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Summary 
 

 

Metabolomics, the youngest sibling in the family of omics fields, has become an indispensable 

tool in studying plant biology. Considering that the metabolome is expectedly found to be 

sensitive to perturbations in both metabolic fluxes and enzyme activity, metabolomics provides 

insights into the physiological state and biological activities of an organism as influenced by 

changes in gene expression, protein function modulation and environmental cues. In plant 

science studies, the coordinated regulatory mechanisms underlying the immune responses of a 

biological system to biotic stresses can therefore be investigated by untargeted metabolomics 

approaches. The use of advanced analytical platforms such as LC-MS in untargeted plant 

metabolomics approaches facilitates a comprehensive measurement of metabolites, spanning 

an array of classes of these small-molecules. Such analyses, complemented with data analysis 

methodologies, thus reveal the molecular dynamics of the plant defence responses as well as 

biomakers associated with resistance state to an environmental stress. The capacity of a plant 

to launch an effective defensive state depends on the ability to perceive the pathogen presence 

(via MAMP perception) and timeous defence response activation. Upon pathogen detection, 

plant hormones such as the salicylates and jasmonates play key roles (working synergistically 

or antagonistically) to activate an array of highly regulated and coordinated defence events, 

involving a reprogramming of the metabolome, reflected through activation and changes in 

defence-related secondary metabolites and precursors for cell wall reinforcement.  

 

Thus, to investigate biochemical processes and molecular mechanisms underlying defence 

responses in Sorghum bicolor (cvs NS 5511 and NS 5655) to the bacterial infection, by the 

pathogen Burkholderia andropogonis, a non-targeted metabolomics study based on LC-MS 

was conducted so as to unravel the metabolic signatures associated with the time-dependent 

and cultivar-specific host responses. The study was designed to comprise two major 

components: (i) sorghum leaves tissues infected with B. andropogonis, and (ii) sorghum cell 

suspension treated with the MAMP, LPS, isolated from the pathogen B. andropogonis (LPSB. 

andr). To carry out the first study, S. bicolor plants at the four-leaf stage were treated with a 

suspension of B. andropogonis, and the infection monitored over a period of nine days (1, 3, 

5, 7 and 9 d.p.i.). In the second study, LPS isolated from B. andropogonis was used to elicit 

https://www.thefreedictionary.com/synergetically
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suspension-cultured cells and designed to monitor metabolic changes over time (0, 12, 18, 24 

and 30 h.p.i.). Metabolites from the two biological systems were extracted with methanol and 

analysed on an UHPLC-QTOF-MS system. Raw data obtained thereof were processed and 

multivariate statistical analyses performed to facilitate the extraction of information from these 

complex data, and the identification of important biomarkers that define the host responses to 

the treatment. Annotation and biological interpretation of chemometrically selected metabolic 

signatures provided insightful description of cellular events occurring in the abovementioned 

interactions, specifically the host responses to the bacterial infection in both cases.  

 

A disease severity-rating index, based on symptom evaluation, marked the onset and 

progression of bacterial infection in S. bicolor plants. The NS 5511 cv displayed delayed signs 

of wilting and lesion progression compared to the NS 5655 cv, indicative of enhanced 

resistance. Metabolomic analyses revealed that B. andropogonis triggered differential 

metabolic changes over time in the two S. bicolor cvs. These alterations could be visually 

assessed and infographically displayed by mass chromatograms. Furthermore, chemometric 

methods, such as principal component analyses (PCA), depicted such metabolic changes 

through sample groupings in PCA scores space: specifically time-related and cultivar-related 

metabolic changes. Metabolic ‘stamps’, explaining these measured and observed changes, span 

a wide range of the metabolome and include phytohormones, fatty acids, flavonoids and 

hydroxycinnamic acids. This metabolic reprogramming characterises the sorghum responses 

to the bacterial infection. Qualitatively, the two cvs responded in a similar manner and 

employed the same class of compounds associated with primary- and mostly secondary 

metabolism. However, NS 5511 accumulated crucial defence-related metabolites earlier and at 

elevated levels compared to NS 5655, explaining thus its resistant phenotype. Furthermore, 

results from the cell suspension study showed that purified LPSB. andr. triggered differential 

changes in the endo- and exometabolomes of S. bicolor cells over time, thus leading to variation 

in primary - and secondary metabolite biosynthesis.  

 

Relative quantification revealed significant accumulation of various metabolites following 

treatment, thus suggesting defence-related roles played by these compounds. Of these classes 

of metabolites, flavonoids (such as apigenin and related glycosides), hydroxycinnamic 

derivatives (such as 4-coumaroylquinic acid, 3-feruloylquinic acid and sinapoyl alcohol) and 

fatty acids (such as the oxylipins, 15-hydroxylinoleic acid and 9,12,13-trihydroxy-10-

octadecenoic acid), demonstrated to be important in the defence arsenal of sorghum plants. 
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Some interesting apigenin glycosides, namely vitexin (and related conjugates) and vicenin (1, 

2 and 3), were identified for the first time in sorghum extracts. The relative levels and 

abundance of these metabolites, detected following infection, suggested their involvement in 

sorghum defence to bacterial infection. In cultured cells, flavonoids, hydroxycinnamic acids 

and fatty acids were also found to be a significant component of the ‘defensome’. The fatty 

acid levels, particularly the oxylipins, dihydroxy-octadecadienoic acid, trihydroxy-

octadecadienoic acid І and trihydroxy-octadecadienoic acid ІІ, were evidently significant. 

Accumulation of phytohormones, which include salicylates and jasmonates, as well as 

hormone-responsive downstream metabolites such as phenylpropanoids, indicated that the 

various metabolic pathways were involved in defence responses. Interestingly, the various 

annotated metabolite classes reflected a significant diversity and extensive adaptive capabilities 

of sorghum in the event of stress. 

 

Thus, the results in the plant leaf tissue and cell culture systems demonstrated metabolic 

reprogramming in S. bicolor plants and cultured cells following infection with B. andropogonis 

and treatment with LPS, respectively. This was marked by the defence arsenal in both systems 

spanning of range of classes of defence-related metabolites, of which accumulation was 

orchestrated by different plant hormones working synergistically or antagonistically to 

establish an enhanced defensive state. The early phenylpropanoid metabolic pathway 

(phenylalanine to hydroxycinnamates) and the late flavonoid pathway were found to be central 

in S. bicolor plant defence against B. andropogonis. In addition, metabolites from branches of 

the later flavonoid pathway such as the apigenin derivatives, vitexin and vicenin, not previously 

identified in sorghum, were demonstrated to be involved in S. bicolor plant defence, as 

highlighted by the multivariate statistical analyses. Based on disease severity rating of the 

cultivars and metabolomic analyses, NS 5511 cv (BT) demonstrated to have an enhanced 

capacity for inducible defence compared to NS 5655 cv (ST). Additionally, the results obtained 

in the cell culture study confirms that LPSB. andr. is perceived by S. bicolor to result in the 

triggering of defence-related metabolic reprogramming in sorghum. These results also revealed 

secretion of defence-related metabolites into the extracellular milieu by S. bicolor cells. The 

results from this study provide insightful biochemical description of sorghum responses to 

bacterial infection. The study contributes thus to ongoing efforts to understand molecular 

mechanisms underlying plant responses to biotic stresses. 
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Chapter 1: General Introduction 
   

 

 1.1. Justification of the study 
 

There is an evident and rapid expansion of the human population, which is estimated to rise to 

10 billion people by the year 2050 from the current 7 billion. The agricultural sector is 

consequently faced with pressure to substantially boost crop production to ensure food security. 

The highly productive agricultural and economically important crop Sorghum bicolor (referred 

to as sorghum hereafter), has a vast potential of contributing significantly to sustaining the 

expanding world population, i.e. providing food security in the future. Sorghum, a dry land 

crop, has the ability to thrive under different environmental conditions, especially harsh 

climates, and has thus been listed amongst the most productive agricultural crops. This crop is, 

however, greatly challenged by pathogen (biotic stressor) attack, which has led to the decrease 

in sorghum production over the past years. Due to the devastating crop/yield losses caused by 

pathogen attack, such stressors have been itemised as a prominent problem in crop production 

globally. In this view, there is a pressing need to reduce the use of chemical pesticides when 

dealing with pathogen challenge in crop production – because of the detrimental effects on the 

environment. Thus, improved and sustainable means to overcome such challenges, enhance 

crop resistance and increase crop/sorghum production are required. An understanding of the 

molecular mechanisms underlying sorghum–pathogen interactions will therefore be crucial in 

providing insights and useful knowledge in developing crop protection strategies through the 

exploitation of the plant’s natural defence mechanisms.  

 

1.2. General introduction to the study 
 

Sorghum is a multipurpose cereal crop, and is also more cost-effective to produce relative to 

other cereals. This is owing to the crop’s ability to perform better under environmental stresses, 

ultimately providing substantial yields (Awika & Rooney, 2004; Dicko et al., 2006; Poloni & 

Schirawski, 2014). Sorghum ranks as the fifth most important world cereal, exceeded only by 

wheat, rice, corn and barley (Ritter et al., 2007; Paterson, 2008; Dube et al., 2010; Mwadalu & 

Mwangi, 2013; Amelework et al., 2016); and is the second most important cereal crop in semi-

arid tropics (Amelework et al., 2015). Moreover, the crop is amongst the most productive 
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agricultural crops, making it a principal (staple) source of food for millions of people in over 

30 countries globally (Dube et al., 2010), and with a record of around 300 million people 

sustained in Sub-Saharan Africa (Amelework et al., 2015, 2016). Other uses of sorghum 

include animal feed (primarily in developed countries), and energy (fuel; ethanol) -, alcoholic 

beverages -, consumable oils - and fertiliser production, amongst others (Owuama, 1999; 

Tuinstra, 2008; Guo et al., 2011; Tari et al., 2012;  Poloni & Schirawski, 2014). 

 

Regions other than Africa also principally relying on sorghum  include Central America, some 

parts of Asia, and the Middle East (Dicko et al., 2006; Taylor et al., 2006; Ritter et al., 2007; 

Tuinstra, 2008; Tari et al., 2012). Thus, a major portion of the global food supply is provided 

by cereal crops such as sorghum (Du Fall & Solomon, 2011; Balmer et al., 2013). More than 

60 million tonnes of sorghum yield are produced annually on a global scale (Taylor, 2003; 

Njiru, 2010), with the United States, Mexico, Nigeria, Sudan and India being the top 5 global 

producers (listed in order from 1 to 5) in 2016 (http://www.sorghumafrica.com/news).  

 

Furthermore, sorghum has various health benefits which have led to its recently gained 

attention at different levels and sectors. The health benefits arise from the crop’s naturally rich 

and diverse phytochemical composition, nutritionally vital proteins and micronutrients 

amongst other bioactive compounds (Awika & Rooney, 2004; Belton & Taylor, 2004; Taylor 

et al., 2006). Some of the reported beneficial phytochemicals include phenolic acids and 

anthocyanins, exhibiting high antioxidant activity towards prevention or reduction of oxidative 

stress, thus subsequently reducing the risk of developing chronic diseases such as diabetes and 

certain types of cancer, respectively (Awika & Rooney, 2004; Awika, 2011; Stefoska-Needham 

et al., 2015; Kang et al., 2016). Sorghum phytosterols and policosanols have also been reported 

to have cholesterol lowering properties and, as such, play a role in reducing cardiovascular 

disease risk. Health-promoting properties of sorghum have been clearly summarised by Taylor 

et al. (2014). In addition, this crop has also become very important for the food industry due to 

its  gluten-free attribute and thus has captured attention of scientists and the public for use as 

an alternative food crop for coeliac disease-suffering - and gluten-intolerant individuals (Taylor 

et al., 2014; Stefoska-Needham et al., 2015; Mathur et al., 2017). 

 

Thus, sorghum is proving to be important in providing food security and its nutritionally rich 

phytochemicals are important for communities at health risks (Taylor et al., 2014). However, 

sorghum is attacked by a wide range of pathogens affecting its production (Poloni & 

http://www.sorghumafrica.com/news
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Schirawski, 2014). Pathogen attack on crops is a major agro-economical concern due to the 

dramatic yield-losses that arise therefrom (Du Fall & Solomon, 2011; Ahuja et al., 2012; 

Balmer et al., 2013; Ranf et al., 2015). In particular, the bacterial pathogen Burkholderia 

andropogonis causes bacterial leaf stripe, which is one of the three major bacterial diseases 

affecting sorghum (Navi et al., 2002; Paganin et al., 2011).  

 

Naturally, for the defence against biotic stress, plants as sessile organisms, rely on 

evolutionarily dynamic innate immunity involving constitutive and inducible defence 

mechanisms to eliminate/limit such pathogen invasions (Anjum et al., 2013; Meyer et al., 

2015). The recognition of conserved features known as microbe- or pathogen-associated 

molecular patterns (MAMPs) on the pathogen by plant receptors activates signalling cascades. 

This leads to defence-related cellular and molecular events such as  the production of reactive 

oxygen species (ROS) (Du Fall & Solomon, 2011; Atkinson & Urwin, 2012), expression of 

defence-related genes (Klemptner et al., 2014), colonised tissue lignification (Anjum et al., 

2013; Poloni & Schirawski, 2014) and anti-microbial compounds production (Meyer et al., 

2015). Thus, there is enhancement of physical, enzymatic, and chemical defences. Chemical 

defences (of particular interest in this metabolomic study) – forming part of the plant’s 

important defence repertoire – include defence-related secondary metabolites  (Zvereva & 

Pooggin, 2012; Poloni & Schirawski, 2014; Andolfo & Ercolano, 2015; Gao et al., 2015). The 

outcome of these defence responses is greatly influenced by  three factors i.e. ability of a plant 

to perceive the pathogen presence (MAMP perception),  defence response activation and the 

pathogen’s ability to suppress the immune system of the plant (Pieterse et al., 2009; Pritchard 

& Birch, 2011). 

 

Metabolomics, the qualitative and quantitative analysis of small molecules (the metabolome) 

in a biological system is an indispensable tool in studying biological systems (Goodacre et al., 

2004; Bino et al., 2004; Hall, 2006; Misra et al., 2017). As  the metabolome is a representation 

of the definitive cellular phenotype influenced by gene expression perturbations, protein 

function modulation and environmental cues, a metabolomics approach (recent  ‘-omics’ 

approach)  can give insights into the physiological state and biological activities of an organism 

(Goodacre et al., 2004; Verpoorte et al., 2008; Allwood et al., 2011; Tugizimana et al., 2013). 

Hence, this omics approach can be used to assess the cellular changes in plants induced by 

exogenous factors, for example, biotic stress such as pathogen attack – with the metabolic 

changes best reflecting the cellular events occurring as a result of interactions between the plant 
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and pathogen (Bhalla et al., 2005; Hall, 2006; Allwood et al., 2008; Hall et al., 2008; Misra et 

al., 2017). Furthermore, metabolomics through metabolic profiling is a useful approach in 

determining key infection, resistance and plant response biomarkers in plant–pathogen studies 

as well as in revealing novel pathways involved in stress responses (Cuperlovic-Culf et al., 

2016; Kumari & Parida, 2018).  

 

The current study thus focuses on understanding the molecular mechanisms involved in S. 

bicolor–B. andropogonis interactions, employing a metabolomics approach. Two cultivars of 

sorghum, differing in disease susceptibility/resistance, were used and the metabolic changes 

were monitored over time following infection treatment of 4-week old sorghum plants with B. 

andropogonis. To the best of our knowledge, no studies to date have reported on the metabolic 

reprogramming occurring in sorghum following B. andropogonis bacterial infection.  

 

 1.3. Hypothesis 
 

The metabolome of sorghum cultivars differing in disease susceptibility/resistance following 

B. andropogonis infection results in distinguishable metabolite fluctuations which can be 

investigated by liquid chromatography and mass spectrometry (LC-MS) using a non-targeted 

metabolomics approach. 

 

To address this hypothesis the following aims and objectives were formulated. 

 

 1.4. Aim 
 

 To investigate the metabolic changes in S. bicolor cultivars (NS 5511 and NS 5655) 

following infection by the bacterial pathogen, B. andropogonis, using a non-targeted 

metabolomics approach.  

 

 To investigate LPS isolated and purified from B. andropogonis (a microbe/pathogen 

associated molecular pattern ‒ MAMP) as one of the instrumental factors triggering 

metabolomic reprograming in sorghum. 
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1.5. Objectives 
 

 Infection of sorghum cultivars differing in disease susceptibility with B. 

andropogonis and harvesting leaf tissue at specific time intervals following 

challenge. 

 Isolation and purification of lipopolysaccharides (LPS, a surface-located MAMP) 

from B. andropogonis.  

 Elicitation of sorghum cell suspensions with purified LPS. 

 Extraction of metabolites from treated and non-treated plants as well as cultured 

suspension-grown cells. 

 Analysis of the extracted metabolites on a liquid chromatography coupled to mass 

spectrometry (LC-MS) platform. 

 Chemometric analyses of the data and annotation of the significant biomarkers 

(metabolites) synthesised in sorghum plants in response to bacterial infection and 

in sorghum cells in response to LPS elicitation. 

 Comparison of the induced defence responses in differentiated leaf tissue and 

undifferentiated cells in culture. 

 Biological interpretation of the acquired results (linking the results to the biological 

question). 
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Chapter 2: Literature Overview 
 

2.1. Sorghum plant – a food crop: an overview 
 

Sorghum is a self-pollinating monocotyledonous cereal crop (Paterson, 2008; Hartz et al., 

2009; Stefoska-Needham et al., 2015) with a small diploid genome size is ~730 Mbp (mega 

base pairs, with haploid chromosome number of 10) (Swigoňová et al., 2004; Kim et al., 2005; 

Paterson, 2008; Paterson et al., 2009). The sorghum plant is a the tropical crop native to Africa 

(Tari et al., 2012) and belongs to the family of Poaceae (Gramineae), tribe of Andropogoneae 

and genus Sorghum in which both cultivated and wild species exist. In this genus, Sorghum 

bicolor (L.) Moench is the species that is principally cultivated; hence, the name sorghum is 

generally used to refer to Sorghum bicolor (the same is thus used throughout the Chapters in 

this dissertation) (Owuama, 1999; Dicko et al., 2006; Ritter et al., 2007; Tari et al., 2012). 

Intriguing  qualities of the cereal crop making it of particular interest and value include drought 

tolerance (Liu et al., 2010), the ability to withstand  harsh climates  (e.g. high temperatures)  

and waterlogging periods (Lara & Andreo, 2011; Tari et al., 2012; Muui et al, 2013; Mwadalu 

& Mwangi, 2013), the crop’s naturally rich and diverse phytochemical composition (Awika, 

2011; Kang et al., 2016) as well as the nutritional potential (Taylor et al., 2014).  

  

The continuous increase in the human population recorded annually, imposes pressure on 

agricultural crop production systems. Sorghum production, on the other hand, has great 

potential of providing food security in the future because of its adaptation to various 

environmental conditions. However, in the past 30 years significant decline in sorghum 

production has been witnessed (Paterson, 2008; Taylor et al., 2014; Wise, 2014). This is due to 

challenges imposed by abiotic and biotic stresses – like all other plants in nature (Du Fall & 

Solomon, 2011; Denancé et al., 2013), which will be discussed in section 2.1.1. The severity 

of some of the factors on sorghum production, however, may vary with the plant’s growth stage 

and with the region of sorghum cultivation (Rao, 2004; du Plessis, 2008;  Amelework et al., 

2016; Knott et al., 2016). 
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2.1.1. Stress factors negatively acting on sorghum production 
 

 Both abiotic and biotic stresses have deleterious effects on sorghum production (du Plessis, 

2008; Hartz et al., 2009; Tari et al., 2012; Ciampitti et al., 2014). However, focus of the current 

study is on biotic factors. The latter, including weeds, pests (herbivores) and pathogens 

negatively affect sorghum production, sometimes to alarming extents (Kochenower et al., 

2010; Guo et al., 2011; Ciampitti et al., 2014; Knott et al., 2016). Viral, bacterial or fungal 

pathogens cause various diseases which, in turn, affect the production of sorghum – leading to 

poor yield quality and quantity (economic losses) (Kosambo-ayoo et al., 2011; Poloni & 

Schirawski, 2014). Of these, pathogen attack is one of the leading stressors greatly impacting 

on sorghum production globally.  A summary of some bacterial and fungal diseases affecting 

sorghum production is listed in Table 2.1. There are extensive studies on sorghum–fungal 

pathogen interactions and disease that arise therefrom. However, reports on sorghum–bacterial 

pathogen interactions and bacterial diseases affecting sorghum are limited; hence, there is a 

poor understanding on the aetiology and epidemiology of these diseases (Claflin et al., 1992; 

Little et al., 2012). Thus, the current study intends to expand on the current knowledge 

regarding sorghum–bacterial pathogen interactions and sorghum bacterial diseases.  

 

Understanding the molecular mechanisms underlying sorghum–bacterial pathogen interactions 

is imperatively essential, as it would provide insights and useful knowledge in developing 

strategies to aid sorghum plants to adapt and defend against continuously evolving bacterial 

pathogens (Andolfo & Ercolano, 2015). Some studies have reported that sorghum–bacterial 

pathogen interactions entails the colonisation of parenchymatous plant tissue (Bagsic et al., 

1995) and that apigeninidin, one of the 3-deoxyanthocyanidin phytoalexins (defence secondary 

metabolites) can inhibit bacterial growth. This compound, known to inhibit fungal growth, is 

thus not pathogen specific (Poloni & Schirawski, 2014). Although such studies have provided 

substantial knowledge and advanced our understanding of defence responses arising from 

sorghum–bacterial pathogen interactions, such reports are just the tip of an iceberg. 

Comprehensive functional and mechanistic descriptions of molecular communication and 

metabolic regulation that govern sorghum–bacterial pathogen interactions, are still limited. 

Thus, the current study is an untargeted metabolomics approach to uncover the molecular 

signatures that define biochemical processes involved in sorghum responses to bacterial 

infection by the pathogen Burkholderia andropogonis.  
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Table 2.1: A summary of the common bacterial and fungal diseases affecting Sorghum bicolor. 

 

Disease Causal agent Pathogen 

class 

Symptoms/ characteristics Source 

Bacterial leaf 

stripe 

Burkholderia andropogonis Bacteria Red, tan, yellow or purple, narrow elongated linear lesions 

(lesion colour depends on the response and/ or genotype of 

affected plant). 

Akhtar, 1985; Claflin et al., 1992; 

Navi et al., 2002; Ramundo & 

Claflin, 2005; Knott et al., 2016 

 

Bacterial leaf 

streak 

Xanthomonas campestris pv.  

holcicola 

Bacteria Short red-brown streaks that later elongate developing long tan 

centres with red narrow margins. 

Claflin et al., 1992; Navi et al., 

2002; Knott et al., 2016 

 

Bacterial leaf 

spot 

Pseudomonas syringae 

 

Bacteria Small tan spots encircled by dark margins. Claflin et al., 1992; Navi et al., 

2002; TeBeest et al., 2004; Knott et 

al., 2016 

Anthracnose Colletotrichum sublineolum Fungi Coalescent elongated tan to red lesions. Acervuli at the centre of 

lesion as the fungus sporulates (symptoms varying depending on 

the host, pathogen and environmental interactions). 

 

Perfect et al., 1999; Marley et al., 

2001; TeBeest et al., 2004; 

Ibraheem et al., 2010; Liu et al., 

2010; Were & Ochuodho, 2012 

Leaf blight Exserohilum turcicum Fungi Start as small red-tan spots which can develop into grey centred 

long, elliptical lesions bordered with tan to red margins. 

(colour dependent on cultivar) 

 

TeBeest et al., 2004; Knott et al., 

2016 

 

Charcoal rot Macrophomina phaseolina Fungi Lodging of the affected plant with parched and stringy zones 

present on the stem, close to the bend together with black 

sclerotium appearances. 

 

Claflin et al., 1992; TeBeest et al., 

2004; Knott et al., 2016 

 

 

Rust Puccinia purpurea Fungi Spots, purple or red appearing on upper and lower leaf surfaces 

which later develop into brown- dark red uredinia in susceptible 

cultivars (uredinia is parallel to leaf veins). 

 

Thakur et al., 2007; Knott et al., 

2016 

Downy 

Mildew 

Perono-sclerospora sorghi Fungi Infected plants exhibit chlorotic and stunted appearances with 

green and white stripes developing on emerging leaves. White 

and downy growth of fungal spores on leaf surface. Leaves 

eventually shred. 

Craig & Odvody, 1992; Thakur et 

al., 2007; Kochenower et al., 2010; 

Ciampitti et al., 2014 
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2.2. Burkholderia andropogonis – causal agent of one of the major 

sorghum bacterial diseases 
 

The genus Burkholderia is comprised of many species that occupy diverse ecological niches, 

playing various roles (Stoyanova et al., 2007; Bournaud et al., 2013; Estrada-De Los Santos et 

al., 2013; Palleroni, 2015). Thus far, more than 95 species have been identified to fall under 

this genus (Lopes-Santos et al., 2017). The first Burkholderia species were identified in 1942 

by Walter Burkholder (Compant et al., 2008). Eventually the genus Burkholderia (named after 

W. Burkholder) was then established by Yabuuchi and colleagues in 1992 for the specific 

reason of accommodating seven species that belonged to group II of Pseudomonas rRNA. 

Later, additions were made to the genus to include more species (Yabuuchi et al., 1992; 

Palleroni, 2015; Eberl & Vandamme, 2016; Choma et al., 2017). Members of this genus are β-

proteobacteria known to affect humans, animals as well as plants (Paganin et al., 2011; 

Bournaud et al., 2013). Plant-associated Burkholderia species are either pathogenic or non-

pathogenic (beneficial or neutral) to the host plants. Phytopathogenic Burkholderia species are 

causative agents of various plant diseases and these include B. andropogonis, B. cepacia, B. 

glumae, B. caryophylli, B. plantarii and B. gladioli to name but a few. Of these pathogenic 

species B. andropogonis is of interest in this study (Estrada-De Los Santos et al., 2001, 2013; 

Compant et al., 2008; Paganin et al., 2011; Eberl & Vandamme, 2016).  

 

B. andropogonis, the causal agent of sorghum leaf stripe disease (Ramundo & Claflin, 2005; 

Paganin et al., 2011; Palleroni, 2015), was first defined as an important pathogen for the disease 

by Smith in 1911 (Coenye et al., 2001; Duan et al., 2009; Lopes-Santos et al., 2015). This 

bacterial pathogen, formerly known as Pseudomonas andropogonis, was reclassified to the 

genus Burkholderia by Gillis et al. (1995), following DNA-rRNA hybridisation studies (Gillis 

et al. 1995; Coenye et al., 2001; Duan et al., 2009; Lopes-Santos et al., 2015). Also, following 

chemotaxonomic, phenotypic and genotypic confirmation studies, Pseudomonas woodsii, 

which was also previously regarded as synonym for B. andropogonis, was concluded to be the 

same species as B. andropogonis (Gillis et al., 1995; Coenye et al., 2001; Duan et al., 2009). 

This pathogen is a Gram-negative, non-spore forming, aerobic, soil bacterium of about 0.5 × 

1.5 µm in size, lacks fimbriae, slim rod shaped and a single polar sheathed flagellum per cell 

that enables mobility (Figure 2.1). In addition, B. andropogonis produces rhizobitoxine which 

can cause foliar chlorosis in host plants (Claflin et al., 1992; Bagsic et al., 1995; Cother et al., 

2004; Lopes-Santos et al., 2015; Palleroni, 2015). The production of rhizobitoxine and single 
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polar flagellum are distinctive features of the pathogen (Lopes-Santos et al., 2015). B. 

andropogonis species have a diverse and extensive geographical dispersion, and host range 

(Bagsic et al., 1995; Duan et al., 2009; Lopes-Santos et al., 2015). 

 

 

 

 

Figure 2.1: A representation of Burkholderia andropogonis morphology. The Gram-negative bacterium is slim 

and rod shaped, and has a polar sheathed flagellum attached. The flagellum enables bacterial mobility. Only one 

flagellum is attached per each bacterial cell. Approximate size of the bacterial cell is 0.5 × 1.5 µm. No fimbriae 

and prosthecae production associated to the bacterium has been recorded (taken from Palleroni, 2015). 

 

 

2.2.1. Bacterial leaf stripe symptoms 

 

Bacterial leaf stripe is amongst the three major bacterial diseases of economic importance 

affecting sorghum; the other two diseases being bacterial streak (Xanthomonas campestris pv 

holcicola) and bacterial spot (Pseudomonas syringae) (Claflin et al., 1992; Navi et al., 2002). 

Symptoms of bacterial leaf stripe occur primarily on leaves; these include linear lesions red, 

yellow, tan or purple in colour (Figure 2.2) running along the veins due to invasion of the leaf 

tissue. The lesion colour typically depends on the affected plant’s response or colour (Claflin 

et al., 1992; Ramundo & Claflin, 2005) and the shape of lesions is usually narrow and 

elongated, appearing first on lower leaves (Knott et al., 2007; Cunfer, 2015). In addition, 

bacterial cell exudates can also be noticed on the underside of the infected leaves (Claflin et 

al., 1992). According to Bagsic et al. (1995), the leaf stripes, streaks or spots that appear on 

host plants result from the invasion of parenchymatous tissues by the pathogen.  

 

Generally, bacterial pathogens gain entry into a host plant through natural openings (e.g. 

stomata), wounds, and abrasions or with the aid of feeding insects (Vidaver & Lambrecht, 

2004). It can thus, be suggested that the infection process by B. andropogonis in an unwounded 
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plant likely begins when the pathogen gains entry by swimming through the stomata (since 

both adaxial and abaxial leaf surfaces of sorghum have stomata) with the aid of its flagellum 

(Taylor, 2003; Mwadalu & Mwangi, 2013; Palleroni, 2015). However, the mechanism by 

which the lesions develop on sorghum hosts in response to this invasion has not been detailed, 

to this date (if it is as a result of accumulation of defence-related compounds or death of the 

infected cells or other events). Other parts (secondary parts) of the plant affected by B. 

andropogonis are stems, flower buds, calyxes (Bagsic et al., 1995), peduncle, stalk interior and 

seeds (Claflin et al., 1992). Duan et al. (2009) reported that infection of host plants by B. 

andropogonis also induces plant tissue chlorosis or necrosis via the production of non-host-

specific toxins. It is noteworthy that the symptoms of bacterial leaf stripe often resemble 

bacterial streak symptoms and similarities between these and those of numerous fungal 

diseases can also be noticed and, thus, should not be mistaken for each other (Claflin et al., 

1992). 

 

 
 

Figure 2.2: Bacterial leaf stripe symptoms noticed on field sorghum crops. The colour of the lesions depends 

on the reaction of the host plant toward the bacterial infection, with colours ranging from red, yellow, tan or purple 

(as seen in A, B and C). Bacterial stripe symptoms are mostly dominant on the leaves but also occur on other parts 

of the plant (taken from Williams et al., 1978). 

 

The use of chemicals such as bactericides and fungicides to protect crops against pathogen 

attack is not only toxic to the environment and human health (as some of these chemicals are 

not biodegradable) but is also expensive. For these reasons, alternative ways to eradicate 
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pathogens are currently being investigated (Muriithi & Claflin, 1997; Aktar et al., 2009; 

Mhlongo, 2015). Enhancement/manipulation of plants’ natural defence mechanisms such as 

enhanced production of defence-related secondary metabolites, as an alternative approach to 

fight pathogen attack, has shown to be functional in increasing host resistance (Morrissey & 

Osbourn, 1999; Hernández et al., 2009; Jeet et al., 2014; Ibraheem et al., 2015; Meyer et al., 

2015). Thus, the present study, contributing to this scientific endeavour, intends to profile 

differential defence-related metabolites deployed by sorghum in response to the bacterial 

pathogen attack. 

 

2.3. An overview of plant defence mechanisms 
 

2.3.1. Innate immune response in plants – a general description  
 

Plants are continuously exposed to an array of pathogens which can either be host specific or 

can affect a wide range of hosts. These pathogens employ different lifestyles, e.g. biotrophic, 

necrotrophic or hemibiotrophic (Niks & Marcel, 2009; Balmer et al., 2013; Andolfo & 

Ercolano, 2015; Bigeard et al., 2015; Meyer et al., 2015) and, as such, knowledge on the nature 

of the interaction between the host and the pathogen facilitates in understanding the defence 

responses employed by the plant. In biotrophic interactions, the pathogen poses less harm and 

extracts nutrients for survival, without killing its host (Andolfo & Ercolano, 2015; Gao et al., 

2015; Spanu & Panstruga, 2017). On the other hand, in necrotrophic interactions the pathogen 

destroys its host through production of  toxins and cell wall-degrading enzymes, and eventually 

feeds on nutrients released by dead host cells (Mengiste, 2012; Andolfo & Ercolano, 2015; 

Shigenaga & Argueso, 2016). In cases where the pathogen adopts both lifestyles, starting as a 

biotroph and later switching to necrotrophy, this is referred to as a hemibiotrophic interaction 

(Mengiste, 2012; Spanu & Panstruga, 2017).  

 

As immobile organisms, lacking a circulatory system and specialised immune cells to protect 

themselves, plants employ several layers  of defence mechanisms (preformed and inducible) to 

alleviate the potential damage by pathogens (Oostendorp et al., 2001; Cheynier et al., 2013; 

Andolfo & Ercolano, 2015; Gao et al., 2015; Meyer et al., 2015). Preformed defences provide 

physical and chemical barriers that prevent or minimise the pathogen invasion (Yang et al., 

1997; Mithöfer & Boland, 2012). For instance, physical barriers, such as rigid cell walls, waxes 

and cuticles, as well as spikes and thorns provide protection against attacking herbivores and 
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insects (Bektas & Eulgem, 2014; Bigeard et al., 2015). In addition to physical barriers, 

preformed defences include chemical deterrents that involve constitutively expressed defence-

related metabolites known as phytoanticipins (see section 2.3.4.2). The latter are present in 

healthy plants (prior to a pathogen attack), in active forms or as inactive precursors which are 

activated upon response to tissue damage (Osbourn, 1996; Mithöfer & Boland, 2012; 

Klemptner et al., 2014; Bigeard et al., 2015). Inducible defences are those activated in the plant 

following pathogen attack, with the aim to further limit pathogen proliferation. These include 

chemical defences such as phytoalexin, de novo biosynthesised upon pathogen stress (see 

section 2.3.4.2) (Mazid et al., 2011; Balmer et al., 2013). 

 

Plant innate immune responses hinder attempted invasion and/or limit infection after invasion 

(basal resistance). These defence mechanisms have been represented as a ‘zig-zag model’ and 

include perception of non-self (by immune receptors) and activation of signalling events that 

lead to cellular reprogramming (Figure 2.3) (Jones & Dangl, 2006; Bari & Jones, 2009; Niks 

& Marcel, 2009; Zvereva & Pooggin, 2012). Following attempted invasion, the first reaction 

involves recognition of conserved invariant structures of microbial origin (known as microbe- 

or pathogen-associated molecular patterns, M/PAMPs) by pattern recognition receptors 

(PRRs). These receptors are located on the plant cell surface and are usually receptor-like 

protein kinases (RLK) / receptor-like proteins (RLP), e.g. members of receptor-like kinases of 

the leucine-rich repeat family (LRR-RKs) or S-domain family (Sd-RLKs). For intracellular 

stimuli, recognition is performed by nucleotide-binding (NB)-LRR receptors (Bittel & 

Robatzek, 2007;  Tsuda & Katagiri, 2010; Bigeard et al., 2015; Choi & Klessig, 2016). The 

direct interaction between PRRs and M/PAMPs, in turn, activates a complex set of responses 

known as M/PAMP-triggered immunity (M/PTI, Figure 2.3) (Niks & Marcel, 2009; Chen & 

Ronald, 2011; Maffei et al., 2012; Zvereva & Pooggin, 2012; Bigeard et al., 2015). In 

Arabidopsis, the N-terminus of the bacterial flagellin (flg22) from P. syringae is recognised by 

the flagellin-sensitive 2 (FLS2) receptor and, similarly, the EF-Tu receptor (EFR) recognises 

the bacterial elongation factor Tu (EF-Tu) through its elf18 epitope, thus demonstrating the 

PRR/MAMP interaction for triggering the chain of signalling events associated with M/PTI 

immunity (Ingle et al., 2006; Shan et al., 2008;  Qi et al., 2011; Bigeard et al., 2015; Choi & 

Klessig, 2016). 

 

M/PTI responses are also triggered by products from the host produced during or subsequent 

to the process of pathogen attack because of damage, termed damage- or danger-associated 



 

21 
 

molecular patterns (DAMPs). Both M/PAMPs and DAMPs appear to be undifferentiated by 

plants and the responses are comparable (Zvereva & Pooggin, 2012; Andolfo & Ercolano, 

2015; Bigeard et al., 2015; Choi & Klessig, 2016). Recently, the terms HAMPs (herbivore-

associated molecular patterns) and NAMPs (nematode-associated molecular patterns) have 

been used to indicate compounds from herbivorous insects and nematodes, respectively, also 

perceived by plants (Maffei et al., 2012; Choi & Klessig, 2016). The most known (and 

common) physiological response to DAMP/HAMP/MAMP perception is an increase in 

cytosolic Ca2+ concentration due to an influx from external stores or a release from internal 

storage compartments (Zvereva & Pooggin, 2012; Bigeard et al., 2015; Monaghan et al., 2015). 

 

 

Figure 2.3: A zig-zag model representing the plant innate immune system. The first line of defence 

(M/PAMP-triggered immunity, M/PTI) activated to inhibit/limit pathogen infection is initiated upon recognition 

of M/PAMPs by pattern recognition receptors (PRRs). When pathogens succeed in supressing or evading M/PTI 

through the release of suppressors or effectors that interfere with M/PTI, effector-triggered susceptibility (ETS) 

arises. Recognition of a specific effector by a specific resistance (R) protein (e.g. nucleotide-binding –leucine rich 

repeats proteins NB-LRR) results in effector-triggered immunity (ETI). The intensity (amplitude) of the host 

response during ETI is greater than during M/PTI. Events such as the hypersensitive response (HR, a form of 

programmed cell death, PCD) take place at the site of infection, limiting the infection from spreading to other 

parts of the plant. Other events triggered by ETI are local acquired resistance (LAR) to contain the intruder at the 

infection site, and systemic acquired resistance (SAR), that provides immunity in other parts of the plant distant 

to the site of infection (adapted from Jones & Dangl  2006; Zvereva & Pooggin, 2012). 

 

Some microbial pathogens may be well-adapted to their host and secrete effector molecules 

that can attenuate M/PTI, thus weakening the defence response which, in turn, can cause the 

plant to be susceptible to induced disease, known as effector-triggered susceptibility (ETS). 

The latter occurs if the effector molecules from the pathogen are not recognised by the host 

plant (Figure 2.3) (Bari & Jones, 2009; Niks & Marcel, 2009; Bigeard et al., 2015). M/PTI 

responses ensure resistance to all types of pathogens, such as fungi or bacteria, through 
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increased ion influx across the plasma membrane, cell wall reinforcement as well as production 

of reactive-oxidative species  (ROS) (Ingle et al., 2006; Mejía-Teniente et al., 2010; Návarová 

et al., 2012; Zvereva & Pooggin, 2012). Although this response may limit the spread of virulent 

pathogens, it is insufficient to prevent disease development in certain cases (Bektas & Eulgem, 

2014).  

 

Direct or indirect recognition of highly variable effectors by host receptors, which are encoded 

by disease resistance (R)-genes, activates the second line of defence known as effector-

triggered immunity (ETI). This mediates a gene-to-gene (also referred to as race-specific) 

resistance that is more specific, quicker and robust, as well as more prolonged than M/PTI 

(Figure 2.3). The same (R)-gene can confer resistance to more than one microbe or different 

(R)-genes towards multiple microbes (Bari & Jones, 2009; Yin et al., 2012; Zvereva & 

Pooggin, 2012; Bektas & Eulgem, 2014; Andolfo & Ercolano, 2015; Bigeard et al., 2015). Due 

to its specificity, ETI exhibits a stronger immune response that provides efficient protection 

against virulent pathogens and is usually associated with the hypersensitive response (HR), 

where salicylic acid (SA) plays a vital role in activation. This reaction involves a programmed 

cell death (PCD) at the site of infection, thus preventing the spread of the pathogen to other 

parts of the plants (Ingle et al., 2006; Ma, 2011; Zvereva & Pooggin, 2012; Bektas & Eulgem, 

2014; Andolfo & Ercolano, 2015). The HR process is associated with the production of 

signalling molecules such as nitric oxide (NO) and ROS such as hydrogen peroxide, singlet 

oxygen and hydroxyl radicals (Ingle et al., 2006; Ma, 2011).  

 

The plant innate immune system also comprises various signalling pathways such as the 

mitogen-activated protein kinase (MAPK) cascade and signalling molecules (phytohormones) 

leading to expression of defence-related genes (e.g. phenylalanine ammonia lyase, PAL) and 

production of antimicrobial compounds (phytoalexins) (Benhamou, 1996; Yang et al., 1997; 

Klessig et al., 2000; Henry et al., 2012) and allelopathic molecules (Bourgaud et al., 2001; 

Zvereva & Pooggin, 2012). Both of these immunities (M/PTI and ETI) are transient, local 

responses and enhance resistance. Induced resistance (IR) can be expressed at a local level 

(LIR), limited to pathogen infected tissues and do not offer a long-lasting resistance. In 

contrast, systemic acquired resistance (SAR, section 2.3.2), dependent on long-range chemical 

signalling,  has been shown to confer a long-lasting protection against a broad-range of 

pathogens in uninfected tissues (Chen & Ronald, 2011; Bektas & Eulgem, 2014).  
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2.3.2. Systemic acquired resistance (SAR), induced systemic resistance 

(ISR) and the role of phytohormones in plant defence 
 

Plants can alert distal parts by sending signals to un-infected areas and induce a  broad spectrum 

and long-lasting systemic form of resistance to secondary pathogens, SAR (Oostendorp et al., 

2001; Zhao et al., 2005; Zvereva & Pooggin, 2012; Gao et al., 2015). Also, plant interaction 

with soil microbes can lead to the induction of systemic resistance in distal parts termed 

induced systemic resistance (ISR). Both forms of resistance are effective against a wide range 

pathogens (Figure 2.4) (Oostendorp et al., 2001; Van Der Ent et al., 2009; Tenenboim & 

Brotman, 2016).   

  

SAR responses may be induced by biological application of infectious agents (localised 

infection), or chemical inducers such as SA or SA analogues (Oostendorp et al., 2001; Vlot et 

al., 2009; Bektas & Eulgem, 2014). In plant–pathogen interactions SA is an important inducer 

of SAR, which is mainly mediated by this phytohormone and its methyl ester (MeSA). 

Following successful infection, the hormone rapidly accumulates at the infection site (usually 

effective for biotrophic pathogens) and then translocates to other parts of the plant, which 

results in a signal for activation of SAR and other enhanced defence mechanisms (Zhao et al., 

2005; Bari & Jones, 2009; Zvereva & Pooggin, 2012). Exogenous administration of SA induces 

expression of pathogenesis-related (PR) genes (such as PR1, PR2 and PR5) that serves as a 

robust marker for SAR (Oostendorp et al., 2001; Manosalva et al., 2010; Conrath, 2011; Bektas 

& Eulgem, 2014). Other SAR signalling molecules includes azelaic acid, MeSA, jasmonates 

(JA, MeJA and ileu-JA) and diterpenoids such as dehydroabietic acid (Manosalva et al., 2010; 

Henry et al., 2012; Zvereva & Pooggin, 2012). Interestingly, SAR can be conveyed to the direct 

succeeding generation of progeny through chromatin structure modifications (Gao et al., 2014). 

 

On the other hand, ISR is a result of plant root colonisation by beneficial soil microbes 

(Goellner & Conrath, 2008; Badri et al., 2009; Zamioudis & Pieterse, 2012). For example, non-

pathogenic microbes such as plant growth-promoting rhizobacteria (PGPR; such as 

Pseudomonas spp. and Bacillus spp.) and symbiotic fungi (PGPF; Trichoderma spp.), have 

been shown to colonise plant roots, inducing ISR to protect the above-ground plant tissues 

against pathogens (Van Der Ent et al., 2009; Zamioudis & Pieterse, 2012). The major 

regulators of ISR are jasmonic acid (JA) and ethylene (ET) (Oostendorp et al., 2001; Goellner 

& Conrath, 2008). For instance, prior application of these two phytohormones, in plants such 
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as Arabidopsis, increases production of defensins (antimicrobial peptides), when inoculated 

with stressors such as Alternaria (Oostendorp et al., 2001; Vlot et al., 2009). This pre-exposure 

to eliciting agents such as JA or ET allows the plant to instigate a more prompt and intense 

defence responses to a subsequent attack, a concept described as pre-conditioning or plant 

priming (Denancé et al., 2013; Mhlongo et al., 2016; Tenenboim & Brotman, 2016). 

 

 

Figure 2.4: The two forms of systemic resistance in plants, SAR and ISR. These two forms of resistance have 

demonstrated to be effective against a broad spectrum of pathogens. Upon detection of extracellular stimuli such 

pathogen attack via M/PAMPS or chemical inducers, activation of signalling cascades occurs, resulting in the 

expression of defence-related genes (phytoalexin production and synthesis of PR-proteins) and cell wall 

reinforcement associated with systemic acquired resistance (SAR, left). SAR is mainly mediated by salicylic acid 

(SA), with the phytohormone spreading to distal parts of the plant activating SAR. On the other hand, induced 

systemic resistance (ISR, right) results from colonisation of the plant roots by beneficial soil microbes such as 

plant growth-promoting rhizobacteria (PGPR) and symbiotic fungi (PGPF) leading to the protection of above-

ground plant tissues against pathogen infection. The main phytohormones mediating this form of resistance are 

jasmonic acid (JA) and ethylene (ET) (taken from Burketova et al., 2015).  

 

 

These two forms of resistance, thus, demonstrate that phytohormones play important roles in 

plant defence response against various biotic and abiotic stresses and, in addition to that, they 

are vital to growth and developmental processes. Phytohormones are compounds synthesised 

in low concentrations that regulate cellular processes in plants. They play a crucial role as 

chemical messengers, coordinators for signal transduction in pathways as well as plant 

mediators for defence response against stresses (Fujita et al., 2006; Ingle et al., 2006; Pieterse 
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et al., 2009; Andolfo & Ercolano, 2015; Bigeard et al., 2015; Wani et al., 2016). These various 

plant hormones include abscisic acid (ABA), indole-3 acetic acid/ auxin (IAA), cytokinins 

(CKs), brassinosteriods (BRs), gibberellins (GAs), strigolactones and peptide hormones (Bari 

& jones, 2009). Amongst the plant hormones, SA, JA and ET together with ROS signalling 

pathways, have been shown to be mostly involved in the induced resistance pathways (SAR 

and ISR) in plant innate immunity (Rojo et al., 2003; Fujita et al., 2006; Andolfo & Ercolano, 

2015). As mentioned previously, SA signalling mostly occurs upon biotrophic infection and 

also leads to SAR, whereas ET and JA signalling mostly occurs upon necrotrophic infection 

and also leads to ISR (Schreiber & Desveaux, 2008; Bari & Jones, 2009; Návarová et al., 2012; 

Andolfo & Ercolano, 2015; Bigeard et al., 2015). 

  

As highlighted in section 2.3.1, the perception of pathogen presence by plants necessitates the 

recognition of conserved molecular features on pathogens, resulting in activation of lines of 

defence responses. Lipopolysaccharide (LPS) (Sanabria et al., 2008; Madala et al., 2011; 

Finnegan et al., 2016; Ranf, 2016), epitopes from flagellin, elongation factor Tu and cold-shock 

protein from bacterial pathogens (Ingle et al., 2006; Cheynier et al., 2013), and ergosterol, β-

glucans and chitin from fungal pathogens, are amongst the known M/PAMPs that trigger 

defence responses in plants (Zhao et al., 2005; Zeidler et al., 2010; Tugizimana et al., 2012; 

Klemptner et al., 2014; Mpofu & McLaren, 2014; Mhlongo et al., 2016). The current study 

involves infection of sorghum by a bacterial pathogen (B. andropogonis) of which LPS from 

the pathogen is a potentially perceived M/PAMP by the host. The following section will 

provide general information regarding LPS as a MAMP. 

 

2.3.3. Lipopolysaccharides as M/PAMPs in the perception of bacterial 

invasion 
 

LPS, an amphiphilic glycolipid or lipoglycan is found in Gram-negative bacteria and some 

cyanobacteria, and is important for the environmental survival of these bacterial pathogens. 

LPS contributes towards the resistance of Gram-negative bacteria to antimicrobial compounds 

and challenging environments, with lipid A and inner core backbone rigidity contributing to 

resistance. This conserved feature is thermostable and is located on the outermost membrane 

of the Gram-negative bacteria (Newman et al., 2000, 2002; De Castro et al., 2010; Madala et 

al., 2011; Ernst et al., 2014; Di Lorenzo et al., 2015; Zipfel, 2015; Mhlongo et al., 2016; Ranf, 

2016; Choma et al., 2017). However, its structure may differ within and across bacterial species 
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to an extent that a bacterial cell may contain varying LPS forms. Under different environmental 

conditions, varying LPS structures arise, thus contributing to the diversity in LPS structures 

(Di Lorenzo et al., 2015; Ranf, 2016; Choma et al., 2017). 

 

There are three main structural components of LPS, namely the O-chain/antigen, core 

oligosaccharide and the lipid A, as shown in Figure 2.5. These three components are linked 

via covalent bonds. Stabilisation of the LPS structure is due to attraction between negative 

charges on the lipid A domain and core oligosaccharide, and cations such as Ca2+and Mg2+ 

(Newman et al., 2000; De Castro et al., 2010; Madala et al., 2011; Ranf et al., 2015; Zipfel, 

2015; Ranf, 2016; Choma et al., 2017). In terms of bacterial colony appearance, the absence 

of the O-chain/O-antigen results in rough LPS and the presence of the same component results 

in smooth LPS (De Castro et al., 2010; Madala et al., 2011; Di Lorenzo et al., 2015; Ranf, 

2016). 

 

 
 

Figure 2.5: A general LPS structure. The macromolecule is made up of three structural components; lipid A, 

the innermost component linked to the outer membrane; a core oligosaccharide located in the mid-section and 

connected to the lipid A component via covalent bonds, and an O chain forming the outermost component exposed 

to the environment (taken from Acharya, 2013).  

 

The O-chain, also known as O-polysaccharide or O-antigen is the hydrophilic outermost 

component of LPS exposed to the environment (Madala et al., 2011). This component differs 

with species of bacteria as well as the strain (structural diversity), and takes part in the 

protection of the bacteria in challenging surroundings (Di Lorenzo et al., 2015; Ranf, 2016). 

On the other hand, the core oligosaccharide in LPS is the component located between the O-

antigen and lipid A, joining these two structural components together. This component is 

divided into an inner core and outer core. The conserved inner core is the section  that is directly 
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connected to the lipid A domain via 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) (Newman et 

al., 2000; Di Lorenzo et al., 2015; Ranf, 2016). Additionally, the lipid A domain is a 

hydrophobic di-glucosamine that is linked to the bacterial outer membrane (OM) (Sanabria & 

Dubery, 2006; De Castro et al., 2010; Sanabria et al., 2010; Ranf, 2016). This domain is highly 

conserved and contributes to LPS stability. Although lipid A is highly conserved, certain 

factors such as environment and growth conditions may lead to differences in its structure, thus 

affecting its biological activity (Di Lorenzo et al., 2015). Lipid A is perceived as a M/PAMP 

by some host plants (Zeidler et al., 2010). Recently a plant LPS receptor was identified in 

Arabidopsis thaliana, a member of the cruciferous plants (Brassicaceae family). This 

LipoOligosaccharide-specific Reduced Elicitation (LORE) receptor is reported to sense the 

lipid A domain of LPS. However, LPS sensing by this receptor only occurs for LPS from 

Pseudomonas and Xanthomonas bacterial species. Thus far no other LPS receptor has been 

identified in other plant families  (Zipfel, 2015; Ranf, 2016). 

 

 
 

Figure 2.6: A summary of some molecular and physiological events triggered upon plant–pathogen 

interactions. The detection of plant pathogen via conserved molecular features on the pathogen, triggers the 

activation of a chain of signalling cascades mediated by signalling molecules such as SA, JA, MeJA and some 

components of the plant lipidome. These signalling events result in metabolic reprogramming in primary and 

secondary metabolism and immune responses such as cell wall reinforcement/strengthening (physical defence) 

and defence-related secondary metabolite production (chemical defence). The outcome of these immune 

responses ultimately defines whether the plant phenotype is either susceptible, partially resistant/tolerant, or 

resistant (taken from Heuberger et al., 2014).  
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In summary, the molecular and physiological events possibly occurring as a result of the 

interaction between a plant and a pathogen are outlined in Figure 2.6. The outcome of these 

plant defence response is determined by the plant’s ability to detect the pathogen presence via 

M/PAMPs such as LPS, activating defence responses and the pathogen’s ability to suppress 

the immune system of the plant (Pieterse et al., 2009; Pritchard & Birch, 2011). The recognition 

of such stimuli by plants activates signalling cascades resulting in profound fluctuations in the  

plant’s metabolism (primary and secondary) (Anjum et al., 2013; Balmer et al., 2013). These 

fluctuations include defence-related secondary metabolites production – a key component of 

the plant defence repertoire, which are of particular interest in this study (Ahuja et al., 2012;  

Balmer et al., 2013). 

 

2.3.4. Plant metabolism – focus on defence-related secondary metabolism  
 

Metabolism entails the summation of various biochemical reactions within a living organism 

(van der Fits & Memelink, 2000; Vince & Zoltán, 2011). The chemical entities, products or 

intermediates of these reactions are called metabolites (Devika & Koilpillai, 2012) and 

classified as either primary or secondary, and sharing central metabolic pathways (van der Fits 

& Memelink, 2000; Devika & Koilpillai, 2012). Plant primary metabolites are generally known 

to directly participate in the plant’s functioning, including growth, storage, reproduction and 

development processes (Bourgaud et al., 2001; Hong et al., 2016; Tenenboim & Brotman, 

2016). These compounds also play a role of providing energy during defence responses against 

pathogens (Andolfo & Ercolano, 2015). Nucleic acids, lipids, carbohydrates and proteins are 

examples of such metabolites (Vince & Zoltán, 2011). With regard to chemical structure and 

profusion, primary metabolites are conserved to a greater degree than secondary metabolites 

(Hong et al., 2016). Secondary metabolites conversely, are compounds that might have no 

direct influence in plant growth and development but are still required for plant survival, well-

being and interactions with the environment (van der Fits & Memelink, 2000; Bourgaud et al., 

2001; Cheynier et al., 2013; Piasecka et al., 2015; Hong et al., 2016). Together primary and 

secondary metabolites make up the plant’s metabolome. Although much is known about plant 

metabolites, the work on identification and characterisation of the whole plant metabolome 

(estimated to be more than 200,000 metabolites) is still far from being done (Kliebenstein, 

2012; Hong et al., 2016).  

 



 

29 
 

Plants biosynthesise an immense quantity of various secondary metabolites. Functions of these 

include (i) plant defence responses against pathogen attack ‒ through mechanical barriers 

formation, hindering pathogen invasion or killing of pathogens with their antiviral, antifungal 

and antibiotic properties, (ii) deterring feeding herbivores, (iii) luring of pollinators and seed 

dispersal agents, (iv) UV damage protection and (v) contribution to fruit taste and colour (van 

der Fits & Memelink, 2000; Awika & Rooney, 2004; Bino et al., 2004; Cheynier et al., 2013; 

Piasecka et al., 2015; Sun et al., 2016; Tenenboim & Brotman, 2016). Additionally, secondary 

metabolites are involved in  adjustment of plants to their environment as well as the interactions 

between these two systems (Buchanan et al. 2000; Piasecka et al., 2015; Sun et al., 2016). 

 

Secondary metabolites have diversified chemical structures and profusion compared to primary 

metabolites, with noticeable variations in the plant kingdom. The  tissue or family of the plant 

influences the type of secondary metabolites synthesised – which contributes to the diversity 

of secondary metabolites (Vince & Zoltán, 2011; Piasecka et al., 2015; Hong et al., 2016).  

Plant secondary metabolite benefits/uses are not confined to plants. These natural plant 

products are now being widely used in various industries such as the agricultural sector, in 

insecticide manufacturing, pharmaceutical industry, cosmetics industry, fragrance industry and 

are gaining popularity in the nutraceutical sector (van der Fits & Memelink, 2000; Bourgaud 

et al., 2001; Devika & Koilpillai, 2012). Classification of secondary metabolites can be 

according to their chemical structure, solubility but mostly metabolic pathways they derive 

from (Bourgaud et al., 2001; Devika & Koilpillai, 2012; Sun et al., 2016). Terpenes, phenolic 

compounds and nitrogen/sulphur-containing compounds are generally regarded as the three 

main categories of plant secondary metabolites (Figure 2.7). Of these, terpenes are the largest 

group whereas phenolic componds are the most wide-ranging across the plant kingdoms 

(Bourgaud et al., 2001; Rohdich et al., 2002; Cheynier et al., 2013; Sun et al., 2016). 
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Figure 2.7: Simplified illustration of the links between primary and secondary metabolism and the major 

pathways leading to biosynthesis of secondary metabolites. Primary and secondary metabolites share principal 

metabolic pathways and biosynthesis of secondary metabolites requires plants to take into account primary 

metabolic pathways. The three classes of secondary metabolites, which are phenolic compounds, terpenes and 

nitrogen containing compound, are also indicated. Abbreviation: MEP = methylerythritol phosphate pathway 

(non-mevalonate pathway) (adapted from http://nptel.ac.in/courses/102103016/module4/lec31/2.html, accessed 

04/04/2017). 

 

 

2.3.4.1. Secondary metabolites in sorghum 
 

The major group of secondary metabolites normally found in sorghum is phenolic compounds, 

which can be divided into two main groups, being phenolic acids (mostly derived from 

cinnamic acid or benzoic acid) and flavonoids. Generally, phenolic acids are conjugated with 

organic acids or sugars. The bran of sorghum grain is regarded as the compartment that contains 

high levels of phenolic acids. The composition together with the relative concentrations of 

phenolic compounds differ in sorghum cultivars, and factors contributing thereto include 

genetics, age of the plant and the environment in which the plant is grown (Woodhead, 1981; 

Awika & Rooney, 2004;Taylor et al., 2014; Kang et al., 2016). In terms of phenolic compound 

content, it has been reported that sorghum ranks highest measured against cereals such as rye, 

wheat, barley and millet (Awika, 2011; Kang et al., 2016). Amongst other defence-related 

secondary metabolites, sorghum flavonoids play a role against pathogen attack (Awika & 

Rooney, 2004). Table 2.2 indicates some secondary metabolites that have been reported in 

sorghum (independent of function). 

http://nptel.ac.in/courses/102103016/module4/lec31/2.html
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Table 2.2: Major classes of secondary metabolites that have been reported in sorghum, 

independent of their function. 
 

Group Class Secondary metabolite Source 
 

 

 

 

 

 

 

 

 

 

 

 

 

Flavonoid 

Flavan-4-ols Apiferol, luteoferol Awika & Rooney, 2004; Boddu et 

al., 2004; Ibraheem et al., 2010, 

2015; Awika, 2011; Poloni & 

Schirawski, 2014 

Flavones 

 

Luteolin, apigenin  

7-O-methyl luteolin   

Awika & Rooney, 2004; Du et al., 

2010; Awika, 2011; Poloni & 

Schirawski, 2014; Kang et al., 

2016 

Flavanones Naringenin, eriodictyol, 

eriodictyol 5-O-β-glucoside 

Awika & Rooney, 2004; Ibraheem 

et al., 2010, 2015; Awika, 2011; 

Kang et al., 2016 

Flavan-3-ols 

 

Catechin, epicatechin 

7-O-Methyl catechin,  

7-O-Methyl afzelechin 

Awika, 2011; Kang et al., 2016 

Flavonol 

  

 

Kaempferol, quercetin Awika, 2011; Poloni & 

Schirawski, 2014; Kang et al., 

2016 

Proanthocyanidins/ 

condensed tannins 

 

Polyflavan-3-ol, procyanidin, 

proluteolinidin, proapigeninidin, 

prodelphinidin 

Awika & Rooney, 2004; Awika, 

2011 

Dihydroflavonol 

 

Taxifolin, taxifolin 7-O-β-

glucoside 

Awika & Rooney, 2004; Kang et 

al., 2016 

Anthocyanidins Apigeninidin, luteolinidin, 5-

methoxyluteolinidin, 

7-methoxyapigeninidin,  

7-O-methylapigeninidin, 

fisetinidin, cyaniding, 

pelargonidin, caffeic acid ester of 

arabinosyl 5-O-apigeninidin 

Awika & Rooney, 2004; Boddu et 

al., 2004; Wu & Prior, 2005; 

Ibraheem et al., 2010, 2015; 

Awika, 2011; Poloni & 

Schirawski, 2014 

Phenolamides 

 

 N1,N8-Caffeoyl-feruloyl 

spermidine,  

N1,N8-Dicaffeoyl spermidine 

Kang et al., 2016 

Phenolic acids  Syringic acid, protocatechuic acid, 

p-coumaric acid, sinapic acid, 

ferulic acid, caffeic acid,  

o-coumaric acid, salicylic acid,  

p-hydroxybenzoic acid, gallic acid, 

gentisic acid   

Awika & Rooney, 2004; Kang et 

al., 2016 

 

 

2.3.4.2. Phytoanticipins and phytoalexins, the major players in plant 

chemical defences 
 

As mentioned above, the intricate defence system used by plants entails the production of a 

wide range of various defence-related metabolites of which the contribution to plant innate 

immunity is crucial. These compounds fall under three major categories namely, isoprenoids, 

alkaloids and shikimates. Modifications of compounds belonging to these three major classes 
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results in a broad spectrum of compounds with diverse biological functions (Morrissey & 

Osbourn, 1999; Dewick, 2002; Kliebenstein, 2012; Balmer et al., 2013; Cheynier et al., 2013; 

Sun et al., 2016). The role of defence-related secondary metabolites in  plant innate immunity 

involves the protection of plants from pathogen attack through antimicrobial activity. In a 

natural environment, production of these antimicrobial compounds contibutes to the limitation 

of total host plant takeover by pathogens, where activation or biosynthesis is stimulated by the 

detection of conserved features (the M/PAMPs) on the pathogen (section 2.3.1) (Bourgaud et 

al., 2001; Liu et al., 2010; Kliebenstein, 2012; Tugizimana et al., 2012; Cheynier et al., 2013; 

Piasecka et al., 2015). 

 

Defence-related secondary metabolites have various classifications, but mostly are categorised 

according the mode of biosynthesis, regulation and biological activity, into phytoanticipins or 

phytoalexins. Two definitions have been portrayed for the former. Phytoanticipins are defined 

as defence-related compounds that already exist in the plant (preformed) even before pathogen 

invasion or compounds that exist as inactivated precursors in a healthy plant but, upon pathogen 

invasion, are activated to perform their antimicrobial functions. The activation of these 

(constitutively present) compounds is carried out by particular enzymes present in the plant, 

and pathogen invasion can result in elevated levels of phytoanticipins (Osbourn, 1996; 

Morrissey & Osbourn, 1999; Meyer et al., 2015; Piasecka et al., 2015; Cuperlovic-Culf et al., 

2016; Pastorczyk & Bednarek, 2016). Phytoalexins, on the other hand, are generally defined 

as defence-related compounds with antimicrobial activity produced de novo upon- or post-

pathogen invasion (induced). There has been developments on the term phytoalexin with this 

not only referring to defence compounds induced by biotic stressors, but also to defence 

compounds produced with the introduction of abiotic stressors (Dixon, 1999; Tugizimana et 

al., 2012; Balmer et al., 2013; Cheynier et al., 2013; Klemptner et al., 2014; Piasecka et al., 

2015; Finnegan et al., 2016). 

 

Phytoanticipins include defence metabolites of the saponins, glucosinolates and cyanogenic 

glycoside chemical classes, which have been thoroughly studied (Morrissey & Osbourn, 1999; 

Balmer et al., 2013; Piasecka et al., 2015). Saponins result from glycosylation of triterpenoid 

or steroid. Some examples hereof are the triterpenoids avenacin A-1, avenacin A-2, avenacin 

B-1 and avenacin B-2 that have been reported in oat roots responding to fungal attack. Other 

examples are the steroidal glycoalkaloids α-chaconine in potato and α-tomatine in tomato 

(Morrissey & Osbourn, 1999; Piasecka et al., 2015). The class of cyanogenic glycosides, on 
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the other hand, comprises products of the reaction of amino acids to oximes followed by 

glycosylation, which are stored mostly in an inactive form. When the host plant is posed with 

a threat, cyanogenic glycosides are degraded by enzymes, producing poisonous hydrogen 

cyanide in defence against biotic stress in a process termed cyanogenesis. In the same reaction, 

a ketone or aldehyde is produced together with the cyanide. The amino acid precursors in the 

synthesis of cyanogenic glycosides are primary metabolites and include valine, phenylalanine, 

leucine, isoleucine and tyrosine (Poulton, 1990; Morrissey & Osbourn, 1999; Winkel, 2004; 

Piasecka et al., 2015).  

 

Sorghum, lima beans and cassava are cyanogenic plants known to produce cyanogenic 

glycosides (Poulton, 1990; Winkel, 2004). In sorghum, the cyanogenic glycoside dhurrin forms 

part of preformed defence compounds (Poulton, 1990; Dicko et al., 2006; Madala et al., 2014). 

However, this metabolite is considered more of an insect feeding deterrent than a defence 

against microbial pathogen attack, since in a healthy plant tissue dhurrin is constitutively 

present in elevated levels and attack by some pathogens does not seem to alter its levels 

(Nicholson et al., 1987; Dicko et al., 2006; Du et al., 2010; Liu et al., 2010; Mizuno et al., 

2014; Piasecka et al., 2015). Although not found in sorghum, another related class of 

phytoanticipins comprises the glucosinolates. The latter are glucosides derived from amino 

acid precursors similar to cyanogenic glycosides, but contain sulphur. It has been suggested 

that the pathway that synthesises glucosinolates branched off from the cyanogenic glycoside 

synthesis pathway (Morrissey & Osbourn, 1999; Piasecka et al., 2015). 

 

As highlighted above, in addition to the pre-formed defence-related metabolites 

(phytoanticipins), the plant immune responses involve de novo biosynthesis of antimicrobial 

compounds known as phytoalexins. The latter have an important role in the plant defence 

repertoire, acting on a range of pathogens (Ahuja et al., 2012; Balmer et al., 2013). An array 

of these induced defence compounds, reported in plants, include those originating from 

phenylalanine and alkaloid derivatives of the amino acid tryptophan (Meyer et al., 2015). 

Production of phytoalexins is regulated through plant hormones. Phytoalexins mostly 

accumulate or are concentrated at the site of infection as well as regions around the infection 

site with their production limiting the spread of pathogen infection. The rate at which these 

compounds are produced is critical in plant defence (Nicholson et al., 1987; Snyder & 

Nicholson, 1990; Hipskind et al., 1990). Presence/production of phytoalexins serves as an 

indication of disease resistance in a host plant as they are molecular markers thereof (Ahuja et 
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al., 2012; Poloni & Schirawski, 2014). The type of phytoalexin produced in plants are to some 

extent restricted to a plant species or plant family (some phytoalexins are only found in certain 

plant families) (Bennett & Wallsgrove, 1994; Morrissey & Osbourn, 1999; Ahuja et al., 2012; 

Jeet et al., 2014). Examples of phytoalexins derived from phenylalanine are pisatin in pea 

(Zhao et al., 2005; Métraux et al., 2009), 3-deoxyanthocyanidins in sorghum (Poloni & 

Schirawski, 2014) and sakuranetin in rice (Piasecka et al., 2015). Synthesis of terpenoid 

phytoalexins in response to pathogen challenge has also been reported, these include 6-

methoxygossypol and hemigossypol in cotton (Bennett & Wallsgrove, 1994), momilactones in 

rice (Balmer et al., 2013; Jeet et al., 2014), zealexins in maize (Jeet et al., 2014) and capsidiol 

and solavetivone in tobacco (Tugizimana et al., 2012). Camalexin, an indole alkaloid, has been 

reported in Arabidopsis (Brassicaceae family) (Ahuja et al., 2012; Finnegan et al., 2016).  

 

Dating back to the 1980s a class of phytoalexins, not previously known in sorghum in response 

to pathogen attack, was identified: the 3-deoxyanthocyanidins (Figure 2.8). The latter which 

are anthocyanidins not frequently occurring, were detected in sorghum (as de novo synthesised) 

upon challenge by a fungal pathogen Colletotrichum graminicola, and were found to contribute 

to resistance (Nicholson et al., 1987; Snyder & Nicholson, 1990; Poloni & Schirawski, 2014). 

Nicholson and colleagues (1987) demonstrated that challenge of sorghum by a non-pathogenic 

fungus, Helminthosporium maydis, also resulted in accumulation of this class of compounds. 

Apigeninidin and luteolinidin were found to be the two main, dominant 3-deoxyanthocyanidin 

phytoalexins, rapidly accumulating in sorghum post-infection. Under pathogen challenge, the 

sorghum epidermal cells developed inclusion structures (harbouring these 3-

deoxyanthocyanidin phytoalexins), which then migrated to the location of infection – maturing 

and becoming more pigmented (orange-red-brown, primarily as a result of apigeninidin and 

luteolinidin presence) in the process and finally releasing the phytoalexins to limit the infection 

(Nicholson et al., 1987; Hipskind et al.,1990; Snyder & Nicholson, 1990; Snyder et al., 1991; 

Morrissey & Osbourn, 1999; Boddu et al., 2004; Basavaraju et al., 2009). 



 

35 
 

 
 

Figure 2.8: Biosynthetic pathway leading to the synthesis of 3-deoxyanthocyanidin phytoalexins and other 

defence-related secondary metabolites in sorghum. The 3-deoxyanthocyanidins are a class of flavonoid 

compounds, part of phenolic secondary metabolites. They share naringenin as a precursor (and branching point) 

with 3-hydroxyflavonoids and 3-deoxyflavanoids. 3-deoxyanthocyanidins synthesis in light-independent.  The 

introduction of DFR, ANS and F3ʹ H channels the pathway to the synthesis of 3-deoxyanthocyanidins. 

Abbreviations: PAL= phenylalanine ammonia lyase, C4H= cinnamate 4-hydroxylase, 4CL= coumarate 4-ligase, 

CHS= chalcone synthase, CHI= chalcone isomerase, DFR=dihydroflavonol reductase, ANS= anthocyanidin 

synthase and F3ʹ H= flavonoid 3ʹ hydroxylase (taken from Boddu et al., 2004).  

 

The caffeic acid ester of arabinosyl 5-O-apigeninidin, 5-methoxyluteolinidin and 7-

methoxyapigeninidin are derivatives of 3-deoxyanthocyanidin phytoalexins, also reported in 

sorghum (Boddu et al., 2004; Wu & Prior, 2005; Ibraheem et al., 2010; Poloni & Schirawski, 

2014). The phytohormone MeJA has been reported to trigger accumulation of 3-

deoxyanthocyanidins (Liu et al., 2010). In addition to 3-deoxyanthocyanidin phytoalexins, 

luteolin and apigenin, flavone phytoalexins, have also identified in sorghum as defence- related 

(Du et al., 2010; Ahuja et al., 2012; Jeet et al., 2014; Poloni & Schirawski, 2014). The 

differences between these flavones and the 3-deoxyanthocyanidins – luteolinidin and 

apigeninidin – arise from their mode of synthesis. Conversion of naringenin or eriodictyol 

(flavanones) by the enzyme flavone synthase II (FNSII) leads to apigenin and luteolin 

(flavones) synthesis, respectively. In contrast the conversion of naringenin or eriodictyol to 
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apiferol or luteoforol (flavan-4-ols), respectively, by flavanone 4-reductase (FNR) leads to 3-

deoxyanthocyanidins synthesis (Figure 2.8). Luteolin and luteolinidin differ from apigenin and 

apigeninidin in that their synthesis involves hydroxylation of the B-ring of naringenin on 

position 3ʹ by flavonoid 3ʹ-hydroxylase (F3ʹH),  which does not occur in the synthesis of the 

latter (Ayabe et al., 2010; Du et al., 2010; Mizuno et al., 2016). With much known about 

involvement of phytoalexins in defence responses, the molecular mechanisms by which these 

phytoalexins act against microbial pathogens is, however, not fully understood. 

 

With regard to bacterial pathogens, the 3-deoxyanthocyanidin, apigeninidin was reported to 

limit bacterial growth on agar plates in an investigation carried out by Stonecipher et al., 

(1993). The phytoalexin was shown to have antimicrobial activity against Gram-negative 

bacteria Serratia marcescens, Escherichia coli and Shigella flexneri, and Gram-positive 

bacteria Streptococcus faecalis, Staphylococcus aureus, Bacillus cereus and Staphylococcus 

epidermidis (Stonecipher et al., 1993; Poloni & Schirawski, 2014). However, in plants, there 

are still gaps with regards to metabolic changes and  studies, on sorghum–bacterial interactions.  

 

Although there has been a considerable number of studies focusing on plant immunity and a 

thorough exploration on certain facets thereof that has provided information enabling the 

understanding of underlying biochemical and molecular biological processes, there are still 

gaps in the field of plant–pathogen interactions leading to continuous research studies in the 

field (Berger et al., 2007; Zipfel, 2009; Segonzac & Zipfel, 2011; Martinez-Medina et al., 

2016; Tenenboim & Brotman, 2016; Xin et al., 2016). Thus, the work presented in this 

dissertation, is an untargeted liquid chromatography-mass spectrometry (LC-MS)-based 

metabolomics approach to comprehensively investigate the biochemistry of the induced 

defensive state in S. bicolor in response to B. andropogonis infection. 

 

2.4. Metabolomics as a tool to investigate inducible plant defence 

responses 
 

Metabolomics has demonstrated to be an essential functional genomics approach in the study 

of biological systems at various levels. The research field focuses on the comprehensive 

analysis of all metabolites (small molecules ≤ 1500 Da) collectively known as the metabolome 

– at the cell, tissue, organ and organism level under specific physiological conditions, 

representing  a diverse array of metabolic pathways and intermediary metabolism (Goodacre 
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et al., 2004; Bino et al., 2004; Hall, 2006; Allwood et al., 2008; Johnson & Gonzalez, 2012; 

Milne et al., 2013; Misra et al., 2017). This recently emerged technology is the final of the 

logical flow of the ‘omics’ technologies (genomics→ transcriptomics→ proteomics→ 

metabolomics) and is complementary to these other  approaches  (Goodacre et al., 2004; 

Richard & Louise, 2011). Metabolomics facilitates our understanding (functionally) of the 

cellular processes occurring in biological systems and the dynamics thereof. The metabolomics 

approach, in combination with other established technologies, is unremittingly advancing and 

continues to increase our knowledge on (i) underlying  biochemical processes in complex 

biological systems and (ii) the functioning of organisms as integrated biological systems (Hall, 

2006; Hall et al., 2008; Vidal, 2009; McKnight, 2010; Ray, 2010; Nanda et al., 2011; 

Tugizimana et al., 2013; Sévin et al., 2015; Jorge et al., 2016; Misra et al., 2017). 

 

In addition to metabolomics, the other widely used functional genomics tools i.e. 

transcriptomics and proteomics,  provide a broad genome coverage and are more fitting in 

giving insight in the different layers of regulation in systems biology (Mathew & Padmanaban, 

2013; Tugizimana et al., 2013; Fuhrer & Zamboni, 2015). However, these approaches do not 

always provide adequate information regarding protein function (ideally displayed by the 

biochemical phenotype) (Verpoorte et al., 2008). On the contrary, the metabolome which is 

the downstream product of the flow from gene to function, is more sensitive to changes in 

metabolic fluxes and enzyme activity in comparison to the transcriptome or proteome.  

Moreover, the changes in the metabolome can be easily detected and monitored (Kell et al., 

2005; Richards et al., 2010; Johnson & Gonzalez, 2012). The metabolomics approach thus, has 

emerged as an indispensable tool as it offers an actual ‘snap-shot’ in time of the physiological 

state and biological activities of an organism (with metabolites acting as direct phenotypic 

signatures) (Bino et al., 2004; Guy et al., 2008; Verpoorte et al., 2008; Tugizimana et al., 2013; 

Yin & Xu, 2014; Jorge et al., 2016). Therefore, biological systems subjected to genetic 

modifications, pathological conditions and other stresses can be investigated using this 

approach. As such metabolomics is currently being used as an investigative tool in various 

biological research such as plant natural studies, drug discovery,  diagnostics, understanding 

plant biochemistry and in nutraceutics (Nicholson et al., 1999; Tugizimana et al., 2013; 

Beisken et al., 2015; Kell & Oliver, 2016). Although metabolomics has certain advantages over 

the other ‘omics’ technologies, an integration of the strategies gives a holistic understanding 

of the dynamics of biological systems (Bino et al., 2004; Guy et al., 2008; Yin & Xu, 2014; 

Jorge et al., 2016).  
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The field of plant metabolomics has been of interest recently in the science community 

allowing more research to be carried out – partly due to its varied applications. This field targets 

studying of plant systems at molecular level – offering non-biased plant tissue metabolome 

characterisation in relation to environmental responses. Metabolic changes that occur in plants 

best reflect modifications in plant genome and interactions between plants and herbivores or 

pathogens and their environments (Hall, 2006; Allwood et al., 2008; Hall et al., 2008; Misra et 

al., 2017). Recent advances of non-targeted multivariate  tools, functional in the analysis of a 

wide array of plant metabolite profiles, has also supported the growing interest in plant 

metabolomics (Guy et al., 2008).  

 

The various plant studies employing metabolomics approach include (i) denoting alterations in 

metabolic fluxes, (ii) metabolic pathways analysis, (iii) providing a link between plant 

genotype and phenotype (Fiehn et al., 2000; Weckwerth & Fiehn, 2002; Sumner et al., 2003; 

Bhalla et al., 2005; Hall, 2006; Kim et al., 2011), (iv) characterisation of ‘silent plant 

phenotypes’(Weckwerth et al., 2004; Hall, 2006), (v) screening for plants with medicinal 

properties (Allwood et al., 2008), (vi) examining significant modifications caused by random 

genetic mutation (Hall, 2006), (vii) screening populations of induced or spontaneous mutations 

(Hall, 2006; Allwood et al., 2008), (viii) plant development strategies in breeding programmes 

(Hall, 2006; Harrigan et al., 2007) and (ix) the study of plants under both biotic and abiotic 

stress – to understand changes that occur during stress, denoted by the plant’s metabolic 

alterations. There are still gaps in understanding the mechanisms by which plants respond to 

biotic stress and metabolomics is being employed to shed more light regarding these 

mechanisms, especially on how plants defend themselves against pathogen attack – given that 

the nature of interaction varies with microbial agents and plant species (Bhalla et al., 2005;  

Guy et al., 2008; López-Gresa et al., 2010; Tenenboim & Brotman, 2016). 

 

Metabolomics studies generally fall into three categories, i.e. targeted, semi-targeted and non-

targeted. Briefly described, targeted metabolomics studies focus on the quantification of a 

specific group of metabolites and involves the use of standards to track the changes of the 

metabolites of interest being quantified. Semi-targeted analysis falls between targeted and non-

targeted approaches and similar to the former, the identities of the metabolites are known prior 

to data acquisition. On the contrary, the non-targeted approach is a high-throughput analysis 

which takes into account all possible metabolites in a sample, hence quantification seems 

impractical. General steps involved in metabolomics studies include sample collection, sample 
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preparation, data acquisition, data processing, data analysis, compound identification and 

biological interpretation. A summary of this multistep workflow employed in metabolomics 

studies is illustrated in Figure 2.9  (Xiao et al., 2012; Dunn et al., 2013; Putri et al., 2013; Naz 

et al., 2014; Johnson & Carlson, 2015). 

 

 

 

Figure 2.9: General steps involved in metabolomics studies. The first step involves the collection (harvesting 

and enzyme quenching) and preparation of samples (extraction, drying, reconstitution and/or derivatisation) for 

analysis. This is then followed by analysis of samples using various analytical platforms (e.g. LC-MS, GC-MS 

and NMR) to acquire data. The data mining/data analysis follows (data pre-processing and pre-treatment, 

univariate and multivariate analysis). Identification of metabolites present in the extracted samples and linking 

the results to the biological question (biological interpretation) conclude the steps in metabolomics studies (taken 

from Wang et al., 2015). 

 

Due to the wide array of compounds analysed in metabolomics studies with different chemical 

and physical characteristics and in varying concentrations, it is impossible for a single 

extraction protocol and analytical platform to cover the whole plant metabolome. Hence, it is 

important to determine the most suitable extraction procedure and analytical platforms for the 

study at hand. With regard to the latter, various platforms are being exploited in metabolomics 

studies and can be used in combinations to broaden the spectrum of metabolites to be covered 

(Allwood & Goodacre, 2010; Johnson & Gonzalez, 2012; Xiao et al., 2012; Jorge et al., 2016; 

Tenenboim & Brotman, 2016).  



 

40 
 

2.4.1. Liquid chromatography-mass spectrometry – a platform for plant 

secondary metabolite analysis 
 

In order to determine the functions of particular metabolites in response to stimuli, examination 

of metabolic pathway fluxes and the study of the nature of the metabolome, ‒ simultaneous 

metabolite identification and quantification is crucial. Multiple analytical platforms for 

metabolite identification are being used due to the vast heterogeneity of the plant metabolome 

which precludes a comprehensive metabolite analysis with a single standard technique. These 

platforms vary in their dynamic range, sensitivity, resolution, accuracy and eventually 

metabolite identification capabilities, and have advantages and disadvantages over each other 

(see Table 2.3) (Bino et al., 2004; Allwood & Goodacre, 2010; Burgess et al., 2011; Jorge et 

al., 2016). 

 

Liquid chromatography coupled to mass spectrometry (LC-MS) has become the most dominant 

analytical platform in metabolomics studies, mostly because of its high sensitivity and high 

resolution, enabling large-scale coverage of the metabolome (Putri et al., 2013; Tugizimana et 

al., 2017). The LC functions as the separation technique which is based on different compound 

elution rates – influenced by varying compound affinities for the mobile or stationary phase 

(i.e. differences in distribution coefficients). On the other hand, the MS functions as a detector, 

generating ions and measuring the mass-to-charge (m/z) ratios, giving information vital for 

compound structural elucidation (Bino et al., 2004; Allwood et al., 2008; Allwood & 

Goodacre, 2010; Balmer et al., 2013; Tugizimana et al., 2013; Gika et al., 2014).  

 

LC-MS has demonstrated to be a robust pre-eminent in analysing a wide array of metabolite 

classes with different physicochemical properties (e.g. polarity) compared to other analytical 

platforms. Metabolites, hydrophobic or hydrophilic in nature, can be separated and identified 

using LC-MS (Sumner et al., 2003; Hall, 2006; Johnson & Gonzalez, 2012; Xiao et al., 2012; 

Putri et al., 2013; Gika et al., 2014; Yin & Xu, 2014; Jorge et al., 2016). Traditionally, most 

plant metabolomics studies make use of a non-polar reversed-phase (RP) stationary phase, in 

which silica is covalently bond to hydrophobic alkyl functional groups – mostly silica-C18 

columns – together with polar aqueous mixture mobile phases such as water and methanol or 

water and acetonitrile (Allwood & Goodacre, 2010; Xiao et al., 2012; Yin & Xu, 2014; Jorge 

et al., 2016).  
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In most LC-MS-based metabolomics studies electrospray ionisation (ESI) is the common 

ionisation technique, regarded as a soft procedure that produces intact molecular ions with 

minimal metabolite fragmentation. This facilitates the determination of compound molecular 

weight and initial identification. ESI is frequently the preferred ion source when profiling 

unknown metabolites, as it allows acquiring of profiles in both positive and negative ionisation 

modes (Werner et al., 2008; Xiao et al., 2012; Gika et al., 2014; Kind et al., 2017). In the 

detection of metabolites in complex biological samples, LC-ESI-MS systems are increasingly 

becoming the preferred choice. The system allows more comprehensive coverage of the plant 

metabolome in relation to other currently used  metabolite profiling systems (Xiao et al., 2012; 

Milne et al., 2013; Putri et al., 2013; Yin & Xu, 2014; Wang et al., 2015). 

 

Over the years, improvements in LC-MS analytical instruments have enhanced extraction of 

more information from complex biological samples. Technological advances in LC-ESI-MS 

systems (mostly preferred in plant metabolomics studies) such as ultrahigh-performance liquid 

chromatographic (UHPLC) and introduction of advanced MS instrumentation, have led to 

improved peak resolution and increased sensitivity, robustness, detection specificity and 

functionality, respectively (Johnson & Gonzalez, 2012; Xiao et al., 2012; Milne et al., 2013; 

Putri et al., 2013; Ernst et al., 2014; Yin & Xu, 2014; Wang et al., 2015). The sensitivity, 

reproducibility and reliability in quantitative analyses and high-resolution full scanning, lately 

provided by high-resolution, accurate-mass MS (HRMS), have also enhanced extraction of 

information regarding sample composition from diverse metabolite chemical classes. Ion trap-

quadrupole-time-of-flight-MS (IT-Q-TOF-MS), quadrupole-time-of-flight-MS (Q-TOF-MS) 

and quadrupole-orbitrap-MS (Q-orbi-MS) are the presently available hybrid HRMS 

technologies being employed (Xiao et al., 2012; Liu, 2012; Scigelova & Makarov, 2013; 

Glauser et al., 2013; Vergeynst et al., 2013; Yin & Xu, 2014; Ser et al., 2015; Simader et al., 

2015; Rochat, 2016). Currently the LC-MS platform is being utilised to profile/investigate 

plant secondary metabolites in gene function, biomarker discovery, natural products 

elucidation, environmental perturbations and defence responses to mention but a few (Dixon, 

2001; Sawada & Hirai, 2013; Tugizimana et al., 2013; Cox et al., 2014; Heuberger et al., 2014; 

Hill & Roessner, 2015). 
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Table 2.3: Highlights of the advantages and disadvantages of some analytical platforms employed in metabolomics studies. 

 

Technique Advantage Disadvantages Source 

Gas chromatography-mass 

spectrometry (GC-MS) 

Good separation. 

High resolution.  

High sensitivity.  

High reproducibility. 

No ion suppression. 

Not suitable for thermolabile 

compounds. 

Derivatisation required for non-

volatiles. 

Extensive sample preparation. 

Destructive. 

Khoo & Al-Rubeai, 2007; Allwood et 

al., 2008; Balmer et al., 2013; 

Tugizimana et al., 2013; Wang et al., 

2015; Jorge et al., 2016 

Liquid chromatography-mass 

spectrometry (LC-MS) 

No sample derivatisation required. 

Suitable for thermolabile compounds. 

Suitable for non-volatile compounds. 

Can analyse high molecular weight compounds. 

High throughput. 

High comprehensiveness. 

High mass accuracy. 

High sensitivity. 

High resolution. 

 

Compound co-elution resulting ion 

suppression. 

Destructive. 

Extensive sample preparation. 

Sumner et al., 2003; Khoo & Al-

Rubeai, 2007; Allwood & Goodacre, 

2010; Tugizimana et al., 2013; Jorge 

et al., 2016 

Nuclear magnetic resonance 

spectroscopy (NMR) 

Non-destructive. 

Highly reproducible.  

Quantitative. 

Simple sample preparation. 

Solids and liquids compatible. 

Poor sensitivity. 

Overlapping of signals. 

Increased sample amounts required. 

Bino et al., 2004; Allwood et al., 

2008; Allwood & Goodacre, 2010; 

Johnson & Gonzalez, 2012; 

Tugizimana et al., 2013; Courant et 

al., 2014; Wang et al., 2015; Jorge et 

al., 2016 

Capillary electrophoresis-mass 

spectrometry (CE-MS) 

Good detection limits. 

High resolution. 

Faster separation than LC. 

Separation of different charge-to-size ratios is 

possible. 

Detection of metabolites usually lost during 

derivatisation in GC-MS. 

Good separation for very polar compounds. 

 

Technically demanding. 

Non-charged compounds separation is 

impossible. 

Poor reproducibility.  

Sato et al., 2004; Hall, 2006; 

Tugizimana et al., 2013; Jorge et al., 

2016; Young & Alfaro, 2016 
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Liquid chromatography (LC)/NMR Can analyse unstable metabolites. 

Good separation. 

Good for structural elucidation. 

Low sensitivity. 

Low throughput. 

Requires solvent suppression. 

Victoria & Elipe, 2003; Tugizimana 

et al., 2013 

Direct infusion mass spectrometry 

(DIMS) 

Rapid metabolite fingerprinting. 

Increased sensitivity. 

High throughput. 

Difficult to resolve isobars.  

Limited chemical information. 

Allwood et al., 2008; Allwood & 

Goodacre, 2010; Ernst et al., 2014; 

Wang et al., 2015 

Fourier transform-infrared (FT/IR) 

spectroscopy 

Non-destructive. 

Rapid sample analysis. 

High throughput.  

High reproducibility. 

Less sample preparation. 

No sample derivatisation required. 

Intense IR water absorption. 

Structural information is limited.   

Dunn & Ellis, 2005; Allwood et al., 

2008; Young & Alfaro, 2016 

Raman spectroscopies Rapid sample analysis. 

Minimised chemical bias. 

No water interferences. 

No sample derivatisation needed. 

Direct sample analysis.  

 

Impossible for metabolite identification. 

Spectra are highly convoluted. 

Limited structural information. 

 

Minai-Tehrani et al., 2016; Young & 

Alfaro, 2016 
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Although LC-ESI-MS systems potentially offer comprehensive analysis of the metabolome, 

there are still gaps with regard to complete metabolome coverage. This is due to the limitations 

arising from issues such as the wide range of molecular weights of metabolites, varying 

metabolite concentrations and polarities, and matrix effects, such as ion suppression or 

enhancement as a result of co-elution (King et al., 2000; Cech & Enke, 2002; Metz et al., 2008; 

Theodoridis et al., 2011; Van Der Hooft et al., 2012; Putri et al., 2013). However, there are 

continuous efforts as well as breakthroughs in addressing these limitations, together with 

technological advances of instruments and statistical modelling tools, to ensure a more 

comprehensive metabolome coverage (Likić et al., 2010; Allwood et al., 2011; Stahnke et al., 

2012; Ghosh et al., 2012; Johnson et al., 2015).  

  

2.4.2. Nature of metabolomic data: statistical modelling in metabolomics 
 

The generated metabolomics data (mostly in non-targeted approach) are high-dimensional, 

complex and information-rich data. Thus, data-handling and processing methodologies are 

crucial in order to extract information from such data sets (Ernst et al., 2014; Misra & van der 

Hooft, 2016). Prior to statistical/chemometric analyses, processing of the complex raw data is 

normally performed.  This data processing involves the critical steps of data pre-processing 

and pre-treatment. In LC-MS-based metabolomics studies, data pre-processing methods 

encompass baseline correction, peak detection, peak integration, peak alignment and peak 

annotation. On the other hand, data pre-treatment methods encompass normalisation, scaling, 

centering, transformation and dealing with missing values (Tugizimana et al., 2013; Ernst et 

al., 2014; Gika et al., 2014; Yin & Xu, 2014; Alonso et al., 2015; Misra & van der Hooft, 

2016). Data processing makes use of automated tools (Tugizimana et al., 2013) either open 

source (e.g. XCMS, MetaboAnalyst, etc.) or commercial (e.g. MarkerLynxTM, Profiling 

solution, etc.) (Yin & Xu, 2014; Alonso et al., 2015; Wang et al., 2015; Misra & van der Hooft, 

2016). The use and choice of these software packages varies with the nature of the data 

generated by an instrument (Tugizimana et al., 2013; Gika et al., 2014). 

 

Following data processing (data cleaning), statistical analysis is performed, of which univariate 

and multivariate statistical analyses methods are employed in further extracting relevant 

information. These statistical methods reduce dimensionality of the data, explore the data, mine 

patterns in the data, and allow selection of statistically significant variables that are biologically 

relevant (Fiehn, 2002; van den Berg et al., 2006, 2009; Jansen et al., 2010; Kalogeropoulou, 
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2011; Stenlund, 2011; Misra & van der Hooft, 2016).  The multivariate data analysis (MVDA) 

methods used include (i) unsupervised approaches, for example principal component analysis 

(PCA), simultaneous component analysis (SCA), canonical correlation analysis (CCA) and 

hierarchical cluster analysis (HCA) and (ii) supervised approaches, such as orthogonal partial 

least squares discriminant analysis (OPLS-DA), partial least squares discriminant analysis 

(PLS-DA), linear discriminant analysis (LDA), support vector machine (SVM) and genetic 

algorithms. A summary of these unsupervised and supervised MVDA methods is presented in 

Table 2.4  (Yamamoto et al., 2009; Priego-Capote et al., 2012; Tugizimana et al., 2013; Gika 

et al., 2014; Yin & Xu, 2014; Misra & van der Hooft, 2016). 

 

Table 2.4: A summary of some of the multivariate methods employed in metabolomics 

data analysis (adapted from Tugizimana et al., 2013). 

 Abbreviation Term Linearity 

/non-linearity 

assumption 

 

 

Generally 

unsupervised 

models 

CCA Canonical Correlation Analysis Linear 

CD-PCA Clustering and Disjoint-Principal Component Analysis Linear 

HCA Hierarchical Clustering Analysis  Linear 

K-CCA Kernel-Canonical Correlation Analysis Non-linear 

K-PCA Kernel-Principal Component Analysis Non-linear 

KANN Kohonen Artificial Neural Networks Non-linear 

MSCA Multi-level Simultaneous Component Analysis Linear 

PCA Principal Component Analysis Linear 

SCA Simultaneous Component Analysis Linear 

W-PCA Weighted-Principal Component Analysis  Linear 

 

 

 

 

 

Generally 

supervised 

models 

BANN Back-prop Artificial Neural Networks  Non-linear 

ASCA ANOVA-Simultaneous Component Analysis Linear 

DA Discriminant Analysis Linear 

K-OPLS-DA Kernel-Orthogonal Partial Least Squares-DA Non-linear 

K-PLS-DA Kernel-Partial Least Squares-DA Non-linear 

N-PLS-DA N-way PLS-DA Linear 

OPLS-DA Orthogonal Partial Least Squares-DA Linear 

O2PLS-DA Bidirectional Orthogonal PLS-DA Linear 

OSC Orthogonal Signal Correction Linear 

PCDA Principal Component Discriminant Analysis Linear 

PLS Partial Least Squares Linear 

SIMCA Soft Independent Modelling of Class Analogy Linear 

PLS-DA Partial Least Square Discriminant Analysis Linear 
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In this study, of the unsupervised and supervised multivariate methods used in data analysis 

shown in Table 2.4, much focus will be on PCA and HCA, and OPLS-DA respectively. PCA 

is an unsupervised linear additive model, employed in metabolomics studies as the initial stage 

in data analysis – for data dimensionality reduction. This statistical method entails the linear 

transformation of a set of observations into linear orthogonal variables termed principal 

components (PCs) – projected to a low dimensional plot. The model facilitates the 

identification of patterns and trends in the data (Katajamaa & Orešič, 2007; Khoo & Al-Rubeai, 

2007; Priego-Capote et al., 2012; Balmer et al., 2013; Putri et al., 2013; Tugizimana et al., 

2013; Madala et al., 2014; Alonso et al., 2015). PCA scores plots visually shows sample 

clustering i.e. between and within samples’ similarities and dissimilarities. The first principal 

component (PC1) explains most of the variance and the following PCs project the remaining 

variance – with each of the PCs constituting to the total variation (Steinfath et al., 2008; Grata 

et al., 2008; Werth et al., 2010; Liland, 2011;  Madala et al., 2014; Naz et al., 2014; Mhlongo 

et al., 2016). 

HCA is a clustering and visualisation method that is used in metabolomics studies. This 

unsupervised model uses (dis)similarity to group samples in data sets and encompasses 

successive pair-wise sample grouping based on predefined distance (Sumner et al., 2003; Cook 

& Rutan, 2014; Alonso et al., 2015; Young & Alfaro, 2016). The hierarchical clustering 

outcome is represented as a dendrogram (binary tree) which visually summarises the data 

(Sumner et al., 2003; Putri et al., 2013; Cook & Rutan, 2014; Madala et al., 2014; Young & 

Alfaro, 2016). HCA is advantageous in that it allows  researchers to visually interpret biological 

features in two-dimensional spaces especially, and for large sample number analysis (Putri et 

al., 2013). 

 

Although PCA, a descriptive model, is the basis of MVDA in metabolomics, which helps to 

visually explore trends and patterns in the data – giving an overview of the data, an additional 

method that allows classification and biomarker identification is required. OPLS-DA is a 

supervised linear regression and prediction method employed in the identification of class 

differences in a data matrix, using class information (Trygg et al., 2007; Bylesjö, 2008; Bylesjö 

et al., 2008; Fonville et al., 2011; Tugizimana et al., 2013; Madala et al., 2014). OPLS-DA 

was developed as a modification of PLS-DA (Bylesjö et al., 2006; Westerhuis et al., 2010). 

The calculation between multivariate data and response variables with class information leads 

to generation of a regression model. Herein, predictive and orthogonal variation is explained 
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where, the first component(s) is predictive, describing the variation related to the treatment 

while the other components are orthogonal components describing variation not related to the 

treatment (Wiklund et al., 2008; Westerhuis et al., 2010). An OPLS-DA score plot is generated 

to visualise the discrimination between sample groups, and an OPLS-DA loadings plot for 

indicating shared features and extraction of discriminating variables that are statistically 

significant. OPLS-DA loadings plots such as the shared-and-unique-structures (SUS)-plot and 

S-plot are thus pivotal in the variable selection process  (Wiklund et al., 2008; Roux et al., 

2011; Worley & Powers, 2015; Ncube et al., 2016). OPLS-DA differs from PCA in that it 

facilitates identification, extraction and interpretation of variables responsible for the 

discrimination between groups (Madsen et al., 2010; Tugizimana et al., 2013; Madala et al., 

2014). These statistically significant features are then annotated in order to link the results to 

the biological question (biological interpretation). Metabolite annotation  is a critical step in 

any untargeted metabolic study (Johnson & Gonzalez, 2012; Misra et al., 2017); and biological 

interpretation of data greatly depends on well-structured databases available for annotation 

(Tugizimana et al., 2013). 
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Chapter 3: Experimental Procedures 
 

As mentioned in Chapter 1, to unravel the biochemistry underlying sorghum’s responses to 

bacterial infection, the current study was designed to comprise two systems: (i) leave tissue 

and (ii) cell suspensions. For the former, young sorghum plants were treated by spraying a 

suspension of the bacterial pathogen B. andropogonis onto leaves; and for the latter sorghum 

cells suspensions were elicited with a lipopolysaccharide isolated and purified from B. 

andropogonis. The details of experimental design and procedures are provided in the following 

sections. 

 

3.1. Plant leaf tissue system 
 

3.1.1. Planting and growing of Sorghum bicolor plants  
 

Sorghum seeds of the two South African commercial cultivars (cvs) NS 5511 (bitter or BT) 

and NS 5655 (sweet or ST) (Agricol, Pretoria, South Africa) were used for this study. More 

information regarding the two cultivars is listed in Table 3.1. The seeds were initially surface-

sterilised by a sodium hypochlorite (jik): water solution (1: 2, v/v) before being placed in glass 

Petri dishes (with soaked paper towel) and incubated at 28 °C in the dark for 48 h to induce 

germination. All these above procedures were performed under strict sterile conditions. 

Following induced germination, the seedlings were planted in vermiculite for growth, under a 

12 h fluorescence light (≈ 85 µmol m−2 s−2) and 12 h dark cycle, mimicking outdoor day and 

light conditions. As indicated in the following paragraphs, the study was designed to monitor 

the responses for 9 days post-inoculation (d.p.i.); and at each time point (i.e. 1, 3, 5, 7 and 9 

d.p.i.): 3 biological replicates with each replicate comprising 7 plants. Temperatures in the 

plant growth room were kept within the 22–27 °C range. During the plant growth period, 

watering was done regularly: at least 2 times a week using water-soluble chemical fertiliser 

(Multisol ‘N’, Culterra, Muldersdrift, RSA) dissolved in distilled water. All the plants were 

grown at the same time under the same environmental conditions (same quality and quantity 

of light, temperature and water volumes applied) as to minimise unwanted variation. Figure 

3.1 shows young sorghum plants at the three-leaf growth stage.   
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Table 3.1: Some characteristics of the Sorghum bicolor cultivars used for the plant tissue 

study (adapted from Department of Agriculture, Forestry and Fisheries, 2012 and Capstone 

seeds, Howick, South Africa, 2016). 
 

Name NS 5511 NS 5655 

Other names Bitter (BT) Sweet (ST) 

Type Hybrid Hybrid 

Class Malting class Malting class 

Grading GH GM 

Condensed tannins Present in high levels Absent 

 Testa type Dark testa with a bitter taste- 

undesirable to birds 

Testa not dark 

Seed colour Red Red 

Plant height ~150 cm ~155 cm 

Disease resistance rating to head 

smut, leaf disease and root rot (on 1-

9 scale; 1= very resistant) 

3 3 

 

 

Figure 3.1: Healthy sorghum seedlings at the 3-leaf growth stage (~ 21 d after planting). The plant growth 

conditions were kept at ≈ 85 µmol m−2 s−2 light intensity for the 12 h light cycle, 12 h dark cycles and a 22–27 °C 

temperature range with regular plant watering (~2 times a week). 
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3.1.2. Bacterial culture and bacterial suspension preparation  
 

Medium for bacterial culturing was prepared by dissolving 9.6 g nutrient broth (Merck, 

Johannesburg, RSA) in 600 mL (1:62.5 w/v) distilled water in a 1 L Erlenmeyer flask, followed 

by autoclaving and cooling at room temperature in a laminar flow hood, under strict sterile 

conditions. After cooling, the medium (pH 7.1) was inoculated using a 1.5 mL stock solution 

of the B. andropogonis strain 256 (BD 256) in glycerol (1 mL bacterial culture + 500 µL 80% 

glycerol), which was previously stored at − 80 °C. The initial bacterial stock solution was 

obtained from Plant Protection Research Institute (PPRI, Agriculture Research Council, 

Pretoria, RSA). Following inoculation, the bacterial culture was incubated overnight on a 

shaker at 28 °C and speed of 130 rpm. Bacterial cells were then harvested from the culture by 

means of centrifugation using a JA-10 fixed angle rotor (Beckman Coulter, Indianapolis, IN, 

USA) at 9 000 x g and at temperature of 4 °C for 20 min. The pellet was collected and the 

supernatant discarded. Phosphate buffered saline (PBS, Sigma, St. Louis, MO, USA), prepared 

by dissolving tablets of PBS in distilled water as per manufacturer’s instructions (i.e. 1 tablet 

for every 200 mL). Initially the harvested bacterial cells (pellet) were resuspended in 2 mL 

PBS. The working (bacterial) suspension was subsequently prepared by serially diluting the 

above suspension (100 X to a volume of 800 mL), with PBS solution, until an optical density 

(OD) of 0.1 was obtained. To complete the preparation of the bacterial suspension, 800 µL 

(1:1000 v/v) of Insure pH buffer (Gouws and Scheepers (Pty) Ltd/ Plaaskem (Pty) Ltd, RSA) 

was added (as per manufacturer instructions) to improve wetting and spreading properties of 

the bacterial suspension. 

 

3.1.3. Infection of the sorghum seedlings with bacterial suspension 
 

At the 4-leaf growth stage (about 30 d after sowing), sorghum seedlings were treated by 

spraying the leaves equally and homogenously with the bacterial suspension (OD = 0.1), using 

a hand sprayer. After inoculum application, treated plants were incubated at 30 °C, in a high 

humidity environment, in darkness for 24 h. Following this incubation period, the plants were 

again exposed to the initial growth conditions mentioned in section 3.1.1. This study was 

designed to monitor the plant response to bacterial infection over time: 1, 3, 5, 7 and 9 d.p.i.. 

Thus, following the treatment, plant leaves from both cultivars were harvested at 1, 3, 5, 7 and 

9 d.p.i. and at 1, 5 and 9 d.p.i. for the non-treated plant leaves (i.e. negative controls ‒ not 



 
 

70 
 

sprayed). Leaves were cut from the plant and immediately stored at –80 °C to quench metabolic 

activity until the metabolite extraction steps could be performed. 

 

3.2. Cell suspension system 

 
Plant cell suspension cultures systems are used in various studies and their use has grown over 

the years. Applications of these systems include large scale biotechnological production of 

secondary metabolites (Dixon, 1999; Bourgaud et al., 2001; Ramirez-Estrada et al., 2016). The 

growing interest in plant suspension cultures is due to the advantages offered by such systems,  

which include shorter growth cycles than plant systems, reduced complexity, continuous 

availability of experimental material and rapid and increased experimental reproducibility due 

to the strictly controlled cell culture growing conditions (Ngara et al., 2008; Allwood et al., 

2011).  Furthermore, the biological material provided by cell suspension cultures is ideal for 

secondary metabolite biosynthetic pathways studies (Bourgaud et al., 2001) and metabolomics 

studies of inducible defence responses (Tugizimana et al., 2012).  

 

3.2.1. Culturing and harvesting bacterial cells for LPS isolation and 

purification 
 

An overnight (small scale) bacterial culture prepared as described in section 3.1.2 was used for 

inoculation of large scale cultures. Three 5 L Erlenmeyer flasks, containing 3 L of nutrient 

broth, were each inoculated with 200 mL of the overnight (small scale) bacterial culture, under 

strict sterile conditions. To ensure optimum bacterial growth, the large scale cultures were 

incubated at 30 °C on a rotating shaker at 100 rpm for 14 d. Growth of the large scale bacterial 

cultures was repeated several times (cycles) to ensure larger quantities of starting material 

(bacterial cells) for LPS isolation and purification. Harvesting of bacterial cells was performed 

by centrifugation at 13 000 ×g, 4 °C for 20 min, using a JA-10 rotor (fixed-angle centrifuge; 

Beckman Coulter, Indianapolis, IN, USA) with 6 x 400 mL centrifuge tubes capacity. The 

pellets were collected each time and the supernatants discarded. Harvesting of bacterial cells 

was followed by freeze-drying for 48 h before the LPS isolation and purification steps (section 

3.2.2).  
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3.2.2. LPS isolation and purification 
 

LPS was extracted from the bacterial cells biomass cultured as indicated in section 3.2.1, using 

the hot phenol extraction protocol as described by De Castro et al., (2010). The particular 

extraction used for this study involves lysing bacterial cells and partitioning of the LPS into 

the aqueous phase for a maximum LPS yield. Harvested B. andropogonis (BD 256) bacterial 

cells (section 3.2.1) were initially washed with 248 mL of 0.9% sodium chloride solution and 

then lyophilised. Following freeze-drying, 33 g of dried bacterial cells were suspended in 578 

mL (1: 17.5 w/v) warm water (65-70 ºC) and an equal volume of preheated (65-70 ºC) 90% 

phenol was added to the mixture. The above procedure was performed on a heated stirrer. The 

mixture was kept at 65 ºC for 15 min and then placed on ice until the temperature dropped to 

10 ºC. This was followed by centrifuging the obtained emulsion at 10 000 ×g for 30 min at 4 

ºC. The upper water phase was separated from the milky interphase and bottom phenol phase, 

and kept aside. To the remaining phases (phenol and interphase) an equal volume of warm 

water was added and the extraction procedure was repeated thrice – collecting the water phases 

each time. Following extraction, the combined water phases were concentrated to 200 mL using 

a rotary evaporator set at 55 ºC, and followed by dialysis (7000 molecular weight cut-off 

membrane, ‘Snakeskin’ dialysis tubing, Pierce, Thermo Scientific, Rockford, IL, USA) for 3-

5 d – changing the water frequently to remove traces of phenol. The dialysed water phase was 

centrifuged again at 10 000 ×g for 20 min followed by freeze-drying.  

 

For LPS purification, enzymatic digestion of the RNA that co-extracted into the water phase, 

was used. Dried extracts were dissolved in 30 mL (1: 40 w/v) distilled water and treated with 

0.1 mg RNase (Sigma-Aldrich, Steinheim, Germany) and incubated at 37 ºC for 2 h. Proteinase 

K (0.1 mg) (Sigma-Aldrich, Steinheim, Germany) was then added and the mixture was 

incubated at 37 ºC for 2 h. Following incubation, 30 mL of phenol was added in order to 

denature the enzymes and the mixture was centrifuged at 10 000 ×g for 15 min to obtain the 

water phase. This was dialysed for 3 d with frequent changes of distilled water and then 

lyophilised. The mass of purified LPS obtained thereof was determined and sent for 

characterisation to the Department of Chemical Sciences, University of Napoli Federico II, 

Naples, Italy (Di Lorenzo and Molinaro, unpublished). 
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3.2.3. LPS-specific SDS-PAGE analysis 
 

Isolated and purified LPS from both B. andropogonis and B. cepacia (as the marker) were 

prepared as follows for SDS-PAGE analysis: LPS stocks of 1 mg/mL were diluted with a 2X 

sample buffer in a ratio of 1:1. The sample buffer was made up of 0.05 M Tris (hydroxymethyl) 

aminomethane, at pH 6.8 (Merck, Darmstadt, Germany), 2% Sodium Dodecyl Sulpahte (SDS) 

(Sigma-Aldrich, St Louis, USA), 10% sucrose (Merck, Darmstadt, Germany) and 0.05% 

bromophenol blue (Saarchem, Muldersdrift, RSA). The samples were then heated for 5 min at 

100°C. A 12.5% SDS-PAGE gel was prepared by casting a 15% resolving gel [2.6 mL distilled 

water, 4.67 mL of 30% monomer solution (acrylamide/bisacrylamide in 29:1 ratio, Merck, 

Darmstadt, Germany), 2.5 mL 1.5 M Tris at pH 8.8, 100 µL 10% SDS, 100 µL 10% ammonium 

persulphate (APS, Merck, Darmstadt, Germany) and 10 µL TEMED (Merck, Hohenbrunn, 

Germany)] into an assembled gel cassette system, followed by additionally pouring water-

saturated butanol on top of the resolving gel, and leaving the gel to polymerise. Following 

polymerisation, the water-saturated butanol was discarded and rinsed off with distilled water. 

A 4% stacking gel [4 mL distilled water, 3.3 mL 30% monomer solution (acrylamide/ 

bisacrylamide in 29:1 ratio), 2.5 mL 1.5M Tris at pH 6.8, 100 µL 10% SDS, 120 µL 10% 

ammonium persulphate (APS), 50 µL TEMED] was then poured on top of the resolving gel 

and a teflon comb was inserted, and the gel left to polymerise. The comb was removed 

following polymerisation of the stacking gel and the gels cassette was placed into the 

electrophoresis tank and 1X tank buffer added to it. The 1 X tank buffer was prepared from a 

10 X buffer [10 g SDS + 30.3 g Tris + 1.44.1 g glycine (Sigma-Aldrich, St Louis, USA)  in 1 

L dH20] by diluting 100 mL of the 10 X with 900 mL distilled water. Fifteen µL of the LPS 

samples prepared as described above were then loaded onto the gel and electrophoresed using 

the Hoefer Scientific miniVE vertical electrophoresis system (Hoefer, Richmond CA, USA) at 

voltage of 300 volts, constant current of 12 mA for separating gel and 25 mA for stacking gel. 

Upon completion of electrophoresis, a silver staining procedure was performed  according to 

the Fomsgaard et al. (1990) and Tsai & Frasch, (1982) protocols for visualisation of the various 

LPS moieties/bands.  

 

For silver staining, 0.7% periodic acid (H5IO6, Merck, Darmstadt, Germany) in 40% ethanol 

and 5% acetic acid (Rochelle Chemicals, Johannesburg, RSA) was added for the oxidation of 

the LPS moieties/bands in the gel and left for 20 min (no prior fixation method was required). 

Thereafter the gel was washed for 5 min in distilled water (this was repeated thrice). A staining 
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solution [of concentrated ammonium hydroxide (Rochelle Chemicals, Johannesburg, RSA), 

0.1 M sodium hydroxide, 20% (w/v) silver nitrate (AgNO3 (Merck, Darmstadt, Germany), 

freshly prepared] was added to the gel which was continuously agitated for 10 min. This was 

followed by washing of the gel with distilled water for 5 min (this was done thrice). A developer 

solution [200 mL distilled water, 10 mg citric acid (Sigma-Aldrich, St Louis, USA), 37% 

formaldehyde (Sigma-Aldrich, St Louis, USA)] was poured onto the gel and left until the bands 

developed. To terminate the developing process, 10% acetic acid stop solution was added and 

left for 15 min, followed by the washing the gels in distilled water for 30 min (this was done 

twice).  

 

3.2.4. Sorghum cell culture establishment and growth  
 

In the cell suspension study, Sweet White sorghum variety (Agricol, Pretoria, RSA) was used 

for callus development. Seeds were prepared and germinated as previously described by Ngara 

et al., (2008). Initiation of callus development was then carried out by plating germinated 

sorghum shoots on full strength solid Murashige and Skoog (MS) media [0.8% (w/v) phytoagar 

and 3% (w/v) sucrose, pH 5.8] including MS vitamins and added phytohormones [3 mg/L 2,4-

dichlorophenoxyacetic acid (2,4-D) and 2.5 mg/L 1-naphthaleneacetic acid (NAA)], at 25 ºC 

in the dark with continuous monitoring of growth over 4 weeks (Ngara et al., 2008; Ngara & 

Ndimba, 2011). After successful callus development, the callus was sub-cultured in MS media 

(same composition as above)  and left to develop for 3 weeks before equally distributing the 

callus clumps into small Erlenmeyer flasks containing half-strength liquid MS medium  (same 

composition as above but without agar). The cell cultures were incubated on a horizontal shaker 

with continuous agitation at a speed of 130 rpm at room temperature, with 12 h light and 12 h 

dark cycles. Once successfully established in the liquid medium (14 d), the cells were sub-

cultured into a number of flasks containing freshly prepared MS media (plus MS hormones 

and vitamins), and incubated on the horizontal shaker with the same growth conditions 

(described above) (Figure 3.2). The above procedures were performed under strict sterile 

conditions and the cell suspensions sub-cultured every 14 d. 
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Figure 3.2: Sorghum cell suspension cultures obtained after the initial cell suspension sub-culturing. After 

successful establishment of cell suspension from callus, the cell suspensions were sub-cultured into MS medium 

with MS hormones and vitamins followed by an incubation for 7 d with continuous shaking at 130 rpm, to obtain 

the cell suspension cultures represented in the figure. 

 

 

 

3.2.5. Elicitation of sorghum cell suspension with Burkholderia 

andropogonis LPS 
 

B. andropogonis LPS (isolated and purified as described in section 3.2.2) was prepared for 

sorghum cell suspension elicitation by initially dissolving LPS in MS medium at room 

temperature to give a 10 mg/mL final stock solution. Sorghum cell suspensions i.e. 100 mL 

from each of the five 250 mL Erlenmeyer flasks were first combined and mixed to ensure a 

homogeneous mixture of cells. Equal aliquots (25 mL) were then redistributed into pre-

weighed, sterile 50 mL Falcon tubes ‒ with three biological replicates for each condition. 

Treatment of the cell suspensions was performed by adding 250 µL of the prepared LPS stock 

solution, so as to results in a final concentration of 100 µg/mL in each of the tubes. For the 

negative control conditions, no LPS was added. The treated and non-treated cell suspensions 

were then placed horizontally on an orbital shaker and incubated at 130 rpm and 25 °C. A time 

study (0, 12, 18, 24 and 30 hours post-inoculation, h.p.i.) was conducted to monitor the 

response of the cells to treatment over time. Treated cells were harvested at 12, 18, 24 and 30 

h.p.i., while control cells were at 0 h.p.i., using centrifugation in a bench top swinging bucket 

centrifuge at 5100 rpm and 4 ºC for 25 min. Pellets and supernatants were separated and 
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immediately stored at –80 °C until both intracellular and extracellular metabolite extraction 

steps could be performed.  

  

3.3. Metabolite extraction and pre-analytical sample preparation  
 

For plant leaf tissue, metabolites were extracted from treated and non-treated (NS 

5655/sweet/ST, and NS 5511/ bitter/BT) plants using 80% cold methanol in a ratio of 1:15 

(w/v). For sorghum cell suspensions, intracellular metabolites were extracted using 100% cold 

methanol in a ratio of 1:2 (w/v), working at 4 °C. In both cases, following addition of extraction 

solvent, the mixture was homogenised using an Ultra Turrax homogenizer and sonication using 

a probe sonicator (Bandelin Sonopuls, Germany) set at 55% power for 15 s. The homogenates 

were centrifuged at 5000 ×g for 25 min at 4 °C, (swinging-bucket centrifuge; Beckman Coulter, 

Brea, CA USA) and supernatants were kept. To concentrate the extracts, the supernatants (of 

each sample) were evaporated under vacuum to 1 mL using a rotary evaporator set at 55 °C, 

and then evaporated to complete dryness with a speed vacuum concentrator (Eppendorf, 

Merck, Johannesburg, RSA) set at 45 °C. Extracellular metabolites were extracted as follows; 

the supernatant (media) obtained after centrifugation was first lyophilized and the obtained 

material was kept for re-suspension. The dried extracts (from plant leaf tissue and intra-, and 

extracellular fractions of cultured cells) were then re-suspended in 50% UHPLC-grade 

methanol (Romil Pure Chemistry, Cambridge, UK) in a 1:10 m/w ratio. This was followed by 

filtering samples through 0.22 µm nylon syringe filters into UHPLC glass vials fitted with 500 

µL inserts. The filtered extracts were capped and kept at –20 °C until analysed.  

 

3.4. Ultrahigh-performance liquid chromatography-high 

definition mass spectrometry (UHPLC-HDMS) analyses  
 

UHPLC and high-definition mass spectrometry analyses were performed on a Waters Acquity 

UHPLC coupled in tandem to a Waters photodiode array (PDA) detector and SYNAPT G1 Q-

TOF mass spectrometer (Waters Corporation, Milford, MA, USA). Chromatographic 

separation of the methanolic extracts was done using a Waters HSS T3 C18 column (150 mm 

× 2.1 mm ×1.8 µm), in a column oven maintained at 60 °C. Gradient elution was carried out 

with a binary solvent system consisting of 0.1% formic acid (Sigma-Aldrich, St. Louis, MO, 

USA) in MilliQ water (solvent A) and 0.1% formic acid in acetonitrile (Romil Pure Chemistry, 
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Cambridge, UK) (solvent B) at a flow rate of 0.4 mL/min. The initial conditions were 2% B 

and were maintained for 1 min. The gradient was ramped to 95% B at 15 min and maintained 

for 2 min, and then changed to the initial conditions at 18 min, followed by a 2 min equilibration 

time of the column. The total chromatographic run time was 20 min and the injection volume 

was 2 µL for plant tissue extracts and 4 µL for cell suspension extracts. Each sample was 

analysed in triplicate to account for any analytical variability.   

 

High definition mass spectrometry (MS) was performed on a Waters SYNAPT G1 Q-TOF 

system operated in V-optics, and with an electrospray ionisation (ESI) source interface. 

Leucine encephalin (50 pg/mL) was used as a reference calibrant to obtain typical mass 

accuracies between 1 and 3 mDa. The MS data were acquired in both positive and negative 

modes, with a capillary voltage of 2.5 kV, sampling cone at 30 V, extraction cone at 4 V, cone 

gas flow 50 L h−1 and desolvation gas flow 550 L h−1. The source temperature was 120 °C and 

the desolvation temperature 450 °C. A scan time of 0.1 s was used with a 100-1000 Da mass 

range. The data were acquired with different collision energies (MSE) 10–50 eV to obtain as 

much structural information as possible for detected compounds. The MassLynx software 

(V4.1 SCN 872, Waters Corporation Milford, MA, USA) was used to control the hyphenated 

system and perform initial data manipulation. 

 

3.5. Data processing and multivariate data analyses 
  

Raw data, both ESI negative and positive, obtained from UHPLC-HDMS, were extracted using 

MassLynxTM XS software and processed with MarkerLynx software (Waters Corporation, 

Manchester, UK). Data pre-processing included peak picking, peak alignment, noise filtering, 

peak area integration and normalisation. Varying software parameters were used for data 

processing. The data matrices (samples = N, and Rt-m/z variables with integrated peak areas) 

obtained from MarkerLynx processing were exported into SIMCA 14, Omics skin (Umetrics, 

Umea, Sweden) for statistical analyses. The data were Pareto-scaled before principal 

component analysis (PCA), hierarchical cluster analysis (HCA), and orthogonal partial least 

squares discriminant analysis (OPLS-DA). The generated models were validated using 

different methods (as described in the respective sections in Chapter 4; section 4.3 and 

Chapter 5; section 5.2).  
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3.5.1. XCMS online data processing and analysis 
 

The XCMS (various forms of chromatography–mass spectrometry) online package was 

additionally used for further analyses of LC-MS data. This bioinformatics open-source tool 

based on the R language and accessible on the web address: https://xcmsonline.scripps.edu, 

was employed complementary to MarkerLynx and SIMCA-based analyses. This was essential 

for the aim of comprehensive coverage of the metabolites associated with treatment of sorghum 

plants with B. andropogonis (Wei et al., 2012; Benton et al., 2015; Tugizimana et al., 2015; 

Mahieu et al., 2016; Ncube et al., 2016). The following parameters were used in the XCMS 

analysis: feature detection was set with m/z deviation of 15 ppm; minimum peak width of 5 

and maximum peak width of 20; Rt correction was attained using Orbiwarp method; alignment 

set at 0.5, Rt deviation at 5 s, m/z window at 0.015; for statistical test the unpaired parametric 

t-test was performed, with p-value threshold of 0.05 and a fold change threshold of 1.0; 

annotation with m/z absolute error of 0.002. 

 

3.6. Metabolite annotation 
 

In untargeted metabolomic studies, metabolite annotation still remains a challenging task. As 

such, many metabolites remain uncharacterised owing to the complexity in biological systems. 

(Camacho et al., 2005; Johnson & Gonzalez, 2012; Courant et al., 2014; Misra et al., 2017). 

Although, MS can attain accurate mass and produce compounds fragments, to provide more 

information about the compound structure, manual interpretation of large numbers of 

fragmentation spectra is time-consuming and labour intensive making it nearly impractical. In 

addition, different molecules may produce similar spectra (Scheubert et al., 2013 Hufsky et al., 

2014). However, several approaches have been put into place over the years (including novel 

approaches) to aid in identification of unknown metabolites, as clearly reviewed by Misra et 

al. (2017). Noteworthy, the availability of information and defined pathways in databases still 

remains a limiting factor thereof. On the other hand, authentic reference standards also facilitate  

definitive and confidence in metabolite identification through comparing MS data and retention 

time of compounds of interest in the study with these standards (acquired under the same 

experimental settings) (Sumner et al., 2007; Gowda & Djukovic, 2014; Misra & van der Hooft, 

2016). While ideal, the limitations with regards to authentic reference standards include 

excessive costs (when multivarious standards are needed) (Clifford & Madala, 2017) and 

commercial unavailability for some plant metabolites (Plazonić et al., 2009; Hossain et al., 

https://xcmsonline.scripps.edu/
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2010). With consideration to the above mentioned factors,  the annotated metabolites are 

reported with a degree of certainty (Table 3.2) set by the Chemical Analysis Working Group 

(CAWG) – part of the Metabolomics Standard Initiative (MSI) (Sumner et al., 2007). 

 

Table 3.2: The metabolite annotation/identification reporting levels laid by the Chemical 

Analysis Working Group (CAWG) (adapted from Finnegan, 2012). 

  

Level Metabolite annotation Level of evidence  

1 Confidently identified 

compounds 

Comparison of two or more orthogonal properties with an authentic 

reference standard analysed under similar experimental settings. 

2 Putatively annotated 

compounds 

Here, no reference standard is used. Physicochemical properties and/or 

spectral similarities with public/commercial spectral libraries is the 

basis for annotation.  

3 Putatively compound classes 

characterised 

Characteristic physicochemical properties of a chemical class of 

compounds, or spectral similarity to known compounds of a chemical 

class is the basis of annotation. 

4 Unknown compounds  Based on spectral data, metabolites can still be differentiated and 

quantified, even though unidentified or unclassified. 

 

In this study the first step in metabolite annotation involved running data matrices obtained 

after MarkerLynx processing (raw data) on the Taverna workbench (www.taverna.org.uk) for 

PUTMEDID_LCMS metabolite identification workflows. These comprise correlation 

analysis, metabolic feature annotation and metabolite annotation (Brown et al., 2009). The 

resulting metabolite identities generated (together with adducts and molecular formulae) were 

then confirmed with the aid of fragmentation patterns. Here, accurate masses obtained from the 

Waters SYNAPT G1 Q-TOF system were used to generate empirical formulae. If the mass 

difference between measured and calculated mass was at or below 5 mDa, the corresponding 

formulae was selected and queried against available online databases such as Dictionary of 

Natural Products (DNP) (dnp.chemnetbase.com), ChemSpider (www.chemspider.com), 

PubChem (www.pubchem.ncbi.nlm.nih.gov), PlantCyc (www.plantcyc.org), SorgCyc 

(www.sorgcyc.org) and KNApSAcK (http://kanaya.naist.jp/knapsack_jsp/top.htm). 

Parameters such as isotopic fit (iFit) and double bond equivalent (DBE) were also taken into 

consideration in the selection of the formulae. Literature available on sorghum metabolites was 

also used to aid in metabolite annotation/confirmation. Thus, annotation of metabolites in this 

study was done at level 2 of the Metabolomics Standards Initiative (MSI), see Table 2 (Sumner 

et al., 2007). 

http://www.chemspider.com/
http://www.pubchem.ncbi.nlm.nih.gov/
http://www.plantcyc.org/
http://www.sorgcyc.org/
http://kanaya.naist.jp/knapsack_jsp/top.html
http://kanaya.naist.jp/knapsack_jsp/top.htm
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Chapter 4: Results and Discussion, 

part I: Metabolomic analyses of the 

defence response of two Sorghum 

bicolor cultivars to infection by 

Burkholderia andropogonis  
 

 

4.1. Bacterial leaf stripe symptom progression and evaluation in 

treated Sorghum bicolor plants 
 

Plant diseases resulting from bacterial or fungal infection usually manifest symptoms 

distinctive to the pathogen on the infected part of the plant (e.g. leaves). Thus, upon diagnosis 

of plant diseases, the evaluation of symptoms is a critical step as an indicator of disease severity 

and/or host resistance (Riley et al., 2002; Vidaver & Lambrecht, 2004; Bock & Nutter, 2011; 

Matsunaga et al., 2017). Following treatment of NS 5511 (BT = bitter) and NS 5655 (ST = 

sweet) sorghum cvs with B. andropogonis, the progression of bacterial leaf stripe symptoms 

on the leaves was monitored over time. 

 

 
 

Figure 4.1: Symptom progression on sorghum leaves (NS 5511 cv) subsequent to infection with B. 

andropogonis. The symptoms are compared to the non-treated plants (control). On 1 d.p.i. (days post inoculation) 

no symptom development can be noticed. However, at 3 d.p.i. small tan lesions start to show and progress (lesion 

elongation) over the days to a point where most parts of the leaves are covered in lesions and drying of leaves can 

be noticed (9 d.p.i.). 
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Figure 4.2: Symptom progression on sorghum leaves (NS 5655 cv) subsequent to infection with B. 

andropogonis. The symptoms are compared to the non-treated plants (control). On 1 d.p.i. (days post inoculation) 

no symptom development can be noticed. However, at 3 d.p.i. small tan lesions start to show and progress (lesion 

elongation) over the days to a point where most parts of the leaves are covered in lesions and drying of leaves can 

be noticed (9 d.p.i.). Note, a similar symptom progression trend can be noticed as for NS 5511 cv (Figure 4.1).  

 

 

The visual inspection of symptom development on sorghum leaves (on both NS 5511and NS 

5655 cvs), following the bacterial infection, showed typical bacterial leaf stripe symptoms 

(Figures 4.1 and 4.2) as previously reported in sorghum plants infected with B. andropogonis 

(Claflin et al., 1992; Ramundo & Claflin, 2005). Small linear tan lesions appeared on the 

inoculated plant leaves – which progressively elongated with time, nearly encompassing the 

entire leaf surface (Figures 4.1 and 4.2), and indicative of the disease progression. Initially, no 

visible symptoms were observed at 1 d.p.i. for both cvs. The plants, however, started to display 

symptoms at 3 d.p.i. (Figures 4.1 and 4.2). Appearance of lesions is one of the first visible 

indicators of host plant–pathogen interactions (Kachroo & Kachroo, 2009). As described by 

Bagsic et al. (1995), the leaf stripes (lesions) develop as a result of pathogen invasion of 

parenchymatous tissue. Additionally, the subsequent launching of defence responses following 

perception of a pathogen leads to events such as, the onset of programmed cell death and 

production of defence-related secondary metabolite production – in order to limit the pathogen 

or infection from spreading to other parts of the leaf/plant (Zvereva & Pooggin, 2012; Balmer 

et al., 2013; Poloni & Schirawski, 2014; Andolfo & Ercolano, 2015; Tugizimana, 2017). As 

stated by Mizuno et al., (2016) the development  of pigmented lesions is regarded as an action 

set to enhance plant resistance. 

 

Furthermore, a disease severity rating was done based on the percentage of leaf area covered 

in symptoms (Table 4.1). Generally, both sorghum cvs (NS 5511 and NS 5655) showed similar 

symptom development, as infographically depicted in Figures 4.1 and 4.2. However, NS 5655 
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cv displayed signs of wilting at an earlier stage relative to the former. The NS 5511 cv, thus, 

appeared to be more resistant to the bacterial infection based on the symptomatology. This is 

in accordance with Tugizimana (2017) who reported the NS 5511 cv as more resistant. The 

symptom progression displayed, therefore, showed a cultivar- and time-dependant response to 

B. andropogonis.  

 

Table 4.1: Bacterial leaf stripe disease severity rating in NS 5511 (BT) and NS 5655 (ST) 

sorghum cvs. 

 

Disease severity index according to cultivar 

Days post inoculation (d.p.i.) NS 5511 (BT) NS 5655 (ST) 

1 1 1 

2 1 1 

3 2 2 

4 2-3 3 

5 3 3 

6 3-4 4 

7 4 4-5 

8 4 5 

9 5-6 5-6 

 

 

4.2. Ultra high performance liquid chromatography-high 

definition mass spectrometry (UHPLC-HDMS) analyses of 

extracts derived from non-treated and treated sorghum 

plants 
 

Aqueous-methanol extracts from both treated and non-treated plant leaf tissue of the two S. 

bicolor cvs, NS 5511 and NS 5655, were analysed on an UHPLC-HDMS platform as described 

in Chapter 3 (section 3.4). These extracts displayed an inherent multidimensionality emerging 

from the complex physicochemical characteristics of the sample constituents, thus making 

chromatographic separation necessary (Giddings, 1995; Schure, 2011; Tugizimana et al., 2013; 

Tugizimana et al., 2016). When optimised, LC allows the separation of a high number of 

metabolites, thereby reducing the analytical complexity of the analytes before MS analysis; 

thus, enhancing MS and subsequent data analyses (Allwood et al., 2008; Allwood & Goodacre, 

2010; Tugizimana et al., 2013).  

 

From LC-MS analyses of the aqueous-methanol extracts, the resulting chromatography 

infographically shows the complexity of the extracts, i.e. comprising a mixture of polar, mid-

*Severity ratings index was defined as follows: 

1 = no lesions; 

2 = 1 - 10% lesions. 

3 = 11 -25% lesions. 

4 = 26 -50% lesions and signs of wilting. 

5 = 51 - 75% lesions and ≤50% wilting. 

6 = 76-100% lesions and >50% wilting. 
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polar and non-polar compounds (with more of the compounds being mid-polar) and differences 

across the samples. For the latter, differential observations include variation in peak intensities 

and presence/absence of peaks across samples; suggesting differential metabolic profiles: i.e. 

time-related (Figure 4.3 and S 4.1-4.3) and cultivar-related metabolic responses (Figure 4.4 

and S 4.4), because of bacterial infection. Some notable chromatographic differences in peak 

intensities and peak population can be visually observed in the 9-9.5 min (highlighted in red) 

and 12.5-15.0 min (highlighted in green) regions of Figure 4.3, respectively ‒ reflecting 

induced treatment-related and time-related differential metabolic profiles in sorghum plants 

following the bacterial infection.  

 

 
 

Figure 4.3: UHPLC-MS BPI chromatograms for ESI negative data of extracts derived from sorghum NS 

5511 (BT) cv responding to B. andropogonis infection. Sample extracts were prepared from plant material 

harvested at the indicated time intervals. Variation in the displayed chromatograms, linked to treatment- and time-

related metabolic changes can be visually observed from control (non-treated) sample vs treated samples (1 - 9 

d.p.i.) chromatograms.  

 

Furthermore, differential responses of the cultivars (cv-related response) to bacterial treatment 

could be observed across samples (Figure 4.4). A closer visual inspection of the 

chromatograms generated from NS 5511 vs NS 5655 extracts depicts variation in peak 

population and peak intensities amongst the two cv samples: this is revealed at 3 d.p.i. and 5 

d.p.i. time points in the highlighted region i.e. 12.6-14.5 min Rt range.  
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Figure 4.4: Comparative UHPLC-MS BPI chromatograms for ESI positive data of extracts derived from 

sorghum NS 5511 (BT) vs NS 5655 (ST) cvs responding to B. andropogonis. NS 5511 treated sample 

chromatograms at 3 and 5 d.p.i. shown against NS 5655 treated samples at the same time period, visually showing 

cultivar-related metabolic changes. 

 

 

4.3. Multivariate data analyses: statistical description and 

explanation of variation in the acquired LC-MS data 
 

To further explore and explain the differences visually observed on the chromatograms, 

statistical analyses were performed. As mentioned in Chapter 2 (section 2.4), non-targeted 

metabolomics, as a high-throughput ‘omics’ approach, enables the measurement of thousands 

of metabolites simultaneously. The results thereof are information-rich and highly complex 

data. This, therefore, requires various chemometrics/multivariate data analysis tools which are 

a better fit in handling confounding and covariance patterns (between and within variables) – 

which is not normally feasible with traditional statistical methods (Trygg et al., 2007; 

Tugizimana et al., 2012, 2013, 2014; Saccenti et al., 2013). To highlight the metabolic changes 

induced by B. andropogonis treatment, multivariate data analyses methods were employed to 

mine the collected multidimensional data: reducing the dimensionality of the data, exploring 

the data so as to unravel structures, patterns within the data; and identifying variables 

explaining sample groupings in the multivariate space. These methods thus allowed the 

extraction of relevant biological information related to the study at hand (Goodacre et al., 2004; 

Reshetova et al., 2014; Tugizimana et al., 2013, 2015). 
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As mentioned in Chapter 3, unsupervised methods namely PCA and HCA were applied, 

following data pre-processing and pre-treatment. PCA provided a non-biased reduction of data 

dimensionality and facilitated the identification of trends and patterns in the data, thus giving 

an overview thereof (Madsen et al., 2010; Ncube et al., 2016; Misra & van der Hooft, 2016), 

in relation to bacterial treatment. The computed PCA models revealed time- and cv-related 

sample clustering. All the calculated PCA models were mathematically robust and had a 

reliable predictive accuracy – explaining more than 50% of the total variation in matrix X, with 

a predictive ability greater than 50% according to seven-fold cross-validation. The PCA scores 

plots (Figures 4.5 A and S 4.5-4.7 A) show treated samples clustering separately from the 

control samples. A time trend clustering can also be seen when the scores plot is coloured based 

on time points (Figures 4.5 B and S 4.5-4.7 B). PCA models computed based on cvs (Figures 

4.6 A-B and S 4.8 A-B) showed a clear separation between the NS 5511and NS 5655 sorghum 

cvs. The observed sample clustering described above reflects the differences in metabolite 

profiles across the samples and between the two sorghum cvs respectively and thus, induced 

differential metabolic responses to B. andropogonis treatment. 
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Figure 4.5: PC and HC analyses of the ESI negative data for sorghum NS 5511 (BT) extracts. (A & B): A 

11-component model, explaining 84.2% variations in Pareto-scaled data, X, and the amount of predicted variation 

by the model, according to cross-validation, is 74.1%.   A and B is the same scores plot: with A coloured according 

to treatment and B is coloured according to time. This two-dimensional scores space, spanned by the first two 

PCs, reveals treatment-related sample clustering (treated = blue, controls/non-treated = green) and also time-

related clustering, respectively. Note: to determine the group (control/treated) to which the time-related clusters 

in B and D belong, link to the corresponding positions in A and C, respectively (this applies to all the PCA and 

HCA plots).  (C & D): HCA dendrograms computed from low dimensional data (PC scores plot). The models 

which correspond to A and B respectively were computed using 11 vectors/components, explaining 84.2% of the 

total variation in X matrix. C displays treatment-related relationships amongst the samples; treated (blue) samples 

are clearly separated from the non-treated samples (green) except for a few samples, while D displays time-related 

relationships. 
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Figure 4.6: PC and HC analyses of the ESI negative data for sorghum NS 5511 (BT) and NS 5655 (ST) 

extracts. (A & B): 15-component models, explaining 86.0% variations in Pareto-scaled data, X, and the amount 

of predicted variation by the model, according to cross-validation, is 79.6%.  A and B is the same scores plot, with 

A coloured according to condition and B coloured according to cv. This two-dimensional scores space, spanned 

by the first two PCs, reveals treatment-related sample clustering (treated = blue, controls/non-treated = green) (A) 

and also cv-related clustering (B). (C & D): HCA dendrograms computed from low dimensional data (PC scores 

plot). The models were computed using 15 vectors/components, explaining 86.0% of the total variation in X 

matrix. C displays treatment-related relationships amongst the samples; treated (blue) samples from both cvs are 

clearly separated from the non-treated samples (green) except for a few samples, while D displays cv-related 

relationships. 

 

HCA was applied on low-dimensional data generated from the PC analyses – as a 

complimentary data exploration method, that also offers a visual summary of the data (Putri et 

al., 2013; Madala et al., 2014). Moreover, the analyses facilitated in revealing hidden structures 

in the data (e.g. any samples subgroupings) as well as further scrutiny/confirmation of the 

trends displayed by the PC analyses. Here, dendrograms were computed from the metabolite 

space using the Ward linkage method to reveal sample classifications (Hall, 2011; Madala et 

al., 2014; Tugizimana, 2017). Descriptively, similar sample clustering to PC analyses was 

shown by the HCA models (Figure 4.5 C-D and S 4.5-4.7 C-D). Here, two major clusters of 

treated samples clustering separately from the non-treated samples were displayed (except for 

treated day 1 which clustered with the non-treated sample) by both cvs in ESI negative data. 
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Additionally, the dendrograms displayed a trend associated with different time points. 

Dendrograms corresponding to the PCA scores plot, generated based on cvs, reveal treatment 

(Figure 4.6 C and S 4.8 C) and cv-related (Figure 4.6 D and S 4.8 D) sub-groupings 

respectively. Bacterial infection, thus, induced differential metabolic reprogramming in S. 

bicolor plants; with cv-related nuances. 

  

To complement the descriptive view provided by PCA and HCA modelling, a supervised 

statistical tool namely OPLS-DA together with XCMS online analysis were applied to evaluate 

and explain the metabolic changes (uncovered by unsupervised tools) of sorghum plants 

responding to the bacterial infection. The OPLS-DA method aided in identifying class 

differences in the data matrix, facilitating the identification, extraction and interpretation of the  

features responsible for the class differences (Bylesjö et al., 2006; Madsen et al., 2010; Putri 

et al., 2013; Gowda & Djukovic, 2014; Hill & Roessner, 2015; Tugizimana et al., 2016). 

 

Generated OPLS-DA score plots (Figure 4.7 A and S 4.9 A, 4.11 A, 4.13 A) show evident 

classification of samples i.e. the samples are clearly grouped into two distinct classes of treated 

(blue) and non-treated (green) samples. These calculated OPLS-DA models were statistically 

significant models (with CV-ANOVA p-value less than 0.05), and computed to separate 

multivariate relationships into: predictive variation (related to bacterial infection) and 

orthogonal variation (unrelated to bacterial infection) (Tugizimana et al., 2014, 2015, 2016). 

Furthermore, the OPLS-DA models were validated using various diagnostic tools, to determine 

how well these binary classification models performed and to also rule out model-overfitting 

in the supervised modelling (Madsen et al., 2010; Hrydziuszko & Viant, 2012; Bartel et al., 

2013; Naz et al., 2014; Alonso et al., 2015). These validation steps are regarded as necessary 

when handling highly dimensional datasets from LC–MS (Yin & Xu, 2014). 

 

Distance to the model in space X (DModX) was used as a tool for detecting moderate outliers.  

DModX plots (Figure 4.7 B and S 4.9 B, 4.11 B, 4.13 B) show a few moderate outliers i.e. 

observations whose DModX value is above the Dcrit (critical value of DModX; 0.05). To check 

the performance of OPLS-DA as a binary classifier, the receiver operator characteristic (ROC) 

plot was employed. ROC plots (Figure 4.7 C and S 4.9 C, 4.11 C, 4.13 C) graphically 

summarised a perfect discrimination depicted by the OPLS-DA models (binary classifier) i.e. 

computed models were perfect classifiers – as revealed by the high sensitivity and specificity 

(~ 100%) of the ROC curve (Tugizimana et al., 2016; Tugizimana, 2017). Moreover, 
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permutation testing (Figure 4.7 D and S 4.9 D, 4.11 D, 4.13 D), as a powerful tool in measuring 

the performance of a model, was carried out to determine whether the performance of the 

computed binary classification (OPLS-DA) models were statistically significant. The 

permutation tests revealed that the computed OPLS-DA models were statistically significant 

and that in the separation of classes, none of the permutated models showed a better  

performance  than that of the original models (Hendriks et al., 2011; Alonso et al., 2015; Young 

& Alfaro, 2016; Tugizimana, 2017). 

 

 

Figure 4.7: Supervised multivariate analyses of the ESI negative UHPLC-MS data for NS 5511 (BT) cv 

extracts (excluding QCs). (A): The OPLS-DA score plot shows grouping of control vs treated for all samples. 

This model comprises 1 predictive component and 2 orthogonal components (R2X= 67.2%, R2Y= 99.3% and Q2= 

98.7%). (B): A distance to the model in space X (DModX) plot showing moderate outliers (above the dashed red 

line, Dcrit) in the OPLS-DA scores plot. (C): A representative receiver operator characteristic (ROC) plot 

summarising the performance of OPLS-DA (a binary classification method). (D): The response permutation test 

plot (n=100) of the OPLS-DA model in A, clearly separating control from treated plant samples. 

 

 

To facilitate the extraction of features responsible for the discrimination between treated and 

non-treated samples, variable selection methods such as the OPLS-DA loading S-plot and 

XCMS cloud plot were used. Features significantly contributing to the model, with │p[1]│ ≥ 

0.05 and │p(corr)│ ≥ 0.5  were extracted from the OPLS-DA loading S-plot (e.g. the variable 

highlighted in red) (Figure 4.8 A and S 4.10 A, 4.12 A, 4.14 A) for downstream metabolite 

identification. 

 



 
 

92 
 

The XCMS online was additionally used to avoid statistical bias in variable selection – an 

alternative method to identify significant variables explaining the patterns described by PCA. 

Applying different methods (other than MarkerLynx-SIMCA) aids in the identification of 

additional biologically important variables (Patti et al., 2012, 2013; Gowda et al., 2014). The 

interactive Cloud plots (Figure 4.8 B and S 4.10 B, 4.12 B, 4.14 B), generated from XCMS 

online analyses, show discriminant features positively correlated to bacterial infection on the 

upper part of the plot (in green) and those negatively correlated to bacterial infection on the 

bottom part of the plot (in red). The m/z of each feature is presented by the y-coordinate and Rt 

by the x-coordinate. The size of the displayed bubbles relates to the Log fold change of the 

feature and the feature colour intensity indicates statistical significance of the fold change – 

calculated by a Welch t test with unequal variances, where features with low p values are less 

intense than features with high p values. Moreover, a black outline on the bubbles indicates 

that the features have hits on the METLIN databases (Patti et al., 2013; Gowda et al., 2014; 

Tugizimana et al., 2015). 

 

The significance of the variables extracted from the S-plot was statistically validated using 

variable importance in projection (VIP) plots and dot plots. VIP scores evaluation obviated 

variable selection bias and helped describe the importance of the variables to the model. On 

the VIP plot, variables with a score more than 1 are considered significant (Putri et al., 2013; 

Gowda & Djukovic, 2014; Finnegan et al., 2016; Tugizimana et al., 2016; Liang et al., 2017) 

and an increase in VIP score correlates to increased significance (Tugizimana et al., 2015; 

Finnegan et al., 2016). Therefore, from the VIP plots the variables with a score greater than 1 

were chosen for metabolite annotation. Figure 4.8 C (and S 4.10 C, 4.12 C, 4.14 C) show 

some of the selected variables (e.g. highlighted in red) validated using VIP plots prior to 

metabolite annotation. For further evaluation of the selected variables, dot plots (Figure 4.8 D 

and S 4.10 D, 4.12 D, 4.14 D) were generated to investigate how discriminant the variables 

are. For instance, no overlap between the treated and control sample can be seen from the 

selected m/z = 327.21480 variable in Figure 4.8 D, also highlighted in the S-plot, and VIP 

plots, thus suggesting that the particular feature contributed strongly to the discrimination  

(Tugizimana et al., 2016). 
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Figure 4.8: OPLS-DA modelling analyses of the UHPLC-MS ESI negative data for NS 5511 (BT) cv extracts 

(excluding QCs). (A): The OPLS-DA loading S-plot displays the discriminating features (ions) that explain the 

clustering (sample grouping) observed in the OPLS-DA scores plot with the features in the top right quadrant 

positively correlated to the treatment and those in the bottom left quadrant negatively correlated to the treatment. 

The loading S-plot comprises 1 predictive component explaining 47.1% of the total variation and 2 orthogonal 

components explaining 20.1% of the total variation. (B): XCMS cloud plot displaying discriminating ions; green 

for the treated samples and red for non-treated samples. (C): A VIP plot summarising the importance of some of 

the variables in the projection of the model. A VIP value >1 is significant/important in the projection and higher 

score values indicate an increase in significance of the variables. (D): Dot plot of the selected variable m/z 

327.21480 from S-plot (in red; also marked on the VIP plot) showing no overlap between control and treated 

groups, the variable thus strongly discriminates the two groups. 

 

Following validation of the extracted signatory variables considered as important contributors 

to the class discrimination, metabolite annotation was carried out. As described in Chapter 3 

(section 3.6), these variables relating to metabolic changes following bacterial treatment were 

annotated at MI-level 2 of the Metabolomics Standards Initiative (MSI) and are listed in Table 

4.2. The fold changes and p-values of the various metabolites presented in the Table 4.2 were 

obtained from the models constructed from all control samples against all the treated samples 

of the NS 5511 and NS 5655 cvs. 
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Table 4.2: Annotation of discriminatory metabolites belonging to various chemical classes, related to Burkholderia andropogonis-induced 

metabolic reprogramming in Sorghum bicolor plants. Following UHPLC-MS, the metabolites were selected and extracted from OPLS-DA S-

plots and annotated at MI-level 2 (in both positive and negative ionisation modes). The reported fold changes for cvs NS 5511 and NS 5655 were 

obtained from an OPLS-DA model of control (1-9 d.p.i.) vs all treated samples. Common synonyms of the metabolites are bracketed. 

 

Metabolites 

 

m/z Rt 

(min) 

Adduct Ion 

mode 

Molecular 

formula 

NS 5511 

 

p-value 

 

 

Fold change 

 

NS 5655 

 

Metabolite class 

p-value Fold change p-value 

 

Fold change  

L-Phenylalanine 180.092 2.59 [M-H_NH3]
- neg C9H11NO2 0.159 

 
0.9 

 
0.002 

 

0.9 
 

Amino acid 

L-Tyrosine 182.081 1.13 [M+H]+ pos C9H11NO3 1.77E-31 

 

0.5 

 

1.94E-31 

 

0.4 

 
Amino acid 

L-Tryptophan 205.097 2.69 [M+H]+ pos C11H12N2O2 1.87E-27 0.6 2.67E-15 

 

0.5 

 
Amino acid 

N,N-dihydroxy--tyrosine 234.038 8.04 [M-H_Na]- neg C9H11NO5 8.94E-18 

 

0.1 

 

1.25E-14 

 

0.1 

 
Amino acid 

5-Methyl-tryptophan 277.072 5.71 [M+H_NaNa]+ pos C12H14N2O2 8.83E-33 

 

0.3 

 

0.804 

 

0.9 

 
Amino acid 

Benzoic acid 121.028 4.46 [M-H]- neg C7H6O2 1.76E-20 
 

0.6 
 

0.603 0.7 
 

Benzoates 

Gallic acid monohydrate 187.095 6.74 [M-H]- neg C7H8O6 1.75E-23 

 

4.7 

 

1.53E-15 

 

3.8 

 
Benzoates 

Dhurrin 334.090 2.6 [M+H_Na]+ pos C14H17NO7 2.49E-29 

 

0.4 

 

2.51E-27 

 

0.4 

 
Cyanogenic glycoside 

Apigenin 269.007 7.05 [M-H]- neg C15H10O5 0.838 

 

1.0 

 

0.000 

 

1.5 

 
Flavonoid 

Protocatechuic acid 4-O-beta-glucoside 315.069 5.41 [M-H]- neg C13H16O9 5.24E-07 
 

1.5 
 

1.67E-11 

 

2.1 
 

Flavonoid 

Tricin 329.066 8.92 [M-H]- neg C17H14O7 6.62E-07 

 

0.7 

 

0.091 

 

0.8 

 
Flavonoid 

Beta-D-apiofuranosyl-(1->6)-D-glucose 330.141 2.59 [M+NH3]
+ pos C11H20O10 4.28E-34 

 

0.4 

 

2.04E-29 

 

0.4 

 
Flavonoid 

Sophoraflavanone B 341.137 2.50 [M+H]+ pos C20H20O5 8.06E-34 

 

0.4 

 

4.38E-27 

 

0.4 

 
Flavonoid 

4',5,5'-Trihydroxy-2',3,6,7,8-
pentamethoxyflavone 

419.095 5.69 [M-H]- neg C20H20O10 
1.64E-24 

 
3.1 

 
1.31E-16 

 

3.8 
 

Flavonoid 

Sophoraflavanone G 423.182 5.46 [M-H]- neg C25H28O6 4.59E-11 

 

0.6 

 

1.29E-05 

 

0.7 

 
Flavonoid 

Apigenin-8-C-glucoside (vitexin) 431.099 5.55 [M-H]- neg C21H20O10 7.57E-05 
 

1.4 
 

0.347103 

 

1.1 
 

Flavonoid 

Apigetrin (apigenin 7-O-glucoside) 431.098 6.33 [M-H]- neg C21H20O10 0.238 

 

1.0 

 

0.001 

 

0.8 

 
Flavonoid 

Naringenin 7-O-beta-D-glucoside (prunin) 433.114 5.91 [M-H]- neg C21H22O10 1.44E-16 

 

2.3 

 

5.76E-18 

 

4.6 

 
Flavonoid 

Luteolin 7-O-glucoside 447.091 5.71 [M-H]- neg C21H20O11 4.44E-13 
 

1.6 
 

0.799 

 

1.0 
 

Flavonoid 

Quercetin 3-O-rhamnoside (quercitrin) 447.092 4.61 [M-H]- neg C21H20O11 9.02E-17 

 

1.8 

 

8.37E-17 

 

3.8 

 
Flavonoid 

Pentahydroxychalcone 4'-O-glucoside 449.108 4.57 [M-H]- neg C21H22O11 7.50E-11 

 

1.4 

 

5.49E-19 

 

2.1 

 
Flavonoid 

Apigenin 8-C-xyloside-6-C-glucoside 

(vicenin-3) 
563.139 5.09 [M-H]- neg C26H28O14 

0.672 

 

1.1 

 

3.88E-08 

 

1.2 

 
Flavonoid 

Apigenin 6-C-xyloside-8-C-glucoside 

(vicenin-1) 
563.140 

4.87 

 
[M-H]- neg C26H28O14 

6.91E-11 

 

1.2 

 

0.008 

 

1.1 

 
Flavonoid 

Vitexin 2''-O-rhamnoside 577.154 5.32 [M-H]- neg C27H30O14 1.43E-15 1.5 
7.43E-14 

 

1.5 Flavonoid 

https://en.wikipedia.org/wiki/Apigenin
https://en.wikipedia.org/wiki/Glucoside
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Apigenin 7-O-neohesperidoside (rhoifolin) 

 
577.156 6.06 [M-H]- neg C27H30O14 1.52E-07 

 

1.1 

 

0.488 

 

1.0 

 
Flavonoid 

Unknown flavonoid  581.149 4.33 [M-H]- neg C26H30O15 7.67E-25 
 

2.5 
 

1.75E-15 

 

2.8 
 

Flavonoid 

Luteolin 7-O-neohesperidoside 593.150 5.51 [M-H]- neg C27H30O15 2.20E-15 

 

1.3 

 

0.037 

 

0.9 

 
Flavonoid 

Apigenin-6,8-di-C-glucoside 

(vicenin-2) 
593.151 4.45 [M-H]- neg C27H30O15 

0.637 

 

1.0 

 

8.60E-06 

 

1.3 

 
Flavonoid 

Quercetin-3-rhamnoside-7-rhamnoside 595.165 4.51 [M-H]- neg C27H32O15 
2.87E-09 

 
1.4 

 
4.17E-10 

 

1.5 
 

Flavonoid 

Quercetin rutinoside (rutin) 609.146 5.43 [M-H]- neg C27H30O16 1.22E-19 
 

2.1 
 

3.98E-10 

 

2.1 
 

Flavonoid 

Hesperidin 609.181 4.80 

 
[M-H]- neg C28H34O15 0.236 

 
1.1 0.000 

 

0.9 

 
Flavonoid 

Unknown flavonoid 611.158 3.10 [M-H]- neg C27H32O16 4.59E-09 

 

1.2 

 

3.07E-08 

 

1.4 

 
Flavonoid 

Naringenin 7-O-neohesperidoside (naringin) 625.180 3.33 [M-H_HCOOH]- neg C27H32O14 
0.000 

 
1.1 

 

3.10E-06 

 

0.7 
 

Flavonoid 

7-O-Methylvitexin 2''-O-beta-L-rhamnoside 637.177 6.21 [M-H_HCOOH]- neg C28H31O14 0.466 
 

1.0 
 

0.563 

 

1.0 
 

Flavonoid 

4-Hydroxycoumarin 161.024 1.87 [M-H]- neg C9H6O3 3.91E-12 

 

0.6 

 

0.017 

 

0.8 

 
HCA 

p-Coumaric acid 163.039 3.65 [M-H]- neg C9H8O3 0.064 
 

0.9 
 

0.953 

 

0.9 
 

HCA 

Caffeic acid 179.034 4.35 [M-H]- neg C9H8O4 1.68E-07 

 

0.5 

 

0.083 

 

0.6 

 
HCA 

Ferulic acid 193.048 4.01 [M-H]- neg C10H10O4 1.95E-12 
 

0.8 
 

1.25E-07 

 

0.8 
 

HCA 

Sinapoyl alcohol 209.074 6.72 [M-H]- neg C11H14O4 1.48E-15 
 

2.4 
 

1.07E-16 

 

3.1 
 

HCA 

Coniferyl acetate 221.081 7.42 [M-H]- neg C12H14O4 nd nd 3.47E-10 

 

8.2 

 
HCA 

Coumaryl acetate 237.078 2.66 [M-H]- neg C11H12O3 2.06E-09 

 

3.7 

 

0.002 

 

0.7 

 
HCA 

2-O-Caffeoylglyceric acid 267.048 4.38 [M-H]- neg C12H12O7 1.48E-10 
 

0.5 
 

0.017 

 

0.7 
 

HCA 

4-Coumaroylquic acid 337.051 3.29 [M-H]- neg C16H18O8 1.54E-30 

 

3.8 

 

6.41E-26 

 

3.6 

 
HCA 

Caffeic acid hexose 341.083 6.17 [M-H]- neg C15H18O9 3.44E-07 
 

0.7 
 

0.003 

 

0.8 
 

HCA 

4-Caffeoylquinic acid 353.091 3.58 [M-H]- neg C16H18O9 4.75E-23 
 

0.3 
 

2.60E-05 

 

0.5 
 

HCA 

1-O-Feruloyl-beta-D-glucose 355.102 4.06 [M-H]- neg C16H20O9 3.21E-24 

 

0.2 

 

4.17E-18 

 

0.1 

 
HCA 

4-Coumaroylagmatine 359.113 2.63 
[M-

H_HCOONa]- neg C14H20N4O2 
0.0464 

 

0.9 

 

1.09E-07 

 

0.8 

 
HCA 

3-Feruloylquinic acid 367.099 3.75 [M-H]- neg C17H20O9 5.98E-09 

 

1.3 

 

0.002 

 

1.2 

 
HCA 

Sinapoyl aldehyde 371.130 6.53 [M+H]+ pos C17H22O9 4.70E-29 

 

0.3 

 

 

3.58E-22 

 

0.4 

 
HCA 

2-O-Caffeoylglucarate 371.062 2.05 [M-H]- neg C15H16O11 0.167 
 

0.3 
 

nd nd HCA 

1-O-Coumaroyl-beta-D-glucose 371.097 4.26 [M-H_NaNa]- neg C15H18O8 0.001 

 

1.1 

 

0.442 

 

1.0 

 
HCA 

Sinapoyl-(S)-malate 385.078 3.74 [M-H_HCOOH]- neg C15H16O9 
1.56E-10 

 

0.8 

 

0.066 

 

0.6 

 
HCA 

1-O-Sinapoyl-beta-D-glucose 385.113 5.16 [M-H]- neg C17H22O10 7.38E-09 
 

0.8 
 

0.000 

 

0.9 
 

HCA 

Feruloylserotonin 395.100 3.65 [M-H_NaNa]- neg C20H20N2O4 0.793 

 

1.0 

 

1.43E-10 

 

0.3 

 
HCA 

1,3-O-Coumaroyl-feruloylglycerol 413.121 9.03 [M-H]- neg C22H22O8 9.84E-12 

 

0.4 

 

4.47E-17 

 

0.5 

 
HCA 

Sinapaldehyde glucoside 415.123 4.44 [M-H_HCOOH]- neg C17H22O9 7.13E-16 
 

0.7 
 

9.48E-07 

 

0.8 
 

HCA 

Table 4.2: continued.. 
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1,3-O-Diferuloylglycerol 443.132 9.22 [M-H]- neg C23H24O9 4.20E-11 

 

0.4 

 

2.53E-26 

 

0.3 

 
HCA 

Caffeic acid derivative 475.143 1.92 [M-H]- neg C20M28O13 1.81E-15 
 

1.5 
 

2.56E-17 

 

2.5 
 

HCA 

1,2-bis-O-Sinapoyl-beta-D-glucoside 591.166 6.19 [M-H]- neg C28H32O14 0.547 

 

1.0 

 

0.105 

 

1.0 HCA 

Indole-3-acrylic acid/ N-AC-indole-3-

carboxyaldehyde 
188.076 2.71 [M+H]+ pos C11H9NO2 

2.12E-27 

 

0.5 

 

1.85E-18 

 

0.5 

 
Indole 

Methyl indole-3-acetate 190.085 2.69 [M+H]+ pos C11H11NO2 4.47E-11 
 

0.5 
 

4.33E-09 

 

0.5 
 

Indole 

Indole-3-pyruvate 202.051 7.89 [M-H]- neg C11H9NO3 3.07E-18 

 

1.9 

− 

5.79E-13 

 

2.5 

 
Indole 

Indolylmethylthiohydroximate 273.032 3.20 [M-H_HCOONa] neg C10H10N2OS 0.275 
 

1.2 
 

0.033 

 

1.5 
 

Indole 

6-Hydroxy-indole-3-acetyl-valine 289.119 3.95 [M-H]- neg C15H18N2O4 1.83E-09 

 

1.7 

 

0.469 

 

0.9 

 
Indole 

Indole-3-acetyl-leucine 333.120 3.25 [M+H_NaNa]+ pos C16H20N2O3 1.45E-07 

 

4.1 

 

0.001 

 

1.9 

 
Indole 

DIMBOA-Glc 372.093 1.58 [M-H]- neg C15H19NO10 0.001 

 

0.8 

 

9.77E-14 

 

0.4 

 
Indole 

Indole-3-yl-acetyl-myo-inositol L-

arabinoside 

 

468.152 3.13 [M-H]- neg C21H27NO11 
0.000 

 
1.3 

 

0.117 

 

0.9 
 

Indole 

Isocitric acid 191.018 1.10 [M-H]- neg C6H8O7 5.97E-14 
 

2.3 
 

1.64E-09 

 

1.6 
 

Carboxylic acid 

Octadecatetraenoic acid 275.200 13.44 [M-H]- neg C18H28O2 1.64E-17 

 

4.1 

 

1.20E-11 

 

3.6 

 
Fatty acid 

16-Hydroxypalmitate 

 
293.209 13.43 [M-H_Na]- neg C16H31O3 

8.38E-19 

 

4.9 

 

9.55E-13 

 

4.1 

 
Fatty acid 

15-Hydroxylinoleic acid 295.226 14.3 [M-H]- neg C18H32O3 1.38E-18 

 

3.6 

 

8.76E-14 

 

3.4 

 
Fatty acid 

10,16-Dihydroxypalmitate 309.204 10.24 [M-H_Na]- neg C18H30O4 9.76E-14 
 

8.0 
 

6.75E-11 

 

8.1 
 

Fatty acid 

Dihydroxy-octadecadienoic acid 311.220 11.81 [M-H]- neg C18H32O4 5.87E-17 

 

4.9 

 

2.18E-11 

 

6.0 

 
Fatty acid 

11,12,13-Trihydroxy-9,15-octadecadienoic 

acid 
327.215 9.06 [M-H]- neg C18H32O5 

1.95E-32 

 

2.7 

 

1.30E-05 

 

1.5 

 
Fatty acid 

9,12,13-Trihydroxy-10-octadecenoic acid 329.229 9.60 [M-H]- neg C18H34O5 3.23E-27 

 

2.5 

 

3.95E-17 

 

2.0 

 
Fatty acid 

Salicylic acid 137.031 3.69 [M-H]- neg C7H6O3 4.29E-12 

 

1.3 

 

0.091 

 

3.9 

 
Phytohormone 

Salicylic acid 2-O-beta-D-glucoside 299.074 1.62 

 
 

[M-H]- neg C13H16O8 7.21E-17 

 

1.7 

 

9.28E-24 

 

1.9 

 
Phytohormone 

Jasmonoyl-L-isoleucine 406.200 
 

4.16 [M-H_HCOOK]- neg C18H29NO4 2.94E-12 
 

0.5 
 

5.03E-20 

 

0.1 
 

Phytohormone 

Dihydrozeatin-9-N-glucoside-O-glucoside 634.197 2.80 
[M-

H_NaHCOONa]- neg C22H35N5O11 
0.001 

 

0.8 

 

4.22E-12 

 

2.8 

 
Phytohormone 

Zeatin riboside 436.124 3.16 [M+H_HCOOK]+ pos C15H21N5O5 1.35E-28 

 

0.3 

 

3.27E-22 

 

0.4 

 
Phytohormone 

Chorismic acid 225.040 2.61 [M-H]- neg C10H10O6 nd nd 0.076 

 

0.9 

 
Shikimate 

Caffeoylshikimic acid 335.076 4.64 [M-H]- neg C16H16O8 2.89E-17 

 

0.3 

 

3.84E-11 

 

0.3 

 
Shikimate/ HCA 

Unidentified 432.273 7.95 ‒ pos C20H37N3O7 2.66E-35 
 

0.3 
 

0.019 

 

20.4 
 

 

Unknown 

Unidentified 489.269 8.08 ‒ neg C24H42O10 4.66E-26 

 

3.4 

 

6.03E-15 

 

6.3 

 
Unknown 

Unidentified 518.317 13.03 ‒ pos C21H47N3O11 3.11E-15 

 

4.6 

 

3.66E-14 

 

3.4 

 
Unknown 

Unidentified 543.206 6.82 ‒ neg C25H36O13 0.000 
 

1.3 
 

0.035 

 

1.1 
 

Unknown 

Table 4.2: Continued.. 

nd; not detected in the cv; p-value refers to significance level of a metabolite.; Fold change was calculated by dividing the average of the metabolite intensity in replicate samples of treated by the 

average of the metabolite intensity in replicate samples of control, a value ≥1 represents an increase (metabolite is higher in the treated samples than in the control) and value <1 represents a decrease. 

(metabolite is higher in the control and treatment led to decrease in levels).  HCA; hydroxycinnamic acid 

Metabolite annotation was achieved with the aid from the Taverna workbench (www.taverna.org.uk), databases such as Dictionary of Natural Products (DNP) (dnp.chemnetbase.com), ChemSpider 

(www.chemspider.com), PubChem (www.pubchem.ncbi.nlm.nih.gov), PlantCyc (www.plantcyc.org), SorgCyc (www.sorgcyc.org) and KNApSAcK (http://kanaya.naist.jp/knapsack_jsp/top.htm) and 

available literature. 

 

 

http://www.chemspider.com/
http://www.pubchem.ncbi.nlm.nih.gov/
http://www.plantcyc.org/
http://www.sorgcyc.org/
http://kanaya.naist.jp/knapsack_jsp/top.html
http://kanaya.naist.jp/knapsack_jsp/top.htm
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Figure 4.9: Classification of the putatively identified signatory metabolites in extracts of sorghum plants 

responding to infection by B. andropogonis, according to the chemical classes (A) and primary/prominent 

functions in defence (B). A total of 82 plant metabolites were putatively identified in sorghum extracts. (A): 

Illustrates the chemical diversity of metabolites potentially contributing to defence against B. andropogonis 

(flavonoids and hydroxycinnamic acids - two major classes). (B): Due to some metabolites possessing more than 

one function, grouping was based on the known primary/prominent role in plant defence.  

 

 

The visual inspection of symptoms and chromatographic analyses results, further investigated 

using various statistical tools, evidently suggested the metabolic reprogramming in sorghum 

plants induced by B. andropogonis treatment. As previously mentioned in Chapter 2 (section 

2.4.1), LC-MS-based untargeted metabolomics facilitated annotation and analysis of an array 

of chemically diverse metabolites, representing a wide range of metabolic pathways, associated 

with sorghum response to bacterial infection (Table 4.2 and Figure 4.9 A). Chemical 

classification (Figure 4.9 A) highlighted two major classes i.e. flavonoids and 

hydroxycinnamic acids, stipulating the significance of these metabolites in sorghum defences. 
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In addition, the annotated metabolites demonstrated to possess various defence-related 

functions as summarised in Figure 4.9 B. For example, challenged sorghum plants activated 

both structural and chemical defences, to counteract pathogen infection (as similarly 

summarised in Chapter 2; Figure 2.6). The diversity of the metabolites, arising from different 

metabolic pathways (particularly amino acid, fatty acid, shikimic acid, phenylpropanoid and 

flavonoid metabolic pathways) showed an intricate and dynamic network of the sorghum 

defence arsenal towards B. andropogonis in resistance and disease suppression (Bollina et al., 

2010; Wang et al., 2012; Balmer et al., 2013; Bigeard et al., 2015; Rochat, 2016). Moreover, 

it reflected the significant genetic diversity and extensive adaptive abilities of sorghum 

(Salzman et al., 2005).  The metabolic fluctuations because of bacterial treatment as well as 

the functional roles of the annotated metabolites in defence responses are detailed in the 

following section. Relative quantities, expressed as fold changes, of the putatively identified 

metabolites were used to provide measurable evaluation of metabolic changes and to give a 

comprehensive picture of metabolic reprogramming in S. bicolor plants triggered by B. 

andropogonis treatment. 

 

4.4. Metabolic reprogramming in the primary and secondary 

metabolism of Sorghum bicolor following Burkholderia 

andropogonis infection.  
 
 

4.4.1 The role of aromatic amino acids in pathogen-induced stress responses  
 

The treatment of sorghum with B. andropogonis resulted in changes in amino acid metabolism 

(primary metabolism). Of interest are changes in the three aromatic amino acids, L-tyrosine, 

L-tryptophan and L-phenylalanine. Relative quantitative analyses revealed a decrease of these 

amino acids in the respective levels (fold change < 1; Table 4.2) in treated plants across time 

(time-related changes; 1-9 d.p.i.) as well as cultivar-related differences in metabolite levels 

(data not shown). The role of metabolic pathways of distinct amino acids in the regulation of 

defence responses in pathogen-challenged plants has been demonstrated in several studies 

(López-Gresa et al., 2010; Zeier, 2013; Gunnaiah & Kushalappa, 2014; Pasquet et al., 2014; 

Andolfo & Ercolano, 2015; Cuperlovic-Culf et al., 2016). Aromatic amino acids synthesised 

via  the shikimic acid pathway (chorismic acid acting as their initiator metabolite) are central 

to plant metabolism ‒ serving as precursors in the synthesis of a range of secondary metabolites 
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and phytohormones, with plant defence functions (Tzin & Galili, 2010; Du Fall & Solomon, 

2011; Tohge et al., 2013; Ng et al., 2016).   

 

Phenylalanine is an important  precursor for phenylpropanoid, flavonoid (Ayabe et al., 2010; 

Bollina et al., 2010; Beelders et al., 2014; Edwards, 2016) and cyanogenic glycoside secondary 

metabolites, whereas tyrosine and tryptophan are involved in cyanogenic glycosides and indole 

metabolite synthesis respectively (Tzin & Galili, 2010; Du Fall & Solomon, 2011; Piasecka et 

al., 2015). Additionally, phenylalanine is precursor in synthesis of signalling molecules such 

as the phytohormone salicylic acid pivotal in launching of plant defence (alternative routes for 

the synthesis of the hormone exist). Thus, the decrease in levels of amino acids and increase in 

the levels of some of the downstream derivatives (see sections 4.4.3 and 4.4.4) following 

bacterial treatment, suggests the channelling of these precursors into metabolic pathways of 

phenylalanine-derived (e.g. phenylpropanoids, flavonoids and salicylic acid), tryptophan-

derived (e.g. indole and serotonin derivatives) and tyrosine-derived  defence-related 

metabolites (Lattanzio et al., 2006; Ishihara et al., 2008; Tzin & Galili, 2010).  

 

4.4.2. Differential changes in fatty acids metabolism following Burkholderia 

andropogonis infection. 
 

The results reveal the significant accumulation of fatty acids in B. andropogonis-challenged 

plants (Table 4.2). The levels of fatty acids such as 15-hydroxylinoleic acid, 10,16-

dihydroxypalmitate, dihydroxy-octadecadienoic acid, 11,12,13-trihydroxy-9,15-

octadecadienoic acid and 9,12,13-trihydroxy-10-octadecenoic acid were found to considerably 

increase over time (Figure 4.10) in the two cvs. However, the accumulation was mostly 

amplified in the NS 5655 (ST) cv. 10,16-Dihydroxypalmitate, as a practical example, 

accumulated 24.4-fold in NS 5655 on 7 d.p.i. as compared to 15.6-fold in NS 5511 (Figure 

4.10). The increase in free fatty acid levels (particularly unsaturated) has been reported in 

pathogen-stressed plants ‒ palmitoleic acid (16:1) has been linked to increased resistance 

towards Verticillium dahlia in eggplant (Walley et al., 2013; Lim et al., 2017), linoleic (18:2) 

and linolenic acids (18:3) to C. gloeosporioides in avocado and Pseudomonas syringae in 

tomato (Lim et al., 2017). Mutant Arabidopsis plants compromised in production of a subclass 

of fatty acids, (trienoic acids) has been shown  to be susceptible to P. syringae (Yaeno et al., 

2004; Walley et al., 2013). 
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Compelling evidence from several studies have demonstrated induced activation of NADPH 

oxidase by linoleic and linolenic acid, leading to production of ROS (Yaeno et al., 2004; 

Kachroo & Kachroo, 2009; Walley et al., 2013; Lim et al., 2017). The accumulation of ROS 

can result in the fragmentation/cleavage of fatty acids into various products which can act as 

chemical inducers of defence responses. In Arabidopsis as well as other plants, azelaic acid (a 

cleavage product) acted as an inducer of SAR via the accumulation of SA (Göbel et al., 2002; 

Walley et al., 2013; Okazaki & Saito, 2014; Gao et al., 2015; Lim et al., 2017). Additionally 

cell death-inducing activity of some fatty acids has been reported (Göbel et al., 2002). 

 

 
 

Figure 4.10: Relative quantification of fatty acids annotated in sorghum leaves responding to infection by 

B. andropogonis. The relative levels of each metabolite are expressed in fold changes, computed from treated 

against control (T/C) where fold change > 1 represents significant accumulation in NS 5511 (BT) and NS 5655 

(ST). 11,12,13-THOD = 11,12,13-trihydroxy-9,15-octadecadienoic acid; 9,12,13-THOE = 9,12,13-trihydroxy-

10-octadecenoic acid; 15-HLE = 15-hydroxylinoleic acid; DHOD = dihydroxy-octadecadienoic acid; 10,16-DHP 

= 10,16-dihydroxypalmitate.  



 
 

101 
 

The hydroxy fatty acids, 15-hydroxylinoleic acid (avenoleic acid) and 9,12,13-trihydroxy-10-

octadecenoic acid (pinellic acid) annotated in this study, have been classified as oxylipins 

(oxidised fatty acids), synthesised from linoleic acid in cereal crops such as oats and rice (of 

the Poaceae family) and in other plants (Hamberg & Hamberg, 1996; Hamberg et al., 1998; 

Aghofack-Nguemezi et al., 2011; Hamberg & Olsson, 2011; Aghofack-Nguemezi & Schwab, 

2013). In plants 9,12,13-trihydroxy-10-octadecenoic acid together with other 

trihydroxyoctadecenoates were reported to be produced in response to fungal infection 

(conferring resistance to a spectrum of fungal pathogens) and wounding. Previous reports have 

also highlighted the growth inhibitory roles of trihydroxy derivatives of linoleic and linolenic 

to plant fungal pathogens (Hamberg, 1997, 1999; Aghofack-Nguemezi et al., 2011; Hamberg 

& Olsson, 2011). Generally, oxylipins perform defence roles (in plant innate immunity) as 

signalling molecules – inducing defence responses or as compounds exhibiting antimicrobial 

properties (Prost, 2005; Eckardt, 2008; Kachroo & Kachroo, 2009; Aghofack-Nguemezi & 

Schwab, 2013; Walley et al., 2013; Okazaki & Saito, 2014). A study by Prost (2005) 

demonstrated antimicrobial activities of epoxy- and hydroxy-fatty acids (including others 

annotated in this study) and other oxylipins towards bacterial pathogens. This study also 

revealed the significant accumulation of compounds belonging to this class (fatty acids and – 

derivatives), with reported growth inhibition properties to a spectrum of pathogens.  

 

In local defence, fatty acids (particularly C16 and C18) are involved in the formation of the 

plant cuticle (comprising of cutin and cuticular wax), a physical barrier limiting nonstomatal 

water, gas and solutes loss and conferring resistance against bacterial, viral or fungal 

pathogens. The latter line of defence hinders  the pathogen from invading and  proliferating in 

the host plant (Kachroo & Kachroo, 2009; Lim et al., 2017). The synthesis of 10,16-

dihydroxypalmitate and 16-hydroxypalmitate (major cutin monomers in flowers, fruits and 

leaves of plants) annotated in this study might thus be interpreted as an attempt to strengthen 

the cuticle and limit further bacterial ingress (Li-Beisson et al., 2009; Pushpa et al., 2014; 

Barbaglia & Hoffmann-Benning, 2016).  

 

Apart from acting as hydrophobic hormones in modulating signal transduction pathways, fatty 

acids also serve as precursors to the phytohormone jasmonic acid (Prost, 2005; Kachroo & 

Kachroo, 2009; Hamberg et al., 2003; Walley et al., 2013), and as essential constituents of 

membrane lipids in plants. The up-regulation of the annotated fatty acids of known function, 
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thus, hints to their functional role in sorghum defence/resistance (Weber, 2002; Kachroo & 

Kachroo, 2009; Walley et al., 2013; Lim et al., 2017). 

 

4.4.3 Plant hormones: regulatory and signalling molecules in sorghum 

defence responses  
 

The intricate defence responses of sorghum also involved several phytohormones. SA and SA 

glucoside, jasmonic acid and zeatin derivatives were annotated (Table 4.2). Drawing attention 

to the well-known plant stress phytohormone, SA and conjugate thereof (salicylic acid 2-O-

beta-D-glucoside (SAG), augmented levels were noticed following the bacterial treatment 

(Figure 4.11). SA levels in NS 5511 (BT) were elevated in the early stages of bacterial 

infection (1-3 d.p.i.) as compared to NS 5655 (ST), which showed increased levels in the late 

stages (5-9 d.p.i.). This finding postulates an early onset of defence responses in NS 5511 

compared to NS 5655, and corroborates the view that the former is more resistant than the 

latter. However, for SAG the levels between the two cvs were comparable. As outlined in 

Chapter 2, section 2.3.2 plant hormones play various biological roles in plants, including 

signalling  in stress responses, inducing secondary metabolites accumulation (Cheynier et al., 

2013; Pieterse & Van Wees, 2015; Mhlongo et al., 2016; Wani et al., 2016; Tugizimana, 2017). 

Experimental evidence has shown a link between the accumulation of SA (and its glucoside), 

expression of PR proteins, accumulation of phenylpropanoids and resistance to pathogens, in 

a range of plants (Sudha & Ravishankar, 2002; Grüner et al., 2003; Zeier, 2013; Okazaki & 

Saito, 2014; Finnegan et al., 2016). SA, a phenolic phytohormone synthesised from 

isochorismate via the shikimic acid pathway (Tzin & Galili, 2010; Zeier, 2013; Lim et al., 

2017) plays a key role in local and systemic defence (Sudha & Ravishankar, 2002; Ramirez-

Estrada et al., 2016).  
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Figure 4.11: Relative quantification of plant hormones annotated in sorghum leaves responding to B. 

andropogonis infection. The relative levels of each metabolite are expressed in fold changes, computed from 

treated against control (T/C) where fold change > 1 represents significant accumulation in NS 5511 (BT) and NS 

5655 (ST). JA-Ile = jasmonoyl-L-isoleucine; ZR = zeatin riboside; DZ9GOG = dihydrozeatin-9-N-glucoside-O-

glucoside; SA = salicylic acid; SAG = salicylic acid 2-O-beta-D-glucoside. 

  

SA accumulates in regions around the infection site, stimulating the hypersensitive response 

(HR) – a type of programmed cell death at the site of infection which results in necrotic lesions 

and limiting pathogen proliferation. This HR can be linked to the development of lesions 

observed on B. andropogonis-treated sorghum plants (section 4.1, Figure 4.1-2) (Alvarez, 

2000; Grüner et al., 2003; Mur et al., 2008; Kachroo & Kachroo, 2009; Finnegan et al., 2016). 

Moreover the phytohormone is the major signalling molecule triggering SAR (a systemic form 

of resistance, arming distal un-infected parts of the plant against subsequent secondary 

infections), leading to up-regulation of PR proteins and enhancement of phenylpropanoids 

accumulation  (Sudha & Ravishankar, 2002; Bigeard et al., 2015; Cuperlovic-Culf et al., 2016), 
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and its production and signalling function is highly important in plant immunity towards 

pathogens exhibiting biotrophic and hemibiotrophic lifestyles. The detected levels of SA and 

SAG, therefore suggests that B. andropogonis treatment triggered SAR (Mengiste, 2012; Zeier, 

2013; Andolfo & Ercolano, 2015; Bigeard et al., 2015; Cuperlovic-Culf et al., 2016).  

 

The derivative of the phytohormone JA, jasmonoyl-L-isoleucine, was also amongst the 

annotated metabolites. The conjugation of jasmonate and isoleucine results in the highly 

biologically active jasmonoyl-L-isoleucine which plays a role in defence responses in the event 

of stress (Suza et al., 2010; Koo et al., 2011; Woldemariam et al., 2012; Liu et al., 2015; 

Barbaglia & Hoffmann-Benning, 2016; Ishimaru et al., 2017; Koo, 2017). Although this 

phytohormone was identified to be present, it was not statistically significant and was thus not 

picked to be significantly related to the treatment. This is indicated by the very low levels 

detected upon quantitative evaluation (Table 4.2 and Figure 4.11). Jasmonates (derived from 

fatty acid metabolism; linolenic acid) are also classified as oxylipins (see section 4.4.2 on 

literature regarding oxylipins) widely spread in the plant kingdom. Apart from being involved 

in developmental processes, these molecules are also involved in activation of defence 

responses towards abiotic and biotic stressors (directly or indirectly), as signalling molecules 

(Sudha & Ravishankar, 2002; Kachroo & Kachroo, 2009; Okazaki & Saito, 2014; Wani et al., 

2016; Lim et al., 2017). Exogenous application of JA results in defence-related gene expression 

as well as production of antimicrobial compounds (Sudha & Ravishankar, 2002; Kachroo & 

Kachroo, 2009; Mhlongo et al., 2016). The accumulation of this phytohormone is mostly 

associated with necrotrophic pathogens and also triggers ISR (Kachroo & Kachroo, 2009; 

Antico et al., 2012; Pieterse & Van Wees, 2015; Mhlongo et al., 2016; Wielkopolan & 

Obrępalska-Stęplowska, 2016). 

 

The levels of two zeatin conjugates, dihydrozeatin-9-N-glucoside-O-glucoside and zeatin 

riboside, were also found to be altered (with the former being significantly altered) as part of 

induced host responses following bacterial treatment. Dihydrozeatin-9-N-glucoside-O-

glucoside levels demonstrated to generally decrease over time in NS 5511 while increasing in 

NS 5655 (Figure 4.11). Zeatin and the derivatives thereof (e.g. riboside and glucosides) are 

regarded as the principal group of isoprenoid cytokinins in plants. Previously trans-zeatin 

cytokinins were demonstrated to be more active in enhancing resistance against pathogens, 

however cis-zeatin CKs have recently been reported in regulating plant defence responses in 

pathogen challenge and the potential role as ‘novel’ stress-response markers has been 
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highlighted (Großkinsky et al., 2013; Schäfer et al., 2015). Cytokinins have been shown to act 

synergistically with SA in the activation of defence gene expression. Recently in Arabidopsis, 

the class of hormones was demonstrated to regulate SA signalling pathways and enhance 

resistance to P. syringae pv. tomato DC3000 and Hyaloperonospora arabidopsidis exhibiting 

hemibiotrophic and biotrophic lifestyles, respectively (Jiang et al., 2013). In Arabidopsis and 

tobacco, enhancing of resistance by zeatin cytokinins was demonstrated to be linked to increase 

in cell membrane integrity (Schäfer et al., 2015; Shigenaga & Argueso, 2016). 

 

The identification of the various hormones revealed an interplay of plant hormones in sorghum 

defence signalling and regulation. Interaction (antagonistically or synergistically) and fine 

tuning between plant hormones governs activation of a range of defences including those 

specific to the stressor (Kachroo & Kachroo, 2009; Antico et al., 2012; Jiang et al., 2013; 

Tugizimana et al., 2014; Burketova et al., 2015; Wani et al., 2016). Alterations in hormone 

levels revealed by quantitative analysis can therefore be linked to triggering of defence 

responses to B. andropogonis infection. 

 

4.4.4. Metabolic reprogramming of defence-related metabolites derived 

from shikimic acid-, phenylpropanoid-, and flavonoid pathways  
         

The metabolic reprogramming in sorghum following B. andropogonis infection, involved 

perturbations in the pool of metabolites synthesised via the shikimic acid,   phenylpropanoid, 

and flavonoid biosynthetic pathways ‒ which are partially interlinked (Lo & Nicholson, 1998; 

Dixon et al., 2002; Tugizimana, 2017). The shikimic acid pathway yields chorismic acid – a 

precursor in the aromatic amino acid biosynthetic pathways. These two pathways portray a 

prime regulatory link of primary and secondary metabolism. Phenylalanine serves as an 

initiator/regulatory metabolite in the biosynthesis of phenylpropanoids (of which flavonoid 

pathway is a downstream branch ) (Dewick, 2002; Tzin & Galili, 2010; Tohge et al., 2013; 

Mhlongo et al., 2014, 2016; Mierziak et al., 2014; Ng et al., 2016). 

    

Quantitative analysis revealed a decrease in chorismic acid levels in the NS 5655 cv which 

was, however, not annotated in the NS 5511 cv (maybe due to levels being quite low to be 

detected) (Table 4.2).  As stated previously, chorismic acid provides a carbon skeleton in the 

synthesis of aromatic acids, from which aromatic secondary metabolites arise (Tzin & Galili, 

2010; Tohge et al., 2013; Shigenaga & Argueso, 2016). Benzoic acid and the 3,4,5-trihydroxy-
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derivative (gallic acid monohydrate) were also detected, with the levels of the latter 

significantly higher compared to the former in both cvs. Benzoic acid and derivatives are 

known for their antioxidant and antimicrobial activity. The decrease in levels of chorismic and 

benzoic acid can be attributed to channelling of the metabolites into synthesis of various 

defence-related metabolites to which the metabolites serve as precursors  (Fogliani et al., 2005; 

Karamac et al., 2006; Zhao et al., 2011).  

 

Two major groups of phenolic compounds derived from the phenylpropanoid pathway and 

regarded as the major phenolic compounds found in sorghum – flavonoids and 

hydroxycinnamic acids, largely accumulated in treated plants. The profusion of these classes 

of compounds amongst the putatively identified metabolites (Figure 4.9 A and Table 4.2) 

suggests a pivotal role in sorghum defence (as either preformed phytoanticipins or induced 

phytoalexins)  (Awika & Rooney, 2004; Taylor et al., 2014; Tugizimana et al., 2014; Kang et 

al., 2016). Phenolic secondary metabolites are a major group of secondary metabolites directly 

involved in plant resistance and in determining resistance/susceptibility of a plant host to 

microbial pathogens (Bollina et al., 2010; Tzin & Galili, 2010; Anjum et al., 2013; Tohge et 

al., 2013; Liu et al., 2016). Many reports have demonstrated accumulation of phenolic 

compounds at the site of infection following pathogen invasion (Bollina et al., 2010; Mierziak 

et al., 2014).  

 

4.4.4.1. Flavonoids as biomarkers in sorghum defence responses against 

Burkholderia andropogonis  
 

The flavonoids annotated from the treated plants extracts (Table 4.2) were mostly sugar-

conjugated and belonged to various subgroups; (i) flavones – apigenin and derivatives luteolin 

and tricetin derivatives, (ii) flavanones – naringenin derivatives, (iii) flavonols – quercetin 

derivatives and (iv) chalcones – hydroxychalcone derivatives. A schematic representation of 

the proposed flavonoid biosynthetic pathway leading to the synthesis of some flavonoids 

annotated in this study (indicated in bold), as defence-related metabolites, is infographically 

shown in Figure 4.12. The various flavonoid subgroups to which the defence-related 

metabolites belong to are colour coded (see key on the top left of Figure 4.12). 

 

 Interestingly, most of the detected flavonoid glycosides significantly accumulated following 

bacterial infection. Flavonoids are a highly diverse class of secondary metabolites (Martens & 
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Mitho, 2005; Abad-Garcı´a et al., 2008; Bollina et al., 2010), with a wide range of biological 

functions in the plant system which include signalling, abiotic and biotic stress response, and 

antioxidant activity, amongst others. Synthesis, transportation and allocation of this class of 

compounds hallmarks an adaptive metabolism in plants (in protective and regulatory functions) 

(Winkel, 2004; Devi et al., 2011; Du Fall & Solomon, 2011; Falcone Ferreyra et al., 2012; 

Petrussa et al., 2013; Mierziak et al., 2014). Upon pathogen challenge, flavonoids accumulate 

at the infection site and impede fungal spore germination, inactivate bacterial pathogen 

adhesion and distort microbial membranes (amongst other mechanisms), all in attempt to 

hinder microbial invasion (Mishra et al., 2009; Naoumkina et al., 2010; Du Fall & Solomon, 

2011; Mierziak et al., 2014).  

 

The results showed that the metabolic changes in flavonoid metabolism following bacterial 

infection were largely characterised by a significant accumulation of apigenin and its 

glycosides (mostly existing as C-glycosides) (Table 4.2). The aglycone apigenin displayed an 

increase in levels over time points particularly from 3-9 d.p.i. (levels ≥ 1.5-fold) (Figure 4.13). 

For NS 5655, levels of this metabolite seemed a bit higher than in NS 5511. On the other hand, 

apigenin glycosides (found to be constitutively present in sorghum plants this study i.e. as 

phytoanticipins) levels appeared to be more augmented in the latter compared to the former. 

Rhoifolin (apigenin-7-O-neohesperidoside) for instance, displayed its highest level at 7 d.p.i. 

as 1.9-fold in NS 5511 and 1.4-fold in NS 5655, respectively, as infographically shown in 

Figure 4.13. 
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Figure 4.12: Schematic representation of proposed biosynthetic pathway of defence-related flavonoids in sorghum. This pathway displays some of the defence-related 

flavonoids annotated in sorghum plant extracts following treatment with B. andropogonis. Solid lines represent main routes and dashed lines represent alternative routes. 

Abbreviations: PAL = phenylalanine ammonia lyase; C4H = cinnamate 4-hydroxylase; CCL = coumaryl-CoA ligase; CHS = chalcone synthase; CHI = chalcone isomerase; 

F3’H = flavonoid 3’-hydroxylase; 7GT = flavanones-7-O-glucosyltransferase; Cm1,2RhaT = 1,2 rhamnosyltransferase; DFR = dihydroflavonol reductase; ANS = anthocyanidin 

synthase; F2HI = flavanone-2-hydrohylase; FNS = flavone synthase; OGT = O-glycosyltransferase; FRG = flavanones 7-O-glucoside-2”-O-β-L-rhamnosyltransferase; LGR = 

luteolin 2-O-β-L-rhamnosyltransferase; VRM = vitexin 2”-O-rhamnoside 7-O-methyltransferase; MT = methyltransferase; FND = flavanones 3-dioxygenase; FLS = flavonol 

synthase; FGT = flavonoid 3-O-glucosyltransferase; FGRT = flavonol-3-O-glucoside L-rhamnosyltransferase; FHS = flavonoid 3’,5’-hydroxylase; CGT = C-glycosyl 

transferase; HGD = 2-hydroxynaringenin-6-C-glucoside dehydratase; DH = dehydrogenase; ? = enzymes not yet characterised. Metabolites annotated in this study = in bold; 

metabolites not annotated in this study = italicised. Flavonoid classes are colour-coded as shown in the key (top left)  (adapted from Boddu et al., 2004; Frydman et al., 2004; 

Casas et al., 2014; Poloni & Schirawski, 2014; https://MetaCyc.org; Abdullah & Chua, 2017). 
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Figure 4.13: Relative quantification of apigenin and conjugates annotated in sorghum leaves responding to 

B. andropogonis infection. The relative levels of each metabolite are expressed in fold changes, computed from 

treated against control (T/C) where fold change > 1 represents significant accumulation in NS 5511 (BT) and NS 

5655 (ST). Apigetrin = apigenin 7-O-glucoside; rhoifolin = apigenin 7-O-neohesperidoside; vicenin-3 = apigenin 

8-C-xyloside-6-C-glucoside; vicenin-1 = apigenin 6-C-xyloside-8-C-glucoside; vicenin-2 = apigenin-6,8-di-C-

glucoside; vitexin = apigenin-8-C-glucoside.  

 

In this study, apigenin demonstrated to be pathogen-induced bio-marker in both cvs. This 

finding was visually confirmed by exploration of the PCA scores space. The metabolite was 

not detected in the non-treated (control) samples but was clearly detectable in the treated 

samples, with levels increasing over time and most intensely in NS 5655 (Figure 4.14). 

Apigenin is a well-known phytoalexin in sorghum, contributing to host resistance. Studies have 

shown de novo rapid and elevated accumulation of the metabolite in sorghum following 

infection  (Du et al., 2010; Du Fall & Solomon, 2011; Ahuja et al., 2012; Mizuno et al., 2016; 

https://en.wikipedia.org/wiki/Apigenin
https://en.wikipedia.org/wiki/Glucoside


 
 

110 
 

Schnippenkoetter et al., 2017). The flavone has been demonstrated to inhibit fungal growth 

and spore germination against fungal pathogens such as Colletotrichum sublineolum (Du Fall 

& Solomon, 2011; Ahuja et al., 2012). For bacterial pathogens, apigenin has been shown to 

exhibit a stronger antibacterial activity towards Gram-negative bacteria (Basile et al., 1999).  

 

 

Figure 4.14: An unsupervised colour-coded PCA score plot displaying the presence/absence and intensity 

of the phytoalexin apigenin across the samples. (A): NS 5511 (BT) and (B): NS 5655 (ST). The absence of the 

metabolite in non-treated (control) samples and presence in the treated samples indicates that the metabolite was 

pathogen-induced.  

 

The apigenin conjugates, rhoifolin and vitexin, found to significantly accumulate in treated 

samples (Figure 4.13), have also been reported to possess antimicrobial properties. Rhoifolin 

was demonstrated to exhibit antimicrobial activity to the bacterial pathogen Escherichia coli 

(Tian et al., 2009; Refaat et al., 2015). Vitexin, on the other hand, was shown  to confer 

resistance in plants such as barley (towards Fusarium graminearum) (Balmer et al., 2013), 

cucumber  (towards Podosphaera xanthii and other fungal pathogens)  (Mohamed & El-hadidy, 

2008; Du et al., 2010) and Linum usitatissimum (towards F. oxysporum and F. culmorum) 

(Mierziak et al., 2014). 

 

Vitexin (and related conjugates), and the other apigenin glycosides vicenin-1, vicenin-2 and 

vicenin-3, were reported for the first time in sorghum, in line with defence responses. In 

addition to vicenin-2 exhibiting antioxidant activity in plant defence (against abiotic stress such 

as UV damage) (Silva et al., 2014; Spínola et al., 2015), in vitro and in vivo studies 

demonstrated the antifungal activity of vicenin-2 together with other phenolic compounds 

extracted from Verbascum eremobium towards a range of fungal pathogens in cucumber 

(Mohamed & El-hadidy, 2008). The levels of vicenin-1, vicenin-3 and the apigetrin (Figure 

4.13) in treated plants suggests a defence-related role towards B. andropogonis, however, 
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further work is required to elucidate and explore the particular roles in sorghum-pathogen 

defence.  

 

Luteolin, another known phytoalexin of sorghum was not detected in this study, however, two 

of its conjugates luteolin 7-O-glucoside and luteolin 7-O-neohesperidoside were annotated. 

These two metabolites accumulated significantly in the NS 5511 cv as compared to NS 5655 

cv (Table 4.2), with levels appearing to increase over time (data not shown). Luteolin 7-O-

neohesperidoside has been reported as an antibacterial compound while luteolin 7-O-glucoside 

has been shown to possess antifungal activity contributing to host resistance (Basile et al., 

1999; Mohamed & El-hadidy, 2008; Tian et al., 2009). 

 

 

Figure 4.15: Relative quantification of flavanones and flavonols annotated in sorghum leaves responding 

to B. andropogonis infection. The relative levels of each metabolite are expressed in fold changes, computed 

from treated against control (T/C) where fold change > 1 represents significant accumulation in NS 5511 (BT) 

and NS 5655 (ST). Rutin = quercetin rutinoside; quercitrin = quercetin 3-O-rhamnoside; naringin = naringenin 7-

O-neohesperidoside; prunin = naringenin 7-O-beta-D-glucoside.  
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Other flavonoids found to be up-regulated following bacterial infection (Table 4.2 and Figure 

4.15), but more significantly in NS 5655, are naringenin, quercetin and chalcone conjugates. 

These conjugates have been linked to defence in plants following pathogen challenge.  

Naringenin 7-O-beta-D-glucoside and naringin have been shown to exhibit antimicrobial 

activity against F. graminearum in wheat (Gunnaiah & Kushalappa, 2014; Mierziak et al., 

2014) and barley (Chamarthi et al., 2014), and Penicillium digitatum in Citrus aurantium 

(Arcas et al., 2000; Ortuño et al., 2006; Treutter, 2006) respectively. The former was also 

shown to enhance resistance in barley against the pathogen Gibberella zeae (Bollina et al., 

2010; Gunnaiah & Kushalappa, 2014; Mierziak et al., 2014). Chalcones were demonstrated to 

exhibit antibacterial activity towards Cladosporium cucumerinum in Mariscus psilostachys, 

and quercetin derivatives exhibited antifungal activity (inhibiting spore germination) 

(Lattanzio et al., 2006; Abdel-Farid et al., 2009; Mierziak et al., 2014).  

 

Monitoring the metabolic changes in B. andropogonis-challenged sorghum plants revealed 

accumulation of flavones, flavanones, flavanol and chalcones, but not the rare class of 

anthocyanidins, 3-deoxyanthocyanidins, previously reported for fungal infections. As the 

colour of the host lesions typically depends on the affected plant’s response (Claflin et al., 

1992), Mizuno et al. (2016) described sorghum plants with a tan pigmentation response, as 

lacking apiferol and luteoferol, precursors of apigeninidin and luteolinidin, respectively (see 

Chapter 2, Figure 2.8), thus, the inability to synthesise this class of 3-deoxyanthocyanidins. 

Sorghums with purple or red pigmentation, were however, described as accumulating 3-

deoxyanthocyanidins. On the other hand, sorghum plants with tan pigmentation in response to 

stress (as also observed following symptom evaluation in see section 4.1), were reported as 

associated with high accumulation of apigenin and luteolin (similar to response observed this 

study particularly for the former i.e. apigenin and glycosides). The above can explain why the 

rare class of anthocyanidins were not annotated in our extracts – thus we can suggest that B. 

andropogonis infection did not activate this anthocyanidin biosynthetic pathway (Boddu et al., 

2004; Basavaraju et al., 2009; Poloni & Schirawski, 2014; Meyer et al., 2015; Mizuno et al., 

2016). We can, therefore, postulate that defence responses launched towards B. andropogonis 

infection by sorghum largely involves the subgroups of flavonoids mentioned above, 

particularly flavones. 
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4.4.4.2. The defensive functions of hydroxycinnamic acids in sorghum 
 

Treated sorghum plants accumulated hydroxycinnamic acids in response to B. andropogonis. 

The annotated hydroxycinnamic acids included coumaric acid, caffeic acid, sinapic acid, 

coniferyl and ferulic acid conjugated to various molecules such as sugars, organic acids, 

alcohols, aldehydes and amines (Table 4.2). As displayed in the Table 4.2, these compounds 

accumulated in varying degrees in the two cvs. Sinapoyl alcohol, 4-coumaroylquinic acid, 3-

feruloylquinic acid, 1-O-coumaroyl-beta-D-glucose, and 1,2-bis-O-sinapoyl-beta-D-

glucoside, were up-regulated (Table 4.2) following bacterial treatment. Furthermore, relative 

quantification analysis (Figure 4.16) generally showed an increase in relative levels over time. 

Comparison of the two cvs displayed a more significant accumulation in NS 5511. p-Coumaric 

acid, ferulic acid and 4-coumaroylagmatine (also shown in Figure 4.16), however, display a 

decrease in levels across time. 
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Figure 4.16: Relative quantification of hydroxycinnamic acids annotated in sorghum leaves responding to 

B. andropogonis infection. The relative levels of each metabolite are expressed in fold changes, computed from 

treated against control (T/C) where fold change > 1 represents significant accumulation in NS 5511 (BIT) and NS 

5655 (ST). FA = ferulic acid; 3-FQA = 3-feruloylquinic acid; pCoA = p-coumaric acid; pCoGlc = 1-O-coumaroyl-

beta-D-glucose; 4-pCoAg = 4-coumaroylagmatine; 4-pCoQA = 4-coumaroylquinic acid; 1,2-SnGlc =1,2-bis-O-

sinapoyl-beta-D-glucoside; SnA = sinapoyl alcohol.   

 

 

Phenylpropanoids including hydroxycinnamic acids are known to possess defence-related 

functions. Ferulic-, caffeic-, p-coumaric- and sinapic acids are functional antimicrobial 

compounds and precursors to the synthesis of inducible (phytoalexins) and constitutive 

(phytoanticipins) defence metabolites. The metabolites are also key in structural defences by 

participating in cross linking primary cell wall polysaccharides in addition to being lignin 

precursors  (Dixon et al., 2002; Bollina et al., 2010; Gunnaiah & Kushalappa, 2014; Mhlongo 

et al., 2014; Tugizimana et al., 2014; Lowe et al., 2015).  
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Ferulic acid and other cinnamic acids were shown to inhibit F. graminearum progression and 

production of mycotoxins by this pathogen (Bollina et al., 2010; Gunnaiah & Kushalappa, 

2014; Yogendra et al., 2014). Hydroxycinnamic acid amides such as 4-coumaroylagmatine and 

feruloylserotonin, are known in the context of plant defence; strengthening/thickening cell 

walls and as antimicrobial compounds. A study on potato cultivars showed the accumulation 

of these hydroxycinnamic acid amides and other hydroxycinnamic acids; 4-coumaroylquinic 

acid, feruloylquinic acid, 1-O-sinapoyl-beta-D-glucose, 4-hydroxycoumarin, 1-O-feruloyl-

beta-D-glucose in resistant cultivars in response to Phytophthora infestans (Gunnaiah & 

Kushalappa, 2014; Pushpa et al., 2014; Yogendra et al., 2014; Macoy et al., 2015). Similarly, 

a number of these metabolites reported in potato and also detected in this study were associated 

with pathogen resistance in some members of the Poaceae family such as wheat and barley  

(Bollina et al., 2010; Gunnaiah et al., 2012; Gunnaiah & Kushalappa, 2014; Cuperlovic-Culf 

et al., 2016). The observed significant accumulation of these hydroxycinnamic acids (as stated 

in the beginning of this section), can thus, be linked to defence-related functions in sorghum 

towards B. andropogonis.    

 

Sinapoyl alcohol derived from cinnamic acid via p-coumaric-, caffeic-, ferulic- and sinapic 

acid intermediates, is an important precursor (together with sinapaldehyde also annotated in 

this study) in plant cell wall lignification ‒ a structural defence mechanism to hinder pathogen 

penetration. The decrease in levels of 1-O-sinapoyl-beta-D-glucose (not shown) accompanied 

by higher levels of its active form, sinapoyl alcohol (Figure 4.16), displayed a conversion of 

an inactive to an active form which marks the activation of structural defences (to strengthen 

the cell wall). The  sinapoyl glucoside and 1-O-feruloyl-beta-D-glucose are inactive storage 

forms which are activated due to pathogen infection to form sinapoyl alcohol  and feruloyl 

alcohol respectively (the latter ‒ not detected in this study) (Vanholme et al., 2010; Pushpa et 

al., 2014; Yogendra et al., 2014). Sinapoyl alcohol increased more significantly in the NS 551 

cv. Other metabolites also involved in structural defence are coniferyl acetate, sinapaldehyde 

glucoside and sinapoyl-(S)-malate. The significant accumulation of hydroxycinnamic acid 

conjugates associated with a decrease in the precursors, therefore, shows channelling of the 

latter into synthesis of corresponding derivatives more important for sorghum resistance 

(Bollina et al., 2010; Gunnaiah & Kushalappa, 2014; Gauthier et al., 2015; Cuperlovic-Culf et 

al., 2016; Le Roy et al., 2016; Sun et al., 2016). 
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Table 4.2 also indicates metabolites (detected in both ESI positive and negative ionisation 

modes) that were not annotated i.e. not assigned putative names. The possible empirical 

formulae computed based on accurate mass, obtained from the Waters SYNAPT G1 Q-TOF 

system, was assigned to the unknowns (as described in the experimental section in Chapter 

3). However, these ions/metabolites were identified as very significant discriminant biomarkers 

by the MVDA, and identification may be possible in the future. 

 

The changes observed in metabolite levels of the NS 5511 and NS 5655 cvs (increases or 

decreases) over time, following relative quantitative analyses, explain the differences 

visualised in chromatographic analyses (BPI LC-MS chromatograms; section 4.2) as well as 

the clustering patterns of samples in the PCA scores plots (section 4.3) i.e. time-related 

changes/differences. Moreover, the presence/absence of metabolites and the varying degrees 

in metabolite accumulation in the two S. bicolor cvs, point to underlying differential 

metabolism between the two. These results suggest that both cvs respond to pathogen attack 

(as described in the section on innate immunity in Chapter 2), but that the ‘defensomes’ to B. 

andropogonis differ due to differential metabolic reprogramming, thus contributing and 

explaining their differences in the resistant/tolerant/susceptible phenotypes. The observed 

nuances can be attributed to genetic factors and factors controlling the kinetics of the induced 

defence responses and the extent to which activation occurs (Woodhead, 1981; Wu et al., 2016; 

Tugizimana, 2017).  

 

Based on the disease severity-rating index (section 4.1), the NS 5511 (BT) cv demonstrated to 

be more resistant compared to the NS 5655 (ST) cv, as it symptomatically displayed delayed 

signs of wilting and spreading of lesion compared to the latter. This observation corroborates 

with Tugizimana (2017), and is supported by the early accumulation (1-5 d.p.i.) of the 

phytohormone salicylic acid in significant levels, in the NS 5511 cv ‒ important in 

orchestrating defence responses and systemic resistance. In the NS 5655 cv the levels of the 

hormone appeared to increase only at later stages of the treatment. The above observation 

suggests that timing and intensity of the accumulation of crucial defence metabolites is 

essential to mount an effective resistant state. Earlier accumulation and increased levels greatly 

potentiates the launching of prompt and effective defence responses i.e. in conferring the 

resistance phenotype, and in the event of the opposite, efficiency of immune responses maybe 

lessened (Göbel et al., 2001, 2002; Lattanzio et al., 2006; Mazid et al., 2011). Similarly, the 

accumulation of the apigenin glycosides, more significantly in the NS 5511 cv, possibly 



 
 

117 
 

contributed to the cv’s state of resistance. The presence of defence-related metabolites 

(phytoanticipins) in plants creates a state of “readiness” that, in the event of pathogen attack, 

the metabolites act as a first line of chemical defence to inhibit pathogen proliferation. 

Additionally, hydrolysis of preformed conjugated phytoanticipins to rapidly generate 

phytoalexins (Mhlongo et al., 2016), aimed to further limit pathogen proliferation, also 

contributes to plant resistance (Mazid et al., 2011). Therefore, a rapid increase of antimicrobial 

metabolite levels significantly contributes  to plant resistance phenotype  (Lattanzio et al., 

2006; Mazid et al., 2011; Balmer et al., 2013; Guptha, 2016). However, noteworthy, the 

functional roles of phytoanticipins and phytoalexins are somewhat overlapping and can be 

difficult to clearly distinguish at certain stages of the infection. In a nutshell, the picture 

depicted by the results from the current study, thus demonstrates metabolic reprogramming 

(both primary and secondary) in S. bicolor following B. andropogonis infection and the 

spanning of an array of defence-related metabolites ‒ aimed at establishing an enhanced 

defensive capacity (as also shown in the general summary of probable events upon pathogen 

detection in Chapter 2; Figure 2.6). Furthermore, the results reveal that the phenylpropanoid 

and flavonoid metabolic pathways were central in S. bicolor defence against to B. 

andropogonis.  
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Chapter 4: Supplementary Material 

 

Figure S 4.1: UHPLC-MS BPI chromatograms for ESI positive data of sorghum NS 5511 (BT) cv samples. 
A control (non-treated) sample extract chromatogram is shown against treated samples (1 - 9 d.p.i.) extracts 

chromatograms. It can be seen from chromatograms that the sample extracts contained a mixture of polar, mid-

polar and non-polar compounds, with more of the compounds being mid-polar. The chromatograms also show 

visually noticeable differences between the control sample and treated samples as well as time-dependent 

metabolic changes. 

 

 

 
 

Figure S 4.2: UHPLC-MS BPI chromatograms for ESI negative data of sorghum NS 5655 (ST) cv samples. 
A control (non-treated) sample extract chromatogram is shown against treated samples (1 - 9 d.p.i.) extracts 

chromatograms. It can be seen from chromatograms that the sample extracts contained a mixture of polar, mid-

polar and non-polar compounds, with more of the compounds being mid-polar. The chromatograms also show 

visually noticeable differences between the control sample and treated samples as well as time-dependent 

metabolic changes. 
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Figure S 4.3: UHPLC-MS BPI chromatograms for ESI positive data of sorghum NS 5655 (ST) cv samples. 
A control (non-treated) sample extract chromatogram is shown against treated samples (1 - 9 d.p.i.) extracts 

chromatograms. It can be seen from chromatograms that the sample extracts contained a mixture of polar, mid-

polar and non-polar compounds, with more of the compounds being mid-polar. The chromatograms also show 

visually noticeable differences between the control sample and treated samples as well as time-dependent 

metabolic changes. 

 

Figure S 4.4: UHPLC-MS BPI chromatograms for ESI negative data of sorghum NS 5511 (BT) vs NS 5655 

(ST) cv samples. BT treated samples chromatograms 3 and 5 d.p.i. are shown against ST treated samples 3 and 5 

d.p.i.. The chromatograms visually show cultivar-dependent differences as well as time-dependent metabolic 

changes. 
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Figure S 4.5: PC and HC analyses of the ESI positive data for sorghum NS 5511 (BT) extracts (excluding 

the QC data). (A & B) A 10-component model, explaining 92.1% variations in Pareto-scaled data, X, and the 

amount of predicted variation by the model, according to cross-validation, is 86.7%. A and B is the same scores 

plot, with A coloured according to treatment and B coloured according to time. This two-dimensional scores 

space, spanned by the first two PCs, reveals treatment-related sample clustering (treated = blue, controls/non-

treated = green) and also time-related clustering. (C & D) HCA dendrograms computed from low dimensional 

data (PC scores plot). The models were computed using 10 vectors/components, explaining 92.1% of the total 

variation in X matrix. C displays treatment related relationships amongst the samples, treated (blue) samples from 

both cultivars are clearly separated from the non-treated samples (green) except for a few samples. While D 

displays time related relationships. 

 

Figure S 4.6: PC and HC analyses of the ESI negative data for sorghum NS 5655 (ST) extracts (excluding 

the QC data). (A & B) A 8-component model, explaining 71.0% variations in Pareto-scaled data, X, and the 

amount of predicted variation by the model, according to cross-validation, is 60.4%. A and B is the same scores 

plot, with A coloured according to treatment and B coloured according to time. This two-dimensional scores 

space, spanned by the first two PCs, reveals treatment-related sample clustering (treated = blue, controls/non-

treated = green) and also time-related clustering. (C & D) HCA dendrograms computed from low dimensional 

data (PC scores plot). The models were computed using 8 vectors/components, explaining 71.0% of the total 

variation in X matrix. C displays treatment related relationships amongst the samples, treated (blue) samples from 

both cultivars are clearly separated from the non-treated samples (green) except for a few samples. While D 

displays time related relationships. 
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Figure S 4.7: PC and HC analyses of the ESI positive data for sorghum NS 5655 (ST) extracts (excluding 

the QC data). (A & B) A 5-component model, explaining 82.0% variations in Pareto-scaled data, X, and the 

amount of predicted variation by the model, according to cross-validation, is 78.0%. A and B is the same scores 

plot, with A coloured according to treatment and B coloured according to time. This two-dimensional scores 

space, spanned by the first two PCs, reveals treatment-related sample clustering (treated = blue, controls/non-

treated = green) and also time-related clustering. (C & D) HCA dendrograms computed from low dimensional 

data (PC scores plot). The models were computed using 7 vectors/components, explaining 82.0% of the total 

variation in X matrix. C displays treatment related relationships amongst the samples, treated (blue) samples from 

both cultivars are clearly separated from the non-treated samples (green) except for a few samples. While D 

displays time related relationships. 

 

Figure S 4.8: PC and HC analyses of the ESI positive data for sorghum NS 5511 (BT) and NS 5655 (ST) 

extracts (excluding the QC data). (A & B) A 14-component model, explaining 91.8% variation in Pareto-scaled 

data, X, and the amount of predicted variation by the model, according to cross-validation, is 87.7%.  . A and B 

is the same scores plot, with A coloured according to treatment and B coloured according to cultivar. This two-

dimensional scores space, spanned by the first two PCs, reveals treatment-related sample clustering (treated = 

blue, controls/non-treated = green) and also cultivar-related clustering. (C & D) HCA dendrograms computed 

from low dimensional data (PC scores plot). The models were computed using 14 vectors/components, explaining 

91.8% of the total variation in X matrix. C displays treatment related relationships amongst the samples, treated 

(blue) samples from both cultivars are clearly separated from the non-treated samples (green) except for a few 

samples. While D displays cultivar related relationships. 
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Figure S 4.9: Supervised multivariate analyses of the ESI positive data for NS 5511 (BT) cv extracts 

(excluding QCs). (A) The OPLS-DA score plot shows grouping of control vs treated for all samples. This model 

comprises 1 predictive component and 1 orthogonal components (R2X= 81.2%, R2Y= 99.8% and Q2= 98.8%). 

(B) A distance to the model in space X (DModX) plot showing moderate outliers (above the dashed red line, 

Dcrit) in the OPLS-DA scores plot. (C) A representative receiver operator characteristic (ROC) plot summarising 

the performance of OPLS-DA (a binary classification method). (D) The response permutation test plot (n=100) 

of the OPLS-DA model in A, clearly separating control from treated plant samples. 

 

Figure S 4.10: OPLS-DA modelling analyses of the ESI positive data for NS 5511 (BT) cv extracts (excluding 

QCs). (A) OPLS-DA loading S-plot displays the discriminating features (ions) that explain the clustering (sample 

grouping) observed in the OPLS-DA scores plot with the features in the top right quadrant are positively correlated 

to the treatment and those in the bottom left quadrant  are negatively correlated  to the treatment. This loading S-

plot comprises 1 predictive component explaining 78.4% of the total variation and 1 orthogonal components 

explaining 2.79% of the total variation. (B) XCMS cloud plot. (C) A VIP plot summarising the importance of 

variables in the projection of the PLS model. A VIP value >1 is significant/important in the projection and increase 

in value indicates an increase in significance of the variable. (D) Dot plot of the selected variable 188.0760 m/z 

from S-plot (in red; also marked on the VIP plot) showing no overlap between control and treated groups thus, 

the variable strongly discriminates the two groups. 
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Figure S 4.11: Supervised multivariate analyses of the ESI negative data for NS 5655 (ST) cv extracts 

(excluding QCs). (A) The OPLS-DA score plot shows grouping of control vs treated for all samples. This model 

comprises 1 predictive component and 2 orthogonal components (R2X= 56.0%, R2Y= 98.7% and Q2= 97.6%). 

(B) A distance to the model in space X (DModX) plot showing moderate outliers (above the dashed red line, 

Dcrit) in the OPLS-DA scores plot. (C) A representative receiver operator characteristic (ROC) plot summarising 

the performance of OPLS-DA (a binary classification method). (D) The response permutation test plot (n=100) 

of the OPLS-DA model in A, clearly separating control from treated plant samples. 

 

Figure S 4.12: OPLS-DA modelling analyses of the ESI negative data for NS 5655 (ST) cv extracts 

(excluding QCs). (A) OPLS-DA loading S-plot displays the discriminating features (ions) that explain the 

clustering (sample grouping) observed in the OPLS-DA scores plot with the features in the top right quadrant are 

positively correlated to the treatment and those in the bottom left quadrant  are negatively correlated  to the 

treatment. This loading S-plot comprises 1 predictive component explaining 34.4% of the total variation and 2 

orthogonal components explaining 22.0% of the total variation. (B) XCMS cloud plot. (C) A VIP plot 

summarising the importance of variables in the projection of the PLS model. A VIP value >1 is 

significant/important in the projection and increase in value 1 indicates an increase in significance of the variable. 

(D) Dot plot of the selected variable 299.0743 m/z from S-plot (in red; also marked on the VIP plot) showing no 

overlap between control and treated groups thus, the variable strongly discriminates the two groups. 
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Figure S 4.13: Supervised multivariate analyses of the ESI positive data for NS 5655 (ST) cv extracts 

(excluding QCs). (A) The OPLS-DA score plot shows grouping of control vs treated for all samples. This model 

comprises 1 predictive component and 1 orthogonal components (R2X= 71.7.0%, R2Y= 99.7% and Q2= 99.6%). 

(B) A distance to the model in space X (DModX) plot showing moderate outliers (above the dashed red line, 

Dcrit) in the OPLS-DA scores plot. (C) A representative receiver operator characteristic (ROC) plot summarising 

the performance of OPLS-DA (a binary classification method). (D) The response permutation test plot (n=100) 

of the OPLS-DA model in A, clearly separating control from treated plant samples 

 

Figure S 4.14: OPLS-DA modelling analyses of the ESI positive data for NS 5655 (ST) cv extracts (excluding 

QCs). (A) OPLS-DA loading S-plot displays the discriminating features (ions) that explain the clustering (sample 

grouping) observed in the OPLS-DA scores plot with the features in the top right quadrant are positively correlated 

to the treatment and those in the bottom left quadrant  are negatively correlated  to the treatment. This loading S-

plot comprises 1 predictive component explaining 68.4% of the total variation and 1 orthogonal components 

explaining 3.32% of the total variation. (B) XCMS cloud plot. (C) A VIP plot summarising the importance of 

variables in the projection of the PLS model. A VIP value >1 is significant/important in the projection and increase 

in value indicates an increase in significance of the variable. (D) Dot plot of the selected variable 593.3597 m/z 

from S-plot (in red; also marked on the VIP plot) showing no overlap between control and treated groups thus, 

the variable strongly discriminates the two groups. 
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Chapter 5: Results and Discussion, 

part II: The effect of purified LPS 

from Burkholderia andropogonis on 

suspension-cultured Sorghum bicolor 

cells 
 

 

As detailed in the literature review (Chapter 2; section 2.3), passive (preformed) and active 

(induced) immune responses in plants exposed to pathogens are triggered upon detection of 

conserved molecular motifs such as LPS, flagellin and fungal chitin amongst other well-

characterised MAMPS (refer to cited literature for detailed description) (Chinchilla et al., 2007; 

Wan et al., 2008; Hao et al., 2014; Shamrai, 2014; Ranf et al., 2015; Ranf, 2016). In the 

previous chapter (Chapter 4) the metabolic response of sorghum plants to B. andropogonis 

infection were highlighted. However, there is a need to further investigate the important factors 

instrumental to contributing to the resulting metabolic reprogramming. In this attempt, the 

effect of purified LPS isolated from B. andropogonis, as one of the pathogen’s MAMPs 

triggering the metabolic reprogramming and the extent to which this occurs, was investigated 

using a cell suspension culture system. The latter was used to gain more detailed insights into 

the molecular mechanisms employed by sorghum in response to infection. Additionally, this 

system was employed, due to rapid multiplication of a homogeneous population of cells, 

decreased biological variability and  improved experimental reproducibility, advantageous for 

the study of secondary metabolite biosynthetic pathways and inducible defence responses (also 

see Chapter 3; section 3.2) (Coventry, 1999; Bourgaud et al., 2001; Ngara et al., 2008; Ellis 

& Goodacre, 2012; Tugizimana, 2012).  

  

5.1. Compositional - and structural analysis of LPS from 

Burkholderia andropogonis 
 

LPS from the B. andropogonis (LPSB. andr.)
 is a macromolecular (Mr > 7.5 kDa), hydrophilic 

hetero-polysaccharide, that is covalently linked through a core oligosaccharide (Mr 
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approximately 1.8 kDa) to the glycolipid moiety, Lipid A (Mr approximately 1.6 kDa). An 

LPS-specific SDS-PAGE analysis of purified LPSB. andr. is shown in Figure 5.1. The lanes on 

the gel loaded with purified LPS display a characteristic ladder pattern with the individual 

bands representing LPSB. andr. of various molecular sizes, i.e. size heterogeneity. This can be 

ascribed to biosynthesis products differing in length, i.e., consisting of the Lipid A and core 

oligosaccharide, and containing a different number of oligosaccharide repeating units that 

forms the extended O-polysaccharide (OPS).  

 

 
 
Figure 5.1: LPS-specific SDS-PAGE analysis of purified LPSB. andr.. LPS isolated from Burkholderia 

andropogonis (last two lanes) is displayed against Burkholderia cepacia LPS (first lane). LPSB.cep. was used as a 

reference as it has been well-characterised (Madala et al., 2011). The highlighted regions show the three LPS 

components from the two Burkholderia species. The Lipid A component of LPSB. andr. appears at the bottom of 

the gel (~ 1.6 kDa; region highlighted in red) and is attached to the core oligosaccharide ‒ mid section (~ 1.8 kDa; 

region highlighted in green). The region highlighted in blue shows the repeating units of the O-antigen/O-

polysaccharide (OPS; heterogeneous in size). 

 

 

Characterisation of the purified LPS was performed in the Department of Chemical Sciences, 

University of Napoli Federico II, Naples, Italy (Di Lorenzo and Molinaro, unpublished).  Sugar 

compositional analysis revealed the following:  rhamnose, 3-C-methylrhamnose, 2,6-dideoxy-

2-amino-D-glucose (quinovosamine), glucosamine, 4-amino-4-deoxy-L-arabinose (Ara4N), 

D-glucose, D-galactose, L-glycero-D-manno-heptose, 3-deoxy-D-manno-oct-2-
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ulopyranosonic acid (Kdo), and D-glycero-D-talo-oct-2-ulopyranosonic acid (Ko). The 

repeating unit of the OPS of the LPSB. andr. was characterised as having a [→3)-α-Rha-(1→2)-

α-Rha3CMe-(1→3)-α-Rha-(1→] motif.  

 

Structural analysis on the Lipid A component of LPSB. andr. revealed a penta-acylated, 1,4'-bis-

phosphorylated, [β-D-GlcpN-(1→6)-α-D-GlcpN] disaccharide backbone, further substituted 

by 4-amino-4-deoxy-L-arabinopyranose (L-Ara4N) at the anomeric position of GlcN by a 

phosphodiester linkage. Fatty acid analysis indicated the presence of (R)-3-

hydroxyhexadecanoic acid (16:0(3-OH)), (R)-3-hydroxytetradecanoic acid (14:0(3-OH)) and 

tetradecanoic acid (14:0).  As primary fatty acids, R-configurated 16:0(3-OH) (amide-linked in 

2 and 2′) and 14:0(3-OH) (ester-linked in 3 and 3′) were identified. A secondary 14:0 was 

located at position 2′. Both fatty acids and Ara4N were not in stoichiometric amounts; indeed, 

the LPSB. andr. Lipid A was naturally present as a ‘blend’ of different species differing by the 

presence or absence of fatty acids and further complicated by the non-stoichiometric presence 

of Ara4N (Figure 5.2) (Di Lorenzo and Molinaro, unpublished). 

 

 

 

 

 

Figure 5.2: Structural representation of the Lipid A component of B. andropogonis LPS. The Mr of the Lipid 

A component is approximately 1.6 kDa. Structural analysis revealed that the Lipid A is composed of  a penta-

acylated, 1,4'-bis-phosphorylated disaccharide backbone, which is further substituted by 4-amino-4-deoxy-L-

arabinopyranose at the anomeric position of GlcN by a phosphodiester linkage and fatty acid analysis revealed 

the presence of (R)-3-hydroxyhexadecanoic acid, (R)-3-hydroxytetradecanoic acid and tetradecanoic acid. Lipid 

A is regarded a highly conserved component, differing amongst bacterial species and contributing to LPS stability.  
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5.2. A non-targeted metabolic profiling of LPSB. andr.-treated 

cultured sorghum cells 
 

High definition LC-MS-based metabolomics approaches have paved ways into the uncovering 

of metabolite profiles of various biosystems, to a greater depth (Tugizimana et al., 2013; Ncube 

et al., 2017). LC-MS analysis employing ESI ionisation,  has allowed a more comprehensive 

analysis of plant metabolites differing in physicochemical properties (Xiao et al., 2012; Putri 

et al., 2013; Yin & Xu, 2014; Wang et al., 2015; Tugizimana et al., 2017). In this study UHPLC-

ESI-QTOF-HDMS was employed for the analysis of endo- and exometabolome of sorghum 

cell suspension cultures. BPI chromatograms of these extracts displayed treatment- and time-

related metabolic responses to LPSB. andr. treatment. Differences with regard to peak population 

and peak intensities across the BPI chromatograms of treated and non-treated cell extracts were 

chromatographically visualised. A clear example of variation in peak population and intensities 

across samples can be seen in the marked regions i.e. Rt = 12.4-13.6 min and Rt = 8.5-9.5 min 

of MS chromatograms obtained from extracts of cell (Figure 5.3) and growth medium (Figure 

5.4), showing the comparison of non-treated (control, 0 h) and treated samples (12-30 h). The 

differences between control vs treated samples and those across the time points, subsequently 

provided the visual picture of metabolic changes occurring due to the LPSB. andr.  treatment as 

a function of time. However, these differences were not as pronounced as those visually noticed 

in comparable MS chromatograms of extracts prepared from leaf tissue (Chapter 4, section 

4.2). 
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Figure 5.3: UHPLC-MS BPI chromatograms (ESI negative) of methanolic intracellular extracts of 

sorghum cells treated with LPSB. andr.  The chromatograms of a control (non-treated 0 h) vs treated samples (12-

30 h) display variation related to treatment- and time-related metabolic changes occurring in the cells due to LPS 

treatment. 

 

 
 

Figure 5.4: UHPLC-MS BPI chromatograms (ESI negative) of methanolic extracellular extracts of 

sorghum cells treated with LPSB. andr. The chromatograms of a control (non-treated 0 h) vs treated samples (0-

30 h) display variation related to treatment- and time-related metabolic changes occurring in the cells due to LPS 

treatment. 

 

 

BPI chromatograms only indicate the most intense peaks at a specific Rt and are not clearly 

informative in providing a holistic view of the variation in samples. Multivariate statistical 

analyses (unsupervised and supervised) were therefore performed to further investigate the 

treatment- and time-related differences observed from the LC-MS analyses. In unsupervised 
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multivariate analyses, PCA as one of the chemometrics tools, provided a summary of the 

multidimensional data, increased data interpretability and permitted recognition of groupings, 

trends and outliers ‒ while virtually preserving statistical variability (Ivosev G. et al., 2008; 

Tugizimana et al., 2013; Jolliffe et al., 2016; Schwarz et al., 2018). The computed PCA scores 

plot of cell extracts revealed a clear separation between control and treated samples (Figure 

5.5 A and S 5.3 A). A similar clustering was also observed for the medium extracts (Figure 

5.6 A and S 5.4 A). These groupings revealed treatment-related sample clustering, reflecting 

differences highlighted in the BPI chromatograms (Figure 5.3-5.4 and S 5.1-5.2). 

 

 

 
 

Figure 5.5: PC analyses of the LC-MS (ESI negative data) for intracellular sorghum cell extracts. The 4-

component model, explains 61.9% variation in Pareto-scaled data, X, and the amount of predicted variation by 

the model, according to cross-validation, is 51.4%.  The first 2 PCs were used to generate the above scores plot. 

A: Clusters coloured based on condition i.e. non-treated/treated shows clear separation between treated and 

control (non-treated, 0 h) samples. B is the same scores plot but coloured according to time shows a clear 

sequential time trend clustering (from C0 h and T12-30 h). To determine the group (control/treated) to which the 

clusters in B belong, link to the corresponding positions in A.     

 

 

When sample groups were colour-coded base on time points, the same scores plots showed a 

distinct sequential time clustering trend of samples i.e. a time-related clustering for both cell 

(Figure 5.5 B and S 5.3 B) and medium extracts (Figure 5.6 B and S 5.4 B). Clustering of 

samples highlighted in the PCA scores space hints to differential metabolic changes in cultured 

sorghum cells in response to LPSB. andr. treatment. 
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Figure 5.6: PC analyses of the LC-MS (ESI negative data) for extracellular sorghum cell extracts. The 3-

component model, explains 61.5% variation in Pareto-scaled data, X, and the amount of predicted variation by 

the model, according to cross-validation, is 52.8%.  First 2 PCs were used to generate the above scores scatter 

plot. A: Clusters coloured based on condition i.e. non-treated/treated shows clear separation between treated and 

control (non-treated). B: Same scores plot, but coloured according to time points. A clear sequential time trend 

clustering (from C0 h and T12-30 h) can be seen in B. To determine the group (control/treated) to which the 

clusters in B belong, link to the corresponding positions in A.     

 

 

For further characterisation and interpretation of the different clustering depicted in PC 

analyses, a supervised method, OPLS-DA, was applied. The supervised modelling allowed 

identification of signatory biomarkers underlying the discrimination between the sample 

classes (associated with LPS treatment). Computed OPLS-DA scores plots showed clear 

discrimination between the control and the treated samples (Figure 5.7-5.8 A and Figure S 

5.5-5.6 A). Evaluation of the goodness-of-fit (R2X(cum)), proportion of variance of the 

response variable explained by the model (R2Y(cum)) and predictive ability (Q2(cum)) 

parameters ‒ indicated that the models were reliable. Further validation also revealed the 

reliability of the models i.e. CV-ANOVA p-value of ≤ 0.05.  (Fujimura et al., 2011; Li et al., 

2014; Tugizimana et al., 2014, 2015; Ncube et al., 2016). Furthermore, the distance to the 

model in space X (DModX) plots (Figure 5.7-5.8 B and S 5.5-5.6 B) for the generated OPLS-

DA scores plots were used to assess moderate outliers.  
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Figure 5.7: Supervised multivariate analyses of the LC-MS (ESI negative data) for intracellular extracts. 

(A): Grouping of control (C0 h) vs treated (all time points combined) as indicated by an OPLS-DA score plot. 

This model comprises 1 predictive component and 3 orthogonal components (R2X= 60.0%, R2Y= 99.2% and Q2= 

95.1%). (B): A distance to the model in space X (DModX) plot to detect outliers (above the dashed red line, 

Dcrit).  

 

Figure 5.8: Supervised multivariate analyses of the LC-MS (ESI negative data) for extracellular extracts 

(excluding QCs). (A): Grouping of control (C0 h) vs treated (all time points combined) as indicated by an OPLS-

DA score plot. This model comprises 1 predictive component and 1 orthogonal components (R2X= 53.8%, R2Y= 

99.1% and Q2= 96.6%). (B): A distance to the model in space X (DModX) to detect outliers (above the dashed 

red line, Dcrit). 

 

The OPLS-DA derived loadings S-plot (Figures 5.9-5.10 A and S 5.7-5.8 A) assisted in 

visualisation of the covariance and correlation between variables of modelled classes, and 

permitted the extraction of statistically significant biomarkers within the │p[1]│ ≥ 0.05 and 

│p(corr)│ ≥ 0.5 defined regions, responsible for discrimination between control and LPSB. andr. 

treated samples (Major et al., 2006; Fujimura et al., 2011; Tugizimana et al., 2014, 2017). The 

significance of the extracted variables towards discrimination of samples was assessed using 

the VIP plots. Only variables with a VIP score > 1 were considered significant and thus, further 

annotated (Pears et al., 2005; Fujimura et al., 2011; Li et al., 2014). Figures 5.9-5.10 B (and 

Figures S 5.7-5.8 B) display some of the variables considered as significant, with the one 
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highlighted in red corresponding to the selected variable (in red) in the S-plot (Figures 5.9-

5.10 A).  

 

Figure 5.9: OPLS-DA modelling analyses of the LC-MS (ESI negative data) for intracellular extracts 

(excluding QCs). (A) An OPLS-DA loading S-plot displaying the discriminating features (ions) that explain the 

clustering (sample grouping) observed in the OPLS-DA scores plot with the features in the top right quadrant 

positively correlated to the treatment and those in the bottom left quadrant negatively correlated to the treatment. 

(B) A VIP plot summarising the importance of some of the variables in the projection of the model with the m/z 

values and jackknife confidence intervals reflecting the variable stability. A VIP value >1 indicates a significant 

variable in the complex analysis in comparing the difference between groups.  (C) Representative variable trend 

plot exhibiting the trend of the selected variable across the control and treated samples.  

 

 

 

Moreover, an additional statistical tool, variable trend plot was also used for variable selection 

evaluation. Representative variable trend plots (Figures 5.9-5.10 C and S 5.7-5.8 C) for the 

variable highlighted (in red) in the S-plots and VIP plot, exhibit changes of the particular 

variable across the control and treated samples. In Figure 5.9 C, for example, the variable trend 

plot shows that no change could be computed for the 327.214 m/z variable in the control 

samples, which could mean the absence of this variable in the non-treated samples. On the 

other hand, in the treated samples, the changes of the 327.214 m/z variable could be observed 

as infographically depicted by the trend plot (Figure 5.9 C), suggesting the presence of this 

ion (possible metabolite) in these samples and its trajectory changes over time. Thus, such an 

ion (variable) differentiates the control and treated samples. 
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Figure 5.10: OPLS-DA modelling analyses of the LC-MS (ESI negative data) for extracellular extracts 

(excluding QCs). (A) An OPLS-DA loading S-plot displaying the discriminating features (ions) that explain the 

clustering (sample grouping) observed in the OPLS-DA scores plot with the features in the top right quadrant 

positively correlated to the treatment and those in the bottom left quadrant negatively correlated to the treatment. 

(B) A VIP plot summarising the importance of some of the variables in the projection of the model with the m/z 

values and jackknife confidence intervals reflecting the variable stability. A VIP value >1 indicates a significant 

variable in the complex analysis in comparing the difference between groups. (C) Representative variable trend 

plot exhibiting the changes of the selected variable across the control and treated samples.  

 

 

Variables relating to the observed metabolic changes due to treatment with LPSB. andr., selected 

and validated with the aid of various chemometrics tools mentioned above, were further 

putatively identified (annotated at level 2 of the Metabolomic Data Standards Initiative (MSI-

2)) (Sumner et al., 2007), as described in Chapter 3 (section 3.6). Metabolites shown in Table 

5.1 were annotated from both LC-MS ESI negative and positive data, and had a VIP score > 1. 

Fold changes presented in Table 5.1 were obtained from the computed model of C0 h vs T 18 

h, as this was the best time point representation of the overall metabolic changes. A similar 

table expressing the fold changes and p-values generated from the computed OPLS-DA models 

of other time points (i.e. C0 h vs 12-, 24- and 30 h), for intra- and extracellular data is included 

in the supplementary data file Table S 5.1 and S 5.2, respectively.  
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Table 5.1: Annotated discriminatory metabolites from cell (intracellular) and medium (extracellular) extracts of LPSB. andr.-treated 

Sorghum bicolor cultured cells. The summarised metabolites were annotated at MI-level 2 and had VIP score > 1. Fold changes were obtained 

from an OPLS-DA model of control (C0 h) vs treated 18 h. (Data from 12, 24 and 30 h time points is presented as supplementary files). 

 
Metabolites m/z Rt 

(min) 

Adduct Ion 

mode 

Formula Intracellular 

 

Extracellular Class 

p-value Fold 

change 

Trend p-value Fold 

change 

Trend 

Sorgoleone 359.2298 4.98 [M+H]+ pos C22H30O4 0.048 3.0 Increase 8.78E-09 30.1 Increase Allelochemical 

L-Phenylalanine 164.0686 1.84 [M-H]- neg C9H11NO2 6.28E-06 1.4 Increase 3.07E-11 2.7 Increase Amino acid 

L-Tryptophan 203.0798 2.78 [M-H]- neg C11H12N2O2 2.04E-06 1.4 Increase 0.001 1.4 Increase Amino acid 

15-Hydroxylinoleic acid  295.2253 14.29 [M-H]- neg C18H32O3 0.001 2.1 Increase       
Fatty acid 

Dihydroxy-octadecadienoic acid 311.2242 11.79 [M-H]- neg C18H32O4 1.28E-10 10.8 Increase 0.110 5.2 Increase Fatty acid 

9,10-Dihydroxy-12-octadecenoic acid 313.2354 12.67 [M-H]- neg C18H34O4 0.606 1.6 Increase       
Fatty acid 

9,10-Dihydroxystearic acid 315.2511 13.51 [M-H]- neg C18H36O4 2.37E-09 6.4 Increase       
Fatty acid 

Trihydroxy-octadecadienoic acid І 327.2149 9.72 [M-H]- neg C18H32O5 0.377 113 Increase       
Fatty acid 

Trihydroxy-octadecadienoic acid ІІ 327.2135 11.05 [M-H]- neg C18H32O5 3.97E-13 356.7 Increase 0.000 38.8 Increase Fatty acid 

9,12,13-Trihydroxy-10-octadecenoic 

acid 

329.2327 9.60 [M-H]- neg C18H34O5 0.000 1.8 Increase 1.13E-08 9.2 Increase Fatty acid 

16-Hydroxypalmitate 273.2553 13.65 [M+H]+ pos C16H32O3 0.490 1.3 Increase       
Fatty acid 

Sophoraflavanone G 423.1821 4.42 [M-H]- neg C25H28O6 2.36E-05 0.8 Decrease 0.030 1.1 Increase Flavonoid 

Apigenin-8-C-glucoside (vitexin) 431.0974 5.58 [M-H]- neg C21H20O10 0.702 1.1 Increase 0.537 1.2 Increase Flavonoid 

Apigenin-6-C-xyloside-8-C-glucoside 
(vicenin-1) 

565.1545 4.94 [M+H]+ pos C26H28O14 0.064 0.6 Decrease 0.004 1.4 Increase Flavonoid 

Apigenin-6,8-di-C-glucoside  

(vicenin-2) 

595.1687 4.77 [M+H]+ pos C27H30O15 0.082 0.4 Decrease 0.240 2.1 Increase Flavonoid 

Apigenin 7,4'-dimethyl ether 316.1157 8.29 [M+H_NH3]
+ pos C17H14O5 0.000 0.5 Decrease       

Flavonoid 

3’,4’5-Trihydroxy-3,7-
dimethoxyflavone 

367.0221 3.90 [M-H]- neg C17H20O9 0.032 0.8 Decrease       
Flavonoid 

4-Coumaroyl-3-hydroxyagmatine 291.1471 5.72 [M-H]- neg C14H20N4O3 0.013 0.7 Decrease 0.001 2.5 Increase HCA 

4-Coumaroylquinic acid 337.1474 1.77 [M-H]- neg C16H18O8 7.19E-09 0.6 Decrease 0.010 1.1 Increase HCA 

Cinnamoylserotonin 351.1251 2.43 [M-H_HCOOH]- neg C19H18N2O2 7.77E-05 0.8 Decrease 0.000 1.2 Increase HCA 

Feruloylserotonin 351.1266 2.86 [M-H]- neg C20H20N2O4 0.387 0.4 Decrease 0.771 1.2 Increase HCA 

Sinapaldehyde glucoside 369.1199 3.61 [M-H]- neg C17H22O9 0.525 0.9 Decrease 1.68E-06 2.7 Increase HCA 

1-O-Coumaroyl-beta-D-glucose 371.0957 4.94 [M-H_NaNa]- neg C15H18O8 5.26E-11 0.6 Decrease 7.70E-06 2.1 Increase HCA 

Sinapoyl alcohol 209.0764 6.72 [M-H]- neg C11H14O4 1.55E-10 4.8 Increase 1.34E-05 1.8 Increase HCA 

https://en.wikipedia.org/wiki/Apigenin
https://en.wikipedia.org/wiki/Glucoside
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Dihydroconiferyl alcohol glucoside 413.1422 3.27 [M+H_HCOONa]+ pos C16H24O8 0.005 0.6 Decrease       
HCA 

Indole-3-butyric acid 272.0893 2.84 [M+H_HCOONa]+ pos C12H13NO2 1.62E-05 0.5 Decrease       
Indole compound 

N(6)-[(Indol-3-yl)acetyl]-L-lysine 304.1667 4.20 [M+H]+ pos C16H21N3O3 1.43E-07 5.8 Increase       
Indole compound 

Indole-3-acetyl-myo-inositol 353.1348 2.44 [M-H_NH3]
- neg C16H19NO7 0.479 1.8 Increase 0.000 2.9 Increase Indole compound 

Indole-3-acetyl-beta-1-D-glucoside 382.1121 3.93 [M-H_HCOOH]- neg C16H19NO7 0.075 0.7 Decrease 0.925 1.0 Increase Indole compound 

6-Hydroxy-indole-3-acetyl-valine 291.1294 3.89 [M+H]+ pos C15H17N2O4 0.174 0.5 Decrease 0.098 2.1 Increase Indole compound 

Traumatic acid 297.1291 3.90 [M+H_HCOONa]+ pos C12H20O4 0.027 4.4 Increase       
Phytohormone 

(9R,13R)-1a,1b-Dihomo-jasmonic acid 239.1638 12.19 [M+H]+ pos C14H22O3 0.016 0.8 Decrease       
Phytohormone 

Zeatin-7-beta-D-glucoside 397.1826 6.73 [M-H_NH3]
- neg C16H23N5O6 0.216 0.8 Decrease       

Phytohormone 

Zeatin 220.1197 2.15 [M+H]+ pos C10H13N5O 2.99E-05 0.5 Decrease       
Phytohormone 

Methyl jasmonate 247.1298 2.52 [M+H_Na]+ pos C13H20O3 1.21E-08 4.2 Increase       
Phytohormone 

Dihydrozeatin riboside 354.1769 6.20 [M+H]+ pos C15H23N5O5 0.000 0.2 Decrease       
Phytohormone 

Zeatin riboside 374.1463 5.39 [M+H_Na]+ pos C15H21N5O5 0.000 0.3 Decrease       
Phytohormone 

Azelaic acid 187.0935 6.74 [M-H]- neg C9H16O4 7.24E-12 6.5 Increase 5.58E-07 1.9 Increase Phytohormone 

Abscisic acid 265.1552 3.35 [M+H]+ pos C15H20O4 7.62E-08 3.5 Increase 4.39E-13 16.8 Increase Phytohormone 

Agmatine 173.0787 5.52 [M-H_NaNa]- neg C5H14N4 0.000 1.4 Increase       
Polyamine 

Riboflavin 377.1476 4.49 [M+H]+ pos C17H20N4O6 0.050 0.7 Decrease 7.65E-08 5.9 Increase Flavin 

 : indicates the metabolite is absent in the particular extract.   

HCA = hydroxycinnamic acid 

Metabolite annotation was achieved with the aid from the Taverna workbench (www.taverna.org.uk), databases such as Dictionary of Natural Products (DNP) (dnp.chemnetbase.com), 

ChemSpider (www.chemspider.com), PubChem (www.pubchem.ncbi.nlm.nih.gov), PlantCyc (www.plantcyc.org), SorgCyc (www.sorgcyc.org) and KNApSAcK 

(http://kanaya.naist.jp/knapsack_jsp/top.htm) and available literature. 

p-value refers to significance level of a metabolite. Fold change was calculated by dividing the average of the metabolite intensity in replicate samples of treated by the average of the metabolite 

intensity in replicate samples of control, a value ≥1 represents an increase (metabolite is higher in the treated samples than in the control) and value <1 represents a decrease (metabolite is higher 

in the control and treatment led to decrease in levels). 

 

Table 5.1: continued.. 

Table 5.1 continued.. 

http://www.chemspider.com/
http://www.pubchem.ncbi.nlm.nih.gov/
http://www.plantcyc.org/
http://www.sorgcyc.org/
http://kanaya.naist.jp/knapsack_jsp/top.html
http://kanaya.naist.jp/knapsack_jsp/top.htm
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5.3. Metabolic changes induced by LPSB. andr. treatment in cultured 

Sorghum bicolor cells  
 

The chemometrically selected variables were then annotated to structurally elucidated 

metabolites (Table 5.1), in order to gain biological insight into the changes occurring in the 

sorghum cell culture system, following LPSB. andr. treatment. The endometabolome 

(intracellular/fingerprint) and exometabolome (extracellular/footprint) of the cultured cells was 

characterised by metabolites associated with primary as well as secondary metabolism and of 

diverse biochemical functions in plant defence. As described previously (Chapter 4), the 

defence arsenal of sorghum is broad and diverse, involving metabolites of various chemical 

classes (Salzman et al., 2005; Tugizimana et al., 2014; Tugizimana, 2017). To have a 

comprehensive picture of metabolic reprogramming in sorghum cells induced by LPS 

treatment, relative quantification (based on fold changes) of the putatively identified 

metabolites was carried out, offering a measurable evaluation of metabolic changes. 

 

Metabolic profiling of cultured cells revealed the intracellular induction of some metabolites 

of primary metabolism, L-phenylalanine and L-tryptophan, as well as excretion into the 

extracellular milieu (Table 5.1). As previously stated in Chapter 4 (section 4.4.1) the role of 

amino acids in plant defence includes functioning as regulators and precursors in various 

secondary metabolic pathways involved in plant defence. L-Phenylalanine is a particularly 

important initiator/regulatory molecule of the phenylpropanoid pathway and is also involved 

in SA biosynthesis (Lattanzio et al., 2006; Ayabe et al., 2010; Tzin & Galili, 2010; Edwards, 

2016; Ng et al., 2016; Sun et al., 2016). On the other hand, tryptophan is a major precursor in 

indolic secondary metabolite synthesis (Tzin & Galili, 2010; Zhao, 2012; Bottcher et al., 2014; 

Pastorczyk & Bednarek, 2016). Moreover, the tryptophan metabolic pathway has also been 

reported to be involved in defence responses in cereal crops such as rice, through the production 

of serotonin and conjugates (see Table 5.1, on annotated serotonin conjugates in this study) 

(Ishihara et al., 2008).  

 

The intracellular up-regulation of phenylalanine and tryptophan (fold change >1) across the 

time points (Table 5.1, Table S 5.1 and Figure 5.11) could be as a result of continuous 

requirement for the precursors in the synthesis of phenylalanine-derived and tryptophan-

derived metabolites, respectively. The presence of phenylalanine and some phenylpropanoids 

(and other related secondary metabolites) in the cell extracts, indicates that these metabolic 



 
 

149 
 

pathways were activated by the cells in response to ‘non-self’ perception of LPS as a MAMP. 

Similarly, the presence of tryptophan (a major precursor) and tryptophan-derived metabolites 

such as indoles and serotonin conjugates, is also indicative of the active involvement of these 

pathways in immune responses, following LPS treatment. 

 

 
 

Figure 5.11: Relative quantification of amino acids annotated in intracellular extracts, induced by LPS 

treatment of sorghum cells. The graph shows the relative levels of each metabolite across the time points, 

expressed as fold changes, computed from treated against control (C0 h) i.e. T/C, where fold change > 1 represents 

significant accumulation. 

 

 

The B. andropogonis derived elicitor, LPS, triggered significant changes in lipidome 

components i.e. various fatty acid pathways were activated which led to subsequent significant 

accumulation of downstream products (mostly as hydroxy fatty acids). As infographically 

shown in Figure 5.12 A and B, these hydroxy fatty acids accumulated in the intracellular milieu 

of treated cells to varying degrees, with levels fluctuating across the time points (see Table 5.1 

and S 5.1 for fold changes of each metabolite at different time points). Assessing the quality of 

the endo- and exolipidome, some fatty acids and derivatives were detected in both intra- and 

extracellular extracts, whereas others were exclusive to the endometabolome (15-

hydroxylinoleic acid, 9,10-dihydroxy-12-octadecenoic acid, 9,10-dihydroxystearic acid, 

trihydroxy-octadecadienoic acid І and 16-hydroxypalmitate) (Table 5.1). Fatty acids and 

derivatives thereof are crucial in basal immunity and gene-mediated resistance. They also take 

part in inducing systemic acquired resistance. Fatty acids, such as those putatively identified in 

this study, have been linked to plant defence responses as enhancers of structural defence (cell 

membrane and cell wall), antimicrobial compounds, key players in plant defence signalling 

pathways (e.g. oxylipins) and to play a role during production of JA, an important mediator of 

plant defence (Hou, 2008; Hamberg & Olsson, 2011; Pohl et al., 2011; Hamberg et al., 2003; 
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Walley et al., 2013; Okazaki & Saito, 2014; Gauthier et al., 2015; Lim et al., 2017). The 

functions of some fatty acids in this present study, also identified in sorghum plants in response 

to the live B. andropogonis pathogen, are highlighted in the previous chapter (Chapter 4; 

section 4.4.2).  

 

 
 

Figure 5.12: Relative quantification of fatty acids annotated in intracellular extracts, induced by LPS 

treatment of sorghum cells. The graph shows the relative levels of each metabolite across the time points, 

expressed as fold changes, and computed from treated against control (C0 h) i.e. T/C, where fold change ≥1 

represents significant accumulation. Graphical representation of the annotated fatty acids is divided into two 

graphs; A for reasonably high fold changes and B for immensely high fold changes. 9,12,13-THOE = 9,12,13-

trihydroxy-10-octadecenoic acid; 15-HLE = 15-hydroxylinoleic acid; DHOD = dihydroxy-octadecadienoic acid; 

16-HP = 16-hydroxypalmitate; 9,10-diOH = 9,10-dihydroxystearic acid; 9,10-DHOA = 9,10-dihydroxy-12-

octadecenoic acid; THOD I = trihydroxy-octadecadienoic acid І; THOD II = trihydroxy-octadecadienoic acid ІІ.  

   

Our results show significant accumulation of trihydroxy oxylipins, trihydroxy-octadecadienoic 

acid І, trihydroxy-octadecadienoic acid ІІ and 9,12,13-trihydroxy-10-octadecenoic acid and the 

dihydroxy-oxylipin, 9,10-dihydroxy-12-octadecenoic acid (see Table 5.2 for the oxylipin 

structures) in LPS-treated cells. Based on correlative data and experimental work, several 

trihydroxy-oxylipins have been shown to exhibit antimicrobial activity and establish resistance 

towards fungal and some bacterial pathogens, and to orchestrate defence responses. For such 
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metabolites to be significantly effective in inhibiting pathogen growth in planta, they should 

be available in adequate concentrations. Previously, it has been demonstrated that trihydroxy 

oxylipins have an ability to induce defence responses and contribute to resistance in cereal 

plants such as barley against powdery mildew (Göbel et al., 2001, 2002; Walters et al., 2006; 

Hamberg & Olsson, 2011), and rice against rice blast disease (Hou & Forman III, 2000; Göbel 

et al., 2002).  

 

Table 5.2: Structural representations of some lipidome components, oxylipins annotated 

as constituents of the endometabolome (intracellular) and/or exometabolome 

(extracellular) of LPS-treated cultured Sorghum bicolor cells. These fatty acids 

significantly accumulated following LPSB. andr. elicitation, suggesting important functions in 

the defence response of cultured cells. 

 

Oxylipin Stucture Molecular 

formula 

Molecular 

weight 
Source  

9,10-Dihydroxy-12-

octadecenoic acid 

 

C18H34O4 314.46  

 

 

 

 

 

PubChem 

Trihydroxy- 

octadecadienoic acid 

I/II 

 

C18H32O5 328.44 

9,12,13-Trihydroxy-

10-octadecenoic acid 

 

C18H34O5 330.46 

 

The oxylipin of interest is the trihydroxy-octadecadienoic acid ІІ, which was positively 

correlated to the treatment, and exhibited an immense accumulation in the cells of 356.7-fold 

at the 18 h time point (Table 5.1). An unsupervised colour-coded PCA score plot (Figure 5.13) 

revealed the presence of this metabolite only in treated cells (intracellular extracts) and absent 

in the control (non-treated) samples (as also seen variable trend plot, Figure 5.9 C), implying 

a de novo biosynthesis of the metabolite as induced by LPS treatment. This finding, thus, 

suggests a defence-related role of this fatty acid as a phytoalexin. To the best of our knowledge 

no studies have been reported on the secretion of this metabolite into the cell periphery but our 

data indicates a significant accumulation in the medium of 38.8-fold at the 18 h time point. 

Trihydroxy-octadecadienoic acids such as 9,12,13-trihydroxy-10,15-octadecadienoic acid 

have been shown to inhibit fungal growth (Hou & Forman III, 2000; Göbel et al., 2001, 2002; 

Prost, 2005; Walters et al., 2006; Abad-Garcı´a et al., 2008) and to inhibit bacterial pathogens 
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(Walters et al., 2006). Another oxylipin, 9,12,13-trihydroxy-10-octadecenoic acid was 

demonstrated to inhibit fungal pathogens and confer resistance towards a wide range of fungal 

pathogens (Hamberg, 1997, 1999; Göbel et al., 2002; Prost, 2005; Walters et al., 2006; 

Aghofack-Nguemezi et al., 2011; Hamberg & Olsson, 2011) and also bacterial pathogens 

(Göbel et al., 2002; Vicente et al., 2012). In a study by Prost (2005), the dihydroxy oxylipin, 

9,10-dihydroxy-12-octadecenoic acid was identified as an antimicrobial compound. However, 

the mechanisms by which these oxylipins inhibit microbial growth through antimicrobial 

activity and establish resistance, is still largely undefined (Göbel et al., 2002). The present 

work, thus, demonstrates the importance of the oxylipin and fatty acid pathways in defence 

responses in sorghum cells, based on significant accumulation. This observation is also 

supported by the accumulation of the fatty acid-derived jasmonate oxylipins (e.g. MeJA) as 

defence signalling molecules in treated sorghum cells.  

 

 

Figure 5.13: PC analyses of LC-MS (ESI negative) data of intracellular extracts from Sorghum cells. (A) 
An unsupervised colour-coded PCA score plot displaying the presence/absence and intensity of the trihydroxy-

octadecadienoic acid ІІ phytoalexin across intracellular samples. (B) A similar corresponding PCA score plot, 

coloured coded based on condition (treated/control) to assist in indicating if samples belong to the control or 

treated group. The absence of the metabolite in non-treated (control) samples and presence in the treated samples 

indicate LPS-induced de novo biosynthesis. 

 

 

As summarised in Table 5.1 LPS triggered an alteration of several plant hormones (jasmonates, 

zeatins, traumatic-, azelaic- and abscisic acid) (also see Figure 5.14). The derivative of JA, 

MeJA, and traumatic acid accumulated exclusively in the intracellular milieu to significantly 

high levels (Table 5.1). MeJA, a well-known volatile fatty acid-derived plant stress hormone, 

is involved in the activation of defence mechanisms such as programmed cell death, ROS 

production, lignin formation and wax layers deposition in plant tissues (Ali et al., 2007; Zhang 

& Xing, 2008; Taheri & Tarighi, 2010; Petrussa et al., 2013; Gauthier et al., 2015). This plant 

hormone observed to generally increase across the time points (Figure 5.14), has been reported 
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as a signalling molecule in elicitor-induced plant cell cultures and plant tissue, initiating 

secondary metabolite accumulation (Sudha & Ravishankar, 2002; Zhao et al., 2005; Petrussa 

et al., 2013). Studies on exogenous application of the hormone, revealed an association with 

cellular metabolome reprogramming ‒ stimulation of the phenylpropanoid, flavonoid, fatty 

acid and other secondary metabolic pathways (Sudha & Ravishankar, 2002; Salzman et al., 

2005; Abdel-Farid et al., 2009; Liu et al., 2010; Gauthier et al., 2015; Tugizimana et al., 2015; 

Ramirez-Estrada et al., 2016). Together with ethylene, JA and derivatives are regarded as the 

main role players in induced systemic research (ISR).  

 

Moreover, a study on transcriptional profiling of genes induced by SA and MeJA in sorghum 

revealed that these hormones coordinately induced genes encoding various enzymes catalysing 

the biosynthesis of anthocyanins, phytoalexins, lignin and other defence-related secondary 

metabolites of the phenylpropanoid pathway. Functionally important enzymes of this pathway 

such as phenylalanine ammonia-lyase, cinnamate-4-hydroxylase, cinnamyl alcohol 

dehydrogenase, cinnamoyl-CoA reductase, chalcone synthase and chalcone-flavanone 

isomerase, amongst others, required in the synthesis of defence secondary metabolites, were 

found to be induced by the phytohormones SA and MeJA ‒ in sorghum (Salzman et al., 2005; 

Poloni & Schirawski, 2014). Additionally, some evidence presented, shows that exogenous 

application of MeJA enhances resistance towards  necrotrophic pathogens (Antico et al., 2012; 

Gauthier et al., 2015; Shigenaga & Argueso, 2016). Another jasmonate ‒ (9R,13R)-1a,1b-

dihomo-jasmonic acid, was identified in intra- and extracellular extracts, however, the hormone 

accumulated in low levels. This jasmonate was reported to accumulate in Fusarium 

graminearum-treated barley (Guptha, 2016) and LPS-treated Arabidopsis cells (Finnegan, 

2012). This significant MeJA accumulation following LPS treatment points to a crucial role of 

jasmonates defence responses in cultured sorghum cells. 
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Figure 5.14: Relative quantification of significantly accumulating plant hormones annotated in 

intracellular extracts, induced by LPS treatment. The graph shows the relative levels of each metabolite across 

different time points, expressed as fold changes, computed from treated against control (C0 h) i.e. T/C, where fold 

change ≥1 represents significant accumulation. 

 

Another fatty acid-derived phytohormone, traumatic acid, exhibited significant accumulation 

in cells (Table 5.1). Traumatic acid, which displayed very high levels in at the early stages (12-

18 h) of the treatment (Figure 5.14), is generally known as a wound hormone due to high 

accumulation around wounded areas (Farmer, 1994; Pietryczuk & Czerpak, 2012; Jabłońska-

Trypuć et al., 2016). Synthesis of traumatic acid is commonly associated with abiotic factors 

such as extreme temperatures (low/high), osmotic shock, wounding and UV damage 

(Sivasankar et al., 2000; Pietryczuk & Czerpak, 2012). However, the hormone was also 

identified as a resistance inducing metabolite in barley, conferring resistance to F. 

graminearum (Chamarthi et al., 2014). The detected levels of the hormone suggest a defence 

role in LPS-treated cultured sorghum cells. Other identified hormones included zeatins (also 

exclusive to the endometabolome). Relative quantitative analysis revealed low levels thereof 

in the endometabolome (Table 5.1 and S 5.1). Although the zeatin-hormones were detected in 

low levels (shown by the decrease in trend), the involvement of this class of hormones in 

mediating defence responses in sorghum cells cannot be ruled out. Some roles of zeatin-

hormones in plant defence have been highlighted in the previous chapter (Chapter 4; section 

4.4.3). In addition, the involvement of zeatin-cytokinins in plant‒environment interactions, has 

been reported (Veselova et al., 2006; Schäfer et al., 2015). 

 

The hormones azelaic acid and abscisic acid were identified in increased levels in both endo- 

and exometabolomes (Table 5.1). As previously stated in Chapter 4 (section 4.4.2), ROS ‒ 

also accumulating in response to biotic stress (e.g. pathogen challenge) (Eckardt, 2008; Gao et 
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al., 2015), can trigger the cleavage of fatty acids yielding products such as azelaic acid (Walley 

et al., 2013; Barbaglia & Hoffmann-Benning, 2016; Shine et al., 2018), a signalling molecule 

also associated with SAR (Manosalva et al., 2010; Kliebenstein, 2012; Okazaki & Saito, 2014; 

Barbaglia & Hoffmann-Benning, 2016; Shine et al., 2018). It has been previously proposed 

that the induction of SAR by azelaic acid is through priming of plants to accumulate enhanced 

SA levels and SA-facilitated responses in pathogen infection. However, recent findings suggest 

the induction of SAR by the metabolite through stimulating glycerol-3-phoshphate (G3P) 

accumulation (Kachroo & Robin, 2013; Gao et al., 2014, 2015; Tugizimana et al., 2014; Wittek 

et al., 2014; Lim et al., 2017). In plants, following pathogen infection, azelaic acid ‒ as one of 

the signalling molecules, accumulates in petiole exudates and a small fraction translocates to 

distal tissue (in its free form or derivatised form) (Shah, 2009; Gao et al., 2014; Barbaglia & 

Hoffmann-Benning, 2016; Shine et al., 2018).  

 

Abscisic acid is generally known to largely regulate defence responses to abiotic stress. 

However, the complex role of the hormone in plant immunity is continuously being uncovered, 

with recently emerged insights into abscisic acid’s role in plant–pathogen interactions as a 

positive or negative defence response regulator, depending on the phase/time of infection and 

nature of the pathogen (Bari & Jones, 2009; Bollina et al., 2011; Atkinson & Urwin, 2012; 

Balmer et al., 2013; Denancé et al., 2013; Liu et al., 2015; Shigenaga & Argueso, 2016). 

Moreover, in stress responses, the hormone is now being viewed as a global regulator due to 

the ability to prioritise plant defence responses to a more grievous threat (either biotic or 

abiotic) (Atkinson & Urwin, 2012). Defence mechanisms such as stomatal closure, induced by 

abscisic acid signalling in order to inhibit bacterial invasion, have been reported (Bari & Jones, 

2009; Atkinson & Urwin, 2012; Denancé et al., 2013; Vidhyasekaran, 2015; Barbaglia & 

Hoffmann-Benning, 2016). In some plant cell cultures, abscisic acid has also been reported in 

the regulation of secondary metabolite biosynthesis, for example in Catharanthus roseus, the 

hormone stimulated indole alkaloids accumulation (Zhao et al., 2005). Notably, the hormone 

was shown to positively regulate systemic resistance to pathogens, such as Pythium irregular 

and Alternaria brassicicola in early phase of infection, with  mutants deficient and insensitive 

to the hormone displaying pathogen susceptibility (Bari & Jones, 2009; Atkinson & Urwin, 

2012; Balmer et al., 2013; Denancé et al., 2013) and inhibiting C. graminicola fungal growth 

in maize (Balmer et al., 2013). Similarly, the levels of abscisic acid detected in intra- and 

extracellular extracts (in this study) can be linked to resistance/launch of defence responses in 

cultured sorghum cells triggered by LPS perception. In conjunction with other studies, the 
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results of this study also suggest that diverse signalling molecules, particularly those that were 

found to accumulate significantly as biomarkers, mediate defence responses in sorghum cells. 

 

Elicitation of cultured cells with LPS induced alterations in the phenylpropanoid and flavonoid 

metabolic pathways. Relative quantification revealed that most of the metabolites arising from 

these pathways were mostly associated with a decrease in levels (fold change <1) at most of 

the time points in the intracellular milieu (except for sinapoyl alcohol, displaying of fold change 

≥1 across all time points in both intra- and extracellular milieu, Table 5.1 and S 5.1-2). This 

can be seen in Figure 5.15 A for flavonoids and Figure 5.16 A for hydroxycinnamic acids. 

Out of the fourteen phenolic compounds annotated, only sinapoyl alcohol was positively 

correlated (data not shown) to the LPS treatment i.e. the other thirteen compounds were 

located/extracted from the bottom left quadrant of the OPLS-DA derived S-plot (see Figure 

5.9 A and S 5.7 A). In contrast, the flavonoids and hydroxycinnamic acids displayed an increase 

in the extracellular milieu (fold change >1) as seen in Figure 5.15 B and Figure 5.16 B, 

respectively. Previous studies have shown that LPS treatment leads to induction/higher levels 

of phenolics in tobacco cells (Mhlongo et al., 2016) and Arabidopsis cells (Finnegan et al., 

2016). However, in this study the opposite was observed. According to Mhlongo et al. (2016) 

and Gamir et al. (2014) the perceived stimulus and the system determines the pool of induced 

metabolites. 

 

Decrease in intracellular levels of secondary metabolites, accompanied by an increase 

extracellularly, may be due to the active translocation/secretion to the outside of the cell into 

the culture medium, in this case (and into the apoplast/cell periphery in the tissue environment). 

Distribution of defence-related metabolites to the sites of early pathogen infection is crucial for 

the restriction of pathogen penetration and proliferation (Bednarek et al., 2009), and a study on 

Arabidopsis thaliana revealed the secretion of indolic glucosinolates into the cell periphery 

upon MAMP-triggered immunity (Finnegan et al., 2016). Another possible explanation for the 

low intracellular levels of the phenylpropanoids and flavonoids in the cultured sorghum cells 

is the regulation of secondary metabolite levels by the cells, to avoid toxicity to the producing 

plant cell. At certain levels some of the secondary metabolites become toxic to the producing 

cells, so the cells regulate levels in order to bring balance to the cell, thus the compounds can 

be stored in other forms or broken down or translocated (Goossens et al., 2003). Regulatory 

mechanisms by plants include transportation to the apoplast (via vesicles, simple diffusion, and 

transporter-mediated membrane transport) or specific organelles such as the vacuole, or other 
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self-tolerance mechanisms (Shitan, 2016). Additionally, the decrease in intracellular phenolics 

levels could also be due polymerisation of metabolites that act as monomers (e.g. 4-coumaroyl-

3-hydroxyagmatine, feruloylserotonin, sinapaldehyde glucoside and dihydroconiferyl alcohol 

glucoside) for polymers such as lignin associated with cell wall reinforcement or due to 

transformation/conversion into other defence-related metabolites (Gunnaiah et al., 2012; 

Chamarthi et al., 2014; Gunnaiah & Kushalappa, 2014; Yogendra et al., 2014; Gauthier et al., 

2015; Lowe et al., 2015; Cuperlovic-Culf et al., 2016).  

 

 

Figure 5.15: Relative quantification of some flavonoids annotated in intracellular (A) and extracellular (B) 

extracts, induced by LPS treatment. The relative levels of each metabolite are expressed in fold changes, 

computed from treated against control (C0 h) i.e. T/C, where fold change ≥1 represents significant accumulation. 

Sophflava G = sophoraflavanone G; vicenin-1 = apigenin 6-C-xyloside-8-C-glucoside; vicenin-2 = apigenin-6,8-

di-C-glucoside; vitexin = apigenin-8-C-glucoside.  

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Apigenin
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Figure 5.16: Relative quantification of some hydroxycinnamic acids annotated in intracellular (A) and 

extracellular (B) extracts, induced by LPS treatment. The relative levels of each metabolite are expressed in 

fold changes, computed from treated against control (C0 h) i.e. T/C, where fold change ≥1 represents significant 

accumulation. 4-pCohAG = 4-coumaroyl-3-hydroxyagmatine; 4-pCoQA = 4-coumaroylquinic acid; CS = 

cinnamoylserotonin; SnAdGlc = sinapaldehyde glucoside. 

 

A focus on the identified flavonoids indicates that flavones (apigenin derivatives) was the 

dominant subgroup (Table 5.1). The biological functions of metabolites belonging to this 

subgroup in plant defence, such as exhibiting antimicrobial properties towards various 

pathogens, have been described in a number plants (Mohamed & El-hadidy, 2008; Balmer et 

al., 2013; Mierziak et al., 2014; Refaat et al., 2015), and in sorghum plant tissue towards B. 

andropogonis as reported in Chapter 4; section 4.4.4.1.  The tetrahydroxyflavanone, 

sophoraflavanone G, also identified amongst the flavonoids, possesses antibacterial properties. 

The mechanism of action of this flavonoid includes the alteration of bacterial membrane 

fluidity (Naoumkina et al., 2010; Kumar & Pandey, 2013). The detection of sophoraflavanone 

G in plant extracts (Chapter 4; Table 4.2) and cell extracts (Table 5.1) can be similarly linked 

to a defence-related role. The detection of the metabolite following LPS elicitation suggests 
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MAMP-triggered accumulation. The mechanisms of action of some flavonoids in immune 

responses have been listed in the previous chapter (Chapter 4), however, detailed molecular 

mechanisms of this class of metabolites in sorghum‒B. andropogonis and sorghum‒LPS 

interactions still requires further investigation. 

 

The roles of the identified hydroxycinnamic acids (HCAs) in plant defence include: cell wall 

strengthening, precursors to defence metabolites and as antimicrobial compounds (Wang et al., 

2013; Mhlongo et al., 2014, 2016; Pushpa et al., 2014; Tugizimana et al., 2014; Lowe et al., 

2015). As previously described in Chapter 4, sinapoyl alcohol, a syringyl lignin precursor, is 

an important metabolite in structural/mechanical defence (cell wall enhancement). This is 

through lignification i.e. polymerisation of monolignols (precursors of lignin), resulting in 

reinforcement of the cell wall to become more resistant to pathogen-derived degrading 

enzymes and penetration by mycotoxins. In general, increased accumulation of this precursor 

associated with lignin deposition has been reported following pathogen challenge. Treatment 

with LPS resulted in high accumulation of sinapoyl alcohol (for example, 4.8-fold intracellular 

and 1.8-fold extracellular, at the 18 h time point; Table 5.1), thus, suggesting the importance 

of the metabolite in the activation of structural defences in the cultured cells (Wang et al., 2013; 

Gunnaiah & Kushalappa, 2014; Pushpa et al., 2014; Gauthier et al., 2015).  

 

Other metabolites identified in this study also reported to be deployed in cell wall strengthening 

include 4-coumaroyl-3-hydroxyagmatine, feruloylserotonin, sinapaldehyde glucoside, 

cinnamoylserotonin and dihydroconiferyl alcohol glucoside (a guacoyl lignin monomer 

glucoside). In other studies these metabolites have also been identified as resistance-related 

compounds (Gunnaiah et al., 2012; Chamarthi et al., 2014; Gunnaiah & Kushalappa, 2014; 

Yogendra et al., 2014; Gauthier et al., 2015; Cuperlovic-Culf et al., 2016). Additionally, 4-

coumaroylquinic acid has been shown to confer resistance against a range of pathogens 

(Gunnaiah et al., 2012; Yogendra et al., 2014; Cuperlovic-Culf et al., 2016). Agmatine, which 

can conjugate with HCAs to yield HCA-amides, and important metabolites in cell wall 

strengthening and as phytoalexins, displayed an increase and was found exclusively in the 

endometabolome (Gunnaiah et al., 2012; Pushpa et al., 2014; Yogendra et al., 2014; 

Cuperlovic-Culf et al., 2016).  
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Figure 5.17: Relative quantification of sorgoleone across the time points, annotated in intracellular (A) and 

extracellular (B) extracts, induced by LPS treatment of sorghum cells. The graph shows the relative levels of 

each metabolite across different time points, expressed as fold changes, and computed from treated against control 

(C0 h) i.e. T/C, where fold change > 1 represents significant accumulation. 

 

An interesting metabolite, sorgoleone (2-hydroxy-5-methoxy-3-[(Z,Z)-8',11',14'- 

pentadecatriene]-p-benzoquinone), significantly accumulated in the intracellular milieu and 

was also detected in the extracellular milieu in relatively higher levels (Table 5.1), with levels 

generally showing an increase over time (12-30 h) intracellularly (Figure 5.17 A) and 

extracellularly (Figure 5.17 B), following LPS treatment. Sorgoleone, an allelochemical, is 

one of the main constituents of the hydrophobic root exudate of sorghum, synthesised in 

compartments of root hairs (specialised root hair cells). Identification of sorgoleone as a 

biomarker in cultured sorghum cells is quite interesting and may be related to the 

undifferentiated state of the cells. The metabolite, which is exclusive to sorghum species, 

exhibits herbicidal activity ‒ suppressing other plant species (especially small weeds) growing 

in the vicinity (Dayan, 2006; Cook et al., 2010; Dayan et al., 2010; Yoneyama & Natsume, 

2010; Uddin et al., 2014; Lim et al., 2017). In addition, some antifungal activities of the 

metabolite and production due to pathogen infection, have been reported (Dayan, 2006). The 
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biosynthetic pathway of the allelochemical is a convergence of  the fatty acid and polyketide 

synthase pathways (Dayan, 2006; Cook et al., 2010; Dayan et al., 2010). Significant 

accumulation of sorgoleone in the intra- and extracellular milieu, for example 3.0-fold and 

30.1-fold respectively as seen at the 18 h time point in Table 5.1, following LPS treatment, 

also suggest a probable antimicrobial activity of the metabolite, however, more research needs 

to be done in this regard.  

 

The metabolic reprograming in sorghum cells as a result of LPS treatment also involved some 

alterations in flavin and indole metabolism. The metabolite profiles of treated cells were 

characterised by down-regulation and up-regulation of riboflavin (vitamin B2) in the intra- (0.7-

fold) and extracellular (5.9-fold) milieu, respectively (Table 5.1). This is indicative of the 

secretion of the metabolite into the latter. Riboflavin has been identified as a defence 

response/systemic resistance inducing metabolite in various plant species, against bacterial, 

fungal and viral pathogens (Aver’yanov et al., 2000; Dong & Beer, 2000; Taheri & Tarighi, 

2010, 2011; Nie & Xu, 2016). In the monocotyledonous crop - rice, the metabolite was shown 

to induce defence responses against Rhizoctonia solani and Pyricularia oryzae (Aver’yanov et 

al., 2000; Taheri & Tarighi, 2010, 2011). A study by Taheri & Tarighi, (2010) on rice also 

highlighted the major role of the octadecanoid pathway in riboflavin-induced resistance and 

basal resistance, together with the link between riboflavin accumulation and increased 

lignification. The data obtained in this study, therefore, suggests a role of flavin metabolism in 

inducing or regulating defence responses in sorghum cells.  

 

Indolic derivatives (mostly indole acetyl derivatives) accumulated to varying levels, in both the 

intra- and extracellular milieus (Table 5.1). A number of plant species and plant cell cultures 

have been reported to accumulate indolic derivatives as phytoanticipins, phytoalexins, 

precursors or as signalling molecules in response to pathogen and abiotic stress (Ishihara et al., 

2008; Shah, 2009; Balmer et al., 2013; Denancé et al., 2013; Bottcher et al., 2014; Finnegan 

et al., 2016; Pastorczyk & Bednarek, 2016; Wouters et al., 2016). Indole-3-acetyl-myo-inositol, 

significantly detected in both the intra- and extracellular milieus, has been linked to plant 

resistance in barley (Bollina et al., 2011; Cuperlovic-Culf et al., 2016). The indole derivatives, 

particularly those that accumulated to significant levels following treatment, suggest defence-

related roles in sorghum cells. Moreover, the detection of both tryptophan and indole-

containing metabolites as discriminant ions provides an insight into the activation of defences 

related to tryptophan metabolism, in response to LPS treatment.  
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Based on structural and compositional analysis, it can be concluded that LPS isolated from B. 

andropogonis (Mr > 7.5 kDa) is comprised of all the three main structural components; O-

antigen/O-chain covalently linked via a core oligosaccharide to the Lipid A component 

(glycolipid moiety). The presence of the O-chain therefore denotes the isolated MAMP as a 

‘smooth’-type LPS (as defined in Chapter 2; section 2.3.3). The metabolic reprogramming in 

sorghum cells following LPSB. andr. treatment, thus, marked the onset of defence responses 

mediated by a range of plant hormones linked in a complex network, and triggering 

accumulation of defence-related metabolites originating from various metabolic pathways 

(Pieterse et al., 2009; Atkinson & Urwin, 2012; Denancé et al., 2013; Vidhyasekaran, 2015). 

The presence of metabolites in the medium in elevated levels following LPS treatment, strongly 

suggests a secretion/translocation from intracellular compartments, resembling 

secretion/translocation into the apoplast/cell periphery in the plant tissue environment, as 

revealed by the experimental data of the current study (Table 5.1, S 5.1-2). This activity may 

be linked to defence-related functions by these particular metabolites. Shitan, (2016) 

highlighted the translocation of various classes of metabolites (such as monolignols important 

for lignification, phenylpropanoids and flavonoids) to the apoplast for purposes such as 

defence. In summary, the picture depicted by this study implies that LPSB. andr. is one of the 

instrumental factors (MAMPs) of B. andropogonis in triggering the defence-related 

metabolomic reprogramming in sorghum. 
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Chapter 5: Supplementary material 

 

Figure S 5.1: UHPLC-MS BPI chromatograms (ESI positive) of methanolic intracellular extracts of 

sorghum cells treated with LPSB. andr.  The chromatograms of a control (non-treated 0 h) vs treated samples (12-

30 h) display variation related to treatment- and time-related metabolic changes occurring in the cells due to LPS 

treatment. 

 

 

Figure S 5.2: UHPLC-MS BPI chromatograms (ESI positive) of methanolic extracellular extracts of 

sorghum cells treated with LPSB. andr. The chromatograms of a control (non-treated 0 h) vs treated samples (0-

30 h) display variation related to treatment- and time-related metabolic changes occurring in the cells due to LPS 

treatment. 
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Figure S 5.3: PC analyses of the LC-MS (ESI positive data) for intracellular sorghum cell extracts. The 5-

component model, explains 68.6% variations in Pareto-scaled data, X, and the amount of predicted variation by 

the model, according to cross-validation, is 57.3%.  The first 2 PCs were used to generate the above scores plot 

of all data. A: Clusters coloured based on condition i.e. non-treated/treated shows clear separation between treated 

and non-treated samples. B is the same scores plot but coloured according to time 

 

 

 

Figure S 5.4: PC analyses of the LC-MS (ESI positive data) for extracellular sorghum cell extracts. The 4-

component model, explains 78.6% variations in Pareto-scaled data, X, and the amount of predicted variation by 

the model, according to cross-validation, is 54.2%.  The first 2 PCs were used to generate the above scores plot 

of all data. A: Clusters coloured based on condition i.e. non-treated/treated shows clear separation between treated 

and non-treated samples. B is the same scores plot but coloured according to time.  
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Figure S 5.5: Supervised multivariate analyses of the LC-MS (ESI positive data) for intracellular extracts. 

(A): Grouping of control (C0 h) vs treated (all time points combined) as indicated by an OPLS-DA score plot. 

This model comprises 1 predictive component and 3 orthogonal components (R2X= 58.2%, R2Y= 99.6% and Q2= 

95.7%). (B): A distance to the model in space X (DModX) plot to detect outliers (above the dashed red line, Dcrit) 

in the OPLS-DA scores plot 

 

 

Figure S 5.6: Supervised multivariate analyses of the LC-MS (ESI positive data) for extracellular extracts 

(excluding QCs). (A): Grouping of control (C0h) vs treated (all time points combined) as indicated by an OPLS-

DA score plot. This model comprises 1 predictive component and 2 orthogonal components (R2X= 47.1%, R2Y= 

99.5% and Q2= 94.0%). (B): A distance to the model in space X (DModX) to detect outliers (above the dashed 

red line, Dcrit) in the OPLS-DA scores plot.  
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Figure S 5.7: OPLS-DA modelling analyses of the LC-MS (ESI positive data) for intracellular extracts 

(excluding QCs). (A) An OPLS-DA loading S-plot displaying the discriminating features (ions) that explain the 

clustering (sample grouping) observed in the OPLS-DA scores plot with the features in the top right quadrant 

positively correlated to the treatment and those in the bottom left quadrant negatively correlated to the treatment. 

(B) A VIP plot summarising the importance of some of the variables in the projection of the model with the m/z 

values and standard deviations indicated. A VIP value >1 is significant/important in the projection and increase 

in value indicates an increase in significance of the variable.  (C) Representative variable trend plot displaying 

the changes of the selected variable across the samples. 
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Figure S 5.8: OPLS-DA modelling analyses of the LC-MS (ESI positive data) for extracellular extracts 

(excluding QCs). (A) An OPLS-DA loading S-plot displaying the discriminating features (ions) that explain the 

clustering (sample grouping) observed in the OPLS-DA scores plot with the features in the top right quadrant 

positively correlated to the treatment and those in the bottom left quadrant negatively correlated to the treatment. 

(B) A VIP plot summarising the importance of some of the variables in the projection of the model with the m/z 

values and standard deviations indicated. A VIP value >1 is significant/important in the projection and increase 

in value indicates an increase in significance of the variable. (C) Representative variable trend plot displaying the 

changes of the selected variable across the samples.  
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Table S 5.1: Annotated discriminatory metabolites from intracellular extracts of LPSB. andr.-treated Sorghum bicolor cultured cells, 

displaying the fold changes at different time points. The summarised metabolites were annotated at MI-level 2 and had VIP scores > 1. Fold 

changes were obtained from an OPLS-DA model computed of control 0 h vs treated 12h, 24 h and 30 h.  (Data for the 18 h time point is presented in 

the main text). 
 

Metabolites m/z Rt 

(min) 

Adduct Ion 

mode 

Formula C0 h vs T12 h C0 h vs T24 h C0 h vs T30 h 

 

p-value 

Fold 

change 

 

p-value 

Fold 

change 

 

p-value 

Fold 

change 
Sorgoleone 359.2298 4.98 [M+H]+ pos C22H30O4 0.017 2.9 0.002 3.3 0.006 4.3 

L-phenylalanine 164.0686 1.84 [M-H]- neg C9H11NO2 0.015 1.2 1.28E-06 1.6 0.000 1.4 

L-Tryptophan 203.0798 2.78 [M-H]- neg C11H12N2O2 3.89E-06 1.3 7.12E-07 1.5 7.37E-05 1.4 

15-Hydroxylinoleic acid  295.2253 14.29 [M-H]- neg C18H32O3 8.38E-05 2.3 0.533 1.2 0.119 1.4 

Dihydroxyoctadecadienoic acid 311.2242 11.79 [M-H]- neg C18H32O4 0.001 7.4 1.54E-05 5.4 2.75E-10 7.1 

9,10-Dihydroxy-12-octadecenoic acid 313.2354 12.67 [M-H]- neg C18H34O4 1.24E-11 17.9 0.386 2.0 7.36E-05 5.3 

9,10-Dihydroxystearic acid 315.2511 13.51 [M-H]- neg C18H36O4 1.12E-06 3.9 4.20E-05 4.2 2.48E-09 4.5 

Trihydroxyoctadecadienoic acid І 327.2149 9.72 [M-H]- neg C18H32O5 0.439777 5.2 0.072 29.4 0.381 10.5 

Trihydroxyoctadecadienoic acid ІІ 327.2135 11.05 [M-H]- neg C18H32O5 1.67E-06 197.9 3.16E-12 49.3 4.44E-06 138.8 

9,12,13-Trihydroxy-10-octadecenoic 

acid 

329.2327 9.60 [M-H]- neg C18H34O5 
0.001 1.6 0.089 1.3 0.044 1.3 

16-Hydroxypalmitate 273.2553 13.65 [M+H]+ pos C16H32O3 0.037 1.7 0.702 0.9 0.253 0.7 

Sophoraflavanone G 423.1821 4.42 [M-H]- neg C25H28O6 0.001 0.9 0.000 0.8 2.76E-05 0.8 

Apigenin-8-C-glucoside (vitexin) 431.0974 5.58 [M-H]- neg C21H20O10 0.202 0.7 0.176 0.7 0.140 0.7 

Apigenin-6-C-xyloside-8-C-glucoside 
(vicenin-1) 

565.1545 4.94 [M+H]+ pos C26H28O14 0.112 0.7 0.025 0.5 0.036 0.6 

Apigenin-6,8-di-C-glucoside  

(vicenin-2) 

595.1687 4.77 [M+H]+ pos C27H30O15 0.101 0.4 0.030 0.2 0.022 0.2 

Apigenin 7,4'-dimethyl ether 316.1157 8.29 [M+H_NH3]
+ pos C17H14O5 0.001 0.6 0.000 0.5 0.000 0.6 

3’,4’5-Trihydroxy-3,7-
dimethoxyflavone 

367.0221 3.90 [M-H]- neg C17H20O9 0.068 0.6 0.003 0.6 0.067 0.8 

4-Coumaroyl-3-hydroxyagmatine 291.1471 5.72 [M-H]- neg C14H20N4O3 0.008 0.5 0.001 0.6 0.767 1.0 

4-Coumaroylquinic acid 337.1474 1.77 [M-H]- neg C16H18O8 7.02E-05 0.8 3.73E-07 0.7 3.62E-09 0.6 

Cinnamoylserotonin 351.1251 2.43 [M-H_HCOOH]- neg C19H18N2O2 0.000 0.9 5.97E-07 0.7 1.74E-06 0.8 

Feruloylserotonin 351.1266 2.86 [M-H]- neg C20H20N2O4 4.60E-06 0.8 0.985 1.0 0.527 1.6 

Sinapaldehyde glucoside 369.1199 3.61 [M-H]- neg C17H22O9 0.781 1.1 0.040 0.5 0.069 0.8 

1-O-Coumaroyl-beta-D-glucose 371.0957 4.94 [M-H_NaNa]- neg C15H18O8 1.97E-07 0.8 1.25E-12 0.5 1.21E-12 0.5 

Sinapyl alcohol 209.0764 6.72 [M-H]- neg C11H14O4 1.31E-06 3.5 6.93E-07 5.3 2.87E-05 3.6 

Dihydroconiferyl alcohol glucoside 413.1422 3.27 [M+H_HCOONa]+ pos C16H24O8 0.006 0.7 0.001 0.5 0.006 0.7 

https://en.wikipedia.org/wiki/Apigenin
https://en.wikipedia.org/wiki/Glucoside
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Indole-3-butyric acid 272.0893 2.84 [M+H_HCOONa]+ pos C12H13NO2 0.000 0.5 8.13E-06 0.6 5.71E-07 0.5 

N(6)-[(Indol-3-yl)acetyl]-L-lysine 304.1667 4.20 [M+H]+ pos C16H21N3O3 1.11E-07 5.2 1.42E-06 4.7 1.14E-09 6.7 

Indole-3-acetyl-myo-inositol 353.1348 2.44 [M-H_NH3]
- neg C16H19NO7 0.427 0.9 0.624572 0.9 0.114 0.8 

Indole-3-acetyl-beta-1-D-glucoside 382.1121 3.93 [M-H_HCOOH]- neg C16H19NO7 0.074 0.7 0.009 0.4 0.064 0.7 

6-Hydroxy-indole-3-acetyl-valine 291.1294 3.89 [M+H]+ pos C15H17N2O4 0.056 0.3 0.023 0.2 0.136 0.5 

Traumatic acid 297.1291 3.90 [M+H_HCOONa]+ pos C12H20O4 0.000 7.4 0.524 0.5 0.189 3.1 

(9R,13R)-1a,1b-Dihomo-jasmonic acid 239.1638 12.19 [M+H]+ pos C14H22O3 0.034 0.8 0.750 1.0 0.001 0.7 

Zeatin-7-beta-D-glucoside 397.1826 6.73 [M-H_NH3]
- neg C16H23N5O6 0.079 0.7 0.018 0.7 0.084 0.8 

Zeatin 220.1197 2.15 [M+H]+ pos C10H13N5O 6.94E-05 0.6 4.39E-06 0.5 7.74E-06 0.5 

Methyl jasmonate 247.1298 2.52 [M+H_Na]+ pos C13H20O3 1.31E-08 3.4 5.94E-11 3.9 1.31E-11 5.2 

Dihydrozeatin riboside 354.1769 6.20 [M+H]+ pos C15H23N5O5 0.001 0.4 0.001 0.4 0.006 0.5 

Zeatin riboside 374.1463 5.39 [M+H_Na]+ pos C15H21N5O5 0.001 0.4 0.000 0.2 4.24E-05 0.1 

Azelaic acid 187.0935 6.74 [M-H]- neg C9H16O4 2.45E-17 4.1 1.64E-17 5.1 2.29E-12 4.6 

Abscisic acid 265.1552 3.35 [M+H]+ pos C15H20O4 2.55E-08 3.5 1.18E-09 2.8 2.34E-09 4.0 

Agmatine 173.0787 5.52 [M-H_NaNa]- neg C5H14N4 1.74E-06 1.3 0.000 1.2 0.001 1.7 

Riboflavin 377.1476 4.49 [M+H]+ pos C17H20N4O6 0.241135 0.8 0.000 0.3 0.001 0.4 
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Table S 5.2: Annotated discriminatory metabolites from extracellular extracts of LPSB. andr.-treated Sorghum bicolor cultured cells, 

displaying the fold changes at different time points. The summarised metabolites were annotated at MI-level 2 and had VIP scores > 1. Fold 

changes were obtained from an OPLS-DA model computed of control 0 h vs treated 12h, 24 h and 30 h. (Data for the 18 h time point is presented in 

the main text). 
 

Metabolites m/z Rt 

(min) 

Adduct Ion 

mode 

Formula C0 h vs T12 h C0 h vs T24 h C0 h vs T30 h 

p-value Fold 

change 

p-value Fold 

change 

p-value Fold 

change 
Sorgoleone 359.2298 4.98 [M+H]+ pos C22H30O4 0.006 18.3 3.01E-09 45.6 3.09E-06 43.4 

L-phenylalanine 164.0686 1.84 [M-H]- neg C9H11NO2 3.07E-11 2.7 1.04E-12 2.6 5.87E-12 2.6 

L-Tryptophan 203.0798 2.78 [M-H]- neg C11H12N2O2 0.001 1.4 0.000 1.4 2.14E-05 1.5 

Dihydroxyoctadecadienoic acid 311.2242 11.79 [M-H]- neg C18H32O4 0.110 5.2 0.002 4.9 0.012 4.2 

Trihydroxyoctadecadienoic acid ІІ 327.2135 11.05 [M-H]- neg C18H32O5 0.001 22.7 0.158 52.4 4.02E-11 53.4 

9,12,13-Trihydroxy-10-octadecenoic acid 329.2327 9.60 [M-H]- neg C18H34O5 1.13E-08 9.2 2.82E-09 8.4 1.13E-10 6.8 

Sophoraflavanone G 423.1821 4.42 [M-H]- neg C25H28O6 0.030 1.1 0.054 1.1 0.028 1.1 

Apigenin-8-C-glucoside (vitexin) 431.0974 5.58 [M-H]- neg C21H20O10 0.129 1.3 0.057 1.3 0.079 1.3 

Apigenin-6-C-xyloside-8-C-glucoside 

(vicenin-1) 

565.1545 4.94 [M+H]+ pos C26H28O14 0.006 1.3 0.002 1.4 0.002 1.4 

Apigenin-6,8-di-C-glucoside (vicenin-2) 595.1687 4.77 [M+H]+ pos C27H30O15 0.873 1.3 0.159 2.0 0.014 2.70 

4-Coumaroyl-3-hydroxyagmatine 291.1471 5.72 [M-H]- neg C14H20N4O3 8.17E-05 2.8 4.32E-06 3.4 4.25E-07 4.0 

4-Coumaroylquinic acid 337.1474 1.77 [M-H]- neg C16H18O8 0.138475 1.1 0.129 1.1 0.013 1.1 

Cinnamoylserotonin 351.1251 2.43 [M-H_HCOOH]- neg C19H18N2O2 2.81E-05 1.2 1.28E-06 1.3 7.71E-06 1.2 

Feruloylserotonin 351.1266 2.86 [M-H]- neg C20H20N2O4 0.738 1.3 0.520 1.6 0.185 3.1 

Sinapaldehyde glucoside 369.1199 3.61 [M-H]- neg C17H22O9 1.54E-06 2.7 2.61E-08 3.3 3.73E-09 3.6 

1-O-Coumaroyl-beta-D-glucose 371.0957 4.94 [M-H_NaNa]- neg C15H18O8 0.001 1.8 6.03E-05 1.9 8.81E-07 2.3 

Sinapyl alcohol 209.0764 6.72 [M-H]- neg C11H14O4 5.80E-12 3.5 1.64E-10 2.8 1.73E-06 2.2 

Indole-3-acetyl-myo-inositol 353.1348 2.44 [M-H_NH3]
- neg C16H19NO7 0.086 2.2 0.007 2.6 0.001 2.6 

Indole-3-acetyl-beta-1-D-glucoside 382.1121 3.93 [M-H_HCOOH]- neg C16H19NO7 0.941 0.9 0.494 0.9 0.407 0.9 

6-Hydroxy-indole-3-acetyl-valine 291.1294 3.89 [M+H]+ pos C15H17N2O4 0.000 2.7 3.67E-05 3.0 1.23E-05 3.3 

Azelaic acid 187.0935 6.74 [M-H]- neg C9H16O4 2.04E-17 5.5 4.47E-15 4.1 6.58E-09 3.6 

Abscisic acid 265.1552 3.35 [M+H]+ pos C15H20O4 1.26E-13 16.2 1.24E-15 23.7 3.71E-15 22.9 

Riboflavin 377.1476 4.49 [M+H]+ pos C17H20N4O6 2.54E-06 4.2 5.27E-08 7.1 2.07E-10 7.4 

 

https://en.wikipedia.org/wiki/Apigenin
https://en.wikipedia.org/wiki/Glucoside


 
 

180 
 

Chapter 6: Concluding Remarks 
 

One of the growing interests and key research focus in plant science is to sustainably develop 

stress-tolerant/resistant crops as an ultimate goal in improving crop production. The latter is 

beneficial in sustaining the rapidly expanding population as well as boosting the world 

economy. One sustainable crop protection strategy is to genetically increase 

tolerance/resistance through the exploitation of natural secondary metabolite defences of plants 

as highlighted in Chapter 1. However, this necessitates identification of the associated 

metabolic signatures that form part of the plant chemical defence arsenal. In plant studies, the 

untargeted metabolomics approach has emerged as an indispensable tool in identification and 

analysis of these molecular signatures, particularly since the metabolome best mirrors the 

physiological state of a plant under a specific physiological condition (Chapter 2). Thus, the 

work in this study provided vital information regarding defence-related secondary metabolites 

in S. bicolor, of which production can be manipulated in order to increase sorghum pathogen 

resistance. 

 

Chapter 4, highlighted on the metabolic reprogramming in two S. bicolor cultivars, NS 5511 

and NS 5655, induced by B. andropogonis infection. Following monitoring of the metabolic 

changes over time (1-9 d.p.i.), metabolomic analyses revealed that the ‘defensomes’ of the two 

cvs spanned an array of defence-related metabolites arising from different metabolic pathways, 

aimed to establish an enhanced defensive state. Here, S. bicolor metabolites belonging to 

primary metabolism (amino acids and fatty acids) and secondary metabolism (benzoates, 

cyanogenic glycoside, flavonoid, hydroxycinnamic acids, indoles, carboxylic acids and 

shikimates) were annotated. Alterations in a range of phytohormones of the salicylates, 

jasmonates and zeatins classes were noted, which correlate to observed differential changes in 

the metabolite pools. The results obtained herein reveal the significant diversity and extensive 

adaptive capabilities of S. bicolor in stress responses. Qualitatively, the dominant presence of 

flavonoids and hydroxycinnamic acids confirms their significant role in sorghum defence. 

Furthermore, the study demonstrated that the two cvs employ similar defence mechanisms at a 

metabolic level, as evidenced by the presence of the same metabolite classes. However, the 

varying concentrations (relative quantities) and time of accumulation of crucial defence-related 

metabolites (such as salicylates and apigenin - and derivatives) significantly contributed to the 
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state of resistance. Herein, as also revealed by the disease severity-rating index, the NS 5511 

was found to be more resistant compared to the NS 5655 cv since crucial defence metabolites 

displayed an earlier accumulation as well as elevated levels. This study provides an insight into 

the metabolic reprogramming in S. bicolor in response to B. andropogonis infection, and 

highlights the metabolic signatures involved in the plant’s defence to this particular bacterial 

pathogen. Thus, the work significantly contributes to expanding the current knowledge 

regarding bacterial sorghum–pathogen interactions (as the knowledge is limited), and in 

uncovering molecular signatures that define biochemical processes involved in S. bicolor 

responses to bacterial infection by B. andropogonis.  

 

In a live plant–pathogen interaction, the host plant would respond to a mixture of different 

MAMPs as pathogen-derived elicitors. In order to investigate the effect of a specific MAMP 

on metabolomic reprogramming in sorghum, a reductionist approach was followed where 

sorghum cells in culture were treated with lipopolysaccharides (LPS) purified from B. 

andropogonis. The compositional and structural analysis of the LPS revealed that the MAMP 

with Mr > 7.5 kDa comprised of all three structural components, i.e. the O-antigen, core 

oligosaccharide and Lipid A (Chapter 5). The isolation and purification of this B. 

andropogonis-derived elicitor, represents the first for the LPS from this particular species. 

Metabolomic analyses of the cultured cells system revealed the metabolic reprogramming in S. 

bicolor suspensions triggered by B. andropogonis LPS (Chapter 5) to be similar to that in 

plant leaf tissue, triggered by the live pathogen (i.e. similar metabolite classes, that include 

amino acids, flavonoids, hydroxycinnamic acids, fatty acids, indoles and phytohormones - 

Chapter 4). However, there were some differences in the quality and quantity of metabolites 

comprising the metabolomes. Additionally, the cultured cell suspension system revealed 

secretion of metabolites into the medium following LPS elicitation. This might be correlated 

to translocation of defence metabolites to the cell periphery/apoplast for defence-related 

functions as would occur upon pathogen challenge of plants. 

 

As briefly outlined above, a comparison between the metabolic reprogramming in plant leaf 

tissue following live B. andropogonis treatment (Chapter 4) and that of sorghum cells in 

culture following LPS elicitation (Chapter 5), revealed that cells responded to the B. 

andropogonis-derived MAMP in a qualitatively similar manner as B. andropogonis- treated 

plant leaf tissue. Although much overlap was observed between the quality of the metabolomes 

and the metabolic pathways altered following B. andropogonis and LPS treatment in plants 
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and cell cultures, respectively, some variances were observed. The identification of the 

allelochemical, sorgoleone, and other metabolites in cultured cells (undifferentiated) but absent 

in the plant leaf tissue systems (differentiated), demonstrated the phenomenon of specialised 

cells/tissue specific synthesis of some secondary metabolites and/or associated with a certain 

stage of development. These differences demonstrate the chemo-diversity of the two biological 

systems, influenced by factors such as the state of tissue differentiation and developmental 

stage. Additionally, the differing quantity of annotated secondary metabolites between the two 

systems can be attributed to differentiated tissue synthesising more secondary metabolites than 

undifferentiated cells. Even though there were some differences between two systems, the 

results depicted in the cell culture system confirm the B. andropogonis-derived LPS as one of 

the important instrumental factors eliciting immune responses in S. bicolor.  

 

Finally, UHPLC-HDMS-based untargeted metabolomics proved to be a useful and powerful 

platform for the comprehensive identification and analysis of an array of chemically diverse 

metabolites, spanning a wide range of metabolic pathways associated with sorghum defence 

responses. 

 

 

 

 

 

 


