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Abstract 10 

There are a high number of COVID-19 cases per capita in the world that goes undetected including clinical 11 
diseases compatible with COVID-19. While the presence of the COVID-19 in untreated drinking water is 12 
possible, it is yet to be detected in the drinking-water supplies. COVID-19 viral fragments have been found in 13 
excrete, this call for wastewater monitoring and analysis (wastewater surveillance) of the potential health risk. 14 
This raises concern to the potential of the SARS-CoV-2 transmission via the water systems. The economic 15 
limits on the medical screening for the SARS-CoV-2 or COVID-19 worldwide are turning to the wastewater-16 
based epidemiology (WBE) as great potential tools for assessing and management of the COVID-19 pandemic. 17 
Surveillance and tracking of the pathogens in the wastewater are key to the early warning system (EWS) and 18 
public health strategy monitoring of the COVID-19. Currently, RT-qPCR assays is been developed for SARS-19 
CoV-2 RNA specimen clinical testing and detection in the water system. Convectional wastewater treatment 20 
methods and disinfection are expected to eradicate the SAR-CoV-2. Chlorine, UV radiation, ozone, chloramine 21 
is been used to inactive and disinfect the water treatment system against the SARS-CoV-2. Water management 22 
and design of the water infrastructure require major changes to accommodate climate change, water cycle, 23 
reimaging of digitalization, infrastructure and privacy protection. The water digital revolution, biosensors and 24 
nanoscale, contact tracing, knowledge management can accelerate with disruption of the COVID-19 outbreak 25 
(water-health nexus). 26 
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1 Introduction 28 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that caused the global pandemic of the 29 
coronavirus (COVID-19) emerged from Wuhan, China and spread globally. The outbreak was declared a public 30 
health emergence on 30th January 2020 by World Health Organization and on 11th February 2020 given a name 31 
of new corona virus (COVID-19) [1]. It is transmitted through respiratory droplets (inhalation of the droplets) 32 
expelled from mouth and noses of the infected person during speaking, coughing, sneezing and contaminated 33 
surfaces. There are a high number of COVID-19 cases per capita in the world that goes undetected including 34 
clinical diseases compatible with COVID-19. Mass testing on its own is not a solution to curbing the spread of 35 
SARS-COV-2 but part of the strategy when combine with immediate isolation, rapid diagnosis and tracking 36 
technology (contact tracking). The cost of the contact tracking, testing and isolation are high in short-term and 37 
long-term leads to disruption of the economic and social cost due to social-distances that affect the 38 
communities, businesses and individuals. The measures are lethal or severe until the time the crisis will be 39 
managed or through the intervention of the pharmaceutical (treatment or vaccination of the COVID-19) is 40 
available. Maintenance of the open economy and society while minimizing the population health crisis is 41 
important [2]. While the presence of the COVID-19 in untreated drinking water is possible, it is yet to be 42 
detected in the drinking-water supplies. COVID-19 is enveloped and thus less stable than the non-enveloped 43 
human enteric virus that is waterborne transmitted. COVID-19 viral fragments have been found in excrete, this 44 
call for wastewater monitoring and analysis (wastewater surveillance) of the potential health risk [3]. Figure 1 45 
outline and highlight the potential of the wastewater surveillance in the monitoring of the COVID-19 in water, 46 
wastewater system and public health [4]. 47 
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Figure 1: Potential of the wastewater surveillance in monitoring for the COVID-19 in water, wastewater 2 
system and public health [4] 3 

The present study combined consideration on monitoring and mitigation, surveillance and tracking, economy, 4 
practicality, data capture and analysis in the water and wastewater surveillance when performing the 5 
population-wide screening for the SARS-CoV-2/COVID-19. 6 

2 Vulnerability to COVID-19 7 

The major concern underlying the potential burden to the COVID-19 in the low- and middle-income countries 8 
(LMICs) are vulnerability due to epidemiological (i.e. fatality rates due to the age, gender and underlying health 9 
conditions), transmission (i.e. hygiene infrastructure, population and housing density, urban mobility and 10 
immigration, unventilated and house confinement, high prices of the sanitizers and masks, shared toilets during 11 
a call of nature and lack of access to water, inadequate waste disposal leading to biohazards risks and social 12 
integration/distancing), high demand for the health system and availability of the intensive care, control 13 
measures of the social protection and economic package [5].  14 

3 Water, Sanitation and Hygiene (WASH) COVID-19 Monitoring and Mitigation 15 

Wastewater is a scarce resource that should be protected and reuse. The water in the sewer system acts as early 16 
warming to the outbreak of a disease in the urban population. COVID-19 pandemic has highlighted the 17 
importance of proper management of water, sanitation and hygiene (WASH) and protection of the human 18 
health [3]. Contaminated wastewater with pathogens and exposure to human beings and animals play a major 19 
role in the spread of the diseases. Surveillance and tracking of the pathogens in the wastewater is key to the 20 
early warning system (EWS) and public health strategy monitoring of the COVID-19 [6]. SARS-CoV-2 21 
genetics matters can be detected in gastro-intestinal waste of a COVID-19 patient and are transmitted through 22 
the faecal-oral route. The virus genetic have been detected in the wastewater treatment system and raising 23 
concern to the potential of the transmission route. The survival rate of the COVID-19 from the infective state 24 
in faecal matter is yet to be determined. According to Pan et al., (2020) [7], digestive systems were conformed 25 
from the patients of the COVID-19. Other symptoms included are respiratory, lack of appetite, diarrhoea, 26 
abdominal pain and vomiting. Convectional wastewater treatment methods and disinfection are expected to 27 
eradicate the SAR-CoV-2 but their high population and under-maintained wastewater treatment plants can 28 
contaminate the surroundings where the SAR-CoV-2 survive up to several days on untreated water and much 29 
longer in a lower temperature region. The prevention of water pollution from the collection, distribution, 30 
consumption is outlined by the World Health Organization (WHO) for the resistance of the COVID-19 [8]. 31 
Figure 2 shows the COVID-19 possibility of contamination in the rural and urban water cycle with the potential 32 
of human exposure to the SARS-CoV-2 [9]. 33 
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Figure 2: COVID-19 possibility of contamination in the rural and urban water cycle with the potential of 2 
human exposure to the SARS-COV-2 [9] 3 

The pathways indicates; (1) spread of the COVID-19 from animal to human being, (2) COVID-19 enters the 4 
wastewater systems using sewage system, (3) quarantine and hospitals centres, (4) contaminated wastewater 5 
flow to the wastewater treatment plant, (5) Mishandling and careless disposal of the biomedical waste 6 
contaminates the water system, (6) Wastewater generated in the public premises, (7) Discharge of the treated 7 
wastewater back to the receiving water, (8) Bypassing of the contaminated untreated wastewater into the water 8 
body, (9) Direct consumption of the contaminated water distribution network by rural communities, (10) 9 
Disinfected and treated of the contaminated wastewater at the WWTPs, (11) Direct consumption of the 10 
contaminated water distribution network by urban communities, (12) Increase in the COVID-19 cases due to 11 
contaminated water system in the urban region, (13) Human exposer to the COVID-19 in-house through 12 
flushing of the toilet and through defective plumbing systems, (14) Run-off water from rain water can 13 
accelerate the COVID-19 cases during major events and lastly (15) COVID-19 spreading through breaking of 14 
the WHO and countries’ social distance rules, quarantine and lack of the proper hygiene. Proper hygiene, 15 
ethical following of the social distance and quarantine measures, mobile or on-site wastewater treatment plants 16 
on the affected areas with the presence of the sufficient chlorination, ozonation or use of UV radiation to 17 
disinfect the water before discharge is an important aspect to eradicating the COVID-19 in the water systems 18 
[9]. Sampling, analysis and interpretation of the data can assist to curb current and future health crisis. KWR 19 
Dutch carried out analysis via Dutch Municipal Health Services (GGD) as an early warning system. The 20 
increase of the COVID-19 RNA concentration in the wastewater system began with the first wave of the patient 21 
hospital admission and is expected to be tracked in the second wave. Figure 3 shows the concentration of the 22 
SAR-CoV-2 RNA in sewage water at Amsterdam, Netherland (March to Aug 2020) [10].   23 
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Figure 3: Concentration of the SAR-COV-2 RNA in sewage water at Amsterdam, Netherland (March to Aug 2 
2020) [10] 3 

Where the red present the RNA genetic particles in the wastewater system, blue present the COVID-19 infected 4 
cases and grey present the number of patients in isolation and hospital. Currently, RT-qPCR assays is been 5 
developed for SARS-CoV-2 RNA specimen clinical testing and detection in the water system. Chlorine, UV 6 
radiation, ozone, chloramine is been used to inactive and disinfect the water treatment system against the 7 
SARS-CoV-2. There is an urgent need for standard methodology/optimized standardized protocols of the 8 
detection and quantification in the wastewater samples [11, 12]. 9 

4 Enveloped and Non-Enveloped Pathogens in the Water System 10 

Wastewater treatment plants are designed to reduce inactive pathogens such as viruses, protozoa, bacteria etc, 11 
that are harmful to human beings. Inadequate and inefficiency treatment plant pose a health hazard to the 12 
receiving waters, irrigation system (agriculture), recreation centres and source of the drinking water. Most virus 13 
in the water system are non-enveloped and consist only of the nucleic acids (RNA or DNA) engulfed in a 14 
capsid protein. An enveloped virus has an outer membrane with lipids and protein, relatively fragile and no 15 
longer infective when destroyed. Envelop virus are much sensitive to heat, acids, pH, disinfectants and 16 
detergents, and thus not able to withstand the stomach acidity medium for a long period. Enveloped viruses are 17 
assumed inactive and absent in the wastewater system. Enveloped viruses are responsible for many high-profile 18 
pandemic outbreaks like Swine Flu, Spanish Flu, SARS-CoV, middle east respiratory syndrome (MERS-CoV), 19 
Ebola and currently, the COVID-19 pandemic. Virus exposure to the UV radiation in form of sunlight or 20 
optimum UV wavelength range of the disinfection of 100-290 nm followed by chlorination before discharge 21 
to the receiving environment assist with denaturing and elimination of the COVID-19 in the water system. 22 
Inadequate treatment is widely presented in the ageing infrastructure of wastewater treatment plants in 23 
developing countries. This raises concern to the potential of the SARS-CoV-2 transmission via the water 24 
systems. Figure 4 virion structure of the SARS-CoV-2 [13].  25 
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Figure 4: Virion structure of the SARS-COV-2 [13] 2 

The coronavirus is enveloped in a protein spherical structure with a diameter of 120 nm. The envelope is a 3 
helical capsid that contains nucleoprotein and ribonucleic acid (RNA) genome. The 25 to 32 kb genome of 4 
COVID-19 is organized in two large frames (ORF1b and ORF1a) coding for the replicase polyprotein followed 5 
by terminal one-third of the genome with region encoding for the structure proteins (membrane, spike, 6 
envelope, and nucleocapsid protein) [1].  7 

According to La Rosa et al., (2020) [1], COVID-19 was detected in hospital water, tap water and domestic 8 
sewage for 14 days at 4 oC and 2 days for 20 oC. The virus is persistence at low temperature and has rapid 9 
inactivation at high temperature that denature the proteins and the activity of the extra-enzymes. COVID-19 is 10 
reported to be persisted in urine for 17 days and stools for 3 days at 20 oC. Chlorination at 0.5 mg/L using 11 
chlorine and 2.19 mg/L using chlorine dioxide inactivate the SARS-CoV-2 in the wastewater system. It was 12 
reported to be inactive at 10 mg/L chlorine with the contact time of 10 min and 20 mg/L with contact time of 13 
1 min [1]. Figure 5 shows the model used for the disinfection of the wastewater in the hospitals’ based liquid 14 
chlorination, chlorine dioxide, ultra-violet, sodium hypochlorite technologies. The choice of the technology 15 
determines the economics of scale, safety precaution, operation management levels, critical skills, 16 
environment, investment and operation cost, and supply chain of the disinfectant [14].  17 
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Figure 5: Model for the disinfection of the wastewater from the hospital [14] 19 

The efficacy of the disinfectant techniques decreases in the order of ozone, chlorine dioxide to chlorine [15].  20 

5 Wastewater Surveillance or Wastewater-Based Epidemiology 21 

The economic limits on the medical screening for the SARS-CoV-2 or COVID-19 worldwide are turning to 22 
the wastewater-based epidemiology (WBE) as great potential tools for assessing and management of the 23 
COVID-19 pandemic [16]. Current studies of the WBE or wastewater surveillance provide population-scale 24 
information for the detection of the hotspot, measure scope of the outbreak, provide stakeholder with decision 25 
platform, understand the impact of the demand in the health sector, track infection and measures and provide 26 
an early warning for re-emergence of the pandemic outbreak. The emerging surveillance tool (WBE) employ 27 
the modelling and computational analysis to examine the economy, feasibility, opportunities, and challenges 28 



of active cases globally and locally based on the community wastewater of asymptomatic and symptomatic 1 
infected cases. The WBE surveillance of the large-scale population is cheap, rapid, with the potential robust 2 
tool of tracking COVID-19 than the clinical screening although it cannot replace the clinical screening. 3 
Significant cost savings are realized on the vulnerable population and enhance economic recovery with the 4 
containment of the COVID-19 in community. Effective use of the WBE requires access to the wastewater 5 
system and mostly relies on the integrated sampling and analysis for the decision-making process of global 6 
health surveillance. The WBE of the reverse transcription-polymerase chain reaction (RT-PCR) analysis is 7 
used to detect genetic materials in the RNA and is considered to be the most reliable means of the COVID-19 8 
diagnosis worldwide. Similar development of the use of the cartridges-based test is effective in the WBE 9 
purposes although with great challenges in the wastewater treatment plants. The cheapest and simplest testing 10 
technology is used of the paper-based rapid test kit to detect the potential of the COVID-19 carriers in the 11 
WWTPs. Cell culture is highly recommended for testing and analysis of the COVID-19 because of concerns 12 
related to the biosafety [13]. The important limitation of the WBE is the inability to identify the specific infected 13 
individual and their specific location [16]. The WBE aid in providing population-wide information and 14 
community health to the analysis of the antimicrobial resistance genes (ARGs) in the influent’s wastewater and 15 
typically through the qPCR technology. The ethics in using WBE is low since no individual data is collected. 16 
However, privacy issues in a particular community should be accorded for potential stigmatisation. The key 17 
challenges that need to be tackled in the WBE surveillance of the water and wastewater concerning the COVID-18 
19 are (i) non-existence biomarkers discovery pipeline for biological and chemical markers, (ii) account for 19 
the temporary population size fluctuations for accurate estimate of the population, (iii) need for the biomarker 20 
extraction technology for the complex wastewater matrix, and lastly (iv) lack of the analytical tool that covers 21 
the sensitive, selective and multi-residual analysis and cost-effective over a wide range of the biomarker group 22 
[17]. 23 

6 Mathematical Modelling of the COVID-19 24 

6.1 SARS-COV-2 load into the Wastewater Treatment Plant 25 

SARS-CoV-2 load into the wastewater treatment plant was estimated by Zhang et al., (2020) [18] using 26 
excretion rates in human stool by the assumption that the faecal load in the range of 100 to 400 g faecal per 27 
day per person and with the faecal specific density of the 1.06 g/ml. The estimation of the COVID-19 in 28 
wastewater can be calculated using Equation 1 [16]. 29 

𝑁(𝑡) = 𝑁𝑜(
1

2
)

𝑡
𝑡1
2                                                                                           (1) 30 

Where N(t) is the quantity remaining of the sample that did not decay after a time, No is the initial excreted 31 
sample discharge into the collecting wastewater treatment system, t is the time elapsed between excretion and 32 
sampling, t ½ is the half-life of the biomarker [5].  33 

6.2 Mass Balance in assessing the number of SAR-CoV-2 in Wastewater 34 

The mass balance was used to estimate the prevalence of the SARS-CoV-2 infection on the total numbers of 35 
the RNA copies in wastewater per day by RT-qPCR. The number of the SARS-CoV-2 copies in the solid stool 36 
and on the infected person is calculated to determine the SARS-CoV-2 RNA in wastewater clinical samples  37 
[19]: 38 

𝑃𝑒𝑟𝑠𝑜𝑛 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝐶𝑂𝑉𝐼𝐷 − 19 =
(

𝑅𝑁𝐴 𝑐𝑜𝑝𝑖𝑒𝑠

𝐿𝑖𝑡𝑟𝑒 𝑜𝑓 𝑊𝑎𝑡𝑒𝑟𝑤𝑎𝑡𝑒𝑟
)×(

𝐿𝑖𝑡𝑟𝑒 𝑜𝑓 𝑊𝑎𝑠𝑡𝑒𝑤𝑎𝑡𝑒𝑟

𝐷𝑎𝑦
)

(
𝐹𝑎𝑒𝑐𝑎𝑙 𝑔

𝑃𝑒𝑟𝑠𝑜𝑛−𝐷𝑎𝑦
)×(

𝑅𝑁𝐴 𝑐𝑜𝑝𝑖𝑒𝑠

𝐹𝑎𝑒𝑐𝑎𝑙 𝑔
)

        (2) 39 

The variability and uncertainty in the independent variables are incorporated using the Monte Carlos 40 
simulation-model. 41 

6.3 Decay rate of the Adjusted Biomarkers 42 

Arrhenius equation was used to calculate the decay rate of the adjusted biomarker with measured actual 43 
temperature of the wastewater as [7, 16]: 44 

𝑅2 = 𝑅1 × 𝑄10
((𝑇2−𝑇1)/10

𝑜𝐶) )
                                                                           (3) 45 



Where R is the initial rate of decay, Q10 is the rate of change for each increment at the temperature of 10oC and 1 
usually range at 2 to 3. The half-life is calculated using Equation 4 [16]:  2 

𝑡1
2
,2
= 𝑡1

2
,1
×

𝐼𝑛 (2)

𝐼𝑛 (2)×𝑄10
((𝑇2−𝑇1)/10

𝑜𝐶) )
                                                               (4) 3 

Where t ½,1 is half-life initial, t ½, 2 is the half-life as spatially and seasonal adjustment to wastewater 4 
temperature, T1 is the initial half-life temperature, T2 is the calculated temperature and dependant on the rate 5 
change of the reaction (range from 2-3). Network analysis using ESRI ArcGIS is used to assign dry-weather 6 
flow loading based on population density and metering programme, and perform an accumulation analysis of 7 
wastewater flow from the households to the pipe network through the seasonally adjusted half-life in hours 8 
[20]. 9 

6.4 Mathematic Modelling of Spreading of the SAR-CoV-2 in a Smart City 10 

The comprehensive of the model for the machine learning solution is represent the transmission dynamics of 11 
the novel COVID-19 in a selected human population of the smart city from the multiple dimensions. The 12 
assumption of the models is; there is contact tracing of all persons, some people are vaccinated, there is 13 
existence of the government and personal quarantines, there is the existence of the government and personal 14 
treatment, the person-to-person contact is addressed, immunity can be lost at any time, the possibility of the re-15 
infection of the recovery person, infection person can die through SAR-CoV-2, the infected person can die 16 
before being admitted in the hospital, undetected infected person exists. The time-change of the population and 17 
infection rates are described by [21]: 18 

The change of the population of the susceptible persons is presented as: 19 

𝑑𝑠

𝑑𝑡
= ˄ − 𝜌𝑠 − (1 − 𝜌)𝑆 − µ𝑆 + 𝑏2𝐺𝑄 + 𝑒𝑆𝑣 + 𝑏1𝑃𝑄 + ɳ2𝑅                       (5) 20 

The change of population of the vaccinated persons is presented as: 21 

𝑑𝑆𝑣

𝑑𝑡
= 𝜌𝑠 − (𝛼2 + 𝑒 + µ)𝑆𝑣                                                                          (6) 22 

The change of population of the unvaccinated persons is presented as: 23 

𝑑𝑆𝑢𝑣

𝑑𝑡
= (1 − 𝜌)𝑆 − (𝛼2 + µ)𝑆𝑢𝑣                                                                   (7) 24 

The number of affected persons in contact with infected persons: 25 

𝑑𝐸

𝑑𝑡
= 𝛼1𝑆𝑢𝑣 + 𝛼2𝑃𝑆𝑄𝑣 + 𝜆𝑆 − (𝑣1 + 𝑣2 + 𝑣3 + µ)𝐸                                  (8) 26 

The population of the person under authority (Government) quarantine: 27 

𝑑𝐺𝑄

𝑑𝑡
= 𝑣1𝐸 − (µ + ℎ1 + 𝑏2)𝐺𝑄                                                                  (9) 28 

The population of the person under personal quarantine: 29 

𝑑𝑃𝑄

𝑑𝑡
= 𝑣3𝐸 − (µ + ℎ2 + 𝑏1)𝑃𝑄                                                                 (10) 30 

The population of infectious persons: 31 

𝑑𝑙

𝑑𝑡
= 𝑣2𝐸 + ℎ1𝐺𝑄 + ℎ2𝑃𝑄 + 𝜎 − (𝑓1 + 𝑓2 + µ + 𝛿)𝑙 + ɳ1𝑅                                                (11) 32 

The population of a person under personal treatment: 33 

𝑑𝑃𝑇

𝑑𝑡
= 𝑓1𝑙 − (𝜏2 + µ + 𝛿2)𝑃𝑇                                                                    (12) 34 

The population of a person under personal treatment: 35 

𝑑𝐺𝑇

𝑑𝑡
= 𝑓2𝑙 − (𝜏1 + µ + 𝛿1)𝐺𝑇                                                                   (13) 36 



The population of a person who recovered: 1 

𝑑𝑅

𝑑𝑡
= 𝜏2𝑃𝑇 + 𝜏1𝐺𝑇 − (ɳ1 + ɳ2 + µ)𝑅                                               (14) 2 

Where; S is the individual susceptible, Sv is the individuals susceptible that are vaccinated, SUV is the individuals 3 
susceptible that are unvaccinated, E is the individuals susceptible that are exposed and in contact with infected 4 
person, GQ is the exposed individual under Government quarantine, PQ is the exposed individual under self-5 
quarantine, l is the infected individual, PT is the infected person under personal treatment, GT is the infected 6 
person under Government treatment, R is the individuals that have recovered, ˄ is the individual that join the 7 
susceptible population, ρ is the rate of the susceptible vaccination, α1 is the rate at which the unvaccinated 8 
individual become infected when in contact with infected person, α1 is the rate at which the vaccinated 9 
individual become infected when in contact with infected person, v1 is the rate at which Government quarantine 10 
individuals that contacted the virus, v2 rate at which individual become infected after been exposed, v3 is the 11 
rate at which individual under personal quarantine that contacted the virus, e is the rate at which vaccinated 12 
person losses immunity, h1 is the rate at which persons under Government quarantine get infected, h2 is the rate 13 
at which persons under self-quarantine get infected, λ is the rate at which susceptible persons contact virus, σ 14 
is the rate at which individual contact the virus through inhalation, f1 is the rate at which infected person goes 15 
for the personal treatment, f2 is the rate at which infected person goes for the Government treatment, τ1 is the 16 
rate individual treated by the Government recover, τ2 is the rate individual under self-treatment recover, δ1 is 17 
the rate of the COVID-19 related death under Government treatment, δ2 is the rate of the COVID-19 related 18 
death under self-treatment, µ is the rate of the natural death, ɳ1 rate of the second infection after recovery and 19 
ɳ2 is the rate at which individual recover and become susceptible [21]. 20 

6.5 Prediction of the COVID-19 using ARIMA model 21 

Automatic regression integrated moving average (ARIMA) models are widely used for the prediction and 22 
forecasting of the epidemic syndrome and are significant in the COVID-19 outbreak. During the COVID-19 23 
pandemic, ARIMA is useful in predicting the prevalence of COVID-19, understanding the trend of the outbreak 24 
and the epidemiological state of the particular region. They are instrumental in modelling temporary 25 
dependency structures in time series and easily explainable to the end-users during decision making. The 26 
ARIMA model is presented in Equation 15 [22]. 27 

𝑌𝑡 = 𝛼 + ɸ1𝑌𝑡−1 + ɸ2𝑌𝑡−2 +⋯+ ɸ𝑝𝑌𝑡−𝑝 + ɛ𝑡 − ɵ1ɛ𝑡−1 − ɵ2ɛ𝑡−2 −⋯− ɵ𝑞ɛ𝑡−𝑞   (15) 28 

Where Yt is the observed cases at time t, p is the order of autoregression, q is the order of the moving average, 29 
Yt-1 to Y1-P linear current value of time series, ɛt-1 to ɛt-q is the previous residual series,  ɛ is the observation of the 30 
current shock at time t, ɵ and ɸ is the moving average and autoregressive parameters respectively and α is the 31 
constant.  32 

6.6 Quantification of the SAR-CoV-2 Infectiousness using contact tracing 33 

Infectiousness (βτ) of the SAR-CoV-2 is describes using a mathematical function. Infectiousness may change 34 
with time τ (days). The decomposed is presented into four sections namely; asymptomatic transmission (RA), 35 
symptomatic transmission (RS), pre-symptomatic transmission (RP), environmental transmission (RE) with the 36 
summation of the four as Ro. Area under the curves indicates the total number of the infection cases [23]: 37 

𝛽𝜏 = 𝑃𝑎𝑥𝑎𝛽𝑠(𝜏)⏟      
𝐴𝑠𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐

+ (1 − 𝑃𝑎)[1 − 𝑠(𝜏)]𝛽𝑠(𝜏)⏟              
𝑃𝑟𝑒−𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐

+ (1 − 𝑃𝑎)𝑠(𝜏)𝛽𝑠(𝜏)⏟            
𝑆𝑦𝑚𝑝𝑜𝑚𝑎𝑡𝑖𝑐

+ ∫ 𝛽𝑠(𝜏 − 1)𝐸(𝑙)𝑑𝑙
𝜏

𝑙=0⏟            
𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙

        (16) 38 

Where βs(τ) is the infectiousness of an individual of either pre-symptomatic or symptomatic at τ age of 39 
infection, Xa is the relative infectiousness of the asymptomatic (central value 0.1), Pa is the proportional 40 
asymptomatic (centra value 0.40), s(τ) is the incubation period of lognormal mean log (central value 1.64) and 41 
lognormal sdlog (central value 0.36), E(l) is the environmental infectiousness (central value 3). 42 

6.7 Cost analysis of the WBE and Clinical Screening 43 

The cost analysis of the WBE and clinical screening of an individual depends on the geospatial regions, safety 44 
requirements, labour cost, existing infrastructure. This is influenced by the relative cost savings that combine 45 
computed WBE and clinical screening as shown in Equation 17 and 18 [16]: 46 

𝐶𝑜𝑠𝑡𝑝,𝑐𝑙𝑖𝑛𝑖𝑐𝑎𝑙 = 𝐶𝑜𝑠𝑡𝑟𝑒𝑎𝑔𝑒𝑛𝑡𝑠 × 𝑃                                                                              (17) 47 



𝐶𝑜𝑠𝑡𝑝,𝑊𝐵𝐸 = 𝐶𝑜𝑠𝑡𝑟𝑒𝑎𝑔𝑒𝑛𝑡𝑠 ×𝑁𝑤𝑤𝑡𝑝                                                                           (18) 1 

Where Costp,clinical is the cost of the total reagents need to test a population of a size P, Costp,WBE is the total cost 2 
of the reagent required in a community screening of the wastewater system of the population P and the N 3 
wastewater treatment plants. The key reagents of the WBE and clinical testing are real-time quantitative reverse 4 
transcription-polymerase chain reaction (QRT PCR) buffer and probes. 5 

The performance of the predictive accuracy of the model selection can be validated using mean absolute error 6 
(MAE), root mean square error (RMSE) and mean absolute percentage error (MAPE).  7 

7 Digital Revolution in Combating COVID-19 in WASH 8 

The growth and advancement of the digital revolution (industry 4.0) including artificial intelligence, 9 
evolutional computational, data science, big data, quantum science, bioinformatics, nanotechnology, internet 10 
of thing (IoT), financial technology and blockchain create opportunities in services delivery of good and 11 
services with better revenue and great opportunity in fighting the COVID-19 crisis. The change in water pattern 12 
has a direct impact on wastewater treatment and collection. The overall decline in water demand is leading to 13 
a decrease in water flow and an increase in wastewater parameters concentration with the potential of the 14 
biosolid deposition. This would result in ineffective and inefficient treatment, development of odour and 15 
corrosion that damage the infrastructures. COVID-19 have raised demand on particular pharmaceutical 16 
products that contain high concentration and thus raise issues with the old age wastewater treatment plants. 17 
SARS-CoV-2 is shed in the faeces of the COVID-19 patients that is detectable in the wastewater treatment 18 
plants. Monitoring wastewater effluent (sewage epidemiology) can be a relevant source and tool of information 19 
to spread and mitigation of the virus (human health monitoring). Water equipped with a digital tool, sensors 20 
and big data analytics have a great potential to become an important source of information that provide real-21 
time data for guideline and policy-making purposes [24]. 22 

Water digitalization can provide techniques and tools that optimise the management and development of the 23 
water system. COVID-19 pandemic has revealed necessary measures to re-think and redesign the potential 24 
future of the pandemic outbreak. Water management and design of the water infrastructure require major 25 
changes to accommodate climate change, water cycle, reimaging of digitalization, infrastructure and privacy 26 
protection. The water digital revolution can accelerate with the consequence of the COVID-19 outbreak. The 27 
response is structured as (i) economic level by the contributor of the sustainable financing of the water utilities 28 
to support resource, asset, and energy management, (ii) technological level by enabling the optimal adjustment 29 
of utility operations and infrastructure. This is achieved by the use of the digital twin that integrate internet of 30 
thing (IoT) and big data analytics and lastly, (iii) water-human data level that increase the confidence of the 31 
general public and warn the decision and policy-makers of the signs of pandemics or general outbreak [24].  32 

Machine learning is a field of science on how the computers learn on data using algorithms that uses the 33 
computer to simulate human learning and allows computers to identify knowledge from real-world and improve 34 
performance. It is embraced with artificial intelligence (AI) to model with self-learning ability that can combat 35 
COVID-19 in real-time. It correlates with pattern recognition, data mining, natural language processing, 36 
medical diagnosis, bioinformatics and video surveillance. Smart city inter-connect urban society and data 37 
collection that brings out the intrinsic and useful insights into the COVID-19 pandemic measures. Novel 38 
mathematical modelling is created to monitor the spread of the COVID-19 in the urban region. This is through 39 
detection, transmission, storage and analysis of the data using the machine learning algorithms. This will assist 40 
in early detection of the COVID-19, prevent the spread, forecast and prediction of the pandemic, patient contact 41 
tracing, diagnosis and monitoring of the patients, patient monitoring, vaccine development and discovery, 42 
diagnose cases and provide a better understanding of the virus in the urban development (smart city/good city 43 
management). Figure 6 shows the framework for the AI (machine learning and deep learning) in fighting the 44 
COVID-19 pandemic [21]. 45 



 1 

Figure 6: Application of artificial intelligence (machine and deep learning) in combatting COVID-19 [21] 2 

The smart city generated data are; (i) Statistical data that include daily statistic of identity, number of COVID-3 
19 positive cases, number of birth and death, recovery cases, COVID-19 active cases; (ii) Epidemiological data 4 
contains clinical test data with different medication, drug trials, non-measurement for the disease tracking, 5 
protein structure prediction, medical imaging for diagnosis, improving viral and testing patient history, 6 
response to the patient on medication and contact tracing; and (iii) Real-time surveillance generated from 7 
cameras (facial recognition) and sensors (e.g. temperature) can detect COVID-19 symptoms and assist prevent 8 
spreading of COVID-19 [21]. 9 

7.1 Predictive Analytics of the COVID-19 10 

Predictive analytics using data techniques (statistical analysis, machine learning, deep learning and predictive 11 
models and algorithms) are a major pillar to predictive and decision-making tool in COVID-19 pandemic. 12 
Prediction models using machine learning and computer vision are enforced for identifying most of the disease 13 
using patient image patients. Machine learning approach of the COVID-19 prediction includes person 14 
infection, positively diagnosed, mortality rate, and contact tracing. Prediction mortality rate using machine 15 
learning algorithms (decision tree, random forest, support vector machines, logistic regression and artificial 16 
neural networks) is been effective. COVID-Net uses convolutional neural network design for identification of 17 
COVID-19 cases using chest X-ray (CXR) images. Modified susceptible exposed infections removed (SEIR) 18 
model and COVID-19 AI-prediction pandemics epidemiological data with population migration data can 19 
effectively predict the size and peaks of the COVID-19. The artificial intelligence-based automated computer 20 
tomography (CT) image analysis using deep learning to detect images, track and quantify and classify can 21 
identify patients with COVID-19. The same concept can be used in the wastewater treatment to detect and 22 
track the COVID-19. Patients information-based algorithms (PIBA) can be used to determined COVID-19 23 
patients mortality rate. Machine learning can learn from the protein and drug structure and predict and 24 
integration and response in the vaccine discovery, predict the signature of vaccine reactogenicity and 25 
immunogenicity. Blockchain technology can be applied in health passport (digital passport) to tract the 26 
COVID-19 in travellers with the provision of the encrypted patient records with high cyber-security [21]. The 27 
challenges of the data science and artificial intelligence (image analysis and processing, textual data mining, 28 
embedded sensing and audio analysis) in the COVID-19 pandemic are limitation of the data, security, ethics 29 
and privacy, need for multi-disciplinary collaboration, data beyond the border, data modalities and lack of 30 
critical skills in the fourth industrial revolution (4IR) [25]. Introduction of the cloud-assisted wastewater 31 
management system (CAWMS) with the IoT, sensors, the android application can be able to handle the 32 
wastewater big data and avail them in real-time [26]. 33 

7.2 Integration of the Smart Water System with Digital Tools 34 

Exploration of the ICT in high-fidelity visualisation data and human interpretation is a powerful approach for 35 
conveying potential hypothesis and exploring correlations. The use of water-smart tools like self-organising 36 
maps (SOM) equipped with data science of unsupervised artificial neural networks (ANNs) is demonstrated in 37 
the water distribution system (WDS), data mining for microbial, and physio-chemical data in the wastewater 38 



treatment plants, clustering of the water quality, asset management, water leakage, hydraulic modelling and 1 
geospatial behaviour. Some of the hydro-informatic tools like mathematical modelling, computational 2 
intelligence, data science (i.e. big data, deep/machine learning, cloud computing, blockchain, IoT, smart 3 
network, knowledge discovery) provides decision-making system that of a major solution to the smart water 4 
network. Figure 7a shows the integration of the smart water system with water digitalization tools [27]. Figure 5 
7b shows the water intelligence monitoring system [28]. 6 
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Figure 7: Integration of the smart water system with water digitalization tools [27] [28]. 9 

Intelligent monitoring system consists of (i) supervisory control and data acquisition (SCADA) system for data 10 
source equipped with programmable logical controller (PLC) and ole for process control (OPC) servers for 11 
data distribution services and communication, (ii) configure and design distribution of the data distribution 12 
services used to transmit real-time data and software data monitoring and transfer, (iii) variable selection based 13 
on historical and input variables that are dependants on the principal component analysis (PCA) algorithms for 14 
training and testing and lastly (iv) integrated online data-driven soft sensor, data acquisition and control system 15 
(DAC) with adjusted parameters by utilization of the historical data to train a fuzzy neural network (FNN) and 16 
adaptive learning rate used for the initialization of the real monitoring models.  17 

7.3 Digital Twins in Disruption of the Water and Wastewater Treatment Technology 18 

The introduction of the SCADA accelerated the water and wastewater utility systems. The on-set of the next 19 
generation flight simulator (digital twins) enables dynamic process simulation, staff training, reduce risks, 20 
optimized operations, visual integration designs, pumping stations, flow operation, SCADA screens, 21 
instrumentation and piping network with a connection of the internet of things (IoT). Digital twin in smart 22 
water and wastewater management is defined as virtual replica system that embodies and simulate multi-23 
physical components, multi-scale in the real system of the wastewater, water, stormwater, rivers with real-time 24 



sensors, historical performance data and deep/machine learning (AI). It has access to the current plant and can 1 
predict the future integration of the parameters in the plant with intelligent functions of model-based systems 2 
[29]. Digital twins form a central repository for information and analysis of the treatment plant through the use 3 
of the operator training, dynamic process modelling, event of the database of flow, predictive analytics, 4 
hydraulic modelling with calibrated data, optimization, machine learning and data analytics and lastly reduce 5 
risk with the improvement of the design and operations of the systems. In the COVID-19 era, digital twin in a 6 
decentralized water and wastewater treatment can simulate the control, hydraulic and water quality with the 7 
provision of the full motion pictures, the interaction of a facility before building. Calibration of the models 8 
enables effective control systems (using IoT) and sensors that are more robust to dynamic process and data 9 
analytics while ensuring high quality treated water for reuse [30]. Figure 8a shows the approach to the water 10 
and wastewater management using a digital twin of the physical replica system. Figure 8b shows the wastewater 11 
multi-layer cyber-physical system (CPS) based on the supervised structure is indicated. The performance 12 
optimization of the plant can be described based on the reactive data analysis that is provided by the sensors 13 
under pre-defined operation at real-time control (RTC) and monitoring. Better optimization of the plant leads 14 
to the increase removal of the current pollutants and emerging pollutants, reduce energy and chemical 15 
consumption, increase capacity and early detection of the emerging pollutant [31]. 16 
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Figure 8: Approach to the water and wastewater management using the digital twin of the physical replica 19 
system [31] [23] 20 

The urban water cycle (UWC) based on the urban drainage system (UDS) and water supply systems (WSS) 21 
equipped with cyber-physical systems (CPS) provides disruptive technology for the efficient and critical 22 
systems. This exploits the framework of the supervisor and control to the computational and control system of 23 
the physical structure, scheduling through strategic computation using PLC, digital twin, of the digital 24 
presentation of the physical plant to obtain hydraulic or quality variables (provide extra soft-sensor data) by 25 
model predictive control (MPC) with virtual simulation tools for collection system (i.e. Infoworks and 26 
SWMM), for drinking water distribution network (i.e. EPANET) for water resource recovery facilities WRRFs 27 
(i.e. Biowin, Simba, Sumo, GPS-X), groundwater and water-related domains (i.e. Simulink-MATLAB, DHI) 28 
evaluation of control, performance and desired accuracy and lastly water users and environment layers that 29 
receive the impact of the control action in the CPS [23, 32]. 30 

7.4 Geo-spatial and Spatial-Statistical Analysis of the COVID-19 Pandemic 31 

Geographical information system (GIS) is a valuable tool for the social mobilizations and community response 32 
that minimizes the regularity of sacrificing the unprotected marginalized population. Understanding the spatial 33 
temporal dynamics of COVID-19 is critical to its mitigation. The diversity of the disease mapping is 34 
categorized in health and social geography, spatial temporally analysis data mining, environmental variables 35 
and web-based mapping. Health geographical highlights the interaction of affected actors, public health and 36 
first respondent to estimate the disease propagation and new outbreaks. Spatial-temporal helps clarify the extent 37 
of the COVID-19 and impact of the pandemic to the planners, policy and decision-makers and community. 38 
Using geospatial big data (i.e. human mobility patterns from mobile phones) can quantify a scale of an event 39 
that facilitates appropriate policy making such as COVID-19 pandemic. Web-based view and mapping have a 40 
very important role in the provision and dissemination of information of the COVID-19. They are effective for 41 



the pandemic spatial representation and evolution of non-specialized and specialized internet users. 1 
Interdisciplinary correlation is required on health policy, health services and controls measures, formulation of 2 
appropriate political and scientific response, mapping and tracking of the human movements. To date, spatial-3 
temporal analysis and disease mapping, environmental variables, social and health geography, data mining and 4 
web-based mapping have been the recurrent topic in the COVID-19 pandemic [33].  5 

8 Biosensors and Nanoscale tools for COVID-19 Pandemics 6 

WASH practitioners and public health stakeholder should adopt bio-sensors as a smart sanitation technology 7 
into their infrastructure and sanitation products to mitigate, detect and monitor the emerging contaminants that 8 
have global health potential and community level (disease surveillance) and personal level (for diagnostics) 9 
[34]. The development of the disruptive and innovative bio-sensor-based nanostructured materials is promising 10 
to the detection of the waterborne pathogens in water samples [35]. The development of the biosensor for 11 
prognosis and early detection of the COVID-19 strains should address the features [36]: 12 

(i) High selectivity and ability to exclusively detect the analytes in the presence of other 13 
contaminates. 14 

(ii) Highly sensitive to affinity, spacing and specificity of the target probes in self-assembled mono-15 
layers or biorecognition elements on the sensor surface. For the COVID-19, the sensor should be 16 
able to detect biomarker at a low concentration and produce easily readable output. Specificity 17 
and sensitivity of the biosensor toward the early detection of the COVID-19 are of the key aspect 18 
in the innovation and disruption of the bio-sensors. 19 

(iii) Quick response time of the diagnosis tool should be rapid and of paramount importance.  20 
(iv) Multiplexity system should be allowed to detect the multiple biomarkers of the COVID-19 with 21 

accurate, quick and early detection of the disease. This can be achieved with physical isolation of 22 
different areas of the sensor surface. 23 

(v) A trade-off of the multi-mode sensors and increasing more than one mode of sensing and physical 24 
dimension and computational time of sensing could provide cross-validation of the sensing results 25 
with accuracy. 26 

(vi) To avoid contamination, single-use (disposable sensors system) of the sensors is needed to avoid 27 
contamination and sensing system. Integrating the sensors with the mobile app provide 28 
advantages of cost-effectiveness and connectivity and periodic data of the centralized health 29 
systems. 30 

(vii) The sensors electrodes should be easy to use and this ensures that a large number of testing kits 31 
are produced for self-testing and preparedness of the self-isolation. 32 

(viii) It is effective to have a low-cost bio-sensors that communities can afford and easily available at 33 
shops selves i.e. disposable electrodes such as paper-based and screen-printed electrodes. Other 34 
biosensors are electronic sensor (field-effect-transistors-(FET), electrochemical detection using 35 
carbon electrodes), optical biosensors using principles of plasmonic such as surface plasmon 36 
sensors (SPR), plasmonic photothermal (PPT), localised surface plasmon resonance (LSPR), 37 
nanoscale direct visualization, characterization and diagnosis of the virus using electron 38 
microscopy (EM), x-ray diffraction (XRD) and atomic force microscopy (AFM). 39 

(ix) The COVID-19 have raised the manufacturing demand of the sensors and thus this call for low 40 
cost, high available sensors that cover total population and geographical areas. The advancement 41 
of 3D printing and machine moulding can help increase the production levels. 42 

(x) Compatibility of a biosensor to the central health systems is of importance along with the 43 
autonomy measurement that collects information in real-time. Improved networked health care 44 
system with the mobile application can provide health care and Government policy-makers with 45 
real-time accurate information and provide a framework of containment and mitigation of the 46 
COVID-19. 47 

9 Digital Contact Tracing for COVID-19 using a Mobile Apps 48 

Contact tracing using mobile app in a novel COVID-19 pandemic is a vital tool in modern society. The tool 49 
assist to track the infected patients and identifying their close contacts. There still exists a huge gap in cyber-50 
security, privacy and ethics when using the tracking app and tracking wastewater surveillance from the source. 51 
Publishing contacts of the infected patients by Government attract snoopers to track and identify the patient 52 



locations. This gives no reasonable privacy-conscious society where app simply broadcasts phone numbers and 1 
name with phones log information. The most reasonable system uses the unique user-ID for each individual 2 
through blockchain technology to broadcast information. Another mechanism used by Singapore is the use of 3 
the broadcast random time-varying tokens as temporary IDs. App administration (Government and private 4 
agency) privacy and protection of the users are of great challenge as well. The absence of the decentralized 5 
peer-to-peer system on information system among app and phone needs protective measures based on the 6 
cryptography and coordinated servers. The use of placing Bluetooth receiver (proximity network) in public 7 
places needs to be improved with the use of the GPS location for contact mapping of the infected patients. 8 
Bluetooth low energy technology can only track over a short distance (few meters). The hybrid system of GPS, 9 
cryptographic app and Bluetooth low energy proximity network with temporary generated ID and PushToken 10 
proves useful to public health decision-makers in modelling disease using contact tracing. The list of logged 11 
ID is encrypted and stored locally on user phones. Using secure log and user location history resolved with 12 
appropriate redactions and safeguards as used in Singapore and Europe. South Korea trading off of the privacy 13 
enhance the privacy of the individual who is trying to see if they are exposed. The use of the cryptographic 14 
protocols with app-based contact tracing (periodic encrypts) assist tracing the patients without compromising 15 
the privacy and ethics of the patients and thus a privacy-friendly tracing approach. Figure 9 shows COVID-19 16 
contact tracing using a mobile app (IOS and Android) with consideration of the privacy and trade-off [23, 37, 17 
38].  18 

 19 

 

 
Figure 9: COVID-19 contact tracing using a mobile app (IOS and Android) with consideration of the privacy 20 

and trade-off [23, 37, 38] 21 

The question to the equality, privacy protection and fairness the digital COVID-19 contact tracing needs an 22 
ethical digital intervention that comes with a price. COVID-19 may be temporary but the risk is permanent 23 
with vulnerable health people records, social interaction and movement. The four ethical intervention and 24 
principles are a necessity, proportionality, scientifically valid and time-bound during the COVID-19 pandemic. 25 
Developers, Government agency, and deployers of the COVID-19 contact tracing app should address the 26 
ethical hypothesis before deploying it to the public [39, 40]. 27 

10 COVID-19 with Robotics 28 

The design and implementation of the of a robot with the control system on the grouping of the fuzzy logic 29 
control (FLC) with sliding mode control and validation in real-time digital simulator Opal-RT give a high 30 
degree of robustness in robotics technology. The use of robots’ systems has been used for social distancing of 31 
the patient and medical personnel’s while providing all the services required by the patient. This assist reduces 32 
the risk of spreading COVID-19. Other robots in the COVID-19 includes the sanitizing drone robots, delivery 33 
drone robots, speci-minder robot for efficient specimen delivery systems, robotic drugs, chatbot, fintech, 34 
hospital blood sample courier robot, helpmate robots, automated guided vehicles [41].  35 



11 COVID-19 Knowledge Management and Building Information Modelling 1 

COVID-19 is a wake-up call cross-boundary and cross-sectoral. Water is identified as a key risk to our society 2 
from the potential source to end-use. It is of importance to the water-health nexus. The resource availability 3 
and contribution to creating green jobs and sustainable growth provide resilience and opportunities in 4 
infrastructure investment, climate change, digitalization and smart-water society, water-driven sustainable 5 
growth and emerging pollutant monitoring, biodiversity, food resilience, sustainable tourism, circular economy 6 
through reuse of water, integrated water efficiency, water cyber-security and cyber terrorism, water risk 7 
management, transport, and trade of energy. The emerging disruption of building information modelling (BIM) 8 
and knowledge management (KM) present an opportunity for the water industry during the COVID-19 and 9 
post COVID-19. This enhances real-time tracking and response of the COVID-19 through the industry supply 10 
chain [42]. The WHO guidelines of COVID-19 on wastewater system is investing on the wastewater 11 
management strategy through economic valuation, working in partnership in providing a sustainable solution, 12 
investment on the decentralized WWTP, share knowledge and raising awareness on the key challenges with 13 
stakeholders, digitalization of the water system, proper monitoring and reporting, efficacy treatment of the 14 
wastewater and reuse and improvement of the working conditio0ns and automation and control of the 15 
wastewater treatment plants [43].  16 

12 Conclusion 17 

The major concern underlying the potential burden to the COVID-19 in the low- and middle-income countries 18 
(LMICs) are vulnerability due to epidemiological, high demand for the health system and availability of the 19 
intensive care, control measures of the social protection and economic package. The WBE surveillance of the 20 
large-scale population is cheap, rapid, with the potential robust tool of tracking COVID-19 than the clinical 21 
screening although it cannot replace the clinical screening. COVID-19 pandemic has highlighted the 22 
importance of proper management of water, sanitation and hygiene (WASH) and protection of human health. 23 
Contaminated wastewater with pathogens and exposure to human beings and animals play a major role in the 24 
spread of the diseases. Surveillance and tracking of the pathogens in the wastewater are key to the early warning 25 
system (EWS) and public health strategy monitoring of the COVID-19. Proper hygiene, ethical following of 26 
the social distance and quarantine measures, mobile or on-site wastewater treatment plants on the affected areas 27 
with the presence of the sufficient chlorination, ozonation or use of UV radiation to disinfect the water before 28 
discharge is an important aspect to eradicating the COVID-19 in the water systems. Currently, RT-qPCR assays 29 
is been developed for SARS-CoV-2 RNA specimen clinical testing and detection in the water system. Chlorine, 30 
UV radiation, ozone, chloramine is been used to inactive and disinfect the water treatment system against the 31 
SARS-CoV-2. Chlorination at 0.5 mg/L using chlorine and 2.19 mg/L using chlorine dioxide inactivate the 32 
SARS-CoV-2 in the wastewater system. It was reported to be inactive at 10 mg/L chlorine with the contact 33 
time of 10 min and 20 mg/L with the contact time of 1 min. The emerging surveillance tool (WBE) employ the 34 
modelling and computational analysis to examine the economy, feasibility, opportunities, and challenges of 35 
active cases globally and locally based on the community wastewater of asymptomatic and symptomatic 36 
infected cases. The WBE surveillance of the large-scale population is cheap, rapid, with the potential robust 37 
tool of tracking COVID-19 than the clinical screening although it cannot replace the clinical screening. The 38 
ethics in using WBE is low since no individual data is collected. 39 

The growth and advancement of the digital revolution (industry 4.0) including artificial intelligence, 40 
evolutional computational, data science, big data, quantum science, bioinformatics, nanotechnology, internet 41 
of thing (IoT), financial technology and blockchain create opportunities in services delivery of good and 42 
services with better revenue and great opportunity in fighting the COVID-19 crisis. Water management and 43 
design of the water infrastructure require major changes to accommodate climate change, water cycle, 44 
reimaging of digitalization, infrastructure and privacy protection. The water digital revolution can accelerate 45 
with the consequence of the COVID-19 outbreak. Predictive analytics using data techniques (statistical 46 
analysis, machine learning, deep learning and predictive models and algorithms) are a major pillar to predictive 47 
and decision-making tool in COVID-19 pandemic. In the COVID-19 era, digital twin in a decentralized water 48 
and wastewater treatment can simulate the control, hydraulic and water quality with a provision of the full 49 
motion pictures and the interaction of a facility before building. Spatial-temporal helps clarify the extent of the 50 
COVID-19 and impact of the pandemic to the planners, policy and decision-makers and community. WASH 51 
practitioners and public health stakeholder should adopt bio-sensors as a smart sanitation technology into their 52 



infrastructure and sanitation products to mitigate, detect and monitor the emerging contaminants that have 1 
global health potential and community level (disease surveillance) and personal level (for diagnostics). Contact 2 
tracing using a mobile app in a novel COVID-19 pandemic is a vital tool in modern society. There still exists 3 
a huge gap in cyber-security, privacy and ethics when using the tracking app and tracking wastewater 4 
surveillance from the source. COVID-19 is a wake-up call cross-boundary and cross-sectoral. It is of 5 
importance to the water-health nexus. 6 
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