energy consumption

model is shown in table 9.4.

157

Table 9.4 Percentage error calculation for the CPU model

 Estimated cost Measured cost Percentage error

Task 1 0.057% 0.058% 1.724137931%

Task 2 0.0011% 0.001% 10%

Task 3 0.0317% 0.032% 0.9375%

Averaging the percentage errors results in an average percentage error of

4.22%. The average percentage error shows that the CPU energy consumption

model has an accuracy percentage of 95.78%.

The calculation of the percentage error for the 3G energy consumption model is

shown in table 9.5 using the results from the tasks used to evaluate Switch.

Table 9.5 Error rate calculation for the 3G model

 Estimated cost Measured cost Percentage error

Task 1 0.1768% 0.177% 0.11%

Task 2 0.1825% 0.183% 0.27%

Task 3 0.0293% 0.03% 2.33%

The average percentage error for the model is 0.91%. The accuracy percentage

calculated for the 3G energy consumption model is 99.09%.

The calculation of the percentage error for the results of the 4G energy

consumption model is shown in table 9.6.

Table 9.6 Error rate calculation for the 4G model

 Estimated cost Measured cost Percentage error

Task 1 0.0983% 0.098% 0.31%

Task 2 0.075% 0.076% 0.79%

Task 3 0.0207% 0.02% 3.5%

Averaging the percentage errors results in an overall percentage error for the

model of 1.71%. Using this percentage error to calculate the accuracy

percentage shows that the 4G energy consumption model is 98.29% accurate.

The calculation of the error rate for the Wi-Fi energy consumption model is

shown in table 9.7.

158

Table 9.7 Error rate calculation for the Wi-Fi model

 Estimated cost Measured cost Percentage error

Task 1 0.2578% 0.258% 0.08%

Task 2 0.1846% 0.185% 0.22%

Task 3 0.0127% 0.013% 2.31%

The average percentage error for the Wi-Fi energy consumption model is

0.87%. The accuracy percentage for the model is thus 99.13%

The high accuracy percentages of the models show that the costs estimated by

Switch are very close to the measured values. The accuracy of energy

consumption profile allows Switch to make accurate offloading decisions to

conserve battery life.

9.4. Conclusion

This chapter discusses and evaluates the prototype of Switch. The components

of the prototype, the implementation and the evaluation of the prototype are

discussed. The discussion of the components briefly presents the components

programmatically.

The prototype is evaluated by executing 3 tasks and evaluating the accuracy of

the estimated energy consumption with the measured energy consumption. The

first task used to evaluate the prototype is the steganographic encoding a file

into an image. The second task is decoding an encoded image and retrieving

the file encoded in it. The third task is counting the number of primes between

zero and ten million. Each task is executed locally and offloaded over 3G, 4G

and Wi-Fi.

The results gathered from the first task show that a large amount of data that is

required to be transferred skews the task to local execution. Local execution of

the steganographic encoding is the fastest option and the option that consumes

the least amount of battery life. The decision made by the Switch prototype is to

execute the task locally in all cases.

The second task also requires a large amount of data to be transferred,

however, it is almost half the amount of data of the first task. The amount of

159

data again makes local execution the better choice. Local execution is the

fastest and least expensive option for steganographic decoding. Again the

decision made by the prototype is to execute locally in all cases.

The third task requires very little data to be transferred and is computationally

complex, this skews the task toward offloading. The prototype suggested in

each case that the task is offloaded, as the local execution was the most

expensive option and took the longest time.

The results gathered from the execution of the three tasks are used to evaluate

the accuracy of the energy consumption models. The CPU energy consumption

model has the lowest accuracy of 95.78%, an accuracy percentage that is still

high. The other models have accuracy percentages of 99.09%, for the 3G

model, 98.47%, for the 4G model, and 99.13% for the Wi-Fi model.

The overall accuracy of the energy consumption profile enabled the Switch

prototype to make offloading decisions that conserve the limited battery life on

resource-constrained mobile devices.

160

Chapter 10: Conclusion

10.1. Introduction

This dissertation aims to prove that the battery life on mobile devices can be

conserved by leveraging the cloud. It was identified that battery life, a resource

that is integral to the operation of mobile devices, cannot be augmented by

directly using resources from the cloud. Considering this limitation, this topic

presented itself as an appropriate topic for research.

This chapter is the culmination of research covered throughout the course of

this dissertation. The chapter sets out to address the research objective, by

answering the research questions in section 10.2. Section 10.3 describes the

limitations of the Switch framework. Section 10.4 gives the research contribution

and future work that can be done to improve the Switch framework. Finally, the

chapter and dissertation draw to a close in section 10.5.

10.2. Revisiting the research objective and questions

The primary goal of this dissertation is to investigate the energy consumption of

mobile devices to determine whether or not the battery life of mobile devices

can be conserved by making offloading decisions based on accurate energy

consumption estimates. The development of the Switch framework answers the

research questions posed in chapter 1. Each of the research questions is now

revisited.

10.2.1. What resources are constrained on mobile devices, and

which of them can be augmented?

Due to the nature of mobile devices, all of the resources on a mobile device is

constrained, as discussed in chapter 2. However, the majority of resources such

as computing power, memory, and storage, can be augmented with resources

from the cloud.

Which mobile devices resources can be augmented, and which cannot? a.

In chapter 2 it is identified that mobile devices have the same resources as

traditional computers, namely: computing power, memory, and storage and all

161

can display information to the end user. The examination of cloud computing

and mobile cloud computing in chapters 3 and 4 show that the resources that

are found in both the cloud and mobile devices can be augmented. Battery life

and bandwidth cannot be augmented by offloading.

What methods can be used to augment the resources on mobile b.

devices?

In chapter 3 the methods that can be used to augment the resources on mobile

devices are identified as hardware, software and offloading. Upgrading the

hardware components of a device to increase the resources available. Software

can be used to efficiently use the limited resources. When the software on the

mobile device uses offloading, the mobile device has access to the greater

resource pool of the server.

How are mobile devices resources augmented by using the cloud? c.

The discussion in chapter 4 shows that the computing capabilities of mobile

devices can be augmented by executing resource-intensive mobile application

components in the resource-rich cloud-based resources.

10.2.2. What are the requirements of a framework that can

conserve battery life on mobile devices by using offloading?

The requirements identified in chapter 3 of this dissertation are:

 Intelligent offloading decisions

 Multiple network support

 Lightweight

 Portable

The requirements identified are based on the research objectives and are used

to evaluate the framework proposed in the dissertation.

10.2.3. How can an offloading decision be designed to conserve

the battery life of a mobile device?

The decision-making process is defined in chapter 6 as the process of

identifying and choosing an option between several alternative options based

on factors and the goal of the decision maker. An offloading decision is a

162

process of choosing between executing a task locally and executing the task

remotely. In order to conserve battery life, the energy cost of executing the task

locally or executing the same task remotely should be known. Practically, the

energy used in a specific task cannot be known before execution, therefore a

method of estimating the energy usage of a specific task is required. Thus, in

order to conserve battery life, an energy estimation technique is designed.

What is offloading and what approaches can be used to offload from a.

mobile devices?

Offloading is defined in chapter 5 as the process of moving a task from a mobile

device to the cloud. Two offloading approaches are discussed namely virtual

machine cloning and code-based offloading. Virtual machine cloning creates a

virtual instance of the mobile device on the cloud where the virtual instance has

access to the resources on the cloud. Code-based offloading is chosen for the

Switch framework as it is simpler and more efficient as it relies on the creation

of methods on the server that perform the same task as the methods on the

mobile device.

How can energy consumption be measured? b.

The energy consumption of a mobile device or an app can be measured using

either a hardware or software-based approach, as discussed in chapter 6.

Hardware-based approaches result in profiles that are highly accurate but the

creation of these profiles are labor-intensive and not scalable. Software-based

approaches result in less accurate profiles. However, software-based energy

consumption profiles enable the monitoring of the application on many different

granularities and it does not require expensive external power meters.

Which factors should be taken into account when estimating energy c.

consumption?

Chapter 5 discusses the offloading decisions made by frameworks proposed in

related research. The understanding gained from the evaluation of related

research is expanded on in chapter 6 to identify the factors that influence the

estimation of energy consumption. The factors identified are grouped into two

categories, namely communication, and computation. The factors in the

communication category are size of data, communication protocol and

163

bandwidth. The computation category factors are code complexity and the

duration of execution.

10.2.4. Does the framework proposed by this dissertation

conserve battery life on mobile devices?

The Switch framework is proposed in chapter 7 and the prototype implemented

in chapter 9 is evaluated against the requirements identified in chapter 3.

What tasks and evaluation criteria can be used to determine the a.

effectiveness of the proposed framework?

Three tasks were identified in chapter 9 to evaluate the Switch framework. The

first task involves the steganographic encoding of a file into an image, this task

when offloaded requires the upload of two files, one image and one data file,

and the download of the encoded image file. The second task involves the

decoding of an image that has been steganographically encoded when

offloaded this requires the image to be uploaded and the decoded file to be

downloaded. The third task involves the counting of prime numbers, this

computationally intensive task does not require large amounts of data to be

transferred when offloading.

The proposed framework, Switch, is evaluated by comparing the estimated

energy consumption and the measured energy consumption to determine the

accuracy of the offloading decisions made by the framework.

To what extent does the proposed framework meet the identified b.

evaluation criteria and which deficiencies and be identified?

The Switch prototype is evaluated against the identified requirements to answer

this question.

i. Intelligent offloading decision making

As discussed in chapter 7, in order for an intelligent offloading decision to occur,

an accurate energy estimation is required to inform the decision-making

process. In chapter 9, the analysis showed that the prototype provides an

accurate energy estimation of real-world tasks. Therefore, the accurate energy

164

estimations can be used to intelligently inform the offloading decisions made by

the Switch prototype.

ii. Multiple network support

Mobile devices are by their nature mobile, thus they are continuously

connecting to different networks. Because mobile devices are used when

connected to different networks, the prototype is capable of estimating energy

consumption and make offloading decisions regardless of the network

connection. The energy consumption profile generated for the prototype takes

into account Wi-Fi, 4G and 3G networks, which allows offloading decisions to

be made when communicating via one of the networks.

iii. Lightweight

By adding the prototype to an existing application, the energy consumption on

the mobile device is minimally affected and no detrimental effect on the user

experience is noted. The prototype collects environmental data in the

background of the application which does not affect the user, and the offloading

decisions are made as simple as possible so that it requires as little

computational power and battery life as possible.

iv. Portable

The Switch prototype is developed as an external package that can be included

by any developer into an app to enable the conservation of battery life. The

package has a simple interface and is easy to integrate into an application.

Because no device-specific functions are used, the package is not device

specific and can be included on any Android device, for any app. Thus, the

prototype is portable.

The next section addresses the limitations of this research.

10.3. Limitation of this research

In order to determine whether battery life can be conserved on mobile devices,

it was necessary to implement an application that is capable of executing tasks

locally and offloading them to the cloud. The implementation of the prototype in

165

this application allowed the evaluation of the framework in a practical

environment.

The prototype is not perfect. There are several areas in which it can be

improved. The first of which is the automatic creation of an energy consumption

profile. The limitations on the Android operating system requires the use of a

third-party app to measure energy consumption. The differences in the

hardware available on mobile devices require an energy consumption profile for

each device. The profile used was not tested against other physical devices

with the same hardware specifications.

Another area in which the prototype can be improved is the integration with

other applications. In the current state, the prototype has to be integrated by the

developer and end-users cannot control it. The prototype requires developers to

identify which tasks can be offloaded and create endpoints through which the

task can be offloaded.

It is important to note that it would be important to secure all communications

between the mobile device and the cloud, as well as the data and tasks on the

cloud. This aspect should be addressed very carefully but is beyond the scope

of this research.

The prototype helped answer the primary research goal of this dissertation and

can be improved upon. The next section discusses how the research can be

improved upon in future work.

10.4. Research contribution and future work

The research done in this dissertation shows that a framework can be created

that can be integrated into any mobile app to conserve the battery life of the

mobile device by making offloading decisions informed by accurate energy

consumption estimations. The concept of conserving battery life by offloading

has been shown to be effective in the existing problem domain.

166

Previous prototypes that were develop were focussed on specific fields,

required specialized hardware to function or to measure energy consumption, or

required in-depth analysis of the methods executed by the app that the

prototypes were integrated with. The framework proposed in this dissertation

took a different approach in that it aimed to be integrated with any mobile app

that uses offloading and software to measure energy consumption. The

framework in this dissertation is focussed on a device-specific energy

consumption profile and not on the energy consumption of the mobile app. With

the energy consumption profile created for a device, minimal measurements are

required to be made by the developer. As verified in the prototype, the battery

life of a mobile device can be conserved by integrating the prototype into an

app.

The ongoing improvements in the fields of mobile devices and cloud computing

leads to improvements that can be made in the prototype and framework. The

following is a list of considerations:

 The manual creation of the energy consumption profile of a mobile

device can be automated by creating a test suite that measures the

energy consumption under different circumstances.

 The information gathered by the profiler during execution can be used to

update the existing energy consumption profile.

 The offloading decision can be expanded to include monetary cost

instead of just battery life based on user preference.

The list of items above is not an exhaustive list of changes that can be made.

This list serves to illustrate some of the limitations of the framework on a

conceptual level that could be improved through future work as they are beyond

the scope of the objective of this dissertation. The following section concludes

the dissertation.

10.5. Conclusion

The chapter has provided a brief overview of the content of this dissertation.

This research focussed on the creation of the Switch framework that can be

integrated into any application that uses offloading to conserve battery life by

167

making offloading decisions informed by accurate energy consumption

estimates. In order to achieve this objective, various topics related to the

problem domain are explored in this dissertation.

The Switch framework and prototype was developed and tested to demonstrate

that a component can be created to accurately estimate energy consumption on

a mobile device. Such estimations can be used to make offloading decisions

without requiring specialised hardware or in-depth analysis of methods.

To this end, this dissertation concludes that a component can be created that

can be integrated into any application to conserve the battery life of a mobile

device by accurately estimating energy consumption and making a decision

between offloading and local execution.

168

References
&

 Appendix

169

References

3GPP, 2017. GPRS & EDGE. Available:
http://www.3gpp.org/technologies/keywords-acronyms/102-gprs-edge
(Accessed 3 November 2017).

Abolfazli, S., Sanaei, Z., Ahmed, E., Gani, A., Buyya, R., 2014. Cloud-Based
Augmentation for Mobile Devices: Motivation, Taxonomies, and Open
Challenges. IEEE Commun. Surv. Tutor. 16, 337–368.
https://doi.org/10.1109/SURV.2013.070813.00285

Abolfazli, S., Sanaei, Z., Shiraz, M., Gani, A., 2012. MOMCC: Market-oriented
architecture for Mobile Cloud Computing based on Service Oriented
Architecture, in: 2012 1st IEEE International Conference on
Communications in China Workshops (ICCC). Presented at the 2012 1st
IEEE International Conference on Communications in China Workshops
(ICCC), pp. 8–13. https://doi.org/10.1109/ICCCW.2012.6316481

Afrihost, 2017a. The Afrihost Story. Afrihost Internet Serv. Available:
https://www.afrihost.com/site/page/the_afrihost_story (Accessed 19
March 2017).

Afrihost, 2017b. Afrihost Mobile Data from only R29pm. Afrihost Internet Serv.
Available: https://www.afrihost.com/site/product/mobile_data (Accessed
19 March 2017).

Ahmad, R.W., Gani, A., Hamid, S.H.A., Xia, F., Shiraz, M., 2015. A Review on
mobile application energy profiling: Taxonomy, state-of-the-art, and open
research issues. J. Netw. Comput. Appl. 58, 42–59.
https://doi.org/10.1016/j.jnca.2015.09.002

Akherfi, K., Gerndt, M., Harroud, H., 2016. Mobile cloud computing for
computation offloading: Issues and challenges. Appl. Comput. Inform.
https://doi.org/10.1016/j.aci.2016.11.002

Ali, M., Zain, J.M., Zolkipli, M.F., Badshah, G., 2015. Battery efficiency of mobile
devices through computational offloading: A review, in: 2015 IEEE
Student Conference on Research and Development (SCOReD).
Presented at the 2015 IEEE Student Conference on Research and
Development (SCOReD), pp. 317–322.
https://doi.org/10.1109/SCORED.2015.7449347

Alizadeh, M., Hassan, W.H., 2013. Challenges and opportunities of Mobile
Cloud Computing, in: Wireless Communications and Mobile Computing
Conference (IWCMC), 2013 9th International. Presented at the Wireless
Communications and Mobile Computing Conference (IWCMC), 2013 9th
International, pp. 660–666.
https://doi.org/10.1109/IWCMC.2013.6583636

Al-mousa, A., Alzoubi, A., 2017. Intelligent offloading of reports processing in
aging mobile devices, in: 2017 IEEE SmartWorld, Ubiquitous Intelligence
Computing, Advanced Trusted Computed, Scalable Computing
Communications, Cloud Big Data Computing, Internet of People and

170

Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). Presented at the
2017 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced
Trusted Computed, Scalable Computing Communications, Cloud Big
Data Computing, Internet of People and Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp. 1–4.
https://doi.org/10.1109/UIC-ATC.2017.8397652

Alomari, S.A., Sumari, P., Taghizadeh, A., 2011. A Comprehensive Study of
Wireless Communication Technology for the Future Mobile Devices.
Eur. J. Sci. Res. 60, 565–573.

Amazon, 2014a. AWS | Amazon Elastic Compute Cloud (EC2) - Scalable Cloud
Hosting. Amazon. Available: https://aws.amazon.com/ec2/ (Accessed 2
December 2014).

Amazon, 2014b. AWS | Amazon Simple Storage Service (S3) - Online Cloud
Storage for Data & Files. Amazon. Available: http://aws.amazon.com/s3
(Accessed 2 December 2014).

Apple, 2016a. iPhone SE - Technical Specifications. Apple South Afr. Available:
http://www.apple.com/za/iphone-se/specs/ (Accessed 20 November
2016).

Apple, 2016b. Swift. Apple. Available: http://www.apple.com/swift/ (Accessed 22
November 2016).

Apple, 2016c. iPhone 7 - Technical Specifications. Apple South Afr. Available:
http://www.apple.com/za/iphone-7/specs/ (Accessed 20 November
2016).

Apple, 2014a. What is iOS. Apple. Available: https://www.apple.com/ios/what-is/
(Accessed 14 November 2014).

Apple, 2014b. Programming with Objective-C: About Objective-C. Apple.
Available:
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptu
al/ProgrammingWithObjectiveC/Introduction/Introduction.html (Accessed
25 November 2014).

Apple, 2014c. Official Apple Store US - iPhone, iPad and more. Apple.
Available: http://store.apple.com/us (Accessed 25 November 2014).

Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M., 2010. A View of
Cloud Computing. Commun ACM 53, 50–58.
https://doi.org/10.1145/1721654.1721672

Bahl, P., Han, R.Y., Li, L.E., Satyanarayanan, M., 2012. Advancing the State of
Mobile Cloud Computing, in: Proceedings of the Third ACM Workshop on
Mobile Cloud Computing and Services, MCS ’12. ACM, New York, NY,
USA, pp. 21–28. https://doi.org/10.1145/2307849.2307856

171

Balan, R.K., Satyanarayanan, M., Park, S.Y., Okoshi, T., 2003. Tactics-based
Remote Execution for Mobile Computing, in: Proceedings of the 1st
International Conference on Mobile Systems, Applications and Services,
MobiSys ’03. ACM, New York, NY, USA, pp. 273–286.
https://doi.org/10.1145/1066116.1066125

Barbera, M.V., Kosta, S., Mei, A., STEFA, J., 2013. To offload or not to offload?
The bandwidth and energy costs of mobile cloud computing, in: 2013
Proceedings IEEE INFOCOM. Presented at the 2013 Proceedings IEEE
INFOCOM, pp. 1285–1293.
https://doi.org/10.1109/INFCOM.2013.6566921

Ben, D., Ma, B., Liu, L., Xia, Z., Zhang, W., Liu, F., 2009. Unusual Burns With
Combined Injuries Caused by Mobile Phone Explosion: Watch Out for
the “Mini-Bomb”! J. Burn Care Res. Off. Publ. Am. Burn Assoc. 30, 1048.
https://doi.org/10.1097/BCR.0b013e3181bfb8c0

Bernstein, D., 2014. Containers and Cloud: From LXC to Docker to Kubernetes.
IEEE Cloud Comput. 1, 81–84. https://doi.org/10.1109/MCC.2014.51

Blu, 2016. Studio 7.0 II. BluProducts.com. Available:
http://bluproducts.com/studio-7-0-ii (Accessed 20 November 2016).

Bluetooth SIG, 2014. Specification. Bluetooth SIG. Available:
https://www.bluetooth.org/en-us/specification/adopted-specifications
(Accessed 25 November 2014).

Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I., 2009. Cloud
computing and emerging IT platforms: Vision, hype, and reality for
delivering computing as the 5th utility. Future Gener. Comput. Syst. 25,
599–616. https://doi.org/10.1016/j.future.2008.12.001

Carroll, A., Heiser, G., 2010. An Analysis of Power Consumption in a
Smartphone, in: Proceedings of the 2010 USENIX Conference on
USENIX Annual Technical Conference, USENIXATC’10. USENIX
Association, Berkeley, CA, USA, pp. 21–21.

Chen, X., Liu, B., Chen, Y., Zhao, M., Xue, C.J., Guo, X., 2012. Active
compensation technique for the thin-film transistor variations and OLED
aging of mobile device displays, in: 2012 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). Presented at the 2012
IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp. 516–522.

Cherry, S., 2008. Wi-Fi Takes On Bluetooth - IEEE Spectrum. IEEE Spectr.

Christensen, J.H., 2009. Using RESTful Web-services and Cloud Computing to
Create Next Generation Mobile Applications, in: Proceedings of the 24th
ACM SIGPLAN Conference Companion on Object Oriented
Programming Systems Languages and Applications, OOPSLA ’09. ACM,
New York, NY, USA, pp. 627–634.
https://doi.org/10.1145/1639950.1639958

172

Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., Patti, A., 2011. CloneCloud: Elastic
Execution Between Mobile Device and Cloud, in: Proceedings of the
Sixth Conference on Computer Systems, EuroSys ’11. ACM, New York,
NY, USA, pp. 301–314. https://doi.org/10.1145/1966445.1966473

Chun, B.-G., Maniatis, P., 2009. Augmented smartphone applications through
clone cloud execution, in: Proceedings of the 12th Conference on Hot
Topics in Operating Systems. USENIX Association, pp. 8–8.

CIO Council, 2013. Government Mobile and Wireless Security Baseline. CIO
Council.

Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I.,
Warfield, A., 2005. Live Migration of Virtual Machines, in: Proceedings of
the 2Nd Conference on Symposium on Networked Systems Design &
Implementation - Volume 2, NSDI’05. USENIX Association, Berkeley,
CA, USA, pp. 273–286.

Cleveland, W.S., 1993. Visualizing Data. At&T Bell Laboratories.

Cuervo, E., Balasubramanian, A., Cho, D., Wolman, A., Saroiu, S., Chandra, R.,
Bahl, P., 2010. MAUI: Making Smartphones Last Longer with Code
Offload, in: Proceedings of the 8th International Conference on Mobile
Systems, Applications, and Services, MobiSys ’10. ACM, New York, NY,
USA, pp. 49–62. https://doi.org/10.1145/1814433.1814441

De Silva, D.I., Kodagoda, N., Perera, H., 2012. Applicability of three complexity
metrics, in: 2012 International Conference on Advances in ICT for
Emerging Regions (ICTer). Presented at the 2012 International
Conference on Advances in ICT for Emerging Regions (ICTer), pp. 82–
88. https://doi.org/10.1109/ICTer.2012.6421409

Demeyer, S., 2011. Research methods in computer science, in: 2011 27th IEEE
International Conference on Software Maintenance (ICSM). Presented at
the 2011 27th IEEE International Conference on Software Maintenance
(ICSM), pp. 600–600. https://doi.org/10.1109/ICSM.2011.6080841

Dinh, H.T., Lee, C., Niyato, D., Wang, P., 2013. A survey of mobile cloud
computing: architecture, applications, and approaches. Wirel. Commun.
Mob. Comput. 13, 1587–1611. https://doi.org/10.1002/wcm.1203

Dixon, D., Kiani, S.L., Ikram, A., 2013. Experiences with AR plots: design issues
and recommendations for augmented reality based mobile games.
Commun. Mob. Comput. 2, 1–6. https://doi.org/10.1186/2192-1121-2-1

Fakoor, R., Raj, M., Nazi, A., Di Francesco, M., Das, S.K., 2012. An Integrated
Cloud-based Framework for Mobile Phone Sensing, in: Proceedings of
the First Edition of the MCC Workshop on Mobile Cloud Computing,
MCC ’12. ACM, New York, NY, USA, pp. 47–52.
https://doi.org/10.1145/2342509.2342520

Fernando, N., Loke, S.W., Rahayu, W., 2013. Mobile cloud computing: A
survey. Future Gener. Comput. Syst., Including Special section: AIRCC-

173

NetCoM 2009 and Special section: Clouds and Service-Oriented
Architectures 29, 84–106. https://doi.org/10.1016/j.future.2012.05.023

Ferreira, D., Dey, A.K., Kostakos, V., 2011. Understanding Human-Smartphone
Concerns: A Study of Battery Life, in: Pervasive Computing. Presented at
the 9th International Conference, Pervasive 2011, Springer Berlin
Heidelberg, San Francisco, USA, pp. 19–33. https://doi.org/10.1007/978-
3-642-21726-5_2

Flinn, J., Park, S., Satyanarayanan, M., 2002. Balancing performance, energy,
and quality in pervasive computing, in: 22nd International Conference on
Distributed Computing Systems, 2002. Proceedings. Presented at the
22nd International Conference on Distributed Computing Systems, 2002.
Proceedings, pp. 217–226. https://doi.org/10.1109/ICDCS.2002.1022259

Fowler, S., Mozur, P., 2016. Samsung’s Recall: The Problem With Lithium-Ion
Batteries. N. Y. Times.

Glass, R.L., Ramesh, V., Vessey, I., 2004. An Analysis of Research in
Computing Disciplines. Commun ACM 47, 89–94.
https://doi.org/10.1145/990680.990686

Google, 2014a. About Google. Google. Available:
https://www.google.co.za/intl/en/about/ (Accessed 27 November 2014).

Google, 2014b. Android. Android. Available: http://www.android.com (Accessed
13 November 2014).

Google, 2014c. Google Play. Google Play. Available:
https://play.google.com/store (Accessed 25 November 2014).

Google, 2014d. What Is Google App Engine? - Google App Engine — Google
Cloud Platform. Google. Available:
https://cloud.google.com/appengine/docs/whatisgoogleappengine
(Accessed 2 December 2014).

GPS.gov, 2008. Global Position System Standard Positioning Service
Performance Standard.

Grønli, T.-M., Hansen, J., Ghinea, G., Younas, M., 2014. Mobile Application
Platform Heterogeneity: Android vs Windows Phone vs iOS vs Firefox
OS, in: 2014 IEEE 28th International Conference on Advanced
Information Networking and Applications (AINA). Presented at the 2014
IEEE 28th International Conference on Advanced Information Networking
and Applications (AINA), pp. 635–641.
https://doi.org/10.1109/AINA.2014.78

GSam Labs, 2013. GSam Labs. GSam Labs. Available:
http://www.gsamlabs.com (Accessed 10 August 2015).

GSMArena, 2016. Battery life tests - GSMArena.com. GSMArena. Available:
http://www.gsmarena.com/battery-test.php3 (Accessed 22 November
2016).

174

Guan, L., Ke, X., Song, M., Song, J., 2011. A Survey of Research on Mobile
Cloud Computing, in: 2011 IEEE/ACIS 10th International Conference on
Computer and Information Science (ICIS). Presented at the 2011
IEEE/ACIS 10th International Conference on Computer and Information
Science (ICIS), pp. 387–392. https://doi.org/10.1109/ICIS.2011.67

Halstead, M.H., 1977. Elements of software science. Elsevier.

Han, B., Hui, P., Kumar, V.S.A., Marathe, M.V., Shao, J., Srinivasan, A., 2012.
Mobile Data Offloading through Opportunistic Communications and
Social Participation. IEEE Trans. Mob. Comput. 11, 821–834.
https://doi.org/10.1109/TMC.2011.101

Helmenstine, T., 2017. Calculate Percent Error. Sci. Notes Proj.

Henry, S., Kafura, D., 1981. Software Structure Metrics Based on Information
Flow. IEEE Trans. Softw. Eng. SE-7, 510–518.
https://doi.org/10.1109/TSE.1981.231113

Heroku, 2017a. About Heroku | Heroku. Available:
https://www.heroku.com/about (Accessed 8 December 2017).

Heroku, 2017b. Dyno Types | Heroku Dev Center. Available:
https://devcenter.heroku.com/articles/dyno-types (Accessed 8 December
2017).

HTC, 2016. HTC 10 Industry Leading Features and Specs | HTC United States.
HTC. Available: http://www.htc.com/us/smartphones/htc-10/ (Accessed
20 November 2016).

Huang, D., Zhang, X., Kang, M., Luo, J., 2010. MobiCloud: Building Secure
Cloud Framework for Mobile Computing and Communication, in: 2010
Fifth IEEE International Symposium on Service Oriented System
Engineering (SOSE). Presented at the 2010 Fifth IEEE International
Symposium on Service Oriented System Engineering (SOSE), pp. 27–
34. https://doi.org/10.1109/SOSE.2010.20

Huang, W., Mow, W.H., 2013. PiCode: 2D Barcode with Embedded Picture and
ViCode: 3D Barcode with Embedded Video, in: Proceedings of the 19th
Annual International Conference on Mobile Computing &
Networking, MobiCom ’13. ACM, New York, NY, USA, pp. 139–142.
https://doi.org/10.1145/2500423.2505295

Huerta-Canepa, G., Lee, D., 2010. A Virtual Cloud Computing Provider for
Mobile Devices, in: Proceedings of the 1st ACM Workshop on Mobile
Cloud Computing & Services: Social Networks and Beyond, MCS
’10. ACM, New York, NY, USA, p. 6:1–6:5.
https://doi.org/10.1145/1810931.1810937

Humphreys, L., Von Pape, T., Karnowski, V., 2013. Evolving Mobile Media:
Uses and Conceptualizations of the Mobile Internet. J. Comput.-Mediat.
Commun. 18, 491–507. https://doi.org/10.1111/jcc4.12019

175

Hung, S.-H., Shih, C.-S., Shieh, J.-P., Lee, C.-P., Huang, Y.-H., 2012.
Executing mobile applications on the cloud: Framework and issues.
Comput. Math. Appl. 63, 573–587.
https://doi.org/10.1016/j.camwa.2011.10.044

IDC, 2014. IDC: Smartphone OS Market Share 2014, 2013, 2012, and 2011.
IDC. Available: http://www.idc.com/prodserv/smartphone-os-market-
share.jsp (Accessed 25 November 2014).

IEEE, 2016. IEEE Standard for Information technology–Telecommunications
and information exchange between systems Local and metropolitan area
networks–Specific requirements - Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications. IEEE Std
80211-2016 Revis. IEEE Std 80211-2012 1–3534.
https://doi.org/10.1109/IEEESTD.2016.7786995

Imai, S., 2012. Task offloading between smartphones and distributed
computational resources. Rensselaer Polytechnic Institute.

ITU, 2014. Radiocommunication Sector (ITU-R) - IMT-Advanced submission
and evaluation process. ITU. Available: http://www.itu.int/ITU-
R/index.asp?category=study-groups&rlink=rsg5-imt-advanced&lang=en
(Accessed 25 November 2014).

ITU, 2011. About mobile technology and IMT-2000. ITU. Available:
http://www.itu.int/osg/spu/imt-2000/technology.html#Cellular Standards
for the Third Generation (Accessed 25 November 2014).

Jagtap, V.S., Pawar, K.V., Pathak, A.R., 2014. Augmented Execution in Mobile
Cloud Computing: A Survey, in: 2014 International Conference on
Electronic Systems, Signal Processing and Computing Technologies
(ICESC). Presented at the 2014 International Conference on Electronic
Systems, Signal Processing and Computing Technologies (ICESC), pp.
237–244. https://doi.org/10.1109/ICESC.2014.46

JavaWorld, 2003. Sizeof for Java. JavaWorld. Available:
http://www.javaworld.com/article/2077408/core-java/sizeof-for-java.html
(Accessed 5 February 2015).

JEDEC, 2014a. About JEDEC | JEDEC. JEDEC. Available:
http://www.jedec.org/about-jedec (Accessed 28 November 2014).

JEDEC, 2014b. JESD209-4 Low Power Double Data Rate 4 (LPDDR4) (No.
JESD209-4). JEDEC.

JEDEC, 2012. JESD209-3 Low Power Memory Device Standard (No.
JESD209-3). JEDEC.

Johnsson, A., Bjorkman, M., 2008. On measuring available bandwidth in
wireless networks, in: 33rd IEEE Conference on Local Computer
Networks, 2008. LCN 2008. Presented at the 33rd IEEE Conference on
Local Computer Networks, 2008. LCN 2008, pp. 861–868.
https://doi.org/10.1109/LCN.2008.4664295

176

Johnsson, A., Melander, B., Björkman, M., 2006. Bandwidth Measurement in
Wireless Networks, in: Agha, K.A., Lassous, I.G., Pujolle, G. (Eds.),
Challenges in Ad Hoc Networking, IFIP International Federation for
Information Processing. Springer US, pp. 89–98.

Kahneman, D., Tversky, A., 2000. Choices, Values, and Frames. Cambridge
University Press.

KAIBITS, 2015. KAIBITS Software. KAIBITS. Available: http://www.kaibits-
software.com/ (Accessed 10 August 2015).

Kalic, G., Bojic, I., Kusek, M., 2012. Energy consumption in android phones
when using wireless communication technologies, in: 2012 Proceedings
of the 35th International Convention MIPRO. Presented at the 2012
Proceedings of the 35th International Convention MIPRO, pp. 754–759.

Kamara, S., Lauter, K.E., others, 2010. Cryptographic Cloud Storage., in:
Financial Cryptography Workshops. Springer, pp. 136–149.

Kayande, D., Shrawankar, U., 2012. Performance analysis for improved RAM
utilization for Android applications, in: 2012 CSI Sixth International
Conference on Software Engineering (CONSEG). Presented at the 2012
CSI Sixth International Conference on Software Engineering (CONSEG),
pp. 1–6. https://doi.org/10.1109/CONSEG.2012.6349500

Kemp, R., Palmer, N., Kielmann, T., Bal, H., 2012. Cuckoo: A Computation
Offloading Framework for Smartphones, in: Gris, M., Yang, G. (Eds.),
Mobile Computing, Applications, and Services, Lecture Notes of the
Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering. Springer Berlin Heidelberg, pp. 59–79.

Kristensen, M.D., 2010. Scavenger: Transparent development of efficient cyber
foraging applications, in: 2010 IEEE International Conference on
Pervasive Computing and Communications (PerCom). Presented at the
2010 IEEE International Conference on Pervasive Computing and
Communications (PerCom), pp. 217–226.
https://doi.org/10.1109/PERCOM.2010.5466972

Kumar, K., Liu, J., Lu, Y.-H., Bhargava, B., 2013. A Survey of Computation
Offloading for Mobile Systems. Mob. Netw. Appl. 18, 129–140.
https://doi.org/10.1007/s11036-012-0368-0

Kumar, K., Lu, Y.-H., 2010. Cloud Computing for Mobile Users: Can Offloading
Computation Save Energy? Computer 43, 51–56.
https://doi.org/10.1109/MC.2010.98

Liang, R., Zhong, Y., Xia, Q., 2018. Energy-saved data transfer model for
mobile devices in cloudlet computing environment, in: 2018 IEEE 3rd
International Conference on Cloud Computing and Big Data Analysis
(ICCCBDA). Presented at the 2018 IEEE 3rd International Conference
on Cloud Computing and Big Data Analysis (ICCCBDA), pp. 271–274.
https://doi.org/10.1109/ICCCBDA.2018.8386525

177

Linux, 2012. The source for Linux information. Linux. Available:
http://www.linux.com/ (Accessed 25 November 2014).

Longo, F., Ghosh, R., Naik, V.K., Trivedi, K.S., 2011. A scalable availability
model for Infrastructure-as-a-Service cloud, in: 2011 IEEE/IFIP 41st
International Conference on Dependable Systems Networks (DSN).
Presented at the 2011 IEEE/IFIP 41st International Conference on
Dependable Systems Networks (DSN), pp. 335–346.
https://doi.org/10.1109/DSN.2011.5958247

Ma, J., Deng, X., Liu, Y., Wu, D., 2013. Power consumption of mobile video
streaming under adverse network conditions, in: 2013 IEEE/CIC
International Conference on Communications in China (ICCC).
Presented at the 2013 IEEE/CIC International Conference on
Communications in China (ICCC), pp. 106–111.
https://doi.org/10.1109/ICCChina.2013.6671098

Manjunatha, A., Ranabahu, A., Sheth, A., Thirunarayan, K., 2010. Power of
Clouds in Your Pocket: An Efficient Approach for Cloud Mobile Hybrid
Application Development, in: 2010 IEEE Second International
Conference on Cloud Computing Technology and Science. Presented at
the 2010 IEEE Second International Conference on Cloud Computing
Technology and Science, pp. 496–503.
https://doi.org/10.1109/CloudCom.2010.78

Marinelli, E.E., 2009. Hyrax: Cloud Computing on Mobile Devices using
MapReduce. Carnegie-Mellon University, Pittsburgh, Pennsylvania.

Mell, P., Grance, T., 2009. The NIST definition of cloud computing. Natl. Inst.
Stand. Technol. 53, 50.

Microsoft, 2016a. Microsoft Lumia 650 Specifications - Microsoft - Global.
Microsoft. Available:
https://www.microsoft.com/en/mobile/phone/lumia650/specifications/
(Accessed 20 November 2016).

Microsoft, 2016b. .NET - Powerful Open Source Cross Platform Development.
Microsoft. Available: https://www.microsoft.com/net (Accessed 22
November 2016).

Microsoft, 2014a. Windows Phone. Microsoft. Available:
http://www.windowsphone.com/en-us/features-8-1 (Accessed 14
November 2014).

Microsoft, 2014b. C# Programming Guide. Microsoft. Available:
http://msdn.microsoft.com/en-us/library/67ef8sbd.aspx (Accessed 25
November 2014).

Microsoft, 2014c. Windows Phone For AT&T, T-Mobile, Sprint, & Verizon -
Microsoft Store. Microsoft. Available:
http://www.microsoftstore.com/store/msusa/en_US/cat/Windows-
Phone/categoryID.62685000 (Accessed 25 November 2014).

178

Microsoft, 2014d. What is Azure? Azure. Available:
http://azure.microsoft.com/en-us/overview/what-is-azure/ (Accessed 2
December 2014).

Microsoft, 2014e. Microsoft OneDrive. Microsoft. Available:
https://onedrive.live.com/about/en-us/ (Accessed 2 December 2014).

Minihold, R., 2011. Near Field Communication (NFC) Technology and
Measurements White Paper.

Moon, B., 2014. 5 Small Smartphones That Pack a Big Punch. InvestorPlace.

MTN, 2017. About Us | MTN Group | MTN. MTN. Available:
https://www.mtn.co.za/About_us/Pages/Overview.aspx (Accessed 19
March 2017).

Oberheide, J., Cooke, E., Jahanian, F., 2007. Rethinking Antivirus: Executable
Analysis in the Network Cloud, in: 6th USENIX Security Symposium.
Presented at the HotSec ’07, Boston, MA, U.S.A.

Olivier, M., 2009. Information Technology Research - A Practical Guide for
Computer Science and Informatics, 2nd Edition. ed. Van Schaik.

Oracle Corporation, 2014. What is Java? Oracle Corp. Available:
https://www.java.com/en/download/whatis_java.jsp (Accessed 25
November 2014).

Page, C., 2014. Android hits 83.6 percent marketshare while iOS, Windows and
BlackBerry slide. The Inquirer.

Pan, S., Chen, A., Zhang, P., 2013. Securitas: User Identification Through
RGB-NIR Camera Pair on Mobile Devices, in: Proceedings of the Third
ACM Workshop on Security and Privacy in Smartphones & Mobile
Devices, SPSM ’13. ACM, New York, NY, USA, pp. 99–104.
https://doi.org/10.1145/2516760.2516766

Parkkila, J., Porras, J., 2011. Improving battery life and performance of mobile
devices with cyber foraging, in: 2011 IEEE 22nd International
Symposium on Personal Indoor and Mobile Radio Communications
(PIMRC). Presented at the 2011 IEEE 22nd International Symposium on
Personal Indoor and Mobile Radio Communications (PIMRC), pp. 91–95.
https://doi.org/10.1109/PIMRC.2011.6140102

Parkvall, S., Astely, D., 2009. The Evolution of LTE towards IMT-Advanced. J.
Commun. 4, 146–154. https://doi.org/10.4304/jcm.4.3.146-154

Radicati, S., 2014. Mobile Statistics Report, 2014-2018 (Executive Summary).
The Radicati Group, Inc., Palo Alto, CA, USA.

Reed, B., 2014. Apple might want to start taking gripes about the iPhone’s
battery life seriously. BGR.

Reza, A., 2015. “Memory Need” Gives Birth To “New Memory.”

179

Rudenko, A., Reiher, P., Popek, G.J., Kuenning, G.H., 1998. Saving Portable
Computer Battery Power Through Remote Process Execution.
SIGMOBILE Mob Comput Commun Rev 2, 19–26.
https://doi.org/10.1145/584007.584008

Sale, A.H.J., 1977. Primitive data types. Aust. Compuer J. 9, 63–71.

Samsung, 2016a. Galaxy S7 Feature and Specs. Samsung Electron. Am.
Available: http://www.samsung.com/us/explore/galaxy-s7-features-and-
specs/ (Accessed 20 November 2016).

Samsung, 2016b. Samsung Galaxy S6 edge. Off. Samsung Galaxy Site.
Available: http://www.samsung.com/global/galaxy/galaxys6/galaxy-s6-
edge/ (Accessed 22 November 2016).

Samsung, 2014a. S Health. Samsung. Available:
http://content.samsung.com/za/contents/aboutn/sHealthIntro.do
(Accessed 28 November 2014).

Samsung, 2014b. Samsung Galaxy S5 LTE. Samsung. Available:
http://www.samsung.com/za/consumer/mobile-phone/smart-
phone/smart-phone/SM-G900FZBAXFV (Accessed 18 November 2014).

SAP, 2017a. Overview | SAP Cloud Platform. SAP. Available:
https://cloudplatform.sap.com/index.html (Accessed 19 March 2017).

SAP, 2017b. SAP Cloud Platform Intelligently Connects People, Things and
Businesses. SAP News Cent. Available: http://news.sap.com/mwc-sap-
cloud-platform-intelligently-connects-people-things-businesses/
(Accessed 19 March 2017).

Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N., 2011. The Case for VM-
based Cloudlets in Mobile Computing. IEEE Pervasive Comput. Early
Access Online. https://doi.org/10.1109/MPRV.2009.64

Schaffer, H.E., 2009. X as a Service, Cloud Computing, and the Need for Good
Judgment. IT Prof. 11, 4–5. https://doi.org/10.1109/MITP.2009.112

SD Assocation, 2014. SD Standard Overview. SD Assocation. Available:
https://www.sdcard.org/developers/overview/ (Accessed 18 November
2014).

Singh, R., Kumar, S., Agrahari, S.K., 2012. Ensuring data storage security in
cloud computing. IOSR J. Eng. 2, 17–21.

Smailagic, A., Ettus, M., 2002. System design and power optimization for
mobile computers, in: IEEE Computer Society Annual Symposium on
VLSI, 2002. Proceedings. Presented at the IEEE Computer Society
Annual Symposium on VLSI, 2002. Proceedings, pp. 10–14.
https://doi.org/10.1109/ISVLSI.2002.1016867

Sokol, A.W., Hogan, M.D., 2013. NIST Cloud Computing Standards Roadmap.
Spec. Publ. NIST SP - 500-291r2. https://doi.org/913661

180

Souppaya, M., Scarfone, S., 2013. Guidelines for Managing the Security of
Mobile Devices in the Enterprise (No. SP 800-124 r1). National Institute
of Standards and Technology (NIST).

Soyata, T., Muraleedharan, R., Funai, C., Kwon, M., Heinzelman, W., 2012.
Cloud-Vision: Real-time face recognition using a mobile-cloudlet-cloud
acceleration architecture, in: 2012 IEEE Symposium on Computers and
Communications (ISCC). Presented at the 2012 IEEE Symposium on
Computers and Communications (ISCC), pp. 000059–000066.
https://doi.org/10.1109/ISCC.2012.6249269

StackOverflow, 2014. how to measure upload/download speed and latency in
android wifi connection - Stack Overflow. StackOverflow. Available:
http://stackoverflow.com/questions/5193518/how-to-measure-upload-
download-speed-and-latency-in-android-wifi-connection (Accessed 5
February 2015).

StackOverflow, 2010. Measure execution time for a Java method - Stack
Overflow. StackOverflow. Available:
http://stackoverflow.com/questions/3382954/measure-execution-time-for-
a-java-method (Accessed 6 February 2015).

Statista, 2017. App stores: number of apps in leading app stores 2017. Statista.
Available: https://www.statista.com/statistics/276623/number-of-apps-
available-in-leading-app-stores/ (Accessed 3 November 2017).

Stephens, R., 2013. Essential Algorithms: A Practical Approach to Computer
Algorithms. John Wiley & Sons.

Telkom, 2017. About Us | Telkom. Telkom. Available:
http://www.telkom.co.za/about_us/index.shtml (Accessed 19 March
2017).

Toma, A., Starinow, A., Lenssen, J.E., Chen, J.J., 2018. Saving Energy for
Cloud Applications in Mobile Devices Using Nearby Resources, in: 2018
26th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP). Presented at the 2018 26th
Euromicro International Conference on Parallel, Distributed and Network-
based Processing (PDP), pp. 541–545.
https://doi.org/10.1109/PDP2018.2018.00091

Triggs, R., 2015. LPDDR4 – everything you need to know | AndroidAuthority.
AndroidAuthority. Available: http://www.androidauthority.com/lpddr4-
everything-need-know-599759/ (Accessed 23 January 2017).

Tsai, W.-T., Sun, X., Balasooriya, J., 2010. Service-Oriented Cloud Computing
Architecture, in: 2010 Seventh International Conference on Information
Technology: New Generations (ITNG). Presented at the 2010 Seventh
International Conference on Information Technology: New Generations
(ITNG), pp. 684–689. https://doi.org/10.1109/ITNG.2010.214

Wang, G., Xiong, Y., Yun, J., Cavallaro, J.R., 2014. Computer Vision
Accelerators for Mobile Systems based on OpenCL GPGPU Co-

181

Processing. J. Signal Process. Syst. 76, 283–299.
https://doi.org/10.1007/s11265-014-0878-z

Wang, H., Xie, J., Liu, X., 2018. Rethinking Mobile Devices’ Energy Efficiency in
WLAN Management Services, in: 2018 15th Annual IEEE International
Conference on Sensing, Communication, and Networking (SECON).
Presented at the 2018 15th Annual IEEE International Conference on
Sensing, Communication, and Networking (SECON), pp. 1–9.
https://doi.org/10.1109/SAHCN.2018.8397137

Wang, L., Laszewski, G. von, Younge, A., He, X., Kunze, M., Tao, J., Fu, C.,
2010. Cloud Computing: a Perspective Study. New Gener. Comput. 28,
137–146. https://doi.org/10.1007/s00354-008-0081-5

Want, R., Schilit, B., Laskowski, D., 2013. Bluetooth LE Finds Its Niche. IEEE
Pervasive Comput. 12, 12–16. https://doi.org/10.1109/MPRV.2013.60

Whitwarm, R., 2014. How Samsung Galaxy S5′s Ultra Power Saving Mode
makes 10% battery last 24 hours. ExtremeTech. Available:
http://www.extremetech.com/mobile/180110-how-samsung-galaxy-s5s-
ultra-power-saving-mode-makes-10-last-24-hours (Accessed 5 May
2014).

Wilcox, M., Voskoglou, C., 2014. Developer Economics Q3 2014: State of the
Developer Nation. VisionMobile.

Wright, G.R., Stevens, W.R., 1995. TCP/IP Illustrated. Addison-Wesley
Professional.

Xiao, Y., Hui, P., Savolainen, P., Ylä-Jääski, A., 2011. CasCap: Cloud-assisted
Context-aware Power Management for Mobile Devices, in: Proceedings
of the Second International Workshop on Mobile Cloud Computing and
Services, MCS ’11. ACM, New York, NY, USA, pp. 13–18.
https://doi.org/10.1145/1999732.1999736

Xiaolu, Y., Ma, E.W.M., Pecht, M., 2012. Cell balancing technology in battery
packs, in: 2012 13th International Conference on Electronic Packaging
Technology and High Density Packaging (ICEPT-HDP). Presented at the
2012 13th International Conference on Electronic Packaging Technology
and High Density Packaging (ICEPT-HDP), pp. 1038–1041.
https://doi.org/10.1109/ICEPT-HDP.2012.6474785

Yang, X., Pan, T., Shen, J., 2010. On 3G mobile E-commerce platform based
on Cloud Computing, in: 2010 3rd IEEE International Conference on Ubi-
Media Computing (U-Media). Presented at the 2010 3rd IEEE
International Conference on Ubi-media Computing (U-Media), pp. 198–
201. https://doi.org/10.1109/UMEDIA.2010.5544470

Yousafzai, A., Gani, A., Md Noor, R., Naveed, A., Ahmad, R.W., Chang, V.,
2016. Computational offloading mechanism for native and android
runtime based mobile applications. J. Syst. Softw. 121, 28–39.
https://doi.org/10.1016/j.jss.2016.07.043

182

Yu, S., Zhou, S., 2010. A survey on metric of software complexity, in: 2010 The
2nd IEEE International Conference on Information Management and
Engineering (ICIME). Presented at the 2010 The 2nd IEEE International
Conference on Information Management and Engineering (ICIME), pp.
352–356. https://doi.org/10.1109/ICIME.2010.5477581

Zhang, S., Zhang, Shufen, Chen, X., Huo, X., 2010. Cloud Computing Research
and Development Trend, in: Second International Conference on Future
Networks, 2010. ICFN ’10. Presented at the Second International
Conference on Future Networks, 2010. ICFN ’10, pp. 93–97.
https://doi.org/10.1109/ICFN.2010.58

Zhang, X., Jeong, S., Kunjithapatham, A., Gibbs, S., 2010. Towards an Elastic
Application Model for Augmenting Computing Capabilities of Mobile
Platforms, in: Cai, Y., Magedanz, T., Li, M., Xia, J., Giannelli, C. (Eds.),
Mobile Wireless Middleware, Operating Systems, and Applications,
Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering. Springer Berlin Heidelberg, pp.
161–174.

Zhang, Y., Ansari, N., Wu, M., Yu, H., 2012. AFStart: An adaptive fast TCP slow
start for wide area networks, in: 2012 IEEE International Conference on
Communications (ICC). Presented at the 2012 IEEE International
Conference on Communications (ICC), pp. 1260–1264.
https://doi.org/10.1109/ICC.2012.6363716

Zhou, M., Zhang, R., Zeng, D., Qian, W., 2010. Services in the Cloud
Computing era: A survey, in: Universal Communication Symposium
(IUCS), 2010 4th International. Presented at the Universal
Communication Symposium (IUCS), 2010 4th International, pp. 40–46.
https://doi.org/10.1109/IUCS.2010.5666772

Zsambok, C.E., Klein, G., 2014. Naturalistic Decision Making. Psychology
Press.

183

 Real-world energy Appendix A:

consumption data

This appendix contains the data gathered and used in chapter 10. Each table

contains the results of either uploading or download a file that is 100KB, 1MB or

10MB in size at different signal strengths over different networks. The different

networks are 3G, 4G and Wi-Fi. The appendix is divided into 4 sections, namely

3G, 4G, Wi-Fi, and Computation.

A.1. 3G

Table A.1 shows the averages of downloading a 100 KB file five times over 3G

at the listed signal strengths.

Table A.1 Downloading a 100 KB file at differing signal strengths over 3G

Download

size (bytes)

Upload size

(bytes)

Length of

time

(seconds)

Signal

Strength

(dBm)

Battery life

consumed

(%)

113586 6336,2 4,5854 -109 0,046

112755,6 6422 4,0348 -107 0,04

110777,4 6141,6 3,4922 -105 0,04

110943,8 6157,2 3,326 -103 0,036

110953,2 5973,2 3,1232 -101 0,034

110735,8 2,893 2,9044 -99 0,03

110735,8 2,893 2,6878 -97 0,03

108576 3256,2 2,487 -95 0,03

110767 5866 2,2854 -93 0,03

111772,2 5408,6 2,0534 -91 0,03

110798,2 5771,6 1,7 -89 0,03

110777,4 5633,2 1,4256 -87 0,03

110839,8 5930 1,381 -85 0,03

110756,6 5759,6 1,2134 -83 0,028

184

Table A.2 shows the averages of downloading a 1 MB file five times over 3G at

the listed signal strengths.

Table A.2 Downloading a 1 MB file at differing signal strengths over 3G

Download

size (bytes)

Upload size

(bytes)

Length of

time

(seconds)

Signal

Strength

(dBm)

Battery life

consumed

(%)

1151687,2 24341,4 8,621 -109 0,074

1095458,2 22898,6 8,0312 -107 0,066

1095075,6 22721,4 7,5674 -105 0,064

1095109 22339,6 6,6692 -103 0,06

1094606,8 22359,6 6,2522 -101 0,06

1094409,4 22563,4 5,8968 -99 0,06

1095219,8 23494,6 5,6866 -97 0,056

1094604,2 22615,4 5,475 -95 0,052

1094085,4 21965,8 5,697 -93 0,052

1094286,4 22125,2 5,571 -91 0,05

1094273,4 22166,8 5,4596 -89 0,05

1094294,8 22321,8 5,2438 -87 0,05

1094296,4 22718,6 4,6392 -85 0,042

1094184,4 21763,4 4,3496 -83 0,04

Table A.3 shows the averages of downloading a 10 MB file five times over 3G

at the listed signal strengths.

Table A.3 Downloading a 10 MB file at differing signal strengths over 3G

Download

size (bytes)

Upload size

(bytes)

Length of

time

(seconds)

Signal

Strength

(dBm)

Battery life

consumed

(%)

11259890,4 568355,078 86,4934 -109 0,344

11251983,2 558212 82,1978 -107 0,2666

11246931,4 547895,4 78,2712 -105 0,326

11250887,6 567491,8 74,3442 -103 0,316

11253099 566594,4 71,549 -101 0,304

185

11254983,8 566118 68,9362 -99 0,3

11250560,2 556423 66,142 -97 0,29

11253254,8 564541,8 63,8092 -95 0,282

11250604,4 574715,8 60,534 -93 0,28

11249730 528646,8 57,5236 -91 0,276

11249249,4 571794,8 54,694 -89 0,27

11247522,8 569023,6 51,8506 -87 0,26

11246010,2 561508,4 47,5784 -85 0,25

11247039,8 574509,4 44,4142 -83 0,242

Table A.4 shows the averages of uploading a 100 KB file five times over 3G at

the listed signal strengths.

Table A.4 Uploading a 100 KB file at differing signal strengths over 3G

Download

size (bytes)

Upload size

(bytes)

Length of

time

(seconds)

Signal

Strength

(dBm)

Battery life

consumed

(%)

7146,4 109469,4 5,9658 -109 0,05

7177,6 109450 5,7558 -107 0,048

7583,2 109477 5,5452 -105 0,044

7148,8 109373 5,1242 -103 0,04

7117,6 109465 4,8738 -101 0,04

7073,6 109397 4,557 -99 0,03

7167,2 109450 4,2022 -97 0,03

7084 109537,8 3,847 -95 0,03

7136 109438 3,5516 -93 0,03

7042,4 109442 3,2556 -91 0,03

7167,2 109450 2,996 -89 0,03

7042,4 109361 2,7356 -87 0,03

7032 109363,4 2,4886 -85 0,02

7312,8 109430,8 2,1944 -83 0,02

Table A.5 shows the averages of uploading a 1 MB file five times over 3G at the

listed signal strengths.

186

Table A.5 Uploading a 1 MB file at differing signal strengths over 3G

Download

size (bytes)

Upload size

(bytes)

Length of

time

(seconds)

Signal

Strength

(dBm)

Battery life

consumed

(%)

26329,2 1104551,4 13,2722 -109 0,09

26189 1105474,5 12,8525 -107 0,09

26281 1105535 12,2852 -105 0,09

25846,6 1105415,4 11,8058 -103 0,09

25701 1105465,2 11,3168 -101 0,08

25515,4 1105478 10,8272 -99 0,08

25701 1105709 10,2844 -97 0,08

25586,6 1106077,4 9,7414 -95 0,08

25378,6 1105425 9,1984 -93 0,08

25317,8 1105427,4 8,655 -91 0,072

25586,6 1105802,2 8,1992 -89 0,07

25781,8 1105473,8 7,6514 -87 0,07

25430,6 1105529,4 7,208 -85 0,06

25482,6 1105440 6,8298 -83 0,06

Table A.6 shows the averages of uploading a 10 MB file five times over 3G at

the listed signal strengths.

Table A.6 Uploading a 10 MB file at differing signal strengths over 3G

Download

size (bytes)

Upload size

(bytes)

Length of

time

(seconds)

Signal

Strength

(dBm)

Battery life

consumed

(%)

209599,4 10863542,8 87,36 -109 0,342

206657,8 10772445 83,008 -107 0,336

210445 10882590,2 79,6002 -105 0,328

203296 10594173,6 76,0798 -103 0,318

210189,8 10883938,6 72,5594 -101 0,308

203017 10571106 69,2838 -99 0,298

200337,8 10531352,8 66,0078 -97 0,288

187

209763,4 10871322 62,7604 -95 0,28

207787,4 10752166,4 59,5904 -93 0,276

203633,8 10612600 56,5906 -91 0,266

209748,2 10932941,6 53,7952 -89 0,266

200157,8 10457278,4 50,8444 -87 0,26

207313,8 10825073,8 47,8932 -85 0,248

208122,6 10838406 43,9966 -83 0,242

A.2. 4G

Table A.7 shows the averages of downloading a 100 KB file five times over 4G

at the listed signal strengths.

Table A.7 Downloading a 100 KB file at differing signal strengths over 4G

Download

size (bytes)

Upload size

(bytes)

Length of

time

(seconds)

Signal

Strength

(dBm)

Battery life

consumed

(%)

110798,2 5228,4 0,7498 -117 0,03

110881,4 5386,8 0,6188 -115 0,03

110829,4 5548,4 0,5916 -113 0,03

110943,8 5563,6 0,5684 -111 0,03

110819 5226 0,532 -109 0,03

110746,2 5327,6 0,5176 -107 0,03

110881,4 5236,4 0,5074 -105 0,03

110829,4 5199,6 0,5036 -103 0,03

110902,2 5216,4 0,4994 -101 0,022

110746,2 5130 0,4948 -99 0,02

110850,2 5542,8 0,4896 -97 0,02

110767 5054,8 0,4858 -95 0,02

110798,2 5174 0,4816 -93 0,02

110683,8 4966 0,4776 -91 0,02

111709,8 4718,6 0,473 -89 0,02

110860,6 4832,4 0,4602 -87 0,02

188

Table A.8 shows the averages of downloading a 1 MB file five times over 4G at

the listed signal strengths.

Table A.8 Downloading a 1 MB file at differing signal strengths over 4G

Download

size (bytes)

Upload size

(bytes)

Length of

time

(seconds)

Signal

Strength

(dBm)

Battery life

consumed

(%)

1094986,6 24437,8 6,6614 -117 0,066

1126085 48722,8 6,4714 -115 0,064

1097711,2 23280,6 6,2812 -113 0,06

1125177,4 48812 6,0914 -111 0,06

1079054,2 23920,2 5,9008 -109 0,06

1126284,2 50048 5,7606 -107 0,06

1096759,2 23364,2 5,6196 -105 0,06

1126322,6 50604,8 5,4908 -103 0,054

1094458 22163 5,3614 -101 0,05

1095091,2 22606,2 5,1692 -99 0,05

1095100,2 22077,8 4,9762 -97 0,05

1094959,2 22077,8 4,7328 -95 0,05

1094743,6 22808,2 4,489 -93 0,046

1094388,4 22225,8 4,2956 -91 0,04

1094600,4 22481 4,1418 -89 0,04

1094510 22223,4 3,942 -87 0,04

Table A.9 shows the averages of downloading a 10 MB file five times over 4G

at the listed signal strengths.

Table A.9 Downloading a 10 MB file at differing signal strengths over 4G

Download

size (bytes)

Upload size

(bytes)

Length of

time

(seconds)

Signal

Strength

(dBm)

Battery life

consumed

(%)

11246435,4 521323,2 54,6284 -117 0,34

11249471,2 502325,8 52,5936 -115 0,326

11245909 484040,2 50,526 -113 0,324

189

11251990,2 572539 49,4844 -111 0,314

11248859,6 502855,8 48,442 -109 0,312

11246244,4 505032,6 47,6622 -107 0,3

11245313,6 498445,2 46,808 -105 0,3

11243960,8 487614 45,4728 -103 0,286

11250818,4 516791,6 44,1776 -101 0,282

11243416 498219,4 43,241 -99 0,276

11243953,4 500960,8 42,5732 -97 0,266

11244812,2 502604,4 41,5138 -95 0,264

11244354,8 501160,4 40,5716 -93 0,26

11244090,8 498405,8 39,49868 -91 0,256

11243377,4 509142,6 38,5354 -89 0,254

11243379,4 514120,2 37,4826 -87 0,248

Table A.10 shows the averages of uploading a 100 KB file five times over 4G at

the listed signal strengths.

Table A.10 Uploading a 100 KB file at differing signal strengths over 4G

Download

size (bytes)

Upload size

(bytes)

Length of

time

(seconds)

Signal

Strength

(dBm)

Battery life

consumed

(%)

7125,6 109411 4,4554 -117 0,04

7115,2 109365,8 4,3668 -115 0,04

7253,6 117616,2 4,2524 -113 0,04

7175,2 112886 4,1374 -111 0,04

7229,6 113623,4 4,0092 -109 0,04

7084 109438 3,8802 -107 0,04

7042,4 109403,4 3,7588 -105 0,04

7052,8 109363,4 3,637 -103 0,04

7042,4 109365,8 3,5302 -101 0,034

7146,4 109361 3,386 -99 0,03

7042,4 109353 3,1858 -97 0,03

7032 109365,8 2,9968 -95 0,03

7032 109361 2,7682 -93 0,03

190

7032 109361 2,633 -91 0,03

7032 109365,8 2,549 -89 0,03

7073,6 109416,4 2,4086 -87 0,03

Table A.11 shows the averages of uploading a 1 MB file five times over 4G at

the listed signal strengths.

Table A.11 Uploading a 1 MB file at differing signal strengths over 4G

Download

size (bytes)

Upload size

(bytes)

Length of

time

(seconds)

Signal

Strength

(dBm)

Battery life

consumed

(%)

25285 1105470 8,8188 -117 0,08

25285 1105445 8,436 -115 0,07

25285 1105448 8,255 -113 0,07

25285 1105416 7,954 -111 0,07

25285 1105421 7,7924 -109 0,07

25300,2 1105389 7,6306 -107 0,07

25295,4 1105389 7,376 -105 0,07

25295,4 1105445 7,122 -103 0,07

25285 1105470 6,8072 -101 0,06

25295,4 1105470 6,6686 -99 0,06

25285 1105443 6,443 -97 0,06

25305,8 1105416 6,2772 -95 0,06

25285 1105416 6,1548 -93 0,06

25305,8 1105391 6,0652 -91 0,06

25295,4 1105421 5,9718 -89 0,06

25287,4 1105445 5,8422 -87 0,06

Table A.12 shows the averages of uploading a 10 MB file five times over 4G at

the listed signal strengths.

Table A.12 Uploading a 10 MB file at differing signal strengths over 4G

Download

size (bytes)

Upload size

(bytes)

Length of

time

Signal

Strength

Battery life

consumed

191

(seconds) (dBm) (%)

201510,6 10471336 59,0594 -117 0,35

200762,6 10465785 55,4008 -115 0,338

199177 10364064 52,293 -113 0,326

199341 10348835 50,4806 -111 0,314

199472,2 10377540 49,4344 -109 0,31

203216,2 10564234 48,4624 -107 0,306

200951,8 10494400 47,5264 -105 0,3

204889,8 10619118 46,5952 -103 0,298

200816,2 10529033 45,802 -101 0,29

204594,6 10645834 44,6222 -99 0,28

201983,4 10461478 43,5598 -97 0,278

202041 10510461 42,5236 -95 0,27

202637,8 10520769 41,6988 -93 0,268

205294,6 10578951 40,7294 -91 0,26

202706,6 10435655 39,5752 -89 0,26

196701 10272467 38,5584 -87 0,256

A.3. Wi-Fi

Table A.13 shows the averages of downloading a 100 KB file five times over

Wi-Fi at the listed signal strengths.

Table A.13 Downloading a 100 KB file at differing signal strengths over Wi-Fi

Download

size (bytes)

Upload size

(bytes)

Length of

time

(seconds)

Signal

Strength

(dBm)

Battery life

consumed

(%)

112088,4 6767,6 11,5288 -89 0,05

112114,2 6098,6 9,8606 -87 0,05

112378,4 6487,2 9,2762 -85 0,05

110943,2 6512,4 8,6912 -83 0,05

111027,2 5933,2 8,3962 -81 0,05

110873 4809,2 8,0908 -79 0,05

110547,4 4518 7,5672 -77 0,05

192

110821 5304,4 7,0432 -75 0,042

110740,4 5008,4 6,843 -73 0,04

110650,6 4666 6,401 -71 0,04

111214,6 5082,8 6,0798 -69 0,04

110860,8 5482,8 5,7582 -67 0,04

111111,6 6245,6 5,1164 -65 0,04

110645,4 5163,6 4,8404 -63 0,04

110957,4 5407,6 4,5638 -61 0,038

110926,2 5482,8 4,2306 -59 0,03

110853,4 4931,6 3,8972 -57 0,03

110525,6 4894 3,4706 -55 0,024

111305,2 5389,6 2,8232 -53 0,02

111198,6 5547,6 2,4228 -51 0,014

110600,6 4938,8 1,9942 -49 0,01

110548,6 5053,2 1,7236 -47 0,01

110642,2 5060,4 1,4448 -45 0,01

107544,8 3147,4 1,2764 -43 0,01

Table A.14 shows the averages of downloading a 1 MB file five times over Wi-Fi

at the listed signal strengths.

Table A.14 Downloading a 1 MB file at differing signal strengths over Wi-Fi

Download

size (bytes)

Upload size

(bytes)

Length of

time

(seconds)

Signal

Strength

(dBm)

Battery life

consumed

(%)

1134633 48723 51,2684 -89 0,132

1134720,8 48113 48,4296 -87 0,13

1126345,2 41969,6 45,0336 -85 0,13

1128914,8 46413,6 42,6316 -83 0,12

1126351,4 41923 39,6522 -81 0,12

1130019,8 47146,8 36,6726 -79 0,11

1125910,6 42125,6 34,495 -77 0,11

193

1128193,2 45880,4 32,317 -75 0,1

1125894,6 43044,8 30,836 -73 0,1

1126228,2 46106,4 29,3532 -71 0,1

1131896,2 45632,2 26,2856 -69 0,09

1125596,6 43558,4 24,2022 -67 0,08

1126554,8 45391,2 23,3164 -65 0,076

1127054,6 43096 20,1876 -63 0,068

1125668,2 42893,6 18,9346 -61 0,06

1128451,4 44663,6 17,6772 -59 0,06

1125975,8 43621,6 15,3774 -57 0,06

1127161 43484,6 13,6846 -55 0,058

1125130,6 41281,6 12,313 -53 0,05

1125779 42752 10,5538 -51 0,05

1125470,8 41855,2 8,6028 -49 0,05

1125084,8 40770,4 7,4148 -47 0,042

1125341,4 41275,2 6,5798 -45 0,04

1124951,8 40327,2 5,7038 -43 0,04

Table A.15 shows the averages of downloading a 10 MB file five times over Wi-

Fi at the listed signal strengths.

Table A.15 Downloading a 10 MB file at differing signal strengths over Wi-Fi

Download

size (bytes)

Upload size

(bytes)

Length of

time

(seconds)

Signal

Strength

(dBm)

Battery life

consumed

(%)

11255460,4 405210,8 84,3942 -89 0,23

11265216 410017 82,6528 -87 0,22

11264742,2 422079,8 82,2888 -85 0,22

11274463,2 408708,6 81,9246 -83 0,22

11263927,6 414553 81,1524 -81 0,222

11277097,6 410928,6 80,3798 -79 0,22

11243476,6 405368,2 79,3584 -77 0,214

11245876,4 402410 78,0886 -75 0,21

11244205,6 403266 76,0036 -73 0,202

194

11247193,4 399644,4 73,4834 -71 0,194

11245444,2 402324,6 72,2574 -69 0,19

11245071,2 403136,4 70,5538 -67 0,18

11247066,4 402787,6 69,2806 -65 0,18

11249186,6 401762,2 67,9108 -63 0,178

11247341,8 401909,4 66,5866 -61 0,17

11243962 398658 65,3148 -59 0,17

11243439,6 400203,4 63,6594 -57 0,16

11242077,2 398474 60,737 -55 0,16

11242146,8 395993 58,9942 -53 0,152

11241255,2 393752,2 57,8156 -51 0,15

11241640,2 393705,8 56,7202 -49 0,15

11242702,6 393246,8 55,3794 -47 0,15

11241172,6 393603,4 53,5682 -45 0,14

11246843,8 400070,8 51,8166 -43 0,136

Table A.16 shows the averages of uploading a 100 KB file five times over Wi-Fi

at the listed signal strengths.

Table A.16 Uploading a 100 KB file at differing signal strengths over Wi-Fi

Download

size (bytes)

Upload size

(bytes)

Length of

time

(seconds)

Signal

Strength

(dBm)

Battery life

consumed

(%)

9188,8 138591,4 9,806 -89 0,02

8900,8 140516 9,5168 -87 0,02

8221,2 130624,4 9,2244 -85 0,02

8297,6 128299,6 8,827 -83 0,02

8309,6 130089,8 8,6144 -81 0,02

7468,8 115084 8,4964 -79 0,016

8092 126867,6 8,3922 -77 0,01

7740,8 115914,6 8,2896 -75 0,01

8603,2 133721,8 8,0934 -73 0,01

8237,6 127772,6 7,9212 -71 0,01

195

8888,8 139886,4 7,8446 -69 0,01

8914,4 141812,2 7,7512 -67 0,01

8652,8 134141 7,2574 -65 0,01

7073,6 109626,2 6,6582 -63 0,01

7855,2 121336,6 6,1602 -61 0,01

7973,6 123641 5,913 -59 0,01

8290,4 126973,8 5,7586 -57 0,01

7890,4 122464 5,6866 -55 0,01

7885,6 121600 5,6326 -53 0,01

7042,4 109361 5,609 -51 0,01

7817,6 119898,4 5,5792 -49 0,01

7421,6 115609 5,524 -47 0,01

7032 109361 5,4656 -45 0,01

7441,6 115041 5,4002 -43 0,01

196

A.4. Computation

The results from the experiments when measuring the power consumption of

the device when it is performing computations is discussed in this section. The

percentage battery life consumed is compared to the length of time the

computation lasted. The results shown are the averages of executing the

experiment 3 times.

Table A.17 Results of computational experiments

Length of time (seconds) Battery life consumed (%)

1 0,001333

5 0,003333

10 0,007

15 0,012

20 0,018

25 0,023

30 0,033

35 0,035

40 0,039

45 0,048333

50 0,052667

55 0,056

60 0,064333

65 0,066

70 0,075333

75 0,080333

80 0,084667

85 0,089

90 0,094

	Table of Contents
	List of Figures
	List of Tables
	List of Equations
	Chapter 1: Introduction
	1.1. Introduction
	1.2. Description of the problem area
	1.3. Motivation
	1.4. Problem statement
	1.4.1. Research objective
	1.4.2. Research questions
	a. What resources are constrained on mobile devices, and which of them can be augmented?
	b. What are the requirements of a framework that can conserve battery life on mobile devices by using offloading?
	c. How can an offloading decision be designed to conserve the battery life of a mobile device?
	d. Does the framework proposed by this dissertation conserve battery life on mobile devices?

	1.5. Research methodology
	1.5.1. Defining the research strategy and methodologies used
	a. Literature review
	b. Framework
	c. Prototype
	d. Argument

	1.5.2. Research methodologies applied in this research
	a. Literature review
	b. Framework
	c. Prototype
	d. Arguments

	1.6. Important terms
	1.6.1. Battery life
	1.6.2. Bandwidth
	1.6.3. Cloud-based mobile augmentation
	1.6.4. Energy consumption profile

	1.7. Layout of this document
	1.7.1. Introduction
	1.7.2. Part 1: Literature Review
	a. Chapter 2
	b. Chapter 3
	c. Chapter 4
	d. Chapter 5
	e. Chapter 6

	1.7.3. Part 2: Framework & Prototype
	a. Chapter 7
	b. Chapter 8
	c. Chapter 9

	1.7.4. Conclusion

	1.8. Conclusion

	Part 1:
	Literature Review
	Chapter 2: Mobile device and resource usage
	2.1. Introduction
	2.2. Mobile devices
	2.2.1. Definition: Mobile devices
	2.2.2. Hardware
	a. Small form factor
	b. Wireless connection
	c. Local built-in storage
	d. Battery
	e. Network services
	f. Digital camera/video recording devices
	g. Microphone
	h. Storage

	2.2.3. Software
	a. Operating System
	i. Android
	ii. iOS
	iii. Windows Phone

	b. Mobile applications
	c. Comparison of mobile operating systems

	2.2.4. Increased use of mobile devices

	2.3. Mobile device resources
	2.3.1. Computing power
	2.3.2. Memory
	2.3.3. Storage
	2.3.4. Display
	2.3.5. Bandwidth
	a. Wi-Fi
	b. Cellular networks
	c. Bluetooth

	2.3.6. Battery
	2.3.7. Comparison of modern mobile devices

	2.4. Conclusion

	Chapter 3: Augmenting mobile device resources
	3.1. Introduction
	3.2. Mobile resource augmentation
	3.2.1. Hardware
	3.2.2. Software
	3.2.3. Offloading
	a. Cyber-foraging
	b. Cloud
	i. MAUI
	ii. Cloudlets
	iii. CloneCloud
	iv. Comparison of offloading solutions

	3.3. Constrained resources of mobile devices
	3.3.1. Bandwidth

	3.4. Battery life
	3.4.1. Effect of bandwidth on battery life
	3.4.2. Effect of mobile device usage on battery life

	3.5. Requirements for conserving battery life when offloading
	3.6. Conclusion

	Chapter 4: Cloud-based Mobile Augmentation
	4.1. Introduction
	4.2. Cloud computing
	4.2.1. Definition: Cloud computing
	4.2.2. Characteristics of the cloud
	a. On-demand self-service
	b. Broad network access
	c. Resource pooling
	d. Rapid elasticity
	e. Measured service

	4.2.3. Cloud architecture
	4.2.4. Service models
	a. Infrastructure as a Service
	b. Platform as a Service
	c. Software as a Service
	d. X as a Service

	4.2.5. Deployment models
	a. Private cloud
	b. Community cloud
	c. Public cloud
	d. Hybrid cloud

	4.3. Mobile Cloud Computing
	4.3.1. Definition: Mobile cloud computing
	a. Consumption
	b. Providing
	c. Offloading

	4.3.2. Mobile cloud computing architecture
	4.3.3. Cloud-based mobile augmentation
	4.3.4. Cloud-based mobile augmentation models
	a. Distant fixed
	b. Proximate fixed
	c. Proximate mobile
	d. Hybrid

	4.3.5. Distant fixed cloud-based mobile augmentation
	a. CloneCloud
	b. MAUI

	4.3.6. Advantages of cloud-based mobile augmentation
	a. Extendable battery lifetime
	b. Resource augmentation
	c. Improved reliability

	4.3.7. Challenges of mobile cloud-based augmentation
	a. Dependency on high-performance networking infrastructure
	b. Excessive communication overhead and traffic
	c. Unauthorized access to offloaded data
	d. Application development complexity
	e. Paid infrastructures

	4.4. Conclusion

	Chapter 5: Offloading
	5.1. Introduction
	5.2. Definition: Offloading
	5.3. Methods of offloading
	5.3.1. Client-server communication
	5.3.2. Virtualization
	5.3.3. Mobile agents
	5.3.4. Comparison of offloading methods

	5.4. Connection protocols
	5.4.1. Wi-Fi
	5.4.2. Bluetooth
	5.4.3. 3G
	5.4.4. 4G
	5.4.5. Comparison of connection protocols

	5.5. Offloading approaches
	5.5.1. Offloading steps
	a. Application partitioning
	b. Preparation
	c. Offloading decision

	5.5.2. Comparison of mobile cloud computing offloading frameworks
	a. CloneCloud
	i. Partitioning
	ii. Preparation
	iii. Offloading decision

	b. MAUI
	i. Partitioning
	ii. Preparation
	iii. Offloading decision

	c. Comparison of mobile cloud computing offloading frameworks

	5.6. Challenges of offloading
	5.6.1. Low bandwidth
	5.6.2. Availability
	5.6.3. Heterogeneity
	5.6.4. Security

	5.7. Conclusion

	Chapter 6: Decision Making
	6.1. Introduction
	6.2. Definition: Decision making
	6.3. Decision making
	6.3.1. Goal
	6.3.2. Options
	6.3.3. Factors

	6.4. Factors influencing the offloading decision
	6.4.1. Communication
	a. Size of data
	b. Communication protocol
	c. Bandwidth

	6.4.2. Computation
	a. Code complexity
	i. McCabe’s cyclomatic complexity
	ii. Halstead’s complexity measures
	iii. Big-O notation

	b. Length of time to execute

	6.5. Comparison of decision-making for offloading approaches
	6.5.1. CloneCloud
	a. Profiler
	b. Optimization Solver

	6.5.2. MAUI
	a. Profiler
	i. Device profile
	ii. Program profile
	iii. Network profile

	b. Solver

	6.5.3. Comparison of decision-making for offloading approaches
	6.5.4. Energy consumption profiling
	a. Software-based energy consumption profiling
	b. Hardware-based energy consumption profiling
	c. Proposed energy consumption profile

	6.6. Conclusion

	Part 2:
	Model & Prototype
	Chapter 7: Switch: A framework for offloading decision making
	7.1. Introduction
	7.2. Requirements for conserving battery life when offloading
	7.2.1. Intelligent offloading decision making
	7.2.2. Multiple network support
	7.2.3. Lightweight
	7.2.4. Portable

	7.3. Switch energy consumption profile
	7.4. Switch offloading decision
	7.5. Switch architecture
	7.5.1. Switch operation
	7.5.2. Switch profiler
	7.5.3. Switch decision-making component
	7.5.4. Energy consumption profile
	7.5.5. Mobile application and a cloud component

	7.6. Conclusion

	Chapter 8: Energy consumption profile of mobile devices
	8.1. Introduction
	8.2. Energy consumption profile models
	8.3. The conditions of the evaluation
	8.3.1. Environment
	a. Device under test
	b. Third-party measuring software
	i. Network Signal Info Pro
	ii. GSam Battery Monitor

	8.3.2. Experiments
	a. Communication
	b. Computation

	8.4. Results
	8.4.1. Communication
	a. 3G
	i. Download
	100 KB
	1 MB
	10 MB

	ii. Upload
	100 KB
	1 MB
	10 MB

	iii. Evaluation

	b. 4G
	i. Download
	100 KB
	1 MB
	10 MB

	ii. Upload
	100 KB
	1 MB
	10 MB

	iii. Evaluation

	c. Wi-Fi
	i. Download
	100 KB
	1 MB
	10 MB

	ii. Upload
	100 KB

	iii. Evaluation

	d. Comparison

	8.4.2. Computation

	8.5. Energy consumption profile
	8.6. Conclusion

	Chapter 9: Switch: Prototype
	9.1. Introduction
	9.2. Switch components
	9.2.1. Switch Profiler
	a. checkNetwork
	b. startLocalMonitoring & stopLocalMonitoring
	c. startNetworkMonitoring & stopNetworkMonitoring

	9.2.2. Energy consumption profile
	9.2.3. Decision-making component

	9.3. Implementation and evaluation
	9.3.1. Results
	a. Task 1 – Steganographic file encoding
	i. Local
	ii. 3G
	iii. 4G
	iv. Wi-Fi
	v. Comparison

	b. Task 2 – Steganographic file decoding
	i. Local
	ii. 3G
	iii. 4G
	iv. Wi-Fi
	v. Comparison

	c. Task 3 – Prime number counting
	i. Local
	ii. 3G
	iii. 4G
	iv. Wi-Fi
	v. Comparison

	9.3.2. Evaluation
	a. Switch experimentation percentage error

	9.4. Conclusion

	Chapter 10: Conclusion
	10.1. Introduction
	10.2. Revisiting the research objective and questions
	10.2.1. What resources are constrained on mobile devices, and which of them can be augmented?
	a. Which mobile devices resources can be augmented, and which cannot?
	b. What methods can be used to augment the resources on mobile devices?
	c. How are mobile devices resources augmented by using the cloud?

	10.2.2. What are the requirements of a framework that can conserve battery life on mobile devices by using offloading?
	10.2.3. How can an offloading decision be designed to conserve the battery life of a mobile device?
	a. What is offloading and what approaches can be used to offload from mobile devices?
	b. How can energy consumption be measured?
	c. Which factors should be taken into account when estimating energy consumption?

	10.2.4. Does the framework proposed by this dissertation conserve battery life on mobile devices?
	a. What tasks and evaluation criteria can be used to determine the effectiveness of the proposed framework?
	b. To what extent does the proposed framework meet the identified evaluation criteria and which deficiencies and be identified?
	i. Intelligent offloading decision making
	ii. Multiple network support
	iii. Lightweight
	iv. Portable

	10.3. Limitation of this research
	10.4. Research contribution and future work
	10.5. Conclusion
	10.6.

	References
	&
	Appendix
	References
	Appendix A: Real-world energy consumption data
	A.1. 3G
	A.2. 4G
	A.3. Wi-Fi
	A.4. Computation

