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Abstract  

The increased use of mobile devices has led to the creation of complex mobile 

applications that require more resources than are readily available on mobile 

devices. As resources such as processing power and storage are found on the 

cloud, resources of mobile devices can be increased by using cloud-based mobile 

augmentation. However, some resources, specifically battery life, and bandwidth 

cannot be augmented.  

 

To augment mobile device resources such as battery life, offloading can be used. 

This research discusses offloading methods and examines the approaches used in 

related research. It is found that most of the energy consumed when offloading is 

due to network communication, as opposed to computation when executing locally. 

When offloading to the cloud consumes less energy than local execution, the battery 

life of a mobile device can be conserved. Choosing between offloading and local 

execution is called an offloading decision. To make offloading decisions that 

conserve battery life, the decision-making process is explored. A challenge identified 

when making offloading decisions is accurately estimating the energy consumption 

of tasks when offloading and when executing locally. As the energy consumption 

profile of each device differs according to the capabilities of the device, this aspect is 

explored.  

 

The research conducted in this dissertation proposes the Switch framework. The 

Switch framework conserves the limited battery life on mobile devices by estimating 

the consumption of energy of a task and choosing the least expensive option. A 

software-based device-specific energy consumption profile is created for this 

purpose. Switch is evaluated using the Switch prototype, which has been designed 

according to the specifications of the framework. The prototype is evaluated by 

comparing the estimated energy consumption against the measured energy 

consumption. The evaluation of the framework suggests that Switch can successfully 

be used to conserve battery life on mobile devices by making intelligent offloading 

decisions.  
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Chapter 1: Introduction 

1.1. Introduction 

In recent years there has been an increase in the use of mobile devices over 

traditional computers. The growth in mobile computing capabilities has led to 

rising user expectations with regards to the functionality that should be provided 

by mobile applications.  Unfortunately, the development of mobile applications 

that are powerful enough to meet the user expectations is hindered by the 

resource constraints of mobile devices (Fakoor et al., 2012). 

 

Developments in recent years have yielded advances in the capabilities of 

mobile devices, thereby reducing some of their available resources. 

Computational power, memory, storage and battery life are traded to enable the 

mobility and flexibility of mobile devices. Limitations on mobile device 

resources, in turn, prevent the development of mobile applications that are able 

to provide the functionality expected by the users (Bahl et al., 2012). Thus, by 

meeting certain user expectations, other mobile device requirements pay a 

price. 

 

To address mobile device resource constraints, cloud computing has provided a 

viable solution. Mell and Grance (2009), define cloud computing as a model that 

provides pervasive access to a shared pool of resources that can rapidly 

become available and be released with minimal management effort or service 

provider interaction. Some of the resources provided by the cloud include 

networks, servers, storage, applications, and services (Mell and Grance, 2009). 

 

Fortunately, the resources that are lacking in mobile devices are abundantly 

available on the cloud. Cloud computing can ensure that the problems faced by 

mobile developers can be overcome by augmenting the limited resources of 

mobile devices with the resources from the cloud. Cloud-based mobile 

augmentation (CMA) enables the development of applications that both support 

more complex application capabilities when executed by traditional computers, 

as well as the mobility enabled by mobile devices (Abolfazli et al., 2014). 
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Using the cloud to augment mobile devices is not a new idea, as several ways 

exist that can incorporate the cloud with mobile devices (Christensen, 2009; 

Cuervo et al., 2010; Hung et al., 2012), indicating that cloud computing is a 

viable option to augment mobile devices resources.  

 

The goal of this research is to create a framework that conserves battery life on 

mobile devices by making intelligent offloading decisions. To achieve this, 

mobile devices and cloud computing, specifically mobile cloud computing, are 

examined to provide an understanding of the limitations of mobile devices and 

how the cloud can be used to augment mobile devices. This examination is 

used to identify the requirements of the proposed framework. Thereafter, 

offloading is discussed to gain an understanding of and to evaluate different 

offloading approaches. Next, the decision-making process is reviewed to 

identify the factors that influence offloading decision making. The proposed 

framework enables developers to conserve battery life on mobile devices by 

making the offloading decision based on the state and hardware of the mobile 

device. 

 

In section 1.2 the problem domain is defined, section 1.3 gives a brief 

motivation for this research. Section 1.4 states the problem to be addressed by 

this research. The research methodology used throughout this document is 

defined in section 1.5. Section 1.6 gives a brief list of important terms used 

throughout the research. In section 1.7 the layout of this document is discussed. 

Finally, the chapter is concluded. 

 

1.2. Description of the problem area 

Mobile devices have become a ubiquitous and convenient method of 

communication. The increased usage of mobile devices has led to an increase 

in the complexity of mobile applications expected by users. The development of 

complex mobile applications is hindered by the limited resources of mobile 

devices. Resource constraints can be countered by using a cloud-based mobile 

augmentation. Unfortunately, resource constraints of mobile devices such as 

battery life cannot be addressed by using the cloud (Abolfazli et al., 2014; Dinh 

et al., 2013). In addition, frameworks that have been defined to support software 
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developers to add cloud augmentation to their mobile applications are complex 

and require hardware components.  

1.3. Motivation 

Battery life is the most important resource of a mobile device, as when the 

battery is completely discharged it cannot be used. Research has shown that 

the offloading of code from a battery powered device can conserve its battery 

life (Chun et al., 2011; Kumar and Lu, 2010; Rudenko et al., 1998). To the 

knowledge of the researcher, there does not exist an offloading framework that 

can be integrated with a mobile app to conserve battery life, which does not 

require the use of an external energy consumption monitor. 

 

1.4. Problem statement 

Battery life and bandwidth are resources that cannot be augmented by cloud 

computing. These resource constraints prevent the development of applications 

that provide similar application functionality to traditional devices such as 

desktop and laptop computers. Therefore, the problem addressed by this 

dissertation is the conservation of battery life of mobile devices. 

 

To be able to address the research problem, the primary research objective and 

research questions are specified next.  

 

1.4.1. Research objective 

The primary objective of this dissertation is to propose a framework that can 

support offloading decisions to conserve battery life. The framework is software-

based and should be easily integrated with existing mobile applications. The 

main focus of this dissertation is to identify the factors that influence the battery 

life consumption of mobile devices and to accurately estimate the energy 

consumption cost of a task. 

  

To achieve the research objective, a number of research questions must be 

answered. The next section identifies the research questions that will guide this 

research toward addressing the problems identified. 
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1.4.2. Research questions 

Based on the objectives identified in the previous section research questions 

answered in this dissertation are discussed next. 

What resources are constrained on mobile devices, and which of them a. 

can be augmented? 

In order to address this research question, an understanding of the capabilities 

of mobile device resources and the factors that influence them is required. The 

role of cloud-based augmentation needs to be investigated to address resource 

constraints. To address this research question in more detail, the following 

secondary research questions are defined: 

1. Which mobile devices resources can be augmented, and which cannot? 

2. What methods can be used to augment the resources on mobile 

devices? 

3. How are mobile devices resources augmented by using the cloud?  

 

What are the requirements of a framework that can conserve battery life b. 

on mobile devices by using offloading?  

To be able to evaluate the success of a framework that conserves battery life by 

leveraging the cloud, a set of requirements need to be specified.  

 

How can an offloading decision be designed to conserve the battery life c. 

of a mobile device?  

In order to use offloading to conserve battery life on mobile devices, an 

offloading decision needs to be made. The factors that play a role should be 

identified as well as the design of the offloading decision. To address this 

research question in more detail the following secondary research questions are 

identified: 

1. What is offloading and what approaches can be used to offload from 

mobile devices?  

2. How can energy consumption be measured? 

3. Which factors should be taken into account when estimating energy 

consumption? 
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Does the framework proposed by this dissertation conserve battery life d. 

on mobile devices? 

The proposed framework needs to be evaluated in order to answer this 

question. The success of the offloading decision is based on the accuracy of the 

energy consumption estimates. The secondary research questions identified to 

address this question is: 

1. What tasks and evaluation criteria can be used to determine the 

effectiveness of the proposed framework?  

2. To what extent does the proposed framework meet the identified 

evaluation criteria and which deficiencies and be identified?   

 

The primary contribution of this dissertation is a portable software framework 

that can be used to make offloading decisions to conserve battery life on mobile 

devices. The question listed above serve to narrow the scope and guide the 

course of this dissertation. 

 
1.5. Research methodology 

To address the objectives of this dissertation, the questions posed in the 

previous section needs to be further broken down over the course of this 

dissertation to gain an understanding of the problem domain and provide the 

basis for a solution. To achieve this, a scientific and well-accepted approach 

must be followed to ensure the validity of this research. 

 

Research can be defined as the activity of thoroughly and analytically 

investigating an area, with the goal of discovering or revising facts, theories, or 

applications and disseminating the knowledge discovered. Research 

methodologies are thus the means by which a discipline acquires and 

constructs knowledge. Scientific research methodologies consist of successive 

stages with the purpose of providing answers to questions that arise from 

scientific theories or observations (Olivier, 2009). 

 

Empirical research makes use of empirical evidence to gain knowledge by 

means of observation or experience, whether direct or indirect. By quantifying 

evidence, a researcher answers empirical questions that are clearly defined and 

answerable with the evidence that is collected. Computer science can be seen 



6 
 

as the study of phenomena related to computers, and thus a more empirical 

approach to research can be followed. Quantitative research is defined as the 

methodical empirical investigation of observable phenomena via statistical, 

mathematical or computational techniques, with the goal of to develop and 

employ mathematical models, theories and/or hypotheses pertaining to the 

phenomena (Demeyer, 2011).  

 

Literature reviews, surveys, experiments, models, languages, case studies, 

prototypes, arguments and mathematical proofs are some of the approaches 

that can be used to perform research (Olivier, 2009). The approach used in this 

dissertation is dependent on the goal to be achieved where a careful analysis of 

the problem will assist to identify which approach to use. 

 

1.5.1. Defining the research strategy and methodologies used 

Defining a framework that can be used to conserve battery life on mobile 

devices by leveraging the cloud is the primary goal of this research. The 

research strategy chosen to achieve this goal uses the framework as a primary 

research method and literature review, prototype, and arguments as secondary 

methods. Each of these methods is described next (Olivier, 2009).  

 

Literature review a. 

An understanding of all the concepts that contribute to the research problem is 

necessary to provide a starting point for a solution. To gain the necessary 

understanding, the researcher must take a methodical approach when 

investigating the problem domain and all concepts closely related to it (Olivier, 

2009). 

 

Framework b. 

The understanding gained during the literature review enables formulation and 

proposal a framework in a concise manner (Glass et al., 2004). A framework 

provides a simplified overview of a proposal and can include relevant elements 

such as processes, structures, and definitions. This high-level overview enables 

the understanding, evaluation, and manipulation of the proposed solution 

(Olivier, 2009). 
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Prototype c. 

The implementation of a prototype serves as a proof of concept for the model. 

The prototype demonstrates that the model is viable and can be implemented. 

A prototype can also provide new insights into the model, which a review of the 

model could not provide (Olivier, 2009). 

 

Argument d. 

Arguments enable the logical evaluation of alternative solutions, statements, 

facts, and ideas. The evaluation of alternative solutions enables the logical 

determination, given the relevant evidence, of compatibility of the solutions with 

the problem domain. 

 

1.5.2. Research methodologies applied in this research 

Literature review a. 

This literature review from chapter 2 to 6 explores mobile devices, the resource 

available on mobile devices, the resources available on the cloud and how the 

resources available on mobile devices can be augmented with the resources 

available on the cloud. The dissertation further explores offloading and decision 

making, focussing on the factors that should be taken into account when 

making offloading decisions. In each case, a critical evaluation of literature 

leads to the identification of features of the approach followed by the 

researcher.  

 

Framework b. 

This dissertation proposes the Switch framework to address the problem 

statement. The framework identifies the components and the interaction 

between the components required to successfully address the problem 

statement. The understanding gained in the literature review is used as a 

foundation for the creation of the framework. 

 

Prototype c. 

A prototype of the Switch framework is implemented as a proof of concept. The 

identified components and the interactions between them are used in the 

creation of the prototype. 
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Arguments d. 

The Switch prototype is used to perform a critical evaluation of the Switch 

framework against any identified requirements. 

 

1.6. Important terms 

To avoid misunderstanding, the terminology used in throughout the dissertation 

is now briefly defined. 

 

1.6.1. Battery life 

Battery life is the amount of power that is available on the mobile device. It is 

usually presented as a percentage (Carroll and Heiser, 2010). 

 

1.6.2. Bandwidth 

Bandwidth is the throughput of the network the mobile device is currently 

connected to (Kumar and Lu, 2010). 

 

1.6.3. Cloud-based mobile augmentation 

Cloud-based mobile augmentation is the process of increasing, enhancing, and 

optimizing computing capabilities of mobile devices by leveraging the resource 

available on the cloud (Abolfazli et al., 2014). 

 

1.6.4. Energy consumption profile 

An energy consumption profile characterizes the energy usage of a device, 

during the execution of different tasks on the device (Ahmad et al., 2015). 

 

1.7. Layout of this document 

This dissertation is structured to follow the research methodology suggested by 

Olivier (2009). Therefore, each section builds naturally upon the preceding 

sections so that the end outcome and the reasoning behind it are clear. This 

section presents the structure of this dissertation and the flow of concepts from 

each chapter to the next. The four sections of this document are illustrated in 

figure 1.1.  
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Figure 1.1 Dissertation Layout 

 

Each of the sections is described as follows: 

 

1.7.1. Introduction 

Chapter 1 of the dissertation introduces the reader to the nature of the problems 

to be addressed, the objectives required to be addressed and the questions that 

must be satisfied to achieve the objectives. This section also serves to 

introduce the reader to the research methodology used and the structure of the 

research and the resulting document, this dissertation. 

 

1.7.2. Part 1: Literature Review 

Part 1 of this dissertation focuses on the review of relevant literature to form the 

basis for Part 2. This section is broken down into 5 chapters which review 

current, relevant literature on a topic related to the problem domain. Each 

chapter is briefly discussed in the sections below. 

 

Chapter 2 a. 

Chapter 2 defines mobile devices and the resources available on mobile 

devices. This chapter indicates that mobile devices are being used more often 
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as end-users’ primary device, instead of traditional computers. The increased 

use lead to demands of more complex applications on resource-limited mobile 

devices. 

 

Chapter 3 b. 

Chapter 3 discusses the options available to increase the resources available 

on mobile devices and determines that the most reliable method of increasing 

the resources on a mobile device is augmenting the resources by offloading. 

 

Chapter 4 c. 

Chapter 4 briefly discusses cloud computing and the potential that lies therein. 

The background knowledge of cloud computing is used to discuss mobile cloud 

computing and the different ways mobile devices can access resources on the 

cloud. 

 

Chapter 5 d. 

Chapter 5 discusses offloading, focussing on offloading from mobile devices to 

the cloud or mobile cloud. The methods that are available to offload, the 

connection protocols used to connect mobile devices to the networks required 

for offloading, the challenges that need to be overcome when offloading and the 

factors that influence the offloading decision were also discussed. 

 

Chapter 6 e. 

Chapter 6 discusses decision making in general, offloading decisions in 

particular and the factors that influence the offloading decision, how the factors 

are measured in current research and how the factors are measured in the 

implementations in this dissertation. 

 

1.7.3. Part 2: Framework & Prototype 

Part 2 of this research addresses the second and third actions of the research 

methodology suggested by Olivier (2009) by presenting the culmination of this 

research in the form of a framework which is evaluated by the implementation of 

a prototype. The sections below discuss the chapters of Part 2. 
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Chapter 7 a. 

Chapter 7 provides an understanding of the components of the model designed 

to achieve the research goal, how the components of the framework 

communicate and gives a broad view of the challenges of implementing a 

prototype based on the model. 

 

Chapter 8 b. 

Chapter 8 discusses the experiments used to evaluate real-world energy 

consumption during communication and computation and the results gathered 

from these experiments. The data gathered from the experiments are used to 

inform the prototype implemented in this dissertation. 

 

Chapter 9 c. 

Chapter 9 evaluates the framework presented in chapter 7 by documenting the 

prototype that is implemented in Android to make accurate offloading decisions 

that conserve battery life. This chapter is informed by the data gathered from 

the experiments done in chapter 8.  

 

1.7.4. Conclusion 

This chapter revisits the research objective and questions and evaluates the 

effectiveness of this research in achieving the objectives by answering the 

research questions. This chapter also serves to evaluate any shortcomings 

encountered during the course of this research. 

 

1.8. Conclusion 

This chapter introduces the problem domain of this dissertation. The research 

objectives are identified and the research questions are extracted from the 

objectives. The questions are used to limit the scope of the research and 

provide a means for evaluating the outcome of the research. The research 

methodology used in this dissertation is discussed and how the methodology 

shapes the structure of this research and dissertation. The next chapter is the 

first chapter in Part 1 of this dissertation.  
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Part 1: 
Literature Review  
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Chapter 2: Mobile device and resource 
usage 

2.1. Introduction 

Today, the prolific use of mobile devices is recognised as an integral part of our 

lives. Statistics show that around 7.7 billion mobile devices are currently being 

used throughout the world. The number is predicted to rise to 12.1 billion in 

2018, where 2.1 billion of these devices are smart devices (Radicati, 2014). 

Mobile devices are used more often than ever before, not only to make calls 

and send text messages but also to access the Internet, listen to music and 

watch videos. As these activities are all resource intensive operations it is not 

surprising that the biggest consumer problem with mobile devices is the lifespan 

of the battery (Ferreira et al., 2011; Reed, 2014). 

 

Mobile devices generally all suffer from limited CPU, memory, storage capacity, 

and battery life; where battery life has been identified as the most limiting factor 

(Reed, 2014). Many other factors such as backlighting, wireless connections, 

and processor speed all have an impact on the energy consumption of the 

device. These limitations may cause the mobile operating system to ask the 

application to shut down or slow program execution. The focus of current 

research is to provide interventions that can optimize resource usage to ensure 

that an application can perform its task without any  interruption (Abolfazli et al., 

2012, 2014; Chun et al., 2011; Cuervo et al., 2010; Satyanarayanan et al., 

2011; Wang et al., 2018). 

 

In order to address these concerns, section 2.2 defines and discusses mobile 

devices in order to place them in the context of this research. As more and 

more complex mobile applications are executed on mobile devices, section 2.3 

describes the limitations of mobile device resources that prevent the use of 

complex applications. The chapter also proceeds to describe possible solutions 

to overcome these limitations. In section 2.4, restrictions on mobile devices are 

re-examined to find possible methods to reduce remaining restrictions. Finally, 

the chapter is concluded.  
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2.2. Mobile devices 

The rate at which mobile devices are adopted makes this technology the most 

popular communication medium in history (Humphreys et al., 2013). Mobile 

devices are an important part of modern day life as they are used by a variety of 

users, who make use of both simple and complex mobile applications to fulfil 

their personal and business needs. In order to understand the characteristics 

that make them resource-limited, mobile devices are discussed next. First, a 

definition is given, then their components and properties and finally their use are 

described.  

 

2.2.1. Definition: Mobile devices 

As the features of mobile devices are constantly changing, it is difficult to define 

the term "mobile device". For the purposes of this research, the following 

definition is used: 

 

A mobile device is a handheld device hosting a mobile operating system that 

supports applications called apps. The device is battery powered and can 

access data and voice networks, via Wi-Fi (IEEE, 2016) or cellular networks. 

Such devices typically have cameras, GPS (GPS.gov, 2008) and Bluetooth 

(Bluetooth SIG, 2014) radios, and other sensors such as accelerometers and 

light sensors (Christensen, 2009; CIO Council, 2013; Souppaya and Scarfone, 

2013). 

 

Even though mobile device manufacturers are continuously creating new 

devices with more advanced specifications, there are underlying properties that 

all modern mobile devices share (Souppaya and Scarfone, 2013). A discussion 

of the properties of mobile devices is provided next and is divided into two 

sections namely hardware and software.  

 

2.2.2. Hardware 

Over the past number of years, the hardware capabilities of mobile devices 

have grown exponentially. In a fast competing world, mobile device 

manufacturers compete for the same set of consumers. Therefore, the 

components of mobile devices from different manufacturers may not be the 
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same, but they have many similar hardware components or properties (Ali et al., 

2015; Souppaya and Scarfone, 2013). Next, a list of eight such properties, 

ranging from small form factor to storage, are described.  

 

Small form factor a. 

Mobile devices move around with the user of the device. Mobility is possible 

because devices are handheld and thus easily portable. The physical display 

size of the most recent devices ranges from 4 inches (Apple iPhone SE) to 7 

inches (BLU Studio 7.0 II) (Apple, 2016a; Blu, 2016; Moon, 2014). 

 

Wireless connection b. 

Mobile devices have at least one network interface that allows access to a 

network for data communication. The standard connection protocols used are 

cellular networks (3G (ITU, 2011) or 4G (ITU, 2014)) and Wi-Fi. The specific 

network interface card and related connection protocol grants the mobile device 

access to network infrastructure, and through the infrastructure access to the 

Internet. The cellular network also provides voice communication, which allows 

the device to make and receive phone calls. 

 

Local built-in storage c. 

Mobile devices have built-in storage, generally ranging between 16GB and 

64GB, which is used by the mobile operating system and mobile apps. Without 

sufficient storage, a mobile device cannot function. The storage on mobile 

devices is similar to the storage on traditional computers. Applications cannot 

be installed on the device if there is not sufficient storage. 

 

Battery d. 

Mobile devices are portable because they do not require a physical connection 

to a power source as they use batteries. The size of mobile device batteries is 

limited because the device needs to be small enough to be handheld. The 

larger the battery, the longer the mobile devices can be powered. Because of 

size limitations on the battery, the battery life of the device is limited (Carroll and 

Heiser, 2010). The technical specifications of mobile devices given by device 

manufacturers include how long a device can be powered by the battery under 

different conditions. For example: 
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 Stand-by time is when the device is switched on and connected to a 

cellular network, but not in use. Stand-by time typically lasts a couple of 

days. 

 Talk time is when the device is continuously being used to make a phone 

call. Talk time is rarely longer than a day. Talk time is indicative of how 

long the device will stay powered when in use. 

 

Network services e. 

A mobile device connects to a wireless network infrastructure and the Internet 

using a cellular network interface. However, a mobile device typically has 

additional hardware components that enable communication using Bluetooth, 

Near Field Communication (NFC) (Minihold, 2011) and GPS. These additional 

network connections allow the device to connect to or create other networks 

such as personal area networks. 

 

Digital camera/video recording devices f. 

Modern mobile devices are used for more than making phone calls and sending 

messages. Consumers connect to the Internet to share pictures and videos on 

social media sites, using cameras for this purpose. The cameras on a mobile 

device can also be used by a barcode scanner, augmented reality and user 

identification apps (Dixon et al., 2013; Huang and Mow, 2013; Pan et al., 2013). 

 

Microphone  g. 

Mobile devices can be used both as mobile phones, mobile video cameras, and 

mobile sound recorders. To record the sound for a video, enable the phone call 

or record sound, a microphone is required. 

 

Storage h. 

Mobile devices require built-in storage to operate. However, some devices 

support additional removable storage, generally ranging between 8GB and 

64GB. Devices can be also be used as external storage for other devices such 

as traditional computers. A mobile device can be connected to a traditional 

computer, and files from the computer can be stored on the mobile device. 

 



17 
 

These hardware components determine the power, size, and capabilities of the 

mobile device. To make the device useful, the capabilities of the mobile device 

are further leveraged by the software on the device, discussed next. 

 

2.2.3. Software 

Manufacturers of mobile devices not only decide on the hardware components 

of devices but also what software is natively installed. Applications are 

developed by the manufacturer to support specific hardware components. For 

example, Samsung installs an application to count steps, and monitor the user’s 

heart rate, using a special sensor (Samsung, 2014a). The software on the 

device is not limited to what the manufacturer natively provides, as the user can 

choose from more than two million apps to install, depending on the mobile 

operating system that exists (Statista, 2017). Software found on mobile devices 

namely the operating system and apps are discussed next, where after a 

comparison between mobile platforms functionality is given. 

 

Operating System  a. 

Mobile devices are more than just phones, they are mobile computers and 

therefore an operating system (OS) is required to manage the applications on 

the device and the hardware in the device. There are a number of operating 

systems that have been developed for mobile devices, discussed next (Grønli et 

al., 2014). 

 

i. Android 

Google (Google, 2014a) released Android (Google, 2014b) in November 2007. 

It is the most widely used mobile operating system to date (IDC, 2014). The 

goal of Android is to be an open source platform for software development on 

mobile devices. Android is based on the Linux (Linux, 2012) kernel and uses 

Java (Oracle Corporation, 2014) as a programming language for the 

developers. Google also created Java libraries that are used in the development 

of applications for Android. The Android platform is more than an operating 

system, as it includes a development environment and a custom virtual 

machine. As of July 2017, there are 2 800 000 Android apps on the Google Play 

Store (Google, 2014c; Statista, 2017).  



18 
 

 

ii. iOS 

iOS or iPhone OS, (Apple, 2014a) is the closed source and proprietary 

operating system for mobile Apple devices. When the iPhone was released in 

2007, it revolutionized the mobile device market. iOS supports Objective-C 

(Apple, 2014b), an extension of the C language, Swift (Apple, 2016b), and 

mobile libraries to enable the development of mobile applications. Over the 

years, there have been many improvements in the language, mobile libraries, 

and the platform. As the first mobile operating system for smart devices, iOS 

initially had the most apps and the largest market share but has since been 

overtaken by Android. As of July 2017, there are 2 200 000 apps on the Apple 

App Store (IDC, 2014; Statista, 2017). 

 

iii. Windows Phone 

Windows Phone (Microsoft, 2014a) is the successor to Windows Mobile from 

Microsoft.  The platform is closed source and proprietary and has the third 

largest installed base on smartphones following Android and iOS.  Applications 

that run on Windows Phone are written in .NET managed code, such as C# 

(Microsoft, 2014b). Consequently, many developers familiar with the Microsoft’s 

desktop development suite can easily move to Windows Phone development 

(Wilcox and Voskoglou, 2014). 

 

Mobile applications b. 

A mobile app executes above the operating system of the mobile device and is 

developed using specific tools defined for that platform. Each of the three 

mobile platforms has its own store for the applications. iOS has the Apple Store 

(Apple, 2014c), Android has the Play Store (Google, 2014c) and Windows 

Phone has the Marketplace (Microsoft, 2014c). There are countless applications 

for mobile devices, and there are more and more being developed (Grønli et al., 

2014).  

 

Some mobile apps are free to download and install, while others must be 

purchased. Mobile apps were originally created to support simple functions 

such as email, calendar, contacts, the stock market and weather information. 

Currently, public demand and the availability of developer tools has driven the 
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creation of more complex mobile apps such as mobile games, banking and 

finance, medical monitoring, GPS and location-based services, order-tracking 

and ticket purchases (Abolfazli et al., 2014; Dinh et al., 2013).  

 

The number of mobile apps being developed for a platform is directly related to 

the number of users because apps are developed to target the largest 

consumer groups. A survey has shown that 71% of mobile app developers use 

Android, 57% use iOS and 21% use Windows Phone. Because Windows Phone 

uses the same development suite as Windows desktop development, there is a 

larger number of developers than the market share warrants (Wilcox and 

Voskoglou, 2014). 

 

Comparison of mobile operating systems c. 

A comparison between the mobile operating systems and the associated 

platforms has been done by Grønli et al (2014) and is summarised in Table 2.1. 

The table gives an overview of the software architecture, the application 

development and the developer support for the top three mobile operating 

systems.  

 

Table 2.1 Comparison of mobile platforms 

 Android iOS Windows Phone 

Software architecture 

Development 
language 

Java Objective-C .NET C# 

Packaging Android package file 
(APK) 

Apple application 
package (IPA) 

Windows Phone 
package (XAP) 

Persistent storage 
and database 
support 

Local SQL database  
support and local file  
access 

Local SQL database  
support and local file  
access 

Local SQL database  
support and local file  
access 

Application development 

Debugger 
availability 

Excellent Very good Excellent 

Deployment speed  Relatively fast Fast Relatively fast 

Default deployment 
application size 

Large Medium Large 

Developer support 

Developer 
community and 
support 

Very large Very large Average 

Market share % 84.7% 11.7% 2.5% 
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Integrated 
development 
environment 
availability 

Excellent – 
supported by major 
IDE’s 

Very good support 
through Apple 
Xcode 

Very good, but 
limited to Microsoft 
Visual Studio 

Development tools 
cost 

Free 
Small fee for Play 
Store 

Free for emulator 
Small fee for device 
and App Store 

Free for emulator 
Small fee for 
Marketplace 

 

The table shows that Android and iOS compare relatively well with each other in 

most aspects, with Windows Phone in a distant third place. The only aspect in 

which there is a clear leader is market share percentage, where Android is a 

clear winner.  

A study done by the International Data Corporation (IDC) shows that Android’s 

market share is growing and other mobile platforms’ market shares are 

shrinking (IDC, 2014). Android’s large market share is due to the lower price of 

mobile devices hosting Android as an operating system, and the large variety of 

vendors that produce mobile devices for Android. In addition, more developers 

are attracted to Android because the platform is open source and the 

developers can gain access to system components (Page, 2014). 

 

Due to the pervasiveness of Android, the experimentation performed in this 

dissertation aims to use Android as a platform, because it has the largest 

market share of all mobile platforms (IDC, 2014).  The openness of Android is 

also well-suited to the collection of data relevant to the research. Given the 

capabilities of mobile devices, it is not surprising that the number of mobile 

device users is increasing, as discussed next. 

 

2.2.4. Increased use of mobile devices 

In recent years there has been an increase in the use of mobile devices over 

traditional computers (Fernando et al., 2013). Advances in mobile computing 

have further led to an increase in the complexity of mobile applications 

expected by users, requiring more powerful mobile devices. Unfortunately, the 

development of mobile applications to meet the requirements of users is 

hindered by the resource constraints inherent to mobile devices (Fakoor et al., 

2012). 
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Mobile devices are becoming more ubiquitous in modern day society. These 

devices are always connected to the Internet and for many users, are the 

primary access method to the Internet. The limited resources of mobile devices 

prevent the creation of applications that have the functionality required by users. 

Typical resources and their limitations are discussed next. 

 

2.3. Mobile device resources 

The hardware components of a mobile device determine the resources of the 

device, and thus which resources the applications on the device can use. 

Hardware components such as the processor differ from device to device, and 

from manufacturer to manufacturer. There are a number of resources to 

consider, which are discussed next. 

 

2.3.1. Computing power 

The computing power of mobile devices is determined by the CPU processor of 

the device. There are two types of CPU processors namely single-core and 

multi-core. Multi-core or dual-core processors are becoming more common in 

current mobile devices, providing very high speed and the doubling of 

processing power. A more powerful CPU enables the user to run more 

processor intensive tasks, however, a more powerful CPU also negatively 

impacts the battery consumption of the device. Consequently, the battery life of 

a device limits the energy available to the processor. The limited energy 

available to the CPU processor restricts the amount of computation that can be 

done (Wang et al., 2014). 

 

2.3.2. Memory 

The memory on a mobile device is similar to the memory on a traditional 

computer. The more memory a device has, the more applications it can 

simultaneously run and the faster the device can respond to user requests 

(Kayande and Shrawankar, 2012). The memory standards for mobile devices 

are set by JEDEC (JEDEC, 2014a). The current standard LPDDR3 (Low Power 

Double Data Rate) (JEDEC, 2012) was adopted in 2013. The newer standard, 

published in August 2014, LPDDR4 (JEDEC, 2014b) has been met by 

Samsung, resulting in performance increases and lower power consumption 
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rates. Samsung has proposed a variant on LPDDR4, called LPDDR4x that is 

identical to LPDDR4 except that it uses less power (Reza, 2015). LPDDR4 and 

its variants are used in the flagship products of most manufacturers and will 

become the standard for memory for mobile devices in 2017 (Triggs, 2015). 

 

2.3.3. Storage 

The storage on mobile devices is used to store installed applications and 

associated media files on devices. Storage is also used to store pictures and 

videos taken using the camera. The capacity of storage is limited by the size of 

the device. Due to this limitation, most devices can support additional storage in 

the form of microSD cards ranging between 8GB and 128GB (Jagtap et al., 

2014; SD Assocation, 2014). 

2.3.4. Display 

The current technology used by the screens or displays of mobile devices is 

Organic Light-Emitting Diode (OLED). The size of a mobile device display is 

limited by its small form factor (Chen et al., 2012). The display is used 

extensively, as it is active whenever the device is in use. Consequently, the 

display consumes the most battery life of all the hardware components. The 

brightness of the display can either be automatically set by the device, 

dependent on the ambient brightness, or it can be manually set by the user. The 

higher the brightness, the more power the display consumes (Carroll and 

Heiser, 2010). 

 

2.3.5. Bandwidth 

Mobile devices can access networks through various network interfaces, using 

different network connection protocols. The bandwidth available to the device is 

dependent on the network interface and connection protocol used (Dinh et al., 

2013; Fernando et al., 2013; Jagtap et al., 2014). Next, the type of network 

interface a mobile device can connect through is discussed. 

 

Wi-Fi a. 

Wi-Fi (IEEE, 2016) is one of the most commonly used connection protocols, as 

most mobile devices have a network interface to connect to Wi-Fi networks. Wi-

Fi was proposed in 1997 and since then has gone through various iterations of 
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improvements. The original protocol, 802.11-1997, supported speeds up to 2 

Mbps. Three standard rollups have been released. 802.11-2007 supports 

speeds of up to 54 Mbps, 802.11-2012 supports speeds up to 150 Mbps, and 

802.11-2016 supports speeds up to 866.7 Mbps. Such a connection is generally 

preferred to be used for resource-intensive processing, as it consumes less 

battery power (Dinh et al., 2013; Fernando et al., 2013; Ma et al., 2013).  

 

Cellular networks b. 

Most mobile devices support 3G (ITU, 2011) and more recently 4G (ITU, 2014) 

networks. Mobile devices can connect to mobile networks if they are in the 

range of the telecommunications provider’s signal. The signal that is provided 

determines the protocol that can be used. Each type of signal supports a 

different bandwidth. For example, 3G has a bandwidth of at least 200Kbps up to 

several megabits per second and the newer 4G has a bandwidth of up to 

100Mbps. Unfortunately, cellular networks are not reliable as the connection 

and bandwidth depend on a fluctuating signal strength, which can consume 

more battery life. Another factor that should be considered when using cellular 

networks is the monetary cost of the data (Alomari et al., 2011; Fernando et al., 

2013; Parkvall and Astely, 2009). 

 

Bluetooth c. 

Bluetooth is used to directly connect mobile devices to each other. The range 

for Bluetooth is around 10m, depending on the physical objects between the 

devices. Bluetooth has a bandwidth of up to 800Kbps. Bluetooth connections do 

not consume large amounts of energy because of the limited range and 

bandwidth (Cherry, 2008; Fernando et al., 2013; Want et al., 2013). 

 

2.3.6. Battery 

The battery of a mobile device is one of the most important hardware 

components. When the battery is completely discharged, the mobile device 

stops functioning. The size of the battery is directly related to the charge the 

battery provides and the time the device can be powered. Lithium-ion batteries 

are widely used by many devices, including mobile devices. The latest mobile 

devices use Lithium-ion batteries (Carroll and Heiser, 2010; Xiaolu et al., 2012). 

As products need to pass rigorous safety tests, battery technology has not 
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advanced much in recent years. Lithium-ion is generally low-cost, easily 

reproducible and fairly safe. Incidents of battery fire and explosions rarely occur, 

considering how many lithium-ion batteries are made and sold every year 

(Fowler and Mozur, 2016). 

 

2.3.7. Comparison of modern mobile devices 

Table 2.2 shows a comparison of the latest devices from different 

manufacturers, gathered from the manufacturer’s websites (Apple, 2016c; HTC, 

2016; Microsoft, 2016a; Samsung, 2016a). 

 

To clarify some of the columns in the table: 

 Stand-by time: how long the phone can be on and connected to a 

network without being used 

 Talk time: how long the phone can sustain a phone call 

 Music play time: how long the device can continuously play music 

 

The times given are the official longest times which are provided by the 

manufacturer and are difficult to replicate in real-world conditions. The table 

shows that most modern devices have very similar hardware components. The 

largest differences found are with the display, battery and the different battery 

usage times. Comparing the battery of the Samsung Galaxy S7 Edge 

(Samsung, 2016a) and the Microsoft Lumia 650 (Microsoft, 2016a), it is clear 

that the Samsung’s battery is more powerful. This is due to the fact that the 

Samsung device has the larger screen, requiring a more powerful battery. 

 

Throughout this dissertation, experimentation is performed using the Samsung 

Galaxy S7 Edge, because it is a top-of-the-range mobile device which hosts 

Android, the preferred mobile operating system for all experimentation 

performed in this dissertation. 

 

The resources found on mobile devices are quite extensive. However, they are 

limited by the size of the device and batteries. When a resource such as battery 

life or bandwidth is limited, mobile devices cannot execute tasks as quickly or 
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efficiently as traditional computers. A large body of research is currently being 

conducted on how such resources can be extended.  
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Table 2.2 Comparison of modern mobile devices 

Device 
Operating 
System 

CPU RAM Storage 
Display 
Size 

Network Battery 
Stand-by 
Time 

Talk 
Time 

Music 
Play 
Time 

Samsung 
Galaxy 
S7 Edge 

Android 6.0 
(Marshmallow) 

Exynos 
8890 Octa 
(4x2.3 GHz 
Mongoose 
& 4x1.6 
GHz 
Cortex-A53) 

4GB 
32GB 
64GB + 
microSD 

5.5” 

2G, 3G, 
4G(LTE) 
Wi-Fi 
Bluetooth 
NFC 

3600 
mAh 
 

Not 
specified 

Up to 36 
hours 

Up to 
66 hours 

HTC 10 
Android 6.0.1 
(Marshmallow) 

Qualcomm 
MSM8996 
Snapdragon 
820 Quad-
core 
(2x2.15 
GHz Kryo & 
2x1.6 GHz 
Kryo) 

4GB 
32GB 
64GB + 
microSD 

5.2” 

2G, 3G, 
4G(LTE) 
Wi-Fi 
Bluetooth 
NFC 

3000 
mAh 

Up to 
456 
hours 

Up to 27 
hours 

Not 
specified 

Apple 
iPhone 7 

iOS 10.0.1 

Apple A10 
Fusion 
Quad-core 
2.34 GHz 

2GB 
32GB 
128GB 
256GB 

4.7” 

2G, 3G, 
4G(LTE) 
Wi-Fi 
Bluetooth 
NFC 

1960 
mAh 

Up to 
240 
hours 

Up to 14 
hours 

Up to 40 
hours 

Microsoft 
Lumia 
650 

Microsoft 
Windows 10 

Qualcomm 
Snapdragon 
212 Quad-
core 1.3 
GHz 
Cortex-A7 

1GB 
16GB + 
microSD 

5” 

2G, 3G, 
4G(LTE) 
Wi-Fi 
Bluetooth 
NFC 

2000 
mAh 

Up to 
624 
hours 

Up to 16 
hours 

Not 
specified 
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2.4. Conclusion  

This chapter defined mobile devices as battery-powered handheld devices that 

can constantly be connected to voice and data networks.  These devices are 

supported by a mobile operating system, have a variety of mobile apps 

available and are used more and more frequently, therefore becoming a 

ubiquitous part of modern day life. 

 

The increased usage of mobile devices has created a need for applications that 

can do everything as efficiently and quickly as a traditional computer. However, 

this is impossible due to the mobility of mobile devices, as they do not have the 

same resources as traditional computers. Resources on mobile devices such as 

processing power and storage are determined by their hardware components. 

Due to the small form factor of mobile devices, the size and power of hardware 

components are limited. Because mobile devices are battery powered, the 

battery life is one of the most important resources of mobile devices. When a 

mobile device has no battery life remaining, it cannot be used. 

 

There are several ways in which resources of mobile devices can be increased 

or used more effectively. For example, the hardware components of a mobile 

device can be upgraded to give the device access to more resources, or mobile 

apps can be modified to use resources more effectively. Chapter 3 defines 

mobile resource augmentation in more detail.   
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Chapter 3: Augmenting mobile device 
resources 

3.1. Introduction 

The previous chapter identified that mobile devices are very sophisticated and 

can be used for real-world complex solutions such as government, corporate, 

healthcare, education, and engineering applications. Even though there is a 

significant improvement in mobile device capabilities, the computing 

requirements of e.g. corporate users are not achieved. 

 

So far it has been pointed out that energy or battery life is the one resource that 

limits all the other resources of a mobile device. Currently, the energy 

requirements of a mobile device are supplied by lithium-ion batteries that can 

last only a few hours if the mobile device is used computationally. Research 

shows that battery capacity is only increasing at a rate of 5 to 10% a year as 

battery cells are excessively dense. Furthermore, the fact that mobile devices 

need to be lightweight and compact prevent the use of heavy long-lasting 

batteries. The possible loss of human life if high capacity batteries should 

explode further confines battery manufacturers to low capacity batteries (Ben et 

al., 2009).  

 

This chapter continues the literature review by identifying that the limitations 

posed by the resources of mobile devices require new approaches such as 

augmentation (Abolfazli et al., 2014). By leveraging augmentation, more 

complex and intense mobile operations can become a reality. The 

enhancement of the computation capabilities of mobile devices is not new as 

approaches such as load sharing, remote execution, cyber foraging, and 

computation offloading have been the focus of recent research (Abolfazli et al., 

2014; Bahl et al., 2012; Kumar et al., 2013).  

 

In section 3.2, mobile resource augmentation is discussed. Resources that 

cannot be augmented on mobile devices are discussed in section 3.3. In section 

3.4, battery life, a resource that cannot be augmented is discussed by focussing 
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on elements that can increase battery life usage. This discussion aims to 

identify requirements for conserving battery life when offloading. Section 3.5 

proposes such a set of requirements. Finally, the chapter is concluded. 

 

3.2. Mobile resource augmentation  

Developments in recent years have yielded advances in the capabilities of 

mobile devices, and have reduced some of the resource constraints of mobile 

devices (Bahl et al., 2012). However, by meeting one requirement, there is 

always another that pays the price. Computational power, memory, storage and 

battery life have been traded to enable the mobility and flexibility of mobile 

devices, leading to limited resources on mobile devices (Bahl et al., 2012).  

 

There are three approaches that can be used to reduce the use of resources on 

mobile devices or to increase the resources available on the device (Kumar et 

al., 2013; Kumar and Lu, 2010; Smailagic and Ettus, 2002). They are classified 

according to hardware, software and offloading, discussed next.  

 

3.2.1. Hardware 

The hardware of a mobile device determines the resources that are available on 

the device. The companies that design the devices develop hardware 

components that either increase the resources available on the device or 

enhance how the resources are used (Smailagic and Ettus, 2002). 

 

Advances in the augmentation of resources provided by hardware can best be 

illustrated by comparing the Samsung Galaxy S7 Edge (Samsung, 2016a) and 

its predecessor the Samsung Galaxy S6 Edge (Samsung, 2016b). The 

comparison between the devices released a year apart, is shown in Table 3.1. 
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Table 3.1 Comparison of Samsung Galaxy S7 Edge & Samsung Galaxy S6 Edge 

Device Operatin

g System 

CPU RAM Storage Display 

Size 

Network Battery 

Samsung 

Galaxy 

S7 Edge 
Android 

6.0 

(Marshmall

ow) 

Exynos 

8890 Octa 

(4x2.3 GHz 

Mongoose 

& 4x1.6 

GHz 

Cortex-A53) 

4GB 

32GB 

64GB + 

microSD 

5.5” 

2G, 3G, 

4G(LTE) 

Wi-Fi 

Bluetooth 

NFC 

3600 

mAh 

 

Samsung 

Galaxy 

S6 Edge 

Android 

5.0.2 

(Lollipop) 

Exynos 

7420 Octa 

(4x2.1 GHz 

Cortex-A57 

& 4x1.5 

GHz 

Cortex-A53) 

3GB 32GB 

64GB 

128GB 

5.1” 2G, 3G, 

Wi-Fi 

Bluetooth 

NFC 

2600 

mAh 

 

When comparing the devices, it is clear that the Samsung Galaxy S7 is more 

advanced. The Samsung Galaxy S7 Edge uses a more recent version of the 

Android mobile operating system, has a better CPU, a larger display, and a 

larger battery. The microSD card slot has been added after it was removed from 

the S6 series. Both devices can connect to all available networks. A review of 

these mobile devices found that battery life is one of the Galaxy S7 Edge's 

strongest features as the battery of the Galaxy S6 Edge drained quickly 

during average to heavy use, and could not make it through a day. During a 

performance test, the Galaxy S6 Edge lasted an only 12 hours, but the 

Galaxy S7 Edge lasted almost fifteen hours with full screen playing standard 

definition video (GSMArena, 2016). 

 

The hardware approach is widely used and has led to the recent increase in the 

capabilities of mobile devices. However, hardware resources are not under the 

control of the users or developers of mobile devices. 

 

3.2.2. Software 

The software deployed on the mobile device determines how hardware 

components and thus resources are used.  Software developers can program 
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mobile apps to use as little resources as possible, but no resources can be 

added to the device without including access to a resource pool such as the 

cloud (Kumar and Lu, 2010).  

An example of such a software approach has been implemented on the 

Samsung Galaxy S5 (Samsung, 2014b). The Samsung Galaxy S5 has a built-in 

ultra-power savings mode that reduces the battery consumption to 16.8mW. 

The power saving is achieved by limiting access to most applications, turning 

the display to black and white and turning off two of the four CPU cores 

(Whitwarm, 2014). 

 

The software approach is used by both the designers of the mobile device and 

the developers of the applications for these mobile devices. The effectiveness 

of the methods that can be used to conserve the resources on mobile devices 

varies, but can be used to create more powerful applications. 

 

3.2.3. Offloading 

Offloading is the process of moving a computational task from a resource-poor 

client to a resource-rich server (Kumar et al., 2013). A computational task is 

thus migrated from the mobile device to another computational resource in 

order to perform the computation there. Results are then sent back when the 

computation is complete. The definition of computational tasks to offload can be 

done either prior to execution or dynamically during runtime.  

 

The most important question to address is at what point computation can be 

offloaded. Such a decision can either be based on the statistics of the 

application or the surrounding environment (Imai, 2012). The offloading of a 

computational task from a mobile device to another computational resource 

results in the decrease of the use of resources on the mobile device. A study 

conducted in 1998 with laptop computers connected to a wireless network 

proved that battery life can be conserved in this manner. Rudenko and others 

(1998) thus illustrated that the effectiveness of offloading is not only applicable 

to modern mobile devices. 

 

Although offloading is implemented in software, it is discussed separately from 

the current discussion on software, as offloading does not use resources on the 
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device, but rather resources in the cloud or on a server. The discussion of 

offloading is divided into two sections according to the origin of resources. 

Offloading computational tasks from mobile devices can be done using two 

types of servers namely cyber-foraged servers and cloud servers (Chun et al., 

2011; Cuervo et al., 2010; Kemp et al., 2012; Liang et al., 2018; Parkkila and 

Porras, 2011; Satyanarayanan et al., 2011; Yousafzai et al., 2016). 

 

Cyber-foraging a. 

Cyber-foraging uses resources from nearby devices that are either mobile or 

stationary. Cyber-foraging augments the computing resources of a wireless 

mobile device by exploiting nearby servers. Such infrastructure may be 

discovered and used opportunistically at different locations in the course of a 

user’s movements. 

 

Nearby devices create a network to which the client device can connect to. 

Resources available via cyber-foraging include processing power, memory, and 

storage. Depending on the setup and location of all devices, some resources 

should not be used in certain situations. For example, storage should not be 

used in a public space (Parkkila and Porras, 2011). 

 

Parkkila and Porras (2011) implemented a mobile offloading application using 

cyber-foraging. Their approach used the Scavenger (Kristensen, 2010) system, 

designed for cyber-foraging. Scavenger, developed at the Aarhus University in 

Denmark, consists of two software components namely a daemon running on 

all devices that act as servers, and a client library for creating client applications 

(Kristensen, 2010; Parkkila and Porras, 2011). Offloading happens when the 

client executes a task and a nearby server is found, regardless of whether 

resources are available on the client. The system searches for nearby servers, 

and if a server is found, the task is executed by the server and the result is sent 

back to the client  (Parkkila and Porras, 2011). 

 

Cloud b. 

By offloading processes onto the cloud, mobile devices are augmented with the 

all resources made available by the cloud. Cloud computing is a model for 

enabling pervasive, convenient, on-demand access to a pool of various 
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resources, such as computing power, storage, and memory (Kumar and Lu, 

2010; Mell and Grance, 2009). Offloading to the cloud from a mobile device is a 

very active field of research, with several research groups focusing on solutions 

that offload processes from mobile devices to the cloud. Three are discussed 

and compared in Table 3.2. (Chun et al., 2011; Cuervo et al., 2010; 

Satyanarayanan et al., 2011). 

 

i. MAUI  

MAUI (Mobile Assistance Using Infrastructure) (Cuervo et al., 2010), is an 

offloading approach that focuses on the optimization of energy consumption 

and execution times of mobile applications. The focus of MAUI is to address the 

limitations posed by battery life for mobile devices. MAUI enables the fine-

grained energy-aware offload of either mobile processes or mobile elements 

without much programmer effort, as code annotations indicate which methods 

can be executed remotely. Thus applications need to be modified so that they 

can be offloaded. This approach is limited to the Microsoft .NET platform 

(Microsoft, 2016b) which limits the type of applications that can be offloaded. 

First, the application code is replicated and placed on the cloud server. 

Thereafter the MAUI system evaluates the code and serializes and profiles all 

methods to determine the offloading cost.  

 

The offloading cost is determined before the execution of a task that can be 

offloaded. Part of the MAUI solver is the profiler that determines the cost and 

decides whether to run the method locally or remotely. The profiler used by the 

MAUI solver takes three factors into consideration when determining the cost of 

offloading, namely:  

 The device’s energy consumption characteristics 

 The program characteristics, such as the running time and resource 

needs of individual methods  

 The network characteristics of the wireless environment, such as the 

bandwidth, latency, and packet loss.  

 

The decision made by the MAUI solver ensures that the execution takes the 

least amount of time and consumes the least amount of energy. The offloading 

occurs over Wi-Fi or mobile networks. 
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ii. Cloudlets 

Cloudlets (Satyanarayanan et al., 2011) take a local approach to cloud 

offloading. Using the cloud to augment mobile device resources is not without 

its costs, namely bandwidth and time consumption. Cloudlets leverage the local 

network all mobile devices can connect to, instead of the wide area network, the 

Internet. Cloudlets are smaller instances of the cloud, defined by specialised 

hardware that is connected to the local network. Mobile devices offload to a 

Cloudlet, instead of the cloud, via Wi-Fi. The Cloudlet is connected to the 

distant cloud and can, in turn, offload the task should more resources be 

required.  

 

This approach reduces bandwidth and time consumed. Less bandwidth is used 

due to the fact that a mobile device and Cloudlet are connected to the same 

local network, and less time is used as the processing of the offloaded task 

does not occur on a distant cloud. What is being offloaded is determined 

dynamically. A virtual instance of the mobile device is uploaded to the Cloudlet, 

and when a task is offloaded to the Cloudlet, the virtual device executes the 

task exactly as the mobile device would, and processing can return to the 

mobile device at any point. Cloudlets are only used over Wi-Fi and are focussed 

on reducing bandwidth and time consumption. 

 

iii. CloneCloud 

CloneCloud (Chun et al., 2011) is an offloading approach that removes the 

need to duplicate a mobile application’s code. CloneCloud creates a virtual 

machine of the device and runs the virtual machine on the cloud. Whenever a 

process is executed, the application moves the state of the device to the virtual 

machine and the execution continues from where the device stopped executing. 

A static analyser evaluates the methods of the application offline and the 

appropriate methods or parts of the code are marked so that they can be 

offloaded.  

 

If one of the marked methods is executed, a profiler decides whether or not the 

process should be offloaded. The profiler gathers the data regarding the 

execution of the method and determines whether or not the method should be 
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executed locally or be offloaded to the cloud. The profiler used in CloneCloud 

uses execution time and energy consumed by the mobile device to inform the 

decision. This approach has shown some energy conservation. The application 

state is offloaded over both mobile networks and Wi-Fi. The developer marks 

methods that can be offloaded during development, this means the code 

partitioning is static. 

 

iv. Comparison of offloading solutions 

The approaches to offloading from mobile devices can become very technical. 

Table 3.2 gives a simplified comparison of the different approaches discussed. 

To clarify some of the columns used in the table:  

 Communication protocol: what networks are used for communication 

between the client and server? 

 Optimization factor: what aspects are being optimized? 

 Code partitioning: when are the methods replicated to the cloud?  

o Static partitioning is done during development.  

o Dynamic partitioning occurs at runtime. 

 Use of a profiler for decisions 

 

Table 3.2 Comparison of offloading approaches 

 

A large number of a research project that aims to optimise or reduce the 

amount of battery life a mobile app consumes shows the importance of the 

Approach Communication 

Protocol 

Optimization 

Factor 

Code 

Partitioning 

Operating 

System 

Use of 

a 

profiler 

MAUI Wi-Fi, 3G Energy, 

Execution 

Time 

Dynamic Windows 

Phone 

Yes 

Cloudlets Wi-Fi Latency, 

Bandwidth 

Dynamic N/A No 

CloneCloud Wi-Fi, 3G Energy Static Android Yes 
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effect of battery life on the performance of mobile devices. The solutions 

presented demonstrates that: 

 The offloading of processes should not be limited to one network  

 Cannot be used in all cases as mobile devices are not always connected 

to a Wi-Fi network and are not always connected to a stable mobile 

network.  

 

Other factors that influence the creation of a mobile app that can leverage the 

cloud is:  

 When the offloading decision is made  

 The amount of data that is required to be sent to the cloud. 

 

The increased use of mobile devices has forced manufacturers to extend the 

capabilities of these devices, but due to the limited size of mobile devices, there 

is only so much that can be done. Improvements in hardware capacity 

increases resources available on mobile devices. Even though these resources 

are used as effectively as possible by software developers, they still do not 

meet the needs of users, who use complex mobile apps. It is thus clear that the 

cloud can be used to increase the resources of a mobile device without adding 

new hardware.  

 

Both MAUI and CloneCloud use profilers to inform offloading decisions that 

collect data and creates a model. The profiler is defined as an app running on a 

mobile device. The profiler not only allows the measurement of, for example, 

energy consumption, but the data collected by the profiler can also be used to 

estimate the energy consumption under different circumstances. In order to 

provide a clear understanding of the resources that can be augmented by the 

cloud, a discussion on mobile device resources that cannot be augmented 

using the cloud is given next. 

 

3.3. Constrained resources of mobile devices 

Mobile devices that make use of cloud resources are called cloud-based mobile 

augmented devices. By using the cloud in such a way, most of the resource 

constraints on mobile devices such as storage, memory and computing power 
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can be removed (Al-mousa and Alzoubi, 2017; Bahl et al., 2012). However, 

some resources on mobile devices cannot be augmented and therefore can 

become constrained, namely bandwidth and battery life (Kumar and Lu, 2010). 

The limitations on bandwidth are briefly discussed next, thereafter battery life 

usage is discussed in more detail.   

 

3.3.1. Bandwidth  

Bandwidth specifies the data transfer rate of a network, measured in millions of 

bits per second or Mbps. Bandwidth is dependent on the availability of network 

connections, which are provided by the cellular provider or are static, such as 

Wi-Fi (IEEE, 2016). The hardware components of a mobile device determine 

the connection protocols that can be used such as Wi-Fi, 3G, 4G, and 

Bluetooth. Bandwidth is thus not controlled by the user or by developers (Toma 

et al., 2018), therefore battery life, the last and most important constraint to be 

considered is discussed next. 

 

3.4. Battery life 

Battery life is one of the resources that users complain about the most (Kumar 

and Lu, 2010). Unfortunately, the size of a mobile device, and thus the size of 

its batteries are limited. The size of a battery translates directly into the amount 

of power it can store and the time it can power the device. Trends in battery 

technology show that these limitations remain a real fixture, and energy inhibits 

mobile device development and use (Ben et al., 2009; Carroll and Heiser, 2010; 

Cuervo et al., 2010). The effect of both bandwidth and mobile device usage on 

battery life depletion is now further described in order to determine which 

hardware components and factors need to be considered to reduce battery life 

usage. 

 

3.4.1. Effect of bandwidth on battery life 

The variety of connection protocols available to mobile devices ensures that 

devices are almost always connected to the Internet in some way or another. 

Studies have shown that most users are almost always under the cover of some 

network with Wi-Fi networks being the most prolific at 50% of the time (Barbera 
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et al., 2013). The network to which the mobile device is connected to 

determines the bandwidth available on the mobile device. 

 

The available bandwidth has a large impact on the power consumption of a 

mobile device. For example, a study was done to measure power consumption 

when streaming videos under different network connections. Results showed 

that depending on bandwidth, energy consumption can be doubled in the 

presence of packet loss and increased propagation delay. Figure 3.1 shows the 

effect on power consumption under varying bandwidths. The mobile device is 

connected to Wi-Fi, but the bandwidth was lowered using third party software 

(Ma et al., 2013; Satyanarayanan et al., 2011). 

 

 

Figure 3.1 Power consumption under different available bandwidth 

 

As shown in Figure 3.1, available bandwidths ranging between 4800Kbps and 

200 Kbps dramatically impacts the power consumption of a mobile device. To 

the left, a bandwidth of 4800Kbps is highly effective, requiring very little 

additional energy. The lowest bandwidth of 200Kpbs to the right needs almost 

500J to complete the task, thus using 300J unnecessarily. Therefore, the lower 

the bandwidth, the less reliable the network connection becomes. A poor 

network connection loses more packets than a good network connection, 

requiring communication to continue until all the packets are received. The 

more packets are lost, the longer the network connection is required to be 

maintained, and the more power is consumed. Poor network connections also 

take longer to send and receive packets, which further requires the network 

communication to be maintained (Ma et al., 2013). 
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Although bandwidth is one of the resources that restrains mobile application 

development, the availability of stable networks cannot be influenced by the 

developers. Developers can only control how and when the network is 

accessed in order to conserve the remaining battery life. The inability of 

developers to influence bandwidth thus excludes it from the scope of this 

dissertation. Next, the effect of mobile device usage on energy consumption is 

discussed. 

 

3.4.2. Effect of mobile device usage on battery life 

The hardware components of mobile devices use battery power to different 

extents. A study on the power consumption of smartphones shows that the 

device display consumes the most power, followed by network modems if 

network communication and computation is required (Carroll and Heiser, 2010).  

 

Figures 3.2, 3.3, 3.4, and 3.5 below shows a breakdown of the power 

consumption by different hardware components for different tasks.  Figure 3.2 

shows the power consumption when making a phone call, Figure 3.3 shows the 

power consumption when sending an SMS, Figure 3.4 the power consumption 

when using an email application over both Wi-Fi and cellular networks. Lastly, 

Figure 3.5 shows the power consumption when using a mobile device to browse 

the Internet. 

 

Figure 3.2 Power consumption during a  Figure 3.3 Power consumption during 

the GSM phone call  average use of an email application 
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Figure 3.4 Average power consumption  Figure 3.5 Average power consumption 

when when sending an SMS web browsing over Wi-Fi and GRPS 

 

It is important to note that hardware components such as brightness (backlight), 

graphics and LCD are used to display images on a device’s screen, each 

generally using a substantial amount of power. The network communication is 

either GSM or Wi-Fi, and computation is the usage of the device’s CPU. 

 

Figure 3.2 shows that when a phone call is made using a GSM connection, 

shown 2nd from the left, the most power is consumed. In this case, the power 

required by the display is very low, as the screen of the device is turned off 

when making a phone call.  

 

Figure 3.3 shows the power consumption for sending an SMS. Here, the display 

consumes the most power, depending on the brightness of the screen. The 

GSM radio and CPU further contribute to power consumption. 

 

Figure 3.4 shows the power consumption when using an email application over 

a cellular network and over Wi-Fi. Again, the display uses the most power. The 

communication, be it the GSM radio or the Wi-Fi radio, further contribute to 

power consumption, with the CPU in third place. 

 

Figure 3.5 shows the power consumption when browsing the web. Again, the 

display consumes the most power, with the communication in second place and 

the CPU in third. 

 

From this evaluation, it is clear that besides the display, communication and 

computation use the most power. When considering the effect of offloading on 
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battery life, mobile device usage is important to consider. Previous studies have 

shown that offloading can reduce the battery usage of mobile devices (Cuervo 

et al., 2010; Rudenko et al., 1998; Xiao et al., 2011). This is not true in all 

cases, as the available bandwidth and complexity of the task play a large role in 

the amount of energy consumed (Kumar and Lu, 2010). 

 

By augmenting mobile device resources with cloud-based resources such as 

storage or CPU, mobile device resources are placed under more strain. For 

example, when a process is offloaded, data needs to be sent to the cloud 

server, requiring the use of more bandwidth and battery life. As more processes 

are offloaded, more bandwidth and battery life are used. If conditions are right, 

battery life can be conserved by offloading, depending on the bandwidth, 

complexity of the task and the size of the data to be transferred (Kumar and Lu, 

2010). When offloading, the amount of power required for communication is 

determined by the size of the data to be communicated and the available 

bandwidth. The amount of power required to execute a task locally is 

determined by the complexity of the task. It is important to note that offloading 

can conserve battery life when the power consumption of the computation is 

greater than the power consumption of the communication (Barbera et al., 

2013). 

 

The central problem facing mobile devices and mobile device application 

development are the limited resources on mobile devices. Fortunately, the 

majority of resources on mobile devices such as storage or computational 

power can be augmented using the cloud. Even though bandwidth and total 

battery life cannot be influenced by the user or developer, developers and users 

can influence how much battery life is consumed. 

 

Conserving battery life is the focus of this dissertation. The battery life of mobile 

devices should be used in such a way that the least amount of energy is 

consumed to complete a task. Applications that consume the least amount of 

battery life when executing a task have to meet some requirements. The 

requirements that the solution proposed in this dissertation are discussed in the 

next section.  
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3.5. Requirements for conserving battery life when 

offloading 

Battery life is a resource that cannot be augmented by cloud computing, and 

cannot be influenced by users or developers. This limitation can prevent the 

development of mobile applications that provide similar functionality as 

traditional devices such as desktop and laptop computers.  

 

This research aims to propose a software profiler to inform offloading decisions 

to conserve battery life in an attempt to address the limited battery life problem. 

The goal is achieved by developing a profiler, which estimates the amount of 

battery life needed when executing a task, and a decision-making component 

that uses the estimates the profiler provides to decide whether or not a task 

should be offloaded. Before a process is executed either locally or in the cloud, 

a comparison is done between the expected energy consumption when 

executing the process locally and the expected energy consumption when 

offloading the process. The process is executed where the least amount of 

battery life is consumed. 

 

This dissertation proposes that an intelligent offloading decision-making 

component is needed that should meet certain requirements: 

 Make intelligent offloading decisions: When offloading decisions are 

made, the decision-making component must consider all factors that can 

influence the energy consumption of the mobile device, and choose the 

option that consumes less energy.  

 Both Wi-Fi and cellular networks need to be supported: Both Wi-Fi and 

cellular networks should be enabled as a Wi-Fi network may not always 

be available.  Wi-Fi would be the preferred network to use because it is 

stable, has the relatively high bandwidth, and consumes less power. 

 Be lightweight: The solution should consume as little energy as possible 

and execute as quickly as possible, as lightweight processes will not 

have a detrimental impact on user experience or battery life. 

 Portable: The solution should be deployable on any device and 

integrated into any app with minimal effort.  
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Figure 3.6 shows the basic architecture of how the decision-making component 

is used. The decision-making component is installed as part of a mobile 

application. Whenever certain methods are called, the decision-making 

component gathers all relevant data from the mobile device and application and 

determines whether or not the method should be offloaded or not. If the method 

should be offloaded, the application communicates with the mobile application’s 

cloud component, otherwise, the method is executed on the device. 

 

 

Figure 3.6 Basic architecture of the decision-making component integration with the 

mobile app 

 

To define a decision-making component that meets the stated requirements, 

cloud computing and the use of cloud computing, different methods of 

offloading, decision-making methods and optimization need to be investigated.  

 

3.6. Conclusion 

Previous research shows that the offloading of processes from a mobile device 

to the cloud can alleviate most of the resource restrictions of mobile devices 

such as computing power and storage. The resources that remain constrained 

are bandwidth and battery life. Battery life is one of the last major bottlenecks 

when it comes to the development of the next generation of applications. It is 

thus necessary to optimize the use of the battery life to make it last as long as 

possible. 

 

Unfortunately, the bandwidth available on the mobile device is determined by 

device connection protocols and infrastructure of networks. The process of 

offloading thus increases the amount of work to be done by the remaining 
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resources such as bandwidth and battery life, however sometimes the act of 

offloading can conserve the battery life of the mobile device. 

 

This research proposes a profiler to address the problem of limited battery life 

on mobile devices. The profiler gathers data regarding the current state of the 

device and uses the state to estimate energy consumption when offloading and 

when executing locally, the decision-making component compares the two 

estimates and decides whether or not the task should be offloaded. To be able 

to address the requirements discussed above, cloud computing, mobile cloud 

computing, offloading, decision-making algorithms and optimization strategies 

need to be investigated.  

 

The chapter identifies main topics to be discussed and directs the next research 

as follows, chapter 4 expands on cloud computing and mobile cloud computing 

and cloud-based mobile augmentation, chapter 5 describes offloading, and 

finally, chapter 6 investigates all factors that influence decision making.  
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Chapter 4: Cloud-based Mobile 
Augmentation 

4.1. Introduction 

The previous chapter identified that mobile device resources such as storage 

and processing power can be augmented by using the cloud. Due to its inherent 

nature, battery life is the one resource of a mobile device that cannot be 

augmented. In this regard, a large body of research is being conducted into 

techniques and frameworks to conserve battery life by offloading computation to 

the cloud (Chun et al., 2011; Cuervo et al., 2010; Kemp et al., 2012; Parkkila 

and Porras, 2011; Satyanarayanan et al., 2011; Yousafzai et al., 2016). This 

chapter extends the literature review further by giving a background on cloud 

computing and related developments to show the potential that lies therein. 

 

The augmentation of mobile device resources is made possible by the 

availability of computing on demand via the cloud. Users are provided with 

access to computational power and storage, at a price, without the need to 

purchase expensive hardware components (Armbrust et al., 2010). 

 

As offloading to the cloud is a very general concept, this chapter discusses 

cloud computing, mobile cloud computing (MCC) and cloud-based mobile 

augmentation (CMA). A review of cloud computing determines what type of 

cloud, private, public, community or hybrid (Mell and Grance, 2009) should be 

used and where the resource should be located (Abolfazli et al., 2014). 

 

The chapter commences with a discussion on cloud computing in section 4.2. 

The definition, services that can be deployed in the cloud, models used to 

deploy the cloud and the characteristics of cloud computing are discussed. The 

background gained from the first section of this chapter is used as a foundation 

for concepts used in mobile cloud computing (MCC), discussed in section 4.3. 

The advantages of using cloud computing to augment mobile devices, the 

manner in which the augmentation can be achieved, as well as some of the 

challenges associated with developing mobile cloud computing applications are 

discussed. Finally, the chapter is concluded. 
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4.2. Cloud computing 

During the past ten years, Internet technologies have grown at a fast rate. 

These new developments, the increasing costs of hardware and the need to 

analyse data has created a niche for cloud computing (S. Zhang et al., 2010). 

This section discusses the definition, architecture, services, deployments, and 

characteristics of cloud computing. 

 

4.2.1. Definition: Cloud computing 

Cloud computing can be used to refer to many different aspects of the cloud 

computing model. For the purposes of this research, the following definition is 

used: 

 

Cloud computing is a model for enabling pervasive, convenient, on-demand 

access to a pool of various resources such as computing power, storage and 

memory, that can be made available quickly with minimal interaction and effort 

from cloud service providers and their management (Abolfazli et al., 2014; 

Buyya et al., 2009; Mell and Grance, 2009; Wang et al., 2010). 

 

In general, a cloud consists of hardware and software that is exposed over the 

Internet, which can be accessed by consumers, sometimes at a price. 

Consumers using the cloud gain access to computing as a utility, similar to 

water and electricity. Consumers thus pay to use something that someone else 

provides (Buyya et al., 2009). The definition given can be expanded by 

including the characteristics of the cloud, discussed next. 

 

4.2.2. Characteristics of the cloud 

Cloud computing provides various services that can be made available to 

consumers in different ways. The cloud, irrespective of the services deployed 

on it or the consumers, have certain essential characteristics that are part of the 

definition of cloud computing (Mell and Grance, 2009). The characteristics, on-

demand self-service, broad network access, rapid elasticity and measured 

service are discussed next. 
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 On-demand self-service a. 

Seen from the perspective of consumers, cloud resources such as storage and 

processing power are limitless. The illusion of limitless resources is achieved by 

the delivery of more resources than what is needed without human interaction. 

When a consumer requires more resources, the cloud provides those resources 

(Armbrust et al., 2010). 

 

 Broad network access b. 

Cloud services are exposed using standard protocols and methods to allow 

consumers to access these services from any client. The client can be thin or 

thick, thus including the range of devices from mobile devices to standalone 

desktops (Mell and Grance, 2009). 

 

 Resource pooling c. 

Limitless resource pooling is achieved by pooling resources of various physical 

machines and dispensing it as necessary to consumers. Physical machines can 

be in different locations but can be still be used by any consumers without any 

need for human interaction (Mell and Grance, 2009). 

 

 Rapid elasticity d. 

Capabilities of the cloud, such as access to resources and services, can rapidly 

be expanded to meet the needs of consumers without human interaction. The 

elasticity of capabilities expands or shrinks according to the demand of 

consumers or their clients (Armbrust et al., 2010). 

 

 Measured service e. 

Resource usage can be monitored, managed, and logged to provide 

transparency for both the provider and consumers of the utilized service. The 

measurement of utilized services allows the provider to be able to meet the 

resource demands of consumers based on the usage in the past (Mell and 

Grance, 2009). 

 

The characteristics of the cloud allow for greater flexibility in the provisioning of 

services. As this is supported without any human interaction, cloud services can 
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be highly available, without the need for humans to monitor the usage of these 

services and permit requests for increases in resources. 

 

Cloud services are accessed through the Internet. The communication between 

the consumer and the cloud provider, and the architecture of the cloud, are 

discussed next. 

 

4.2.3. Cloud architecture  

The cloud is supported by physical hardware and provides access to its clients 

via the Internet or a network (Mell and Grance, 2009). The basic model for 

cloud computing is shown in Figure 4.1. 

 

 

Figure 4.1 The basic layout of cloud computing 

 

As shown in Figure 4.1, the cloud has a number of services that are provided to 

consumers via the Internet. The layers of services that are provided by the 

cloud are all stacked on top of a physical hardware layer. For most large cloud 

providers, the hardware layer is a data center (Dinh et al., 2013). 

 

The given model can be expanded and changed to suit the needs of the 

provider or client. For example, services exposed by a cloud provider to a 

consumer can, in turn, be provided by another party. This means that a cloud 
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provider can both be a provider and consumer, leading to more layers between 

the consumer and the provider to create service brokers (Tsai et al., 2010). The 

services provided by the cloud are discussed next. 

 

4.2.4. Service models 

There are three basic service models that are associated with cloud computing 

namely, Infrastructure as a Service, Platform as a Service and Software as a 

Service (Mell and Grance, 2009). These service models are expanding with the 

continual growth of the cloud computing field (Zhou et al., 2010), and can be 

contained in the “Everything as a Service” service model (Schaffer, 2009). In 

this section, the service models of cloud computing are discussed. Figure 4.2, 

(Dinh et al., 2013), shows the layers of these models with related examples. 

 

 

Figure 4.2 Service-oriented cloud computing architecture 

 

Each of the service models in Figure 4.2 is discussed next.  

 

 Infrastructure as a Service a. 

Infrastructure as a Service (IaaS) provides access to hardware via operating 

systems on an on-demand basis, by providing the consumer with virtual 

machines. The provider handles the requests from consumers if there are 

resources, i.e. physical machines available (Longo et al., 2011). Examples of 

IaaS are Amazon Elastic Cloud Computing (Amazon, 2014a) and Simple 

Storage Service (S3) (Amazon, 2014b). 
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 Platform as a Service b. 

Platform as a Service (PaaS) service model is a step above the infrastructure. 

The users of PaaS have direct control over applications that they deploy onto 

the cloud platform but have no say in the underlying infrastructure. The 

consumer is allowed to use the cloud provider’s hardware to develop and 

deploy software (S. Zhang et al., 2010). Examples of PaaS are Microsoft Azure 

(Microsoft, 2014d) and the Google App Engine (Google, 2014d). 

 

 Software as a Service c. 

Software as a Service (SaaS) provides users with access to software that has 

been deployed to the cloud. This service can be consumed by web browsers or 

a specific program interface. There is no limit to what software that can be 

exposed as over the cloud as a service (Wang et al., 2010). An example of 

SaaS is Microsoft’s OneDrive (Microsoft, 2014e) that allows users to share files 

across multiple devices simultaneously. 

 

 X as a Service d. 

Everything (X) as a Service (XaaS), as the name suggests, represents any and 

everything that can be represented as service. The term is clearly required 

when one looks at a part of the list of services that are provided by the cloud: 

Hardware as a Service (HaaS), Communication as a Service (CaaS), 

Databases as a Service (DBaaS), Security as a Service (SaaS), Identity 

Management as a Service (IMaaS), and Desktop as a Service (DaaS) 

(Schaffer, 2009). 

 

The basis formed by the three basic service models has allowed the expansion 

of the services provided by the cloud to encompass more than has been 

mentioned. The ability of the cloud to provide anything as a service makes it an 

invaluable tool. Accordingly, the provision of hardware can be used to augment 

mobile devices that are resource constrained. The software provided as a 

service can be incorporated into the new software, or it can be used to provide 

the functionality of the software to many users. The cloud can be used to 

provide anything as a service to the consumers as may be required. The 

services on the cloud are provided to a consumer group, where the size of this 

group is determined by the deployment model used, discussed next. 
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4.2.5. Deployment models 

Services that are provided by the cloud can be deployed using different models, 

namely, Private, Community, Public and Hybrid clouds (Mell and Grance, 2009). 

These models and the intended consumers are discussed in this section. 

 

 Private cloud a. 

Private clouds are deployed for private use and are usually consumed by 

employees and customers of a specific organization. Private clouds can be 

provided and maintained by an external company or it can be done in-house. 

 

 Community cloud  b. 

Community clouds are used by a group of people or organisations that have a 

shared goal or concerns or are required to meet a specific set of regulations.  

 

 Public cloud  c. 

Public clouds provide services to the general public. Consumers gain access to 

services, be they computational power or a word processor, on a pay as you 

use basis or according to a contract. 

 

 Hybrid cloud d. 

Hybrid clouds combine any of the above models. The private and public models 

can be combined to give employees full access to the services and allow the 

public to use the services that they have purchased. 

 

The deployment model that is used limits the intended consumer pool. Service 

providers have access to a flexible environment to deliver their services 

because of the combination of deployment models that is available with the 

hybrid cloud deployment model. 

 

With an understanding of cloud computing and the services provided by the 

cloud, one can see that cloud computing and mobile computing naturally 

complement each other. The combination of these two technologies is called 

mobile cloud computing, discussed in the following section. 
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4.3. Mobile Cloud Computing 

Mobile Cloud Computing (MCC) was introduced not long after the introduction 

of cloud computing. Entrepreneurs see mobile cloud computing as a profitable 

alternative that can be used to provide new experiences to users through 

mobile applications (Dinh et al., 2013). This section discusses the definition of 

mobile cloud computing, and mobile cloud computing architecture.  

 

4.3.1. Definition: Mobile cloud computing 

Mobile cloud computing is more an extension of cloud computing rather than a 

new field. The mobile cloud is formed by using cloud computing technologies 

and infrastructure with mobile devices to either consume or produce services 

that are made available on the cloud. For example, the mobile device can be 

thin clients using cloud resources or mobile devices themselves can be 

resource providers of the cloud.  

 

Mobile cloud computing is defined as an integration of cloud computing with 

mobile environments to bring new capabilities to mobile devices. Mobile cloud 

applications move computing power and data storage away from mobile phones 

into the cloud or onto a server. Mobile cloud computing refers to an 

infrastructure where data storage and data processing happens on a server. 

(Dinh et al., 2013). 

 

Mobile cloud computing supports three types of interactions with mobile devices 

namely consumption, providing and offloading, which is discussed next 

(Alizadeh and Hassan, 2013; Fernando et al., 2013).  

 

Consumption a. 

Consumption is based on the server-client architecture model. The client, in this 

case, a mobile device, executes an application that runs on a resource-rich 

server. The device is seen as an extremely thin client (Fernando et al., 2013). 
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Providing b. 

Providing sees other mobile devices as resource providers in the cloud to 

create a mobile peer-to-peer network. The consuming application uses the 

resources of a nearby device, either mobile or stationary (Marinelli, 2009).  

Offloading c. 

Offloading enables applications on mobile devices to execute some procedure 

or function on the cloud. Offloading uses resources which are abundant on the 

cloud while allowing the device to conserve its limited resources, and can in 

some cases save time, thus improving the user experience (Abolfazli et al., 

2014). 

 

The definition of mobile cloud computing indicates that the cloud can provide 

resources to mobile devices, especially resources that are lacking on the 

device. The devices can also be seen as part of the resource pool that the cloud 

makes available. The following section discusses the layout and architecture of 

mobile cloud computing to show how the mobile cloud is defined.  

 

4.3.2. Mobile cloud computing architecture 

Knowledge about mobile cloud computing does not lead to an understanding of 

how it works. This section aims to further expand this concept by investigating 

the architecture of mobile cloud computing and how mobile devices gain access 

to the cloud. 

 

The greatest difference between the architecture and layout of mobile cloud 

computing and cloud computing is the client, and how the client connects to the 

Internet. Figure 4.3 by Dinh et al. (2013) shows how the mobile devices fit into 

the layout of mobile cloud computing.  
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Figure 4.3 The architecture of mobile cloud computing 

 

Mobile devices shown on the left, connect to the Internet using one of the types 

of connections available. Connections are facilitated by network operators via 

satellite, access points or cell phone towers. Network operators are connected 

to the Internet through their Internet service providers, shown in the middle. To 

the right, cloud providers are shown who host their services on the Internet. 

Mobile devices can access cloud services once the devices have Internet 

access.  

 

When connected to the Internet, mobile devices can access the resources on 

the cloud in a similar manner to traditional computers. There are some 

challenges associated with using mobile cloud computing, discussed later in 

this chapter.  

 

Having access to the cloud allows mobile devices to offload processes, or to 

store information on the cloud. By offloading processes or data, the device is 

augmented with cloud resources. This is called cloud-based mobile 

augmentation and is discussed in the next section. 
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4.3.3. Cloud-based mobile augmentation 

Cloud-based Mobile Augmentation (CMA) is defined as the state-of-the-art 

mobile augmentation model that makes use of cloud computing technologies 

and principles to increase, improve, and optimize the computing capabilities of 

mobile devices by executing resource-intensive mobile application components 

in the resource-rich cloud-based resources. (Abolfazli et al., 2014). Various 

CMA models are discussed next.  

 

4.3.4. Cloud-based mobile augmentation models  

CMA models are determined by the manner in which the client can access 

resources, which devices are used to create the resource pool cloud and where 

these devices are (Mell and Grance, 2009). There are four CMA models namely 

distant fixed, proximate fixed, proximate mobile and hybrid. The models were 

defined according to the location of the resources that form the cloud (Abolfazli 

et al., 2014). For each of these models, an example is given.  

 

Distant fixed a. 

Distant fixed, one of the most frequently used models, uses both public and 

private clouds. Here, resources are provided by distant servers accessed via 

the Internet. By using this approach, the developer does not have to concern 

him-/herself with details that are already provided by the cloud provider (Huang 

et al., 2010). The location of the servers can be anywhere but are seen as being 

far away and immovable.  

 

One of the approaches that use this method is CloneCloud (Chun et al., 2011). 

CloneCloud moves processes from the mobile device to the cloud. A virtualized 

clone of a device is created and run on the server. By using static and dynamic 

analysis, the threads of the application are distributed between the device and 

the cloud. The evaluation of this system has shown a dramatic decrease in 

execution time. 

 

Proximate fixed b. 

Proximate fixed uses nearby traditional computers that are inactive or are not 

using all of their available resources. The computers that are near the mobile 
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devices are configured to provide their resources or services to nearby mobile 

devices. This technique uses a local server instead of the distant cloud to 

augment the resources on the device (Abolfazli et al., 2014; Satyanarayanan et 

al., 2011). The resources used by proximate fixed are on local computers, thus 

the resources are close but immovable. 

 

Cloudlets  (Satyanarayanan et al., 2011), is one of the approaches that are 

based on the proximate fixed technique. The researchers that developed this 

approach used a nearby computer or cluster of computers as a resource pool. If 

the process that is offloaded to the cloudlet requires more resources than what 

the cloudlet can provide, the task is offloaded to the cloud. This approach was 

developed to counteract the delay incurred when communicating directly with 

the cloud from the mobile device. 

 

Proximate mobile c. 

Proximate fixed, also known as cyber-foraging, uses other nearby mobile 

devices for offloading. Here, a complex or computationally intensive task can be 

accomplished when the mobile device does not have access to the cloud 

(Marinelli, 2009). Resources can be found on nearby mobile devices, making 

such resources close and mobile. 

 

Market-Oriented Mobile Cloud Computing (MOMMC) (Abolfazli et al., 2012) is 

an approach that uses the proximate mobile method. MOMCC is based on 

Service Oriented Architecture and uses services developed by programmers. 

The services are added to a Universal Description Discovery and Integration 

(UDDI) server. The UDDI provides developers with the services to create an 

application that can use other nearby devices. End users of applications that 

use the UDDI can register their devices as possible servers. The applications 

developed by using services on the UDDI server automatically searches for 

nearby devices that have been registered as possible servers. If a server is 

found, services are offloaded and the result is sent back. The results from this 

approach have not been conclusive. 
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Hybrid d. 

Hybrid addresses techniques that use more than one of the above-mentioned 

categories to augment mobile devices. These techniques aim to reduce the 

disadvantages of the different approaches (Bahl et al., 2012). 

MOCHA (Soyata et al., 2012) uses the hybrid approach to support a facial 

recognition application that uses the hardware of a mobile device. The mobile 

device communicates with a nearby cloudlet, and if the cloudlet requires more 

resources, it communicates with the distant cloud. When implemented, this 

approach showed significant energy consumption and time improvements, over 

using only either a mobile device or a standard cloud configuration. However, 

the development and setup of the environment are time-consuming. 

 

The different models described here show that there are many ways to augment 

mobile devices with cloud computing. Alternatives to the cloud include the use 

of local computers as resources pools, the pooling of mobile device resources 

to complete a common task or a hybrid approach that uses one or more of 

these approaches. It can be noted that these techniques are highly dependent 

on the goal of the application. For instance, if an application is developed to be 

used in a foreign country, the proximate mobile method should be used 

because a mobile user would not want to spend large amounts of money on 

data to complete a task. 

 

This research chooses to focus on the distant fixed model, which is not 

dependant on nearby devices for resources. There is no need to set up local 

servers and resources are not limited. The augmentation of mobile devices 

using the distant fixed approach supports the creation of more complex 

applications for mobile devices. Augmentation gives mobile devices the ability 

to execute tasks that require more resources than is available or it reduces the 

time required to execute a task. Examples of the distant fixed model are now 

described in more detail  

 

4.3.5. Distant fixed cloud-based mobile augmentation  

Research in distant fixed models aims to reduce the complexity and overhead 

of utilising the cloud. There are a number of approaches that make use of this 

model namely CloneCloud (Chun et al., 2011), Elastic Application (Sokol and 
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Hogan, 2013), VEE (Manjunatha et al., 2010), Virtualised screen (Kumar and 

Lu, 2010), μCloud (Chun and Maniatis, 2009), WhereStore (Kamara et al., 

2010) and Wukong (Singh et al., 2012).  

 

CloneCloud and MAIU, mentioned before, is now described in more detail to 

highlight potential challenges with regards to cloud augmentation and battery 

life. Both approaches have been found to prolong battery life the most (Abolfazli 

et al., 2014). Table 4.1 gives a comparison of MAUI and CloneCloud.  

 

CloneCloud a. 

CloneCloud achieves CMA by creating virtual instances of a mobile device on 

the cloud. The virtual device on the cloud allows the transfer of methods and 

parts of code directly to the cloud without the developer of the application to 

mark code as being executable on the cloud. However, for the virtual instance 

of the device to execute the code from the physical device, the state of the 

physical device has to be transferred to the cloud. The amount data that 

specifies the state of the device, or the application, may be large and lengthen 

the time the method takes to execute or how much battery life is used while 

executing the method (Chun et al., 2011). 

 

MAUI b. 

MAUI requires developers to mark methods as offloaded and to duplicate the 

method on the cloud. By using this approach to CMA, MAUI does not require 

the creation of virtual devices on the cloud and allows the use of traditional 

cloud infrastructure. By not using virtual devices MAUI does not need to transfer 

as much data to the cloud before executing. The MAUI framework can only be 

used once the developer has created the necessary endpoints on the cloud and 

has indicated that the methods can be offloaded (Cuervo et al., 2010). 

 

Table 4.1 Comparison of offloading approaches 

Approach Comm. 

Protocol 

Optimization 

Factor 

Code 

Partitioning 

Operating 

System 

CMA 

approach 

Initial data 

transfer 

MAUI Wi-Fi, 

3G 

Energy, 

Execution 

Time 

Dynamic Windows 

Phone 

Distant 

fixed 

Low 
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CloneCloud Wi-Fi, 

3G 

Energy Static Android Distant 

fixed 

High 

 

The distant fixed cloud-based augmentation approaches discussed above, 

show some of the challenges that will be faced by this research by using such 

an approach. The challenges identified are limiting the amount of data 

transferred and reducing the amount of work that has to be done by the 

developer to use the framework proposed in this research. The advantages of 

using cloud-based mobile augmentation are discussed next. 

 

4.3.6. Advantages of cloud-based mobile augmentation 

Mobile cloud computing is used to alleviate the hardware restrictions on mobile 

devices. It stands to reason that using mobile cloud computing provides 

developers with some advantages, discussed next. 

 

Extendable battery lifetime a. 

The battery life of a mobile device is one of its greatest limitations (Kumar and 

Lu, 2010). The ability to save or extend this limited resource is one of the 

greatest advantages of using cloud-based mobile augmentation. This 

conservation can be achieved by offloading tasks from the mobile device to the 

cloud to either reduce the time it will take to execute the task or to reduce the 

power needed by the device by not requiring it to execute complex tasks 

(Smailagic and Ettus, 2002).  

 

Resource augmentation b. 

The advantages of using mobile devices come at a price, which is limited 

processing power, storage space and memory and battery life. The cloud, on 

the other hand, provides most of these resources. Mobile devices can use the 

cloud to augment these limited resources to allow the creation of mobile 

applications that have access to resources equalling traditional computers 

(Guan et al., 2011). 

 

Improved reliability  c. 

Mobile applications that use cloud computing access the cloud to store 

duplicates of user-application information in such a way that the user can 
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continue using the application from a different device, or in some cases 

platform, without requiring the transfer of data. Backups of stored user 

information improve the reliability of the applications (X. Zhang et al., 2010).  

The access to greater resource pools and the ability to extend the battery life of 

mobile devices can allow the creation of more powerful applications and 

increase the flexibility of mobile devices. The storage of user information and 

data on the cloud improves the reliability of an application or device. Using 

cloud-based mobile augmentation does not just provide advantages, there are 

challenges that have to be overcome. The challenges are discussed next. 

 

4.3.7. Challenges of mobile cloud-based augmentation 

The largest difference between mobile cloud computing and cloud computing is 

the type of device that accesses the resources on the cloud. With cloud 

computing, the device is a traditional computer, and with mobile cloud 

computing the device is a mobile device. There are several challenges 

associated with using mobile devices and the cloud together, which is 

discussed next (Abolfazli et al., 2014). 

 

Dependency on high-performance networking infrastructure a. 

To access the cloud, a connection to a network is required. Mobile devices do 

not have access to consistently wired connections that traditional computers 

have. Mobile devices require a reliable, high bandwidth, high performance and 

robust connection to leverage the power of the cloud effectively. The availability 

or lack of availability is a challenge when using and developing mobile cloud 

computing applications. 

 

Excessive communication overhead and traffic b. 

The increased usage of mobile devices and mobile cloud computing has led to 

mobile network congestion, which is making it more expensive to communicate 

using mobile devices. Resource intensive actions are typically selected to be 

offloaded. These tasks are expensive to offload because of the amount of data 

that is sent to the cloud and the amount of data being received. Overcoming 

and managing the network communication is one of the challenges of using 

mobile cloud computing. 
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Unauthorized access to offloaded data c. 

Once data is offloaded from a device, be it mobile or stationary, the data is no 

longer under the control of the owner, but rather under the control of the cloud 

provider. The cloud provider could gain access to the information or rearrange 

data in such a way that the data is exposed on a public cloud. Controlling 

access to data that has been offloaded is a challenge of using mobile cloud 

computing. The data and the access methods to the data need to be secured 

with the use of suitable security protocols. 

 

Application development complexity d. 

The development of mobile cloud computing applications requires both the 

development of a mobile app for the mobile device and a companion application 

to process resources on the cloud. A challenge is thus the dual development of 

these applications, each conforming to different standards, to achieve the same 

task.  

 

Paid infrastructures e. 

Cloud providers provide a utility that allows consumers to access services that 

they do not normally have access to, for a price. Utilities are provided to either 

the developer or consumer, who each have to pay the cloud provider to access 

the utility. The additional expense of using cloud computing is a challenge of 

using mobile cloud computing (Buyya et al., 2009). 

 

The challenges outlined in this section show that the development of 

applications that use mobile cloud computing requires additional work. 

However, the advancements in the different fields, networking, security and 

mobile cloud computing are working on removing these challenges or at least 

reducing them (Alomari et al., 2011). The challenges are exactly that, 

challenges, they are not insurmountable.  

 

4.4. Conclusion 

This chapter set out to give a background on cloud computing, mobile cloud 

computing, and cloud-based mobile augmentation.  
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The first section discussed the definition of cloud computing, the services that 

can be provided by the cloud, how the consumers can get access to these 

services and what characteristics the cloud has. Cloud computing provides 

services, be it hardware or software, to consumers on an on-demand basis 

without excessive user interaction. Cloud computing can also be seen as a 

utility as it provides computational power to consumers that do not have it. The 

characteristics of the cloud focus on meeting consumer demands without any 

human interaction, to make it possible to provide services on the cloud to as 

many people as possible. The services provided by the cloud can be exposed 

due to the architecture of the cloud. The services can be combined in countless 

ways and can be exposed as service of their own. This can be summarized in 

the phrase “X as a Service” or everything can be a service. The cloud can be 

deployed using different models that allow different groups of consumers to 

access the cloud. The deployment model allows the provider to determine how 

large or small the consumer base will be and who can have access to it. The 

groups can also be combined using a hybrid deployment model.  

 

The second section of the chapter discussed the definition of mobile cloud 

computing, cloud-based mobile augmentation, the techniques used to augment 

mobile devices and the advantages of using the cloud with mobile devices. 

Mobile cloud computing is the use of cloud computing technologies with mobile 

devices. The mobile cloud is used by mobile devices to produce or consume 

services or to offload tasks to the cloud. The architecture and layout of mobile 

cloud computing do not differ that much from the architecture and layout of 

traditional cloud computing. The main difference is the client and how the client 

communicates with the cloud servers. Cloud-based mobile augmentation or 

augmentation, in brief, is the process of increasing, enhancing, and optimizing 

computing capabilities of mobile devices by leveraging the cloud and the 

resources made available by the cloud. The techniques used to augment mobile 

devices using the cloud are categorized into four models based on the type of 

cloud being used and the location of the resources. These categories use the 

cloud, nearby computers, nearby mobile devices and a hybrid of these 

approaches. Each of these is viable and has different applications.  This 

research uses the distant fixed approach of cloud-based mobile augmentation.  
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This chapter discussed 3 approaches that use the distant fixed approach. 

CloneCloud uses virtual instances of the physical mobile devices on the cloud 

to offload. MAUI requires the creation of more traditional cloud resources to 

offload functionality from the mobile device. The approaches used require either 

more data to be transferred to the cloud or more work from the developers to 

use the frameworks. 

 

The advantages of using mobile cloud computing counteract the disadvantages 

of using mobile devices. The storage of users’ data and information on the 

cloud increases the reliability of the applications. The greatest advantage of 

using mobile cloud computing is the ability to offload from the mobile device to 

the cloud to allow the conservation of one of the scarcest resources on mobile 

devices i.e. battery life. The advantages gained by using mobile cloud 

computing comes at the price of challenges that have to be faced when creating 

or using applications that use mobile cloud computing. 

 

The advantages gained by using cloud-based mobile augmentation come at the 

price of certain challenges, this chapter discussed those challenges. By using 

the cloud, a reliance is created on the availability of Internet access and thus to 

various networks that connect the mobile device to the Internet. The networks 

used are unreliable and create overhead when communication occurs between 

the device and the cloud. To allow applications to leverage the availability of 

resources on the cloud requires the developers to create applications that are 

capable of doing so, this can lead to increased complexity. The last challenge 

that should be overcome when implementing a CMA framework is the monetary 

cost of using a cloud provider. Offloading is discussed in more detail the next 

chapter. 
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Chapter 5: Offloading 

5.1. Introduction 

Current research in mobile cloud computing focuses on techniques that can be 

used to support resource-demanding mobile applications. In chapter 3, it was 

identified that mobile resource augmentation can be performed using hardware, 

software and offloading. Increasing the resources available on mobile devices 

by upgrading or replacing the hardware can be expensive, and not all devices 

are upgradeable. Mobile augmentation achieved by offloading can be used by 

any mobile device that is connected to the Internet and provides access to the 

limitless resources available on the cloud. Offloading is a technique that is used 

to overcome the limitations of mobile devices in terms of computation, memory 

and battery life. The mobile cloud can provide resources to create more 

powerful applications even though the battery life of a mobile device and the 

bandwidth of the connection cannot be augmented.  

 

Offloading, especially offloading from a mobile device to the cloud, is a 

challenging task to accomplish. Developing a framework that uses offloading to 

conserve battery life on mobile devices requires an understanding of the 

different approaches that can be used. The level at which offloading should 

occur, the requirements of the cloud server, the identification of offload-able 

components and what data is required on the cloud are some of the factors that 

should be considered when creating a mobile cloud computing offloading 

framework. 

 

The aim of this chapter is to give an overview of offloading and how it can be 

used to alleviate the limited resources on mobile devices. To achieve this aim, 

offloading is defined in section 5.2. With offloading defined, the various methods 

of offloading are discussed and compared in section 5.3. Section 5.4 discusses 

the connection protocols that can be used to connect to the Internet, and using 

the connection to the Internet, the offloading of tasks to the cloud. Section 5.5 

compares offloading frameworks used in mobile cloud computing. Section 5.6 

covers the challenges when offloading from mobile devices to the mobile cloud. 

Finally, the chapter is concluded. 
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5.2. Definition: Offloading 

Offloading is not a new idea, as offloading capabilities available to traditional 

computers have now become available to mobile devices due to the 

advancements in mobile device technologies (Dinh et al., 2013; Souppaya and 

Scarfone, 2013). The ability to offload processes to the cloud, and to augment 

the resources on mobile devices, is of key importance to the continual 

development of mobile devices and applications. Some resources cannot be 

physically transferred to the mobile device, thus the tasks that the mobile device 

needs to execute is moved to the cloud where the cloud resources can be used.  

 

Offloading is defined as the process of moving a task from a resource-poor 

client to a resource-rich server. In this case, the server is the cloud and the 

client a mobile device. (Kumar et al., 2013).  

 

Offloading differs from a traditional cloud-server-client architecture, where a thin 

client always needs to offload the processing to the server. Offloading also 

differs from grid or multi-processor computing where tasks are migrated in order 

to balance the load on different processors. Offloading moves processing tasks 

to a server that does not need to be in the vicinity of the client (Kumar et al., 

2013). Thus mobile devices are not required to sacrifice mobility when using the 

cloud, because the cloud is remote. 

 

The use of offloading with mobile devices has been enabled by the recent 

advances in mobile device technology as most modern mobile devices have 

near constant access to the Internet (Dinh et al., 2013). Consequently, mobile 

devices have access to the cloud because of the increase in the use of the 

cloud and the developments made in the provisioning of services by the cloud, 

made possible by virtualization (Kumar et al., 2013). 

 

The methods that can be used to offload tasks from mobile devices are 

discussed next (Abolfazli et al., 2014). 
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5.3. Methods of offloading 

The offloading of tasks from mobile devices has extensively been researched. 

Research has shown there are three main directions that these methods take 

namely, client-server communication, virtualization, and mobile agents 

(Fernando et al., 2013). The methods and a comparison between these 

methods are discussed next. 

 

5.3.1. Client-server communication 

Client-server communication takes place between the mobile device and the 

cloud provider by using protocols such as Remote Procedure Call (RPC) (Flinn 

et al., 2002; Marinelli, 2009), Remote Method Invocation (RMI) (Flinn et al., 

2002; Marinelli, 2009) or by using sockets (Balan et al., 2003; Fernando et al., 

2013). 

 

These communication methods are well established and are considered to be 

stable by developers. A drawback of using these communication methods is 

that procedures that are remotely called, or the methods that are remotely 

invoked, need to be installed on the server prior to execution, which hinders the 

mobile and flexible nature of mobile devices. Because the application needs to 

communicate with a specific server that has the procedures or methods 

installed, network congestion can be created (Fernando et al., 2013).  

 

Figure 5.1 (Fernando et al., 2013) illustrates the communication between a 

server and a client when using client-server communication to offload. The 

client sends the call to execute a procedure or method and if necessary the 

server returns the result of the execution. 
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Figure 5.1 Client-server communication. 

 

The communication between the mobile device (the client) and the server (the 

cloud) is straightforward. The server exposes a number of procedures that can 

be called remotely. The client accesses the server’s procedures, provides the 

necessary data as parameters, and calls the procedure. The server returns a 

result if necessary. 

 

The client-server method is well established and has been proved to be 

compatible with mobile devices. The difficulty of implementing this approach 

comes when deciding whether or not to offload a task as the state of the device, 

and the connected network’s information needs to be considered when deciding 

whether or not the process should be offloaded.  

 

5.3.2. Virtualization 

Virtual machine migration is the process of transferring a duplicate of the 

memory instance of a virtual machine from the source to a destination without 

stopping the execution of processes running on the virtual machine (Clark et al., 

2005). The memory pages of the original machine have to be transferred to the 

destination machine before the execution can be transferred, to provide an 

illusionary seamless migration (Cuervo et al., 2010; Fernando et al., 2013; 

Satyanarayanan et al., 2011). 

 

Virtualization does not require the alteration or duplication of code. Because the 

execution is moved to a duplicate virtual machine, the physical server is 

insulated. However, the duplication and creation of the virtual machine are time-
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consuming and there may exist compatibility issues between virtual machines. 

The lack of resources on mobile devices can also be a hindrance for the 

resource intensive task of virtual machine migration (Fernando et al., 2013). 

 

Figure 5.2 (Fernando et al., 2013) shows the communication between the 

original and destination virtual machine and the layers of the virtual machine. 

The mobile device communicates with the virtualized hardware layer to transfer 

the memory, and with the operating system and application to execute the 

process. 

 

 

Figure 5.2 Virtual machine migration. 

 

The communication between the mobile device and server occur via a network, 

which is usually the Internet for cloud-based servers. Virtual machine migration 

requires large amounts of data to be transferred to the cloud before processes 

can be offloaded. The state of the mobile device is sent to the cloud where the 

virtual mobile device is hosted. Once the state has been restored to the virtual 

device the computationally intensive task is executed, and the state after the 

process has been executed is sent back to the physical mobile device. 

 

Virtualization of mobile devices and the applications that run on them allows 

continuous execution when offloading. Because the server is executing the 

process as if the mobile device was executing the process, there is no need to 

create code for the server and code for the client. The resource usage, 

however, limits the size of the applications that can be developed, because the 
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mobile device does not have enough resources to continue executing and to 

transfer the application execution. 

5.3.3. Mobile agents 

Unlike the previous approaches, mobile agents offload tasks not to the cloud, 

but to nearby devices. The client can, depending on the number of servers and 

resources available on them, partition tasks so that different partitions of a task 

is executed on different servers (Kristensen, 2010). 

 

The use of mobile agents supports dynamic deployment because all the code 

that needs to be executed is already on nearby devices. The execution can 

occur on such devices at the cost of time and battery life. However, because the 

mobile agent's approach uses different devices as servers, security is 

questionable. Because nearby devices are being used, they need to be 

managed (Fernando et al., 2013). 

 

Figure 5.3, (Fernando et al., 2013), shows the communication between the 

client and the server. The server contains the mobile agent that communicates 

with the service. The server responds to the client the result of the task or part 

of the task that was sent for execution. 

 

 

Figure 5.3 Mobile agents. 

 

The mobile device communicates with other nearby mobile devices and moves 

a task to the device to be executed. The server device has a mobile agent that 

listens for requests from client devices. When a request is made, the server 

executes the required services and returns the result, if there is one, to the 

client. Unlike with other methods, the network that the mobile device connects 
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to does not have to be the Internet. The server and client devices are near each 

other, meaning the communication can take place via a local Wi-Fi network or 

the devices can create a connection using Bluetooth. 

 

Using mobile agents for offloading is very dynamic, has offline capabilities, but 

the lack of security and the limited resources does not allow the creation of 

powerful applications. The mobile agent approach is used more to conserve the 

resources on the client and not used to augment the resources of the client. 

 

5.3.4. Comparison of offloading methods 

Each of the offloading methods has different advantages and disadvantages. 

This section provides a comparison between the methods, shown in Table 5.1. 

The results of the comparison provide a motivation for the choice of the method 

for this research (Christensen, 2009; Clark et al., 2005; Cuervo et al., 2010; 

Fernando et al., 2013; Satyanarayanan et al., 2011). 

 

Table 5.1 compares not only the methods but also the server type and location 

for the client-server and virtualization approach. For each of the methods, the 

amount and location of the resources are compared, as well as the size of the 

communication required to use the given approach and the complexity of the 

code to use the approach. 

 

Table 5.1 Comparison of offloading methods 

 Resources Resource 
location 

Communication 
size 

Coding 
complexity 

Client-server 
(Using the 

cloud) 

Nearly 
limitless 

Distant Small High 

Client-server  
(Using a local 

server) 

Limited Nearby Small High 

Virtualization 
(Using the 

cloud) 

Nearly 
limitless 

Distant Large None 

Virtualization 
(Using a local 

server) 

Limited Nearby Large None 

Mobile 
Agents 

Limited Nearby Small Some 
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From an evaluation of Table 5.1, the trade-offs between the different offloading 

methods are clearly shown. At the expense of communication size, offloading 

can be achieved without the need to increase code complexity, using 

virtualization. The client-server method increases code complexity but does not 

require any unnecessary communication to the server. Mobile agents do not 

increase code complexity to the same extent than the client-server approach 

does and does not require more data to be transferred, however, the resources 

are not guaranteed and is not a reliable option. 

 

The method chosen for the implementation in this dissertation is client-server 

communication using the cloud. Client-server is selected because it does not 

require large amounts of data to be transferred before operations can be 

offloaded. The server on the cloud is chosen because it provides the most 

resources and is constantly available. The drawback of using the client-server 

communication method is the coding complexity. However, because the 

implementation in this dissertation is done in Android, the same code can be 

used in a Java server-side application. 

 

This discussion shows that processes can be offloaded from a mobile device to 

a server, whether the server is the cloud, a local computer or nearby mobile 

device. All these methods require communication with the server and 

communication requires connection protocols, which are discussed below. 

 

5.4. Connection protocols 

To be able to offload computation, the ability to connect to the Internet or a 

network is required. There are various connection protocols available on mobile 

devices that enable them to connect to the Internet. Protocols such as Wi-Fi, 

Bluetooth, 3G, and 4G are all used in offloading solutions. Each of these 

connection protocols is now discussed their implementation and advantages. 

Finally, a comparison is made between the discussed connection protocols to 

determine which protocols can reliably be used for offloading. 
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5.4.1. Wi-Fi 

Most modern mobile devices have a built-in Wi-Fi radio providing the device 

with access to Wi-Fi networks, and through the networks, access to the Internet. 

Wi-Fi has a 100m range and can transfer data at 20Mbps. Research has shown 

that a mobile device can download a 6GB file and upload a 5.6GB file using Wi-

Fi before being completely discharged (Dinh et al., 2013; Fernando et al., 2013; 

Kalic et al., 2012). 

 

MAUI, an offloading solution discussed previously in chapter 3, uses Wi-Fi as 

the connection protocol to offload fine-grained energy-aware mobile code to the 

cloud. MAUI utilises managed code to reduce the burden on programmers with 

regards partitioning the program while maximizing the energy savings. A 

smartphone application’s code is duplicated and the copy is executed from the 

cloud infrastructure. The methods in the application are profiled and serialized 

to determine the cost of offloading. The offloading is done via RPC and 

although MAUI works via both 3G and Wi-Fi, the focus was on Wi-Fi. The 

results from the creators, Cuervo et al, shows that MAUI can reduce energy 

consumption (Cuervo et al., 2010). 

 

5.4.2. Bluetooth 

Like Wi-Fi, most modern devices have Bluetooth radios. These radios allow 

devices to connect to each other or to a Bluetooth network. The typical range of 

a Bluetooth radio is 10m depending on the strength and type of the device, and 

the physical objects between devices (Fernando et al., 2013). Using Bluetooth, 

a mobile device can download a 4GB and upload a 5.6GB file before completely 

losing charge (Kalic et al., 2012). The most recent Bluetooth protocol, Bluetooth 

4.0, has been extended to include the Bluetooth Low Energy (Bluetooth LE) 

protocol. The entire Bluetooth 4.0 protocol is backward compatible, and the 

Bluetooth LE protocol is used to create a network between long-lasting sensors 

(Want et al., 2013). 

 

As offloading is being used more often, more congested mobile networks would 

be created. A solution to the congestion problem is suggested by (Han et al., 

2012). They suggest using opportunistic communication to offload data to the 



73 
 

network or server when the device is connected to a device that has the 

capability. If a specific device has the content of an application, that device can 

offload the content to other devices that use a shared application, using 

opportunistic communication. The solution suggests that if Bluetooth is used as 

the communication protocol, opportunistic communication can be done without 

incurring a monetary cost, while at the same time ensuring that the mobile 

networks are not congested. Using Bluetooth to find and initialize 

communication between devices has been shown to be the most cost-effective 

for battery life. Bluetooth communication, in general, uses less battery life than 

the other communication protocols, but it does not support large bandwidths. 

 

5.4.3. 3G 

3G, or Third Generation, is the third generation of mobile telecommunications. 

Protocols that meet the 3G standard include, Edge, HSDPA and HSDPA+ 

(3GPP, 2017) The standard defines that 3G has at least a 200kbps transfer 

rate. 3G is used by most devices for wireless voice telephony, mobile Internet 

access, fixed wireless Internet access, video calls and mobile TV technologies. 

The infrastructure that cellular networks use is owned and controlled by a 

service provider and access to the network is sold to consumers. 3G enables a 

mobile device to download 3GB and upload 1.4GB of data before being 

completely discharged (Alomari et al., 2011; Fernando et al., 2013; Kalic et al., 

2012). 

 

Mobile commerce (m-commerce) is a business model that leverages mobile 

devices for commercial purposes, such as, payments, messaging and ticketing. 

M-commerce applications use the mobility of mobile devices to fulfil the 

previously mentioned task. (Yang et al., 2010), suggest an m-commerce 

application based on cloud computing that uses 3G. The application on the 

mobile device communicates with the server’s web service via 3G. The web 

service grants users access to their m-commerce information from virtually 

anywhere. M-commerce uses the 3G communication protocol and cloud 

computing to increase the speed and security of m-commerce. The main 

advantage of 3G over Wi-Fi is the nearly ubiquitous Internet access (Cuervo et 

al., 2010). 
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5.4.4. 4G 

4G, or Fourth Generation, is the fourth generation of mobile 

telecommunications, and the successor of 3G. The 4G standard supports the 

same services as 3G. The increased speed of connections using 4G enables 

more services and is ideal for mobile cloud computing. There are currently two 

4G implementations namely Long Term Evolution Advanced and Mobile WiMAX 

(Parkvall and Astely, 2009). 

 

4G is the successor of 3G with all the advantages of 3G but also increased 

bandwidth. Because 4G is the successor to 3G, most of the applications that 

use 3G can also use 4G. Subramanian et al (2014) have developed an 

application that uses the increased bandwidth of 4G. The application proposed 

is an m-health application that uses a mobile device and certain accessories to 

monitor a patient and to offload the information to a server that also has the 

patient’s medical records. The information stored on the cloud can be accessed 

by the patient’s physician and can be used to increase the speed at which 

decisions are made. Because the application deals with the lives of patients, 

physicians need access to the latest medical records as soon as possible, 

which is made possible by using 4G. 

 

The variety of connection protocols allow developers to create applications that 

require constant network access. Because mobile devices have the hardware to 

connect to more than one of these networks, developers can use different 

protocols at different times.  

 

5.4.5. Comparison of connection protocols 

Mobile devices can connect to all of the networks discussed, where a specific 

network is better suited for certain tasks. Table 5.2 compares the connection 

protocols. The table compares the range, speed, and energy consumption after 

two hours of use (Alomari et al., 2011; Cuervo et al., 2010; Fernando et al., 

2013; Kalic et al., 2012; Parkvall and Astely, 2009; Want et al., 2013). 
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Table 5.2 Comparison of connection protocols 

 Maximum 
range 

Maximum 
throughput 

Energy 
consumption 
(Download) 

Energy 
consumption 

(Upload) 

Wi-Fi 
 

100m 866.7 Mbps 38% 38% 

Bluetooth 
 

10m 2 Mbps 19% 19% 

3G (HSDPA) 
 

N/A 7.2 Mbps 38% 34% 

4G (LTE) 
 

N/A 100 Mbps N/A N/A 

 

From the comparison, it is clear that maximum throughput affects the energy 

consumed. Bluetooth, which uses the least amount of data, has the lowest 

energy consumption. Higher throughputs consume significantly more energy. 

However, throughput is not the only factor that plays a role. Comparing Wi-Fi 

and 3G, the energy consumption is the same for downloading which is a slight 

difference between the results from uploading. However, the throughput of 3G 

is almost a third of W-Fi. These factors will be taken to into account in the 

experimentation in this dissertation. 

 

For this research, the communication protocol to be used between proposed 

components is both Wi-Fi and cellular networks, i.e. 3G and 4G. Wi-Fi is 

selected because the connection provided is stable and it has a relatively high 

bandwidth. However, as Wi-Fi is not mobile, cellular networks are also selected 

because they can be used when the device is not connected to a Wi-Fi network. 

Bluetooth is disregarded because of the low bandwidth. 

 

The connection protocols have different advantages, where multiple advantages 

can be gained by using more than one connection protocol based on what is 

required at that point in time. The process of offloading, no matter the 

connection protocol, provides mobile devices with access to the resources on a 

server. Unfortunately, no advantage comes without some disadvantages or 

challenges. The next section discusses and evaluates various offloading 

approaches. 
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5.5. Offloading approaches  

Offloading from a mobile device follows the same basic steps, however how 

these steps are completed differ based on the framework used. This section 

discusses the steps taken when offloading and compares different frameworks 

(Akherfi et al., 2016). 

 

5.5.1. Offloading steps 

The steps that are taken when offloading are application partitioning, 

preparation and making the offloading decision (Akherfi et al., 2016) discussed 

in this section. 

 

Application partitioning a. 

Partitioning the application divides the application into two component 

categories. The first contains application components that can be offloaded and 

the second contains the components that cannot be offloaded. Dividing the 

application into the categories can happen in different ways depending on the 

framework chosen. Methods can be marked by the developer as being offload-

able, or the methods or components can be identified using source code 

analysis with performance prediction or the application profiling. If the 

partitioning happens during development the accuracy of the partitioning is 

limited because it does not take the actual execution into account (Akherfi et al., 

2016). 

 

Preparation b. 

The next step, preparation performs all actions required for the components 

marked as offload-able to enable their use in mobile applications. This includes 

the selection of a remote server, the transfer, and installation of the code, as the 

start of proxy processes that receive and execute tasks on behalf of the mobile 

device. Setting up the cloud server is the first part of the preparation, there is 

also a seconding optional step, the transfer of data from the mobile device to 

the server. The data transferred in the second step can include the data 

required to execute the cloud on the server, and the data that describes the 

state of the mobile device (Akherfi et al., 2016). 
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Offloading decision c. 

The final step before offloading is the offloading decision. Whether or not the 

offload-able component is offloaded depends typically on the execution context. 

If the decision is taken at runtime, more precise information is available, for 

example, the state of the device’s network connection and the estimated energy 

consumption for transferring data at that time. Making the decision at runtime 

enables the re-evaluation of the decision whenever the state of the mobile 

device changes. However, runtime decision making does include some 

overhead costs that are not incurred when making the decision during 

development (Akherfi et al., 2016; Al-mousa and Alzoubi, 2017). 

 

The steps that are required to offload an application or a component of an 

application does not vary, however, there are differences in how the steps are 

achieved depending on the framework chosen. The offloading frameworks are 

discussed next. 

5.5.2. Comparison of mobile cloud computing offloading 

frameworks  

There exist many mechanisms to achieve offloading, however, there are two 

framework categories that are prevalent when offloading tasks from mobile 

devices, namely frameworks based on virtual machine cloning, such as 

CloneCloud and frameworks based on code offloading, such as MAUI (Akherfi 

et al., 2016). MAUI and CloneCloud and the respective framework mechanisms 

are evaluated and compared in this section. The offloading steps of MAUI and 

CloneCloud are now examined.  

 

CloneCloud a. 

The offloading steps taken in CloneCoud, shown in figure 5.4. are discussed to 

further evaluate the solution presented by Chun et al. (Chun et al., 2011). 

 



78 
 

 

Figure 5.4 CloneCloud execution model 

 

i. Partitioning 

CloneCloud achieves partitioning by combining static program analysis with 

program profiling to produce a set of offload-able components while meeting 

some constraints, such as methods that require resources available only on the 

mobile device should be pinned to the device. CloneCloud uses thread level 

granularity for partitioning of applications. Static analysis is used to discover 

constraints on components, whereas profiling is used to build a cost model for 

offloading and execution. Partitioning and integration of application are 

performed at the application level (Chun et al., 2011). 

 

ii. Preparation 

The preparation step is achieved by creating a virtual instance of the mobile 

device on the cloud and transferring the necessary data to the clone before 

offloading. Initially, a duplicate of the smartphone’s software is created in the 

cloud. The state of the smartphone and the clone is synchronized periodically or 

on-demand. As the partitioning happens at thread level all the threads are 

suspended and the states of the threads are transferred to the cloud. In figure 

5.4 the Cloud VM is created in this step (Chun et al., 2011). 

 

iii. Offloading decision 

The offloading decision is made at runtime, once the decision has been made to 

offload the second step in the preparation occurs, namely the thread states are 

transferred. CloneCloud is based on virtual machine instance migration to the 

cloud server. Figure. 5.4 shows the CloneCloud execution model. After the 
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execution of offloaded components, results from the execution on the clone are 

reintegrated back into the smartphone state (Chun et al., 2011). 

 

MAUI b. 

The offloading steps taken in MAUI, shown in figure 5.5, are now discussed to 

evaluate the solution presented by Cuervo et al. (Cuervo et al., 2010). 

 

 

Figure 5.5 MAUI execution model 

 

i. Partitioning 

Partitioning is achieved in MAUI by developers who mark methods as 

offloadable during development. MAUI offloads code so the developer is 

required to create a cloud counterpart to the methods that are marked 

offloadable (Cuervo et al., 2010). 

 

ii. Preparation 

MAUI prepares for offloading by ensuring that the application is available on 

both the mobile device and the cloud server and also that proxies, solvers, and 

profilers are installed on the mobile device and the cloud server (Cuervo et al., 

2010).  

 

iii. Offloading decision 

The MAUI profiler is used to create an initial profile of the mobile device 

characteristics, and continually monitors changes to the device and the network 

to update the profile if the profile is not kept current wrong decisions can be 

made. The offloading decision is taken at runtime. The framework chooses 
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which components should be remotely executed according to the decision of 

the MAUI solver. The decision is based upon the input of the MAUI profiler. 

Figure 5.5 shows the MAUI execution model.  

 

Comparison of mobile cloud computing offloading frameworks c. 

The comparison of MAUI and CloneCloud offloading is given in table 5.3. Both 

MAUI and CloneCloud achieve offloading, but by using different mechanisms. 

Both frameworks make use of dynamic decision making. MAUI uses information 

that is gathered by the MAUI profiler and then fed to the MAUI solver to 

determine whether or not a method should be offloaded. CloneCloud uses a 

built-in profiler to migrate threads to the clone on the cloud. Virtual machine 

cloning is expensive in terms of computation and storage on the cloud, but such 

costs can be covered by the use of container technology (Bernstein, 2014). As 

stated before, code offloading moves the burden of identifying offloadable 

components to the developer. Thread level granularity introduces complexity, as 

there is more information required to be transferred and the migration of the 

result back into the local instance can negatively influence the user experience. 
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Table 5.3 A comparative review of MAUI and CloneCloud 

Framework Comm. 

Protocol 

Optimization 

Factor 

OS CMA 

approach 

Initial 

data 

transfer 

Partitioning Preparation Decision Offloading 

mechanism 

Contribution Level of 

granularity 

MAUI Wi-Fi, 

3G 

Energy, 

Execution 

Time 

Windows 

Phone 

Distant 

fixed 

Low Individual 

method 

annotation  

Two 

versions of 

a mobile 

application 

are created 

Dynamic Code Energy-

aware code 

offload 

Method 

CloneCloud Wi-Fi, 

3G 

Energy Android Distant 

fixed 

High Static 

program 

analysis and 

program 

profiling 

A duplicate 

of mobile 

device’s 

software 

stored on 

the cloud 

server 

Dynamic Virtual 

machine 

cloning 

Elastic 

execution 

between 

mobile 

devices and 

the cloud 

Thread 
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The solution proposed by this dissertation uses code offloading on a method 

level of granularity to reduce complexity. Decisions making is discussed in the 

next chapter in more detail. The challenges associated with offloading and 

enabling offloading are discussed next. 

 

5.6. Challenges of offloading 

Offloading provides many advantages when applied to traditional computers. 

When offloading is done from a mobile device, the number of advantages 

greatly increases. To gain the advantages of offloading, certain challenges need 

to be overcome, as discussed next. 

 

Offloading requires at least two types of devices to be implemented namely a 

server and client. For this research, the two devices are the cloud and the 

mobile device. The challenges facing offloading is two-sided; from the viewpoint 

of mobile communication, and from the viewpoint of computing (Dinh et al., 

2013). The challenges discussed here are focussed from the viewpoint of the 

mobile device. The challenges related to the server-side components and the 

challenges of mobile cloud augmentation were discussed in the previous 

chapter. 

 

The challenges discussed below are related to mobile device communication 

which hinders offloading. The challenges discussed are low bandwidth, 

availability, heterogeneity, and security. 

 

5.6.1. Low bandwidth 

The ability of mobile devices to connect to the Internet and other networks has 

been well established. The first challenge that needs to be overcome when 

offloading is the bandwidth available to the mobile device. Cellular networks are 

nearly everywhere but do have an associated cost and do not have the reliable 

bandwidths. In contrast, Wi-Fi can provide network access at greater bandwidth 

but does not cover such a large area as the mobile networks (Cuervo et al., 

2010; Dinh et al., 2013). 
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5.6.2. Availability 

The availability of network connections is the second challenge that needs to be 

overcome. Because mobile devices are resource constrained, the importance of 

network availability increases as devices may not be capable to complete 

complex tasks without offloading.  As previously stated, mobile data networks 

provide nearly complete coverage, but areas without network access can still 

exist. Wi-Fi access points provide network access when the user is in the 

limited range, forcing a mobile user to use Wi-Fi, which severely limits the 

mobility of the user (Dinh et al., 2013; Huerta-Canepa and Lee, 2010). 

 

5.6.3. Heterogeneity 

The heterogeneity of the different types of networks that can be used to offload 

is the third challenge that needs to be overcome. The different networks and 

communication protocols need to be considered when the offloading server is 

created. Different servers have different requirements and meeting these 

requirements can have influenced the capabilities of the application. (Dinh et al., 

2013) 

 

5.6.4. Security 

The security of the data being stored, sent or processed is the fourth challenge. 

The security on a mobile device can be augmented by third-party applications 

but there is still a risk involved in having sensitive data on a small mobile 

device. Not only is the device vulnerable to cyber-attacks but also to physical 

threats, the device can destroy or stolen quite easily (Dinh et al., 2013; 

Oberheide et al., 2007).  

 

The challenges discussed here are daunting, but the widespread use of 

offloading shows that the challenges can be, and have been overcome as 

advances in the fields relating to these challenges are reducing the impact and 

the size of the challenges. 

 

The last component of the proposed solution, namely the decision to be taken 

when offloading should occur, is of utmost importance. The factors that 

influence the offloading decision making are discussed in the next chapter. 
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5.7. Conclusion 

This chapter discussed offloading, focussing on the offloading from mobile 

devices to the cloud or mobile cloud. The methods that are available to offload, 

the connection protocols used to connect mobile devices to the networks 

required for offloading, the challenges that need to be overcome when 

offloading and the factors that influence the offloading decision were also 

discussed. 

 

The use of offloading with mobile devices is an extension of the offloading used 

by traditional computers. By using offloading to augment mobile devices with 

the resources available on the cloud, more complex applications can be 

developed for mobile devices. 

 

The methods available to offload processes from mobile devices to the cloud 

can be categorized into three overarching methods. These are Client-Server, 

Virtualization, and Mobile Agents. These methods each have advantages and 

disadvantages, and each uses a different computer or device as a server. The 

advantages and disadvantages make the approaches more useful in some 

situations and less so in others. In the case of the solution proposed by this 

dissertation, the client-server method is best suited. 

 

The connection protocols available are discussed as they are integral to 

offloading. The different protocols are all used by mobile devices and have been 

used to create applications that offload processes from mobile devices. The 

variety of connection protocols can be used in concert to keep a device 

connected to a network continuously. The examples of applications that use the 

different communication protocols made the different advantages clear. 

 

Offloading frameworks typically take one of two approaches when offloading. 

The first is virtual machine cloning, which relies on creating a virtual instance of 

the mobile device and migrating threads and data regarding the state from the 

physical device to the cloud for execution, once execution is completed the 

thread is migrated back to the physical device and merged into the application. 
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The second approach is code offloading, which relies on the creation of a 

function on a cloud server that executes instead of the local method. 

CloneCloud uses the first approach, whereas MAUI uses the second approach. 

 

Offloading is used to increase the resources of the client but the increase of 

resources comes with some challenges. These challenges, focussing on the 

mobile device, are discussed. The low bandwidth and availability of network 

connections on the devices cannot be influenced by users but should be 

considered by app developers. The difference of the networks that can be used 

on mobile devices should be also be considered because the requirements of 

the connection protocols vary. Lastly, the security of the data being offloaded 

should be considered because once the data leaves the device the owner is no 

longer control of what happens to the data. 

 

The goal of the offloading of processes is to augment mobile devices with cloud 

resources, where offloading becomes necessary because of the limited 

resources on mobile devices. As limited resources are not always conserved 

when processes are offloaded, the decision of whether or not a process should 

be offloaded is discussed in chapter 6. 
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Chapter 6: Decision Making 

6.1. Introduction 

Studies (Barbera et al., 2013; Kumar and Lu, 2010) have shown that offloading 

can be used to conserve the battery life of mobile devices in the right 

circumstances. As discussed in the previous chapter, offloading is the process 

of moving the execution of a process from a resource-poor client to a resource-

rich server. Before a process is executed, a decision has to be made to either 

offload the process or execute the process on the mobile device. The decision 

maker evaluates the circumstances and chooses whether or not to offload. The 

decision made can conserve the battery life of the mobile device and extend the 

length of time the mobile device can be used. 

 

The previous chapter discussed offloading and the fact that the right offloading 

decision can conserve battery life. This chapter completes the literature review 

by defining decision making and identifying the factors that can influence the 

offloading decision. To achieve these aims, section 6.2 defines decision making 

and section 6.3 discusses the process of decision making. In section 6.4 the 

factors that influence the offloading decision are discussed. Section 6.5 

discusses and evaluates the decision-making process followed in related 

research. Finally, the chapter is concluded. 

 

6.2. Definition: Decision making 

The study of decision making influences many intellectual disciplines such as 

mathematics, statistics, economics, political science, sociology, psychology and 

computer science (Kahneman and Tversky, 2000). 

 

Decision making is the process of identifying and choosing an option between 

several alternative options based, on certain factors and the goal of the decision 

maker. The decision making process results in a final choice that determines 

the actions of the decision maker (Kahneman and Tversky, 2000; Zsambok and 

Klein, 2014) 
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The main goal of this research is to develop a component that can make 

offloading decisions to conserve battery life, which can be integrated with an 

existing application. An offloading decision can be considered as good if the 

offloading of a task conserves more energy than when a local computation is 

performed.  

 

The definition indicates that there are three components that are required to 

make decisions namely goals, options, and factors. These components are 

discussed next. 

 

6.3. Decision making 

A decision-making component chooses between options based on certain 

factors to achieve a goal, identified next. 

 

6.3.1. Goal 

Decisions are made to reach a goal (Kahneman and Tversky, 2000). In this 

dissertation, the goal is to consume as little energy as possible by choosing the 

less expensive option in terms of energy consumed. 

 

6.3.2. Options 

The options or choices for this research are between deciding to offload or not 

to offload. The decision is made based on factors that influence the energy 

consumption cost of each option. 

 

6.3.3. Factors 

Factors that influence the energy cost of offloading and local execution include 

the size of the data (being sent and received), the bandwidth available, the 

communication protocol that is used, the complexity of the code and the 

duration of executing the processes locally (Kumar and Lu, 2010).  

 

The factors ultimately determine whether or not the decision maker achieves 

the goal. The factors and how they are measured are discussed next. 

 



88 
 

6.4. Factors influencing the offloading decision 

The offloading of a mobile task is a trade-off between the energy consumed 

when executing locally, and the energy needed for offloading the task, as well 

as uploading and downloading the relevant data (Kumar and Lu, 2010). It is 

expressed as the equation in equation 6.1. 

 

Equation 6.1 Offloading decision-making equation 𝐸𝑙𝑜𝑐𝑎𝑙 −  𝐸𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 =  𝐸𝑠𝑎𝑣𝑖𝑛𝑔 𝐸𝑠𝑎𝑣𝑖𝑛𝑔 > 0 

Where: 

 𝐸𝑙𝑜𝑐𝑎𝑙 represents the cost of local execution. 

 𝐸𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 represents the energy used by offloading the task. 

 𝐸𝑠𝑎𝑣𝑖𝑛𝑔 > 0 determines that energy will be saved if the task is offloaded. 

 

The factors can be divided into two categories. The first is communication, 

which consists of the size of the data, the bandwidth and the communication 

protocol used.  The second is a computation, which consists of code complexity 

and the time needed to execute (Kumar and Lu, 2010). The factors and how 

they are measured are discussed next. After each of the categories are 

discussed, the equations that represent the energy costs are presented. 

 

6.4.1. Communication 

Communication represents the cost of offloading a process. This factor 

determines how much battery life is used if all the necessary information is sent 

to the cloud and the result is returned. The cost of the communication mainly 

depends on the length of time of the communication. The length of the 

communication is determined by two factors namely the size of the data and the 

available bandwidth. A third factor is the communication protocol used where 

the communication protocol determines how much energy is used to 

communicate (Cuervo et al., 2010; Kalic et al., 2012; Ma et al., 2013). 
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Figure 6.1 Energy Consumption: Wi-Fi vs. 3G 

 

Figure 6.1 shows the power consumption when transferring data via Wi-Fi and 

3G. The blue bars, to the left of each grouping, represent the energy consumed 

when transferring 10KB files and the red bars represent transferring 100KB 

files. The Round-Trip-Time (RTT) given is the time a message takes to be sent 

to the server and the time for the server’s response to return. The longer the 

RTT is, the longer the connection is required to stay open. The comparison of 

the two files in each case shows that the larger the file, the more power is 

consumed. The first two data sets show the power consumption when 

transferring data via Wi-Fi, whereas the third data set shows the consumption 

when transferring data via 3G. It is clear that a 3G connection consumes more 

energy than a Wi-Fi connection. 

 

Size of data a. 

Both the size of the data and available bandwidth determines the length of the 

communication (Kumar et al., 2013). The longer the communication, the more 

power is used. The effect on energy consumption of communication is shown in 

Figure 6.1. The size of the data that is transferred determines the time the 

connection is required to be open. The larger the size of the data transferred, 

the longer the connection is kept open.  The data transferred consists of the 

objects sent and received, and the size of the headers associated with the 

communication protocol (Cuervo et al., 2010). 
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The objects which are sent can either be primitive or composite data types. 

Primitive data types have set sizes and are used to store a single value. 

Composite data types are more complex and can store many different related 

values. At runtime, the values of the composite data type are set, which allows 

the measurement of the size of the composite data type (Cleveland, 1993; Sale, 

1977). 

 

The size of the data to be communicated can be measured using different 

methods. The first method examines the attributes of an object and totals the 

size of the primitive data types. If the objects are instances of composite data 

types, the calculation is done recursively for all of the objects that are sent and 

all of the attributes. The size of the objects sent and received does not include 

the size of the transportation headers. This method can be used to estimate the 

size of the data to be communicated before the communication takes place 

(JavaWorld, 2003).  

 

The second method monitors the connection and counts the number of bytes 

that are transferred. This measurement takes into account transportation 

headers and does not have to calculate the size of the serialized objects being 

transferred. However, the measurement is made after the communication takes 

place (StackOverflow, 2014). 

 

This research chooses the second approach for the experiments performed 

because the loss of packets is taken into account by measuring the size of the 

communication, as opposed to calculating the size of the communication. 

 

Communication protocol b. 

The communication protocol used directly affects the bandwidth available. 

Cuervo et al (2010) have done studies on the effects on power usage between 

mobile data networks. The results of these studies are shown in Figure 6.1. 

 

Mobile devices connect to different types of networks using the appropriate 

communication protocol, which determines the maximum bandwidth. However, 

the energy cost for each communication protocol differs. Figure 6.2 below 
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shows the energy consumption of a mobile device when communicating using 

different communication protocols to upload and download (Kalic et al., 2012).  

 

 

Figure 6.2 Energy consumption compared to the elapsed time 

 

Figure 6.2 shows the energy usage for different connection protocols. A mobile 

device can continuously communicate via Bluetooth, on the far right, for more 

than 10 hours. However, the same mobile device can only download via Wi-Fi, 

in the middle (third from the left), for a little over 5 hours, and upload, first on the 

left, for even less time. Figure 6.2 illustrates the point that the energy 

consumption differs from communication protocol to communication protocol.  

 

Bandwidth c. 

As previously stated, the greater the bandwidth, the less time the 

communication needs. Figure 6.1 shows the power consumption under different 

available bandwidth (Ma et al., 2013). The bandwidth available determines the 

time required to keep open the connection, which determines how much battery 

life is used. 

 

The available bandwidth is determined by the connection protocol used and the 

signal strength. The higher the bandwidth, the shorter the time needed by the 
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communication. For instance, sending a 1 megabyte package over a connection 

with 1 Mbps bandwidth takes 8 seconds, whereas sending the same package 

over a 1 Kbps bandwidth connection takes longer than 2 hours (Kalic et al., 

2012).  

 

Bandwidth determines the maximum speed at which packets can be 

transferred. The bandwidth available on a network is calculated by sending 

packets through the network and measuring the time the packets take to reach 

their destinations.(Johnsson et al., 2006; Johnsson and Bjorkman, 2008).  

 

The underlying network influences the speed by which packets are sent. The 

Internet is a TCP/IP network (Transmission Control Protocol/Internet Protocol) 

(Wright and Stevens, 1995) that uses a slow start algorithm to reduce 

congestion (Zhang et al., 2012). Once a connection is opened to the server a 

congestion window is opened, for each acknowledgment received the 

congestion windows is enlarged. The maximum speed at which the 

communication can take place is determined by the congestion window up to a 

certain point, and then the bandwidth. The use of the slow start algorithm limits 

the speed of transferring smaller files because the communication is over 

before the congestion window’s size meets the bandwidth maximum (Zhang et 

al., 2012). 

 

Available bandwidth is to be measured in this dissertation by downloading and 

uploading files to the server, and measuring the time the communication takes. 

The slow start algorithm can limit the available bandwidth calculation. If a small 

file is used to measure the bandwidth, the communication is done before the 

congestion window’s size reaches the actual bandwidth limit.  

 

Size of data, bandwidth and communication protocol influences how long the 

communication takes place. The longer the connection is open, the more 

battery life is used. The energy cost of communication can be measured by 

multiplying the length, in time, of the communication with energy usage per 

second.  

 

The communication cost is expressed in equation 6.2. 
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Equation 6.2 Communication cost equation 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 =  𝑠𝑖𝑧𝑒𝑏𝑎𝑛𝑑𝑤𝑖𝑡𝑑ℎ  𝐸𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =  𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 × 𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛/𝑠𝑒𝑐𝑜𝑛𝑑 

Where: 

 𝑠𝑖𝑧𝑒 represents the size of the data that is uploaded and downloaded.  

 𝑏𝑎𝑛𝑑𝑤𝑖𝑡𝑑ℎ represents the current available bandwidth. 

 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 is the length of time the transfer of data takes at the 

current bandwidth. 

 𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛/𝑠𝑒𝑐𝑜𝑛𝑑  represents the energy consumption per 

second for different connection protocols. 

 𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛/𝑠𝑒𝑐𝑜𝑛𝑑 is a constant per device, per connection protocol. 

The cost of the communication needs to be compared to the cost of executing a 

process locally. The comparison determines whether or not the process should 

be offloaded. The computation of a mobile task, which is the cost of not 

offloading, is discussed next. 

 

6.4.2. Computation 

Computation determines how much battery life is used to execute a mobile task 

locally (Kumar and Lu, 2010). The cost of computation is determined by the 

complexity of the procedure to be executed and the length of time the execution 

takes. 

 

Code complexity a. 

Complexity encompasses many properties, such as the number of paths 

through the code, the number of operations and the number of variables, of a 

piece of code. Each of the properties affects the interactions between 

components. There is a difference between the complex and complicated code. 

Complicated code is difficult to understand, whereas complex code has many 

interactions between different components (De Silva et al., 2012; Henry and 

Kafura, 1981; Yu and Zhou, 2010). 
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Several methods exist to measure the complexity of a program or part thereof. 

McCabe’s cyclomatic complexity (De Silva et al., 2012), Halstead complexity 

measures (Halstead, 1977) and Big-O notation (Stephens, 2013), are 

discussed. 

 

i. McCabe’s cyclomatic complexity 

McCabe introduced the cyclomatic complexity measure. Cyclomatic complexity 

determines the number of linear paths through the code. Each if statement in 

the code creates a different path. A program’s code is more complex the more 

paths there are through the code. Cyclomatic complexity is also an indicator of 

testability and maintainability (De Silva et al., 2012). 

 

ii. Halstead’s complexity measures 

Halstead’s complexity measures are based on the number of operands and 

operators in a module. Operands are objects in the module on which operators 

execute operations. The metrics gathered by Halstead’s measure can be used 

to determine the volume, difficulty, effort, time to program and the number of 

delivered bugs (Halstead, 1977). 

 

iii. Big-O notation 

Big-O notation measures the scalability of code, how long execution takes as 

the number of input values increase. Big-O notation is not a direct measure of 

complexity but does give an indication of complexity and how long execution 

takes. Common results from big-O investigations include O(1), O(n), O(n2), 

O(log(n)), and O(nlog(n)).The order of the function determines how the number 

of input values (n), influence the execution time. For instance order of 1 (O(1)) 

means that the execution takes the same amount of time regardless of the 

number of input values and order of N (O(n)) means that the execution time is 

directly related to the number of input values (Stephens, 2013).  

 

The more complex code takes longer to execute. Complexity influences an 

application’s execution time, but cannot accurately estimate the execution time. 

The code complexity gives an indication of execution time in terms of the 
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number of inputs, however, the hardware on which the code is executed and 

the number of inputs vary and cannot be predicted. 

 

Length of time to execute b. 

Execution time is influenced by the hardware resources available. When 

executing locally on a mobile device resources are limited and the task will take 

more time to complete. However, when the task is offloaded to the cloud, the 

abundance of resources reduces the length of execution time.  

 

Time to execute can easily be measured. The current time is stored before the 

application or code is executed and again after the execution. The time to 

execute is calculated by subtracting the time in the beginning from the time at 

the end (StackOverflow, 2010). 

 

Java and Android have the ability to provide the current time of the system in 

milliseconds. By using the time in milliseconds, the time to execute can 

accurately be measured. Time to execute is measured, in the implementations 

in this dissertation, by using the current time in milliseconds for accuracy. Time 

to execute is multiplied with an energy cost of the processor per second to 

result in the energy cost of not offloading. 

 

The computation cost is expressed in equation 6.3. 

  

Equation 6.3 Computation cost equation 𝐸𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 =  𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 × 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛/𝑠𝑒𝑐𝑜𝑛𝑑 

Where: 

 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 is the length of time the local execution takes. 

 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛/𝑠𝑒𝑐𝑜𝑛𝑑  represents the energy consumption 

per second for local processing. 

 

Given the expression of 𝐸𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 and 𝐸𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛  the trade of between 

local execution and offloading can be expressed as: 
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Equation 6.4 Offloading decision making equation wdecision-making values 𝐸𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 −  𝐸𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =  𝐸𝑠𝑎𝑣𝑖𝑛𝑔 𝐸𝑠𝑎𝑣𝑖𝑛𝑔 > 0 

 

It is important to note that 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛/𝑠𝑒𝑐𝑜𝑛𝑑 is a constant that 

is device specific. Next, a review of related research on offloading decisions is 

given to provide a foundation for this research.  

 

6.5. Comparison of decision-making for offloading 

approaches  

A large body of research focuses on implementations that can make offloading 

decisions. Of these, the researcher identified that the most representatives is 

MAUI and CloneCloud (Chun et al., 2011; Cuervo et al., 2010). Their goals, 

options, and factors are discussed and evaluated in this section to provide a 

foundation for the proposed solution. 

 

6.5.1. CloneCloud 

CloneCloud (Chun et al., 2011) creates a virtual instance of a mobile device and 

offloads the state of the device to the virtual instance when a method needs to 

be executed on the cloud. The goal of CloneCloud is to conserve battery life. 

The options are between deciding to offload or not to offload. The factors that 

influence the offloading decisions are execution time and energy usage on the 

mobile device. The profiler and optimization solver used by CloneCloud are 

discussed below (Chun et al., 2011). 

 

Profiler a. 

CloneCloud creates profile trees, as shown in Figure 6.3 (b), through random 

executions of the application, while running the profiler. The two trees, one for 

local execution and one for execution on the clone on the cloud, are compared 

and if the execution on the cloud is less expensive in terms of battery life, the 

method is offloaded to the cloud. Each node of a tree represents a method 

invocation in the execution; it is rooted at the starting method invocation of the 

application. Specific method calls in the execution are represented as edges 

from the node of the caller method invocation to the nodes of the callees. Each 
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node is annotated with the cost of its particular invocation in the cost metric, 

such as execution time in the case of CloneCloud. In addition to its called-

method children, every non-leaf node also has a leaf child called its residual 

node. The residual node represents the cost of running the body of code 

excluding the costs of the methods called by it. Each edge is annotated with the 

amount of data that will be transferred to and from the cloud if the edge were to 

be a migration point. (Chun et al., 2011). 

 

        

 

Figure 6.3 An example of a CloneCloud trace (a) and profile tree (b) 

 

Figure 6.3 (a) shows the method trace of the execution of the method main.  In 

main the method, a is called twice. The first invocation of a invokes methods b 

and c. The second invocation of the method a invokes no other methods. Figure 

6.3 (b) shows the profile generated from the execution of the main. The tree 

nodes in figure 6.3 (b) contain the execution time of the corresponding method 

in the trace (the length of the square bracket on the left of figure 6.3 (a)). Node 

main’ and node a’ are residual nodes, which hold the difference between the 

value of their parent node and the sum of their sibling nodes.  

 

The profile tree is filled by temporarily creating an application-method entry and 

exit points during each profile run on both platforms. The execution-time cost 

metric is collected from timings of method entry and exit points. Migration costs 

and edge weights are calculated by simulating migration at each profiled 

method and calculating the time the migration takes. The execution-time cost 

metric represents the length of time local execution takes whereas the migration 

cost represents the length of time migration takes. These metrics are multiplied 
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by the power estimation function to give an estimate of energy consumption 

(Chun et al., 2011). 

 

CloneCloud calculates the power consumption by using a model that can be 

expressed as:  

 

Equation 6.5 CloneCloud power consumption estimation 𝑝𝑜𝑤𝑒𝑟𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =  𝑃(𝐶𝑃𝑈, 𝑆𝑐𝑟𝑒𝑒𝑛, 𝑁𝑒𝑡𝑤𝑜𝑟𝑘) 

Where 

 𝐶𝑃𝑈 represents whether or not the CPU on the mobile device is active 

 𝑆𝑐𝑟𝑒𝑒𝑛 represents whether or not the screen is on 

 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 represents whether or not the mobile device is transmitting data 

of the network 

 

The computation cost of each node is calculated by taking the average time of 

execution with the estimated power consumption per second. The estimated 

power consumption per second is calculated by considering:  

 CPU activity. 

 Display state. 

 Network state.  

The function used to estimate power consumption is compared to the 

measurements taken from an external power meter.  

 

The migration cost is calculated by considering: 

 The size of the state before migration takes place. 

 The time required to suspend and resume the thread being migrated.  

 The size of the state when migrating from the cloud takes place. 

A pre-calculated per-byte cost is used with the size of the state to calculate the 

migration cost (Chun et al., 2011). 

 

The local computation cost is calculated by using the formula: 

 

Equation 6.6 CloneCloud local execution power estimation 𝐸𝑙𝑜𝑐𝑎𝑙 = 𝑃(𝑡𝑟𝑢𝑒, 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒) × 𝑙𝑜𝑐𝑎𝑙𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 
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The offloading cost is calculated a by using the formula: 

Equation 6.7 CloneCloud offloading power estimation 𝐸𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 = 𝑃(𝑓𝑎𝑙𝑠𝑒, 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒) × 𝑐𝑙𝑜𝑢𝑑𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 +  𝑃(𝑡𝑟𝑢𝑒, 𝑡𝑟𝑢𝑒, 𝑡𝑟𝑢𝑒)× 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 

Where: 

 𝑙𝑜𝑐𝑎𝑙𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 represents the length of time of local execution. 

 𝑃(𝑡𝑟𝑢𝑒, 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒) represents the power consumption when the CPU is 

active, the screen is on and the device’s network is idle. 

 𝑐𝑙𝑜𝑢𝑑𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 represents the length of time execution takes on 

the cloud. 

 𝑃(𝑓𝑎𝑙𝑠𝑒, 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒) represents the power consumption when the device 

is idle and the screen is on. 

 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒  represents the length of time it takes for a thread to 

migrated to and from the cloud. 

 𝑃(𝑡𝑟𝑢𝑒, 𝑡𝑟𝑢𝑒, 𝑡𝑟𝑢𝑒) represents the power consumption during migration, 

the CPU is active, the screen is on, and the device is sending/receiving 

data. 

 

The formulas given above are used to populate the profile trees used by the 

optimization solver, discussed next. 

 

Optimization Solver b. 

The purpose of the optimizer is to decide which application methods to offload, 

so as to minimize the expected cost of the partitioned application. Given a 

particular execution E and its two profile trees T on the mobile device and T’ on 

the clone, the task can be pictured as optimally replacing annotations in T with 

those in T’, to minimize the total node and weight cost of the hybrid profile tree. 

The decision evaluates 𝐸𝑙𝑜𝑐𝑎𝑙  and 𝐸𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔  to determine whether or not a 

method should be offloaded. 

 

The output of the optimizer is a value assigned to binary decision variables 𝑅(𝑚) , where 𝑅(𝑚) = {0,1}  and 𝑚  is every method in the application. If the 

optimizer chooses 𝑅(𝑚) = 1 the partitioner places a migration point at the entry 
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into the method, and a re-integration point at the exit from the method. If the 

optimizer chooses 𝑅(𝑚) = 0, method m is unmodified in the application binary. 

Every invocation of a method is either offloaded or not offloaded, for simplicity’s 

sake (Chun et al., 2011). 

 

6.5.2. MAUI 

MAUI (Cuervo et al., 2010) developed for Windows Phone is divided into two 

components, the Profiler and Solver. The Profiler is used to gather data about 

the state of the mobile devices and all factors, where the Solver uses the data 

gathered to make the offloading decision. The goal of using MAUI is to reduce 

execution time and energy usage. The options are between deciding to offload 

or not to offload. The factors that influence the decision are the device’s energy 

usage characteristics, the application’s characteristics (running time and 

resource requirements of individual methods) and the characteristics of the 

wireless network the device is connected to (bandwidth, latency, and packet 

loss). The two components are discussed in the next sections (Cuervo et al., 

2010). 

 

Profiler a. 

The Profiler gathers information regarding the device, the application, and the 

network to inform the MAUI Solver. The device profile, program profile and 

network profile are used to estimate power consumption on the mobile device. 

The profiles and how they are created are discussed next. 

 

i. Device profile 

The device profile is defined by information that is collected when tasks 

consume energy as they execute on the mobile device. The measurements that 

are used to create the profile are obtained by attaching an external power meter 

to the mobile device during the execution of various tasks. The CPU usage with 

the measured power consumption is used to create a linear model. The linear 

model is validated by comparing the prediction of energy consumption with the 

actual measurements produced by a hardware power monitor. The external 

power meter is also used to create models for the consumption when 

transferring data over different networks (Cuervo et al., 2010). 
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ii. Program profile 

The application profile consists of:  

 The size of data that is required to be sent to the server. 

 The size of the data that is returned after the execution.  

 The number of CPU cycles required to execute the method locally. 

The number of CPU cycles and length of time of local execution is used with the 

device profile to estimate the cost of local execution. The size of data that is 

sent and received from the cloud is used with the device and network profiles to 

calculate the cost of offloading.  

 

The program profile continuously monitors the application as it executes and 

updates the program profile with every new execution. During the execution of 

the application, the length of time between offloads influences the amount of 

data that is required to be transferred to the cloud. For example, if a method 

was just offloaded, the cloud already has the state of the device. If the next 

method to be executed is also offloaded, there is no need to transfer the entire 

state data again (Cuervo et al., 2010). 

 

iii. Network profile 

The network profile consists of the average throughput from the application to 

the server. The average throughput is the only factor stored in the network 

profile because the round trip time, bandwidth and packet loss all influence the 

throughput. The throughput is calculated by sending a 10KB file to the server 

and measuring the length of time it takes to complete. Whenever a method is 

offloaded the network profile is updated with the latest throughput calculated. If 

a minute passes without a method being offloaded a 10KB file is uploaded 

again to update the network profile (Cuervo et al., 2010). 

 

The local computation cost is calculated by using the formula: 

 

Equation 6.8 MAUI local execution power estimation 𝐸𝑙𝑜𝑐𝑎𝑙 =  𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐶𝑃𝑈𝑐𝑦𝑐𝑙𝑒𝑠 × 𝑒𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐶𝑃𝑈𝑐𝑦𝑐𝑙𝑒 
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The offloading cost is calculated a by using the formula: 

Equation 6.9 MAUI MAUI offloading power estimation 𝐸𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 = 𝑠𝑖𝑧𝑒𝑂𝑓𝑆𝑡𝑎𝑡𝑒𝐷𝑎𝑡𝑎𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡  ×  𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡 

 

Where: 

 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐶𝑃𝑈𝑐𝑦𝑐𝑙𝑒𝑠  represents the number of local CPU cycles to 

execute a task, as measured by the program profile 

 𝑒𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐶𝑃𝑈𝑐𝑦𝑐𝑙𝑒  represents the energy consumption cost for 

each local CPU cycle, as measured by the device profile 

 𝑠𝑖𝑧𝑒𝑂𝑓𝑆𝑡𝑎𝑡𝑒𝐷𝑎𝑡𝑎 represents the size of the state data, as measured by 

the program profile 

 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡  represents the average throughput available on 

the device, as measured by the network profile 

 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡 represents the energy cost per second to transfer 

data to the cloud, as measured by the device profile 

 

Solver b. 

The decision made by the MAUI solver is globally defined across the application 

and not on a per-method basis, the data gathered by the Profiler is used to 

calculate the cost of offloading the state at a certain point before a method is 

called and that is compared to the cost of executing the method locally. 

Because a global approach is used, the solver can determine when the same 

data will need to be transferred multiple times if a ‘per method’ approach is 

used. By partitioning the application, the state of the entire process at a certain 

point in time can be offloaded without needing to return to the mobile device. As 

the application runs, the solver is re-run periodically for two reasons: to adapt to 

changing environmental conditions, and also to learn from the historical 

behaviour of the program. The MAUI solver is invoked asynchronously from the 

mobile device to avoid affecting the interactive performance of the application. 

Figure 6.3 shows the simplified approach that MAUI takes (Cuervo et al., 2010). 
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Figure 6.4 MAUI offloading decision-making process 

 

In figure 6.3, each vertex represents a method and its computational and 

energy costs, and each edge represents the size of the method’s state and the 

energy consumed to transfer the state to the cloud. In the example given in 

figure 6.3, executing the FindMatch method will consume 18.1 million CPU 

cycles, using 872 mJ of power. For the same method, 182KB of data is required 

to be transferred to the cloud, which consumes 1006mJ (Cuervo et al., 2010). 

MAUI and CloneCloud are compared in the next section. 

 

6.5.3. Comparison of decision-making for offloading 

approaches 

MAUI and CloneCloud both aim to reduce power consumption on mobile 

devices by offloading tasks to the cloud. The reduction in power consumption is 

achieved by offloading tasks that will consume more power when executed 

locally compared to the power consumption of transferring the necessary data 

to the cloud for remote execution. The methods that should be offloaded are 

decided by the solvers in each case. To make the decision, the local cost and 

the offloading cost are calculated and compared. 

 

When estimating the cost of local execution, MAUI considers the length of time 

of local execution and the number of CPU cycles, where CloneCloud only 

considers the length of time execution. Considering the number of CPU cycles 

is not necessary as it has a direct relation with the duration of execution. 

 

When estimating the cost of offloading, both MAUI and CloneCloud consider the 

size of the data that has to be transferred to and from the cloud. The size of the 
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data is converted to the length of time the communication will take in both 

cases. MAUI uses the throughput of the network available to calculate the 

duration of the communication. CloneCloud measures the cost of transmitting 

data to create a per byte cost that is used to populate a profile tree. Table 6.1 

shows a comparison of the approaches used by MAUI and CloneCloud. 

 

Table 6.1 Comparison of MAUI and CloneCloud 

 Local 
computation 
factors 

Offloading 
factors 

Energy 
consumption 
profile 
creation 
method 

Energy 
consumption 
model 

 
MAUI 

 
Duration of 
local execution 
 
Number of CPU 
cycles 
 

 
Size of data 
 
 
Available 
throughput 

 
Hardware-
based 

 
Linear model 

 
CloneCloud 

 
Duration of 
local execution 
 

 
Size of data 

 

 
Hardware-
based 

 
Method 

 

The duration of local execution and offloading alone is not indicative of energy 

consumption. The durations are used with the device profile’s linear model, in 

the case of MAUI, and the energy consumption model, in the case of 

CloneCloud. Both models are created by evaluating the results from 

measurements taken from an external power monitor. The MAUI linear model 

uses the duration of CPU usage or the number of CPU cycles to estimate 

energy consumption, where the method used by CloneCloud takes more 

factors, such as whether the screen is on, if the CPU is active and whether the 

device’s network radio is in use, into account as well. The durations calculated 

by the profilers from each approach are substituted into the energy consumption 

models to estimate the cost of either offloading or local execution. The energy 

consumption model is crucial to the offloading decision making.  

 

Measuring the duration of local execution and measuring the size of data being 

transferred are trivial exercises given the tools available to developers. The 

accuracy of energy consumption estimation is thus based on the accuracy of 
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the energy consumption profile used. The methods of profiling the energy 

consumption of a mobile device are discussed next. 

 

6.5.4. Energy consumption profiling 

Profiling the energy consumption of a mobile device characterizes the energy 

consumption when the mobile device is in use. To create a profile of a device’s 

energy consumption two approaches can be used, namely software based and 

hardware based energy consumption profiling. The two approaches are 

discussed in this section (Ahmad et al., 2015). 

 

Software-based energy consumption profiling a. 

Software-based energy consumption profiling uses a software module to collect 

a component's power usage statistics to construct power models to estimate 

energy consumption. The energy profiler estimates the energy consumption 

either at the process, thread, path, or source-code line level. Software-based 

profiling can use measurements that can come from a mobile app, the operating 

system of the mobile device or in some cases the battery used by the mobile 

device (Ahmad et al., 2015). 

 

Hardware-based energy consumption profiling b. 

Hardware-based energy consumption profiling utilizes external hardware 

equipment to obtain voltage and current readings to estimate the power 

consumed by a mobile phone against system activities. Measurements taken by 

the external hardware can be taken at various granularities, namely application, 

path/line, process, or thread. The measurements taken can be used to create 

models in a deterministic or statistical manner. The deterministic approach 

approximates mobile power consumption based on the power state machine. 

The power state machine modelling method also estimates mobile power 

consumption by employing the per-state energy model and hardware 

component transition states. Statistical power modelling uses pre-built statistical 

models to estimate software/mobile power consumption (Ahmad et al., 2015). 

 

Proposed energy consumption profile c. 

Both MAUI and CloneCloud use hardware-based approaches when creating 

energy consumption profiles. Hardware-based approaches are expensive, 
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labour intensive and are not scalable when compared to software-based 

approaches (Ahmad et al., 2015).  

 

This research now identifies the following additional requirements for the 

proposed solution to address the identified energy consumption profile: 

 Software-based: To enable developers to create and use an energy 

consumption profile on any device, a software-based energy 

consumption profiling method should be used. 

 Continuously monitor factors: The factors that influence energy 

consumption should be continuously monitored to ensure the decisions 

made are correctly at any point in time. 

 Lightweight: The model representing the proposed energy consumption 

profile should be lightweight, to prevent the excessive consumption of 

additional energy and do not negatively impact the user experience. 

  

MAUI and CloneCloud are large frameworks that enable the conservation of 

battery life on mobile devices by supporting offloading. The inclusion of large 

frameworks into the application environment of mobile apps can be time-

consuming and increase complexity. To address these concerns, the solution 

proposed by this dissertation is developed to be portable so that it can be 

included into any mobile app to support the making of offloading decisions, 

without constraining the mobile device.  

 

6.6. Conclusion 

This chapter discussed general decision making, the factors that influence 

offloading decisions, and the factors that are measured by current research and 

how these factors are measured by the implementation in this dissertation. 

 

Decision making is the process of choosing between options based on factors 

and the goal of the decision maker. The decision maker in the case of this 

dissertation is the decision-making component and the choice is between 

offloading and not offloading, to conserve battery life. When making the 

offloading decision, the cost of offloading is compared with the cost of local 

execution. The factors that influence the costs, namely the size of data, 
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bandwidth, communication protocol, code complexity and time to execute 

locally, are identified and discussed.  

 

The cost of local execution is influenced by the code complexity and the time to 

execute. The code complexity cannot easily be used to determine the power 

consumption of a method, whereas the length of time, which is influenced by 

the code complexity, can directly be used in the calculations of power 

consumption. The cost of offloading is influenced by the size of the data, the 

available bandwidth and the communication protocol used. The size of the data 

and the available bandwidth can be used to determine the duration of the 

communication, and based on the connection protocol in use can determine the 

power consumption. 

 

The cost of offloading is measured against the local processing cost to make 

the decision. The cost of offloading is calculated by multiplying the time of 

communication with the energy usage per second by the communication 

protocol. The cost of local processing is calculated by multiplying the time to 

execute with the energy usage per second of computation. 

 

Previous chapters have shown that, besides display, communication and 

computation are the most expensive hardware components to use. The 

offloading decision is the choice between communicating the required data to 

and from the cloud and using the data locally to execute. 

 

Related research has shown that offloading can be used to reduce the energy 

consumption of mobile devices. MAUI uses a profiler and solver to collect data 

and make informed offloading decisions. The profile continuously gathers data 

regarding the current state of the device, such as the available bandwidth. The 

information gathered by the profiler is used with the energy consumption profile 

created by using linear regression on measurements taken from an external 

power meter, to estimate the cost of local execution and the cost of offloading. 

The MAUI solver uses these costs to determine whether or not a method should 

be offloaded. 
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CloneCloud also uses a profiler to collect data regarding the state of the mobile 

device. The size of the state that is required to be transferred and the duration 

of local execution is measured by the profiler and used in conjunction with an 

energy consumption estimation function. The energy consumption estimation 

function is created by creating a model from data collected from an external 

power meter. The data gathered by the profiler is used by an optimizer to make 

the offloading decision.  

 

The research identifies that an energy consumption profile characterizes the 

energy consumption when the mobile device is in use. The two approaches that 

can be used to create an energy consumption profile is hardware based and 

software based approaches. Hardware-based approaches result in profiles that 

are highly accurate. However, the creation of a hardware-based profile is labor-

intensive and is not scalable. Software-based approaches result in less 

accurate profiles. However, software-based energy consumption profiles enable 

the monitoring of the application on many different granularities and it does not 

require expensive external power meters. 

 

The evaluation of related approaches highlights the importance of energy 

consumption profiles. This chapter concludes the background information 

required throughout the dissertation. The next chapter introduces the Switch 

framework proposed by this dissertation that defines a portable software-based 

energy consumption profile. 
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Part 2: 

Model & Prototype 
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Chapter 7: Switch: A framework for 
offloading decision making 

7.1. Introduction 

Part 2 of the dissertation now commences by introducing the Switch framework 

as a solution to the research problem posed by in this dissertation. Switch can 

assist developers to determine whether or not a task should be offloaded to the 

cloud in order to reduce energy consumption so that the battery life of a mobile 

device is conserved.  

 

This research to this point identified that due to their mobility, mobile devices do 

not have the same resources as traditional computers. In this regard, battery life 

is seen as one of the most important resources of mobile devices that need to 

be conserved. Developers and end users cannot increase the battery life on 

mobile devices, however, they can influence how the battery life is used. In 

order to support developers with a software-based solution, this research 

identifies that a software framework could be used to reduce the battery life 

consumption of a mobile app. A set of four requirements were identified to be 

met by this research.   

 

To be able to define a software framework, four techniques were identified that 

are used to augment mobile devices namely using the cloud, nearby computers, 

nearby mobile devices and a hybrid of these approaches. This research then 

identified that the distant fixed approach would be more suitable. To provide a 

solid foundation for this research, MAUI, and CloneCloud, examples of the 

distant fixed approach were discussed in more detail. The distant fixed 

approach offloads tasks to the cloud using either client-server communication or 

virtualization. After consideration of related work, the researcher chose the 

client-server communication approach.   

 

Next, it was identified that offloading frameworks could either make use of 

virtual machine cloning or code offloading. This research focuses on code 

offloading where a function is executed on a cloud server instead of the local 

method, similar to what MAUI does. Important considerations when offloading 
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are low bandwidth, availability of network connections and different network 

types. To determine if a method should be executed on a cloud server, the cost 

of offloading is compared with the cost of local execution. This decision is 

influenced by the size of data, bandwidth, communication protocol, code 

complexity and time to execute locally. As such factors are difficult to constantly 

measure, the concept of a profiler was investigated. A device-specific energy 

consumption profile can characterize the energy consumption of a mobile 

device. As a hardware-based is labor-intensive and not scalable, this research 

decided to make use of a software-based approach that does not require 

expensive external power meters and enables the monitoring of the application 

on various levels of granularity.  

 

The result of the literature review leads to the identification of a software 

framework that can support accurate battery consumption costs by making use 

of a device-specific energy consumption profile. Next, section 7.2 discusses and 

expands on the requirements of the Switch framework identified in chapter 3. In 

section 7.3 the energy consumption profile and the role it plays in the framework 

is discussed. Section 7.4 discusses the offloading decision process used by 

Switch. The architecture of the Switch framework and the interactions between 

the different components are discussed in section 7.5. Section 7.6 discusses 

the challenges of implementing the proposed. Finally, the chapter is concluded. 

 

7.2. Requirements for conserving battery life when 

offloading 

In order to achieve the aim of the research, the requirements identified in 

chapter 3 are now revisited and further discussed.   

 

7.2.1. Intelligent offloading decision making 

The making of offloading decisions is a relatively simple action. However, only 

by making precise energy consumption estimates, the goal of battery life 

conservation can successfully be achieved. To be able to support precise 

offloading decisions, all of the identified factors that influence the energy 

consumption of a mobile device should be taken into account. As every mobile 

device is uniquely defined with respect to hardware and software resources and 
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capabilities, these factors in their turn influence the energy consumption profile 

of any specific mobile device. This research proposes to make use of a mobile 

device specific energy consumption profile per network type to support 

intelligent decisions.  

 

The energy consumption profile needs to address the following requirements: 

 To enable developers to create and use an energy consumption profile 

on any device, a software-based energy consumption profiling method 

should be used. 

 The factors that influence energy consumption should be continuously 

monitored to ensure the decisions made are correctly at any point in 

time. 

 To be lightweight, the energy consumption profile should provide a 

simple model to estimate energy consumption. 

 

7.2.2. Multiple network support 

As mobile devices can make use of multiple types of networks, they all need to 

be supported when offloading decisions are made. Multiple network support can 

be achieved by defining an energy consumption profile for each network type.  

 

7.2.3. Lightweight 

When integrated with a mobile app, the Switch framework should consume as 

little battery life as possible and execute as efficiently as possible. Thus, the 

Switch framework should be lightweight with respect to communication 

overhead and CPU usage. Lightweight communication can be achieved by not 

requiring Switch to communicate with external sources whereas lightweight 

CPU usage can be achieved by simplifying the estimation of energy 

consumption.  

 

7.2.4. Portable 

The Switch framework should be able to integrate into any mobile app that 

needs to support offloading. This integration will enable the creation of an 

energy consumption profile of a specific device.  
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An important factor to be used by this research is that of the energy 

consumption profile, defined next.  

 

7.3. Switch energy consumption profile 

For this purposes of this research, an energy consumption profile is defined that 

can support accurate estimations of battery life usage per mobile device.  

 

An energy consumption profile is created from measurements taken during the 

execution of different tasks on a specific mobile device, such as executing a 

computationally intensive process for a set amount of time or downloading a file 

over a specific network. The collected data is simplified into four linear models 

that represent battery life usage. An energy consumption profile per network 

can enable an accurate estimation of battery life usage when communicating 

over a specific network.  

 

To achieve the desired accuracy, the energy consumption profile used by 

Switch is described by four linear models as follows: 

 

The energy consumption when the CPU of the mobile device is in use is 

displayed in equation 7.1. 

 

Equation 7.1 CPU energy consumption equation 𝐸𝐶𝐶𝑃𝑈 =  𝑙𝑜𝑐𝑎𝑙𝑅𝑎𝑡𝑒(𝑡𝑖𝑚𝑒) +  𝑙𝑜𝑐𝑎𝑙𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Where:  

o 𝑙𝑜𝑐𝑎𝑙𝑅𝑎𝑡𝑒 and 𝑙𝑜𝑐𝑎𝑙𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 are device specific constants 

o 𝑡𝑖𝑚𝑒 is the length of time the CPU will be active 

o  

The energy consumption when communicating with the 3G cellular network is 

displayed in equation 7.2.  

 

Equation 7.2 3G communication energy consumption equation 𝐸𝐶3𝐺 =  𝑡ℎ𝑟𝑒𝑒𝐺𝑅𝑎𝑡𝑒(𝑡𝑖𝑚𝑒) +  𝑡ℎ𝑟𝑒𝑒𝐺𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Where:  

o 𝑡ℎ𝑟𝑒𝑒𝐺𝑅𝑎𝑡𝑒 and 𝑡ℎ𝑟𝑒𝑒𝐺𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 are device specific constants 
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o 𝑡𝑖𝑚𝑒 is the length of time the 3G network radio will be active 

 

 

The energy consumption when communicating with the 4G cellular network is 

displayed in equation 7.3. 

 

Equation 7.3 4G communication energy consumption equation 𝐸𝐶4𝐺 =  𝑓𝑜𝑢𝑟𝐺𝑅𝑎𝑡𝑒(𝑡𝑖𝑚𝑒) +  𝑓𝑜𝑢𝑟𝐺𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Where:  

o 𝑓𝑜𝑢𝑟𝐺𝑅𝑎𝑡𝑒 and 𝑓𝑜𝑢𝑟𝐺𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 are device specific constants 

o 𝑡𝑖𝑚𝑒 is the length of time the 4G network radio will be active 

 

 

The energy consumption when communicating with Wi-Fi is displayed in 

equation 7.4 

 

Equation 7.4 Wi-Fi communication energy consumption equation 𝐸𝐶𝑊𝑖−𝐹𝑖  =  𝑤𝑖𝑓𝑖𝑅𝑎𝑡𝑒(𝑡𝑖𝑚𝑒) +  𝑤𝑖𝑓𝑖𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Where:  

o 𝑤𝑖𝑓𝑖𝑅𝑎𝑡𝑒 and 𝑤𝑖𝑓𝑖𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 are device specific constants 

o 𝑡𝑖𝑚𝑒 is the length of time the Wi-Fi radio will be active 

 

 

The models defined above are used to estimate the battery life usage on a 

method level of granularity, however, the models are created by monitoring the 

relevant hardware components of the mobile device. Models created by 

measuring the energy consumption of hardware components are more flexible 

as they are not bound to a specific app.  An application that monitors the 

operating system is used to sample the energy consumption of the specific 

devices. 

 

Currently, the energy consumption profile is created manually, however with 

further investigation and experimentation the process can be automated. Due to 

the energy consumption required to analyse the automatically gathered data the 
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task of generating the consumption model should be done remotely on the 

cloud.  

 

The creation of the energy consumption profile used in this dissertation is 

discussed in the next chapter. 

 

7.4. Switch offloading decision 

The Switch offloading decision-making process is presented in this section. The 

decision, and the methods used to estimate the costs are discussed. 

 

The offloading decision is simply the comparison of the estimated energy 

consumption when executing locally and the estimated energy consumption 

when offloading. The offloading decision made by Switch is determined as 

shown in equation 7.5 

 

Equation 7.5 Switch offloading decision 𝑠ℎ𝑜𝑢𝑙𝑑𝑂𝑓𝑓𝑙𝑜𝑎𝑑 = 𝐸𝑙𝑜𝑐𝑎𝑙(𝑡𝑖𝑚𝑒)  >  𝐸𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔(𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ, 𝑠𝑖𝑧𝑒) 

Where: 

 𝑠ℎ𝑜𝑢𝑙𝑑𝑂𝑓𝑓𝑙𝑜𝑎𝑑 is a true or false value that determines whether or not 

offloading should occur 

 𝐸𝑙𝑜𝑐𝑎𝑙 represent the calculation of the cost of local execution 

 𝐸𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 represents the calculation of the cost of offloading 

 

The cost of local execution is determined as shown in equation 7.6. 

 

Equation 7.6 Local cost estimation 𝑙𝑜𝑐𝑎𝑙𝐶𝑜𝑠𝑡 = 𝑙𝑜𝑐𝑎𝑙𝑅𝑎𝑡𝑒(𝑡𝑖𝑚𝑒) + 𝑙𝑜𝑐𝑎𝑙𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Where: 

 𝑙𝑜𝑐𝑎𝑙𝑅𝑎𝑡𝑒  and 𝑙𝑜𝑐𝑎𝑙𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡  are the constants provided by the CPU 

energy consumption model 

 𝑡𝑖𝑚𝑒 is the duration of local execution 

 

The cost of offloading is determined as shown in equation 7.7. 
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Equation 7.7 Offloading cost estimation 𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔𝐶𝑜𝑠𝑡 = 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑅𝑎𝑡𝑒 ( 𝑠𝑖𝑧𝑒𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ)  +  𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Where: 

 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑅𝑎𝑡𝑒  and 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡  are constants provided by the energy 

consumption models. The network model used is determined by the network 

the device is currently connected to. 

 𝑠𝑖𝑧𝑒 represents the size of the data that is transferred from and to the cloud 

 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ is the current available bandwidth. 

 

It is important to note that this research follows an approach to offload code to 

the cloud if energy can be saved, even if it may not result in a major saving. 

Another approach would be to enable the use of offloading if certain battery 

thresholds per device are passed. The offloading decision-making process is 

not overly complex but is essential in achieving the goal of this research. Given 

the understanding of the decision-making process and the energy consumption 

profile and the models, the architecture of the Switch framework is now 

discussed. 

 

7.5. Switch architecture 

Switch is an Android-based framework that can be integrated into any Android 

mobile application. The contribution of Switch is to support developers, to 

enable them to to make offloading decisions without requiring the integration of 

a large framework in both the app and the cloud. In order to achieve this, the 

energy consumption of the mobile device needs to be sourced, the offloadable 

tasks should be identified, and the duration of local execution and the size of 

the data communicated when offloading should be measured. 

 

The architecture of Switch is shown in Figure 7.1 consisting of a number of 

components. A mobile app is loaded onto the Android OS. The Switch 

component is called from within the mobile app and consists of the Decision-

Making component, the Profiler, and the Energy Consumption Profile 

component. 
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Figure 7.1 Architecture of Switch 

 

First, before offloading decisions can be made, the energy consumption profile 

model needs to be determined for the specific mobile device in an offline 

manner. A number of tests are run for each network type the device is 

connected to. Similar sets of tests are executed for local execution. Historical 

averages of the local and cloud execution costs are stored. The results are 

examined and the model is created.  If offloading decisions become unreliable 

after some time passes, this phase can be executed again. The creation of the 

energy consumption profile is shown by the communication between the Profiler 

and the Energy Consumption Profile in figure 7.1 (a). 

To make use of Switch, a mobile app developer defines a mobile app with any 

number of methods. Offloadable methods are identified and their server-side 

counterparts are created in the cloud. Traditionally, the developer would decide 

whether or not the method is to be offloaded. However, by integrating Switch, 

such decisions are made on a per execution basis. The communication 

between the mobile app and Switch is shown in figure 7.1 (b). 
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Within Switch, the Decision-Making component makes the offloading decision 

by utilising the Profiler component and the Energy Consumption Profile, shown 

in figure 7.1 (c) and (d). The Profiler component continuously monitors the state 

of the mobile device and the app. The Energy Consumption Profile component 

contain models that are used to estimate the energy consumption when 

provided with a set of variables. The estimated costs determine the outcome of 

the decision made by the decision-making component. If the decision is made 

to offload the app communicates with the cloud, shown in figure 7.1 (e). 

 

7.5.1. Switch operation 

There are two phases to be considered namely the initial and operational 

phase. In the initial phase discussed above, the energy consumption profile is 

created. This step must be performed before Switch can be used to make 

offloading decisions.  

 

Figure 7.2 represents the operational phase of Switch where communication 

between the mobile app and Switch takes place. The sequence of method calls 

during app startup and when executing an offloadable method is given. 

 

The initial network check is shown in Figure 7.2 (a). The network check 

determines the current network the mobile device is connected to and 

calculates the available bandwidth by timing the download and upload of a file. 

The network check is performed when the checkNetwork method is called by 

the mobile app.  

 

In figure 7.2 (b) the mobile app calls methods in Switch to determine whether or 

not the task should be offloaded. Once the shouldOffload method has been 

called, the decision-making component retrieves the network state from the 

profiler by calling the getNetworkState method. The decision-making 

component then sends the stored averages of the method to the energy 

consumption profile to calculate estimated energy consumption, calling the 

estimateOffloadingCost and estimateLocalCost methods. The estimates 

provided are used to make the offloading decision, the result of the decision is 

returned to the mobile app.  
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Figure 7.2 Interaction between Switch and a mobile app 

 

The sequence of method calls diverges in figure 7.2 (c) based on the result of 

the shouldOffload method. If the method should be offloaded the mobile app 

communicates with its cloud component, and if the method should not be 

offloaded the local method is executed. The startNetworkMonitoring, 

stopNetworkMonitoring, startLocalMonitoring, and the stopLocalMonitoring 

methods are exposed by Switch, to update the historical averages of a method.  

 

Figure 7.2 is referred to in the next discussion of the Switch decision-making 

component, Switch profiler, energy consumption profile, mobile app, and the 

cloud component. 
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7.5.2. Switch profiler 

The profiler gathers data regarding the state of the mobile device and monitors 

the mobile app during runtime. Information is gathered both from the operating 

system and by monitoring the mobile app. During app startup as shown in figure 

7.2 (a), a call is made to the Switch profiler to collect data regarding the current 

network state. When an offloadable method is executed, as shown in figure 7.2 

(c), the profiler starts monitoring the resource usage of the mobile device. After 

the execution completes the monitoring is stopped. The data is used to update 

network state and the average size of communication or duration of local 

execution. 

 

7.5.3. Switch decision-making component 

When an offloadable method is executed as shown in figure 7.2 (b), the 

decision-making component is called to determine whether the method should 

be offloaded. The offloading decision-making process is initiated, the necessary 

data is collected and used to estimate the offloading and local execution costs, 

the estimated costs are used to make the offloading decision. Each execution of 

an offloadable method is used to update the averages of that method, as shown 

in figure 7.2 (c). 

 

7.5.4. Energy consumption profile 

The energy consumption profile contains the energy consumption models that 

are used to estimate battery life consumption. The estimates are calculated with 

parameters provided by the decision making the profile as shown in figure 7.2 

(b).  

 

7.5.5. Mobile application and a cloud component 

The mobile app and the cloud component makes use of Switch. However, 

Switch does not influence the development of these components or the 

communication between them. The mobile application can, for example, use a 

local cloud or use cyber-foraging while still using Switch. However, Switch is 

designed to only make offloading decisions when offloading occurs over Wi-Fi 

or cellular networks. 
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The architecture discussed ensures that Switch is lightweight, and also ensures 

that the communication between the mobile application and the cloud 

component of the application use Wi-Fi, 3G or 4G, the networks that the 

solution are required to support.  

 

7.6. Conclusion 

This chapter discusses the requirements of Switch, the architecture of Switch 

and the challenges of implementing it. The basic requirements of Switch are 

intelligent offloading decisions, support for both Wi-Fi and cellular networks, and 

being a lightweight solution that is portable. Intelligent offloading decisions are 

made by taking all factors into account and using an accurate energy 

consumption profile. For Switch to support multiple networks the energy 

consumption profile should cater for the different networks. Switch should be 

lightweight as to not increase the drain on battery life and to not interfere with 

the user experience. The portability of Switch allows the integration of the 

framework into any mobile app on any device. 

 

Switch is used to make the offloading decision for mobile apps that use 

offloading. The Switch framework is integrated into existing applications without 

interfering with their execution or communication. The profiler gathers data 

regarding the mobile device and makes the offloading decision. 

 

This chapter provides an understanding of the components of Switch, how they 

communicate, and interact with a mobile app. The next chapter presents the 

Switch energy consumption profile. 
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Chapter 8:  Energy consumption profile of 
mobile devices 

8.1. Introduction 

This chapter demonstrates the initial phase of the Switch framework, namely 

the creation of an energy consumption profile for a specific mobile device. The 

Samsung Galaxy S7 Edge is chosen as the device to test the Switch framework 

prototype.   

 

To be able to create an energy consumption profile, a number of experiments 

are performed to collect energy consumption data for different network usage 

and CPU intensive tasks. The manner in which data is collected and the 

analysis of the collected data is discussed in this chapter. 

 

Section 8.2 discusses models used by the energy consumption profile. The 

environment of the evaluation is discussed in section 8.3. The experiments 

used to sample energy consumption are discussed in section 8.4. Section 8.5 

discusses the results of the experiments, and finally, the chapter is concluded. 

 

8.2. Energy consumption profile models 

An energy consumption profile describes the energy consumption of a mobile 

device that is formalised using a linear model. The energy consumption profile 

created in this research consists of four distinct linear models, where each 

defines a different type of execution.  

 

The first model describes energy consumption when performing tasks locally 

and is created by sampling the energy consumption of the CPU of the mobile 

device. The second, third and fourth models describe the energy consumption 

when communicating via a specific network. For each of the network models, 

the model is created by sampling the energy consumption of the network radio 

of the mobile device when it is connected to a specific network. The four models 

are used in conjunction with historical execution data of methods and the 

current state of the device to estimate energy consumption.  
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The data needed to create a model requires a means to measure the energy 

that is consumed by a task. The energy consumption sampling process used in 

this dissertation is discussed next. 

 

8.3. The conditions of the evaluation 

This research determines energy consumption by using third-party software that 

can be installed on the mobile device. The environment and the set of tests to 

be executed in the environment are discussed in this section. 

 

8.3.1. Environment 

The study considers the mobile device being tested, its network connections 

and the software used to take measurements on the device. 

 

Device under test a. 

The device under test is the Samsung Galaxy S7 Edge, SM-G900F, mobile 

device. The device runs Android 6.0.1. The hardware of the device is shown in 

Table 8.1 (Samsung, 2014b). 

 

Table 8.1 Samsung Galaxy S7 Edge Hardware specifications 

Feature  Specifications 

Operating System Android 6 (Marshmallow) 

CPU 
Qualcomm MSM8996 Snapdragon 820 - Quad-core 
(2x2.15 GHz Kryo & 2x1.6 GHz Kryo) 

RAM 4 GB 

Storage 32GB + microSD 

Display Size 5.5” 
Network 2G, 3G, 4G(LTE) Wi-Fi Bluetooth NFC 

Battery 3600 mAh 

 

The Samsung Galaxy S7 Edge is chosen because its hardware is 

representative of most modern mobile devices, considering the number of 

networks that can be connected to and the power of the processor. The 

Samsung Galaxy S7 Edge can connect to 4G networks and has a powerful 

processor. Power consumption is determined by the length of computation time 

and communication. The assumption is that the stronger the processor or 

higher the bandwidth of the network that the device connects to, the shorter the 

length of time required for communication or computation.  
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Third-party measuring software b. 

Software is used to measure the power usage, length of time of computation 

and communication, the network signal strength and size of communication 

data, both for upload and download conditions. Measurements are made using 

software in order to create a power consumption profile on different devices, 

without dismantling the device and attaching measurement hardware.   

 

The measurements of signal strength and battery life are made using two apps. 

The Network Signal Info Pro app, developed by KAIBITS Software, (KAIBITS, 

2015), is used to get accurate readings of the networks the device is connected 

to. The GSam Battery Monitor app, developed by GSam Labs, (GSam Labs, 

2013) is used to monitor the battery life usage and the length of computation 

time. These third-party apps have been chosen out of a large number of 

contenders, due to their accuracy and usefulness, after a careful review by the 

researcher.  

 

i. Network Signal Info Pro 

Network Signal Info Pro is an app used to evaluate energy consumption that 

measures the current signal strength of the device. The app is installed on the 

device and measures the strength of the connection of the current network the 

device is connected to. When in use, the app automatically connects to different 

signal strengths, as the device is moved to different locations with stronger or 

weaker signal strength. The signal strength is given as a percentage and in 

decibel milliwatts (dBm). 

 

ii. GSam Battery Monitor 

GSam Battery Monitor is an app used to evaluate energy consumption that 

measures how much battery life or energy is used. The app gives the 

percentage of battery life consumed by each app on the device, between two 

points in time. Whenever the energy expenditure of the device drops a complete 

percentage point, the first point in time is selected. The experiment is continued 

and after another percentage point drop is recorded, the second point in time is 

selected. Thus, the app gives the percentage of battery life consumed during 

the experiment. 



125 
 

 

8.3.2. Experiments 

The power consumption of the device being tested is evaluated by executing 

several tasks and measuring the power consumption and the length of time 

required for either communication or computation. Computation and 

communication are tested separately, both tests are discussed in this section. 

 

Communication a. 

The power consumption of the device when it is communicating is tested on 

different networks that can be used to access the Internet and the cloud. For 

each network, files of differing sizes are downloaded and uploaded at various 

signal strengths. The signal strength, network type, length of communication, 

size of communication and power consumption is recorded.  

 

 Signal strength: How strong is the connection to the network? Signal 

strength is measured by Network Signal Info Pro and the results are 

recorded in dBm. 

 Network type: Which network is the device connected to? Network type 

can either be HPSA, 4G or Wi-Fi. 

 Length of communication: How long did it take to execute the 

experiment? The length of time of communication is measured in 

seconds. 

 Size of communication: How much data is uploaded or downloaded 

during the experiment? The size of the communication is measured in 

bytes. The differences between the file size and the size of 

communication are caused by packet loss during the experiment. 

 Power consumption: How much power did the experiment take? GSam 

Battery Monitor is used to measure how much battery life is consumed. 

The result is given as a percentage of total device battery life consumed. 

 

The files are downloaded and uploaded to the SAP Hana Cloud Platform (SAP, 

2017a, 2017b), using a trial account. The mobile connections, 3G and 4G are 

provided by MTN (MTN, 2017), using Afrihost (Afrihost, 2017a, 2017b) data. 
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The Wi-Fi connections are made to an ADSL line over the Telkom (Telkom, 

2017) infrastructure connected to an Afrihost 2MB line. 

 

Computation b. 

The power consumption of the device when it is performing computational tasks 

is measured after specifying an amount of time and allowing the application to 

calculate prime numbers for the specified time duration. Calculating primes is 

selected as the computational test because it is a very complex task that uses a 

large amount CPU power. The amount of time selected corresponds with the 

time the CPU is used, and this is recorded as well as the percentage of battery 

life consumed. 

 

 Length of computation: How long did it take to execute the experiment? 

The length of time of computation is measured in seconds. 

 Power consumption: How much power did the experiment take? GSam 

Battery Monitor is used to measure how much battery life is consumed 

and the result is given as a percentage of total device battery life 

consumed. 

 

8.4. Results 

The results of the study are divided into two sections. Firstly, communication is 

discussed by considering the results recorded when downloading and uploading 

files at different signal strengths and on different networks. Secondly, 

computation is discussed by reviewing the results when tasks are executed on 

the device. 

 

8.4.1. Communication 

The results of the experiments when measuring the power consumption of the 

device when it is communicating are discussed in this section. The results are 

divided into sections according to the different types of networks, namely, 3G, 

4G, and Wi-Fi. Each subsection is divided into two parts, namely the upload and 

download of data. The results for both downloaded and uploaded data is further 

separated into sections corresponding to the size of data used in the 

experiments. Under each section, the percentage battery life consumed is 
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compared to the length of time the communication lasted and signal strength is 

compared to the length of time of the communication. 

 

 

The subsections are structured as follows: 

 Network type (3G, 4G, Wi-Fi) 

o Download 

 100 KB 

 1 MB 

 10 MB 

o Upload 

 100 KB 

 1 MB 

 10 MB 

o Evaluation 

 

The results recorded reflect the average of executing the same the test five 

times. The complete data set is attached in Appendix A. 

 

3G a. 

The results of downloading and uploading files over the 3G network are 

discussed in this section.  

 

i. Download 

To measure the energy consumption of downloading data from the cloud, files 

of size 100 KB, 1 MB, and 10 MB are downloaded and the results are 

measured. In Table A.2, Table A.3 and Table A.4 in Appendix A show the 

averages of downloading a 100 KB, 1 MB and 10 MB file five times at each of 

the listed signal strengths. These results are summarized in the following 

figures.  

 

100 KB 

Figure 8.1 shows the length of time of the communication over the battery life 

consumed, the battery life consumed increases from 0.028% to 0.046% as the 

length of time increases from 1.2 seconds to 4.5 seconds. Very little battery life 
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is consumed because of the of the small file size. Figure 8.2 shows the length of 

time of the communication against signal strength, as the signal strength 

increase from -109 dBm to -83 dBm the length of time of communication 

decreases from 4.5 seconds to 1.2 seconds. 

 

  

Figure 8.1 100 KB file downloaded over 3G Figure 8.2 100 KB file downloaded over 3G 

 

1 MB 

Figure 8.3 shows the length of time of the communication over the battery life 

consumed, the battery life consumed increases from 0.04% to 0.074% as the 

length of time of communication increases from 4.3 seconds to 7.6 seconds. 

Figure 8.4 shows the length of time of the communication against signal 

strength, as the signal strength increases from -109 dBm to -83 dBm the length 

of time of communication decreases from 8.6 seconds to 4.3 seconds. 

 

  

Figure 8.3 1 MB file downloaded over 3G Figure 8.4 1 MB file downloaded over 3G 

 

10 MB 

Figure 8.5 shows the length of time of the communication over the battery life 

consumed, the battery life consumed increases from 0.242% to 0.344% as the 

length of time of communication increases from 44.4 seconds to 86.4 seconds. 
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Figure 8.6 shows the length of time of the communication against signal 

strength. 

 

 

  

Figure 8.5 10 MB file downloaded over 3G Figure 8.6 10 MB file downloaded over 3G 

 

ii. Upload 

To measure the energy consumption of uploading data to the cloud, files of size 

100 KB, 1 MB, and 10 MB are uploaded and the results are measured. The 

results of the uploading of the files are displayed in Table A.5, Table A.6 and 

Table A.7 in Appendix A. 

 

100 KB 

Figure 8.7 shows the length of time of the communication over the battery life 

consumed, the battery life consumed increases from 0.02% to 0.05% while the 

length of time of communication increases from 2.1 seconds to 5.9 seconds. 

Figure 8.8 shows the length of time of the communication against signal 

strength, the length of time of communication decreases from 5.9 seconds to 

2.1 seconds while the signal strength increases from -109 dBm to -83 dBm. 

 

  

Figure 8.7 100 KB file uploaded over 3G Figure 8.8 100 KB file uploaded over 3G 
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1 MB 

Figure 8.9 shows the length of time of the communication over the battery life 

consumed, the battery life consumed increases from 0.06% to 0.09% while the 

length of time of communication increases from 6.8 seconds to 13.2 seconds. 

Figure 8.10 shows the length of time of the communication against signal 

strength, the length of time of communication decreases from 6.8 seconds to 

13.2 seconds while the signal strength increases from -109 dBm to -83 dBm. 

 

  

Figure 8.9 1 MB file uploaded over 3G Figure 8.10 1 MB file uploaded over 3G 

 

10 MB 

Figure 8.11 shows the length of time of the communication over the battery life 

consumed, the battery life consumed increases from 0.242% to 0.342% while 

the length of time of communication increases from 43.9 seconds to 87.3 

seconds. Figure 8.12 shows the length of time of the communication against 

signal strength, the length of time of communication decreases from 43.9 

seconds to 87.3 seconds while the signal strength increases from -109 dBm to -

83 dBm. 

 

  

Figure 8.11 1 MB file uploaded over 3G  Figure 8.12 10 MB file uploaded over 3G 
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iii. Evaluation 

The results given in the above sections show that there is a direct relationship 

between the length of time of communication and the battery life consumed, 

and there exists an indirect relationship between the signal strength and the 

length of time the communication last.  

 

Comparing download and upload for the different file sizes shows that they 

follow the same pattern, however, uploading is a slightly more expensive 

operation, in terms of battery life consumed. 

 

4G  b. 

The results of downloading and uploading files over 4G are discussed in this 

section.  

 

i. Download 

To measure the energy consumption of downloading data from the cloud, files 

of size 100 KB, 1 MB, and 10 MB are downloaded and the results are 

measured. In Table A.8, Table A.9 and Table A.10 in Appendix A show the 

averages of downloading a 100 KB, 1 MB and 10 MB file five times at each of 

the listed signal strengths. These results are summarized in the following 

figures.  

 

100 KB 

Figure 8.13 shows the length of time of the communication over the battery life 

consumed, the battery life consumed increases from 0.02% to 0.03% while the 

length of time of communication increases from 0.4 seconds to 0.7 seconds. 

Figure 8.14 shows the length of time of the communication against signal 

strength, the length of time of communication decreases from 0.7 seconds to 

0.4 seconds while the signal strength increases from -117 dBm to -87 dBm. 
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Figure 8.13 100 KB file downloaded over 4G Figure 8.14 100 KB file downloaded over 4G 

 

1 MB 

Figure 8.15 shows the length of time of the communication over the battery life 

consumed, the battery life consumed increases from 0.04% to 0.066% while the 

length of time of communication increases from 3.9 seconds to 6.6 seconds. 

Figure 8.16 shows the length of time of the communication against signal 

strength, the length of time of communication decreases from 6.6 seconds to 

3.9 seconds while the signal strength increases from -117 dBm to -87 dBm. 

 

  

Figure 8.15 1 MB file downloaded over 4G Figure 8.16 1 MB file downloaded over 4G 

 

10 MB 

Figure 8.17 shows the length of time of the communication over the battery life 

consumed, the battery life consumed increases from 0.248% to 0.34% while the 

length of time of communication increases from 37.4 seconds to 54.6 seconds. 

Figure 8.18 shows the length of time of the communication against signal 

strength, the length of time of communication decreases from 54.6 seconds to 

37.4 seconds while the signal strength increases from -117 dBm to -87 dBm. 
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Figure 8.17 10 MB file downloaded over 4G Figure 8.18 10 MB file downloaded over 4G 

 

ii. Upload 

To measure the energy consumption of uploading data to the cloud, files of size 

100 KB, 1 MB, and 10 MB are uploaded and the results are measured. The 

results of the uploading of the files are displayed in Table A.11, Table A.12 and 

Table A.13 in Appendix A. 

 

100 KB 

Figure 8.19 shows the length of time of the communication over the battery life 

consumed, the battery life consumed increases from 0.03% to 0.04% while the 

length of time of communication increases from 2.4 seconds to 4.3 seconds. 

Figure 8.20 shows the length of time of the communication against signal 

strength, the length of time of communication decreases from 4.3 seconds to 

2.4 seconds while the signal strength increases from -117 dBm to -87 dBm. 

 

  

Figure 8.19 100 KB file uploaded over 4G Figure 8.20 100 KB file uploaded over 4G 

 

1 MB 

Figure 8.21 shows the length of time of the communication over the battery life 

consumed, the battery life consumed increases from 0.06% to 0.08% while the 

length of time of communication increases from 5.7 seconds to 8.8 seconds. 
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Figure 8.22 shows the length of time of the communication against signal 

strength, the length of time of communication decreases from 8.8 seconds to 

5.7 seconds while the signal strength increases from -117 dBm to -87 dBm. 

 

  

Figure 8.21 1 MB file uploaded over 4G Figure 8.22 1 MB file uploaded over 4G 

 

10 MB 

Figure 8.23 shows the length of time of the communication over the battery life 

consumed, the battery life consumed increases from 0.256% to 0.35% while the 

length of time of communication increases from 39.5 seconds to 59 seconds. 

Figure 8.24 shows the length of time of the communication against signal 

strength, the length of time of communication decreases from 59 seconds to 

39.5 seconds while the signal strength increases from -117 dBm to -87 dBm. 

 

  

Figure 8.23 10 MB file uploaded over 4G Figure 8.24 10 MB file uploaded over 4G 

 

iii. Evaluation 

The results given in the above sections show that there is a direct relationship 

between the length of time of communication and the battery life consumed, 

and there exists an indirect relationship between the signal strength and the 

length of time the communication last. 
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Comparing download and upload for the different file sizes shows that they 

follow the same pattern, however, uploading is a slightly more expensive 

operation, in terms of battery life consumed. 

 

Wi-Fi  c. 

The results of downloading and uploading files over Wi-Fi are discussed in this 

section.  

 

i. Download 

To measure the energy consumption of downloading data from the cloud, files 

of size 100 KB, 1 MB, and 10 MB are downloaded and the results are 

measured. In Table A.14, Table A.15 and Table A.16 in Appendix A show the 

averages of downloading a 100 KB, 1 MB and 10 MB file five times at each of 

the listed signal strengths. These results are summarized in the following 

figures.  

 

100 KB 

Figure 8.25 shows the length of time of the communication over the battery life 

consumed, the battery life consumed increases from 0.01% to 0.05% while the 

length of time of communication increases from 1.2 seconds to 9.8 seconds. 

Figure 8.26 shows the length of time of the communication against signal 

strength, the length of time of communication decreases from 9.8 seconds to 

1.2 seconds while the signal strength increases from -89 dBm to -45 dBm. 

 

  

Figure 8.25 100 KB file downloaded over Wi-Fi Figure 8.26 100 KB file downloaded over 

Wi-Fi 
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Figure 8.27 shows the length of time of the communication over the battery life 

consumed, the battery life consumed increases from 0.04% to 0.132% while the 

length of time of communication increases from 5.7 seconds to 48.4 seconds. 

Figure 8.28 shows the length of time of the communication against signal 

strength, the length of time of communication decreases from 48.4 seconds to 

5.7 seconds while the signal strength increases from -89 dBm to -45 dBm. 

 

  

Figure 8.27 1 MB file downloaded over Wi-Fi Figure 8.28 1 MB file downloaded over Wi-Fi 

 

10 MB 

Figure 8.29 shows the length of time of the communication over the battery life 

consumed, the battery life consumed increases from 0.136% to 0.23% while the 

length of time of communication increases from 51.8 seconds to 82.6 seconds. 

Figure 8.30 shows the length of time of the communication against signal 

strength, the length of time of communication decreases from 82.6 seconds to 

51.8 seconds while the signal strength increases from -89 dBm to -45 dBm. 

 

  

Figure 8.29 10 MB file downloaded over Wi-Fi Figure 8.30 10 MB file downloaded over Wi-

Fi 
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ii. Upload 

To measure the energy consumption of uploading data to the cloud, files of size 

100 KB, 1 MB, and 10 MB are uploaded and the results are measured. The 

results of the uploading of the files are displayed in Table A.17, Table A.18 and 

Table A.19 in Appendix A. 

 

100 KB 

Figure 8.31 shows the length of time of the communication over the battery life 

consumed, the battery life consumed increases from 0.01% to 0.02% while the 

length of time of communication increases from 5.4 seconds to 9.5 seconds. 

Figure 8.32 shows the length of time of the communication against signal 

strength, the length of time of communication decreases from 9.5 seconds to 

5.4 seconds while the signal strength increases from -89 dBm to -45 dBm. 

 

  

Figure 8.31 100 KB file uploaded over Wi-Fi Figure 8.32 100 KB file uploaded over Wi-Fi 

 

The experiments are done using natural network connectivity. Uploading 1 MB 

and 10 MB files over the Wi-Fi network does not complete. 

 

iii. Evaluation 

The results given in the above sections show that there is a direct relationship 

between the length of time of communication and the battery life consumed, 

and there exists an indirect relationship between the signal strength and the 

length of time the communication last. 

 

Comparing download and upload for the different file sizes shows that they 

follow the same pattern, however, uploading is a slightly more expensive 

operation, in terms of battery life consumed. 
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Comparison d. 

The results from the experiments show that the longer the communication lasts, 

the more battery life is consumed. For each of the networks the stronger the 

signal strength the less time the communication lasts.  

 

The different networks all conform to the same pattern, however, the battery 

consumed by the different networks differs when executing the same task. 

Figure 8.33 shows the energy consumption for the different networks when 

downloading a 1 MB file. 

 

In Figure 8.33 all the networks have a similar best point in terms of percentage 

battery life consumed and length of time of communication. Wi-Fi increases at a 

slower pace than the mobile networks, however, it does use the most battery 

life and take the longest time at the worst signal strength. The mobile networks 

increase at almost the pace, however, 4G does not have the same peak as 3G. 

 

 

 

Figure 8.33 Downloading 1 MB over 3G, 4G and Wi-Fi 
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The comparison shows that in most cases with strong signal strength, Wi-Fi is 

the less expensive network to use in terms of energy consumption. The cellular 

networks, however, consume battery life at almost the same rate. The available 

bandwidth on the networks determine the length of time of the communication 

because Wi-Fi is generally more stable and has a higher bandwidth it will 

consume less battery life than the cellular networks, in the same manner, 4G 

that has a higher available bandwidth than 3G will consume less power 

because the communication will not need to last as long. 

 

The results of the communication results show that with the network the mobile 

device is connected to, the signal strength of the network and the size of the 

communication an estimated energy consumption can be calculated. 

 

8.4.2. Computation 

The results from the experiments when measuring the power consumption of 

the device when it is performing computations is discussed in this section. The 

percentage of battery life consumed is compared to the length of time the 

computation lasted. The results shown are the averages for executing the 

experiment 3 times. 

 

Table A.17 shows the results of the computational experiments. Figure 8.34 

shows the percentage battery life consumed over the length of time the 

computation lasted. 
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Figure 8.34 Battery life consumed over the length of local computation 

 

In Figure 8.34 the battery life consumed increases as the length of time of time 

of computation increases. The battery life consumed increases from 0.001% 

when the CPU is active for 1 second to 0.094% when the CPU is used for 90 

seconds. 

 

The results of the computational experiments show that the longer the 

computation lasts, the more battery life is consumed. The results show that with 

the length of time of the computation the battery life consumed during 

computation can be calculated. 

 

The data gathered is now used to create the Switch energy consumption profile. 

 

8.5. Energy consumption profile 

The data gathered for the Samsung Galaxy S7 Edge is used to create the linear 

models that are representative of the energy consumption when communicating 

over the different networks and when computing locally. 
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Figure 8.35 3G rate of consumption  Figure 8.36 4G rate of consumption 

  

Figure 8.37 Wi-Fi rate of consumption  Figure 8.38 Computation rate of 

consumption 

 

Figure 8.35 shows all the points of the length of time of communication and 

battery life consumed for 3G, both uploaded and downloaded. A linear line is 

fitted to the data points to get the average rate of consumption over time for the 

network. The equation of the fitted line for 3G is: 𝑦 =  0,004𝑥 +  0,0293. The 

equation provided can now be substituted into the 𝐸𝐶3𝐺  energy consumption 

model in the energy consumption profile. The model used in the prototype is 

shown in equation 8.1. 

 

Equation 8.1 3G energy consumption model 𝐸𝐶3𝐺 =  0,004(𝑡𝑖𝑚𝑒) +  0,0293 

 

Figure 8.36 shows all the points of the length of time of communication and 

battery life consumed for 4G, both uploaded and downloaded. A linear line is 

fitted to the data points to get the average rate of consumption over time for the 

network. The equation of the fitted line for 4G is: 𝑦 =  0,0059𝑥 +  0,0207. The 

equation provided can now be substituted into the 𝐸𝐶4𝐺  energy consumption 

model in the energy consumption profile. The model used in the prototype is 

shown in equation 8.2: 
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Equation 8.2 4G energy consumption model 𝐸𝐶4𝐺 =  0,0059(𝑡𝑖𝑚𝑒) +  0,0207 

 

Figure 8.37 shows all the points of the length of time of communication and 

battery life consumed for Wi-Fi, both uploaded and downloaded. A linear line is 

fitted to the data points to get the average rate of consumption over time for the 

network. The equation of the fitted line for Wi-Fi is: 𝑦 =  0,0025𝑥 +  0,0105. The 

equation provided can now be substituted into the 𝐸𝐶𝑤𝑖𝑓𝑖 energy consumption 

model in the energy consumption profile. The model used in the prototype is 

shown in equation 8.3. 

 

Equation 8.3 Wi-Fi energy consumption model 𝐸𝐶𝑤𝑖𝑓𝑖 =  0,0025(𝑡𝑖𝑚𝑒) +  0,0105 

 

Figure 8.38 shows all the points of the length of time of computation and battery 

life consumed for local computation. A linear line is fitted to the data points to 

get the average rate of consumption over time for the network. The equation of 

the fitted line for computation is: 𝑦 =  0,0011𝑥 −  0,0024. The equation provided 

can now be substituted into the 𝐸𝐶𝐶𝑃𝑈 energy consumption model in the energy 

consumption profile. The model used in the prototype is shown in equation 8.4. 

 

Equation 8.4 Local execution energy consumption model 𝐸𝐶𝐶𝑃𝑈 =  0,0011(𝑡𝑖𝑚𝑒) −  0,0024 

 

The rates of consumption are used to estimate the energy consumption on a 

Samsung Galaxy S7 Edge, SM-G900F, which increases the accuracy of the 

estimation of battery life consumed. The energy consumption models presented 

above are used in the energy consumption profile in the Switch prototype. 

 

8.6. Conclusion 

This chapter discusses the experiments used to evaluate real-world energy 

consumption during communication and computation and the results gathered 

from these experiments. 
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The experiments for communication are executed by downloading and 

uploading files of varying sizes to and from the cloud. The size of uploaded and 

downloaded data, length of time of the communication, signal strength and 

battery life consumed are recorded. The results of the communication 

experiments show that there exists a direct relation between the length of the 

communication and the battery life consumed and there exists an indirect 

relation between the signal strength and the length of time of communication. 

 

The experiments for computation are completed by calculating the number of 

primes for a set amount of time. The length of time of the computation and the 

battery life consumed is recorded. The results of the experiments show that 

there exists a direct relation between the length of time of computation and 

battery life consumed. 

 

The manual creation of the energy consumption profile has laid the groundwork 

for the automatic creation of energy consumption profiles for various devices, 

however, this is not covered in the scope of this research. 

 

The gathered results are used to create the energy consumption models. For 

each of the networks and for local computation a line is fitted to the collected 

data. The equation for the fitted line represents the model.   
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Chapter 9: Switch: Prototype 

9.1. Introduction 

In this chapter, the Switch framework is evaluated by creating a prototype of 

Switch that can be integrated with a mobile app that supports offloading. The 

purpose is to determine if the battery life usage can be reduced by intelligently 

offloading tasks to the cloud.  A comparison of the actual energy consumption 

to the estimated energy consumption can determine the accuracy of the 

offloading decision. 

 

The implementation of the device-specific energy consumption profile, profiler, 

offloading decision and mobile app is presented. The integration of Switch and 

subsequent executions of the tasks of the mobile app are used to collect data in 

order to evaluate the prototype. 

 

In Section 9.2 the components of Switch are discussed and presented 

programmatically. The mobile apps that the Switch prototype are integrated 

with, and the results of the integration and execution, are discussed in section 

9.3. Finally, the chapter is concluded. 

 

9.2. Switch components 

The components of the Switch framework, namely the profiler, energy 

consumption profile, and decision-making component, are discussed and 

presented in this section. Figure 9.1 shows the UML class diagram of the 

components of the Switch framework. 
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Figure 9.1 Class diagram of the Switch framework 

 

9.2.1. Switch Profiler 

The profiler collects data regarding the execution of the application and the 

current state of the mobile device. The methods made available by the profiler 

are, checkNetwork, startLocalMonitoring, stopLocalMonitoring, 

startNetworkMonitoring, and stopNetworkMonitoring, are now discussed. 

 

checkNetwork a. 

checkNetwork consists of two parts. The first queries the mobile operating 

system to determine which network the device is currently connected to. The 

second determines the available bandwidth on the network, this calculation is 

done by downloading and uploading files to and from a remote server and 

timing the duration of the communication. This method is shown in figure 9.2. 
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Figure 9.2 checkNetwork method 

 

startLocalMonitoring & stopLocalMonitoring b. 

startLocalMonitoring, shown in figure 9.3, is used to collect and store data 

before local execution. The stored data is used in stopLocalMonitoring, shown 

in figure 9.3, to calculate the duration of local execution. 

 

 

Figure 9.3 startLocalMonitoring and stopLocalMonitoring methods 

 

startNetworkMonitoring & stopNetworkMonitoring c. 

startNetworkMonitoring, presented in figure 9.4, is used to collect and store data 

before network communication. The stored data is used in 

stopNetworkMonitoring, shown in figure 9.4, to calculate the available 

bandwidth and the size of the data communicated by the method. 

 

function checkNetwork() { 

    networkType = getNetworkType(); 

    storeNetworkType(networkType); 

 

    startNetworkMonitoring(); 
    downloadFile(); 

    uploadFile(); 

    stopNetworkMonitoring(); 
} 

function startLocalMonitoring() { 

    beforeTime = getCurrentTime(); 

    storeBeforeLocalTime(beforeTime); 
} 

 

function stopLocalMonitoring(methodName) { 
    afterTime = getCurrentTime(); 

    beforeTime = getStoredBeforeLocalTime(); 

     
    duration = (afterTime - beforeTime) / 1000; 

     
    decisionMakingComponent.storeMethodDuration(methodName, duration); 

} 
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Figure 9.4 startNetworkMonitoring and stopNetworkMonitoring methods 

 

9.2.2. Energy consumption profile 

Using the energy consumption profile and the length of time of communication 

and computation the prototype can estimate the energy consumption. The 

estimateLocalCost and estimateOffloadingCost methods are used by Switch to 

estimate energy consumption when offloading over the different networks and 

when executing locally, the methods are shown in figure 9.5. The 

estimateLocalCost represent the equation 8.4 energy consumption model, 

function startNetworkMonitoring() { 

    beforeTime = getCurrentTime(); 

    storeBeforeNetworkTime(beforeTime); 

     
    beforeBytesDownload = getBytesDownloaded(applicationId); 
    storeBeforeNetworkDownloadBytes(beforeBytesDownload); 

     
    beforeBytesUpload = getBytesUploaded(applicationId); 

    storeBeforeNetworkUploadBytes(beforeBytesUpload); 
} 

 

function stopNetworkMonitoring(methodName) { 

    afterTime = getCurrentTime(); 

    beforeTime = getStoredBeforeNetworkTime(); 

     
    durationInSeconds = (afterTimeDownload - beforeTimeDownload) / 1000; 

     
    afterBytesDownload = getBytesDownloaded(applicationId); 

    beforeBytesDownload = getStoredBeforeNetworkDownloadBytes(); 

     
    downloadSizeInBits = (afterBytesDownload - beforeBytesDownload) * 8; 

     
    decisionMakingComponent.storeMethodDownloadSize(methodName,    

    downloadSizeInBits); 

     
    downloadBandwidth = downloadSizeInBits / durationInSeconds; 

    downloadBandwidthKbps = downloadBandwidth / 1000; 
    downloadBandwidthMbps = downloadBandwidthKbps / 1000; 

     
    storeDownloadBandwidth(downloadBandwidthMbps); 

         
    afterBytesUpload = getBytesUploaded(applicationId); 
    beforeBytesUpload = getStoredBeforeNetworkUploadBytes(); 

     
    uploadSizeInBits = (afterBytesUpload - beforeBytesUpload) * 8; 

     
    decisionMakingComponent.storeMethodUploadSize(methodName,  
    uploadSizeInBits); 

     
    uploadBandwidth = uploadSizeInBits / durationInSeconds; 
    uploadBandwidthKbps = uploadBandwidth / 1000; 

    uploadBandwidthMbps = uploadBandwidthKbps / 1000; 

     
    storeUploadBandwidth(uploadBandwidthMbps); 
} 
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RATE_LOCAL and CONSTANT_LOCAL are values used to draw the line fitted 

to the collected data. 

 

 

Figure 9.5 estimateLocalCost and estimateOffloadingCost methods 

 

The methods used by estimateOffloadingCost, namely 

estimateWiFiConsumption, esimate4gConsumption and 

estimate3gConsumption are shown in figure 9.6. The methods each represent a 

linear model, estimate3gConsumption is a representation of equation 8.1, 

estimate4gConsumption represents equation 8.2 and 

estimateWiFiConsumption represents equation 8.3. The constants and rates 

used in these methods are determined by the line fitted to the data collected for 

each network. 

 

RATE_LOCAL = 0.0011 
CONSTANT_LOCAL = 0.0024 

 
function estimateLocalCost(time) : double { 

    return RATE_LOCAL * time + CONSTANT_LOCAL    
} 

 

function estimateOffloadingCost(networkType, time) : double { 

    switch (networkType) 

        case WIFI: return estimateWiFiConsumption(time) 
        case FOURG: return estimate4gConsumption(time) 

        case TREEG: return estimate3gConsumption(time) 
} 
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Figure 9.6 estimateWiFiConsumption, esimate4gConsumption and 
estimate3gConsumption methods 

9.2.3. Decision-making component 

The decision-making component makes the offloading decision. The offloading 

decision is made by the shouldOffload method, as shown in figure 9.7. 

 

 

Figure 9.7 shouldOffload method 

 

The next section discusses the application the Switch prototype is integrated 

with and the results of using the prototype. 

 

RATE_WIFI = 0.0025 

CONSTANT_WIFI = 0.0127 

 
RATE_4G = 0.0059 

CONSTANT_4G = 0.0207 

 
RATE_3G = 0.004 
CONSTANT_3G = 0.0293 

 
function estimateWiFiConsumption(time) : double { 

    return RATE_WIFI * time + CONSTANT_WIFI 

} 

 
function estimate4gConsumption(time) : double { 

    return RATE_4G * time + CONSTANT_4G 
} 

 
function estimate3gConsumption(time) : double { 

    return RATE_3G * time + CONSTANT_3G 
} 

function shouldOffload(methodName) : boolean { 

    computationTime = getStoredComputationTime(method); 

    localCost = consumptionProfile.estimateLocalCost(computationTime); 

     
    downloadSize = getStoredDownloadSize(methodName); 
    downloadBandwidth = profiler.getStoredDownloadBandwidth(); 

    downloadTime = downloadSize / downloadBandwidth; 
 

    uploadSize = getStoredUploadSize(methodName); 

    uploadBandwidth = profiler.getStoredUploadBandwidth(); 

    uploadTime = uploadSize / uploadBandwidth; 

 

    communicationTime = downloadTime + uploadTime; 
 
    network = profiler.getNetworkType(); 

    offloadingCost = 

consumptionProfile.estimateOffloadingCost(network,communicationTime); 

     
    return localCost > offloadingCost; 

} 
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9.3. Implementation and evaluation 

The goal of evaluating Switch is to compare the calculated estimated energy 

consumption and the measured energy consumption. This section discusses 

and evaluates the experiments and the results of the experiments executed with 

the prototype. 

 

9.3.1. Results 

The functions discussed earlier are used to determine whether or not a task 

should be offloaded. The solution is implemented in both a steganography 

mobile application and a prime number calculation mobile application that each 

illustrates different constraints with respect to data communication that Switch 

needs to consider.  

 Steganography is used because it is a computationally intensive task and 

when offloaded it requires the transfer of large amounts of data.  

 Prime number generation is used because it is a computationally 

intensive task that requires very little data to be communicated. 

 

The mobile apps that are used to evaluate the prototype offload to a Heroku 

container (Heroku, 2017a).The Heroku container used for the evaluation is on 

the free tier, it has 512MB of memory, and has 1x CPU share and between 1x 

and 4x compute share (Heroku, 2017b).  Although the resources available in 

the container used for offloading is not limitless it does surpass the available 

resources on the mobile device.  

 

As mentioned, Switch is evaluated for both local computations and offloading 

over different types of networks where the estimated energy consumption is 

compared to the actual energy consumption. When estimating the energy 

consumption for offloading, the available bandwidth is measured and used to 

estimate the length of time of communication. The length of time of 

communication is used to estimate the energy consumption. The available 

bandwidth is used instead of the signal strength because the signal strength is 

not a reliable indicator of how long communication lasts. 
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To determine the estimation of energy consumption for the execution of a local 

task, the length of time of computation is measured. The actual energy 

consumption is measured by using GSam Battery Monitor, the same software 

that was used to create the energy consumption profile. The same methodology 

is used to measure the energy consumption for each of the tasks used to 

evaluate the prototype. 

 

Steganography mobile application 

Task 1 – Steganographic file encoding a. 

The first task used is the steganographic encoding a 1.4 megabyte file into a 5 

megabyte image. Offloading this task require the image and the file to be 

uploaded and the encoded image to be downloaded. The task is executed 

locally, over Wi-Fi, 4G, and 3G.  

 

i. Local 

Executing the file encoding task locally takes the device 7.391 seconds, using 

the power consumption estimation functions, the task should consume 0.057% 

battery life. Measuring the energy consumption for this task, return the actual 

energy consumption of 0.058%. 

 

ii. 3G 

Executing the file encoding task over HPSA completes in 51 seconds. The 

bandwidth available over HPSA for downloading at the time of the experiment is 

2.6179 Mbps and 2.3104 Mbps for uploading. The prototype estimates the 

energy consumption is 0.1768%. The actual energy consumption is 0.177%. 

 

iii. 4G  

Executing the file encoding task over 4G completes in 34 seconds. The 

bandwidth available over 4G for downloading at the time of the experiment is 

8.0353 Mbps and 5.8963 Mbps for uploading. The prototype estimates the 

energy consumption is 0.0983%. The actual energy consumption is 0.098%. 
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iv. Wi-Fi  

Executing the file encoding task over Wi-Fi completes in 104 seconds. The 

bandwidth available over Wi-Fi for downloading at the time of the experiment is 

1.416 Mbps and 0.6462 Mbps for uploading. The prototype estimates the 

energy consumption is 0.2578%. The actual energy consumption is 0.258%. 

 

v. Comparison 

The data collected from the executions of this task is shown in table 9.1. The 

estimated cost of task execution is compared to the actual cost that was 

measured.  

 

Table 9.1 Steganographic file encoding results 

 Time Estimated cost Measured cost 

Local 7.291 seconds 0.057% 0.058% 

HPSA 51 seconds 0.1768% 0.177% 

4G 34 seconds 0.0983% 0.098% 

Wi-Fi 104 seconds 0.2578% 0.258% 

 

A large amount of data required to be transferred skews this task to be 

executed locally. It only takes 7.291 seconds to execute the task and consumes 

0.058% of the battery life. As can be expected, it takes much longer to offload a 

task using a Wi-Fi connection and this consumes more battery life. Even though 

a task executed using a 4G connection takes 34 seconds to complete, it is still 

much slower than a local execution and consumes more battery life.  

 

From the results, it is clear that the estimated energy consumption is relatively 

accurate when compared to the actual battery life as measured by software.  

 

Task 2 – Steganographic file decoding b. 

The second task is to decode a 5 megabyte image. The encoded file contains a 

1.4 megabyte file. Offloading this task requires the image to be uploaded and 

the encoded file to be downloaded. The task is executed locally, over Wi-Fi, 4G, 

and 3G. 
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i. Local 

Executing the file decoding task locally takes the device 2.304 seconds, using 

the power consumption estimation functions, the task should consume 0.0013% 

battery life. Measuring the energy consumption for this task, return the actual 

energy consumption of 0.001%. 

 

ii. 3G 

Executing the file decoding task over 3G completes in 30 seconds. The 

bandwidth available over 3G for downloading at the time of the experiment is 

1.3434 Mbps, and 1.312 Mbps for uploading. The prototype estimates the 

energy consumption is 0.1825%. The actual energy consumption is 0.183%. 

 

iii. 4G  

Executing the file decoding task over 4G completes in 10 seconds. The 

bandwidth available over 4G for downloading at the time of the experiment is 

9.0265 Mbps, and 6.0004 Mbps for uploading. The prototype estimates the 

energy consumption is 0.075%. The actual energy consumption is 0.076%. 

 

iv. Wi-Fi  

Executing the file decoding task over Wi-Fi completes in 114 seconds. The 

bandwidth available over Wi-Fi for downloading at the time of the experiment is 

4.0074 Mbps, and 0.7109 Mbps for uploading. The prototype estimates the 

energy consumption is 0.1846%. The actual energy consumption is 0.185%. 

 

v. Comparison 

The data collected from the executions of this task is shown in table 9.2. 

 

Table 9.2 Steganographic file decoding results 

 Time Estimated cost Measured cost 

Local 2.304 seconds 0.0011% 0.001% 

HPSA 30 seconds 0.1825% 0.183% 

4G 10 seconds 0.075% 0.076% 

Wi-Fi 114 seconds 0.1846% 0.185% 

 

Comparing the results of this tasks with the results from the first task shows that 

in each instance this task consumes less battery life. The decrease in battery 
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life consumption can be attributed to the decrease in the amount of data that is 

required to be transferred from 11.4 megabytes to 6.4 megabytes. As with the 

first task, the amount of data that is required to be transferred skews the task to 

be executed locally. Local execution takes 2.304 seconds and consumes 

0.001% of the battery life. The fastest alternative when offloading, 4G, takes 10 

seconds and consumes 0.076% battery life. Due to the lower bandwidth 

available on Wi-Fi during testing the execution is even slower, 114 seconds, 

and consumes much more battery life, 0.185%. 

 

Prime number calculation mobile application 

Task 3 – Prime number counting c. 

The third task used to evaluate Switch is calculating the number of primes there 

are between zero and ten million (10 000 000). Offloading this tasks requires 

the upload of an integer (4 bytes) and the download of an integer. 

 

i. Local 

Executing the prime number counting task locally takes the device 31 seconds, 

using the power consumption estimation functions, the task should consume 

0.0317% battery life. Measuring the energy consumption for this task, return the 

actual energy consumption of 0.032%. 

 

ii. 3G 

Executing the prime number counting task over 3G completes in 16 seconds. 

The bandwidth available over 3G for downloading at the time of the experiment 

is 3.8563 Mbps, and 2.0361 Mbps for uploading. The prototype estimates the 

energy consumption is 0.0293%. The actual energy consumption is 0.03%. 

 

iii. 4G  

Executing the prime number counting task over 4G completes in 12 seconds. 

The bandwidth available over 4G for downloading at the time of the experiment 

is 9.1174 Mbps, and 7.3823 Mbps for uploading. The prototype estimates the 

energy consumption is 0.0207%. The actual energy consumption is 0.02%. 
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iv. Wi-Fi  

Executing the prime number counting task over Wi-Fi completes in 10 seconds. 

The bandwidth available over Wi-Fi for downloading at the time of the 

experiment is 3.5499 Mbps, and 1.1372 Mbps for uploading. The prototype 

estimates the energy consumption is 0.0127%. The actual energy consumption 

is 0.013%. 

 

v. Comparison 

The data collected from the executions of this task is shown in table 9.3. 

 

Table 9.3 Prime number counting results 

 Time Estimated cost Measured cost 

Local 31 seconds 0.0317% 0.032% 

HPSA 16 seconds 0.0293% 0.03% 

4G 12 seconds 0.0207% 0.02% 

Wi-Fi 10 seconds 0.0127% 0.013% 

 

The amount data to be transferred for this task is extremely small and the task 

is computationally complex, this skews the task toward offloading. Due to the 

complexity of the task execution on the mobile device takes 31 seconds and 

consumes 0.032% battery life. The battery life consumed when offloading over 

4G is 0.02% and only takes 12 seconds. Over Wi-Fi, the same operation takes 

10 seconds and consumes 0.013% battery life. 

 

9.3.2. Evaluation 

The three tasks executed to evaluate the Switch prototype were selected 

because they are computationally intensive and used different quantities of data 

to be communicated to and from the cloud.  

 

When comparing the estimated cost for local execution with the cost when 

offloading, for each of the networks, for the first and second tasks, the prototype 

suggests that local execution conserves battery life. Manual inspection of the 

measured energy consumption shows that it is the least expensive option.  

 

For the third task, the prototype suggests offloading in all cases when 

comparing the energy consumption estimates. Again, manual inspection of the 
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measured energy consumption values shows that local execution is the least 

expensive option.  

 

The estimated energy consumption and the measured energy consumption 

values are nearly identical, as shown in tables 9.1, 9.2 and 9.3. The differences 

between the values are attributed to the difficulty in accurately measuring 

energy consumption on Android devices. 

 

In order to evaluate the prototype, one needs to evaluate the accuracy of 

energy consumption estimates. Therefore, the accuracy of the energy 

consumption models is now evaluated.  

 

Switch experimentation percentage error a. 

For each of the models, the average percentage error is calculated. The 

percentage error is used to show the difference between estimated values and 

measured values (Helmenstine, 2017).  

 

The formula used to calculate the percentage error is shown in equation 9.1. 

Equation 9.1 Formula for percentage error 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟 =  |𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑|𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  × 100 

 

For each of the energy consumption models, for each of the tasks, the 

percentage error is calculated and averaged to give the average percentage 

error for the models. The inverse of the percentage error shows the accuracy of 

the model. The accuracy percentage is calculated using the formula shown in 

equation 9.2. 

 

Equation 9.2 Formula for percentage accuracy 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 = 100 − 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟 

 

The calculation of the percentage of errors for the CPU energy consumption 

model is shown in table 9.4. 
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Table 9.4 Percentage error calculation for the CPU model 

 Estimated cost Measured cost Percentage error 

Task 1 0.057% 0.058% 1.724137931% 

Task 2 0.0011% 0.001% 10% 

Task 3 0.0317% 0.032% 0.9375% 

 

Averaging the percentage errors results in an average percentage error of 

4.22%. The average percentage error shows that the CPU energy consumption 

model has an accuracy percentage of 95.78%. 

 

The calculation of the percentage error for the 3G energy consumption model is 

shown in table 9.5 using the results from the tasks used to evaluate Switch. 

 

Table 9.5 Error rate calculation for the 3G model 

 Estimated cost Measured cost Percentage error 

Task 1 0.1768% 0.177% 0.11% 

Task 2 0.1825% 0.183% 0.27% 

Task 3 0.0293% 0.03% 2.33% 

 

The average percentage error for the model is 0.91%. The accuracy percentage 

calculated for the 3G energy consumption model is 99.09%.  

 

The calculation of the percentage error for the results of the 4G energy 

consumption model is shown in table 9.6. 

 

 

Table 9.6 Error rate calculation for the 4G model 

 Estimated cost Measured cost Percentage error 

Task 1 0.0983% 0.098% 0.31% 

Task 2 0.075% 0.076% 0.79% 

Task 3 0.0207% 0.02% 3.5% 

 

Averaging the percentage errors results in an overall percentage error for the 

model of 1.71%. Using this percentage error to calculate the accuracy 

percentage shows that the 4G energy consumption model is 98.29% accurate. 

 

The calculation of the error rate for the Wi-Fi energy consumption model is 

shown in table 9.7. 
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Table 9.7 Error rate calculation for the Wi-Fi model 

 Estimated cost Measured cost Percentage error 

Task 1 0.2578% 0.258% 0.08% 

Task 2 0.1846% 0.185% 0.22% 

Task 3 0.0127% 0.013% 2.31% 

 

The average percentage error for the Wi-Fi energy consumption model is 

0.87%. The accuracy percentage for the model is thus 99.13% 

 

The high accuracy percentages of the models show that the costs estimated by 

Switch are very close to the measured values. The accuracy of energy 

consumption profile allows Switch to make accurate offloading decisions to 

conserve battery life. 

 

9.4. Conclusion 

This chapter discusses and evaluates the prototype of Switch. The components 

of the prototype, the implementation and the evaluation of the prototype are 

discussed. The discussion of the components briefly presents the components 

programmatically. 

 

The prototype is evaluated by executing 3 tasks and evaluating the accuracy of 

the estimated energy consumption with the measured energy consumption. The 

first task used to evaluate the prototype is the steganographic encoding a file 

into an image. The second task is decoding an encoded image and retrieving 

the file encoded in it. The third task is counting the number of primes between 

zero and ten million. Each task is executed locally and offloaded over 3G, 4G 

and Wi-Fi.  

 

The results gathered from the first task show that a large amount of data that is 

required to be transferred skews the task to local execution. Local execution of 

the steganographic encoding is the fastest option and the option that consumes 

the least amount of battery life. The decision made by the Switch prototype is to 

execute the task locally in all cases. 

 

The second task also requires a large amount of data to be transferred, 

however, it is almost half the amount of data of the first task. The amount of 
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data again makes local execution the better choice. Local execution is the 

fastest and least expensive option for steganographic decoding. Again the 

decision made by the prototype is to execute locally in all cases. 

 

The third task requires very little data to be transferred and is computationally 

complex, this skews the task toward offloading. The prototype suggested in 

each case that the task is offloaded, as the local execution was the most 

expensive option and took the longest time. 

 

The results gathered from the execution of the three tasks are used to evaluate 

the accuracy of the energy consumption models. The CPU energy consumption 

model has the lowest accuracy of 95.78%, an accuracy percentage that is still 

high. The other models have accuracy percentages of 99.09%, for the 3G 

model, 98.47%, for the 4G model, and 99.13% for the Wi-Fi model.  

 

The overall accuracy of the energy consumption profile enabled the Switch 

prototype to make offloading decisions that conserve the limited battery life on 

resource-constrained mobile devices.  
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Chapter 10: Conclusion 

10.1. Introduction 

This dissertation aims to prove that the battery life on mobile devices can be 

conserved by leveraging the cloud. It was identified that battery life, a resource 

that is integral to the operation of mobile devices, cannot be augmented by 

directly using resources from the cloud. Considering this limitation, this topic 

presented itself as an appropriate topic for research. 

 

This chapter is the culmination of research covered throughout the course of 

this dissertation. The chapter sets out to address the research objective, by 

answering the research questions in section 10.2. Section 10.3 describes the 

limitations of the Switch framework. Section 10.4 gives the research contribution 

and future work that can be done to improve the Switch framework. Finally, the 

chapter and dissertation draw to a close in section 10.5. 

 

10.2. Revisiting the research objective and questions 

The primary goal of this dissertation is to investigate the energy consumption of 

mobile devices to determine whether or not the battery life of mobile devices 

can be conserved by making offloading decisions based on accurate energy 

consumption estimates. The development of the Switch framework answers the 

research questions posed in chapter 1. Each of the research questions is now 

revisited.  

 

10.2.1. What resources are constrained on mobile devices, and 

which of them can be augmented? 

Due to the nature of mobile devices, all of the resources on a mobile device is 

constrained, as discussed in chapter 2. However, the majority of resources such 

as computing power, memory, and storage, can be augmented with resources 

from the cloud. 

 

Which mobile devices resources can be augmented, and which cannot? a. 

In chapter 2 it is identified that mobile devices have the same resources as 

traditional computers, namely: computing power, memory, and storage and all 
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can display information to the end user. The examination of cloud computing 

and mobile cloud computing in chapters 3 and 4 show that the resources that 

are found in both the cloud and mobile devices can be augmented. Battery life 

and bandwidth cannot be augmented by offloading. 

 

What methods can be used to augment the resources on mobile b. 

devices? 

In chapter 3 the methods that can be used to augment the resources on mobile 

devices are identified as hardware, software and offloading. Upgrading the 

hardware components of a device to increase the resources available. Software 

can be used to efficiently use the limited resources. When the software on the 

mobile device uses offloading, the mobile device has access to the greater 

resource pool of the server. 

  

How are mobile devices resources augmented by using the cloud?  c. 

The discussion in chapter 4 shows that the computing capabilities of mobile 

devices can be augmented by executing resource-intensive mobile application 

components in the resource-rich cloud-based resources. 

 

10.2.2. What are the requirements of a framework that can 

conserve battery life on mobile devices by using offloading?  

The requirements identified in chapter 3 of this dissertation are: 

 Intelligent offloading decisions 

 Multiple network support 

 Lightweight 

 Portable 

The requirements identified are based on the research objectives and are used 

to evaluate the framework proposed in the dissertation. 

 

10.2.3. How can an offloading decision be designed to conserve 

the battery life of a mobile device? 

The decision-making process is defined in chapter 6 as the process of 

identifying and choosing an option between several alternative options based 

on factors and the goal of the decision maker. An offloading decision is a 
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process of choosing between executing a task locally and executing the task 

remotely. In order to conserve battery life, the energy cost of executing the task 

locally or executing the same task remotely should be known. Practically, the 

energy used in a specific task cannot be known before execution, therefore a 

method of estimating the energy usage of a specific task is required. Thus, in 

order to conserve battery life, an energy estimation technique is designed. 

 

What is offloading and what approaches can be used to offload from a. 

mobile devices?  

Offloading is defined in chapter 5 as the process of moving a task from a mobile 

device to the cloud. Two offloading approaches are discussed namely virtual 

machine cloning and code-based offloading. Virtual machine cloning creates a 

virtual instance of the mobile device on the cloud where the virtual instance has 

access to the resources on the cloud. Code-based offloading is chosen for the 

Switch framework as it is simpler and more efficient as it relies on the creation 

of methods on the server that perform the same task as the methods on the 

mobile device.  

 

How can energy consumption be measured? b. 

The energy consumption of a mobile device or an app can be measured using 

either a hardware or software-based approach, as discussed in chapter 6. 

Hardware-based approaches result in profiles that are highly accurate but the 

creation of these profiles are labor-intensive and not scalable. Software-based 

approaches result in less accurate profiles. However, software-based energy 

consumption profiles enable the monitoring of the application on many different 

granularities and it does not require expensive external power meters. 

 

Which factors should be taken into account when estimating energy c. 

consumption? 

Chapter 5 discusses the offloading decisions made by frameworks proposed in 

related research. The understanding gained from the evaluation of related 

research is expanded on in chapter 6 to identify the factors that influence the 

estimation of energy consumption. The factors identified are grouped into two 

categories, namely communication, and computation. The factors in the 

communication category are size of data, communication protocol and 
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bandwidth. The computation category factors are code complexity and the 

duration of execution. 

 

10.2.4. Does the framework proposed by this dissertation 

conserve battery life on mobile devices? 

The Switch framework is proposed in chapter 7 and the prototype implemented 

in chapter 9 is evaluated against the requirements identified in chapter 3.  

 

What tasks and evaluation criteria can be used to determine the a. 

effectiveness of the proposed framework? 

Three tasks were identified in chapter 9 to evaluate the Switch framework. The 

first task involves the steganographic encoding of a file into an image, this task 

when offloaded requires the upload of two files, one image and one data file, 

and the download of the encoded image file. The second task involves the 

decoding of an image that has been steganographically encoded when 

offloaded this requires the image to be uploaded and the decoded file to be 

downloaded. The third task involves the counting of prime numbers, this 

computationally intensive task does not require large amounts of data to be 

transferred when offloading. 

 

The proposed framework, Switch, is evaluated by comparing the estimated 

energy consumption and the measured energy consumption to determine the 

accuracy of the offloading decisions made by the framework. 

 

To what extent does the proposed framework meet the identified b. 

evaluation criteria and which deficiencies and be identified?   

The Switch prototype is evaluated against the identified requirements to answer 

this question. 

 

i. Intelligent offloading decision making 

As discussed in chapter 7, in order for an intelligent offloading decision to occur, 

an accurate energy estimation is required to inform the decision-making 

process. In chapter 9, the analysis showed that the prototype provides an 

accurate energy estimation of real-world tasks. Therefore, the accurate energy 
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estimations can be used to intelligently inform the offloading decisions made by 

the Switch prototype. 

 

ii. Multiple network support 

Mobile devices are by their nature mobile, thus they are continuously 

connecting to different networks. Because mobile devices are used when 

connected to different networks, the prototype is capable of estimating energy 

consumption and make offloading decisions regardless of the network 

connection. The energy consumption profile generated for the prototype takes 

into account Wi-Fi, 4G and 3G networks, which allows offloading decisions to 

be made when communicating via one of the networks. 

 

iii. Lightweight  

By adding the prototype to an existing application, the energy consumption on 

the mobile device is minimally affected and no detrimental effect on the user 

experience is noted. The prototype collects environmental data in the 

background of the application which does not affect the user, and the offloading 

decisions are made as simple as possible so that it requires as little 

computational power and battery life as possible. 

 

iv. Portable 

The Switch prototype is developed as an external package that can be included 

by any developer into an app to enable the conservation of battery life. The 

package has a simple interface and is easy to integrate into an application. 

Because no device-specific functions are used, the package is not device 

specific and can be included on any Android device, for any app. Thus, the 

prototype is portable. 

 

The next section addresses the limitations of this research. 

 

10.3. Limitation of this research 

In order to determine whether battery life can be conserved on mobile devices, 

it was necessary to implement an application that is capable of executing tasks 

locally and offloading them to the cloud. The implementation of the prototype in 
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this application allowed the evaluation of the framework in a practical 

environment. 

 

The prototype is not perfect. There are several areas in which it can be 

improved. The first of which is the automatic creation of an energy consumption 

profile. The limitations on the Android operating system requires the use of a 

third-party app to measure energy consumption. The differences in the 

hardware available on mobile devices require an energy consumption profile for 

each device. The profile used was not tested against other physical devices 

with the same hardware specifications. 

 

Another area in which the prototype can be improved is the integration with 

other applications. In the current state, the prototype has to be integrated by the 

developer and end-users cannot control it. The prototype requires developers to 

identify which tasks can be offloaded and create endpoints through which the 

task can be offloaded. 

 

It is important to note that it would be important to secure all communications 

between the mobile device and the cloud, as well as the data and tasks on the 

cloud. This aspect should be addressed very carefully but is beyond the scope 

of this research.  

 

The prototype helped answer the primary research goal of this dissertation and 

can be improved upon. The next section discusses how the research can be 

improved upon in future work. 

 

10.4. Research contribution and future work 

The research done in this dissertation shows that a framework can be created 

that can be integrated into any mobile app to conserve the battery life of the 

mobile device by making offloading decisions informed by accurate energy 

consumption estimations. The concept of conserving battery life by offloading 

has been shown to be effective in the existing problem domain.  
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Previous prototypes that were develop were focussed on specific fields, 

required specialized hardware to function or to measure energy consumption, or 

required in-depth analysis of the methods executed by the app that the 

prototypes were integrated with. The framework proposed in this dissertation 

took a different approach in that it aimed to be integrated with any mobile app 

that uses offloading and software to measure energy consumption. The 

framework in this dissertation is focussed on a device-specific energy 

consumption profile and not on the energy consumption of the mobile app. With 

the energy consumption profile created for a device, minimal measurements are 

required to be made by the developer. As verified in the prototype, the battery 

life of a mobile device can be conserved by integrating the prototype into an 

app. 

 

The ongoing improvements in the fields of mobile devices and cloud computing 

leads to improvements that can be made in the prototype and framework. The 

following is a list of considerations:  

 The manual creation of the energy consumption profile of a mobile 

device can be automated by creating a test suite that measures the 

energy consumption under different circumstances. 

 The information gathered by the profiler during execution can be used to 

update the existing energy consumption profile. 

 The offloading decision can be expanded to include monetary cost 

instead of just battery life based on user preference. 

 

The list of items above is not an exhaustive list of changes that can be made. 

This list serves to illustrate some of the limitations of the framework on a 

conceptual level that could be improved through future work as they are beyond 

the scope of the objective of this dissertation. The following section concludes 

the dissertation. 

 

10.5. Conclusion 

The chapter has provided a brief overview of the content of this dissertation. 

This research focussed on the creation of the Switch framework that can be 

integrated into any application that uses offloading to conserve battery life by 
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making offloading decisions informed by accurate energy consumption 

estimates. In order to achieve this objective, various topics related to the 

problem domain are explored in this dissertation.  

 

The Switch framework and prototype was developed and tested to demonstrate 

that a component can be created to accurately estimate energy consumption on 

a mobile device. Such estimations can be used to make offloading decisions 

without requiring specialised hardware or in-depth analysis of methods.  

 

To this end, this dissertation concludes that a component can be created that 

can be integrated into any application to conserve the battery life of a mobile 

device by accurately estimating energy consumption and making a decision 

between offloading and local execution. 
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 Real-world energy Appendix A:

consumption data 

 

This appendix contains the data gathered and used in chapter 10. Each table 

contains the results of either uploading or download a file that is 100KB, 1MB or 

10MB in size at different signal strengths over different networks. The different 

networks are 3G, 4G and Wi-Fi. The appendix is divided into 4 sections, namely 

3G, 4G, Wi-Fi, and Computation. 

 

A.1. 3G 

Table A.1 shows the averages of downloading a 100 KB file five times over 3G 

at the listed signal strengths. 

 

Table A.1 Downloading a 100 KB file at differing signal strengths over 3G 

Download 

size (bytes) 

Upload size 

(bytes) 

Length of 

time 

(seconds) 

Signal 

Strength 

(dBm) 

Battery life 

consumed 

(%) 

113586 6336,2 4,5854 -109 0,046 

112755,6 6422 4,0348 -107 0,04 

110777,4 6141,6 3,4922 -105 0,04 

110943,8 6157,2 3,326 -103 0,036 

110953,2 5973,2 3,1232 -101 0,034 

110735,8 2,893 2,9044 -99 0,03 

110735,8 2,893 2,6878 -97 0,03 

108576 3256,2 2,487 -95 0,03 

110767 5866 2,2854 -93 0,03 

111772,2 5408,6 2,0534 -91 0,03 

110798,2 5771,6 1,7 -89 0,03 

110777,4 5633,2 1,4256 -87 0,03 

110839,8 5930 1,381 -85 0,03 

110756,6 5759,6 1,2134 -83 0,028 
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Table A.2 shows the averages of downloading a 1 MB file five times over 3G at 

the listed signal strengths. 

 

Table A.2 Downloading a 1 MB file at differing signal strengths over 3G 

Download 

size (bytes) 

Upload size 

(bytes) 

Length of 

time 

(seconds) 

Signal 

Strength 

(dBm) 

Battery life 

consumed 

(%) 

1151687,2 24341,4 8,621 -109 0,074 

1095458,2 22898,6 8,0312 -107 0,066 

1095075,6 22721,4 7,5674 -105 0,064 

1095109 22339,6 6,6692 -103 0,06 

1094606,8 22359,6 6,2522 -101 0,06 

1094409,4 22563,4 5,8968 -99 0,06 

1095219,8 23494,6 5,6866 -97 0,056 

1094604,2 22615,4 5,475 -95 0,052 

1094085,4 21965,8 5,697 -93 0,052 

1094286,4 22125,2 5,571 -91 0,05 

1094273,4 22166,8 5,4596 -89 0,05 

1094294,8 22321,8 5,2438 -87 0,05 

1094296,4 22718,6 4,6392 -85 0,042 

1094184,4 21763,4 4,3496 -83 0,04 

 

Table A.3 shows the averages of downloading a 10 MB file five times over 3G 

at the listed signal strengths. 

 

Table A.3 Downloading a 10 MB file at differing signal strengths over 3G 

Download 

size (bytes) 

Upload size 

(bytes) 

Length of 

time 

(seconds) 

Signal 

Strength 

(dBm) 

Battery life 

consumed 

(%) 

11259890,4 568355,078 86,4934 -109 0,344 

11251983,2 558212 82,1978 -107 0,2666 

11246931,4 547895,4 78,2712 -105 0,326 

11250887,6 567491,8 74,3442 -103 0,316 

11253099 566594,4 71,549 -101 0,304 
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11254983,8 566118 68,9362 -99 0,3 

11250560,2 556423 66,142 -97 0,29 

11253254,8 564541,8 63,8092 -95 0,282 

11250604,4 574715,8 60,534 -93 0,28 

11249730 528646,8 57,5236 -91 0,276 

11249249,4 571794,8 54,694 -89 0,27 

11247522,8 569023,6 51,8506 -87 0,26 

11246010,2 561508,4 47,5784 -85 0,25 

11247039,8 574509,4 44,4142 -83 0,242 

 

Table A.4 shows the averages of uploading a 100 KB file five times over 3G at 

the listed signal strengths. 

 

Table A.4 Uploading a 100 KB file at differing signal strengths over 3G 

Download 

size (bytes) 

Upload size 

(bytes) 

Length of 

time 

(seconds) 

Signal 

Strength 

(dBm) 

Battery life 

consumed 

(%) 

7146,4 109469,4 5,9658 -109 0,05 

7177,6 109450 5,7558 -107 0,048 

7583,2 109477 5,5452 -105 0,044 

7148,8 109373 5,1242 -103 0,04 

7117,6 109465 4,8738 -101 0,04 

7073,6 109397 4,557 -99 0,03 

7167,2 109450 4,2022 -97 0,03 

7084 109537,8 3,847 -95 0,03 

7136 109438 3,5516 -93 0,03 

7042,4 109442 3,2556 -91 0,03 

7167,2 109450 2,996 -89 0,03 

7042,4 109361 2,7356 -87 0,03 

7032 109363,4 2,4886 -85 0,02 

7312,8 109430,8 2,1944 -83 0,02 

 

Table A.5 shows the averages of uploading a 1 MB file five times over 3G at the 

listed signal strengths. 
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Table A.5 Uploading a 1 MB file at differing signal strengths over 3G 

Download 

size (bytes) 

Upload size 

(bytes) 

Length of 

time 

(seconds) 

Signal 

Strength 

(dBm) 

Battery life 

consumed 

(%) 

26329,2 1104551,4 13,2722 -109 0,09 

26189 1105474,5 12,8525 -107 0,09 

26281 1105535 12,2852 -105 0,09 

25846,6 1105415,4 11,8058 -103 0,09 

25701 1105465,2 11,3168 -101 0,08 

25515,4 1105478 10,8272 -99 0,08 

25701 1105709 10,2844 -97 0,08 

25586,6 1106077,4 9,7414 -95 0,08 

25378,6 1105425 9,1984 -93 0,08 

25317,8 1105427,4 8,655 -91 0,072 

25586,6 1105802,2 8,1992 -89 0,07 

25781,8 1105473,8 7,6514 -87 0,07 

25430,6 1105529,4 7,208 -85 0,06 

25482,6 1105440 6,8298 -83 0,06 

 

Table A.6 shows the averages of uploading a 10 MB file five times over 3G at 

the listed signal strengths. 

 

Table A.6 Uploading a 10 MB file at differing signal strengths over 3G 

Download 

size (bytes) 

Upload size 

(bytes) 

Length of 

time 

(seconds) 

Signal 

Strength 

(dBm) 

Battery life 

consumed 

(%) 

209599,4 10863542,8 87,36 -109 0,342 

206657,8 10772445 83,008 -107 0,336 

210445 10882590,2 79,6002 -105 0,328 

203296 10594173,6 76,0798 -103 0,318 

210189,8 10883938,6 72,5594 -101 0,308 

203017 10571106 69,2838 -99 0,298 

200337,8 10531352,8 66,0078 -97 0,288 
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209763,4 10871322 62,7604 -95 0,28 

207787,4 10752166,4 59,5904 -93 0,276 

203633,8 10612600 56,5906 -91 0,266 

209748,2 10932941,6 53,7952 -89 0,266 

200157,8 10457278,4 50,8444 -87 0,26 

207313,8 10825073,8 47,8932 -85 0,248 

208122,6 10838406 43,9966 -83 0,242 

 

A.2. 4G 

Table A.7 shows the averages of downloading a 100 KB file five times over 4G 

at the listed signal strengths. 

 

Table A.7 Downloading a 100 KB file at differing signal strengths over 4G 

Download 

size (bytes) 

Upload size 

(bytes) 

Length of 

time 

(seconds) 

Signal 

Strength 

(dBm) 

Battery life 

consumed 

(%) 

110798,2 5228,4 0,7498 -117 0,03 

110881,4 5386,8 0,6188 -115 0,03 

110829,4 5548,4 0,5916 -113 0,03 

110943,8 5563,6 0,5684 -111 0,03 

110819 5226 0,532 -109 0,03 

110746,2 5327,6 0,5176 -107 0,03 

110881,4 5236,4 0,5074 -105 0,03 

110829,4 5199,6 0,5036 -103 0,03 

110902,2 5216,4 0,4994 -101 0,022 

110746,2 5130 0,4948 -99 0,02 

110850,2 5542,8 0,4896 -97 0,02 

110767 5054,8 0,4858 -95 0,02 

110798,2 5174 0,4816 -93 0,02 

110683,8 4966 0,4776 -91 0,02 

111709,8 4718,6 0,473 -89 0,02 

110860,6 4832,4 0,4602 -87 0,02 
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Table A.8 shows the averages of downloading a 1 MB file five times over 4G at 

the listed signal strengths. 

 

Table A.8 Downloading a 1 MB file at differing signal strengths over 4G 

Download 

size (bytes) 

Upload size 

(bytes) 

Length of 

time 

(seconds) 

Signal 

Strength 

(dBm) 

Battery life 

consumed 

(%) 

1094986,6 24437,8 6,6614 -117 0,066 

1126085 48722,8 6,4714 -115 0,064 

1097711,2 23280,6 6,2812 -113 0,06 

1125177,4 48812 6,0914 -111 0,06 

1079054,2 23920,2 5,9008 -109 0,06 

1126284,2 50048 5,7606 -107 0,06 

1096759,2 23364,2 5,6196 -105 0,06 

1126322,6 50604,8 5,4908 -103 0,054 

1094458 22163 5,3614 -101 0,05 

1095091,2 22606,2 5,1692 -99 0,05 

1095100,2 22077,8 4,9762 -97 0,05 

1094959,2 22077,8 4,7328 -95 0,05 

1094743,6 22808,2 4,489 -93 0,046 

1094388,4 22225,8 4,2956 -91 0,04 

1094600,4 22481 4,1418 -89 0,04 

1094510 22223,4 3,942 -87 0,04 

 

Table A.9 shows the averages of downloading a 10 MB file five times over 4G 

at the listed signal strengths. 

 

Table A.9 Downloading a 10 MB file at differing signal strengths over 4G 

Download 

size (bytes) 

Upload size 

(bytes) 

Length of 

time 

(seconds) 

Signal 

Strength 

(dBm) 

Battery life 

consumed 

(%) 

11246435,4 521323,2 54,6284 -117 0,34 

11249471,2 502325,8 52,5936 -115 0,326 

11245909 484040,2 50,526 -113 0,324 
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11251990,2 572539 49,4844 -111 0,314 

11248859,6 502855,8 48,442 -109 0,312 

11246244,4 505032,6 47,6622 -107 0,3 

11245313,6 498445,2 46,808 -105 0,3 

11243960,8 487614 45,4728 -103 0,286 

11250818,4 516791,6 44,1776 -101 0,282 

11243416 498219,4 43,241 -99 0,276 

11243953,4 500960,8 42,5732 -97 0,266 

11244812,2 502604,4 41,5138 -95 0,264 

11244354,8 501160,4 40,5716 -93 0,26 

11244090,8 498405,8 39,49868 -91 0,256 

11243377,4 509142,6 38,5354 -89 0,254 

11243379,4 514120,2 37,4826 -87 0,248 

 

Table A.10 shows the averages of uploading a 100 KB file five times over 4G at 

the listed signal strengths. 

 

Table A.10 Uploading a 100 KB file at differing signal strengths over 4G 

Download 

size (bytes) 

Upload size 

(bytes) 

Length of 

time 

(seconds) 

Signal 

Strength 

(dBm) 

Battery life 

consumed 

(%) 

7125,6 109411 4,4554 -117 0,04 

7115,2 109365,8 4,3668 -115 0,04 

7253,6 117616,2 4,2524 -113 0,04 

7175,2 112886 4,1374 -111 0,04 

7229,6 113623,4 4,0092 -109 0,04 

7084 109438 3,8802 -107 0,04 

7042,4 109403,4 3,7588 -105 0,04 

7052,8 109363,4 3,637 -103 0,04 

7042,4 109365,8 3,5302 -101 0,034 

7146,4 109361 3,386 -99 0,03 

7042,4 109353 3,1858 -97 0,03 

7032 109365,8 2,9968 -95 0,03 

7032 109361 2,7682 -93 0,03 
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7032 109361 2,633 -91 0,03 

7032 109365,8 2,549 -89 0,03 

7073,6 109416,4 2,4086 -87 0,03 

 

Table A.11 shows the averages of uploading a 1 MB file five times over 4G at 

the listed signal strengths. 

 

Table A.11 Uploading a 1 MB file at differing signal strengths over 4G 

Download 

size (bytes) 

Upload size 

(bytes) 

Length of 

time 

(seconds) 

Signal 

Strength 

(dBm) 

Battery life 

consumed 

(%) 

25285 1105470 8,8188 -117 0,08 

25285 1105445 8,436 -115 0,07 

25285 1105448 8,255 -113 0,07 

25285 1105416 7,954 -111 0,07 

25285 1105421 7,7924 -109 0,07 

25300,2 1105389 7,6306 -107 0,07 

25295,4 1105389 7,376 -105 0,07 

25295,4 1105445 7,122 -103 0,07 

25285 1105470 6,8072 -101 0,06 

25295,4 1105470 6,6686 -99 0,06 

25285 1105443 6,443 -97 0,06 

25305,8 1105416 6,2772 -95 0,06 

25285 1105416 6,1548 -93 0,06 

25305,8 1105391 6,0652 -91 0,06 

25295,4 1105421 5,9718 -89 0,06 

25287,4 1105445 5,8422 -87 0,06 

 

Table A.12 shows the averages of uploading a 10 MB file five times over 4G at 

the listed signal strengths. 

 

Table A.12 Uploading a 10 MB file at differing signal strengths over 4G 

Download 

size (bytes) 

Upload size 

(bytes) 

Length of 

time 

Signal 

Strength 

Battery life 

consumed 
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(seconds) (dBm) (%) 

201510,6 10471336 59,0594 -117 0,35 

200762,6 10465785 55,4008 -115 0,338 

199177 10364064 52,293 -113 0,326 

199341 10348835 50,4806 -111 0,314 

199472,2 10377540 49,4344 -109 0,31 

203216,2 10564234 48,4624 -107 0,306 

200951,8 10494400 47,5264 -105 0,3 

204889,8 10619118 46,5952 -103 0,298 

200816,2 10529033 45,802 -101 0,29 

204594,6 10645834 44,6222 -99 0,28 

201983,4 10461478 43,5598 -97 0,278 

202041 10510461 42,5236 -95 0,27 

202637,8 10520769 41,6988 -93 0,268 

205294,6 10578951 40,7294 -91 0,26 

202706,6 10435655 39,5752 -89 0,26 

196701 10272467 38,5584 -87 0,256 

 

A.3. Wi-Fi 

Table A.13 shows the averages of downloading a 100 KB file five times over 

Wi-Fi at the listed signal strengths. 

 

Table A.13 Downloading a 100 KB file at differing signal strengths over Wi-Fi 

Download 

size (bytes) 

Upload size 

(bytes) 

Length of 

time 

(seconds) 

Signal 

Strength 

(dBm) 

Battery life 

consumed 

(%) 

112088,4 6767,6 11,5288 -89 0,05 

112114,2 6098,6 9,8606 -87 0,05 

112378,4 6487,2 9,2762 -85 0,05 

110943,2 6512,4 8,6912 -83 0,05 

111027,2 5933,2 8,3962 -81 0,05 

110873 4809,2 8,0908 -79 0,05 

110547,4 4518 7,5672 -77 0,05 
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110821 5304,4 7,0432 -75 0,042 

110740,4 5008,4 6,843 -73 0,04 

110650,6 4666 6,401 -71 0,04 

111214,6 5082,8 6,0798 -69 0,04 

110860,8 5482,8 5,7582 -67 0,04 

111111,6 6245,6 5,1164 -65 0,04 

110645,4 5163,6 4,8404 -63 0,04 

110957,4 5407,6 4,5638 -61 0,038 

110926,2 5482,8 4,2306 -59 0,03 

110853,4 4931,6 3,8972 -57 0,03 

110525,6 4894 3,4706 -55 0,024 

111305,2 5389,6 2,8232 -53 0,02 

111198,6 5547,6 2,4228 -51 0,014 

110600,6 4938,8 1,9942 -49 0,01 

110548,6 5053,2 1,7236 -47 0,01 

110642,2 5060,4 1,4448 -45 0,01 

107544,8 3147,4 1,2764 -43 0,01 

 

Table A.14 shows the averages of downloading a 1 MB file five times over Wi-Fi 

at the listed signal strengths. 

 

 

 

Table A.14 Downloading a 1 MB file at differing signal strengths over Wi-Fi 

Download 

size (bytes) 

Upload size 

(bytes) 

Length of 

time 

(seconds) 

Signal 

Strength 

(dBm) 

Battery life 

consumed 

(%) 

1134633 48723 51,2684 -89 0,132 

1134720,8 48113 48,4296 -87 0,13 

1126345,2 41969,6 45,0336 -85 0,13 

1128914,8 46413,6 42,6316 -83 0,12 

1126351,4 41923 39,6522 -81 0,12 

1130019,8 47146,8 36,6726 -79 0,11 

1125910,6 42125,6 34,495 -77 0,11 
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1128193,2 45880,4 32,317 -75 0,1 

1125894,6 43044,8 30,836 -73 0,1 

1126228,2 46106,4 29,3532 -71 0,1 

1131896,2 45632,2 26,2856 -69 0,09 

1125596,6 43558,4 24,2022 -67 0,08 

1126554,8 45391,2 23,3164 -65 0,076 

1127054,6 43096 20,1876 -63 0,068 

1125668,2 42893,6 18,9346 -61 0,06 

1128451,4 44663,6 17,6772 -59 0,06 

1125975,8 43621,6 15,3774 -57 0,06 

1127161 43484,6 13,6846 -55 0,058 

1125130,6 41281,6 12,313 -53 0,05 

1125779 42752 10,5538 -51 0,05 

1125470,8 41855,2 8,6028 -49 0,05 

1125084,8 40770,4 7,4148 -47 0,042 

1125341,4 41275,2 6,5798 -45 0,04 

1124951,8 40327,2 5,7038 -43 0,04 

 

Table A.15 shows the averages of downloading a 10 MB file five times over Wi-

Fi at the listed signal strengths. 

 

Table A.15 Downloading a 10 MB file at differing signal strengths over Wi-Fi 

Download 

size (bytes) 

Upload size 

(bytes) 

Length of 

time 

(seconds) 

Signal 

Strength 

(dBm) 

Battery life 

consumed 

(%) 

11255460,4 405210,8 84,3942 -89 0,23 

11265216 410017 82,6528 -87 0,22 

11264742,2 422079,8 82,2888 -85 0,22 

11274463,2 408708,6 81,9246 -83 0,22 

11263927,6 414553 81,1524 -81 0,222 

11277097,6 410928,6 80,3798 -79 0,22 

11243476,6 405368,2 79,3584 -77 0,214 

11245876,4 402410 78,0886 -75 0,21 

11244205,6 403266 76,0036 -73 0,202 
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11247193,4 399644,4 73,4834 -71 0,194 

11245444,2 402324,6 72,2574 -69 0,19 

11245071,2 403136,4 70,5538 -67 0,18 

11247066,4 402787,6 69,2806 -65 0,18 

11249186,6 401762,2 67,9108 -63 0,178 

11247341,8 401909,4 66,5866 -61 0,17 

11243962 398658 65,3148 -59 0,17 

11243439,6 400203,4 63,6594 -57 0,16 

11242077,2 398474 60,737 -55 0,16 

11242146,8 395993 58,9942 -53 0,152 

11241255,2 393752,2 57,8156 -51 0,15 

11241640,2 393705,8 56,7202 -49 0,15 

11242702,6 393246,8 55,3794 -47 0,15 

11241172,6 393603,4 53,5682 -45 0,14 

11246843,8 400070,8 51,8166 -43 0,136 

 

Table A.16 shows the averages of uploading a 100 KB file five times over Wi-Fi 

at the listed signal strengths. 

 

 

Table A.16 Uploading a 100 KB file at differing signal strengths over Wi-Fi 

Download 

size (bytes) 

Upload size 

(bytes) 

Length of 

time 

(seconds) 

Signal 

Strength 

(dBm) 

Battery life 

consumed 

(%) 

9188,8 138591,4 9,806 -89 0,02 

8900,8 140516 9,5168 -87 0,02 

8221,2 130624,4 9,2244 -85 0,02 

8297,6 128299,6 8,827 -83 0,02 

8309,6 130089,8 8,6144 -81 0,02 

7468,8 115084 8,4964 -79 0,016 

8092 126867,6 8,3922 -77 0,01 

7740,8 115914,6 8,2896 -75 0,01 

8603,2 133721,8 8,0934 -73 0,01 

8237,6 127772,6 7,9212 -71 0,01 
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8888,8 139886,4 7,8446 -69 0,01 

8914,4 141812,2 7,7512 -67 0,01 

8652,8 134141 7,2574 -65 0,01 

7073,6 109626,2 6,6582 -63 0,01 

7855,2 121336,6 6,1602 -61 0,01 

7973,6 123641 5,913 -59 0,01 

8290,4 126973,8 5,7586 -57 0,01 

7890,4 122464 5,6866 -55 0,01 

7885,6 121600 5,6326 -53 0,01 

7042,4 109361 5,609 -51 0,01 

7817,6 119898,4 5,5792 -49 0,01 

7421,6 115609 5,524 -47 0,01 

7032 109361 5,4656 -45 0,01 

7441,6 115041 5,4002 -43 0,01 
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A.4. Computation 

The results from the experiments when measuring the power consumption of 

the device when it is performing computations is discussed in this section. The 

percentage battery life consumed is compared to the length of time the 

computation lasted. The results shown are the averages of executing the 

experiment 3 times. 

 

Table A.17 Results of computational experiments 

Length of time (seconds) Battery life consumed (%) 

1 0,001333 

5 0,003333 

10 0,007 

15 0,012 

20 0,018 

25 0,023 

30 0,033 

35 0,035 

40 0,039 

45 0,048333 

50 0,052667 

55 0,056 

60 0,064333 

65 0,066 

70 0,075333 

75 0,080333 

80 0,084667 

85 0,089 

90 0,094 
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