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The development of distribution systems consists in determining the optimal site and size 

of new substations and feeders in order to optimize the future power demand with 

minimum investment and operational costs and a suitable level of consistency. This 

problem is a combination of, non-linear and constrained optimization problem. Several 

optimization methods, such as genetic algorithms,  simulated annealing, hybrid genetic 

algorithm and variable neighbourhood search have been reported in the literature where 

several optimization methods have been stated with the uses of the  minor structures 

while the others have extensive solution time.  

The main goal behind this thesis is to presents optimization methodologies in the aim to 

provide a close optimum solution for the (DG) in distribution networks. In the presented 

methods we take into our account the randomness of distributed generation based on 

renewable energies, as well as the randomness of electric demand in the planning 

horizon. First, state-of-the-art research is carried out on existing models for generation 

planning in electrical systems and distribution network planning models. 

A planning model of distributed generation in the distribution networks is proposed with 

a massive number of studies, which contemplates covering the requirements of the 

demand in the planning horizon with minimum changes in the existing distribution 

network. In this thesis the presented methods applied in the aim to provide a better 

behavior then proposed model as a probabilistic mixing as a hybridization with a genetic 
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operations and extends from a single-objective model, where the main objectives is to 

optimize the working behavior of the distribution process, technical and environmental 

impact. 

The types of Distributed Generation that are considered are non-conventional, established 

on sustainable energy sources such turbine energy, photovoltaic energy and hydro-power, 

as well as storage systems to back up the energy supply in hours of peak demand or to 

store excess of energy production. The parameters that present randomness are 

introduced in the model by their probability distributions. 

Recent modifications in the electric utility infrastructure have formed opportunity for  

many technological  innovations containing application of Distributed Generation (DG) 

in order to obtain a maximum achievement. To reach the benefits, factors such as the 

sizing and the best location have to be considered. This thesis focuses on to define the 

optimal allocation and sizing of the DG in order to minimize losses and improve the 

voltage stability in the system. To provide this assessment, several experiments have been 

made to the IEEE 34-bus test case and various actual test cases with the respect of 

multiple DG units.and various algorithms were trialled: simulated annealing (SA), hybrid 

genetic algorithm (HGA), genetic algorithm (GA) and variable neighbourhood search. 

The Static Voltage Stability Index (SVSI) was used as the objective function for the 

developed optimization technique and able to minimize total transmission losses, 

improved voltage stability and increase the voltage profile of the system. 

 

Keywords: Distributed Generation, Optimization, Renewable Energies, Power Losses, 

Power Consumption. 
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Chapter One:  Introduction  
 

1.1 Background  

  

The need for greater flexibility in the electrical system, the new Legislative and economic 

scenarios, energy savings and the impact of Environmental, have contributed to the 

development of Distributed Generation. In particular, the term DG is understood as the 

usage of generators mounted in the territory close to the loads and connected to the 

distribution networks, seen fig 1.1. These units may be conventional or unconventional. 

The presence of Distributed Generation has significant effects on the distribution 

networks: the presence of bidirectional flows, the increase of the contribution of short-

circuit capacity, the impact of voltage levels, the deterioration of the system protections 

and their coordination and variation of the losses in the lines [1]. 

Figure1. 1: General structure for distributed power system having different input power sources[1]. 
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It is clear that a massive and uncontrolled expansion of the Distributed Generation could 

lead to some of the aforementioned effects, which were not previously foreseen in the 

long-term planning of the distribution network [2-3]. An in-depth review of the 

distribution network structure and the control and protection philosophies, as well as a 

controlled expansion of the Distributed Generation, will allow a more reliable distribution 

network in the future. The process will be developed in several phases, some of which 

will be fulfilled in the short and medium term, while others require more time for full 

implementation [4]. The Important structural changes must be clear to achieve the 

ultimate goal of transforming the distribution network into a more appropriate design to 

support the presence of the DG [5]. 

1.2 Importance of Energy in Distribution Systems. 

 

An electrical power system is constituted by the stages of generation, transmission and 

distribution, and its main function is to Energy from the generation centers to the centers 

of consumption in a safe way and with adequate levels of quality. The distribution system 

has a great importance as mentioned in [6] for its recent applications. It is the part of the 

electrical system that extends from the distribution substations to the processing centers 

(primary network), and from there to final consumers (network high school) [7]. These 

final consumers show a behavior in their demand for electrical energy, in most cases, 

significantly increasing, approaching with time to the supply limits of the distribution 

network [8]. Therefore, it is often necessary to expand these distribution systems, 

specifying the construction and / or expansion of substations, and the installation and / or 

reconfiguration of new lines, among other measures. For this, it is necessary to plan 

correctly the modifications to be made. Planning of distribution systems is a decision 

process that requires the study of electricity supply needs and seeks to identify the best 

plan to improve the network[9], thus achieving a higher quality of supply at the lowest 

possible cost. 
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1.3 Design and Planning of the Distribution System of Electric 

Power 
 

On the basis of available data on expected growth demand of electrical energy, along 

with the installed capacity of the network, it is necessary to determine where and in what 

number new lines, substations and equipment should be located, so that the cost of 

expansion of the distribution system is as low as possible. In planning a distribution 

system, in addition to taking into account the cost, the optimum design to be obtained 

must have highly satisfactory service quality indicators in terms of safety and continuity 

of electric service.System planners must ensure that there is adequate substation capacity, 

feeder capacity and acceptable level of reliability to satisfy the power demand forecasts 

within the planning horizon[10].  These methods can be divided into two groups: 

 

a) Mathematical programming methods 

b) Heuristic methods 

 

1.4  Topologies of Distribution Systems 

 

In [12,13] it is indicated that the distribution system more Simple is the so-called simple 

radial (figure 1.2), which consists of a supply connected to several consumption nodes. 

Under this scheme [14], it is possible to identify the costs of supplying the energy to each 

node. In this distribution system if a line fails, the supply of the downstream of the line. 
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Figure1. 2: Simple Radial System 

Another possible type of system is the so-called radial distribution system, which are 

present when new areas of demand arise at points such as number 3 in figure 1.3. 

 

Figure1. 3: Simple Distributed Radial System 

A possible third type of distribution system is ringing [15], which is characterized by 

offering alternative sources of power supply to a particular node, as shown in Figure 1.4. 

In this case each node is connected to the substation by means of at least two sources and 

not only to a single source as in the two previous systems. Note that with  dashed line, the 

reserve lines have been represented, in which power will not normally circulate, but 

which can be operated if necessary [16]. As indicated in their research this interconnected 
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system minimizes the risk of power interruption [17]. Indeed, in radial systems, if the 

demand exceeds the maximum limit of a line, the supply cannot be realized; while in a 

ring system there may be the possibility of reconfiguring the network and supplying the 

power using other lines that were not previously in operation. 

 

Figure1. 4: Ring distribution System With - - - Reservation Line 

 

1.5 Justification and Motivation 
 

Due to the above situations, it is essential to plan the expansion of Distributed Generation 

in distribution networks in an optimal way to determine the most economically and 

technically appropriate options. The investments required for electricity distribution 

systems to absorb a growing and uncontrolled expansion of distributed generation would 

be important and accompanied by long periods of return[18,19]. There is an increasing 

need for the development of planning tools capable of efficiently addressing the growing 

level of uncertainty that characterizes current generation expansion scenarios in 

distribution networks. But the economic approach is not enough if we want to introduce 

desirable goals from a social and even environmental point of view [20]. The decision-

maker must take into account in his decisions other factors (environmental impact, 

emissions, energy price, etc.) [21] that could have the same importance if one thinks 
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about the objective of an electrical or energy sustainable systems development at 

European level is highly desirable [22]. 

Consequently, it is understood that the development of planning models of distributed 

generation in distribution networks based on a mono-objective and multi-objective 

optimization methodology [23], which take into account the uncertainty inherent in 

scenarios with high generation penetration distributed based on renewable resources and 

the risk that all long-term planning entails. 

 

1.6 Optimum Expansion of Distributed Generation in Distribution 

Networks 

 

The problem of the optimum expansion of distributed generation in distribution networks 

is to determine the best location of the generators used as DG, as well as the most 

convenient size, so that the electric power supply and the behavior of the electric network 

is Minimizing investment costs and operating losses and costs, as long as technical 

constraints are met throughout the planning period. The problem of optimization is 

complex, because there is a large number of variables and constraints, in addition to the 

nonlinearity of the functions of cost and technical restrictions [24,25,26]. 

Distribution networks, which are generally designed to have a unidirectional flow, i.e. 

from the substation to the final consumers, are not currently conceived for the Distributed 

Generation installation [28]. Some studies have indicated that this integration can bring 

technical and safety problems, which opens the way for the search of the location and 

mode of operation of the generators that minimize the negative impacts on the 

distribution [27,29]. Energy is being increasingly used, due to environmental interests, as 

well as the scarcity of potential energy resources in each country. Wind power has been 

boosted in recent years, both by governments and by some industries, as it is an energy 

with a great commercial capacity [30]. In this context, wind energy is expected to have a 

greater participation in infrastructure and electricity markets. But in turn the primary 
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sources of Distributed Generation based on renewable energies show variability in their 

performance [31]. 

1.7 Uncertainty of Renewable Energies 
 

The expansion of the  systems in Distributed Generation has reformed a lot in recent 

years [32]. So far the main focus of support for the planning of the expansion of the 

generation has been approached from a deterministic approach and very few authors have 

contemplated the uncertainty in their models. However, risk management and uncertainty 

management is an issue that still needs to be improved. As further penetration of 

distributed generation in distribution networks will be likely in the future, it is necessary 

to start looking for tools to work with the risks and uncertainties of efficient way and, in 

this way, be ready to exploit the new opportunities that open up [33,34,35]. 

Renewable generators present randomness due to their primary sources, such as wind in 

the case of wind generators or solar radiation in the case of photovoltaic generators. But 

not only renewable energy sources present uncertainty, but also future fuel costs, industry 

demand, as well as all costs associated with the different materials and equipment used in 

power grids [36]. 

 

1.8 Multi-Objective Optimization Planning Methods 
 

 

 There are few multi-objective methods that have been proposed to resolve the problem 

of power distribution systems expansion planning with more than one objective function 

separately formulated. In [40], a planning method is proposed to optimise three objective 

functions: economical cost, energy not supplied and total length of overhead lines [44]. 

This method generates a set of Paretooptimal solutions using the s-constrained technique. 

This technique transforms two objectives into constraints, by specifying bounds to them 

(e), and the remaining objective, which can be chosen arbitrarily, is the objective function 

to optimise. In other words, the multi-objective problem is transformed into a single-

objective optimisation problem, which is resolved by classical single-objective 
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algorithms[45]. The bounds e are the parameters that have to be varied in order to find 

multiple solutions. Another planning method that uses the e-constrained technique is 

reported in [42,43]. This method resolves the single-objective problems using a simulated 

annealing algorithm.  

The disadvantage of the e-constrained technique is that the solution of the resulting 

single-objective problem largely depends on the chosen bounds E. Some values of E 

might cause that the single-objective problem has no feasible solution. Thus, no solution 

would be found. In addition, several optimisation runs arc required to obtain a set of 

Pareto-optimal solutions. 

In reference [46], it is reported a planning method that uses the weighting technique to 

obtain non-dominated solutions. This technique consists in assigning weights to the 

different objective functions and combining them into a single-objective function. The 

Pareto-optimal solutions are identified by changing the weights parametrically with 

several optimisation runs. One difficulty with this technique is that it is difficult to find a 

uniformly distributed set of Pareto-optimal solutions [49].  

In [47],  

 

1.9 Main Objectives  

 

This thesis analyzes and determines from a technical, economic and social impact 

perspective for the optimum planning of the expansion of distributed generation in 

electricity distribution networks. Renewable energies are the main sources of distributed 

generation, in particular wind energy, photovoltaic solar energy and hydropower. The 

main objective of the thesis is the multi-period and multi-objective optimal planning of 

the expansion of the distributed generation in the distribution networks of electric power 

taking into account the uncertainty of life to the own randomness of the primary 

resources used by the generation of electricity, as well as randomness of the demand, so 

the optimization methods are used to determine the different future scenarios within a 

long-term planning. 
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The main idea is to minimize the net present value of the asset and operating costs, 

operation cost, and loads effort of the generators and the distribution network. The model 

also contemplates technical restrictions of operation such as: power balance in knots, the 

limits of power of generators, limit of power capacity in lines, limit of maximum 

penetration of the DG in the distribution network, these methods contemplate the 

randomness of the variables that represent wind generation, hydropower generation, 

photovoltaic generation and demand. 

 

1.10 Structure of Thesis  

 

Chapter 1: it justified the importance of electricity distribution, and the factors that in its 

optimal design, as well as the objectives that are intended to achieve with this Doctoral 

Thesis, indicating the structure of the same. In addition, the contribution of the research 

works that have been developed. 

Chapter 2. This chapter represents models of ideal development of generation distributed 

in distribution networks and it reviews literature and publications related to the optimal 

planning of distributed generation in distribution networks. The review covers optimal 

models of: planning of distribution networks, integration of storage in distribution 

networks, distribution network planning with distributed generation, probabilistic and 

stochastic models.  

Chapter 3. This chapter describes the problem of distributed generation planning with a 

deterministic approach and its integration with storage systems. It presents a number of 

adopted methods in order to reach optimum DG in the electrical power systems. All the 

definitions and primary concepts for those methods founded in this chapter. It also shows 

the mathematical formulation for the adopted methods that allows solve the problem of 

optimization of energy distribution electric systems.  

Chapter 4. This chapter discusses the optimal planning model for distributed generation 

in distribution networks as a problem of probabilistic optimization. First, the method 

selected for the solution then it applied in order to evaluate the extracted results.   
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Chapter 5. This chapter summarizes the most relevant results achieved in this Doctoral 

thesis, indicating the contributions made in the design and planning of distribution 

networks. In addition, it indicates the future research work to be carried out, in which will 

take as a starting point those that have been expressed in this document. 
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Chapter Two: Models of Optimal Planning of 

Generation Distributed in Distribution Networks  

…………………… 
 

2.1 Introduction 
 

In this chapter a bibliographic review is made regarding the optimal planning models of 

generation in electrical systems, emphasizing models related to the planning of 

Distributed Generation in distribution networks. The review covers: 

 Models of optimal planning of distribution networks. 

 Models of optimal planning of generation in electrical systems (transmission and 

distribution). 

 Optimal models of Distributed Generation planning in distribution networks, 

including conventional generators, non-conventional generators and storage. 

Based on the bibliographic review, the main features of the revised models are 

summarized, emphasizing the objective or objectives to be optimized, the optimization 

techniques used and the technical and economic restrictions contemplated. Finally, the 

conclusions reached in the chapter highlighting the trend of planning models. 

 

2.2 Models of Optimal Planning of Distribution Networks 

 

 Analyze the problem of planning the location, size and service area of distribution 

substations [51]. The problem formulated considers a linear function of costs directly 

associated to the lengths of the stretches and is solved by two algorithms; [52,53] to find 

the shorter routes and from [54] to determine the optimal service areas of the substations. 

The model allows to solve relatively large size problems, but has limitations of not 

including the power transport capacity restrictions of the feeders [55].  
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The use an algorithm for the expansion of the generation in a radial distribution system, 

which is carried out in two steps. In the first step the concept of minimum expansion tree 

is used. In the second step the optimization problem is built subject to the technical 

constraints of the system and integer-mixed linear programming (MIP) is used for its 

solution [56].  

They propose a model based on mixed-integer linear programming to plan the optimal 

design of a Distributed Generation distribution network where not only operational 

constraints are considered, but also the best alternative for the location and optimized 

dimensioning of distributed generators, as well as the selection of generators and optimal 

routes for distribution lines [57]. It provides a distribution system to minimize power 

losses in the network [58]. In this model it is crucial to define the size and location of the 

local generation. Some of the characteristics of the distribution systems are considered, 

such as: radiality structure, number of nodes and the range of the relation [59,60]. In this 

thesis, a loss sensitivity factor, based on equivalent current injection, is formulated for the 

distribution system. The sensitivity factor is used to determine the optimal size and 

optimal location of the DG, as well as to minimize power losses by an analytical method, 

without the use of the admittance matrix, the inverse of the admittance matrix or the of 

the matrix. It is shown that the proposed method is in accordance with the classical 

algorithm based on successive load flows [61]. 

To present an algorithm to obtain the optimal location of generators that allow the proper 

operation of a distribution network where Distributed Generation is included [62]. The 

proposed algorithm has been developed for electric power distribution systems and is 

based on the heuristic technique known as tabu search [63]. The objective function to be 

optimized is the minimization of the cost of generation with penalties due to overloads in 

the branches and voltage drops in the buses. The technical restrictions are of operation 

and control variables [64,65]. 
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2.3 Models of Optimal Planning of Distributed Generation in 

Distribution Networks 

 

To propose a structure to optimize the planning of distributed generation emphasizing the 

risks and uncertainties, taking into account technical, environmental and commercial 

aspects due to legislative changes, fuel prices and technological innovations [67]. 

Also present a method for the evaluation and minimization of network costs with 

distributed generation. The tools for optimizing the network are to realize the integration 

at a cost efficient in the long term [68,69]. The long-term planning of medium voltage 

distribution networks is based on a rural approach, with a horizon of several decades [70]. 

Planning is carried out taking into account geographical constraints such as location of 

substations and routes in bad use, in addition to technical restrictions: supply and load of 

the consumers, maximum amount of equipment and operation under normal conditions 

and under failure, permitted voltage limits and short circuit currents are considered, 

among others [71]. The objective of planning is to minimize the cost of investment and 

annual operating costs as well as the costs of power losses. In this contribution, a 

computational tool is used, which is based on a two-stage heuristic method that considers 

all technical and geographical constraints. In the first stage an initial solution is generated 

with an algorithm originally developed to solve the problem of the vehicle route, and then 

it is improved with a method based on a tabu search [72]. 

To employ a methodology based on an optimal optimum flow model, using linear 

programming [73]. The optimization process is used to reduce the environmental and 

economic impacts, taking into account the installation of combined cycle plants, wind 

plants, biomass exploitation together with combined industrial and heat systems [74]. 

This model describes the energy system as a network of energy flows, combining the 

extraction of primary fuels, through conversion and transport technologies, to meet the 

energy demand of a high consumption of materials [75].  
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Planning horizon is defined by periods, usually of different size. The objective function is 

to minimize the cost of the conversion of the primary energy over a selected time horizon 

[76]. The constraints of the model must satisfy the peak demand of electricity in all 

periods plus a considerable margin, in addition to contemplating the exported energy. The 

limits of each generation source must be considered so that annual energy production is 

not exceeded [77]. 

To propose a method of optimization for the planning the expansion of a sub transmission 

network in the medium and long term of a sub transmission network. The optimization 

technique used is mixed-integer nonlinear programming. The objective function 

minimizes the total costs obtained from the sum of the investment cost, plus the operating 

costs. 

Also propose a new methodology to determine the optimal location of generators 

distributed [78]. The objective is to maximize the generation subject to the restrictions of 

percentage of penetration of renewable energies imposed by the European Union as part 

of the strategy of the Kyoto Protocol to reduce the greenhouse effect [79]. The objective 

function is maximized subject to restrictions, such as: the current in the lines does not 

should exceed its maximum capacity, the amount of generation should not exceed the 

range of the transformers to its highest voltage range, the short-circuit capacity should not 

exceed the capacity levels of the equipment, the short-circuit range of the generators must 

be according to the short circuit level of the buses close to each generator, the power of 

the generator on the bus where it is installed must be less than the available power of the 

resource and greater to the installed power. Linear programming is used to determine the 

optimal location of the DG [81]. 

A method to regulate the voltage in a radial distribution network with the Distributed 

Generation installation is presented by [82,83]. A voltage drop compensator is used in the 

interconnection lines between the distribution network and the Distributed Generation, 

which allows the voltage to be maintained within previously established levels by 

operating the tap changer of the main transformer [84]. 
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The voltage level of each Distributed Generation system can be autonomously and 

decentralized to carry out the coordination of the voltage regulation system of the 

complete distribution system. It uses the optimal load flow model, based on linear 

programming to evaluate the production contribution and Distributed Generation 

efficiency [85]. The objective function to be optimized (minimized) includes costs due to 

the production of energy in the presence of technical constraints and energy policies. 

Another study shows the behavior of fuzzy methods [86] presents an adaptive fuzzy 

genetic algorithm as a possible implementation for any radial type distribution system 

[88]. The algorithm is developed in three stages. The first stage comprises an appropriate 

location and dimensioning of the substations using load flow, which allows to know the 

voltages at the nodes and the total losses of active and reactive power [87]. 

In the second stage heuristic rules are used created on the effects of the simulation of the 

flow of charges of the first stage, an appropriate number of lines and their corresponding 

knots are found. In the third stage the reconfiguration of the network is obtained so that 

the general structure remains radial and all the nodes are energized [90]. A loss 

minimization plan and a cost minimization plan are used to minimize the losses of active 

power and achieve a minimum cost that includes the cost of investment and the variable 

cost. 

To applies the Tabu Search technique to find the optimal location of distributed 

generators from the point of view of loss minimization [91]. The purpose of this research 

is only to provide information about the size and correct location of the Distributed 

Generation, to know the amount of losses that would be reduced. It is assumed that the 

size and quantity of the generators are known, as well as the characteristics of the loads, 

which are evenly distributed throughout the distribution system [92,93]. 

Also present a method for planning the expansion of generation, reconfiguring the 

network and constructing new generation plants [94]. The method considers a natural 

growth of the demand and installation of older customers. The method first attempts to 

reconfigure the network objective by "switching" (open or closed) to minimize losses and 

analyzing network security through a contingency analysis. If operation restrictions are 
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violated when the network is reconfigured, then the method attempts to construct 

candidate generation plants. 

2.4 Integration of Energy Storage Systems 

 

The supply of energy in distribution networks from primary sources is not constant and 

seldom coincides with the pattern of consumer demand. Electricity itself is difficult to 

store in significantly large quantities. Secondary energy storage is necessary for more 

efficient use of existing generating capacity and for allowing more consistent use of 

renewable energies, which tend to provide power intermittently. The lack of storage in 

fact has been cited as a barrier to the substantial introduction of renewable energy sources 

in the grid [95].  

To describe a model to solve the optimal flow of power in a power system, which 

includes wind farms and hydraulic storage units belonging to independent power 

producers [96]. When independent producers are present in the system, the operation of 

wind farms and hydraulic storage units must be under contractual agreements of purchase 

and sale of energy between each producer and public generators [97]. The optimum 

coordination of renewable energy sources is also examined in order to optimize their 

exploitation. 

The objective function to (minimized) is the operating cost, which is the sum of the 

operating costs of the conventional generation sources plus the cost imposed by the 

operation of the independent producers, subject to power balance restrictions, both of 

reactive as of active in each node of the system, control of the limit of the variables, as 

well as limits of security. Other restrictions are included in the model, as is the 

penetration limit of wind energy. All variables are linearized to obtain a linear model. 

The model is solved by a Simplex algorithm using routines provided by the IMSL 

mathematical library. 
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To perform the optimization of a distribution system where it is considered DG, in which 

conventional generators and non-conventional generators are proposed that have random 

characteristics, in addition they are considered storage units to support the periods in 

Unconventional generators are not present. The model is optimized using an optimization 

package that uses linear programming (LP) [98]. The minimization of the rate of 

installation of the conventional sources associated to the generation capacity plus the cost 

of operation and maintenance associated to the cost of energy; the fixed costs of 

renewable sources are also included in the objective function. 

Variable costs of renewable sources are not considered, because they assume energy with 

negligible operation and maintenance costs. Costs are considered fixed lines of 

distribution lines plus fixed costs of storage units. The restrictions considered are: 1) 

Balance of power in the knots. 2) energy balance constraint, where storage units take 

charge during periods when renewable sources are present and are discharged in periods 

when renewable sources are not present; 3) restriction of capacity limits of conventional 

and renewable generators, as well as capacity limit of distribution lines.  

It uses average hourly values of demand, wind speed and solar radiation. To present a 

model for the optimum location of storage systems where there is a high penetration of 

wind generation [99]. The proposed methodology is based on the storage of excess 

energy produced by wind generators, which serves to minimize the annual energy cost. 

The goal of energy storage for this site is to seek the economic benefit to independent 

owners, so they must properly dimension the amount of energy exceeded by wind 

generators to be stored. Methods of forecasting demand and wind generation are used to 

know with some precision both the demand and the supply of energy produced annually. 
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2.5  Probabilistic Models of Optimal  Planning of Distributed 

Generation 

 

For many years the load flow solution has taken known represented input parameters. 

Any change in input values requires a new load flow solution. Consequently any 

uncertainty and random variation due to errors in the forecast, generator outputs, etc., 

were not reflected in the flow results of loads. An analytical alternative that has achieved 

remarkable interest is probabilistic load flow (PLF). 

To presents a Monte Carlo Simulation-based technique to show the effects of nonlinearity 

on the network equations and the assumption that a normal distribution for the random 

variables is completely reliable. The algorithm used is new for probabilistic load flow. 

They perform a review of publications related to probabilistic techniques for evaluating 

the reliability of electric systems [100]. 

A probabilistic reliability model for a radial system with low rates of load variation is 

presented by [101]. Firstly, the improvement of reliability indicators, specifically the 

Expected Energy Not Supported (EENS), is calculated by means of line reinforcement 

and addition of substations. Then the methodology determines the equivalent of 

conventional DG to be installed as a service to reach the previously calculated reliability 

indicators, maintaining the given load requirements. In this methodology it is assumed 

that the location of the DG is not relevant [102]. 

The generations mentioned above are dispatchable. The inclusion of non-dispatchable 

generations, e.g. Distributed Generation, in the interdependence model. The 

interdependence between load demands and non-dispatchable generations are modeled 

through two levels, for example in the time of day or station, and temperature. These two 

levels have the interdependence due to the cyclical phenomenon (day, week, season) and 

the random phenomenon (temperature, cloudiness,Wind) related to the demand for cargo 

and non-dispatchable generations. The modeling of Distributed Generation 

interdependence, for example, generation of wind farms, is of great importance because 
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the wind generators are correlated with adjacent wind farms, due to the similar velocity 

of the area [102].  

In [103] they use sequential Monte Carlo simulation to evaluate the reliability of a system 

that has conventional units like DG. The total power of all active DG units is treated as a 

random process due to the random nature of the performance of the DG, i.e. failure rates 

and reset times [104]. The operation of the DG is represented as a two-state model. The 

operating cycles of all DG units are combined to obtain the capacity availability curve of 

the DG. 

Next, the DG availability curves are added to the centralized generation capacity curve to 

obtain the total available generation capacity curve at each hour. Subsequently, the 

average amount of unloaded load per hour (AUL), which is obtained by the Monte Carlo 

Simulation method (MCS), is calculated for a large number of annual samples. Based on 

the results, it is concluded that with the implementation of DG, the value of AUL 

decreases considerably. In addition, the capacity of the distribution system can be 

improved in case the load is increasing. Load modeling should be divided into: 1) short-

term modeling, which takes into account the uncertainty of social and environmental 

factors in the planning of the operation, and 2) long-term modeling of the load , Which 

takes into account the uncertainties of demographic and economic factors in long-term 

planning. Short-term load modeling picks up the daily peak values of a substation every 

two months. Long-term load modeling collects the annual peak demand values observed 

in a substation for a number of years, then a PLF is carried out to obtain the system states 

using linearized load flow equations [105].  

The power flows in the lines are obtained from the system states using the classical 

nonlinear load flow equations. In addition to the adequacy of the previous indices, the 

results of the PLF simulation provide more points of view than the conventional 

deterministic study, As an alternative to increase the support of reactive power generation 

instead of the construction of a line. In [106] discusses the short-term planning of a 

distribution network to take into account the stochastic behavior of the Distributed 

Generation units. The results of the simulation show the ability of the statistical planning 
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method to increase the transfer capacity of the network compared to the traditional worst 

case planning principle [107]. 

Stable and when operating in load-tip trimming mode. According to the results obtained, 

it is observed that the operational cost using the hourly valuation of reliability is 

significantly lower than the operating cost using the average annual cost of operation 

[108]. From this it is concluded that the cost of hourly interruption is an important index 

of reliability in the determination of the strategy of optimal operation of the DG. 

The effect of fluctuation in the power output of the generators was included by modifying 

the generation model of the non-conventional unit. The LOLF (Loss of Load Frequency) 

and LOLE (Loss of Load Expectation) values were calculated for one hour and combined 

in the generation system models, where each sub-system was treated as a multi-state unit. 

Subsequently, the cumulating algorithm was applied to combine the subsystems and 

obtain the HLOLE (Hourly Loss of Load Expectation) total of the system [109]. 

The results obtained using the proposed method show a decrease in the values of the 

reliability indices for low penetration levels. For a high penetration the effects of the 

fluctuation of the output power begin to be significant and the high availability of 

unconventional units is surpassed by the variability in the output. Another way of 

calculating reliability indices is to use sequential simulations, with this approach Wang 

and [110] present a sequential simulation in time to evaluate the reliability of the 

distribution system with wind generations. 

The power delivery of the wind generator at a specific time is expressed as a function of 

the wind speed and the generating capacity of the unit. A six-state model is developed to 

consider the simultaneous effects of wind speed and forced WTG output. A two-state 

model represents the other components of the distribution system. It is observed that the 

reliability varies in each individual point of load depending on the location of the load 

node in the network, the topology of the protections and the level of load. 

In addition, it is found that by selecting the optimal WTG number with a specific location 

(according to wind conditions), the distribution system can be substantially developed.   

In [111] show a novel procedure for the optimal location of wind generators in a wind 
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farm, based on Monte Carlo Simulation. The model maximizes energy production and 

minimizes the cost of installation. As a case study a site is divided into 100 square cells 

where the installation of wind generators may be possible. To optimize (minimize) the 

total cost, the investment cost is modeled so that only a certain number of necessary wind 

generators are considered [112]. The results obtained by the Monte Carlo simulation 

method are compared with the solution given with a heuristic technique named as genetic 

algorithm (GA), obtaining better results. 

To develop a model to optimize the dimensioning of a hybrid solar-wind system together 

with storage, so that the system can work in optimum conditions with optimum 

configurations of the investment requirements and reliability for the demand of the load 

[101]. In this work, the model uses an optimization tool that is based on the loss of 

probability of power supply (LPSP) and the concept of cost of energy leveled (CEL). 

Therefore, the objective function is based on LPSP so that the system configuration 

obtains the required reliability. 

To present an analysis to determine which are the most appropriate energy sources that 

must be installed to carry out the expansion of the generation in a certain area, as well as 

to determine in what period of time these sources must be in operation. A deterministic 

methodology is used to know the capacity requirements in planning. These techniques 

associate hybrid generation and cannot be extended to include photovoltaic sources or 

wind sources that have high levels of fluctuation of capacity [113]. 

The number of random variables and system complexity increases when renewable 

energy sources are included. The simulation algorithm first compares the load level of the 

system with the capacity of the photovoltaic subsystem and all dispatches available in 

this interval. The remaining load is distributed between diesel and wind systems in a 

range specified by restrictions imposed on problems of stability of wind energy sources, 

always "dispatching" wind energy to allow maximum penetration. The developed method 

uses Monte Carlo Simulation. 

It shows a mathematical formulation to determine real-time electricity costs. Time series 

prediction models are used to investigate the impact of wind power on electricity market 
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prices [114]. It is carried out the configuration of a network composed of 6 buses of a 

transmission system and 3 buses of a distribution system. Generation units are assumed to 

operate under the same wind speed conditions. The distribution system is connected to 

the transmission system by means of a lifting transformer. The model is implemented 

with the GAMS optimization software. The problem is formulated as a nonlinear 

programming problem and solved using the MINOS solver. In particular the wind turbine 

models were implemented in MATLAB®. The MAE prediction tool is used for 

predicting energy prices. 

2.6  Stochastic Models of Optimal Distribution Network Planning with 

Distributed Generation 

 

Stochastic optimization is used to deal with problems with data and variables with 

uncertainty, such as wind generation or solar radiation. To formulate a stochastic 

optimization model to solve in the short term a problem capable of taking into account 

the sources of wind generation, which are non-dispatchable and are also variable in the 

electric market environment [115]. The main benefit is that when the worst deterministic 

scenario is compared, a large penetration of wind power is allowed without sacrificing 

safety. The objective of the problem is to minimize the expected social cost. The 

technical restriction adopted is the maximum penetration of wind generation, which 

ranges from 10% to 20%. 

(Haesen and Driesen 2007) present a robust planning methodology for the integration of 

generators in distribution networks. The methodology is based on the improvement of the 

precision of the Monte Carlo Simulation nested in a multiple evolution algorithm. The 

objectives pursued are to evaluate the appropriate trade-offs with respect to technical and 

economic aspects.  

It present a problem of planning expansion of the long-term generation of a transmission 

system. The model considers losses and ensures optimum convergence [116]. The model 

approach uses mixed-integer linear programming (MIP) for the solution. The model is 

applied to "Garver's 6-bus system", "the IEEE Reliability Test System" and to a Brazilian 
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real system. The results show the precision and efficiency of the technique used. The set 

of constraints includes, among others, dynamic constraints on investment and operating 

cost variables, as well as nonlinear and convex static constraints [117]. 

Due to this inherent complexity and the lack of computational tools the transmission 

expansion problem is made in two simplified models related to dynamic and stochastic 

aspects. The objective function represents the sum of the investment cost of new lines 

and the cost of operation of the generation units. A single demand scenario is typically 

considered to correspond to the maximum demand of the horizon considered. Also 

considered are power balance constraints on the power knots injected at each node, as 

well as operating restrictions of the generators [79]. 

Uncertainty in demand forecasting is currently a problem in planning the expansion of 

generation. They use a decomposition strategy called the Lagrangian relaxation technique 

for a stochastic optimization structure. A scenario tree is constructed where costs are 

attributed to each node of the tree [118]. In each iteration for each generator a sub-

problem has been solved, which consists in minimizing the average cost of generation on 

the tree of cost scenarios. An optimization deterministic model is carried out on a daily 

scale with a detailed model of operating restrictions. 

To present a method whose approach is the analysis of the operation of Distributed 

Generation customers under an uncertainty perspective [119]. A random state transition 

procedure is used to cover all possible operating scenarios of the system. The new 

structure of the system may include, in addition to the main components, different 

Distributed Generation technologies in different locations and schedules. The time series 

simulation is used to represent the randomness of the operating cycles. A two-stage 

model (high position and low position) is used to simulate the operating cycles using a 

code in MATLAB. 

Some of the problems that currently exist in systems Electric power are the violation of 

limits and maintenance of all Security systems. This situation is described as a state of 

emergency, and the actions required for its correction are called actions to control 

emergencies or corrective control actions. 
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Emergency does not necessarily mean an immediate collapse of the system, but it is an 

action that requires immediate correction. Corrective Action is one of the actions that 

should be taken into account.  

They also presents a solution for the optimal restoration of the operation of the power 

system for different operating conditions. operation. Genetic algorithms (GA) are applied 

to carry out this optimization [120]. Three different procedures based on optimization 

Multi-objective algorithms with genetic algorithms (MOGA) are used to optimize 

corrective control actions: The first procedure is based on a switching of the transmission 

lines and re-dispatch of the generation. The second procedure is used to determine the 

location and size of the Distributed Generation, while the third procedure is used to solve 

the problem of unbalanced loads and generation using load disconnection. 

To apply the fuzzy set theory in multi-criteria decisions, which was first used by Bellman 

and Zadeh. In this study a two-phase procedure is used to solve a multiobjective problem 

of diffuse linear programming [121]. The procedure provides a practical solution 

approach, which is an integration of diffuse parametric programming and diffuse linear 

programming. The interactive concept of the procedure is performed to arrive at 

simultaneous optimum solutions for all the objective functions for the different degrees of 

precision according to the preferences of the decision maker. In the first stage of the 

procedure, a family of vector optimization models concession). The solution of the best 

planning scheme between the Pareto set is made using Monte Carlo Simulation under 

uncertain situations. The technologies of DG that are considered are: conventional and 

renewable, photovoltaic, wind, fuel cells, micro turbines and gas turbines. To evaluate the 

effectiveness of the proposed method, a distribution system is used to plan the expansion 

of generation under two scenarios with environmental impacts. 

In the multiobjective optimization model used in [122] we consider the optimum size and 

location of lines and substations, as well as the of the design (monoetapa or multistage) 

and the corresponding restrictions techniques. The optimum multiobjective design of 

distribution systems is carried out using an Evolutionary Algorithm, using an 

optimization model of non-linear programming that incorporates the simultaneous 

optimization of the economic costs and the reliability of the distribution system, using the 
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real nonlinear variable costs Associated with such a system. The optimal multiobjective 

design model used allows obtaining a broad set of non-dominated solutions (economic 

cost and reliability) from which the designer can select those that, considering several 

factors, consider of greater interest. 

Then they provide a modified Genetic Algorithm is presented that allows determining the 

optimum indexes of the reliability of the constituent components of a distribution system, 

minimizing the annualized total cost. The proposed algorithms apply to a secondary 

substation of the Taiwan Power Company. The results confirm that with the proposed 

Genetic Algorithm it is more likely to obtain the overall optimal solution than with the 

conventional method. The proposed method is useful both to modify or extend existing 

systems and to plan new systems. The objective function includes the total cost of the 

interruptions, the cost proportional to the loss energy, the cost of modifying the reliability 

and the cost of the total number of devices in the system. 

To present a multiobjective optimization methodology for the island of Lesvos in Greece, 

where several renewable energy sources could be exploited to meet some of the 

economic needs of the island [124]. The criteria to be met are: environmental impact, 

demand, cost, and resource constraints. The study poses two objective functions: 

investment cost and environmental effects. The two objectives to be minimized are in 

conflict, since when the cost decreases the system operates increases the generation with 

conventional sources and the emissions produced by them increase. The obtained results 

give the possibility of the designers of the system can select the best option according to 

the needs and existing regulations. The constructed mathematical model indicates that 

wind generators can be used to cover electrical demand and solar collectors can be used 

to meet hot water needs. While geothermal energy and biomass can be used to cover a 

percentage of the demand for heating. They show a holistic design and planning method 

particularly for integrated energy systems, which include a large number of parameters. 

The method allows quantifying economic and ecological parameters by comparing 

solutions. An optimal representation of the Pareto curve provides a view of the best 

solutions which is determined using an efficient multiobjective algorithm. The results of 

the case study of the isolated system always show favorable solar conditions, solutions 
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including solar thermal or photovoltaic production. The proposed method allows an easy 

evaluation of the sensitivity of the solutions by changing fuel prices. 

To present a new probabilistic model based on Fuzzy sets for multiobjective planning of 

distribution networks. The model determines optimal location and dimensioning. A meta-

heuristic algorithm based on Tabu search is used. The model also allows determining the 

optimal reserve of the feeders that provide the best reliability at the lowest cost in the 

distribution network. The multiobjective feasible model provides solutions that 

simultaneously: minimize cost, maximize reliability and minimize the risk of exceeding 

capacity limits [125]. 

Allowed power of the feeders and substations, as well as the risk of exceeding the 

permitted limits of voltage drop in the network nodes. Also, a fuzzy feasible 

multiobjective model to determine the optimal location of Distributed Generation for loss 

reduction and improvement of voltage profile in electric power distribution systems. The 

multiobjective problem is developed in two stages. In the first stage the set of non-

dominated planning solutions is obtained, using genetic algorithms. In the second step, a 

solution of the set of non-dominated solutions is selected as an optimal solution using an 

appropriate maximization-minimization approach. The input parameters are modeled 

using the fuzzy set theory to use them in the diffuse power flow, which gives us a real 

view about the future demands of the distribution system because this model considers 

uncertainty of future points. 

 

 

 

 

2.7  Conclusions 
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In the review of the models, the characteristics of each model are collected, such as: 

objective functions or functions to be optimized, technical constraints, economic 

constraints, social constraints and optimization techniques used to solve the model. The 

introduction of DG presents a set of new conditions in the network and consequently the 

appearance of new technical problems that must be studied when considering the DG 

connection. In the revision of the planning models of distribution networks, in which DG 

has been installed optimal location of DG. 

 Optimal Dimension of DG. 

 Optimal selection of lines. 

 Expansion of generation to different horizons. 

 Stability of electrical power parameters. 

 Reliability of the network. 
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Chapter Three: Adopted Methods in the Optimization        

Process for Optimal Distribution  

3.1 The System of Distribution of Electrical Energy 

 

The electric power systems are structured in the generation, transport and distribution 

parts, hierarchical as shown in Figure 3.1. The generation takes place in the power plants 

that, depending on the type of primary energy used, can be of several types (hydraulic, 

thermal, wind, nuclear, solar, etc.). Electric power, in the case of large power plants, is 

transported through the high voltage lines (transport network). The normalized values for 

the tension of the transport lines are 132, 220 and 400 kV. 

 

Figure 3. 1:  Power Distribution Process 
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The distribution of the electric energy from the substations of transformation of the 

transport network is realized in two stages. The first is constituted by the distribution 

network, which, starting from the transformation substations, distributes the energy 

Usually by means of rings that surround large consumer centers, until reaching 

distribution transforming stations. The voltages used are between 25 and 132 kV. 

Intercalated in these rings are the distribution transforming stations, in charge of reducing 

the voltage from the distribution level to the medium voltage distribution. The second 

stage is the distribution network proper, with operating voltages of 3 to 30 kV and with a 

very radial characteristic. This network covers the area of large consumer centers 

(population, large industry, etc.), linking transforming distribution stations with 

transformation centers [52].  

Urban distribution networks are usually characterized by high load density, usually using 

underground and fully meshed networks, with a large number of backup feeders in order 

to increase the reliability and security of the electric power supply, the operation being 

radial. Rural distribution networks, in which airlines are almost always used, usually have 

a radial structure, with a main feeder (trunk) from which other lines is coming out. 

 

3.2 Introduction to Optimization 

 

Optimization consists of selecting a better alternative, in some sense, than the other 

possible alternatives. In general, optimization is divided into three broad areas: classical 

mathematical techniques, heuristic techniques, and the combination of both. 

To apply a certain optimization technique it is necessary to have what is called the 

mathematical optimization model. A mathematical optimization model is composed  of 

[37]: 

 Objective function: It is the quantitative measure of the operation of the system 

that you want to optimize (maximize or minimize). 
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 Variables: They represent the decisions that can be taken and that modify the 

value of the objective function. 

 Restrictions: They represent the set of relations (expressed through equations or 

inequalities) that some of the variables must satisfy. 

Thus, mathematically an optimization model can be as min/ max f(x) expressed as: 

𝑔(𝑥) = 0, ℎ(𝑥) ≤ 0, 𝑝(𝑥) ≥ 0                            (3.1) 

There are some types of optimization problems that can be classified according to the 

type of variables and the properties of the objective functions and constraints min/max 

f(x). From the classification shown in table 3.1, below we will comment on those types of 

problems that are of interest for the research works developed in this doctoral thesis. 

Table 3.1. Classification Appearance 

Appearance to consider Type of optimization problem 

 

Domain of variables Keep going 

Whole 

Mixed 

Existence of restrictions Restrict 

Unrestricted 

Linearity of functions Linear 

Nonlinear 

Number of objectives Mon-objective 

Multi-objective 

Availability    Short term 

Medium term 

Long term 

 

Within the mathematical methodologies available to solve the problems of optimization, 

we find the linear programming, whole, mixed, nonlinear, stochastic and dynamic. In 
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addition, there are heuristic techniques, adequate when the mentioned techniques are not 

able to solve some optimization problems correctly.  

Given the time horizon, it is possible to speak of static models, where considers that time 

does not fundamentally condition the optimization of the system, being the results that 

are obtained valid for a determined year or for a determined situation in the horizon of 

study [94]. On the other hand, the dynamic models obtain several solutions, each of them 

corresponding to different temporal moments that are between the initial instant that is 

considered and the determined time horizon. Another aspect that can be considered when 

proposing an optimization model is that of uncertainty. Uncertainty, in the optimization 

process, can be stochastic or deterministic. The first refers to the one in which it is not 

feasible to attribute a rational behavior model to it while in the second it is possible to 

determine (strategy). 

 

3.3 Planning of distribution networks 

 

There are three types of design and / or planning of energy distribution systems (Peco, 

2001):  

(i) New construction. 

(ii) Expansion 

(iii) Operation.  

In this research the main objective is to obtain feasible solutions in systems belonging to 

the second type, in which it is desired to optimize a network in a certain period (static) 

and expand the distribution system over time (dynamically) to optimally satisfy the 

increase in the number of consumers and demand. 

The objectives of distribution network planning may vary considerably from one 

installation to another and from one plan to another. However, it is possible to formulate 

common objectives for planning tasks in general, as shown in Figure 3.2. 
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Figure 3. 2: Hierarchy of objectives in the design of distribution networks 

 

For example, consider expanding the capacity of existing substations and changing the 

sections of the drivers. In addition, some of the objectives can be considered as 

restrictions. In this Doctoral Thesis, following the works that can be found in [22], it is 

intended: 

 Obtain a technically feasible solution, complying with the maximum permissible 

voltage drops as determined by the company's policy without exceeding the 

capacity limits of the drivers. 

 Evaluate the cost of each line and each substation in the system. 

 Ensure that different types of costs can be compared. This requires that the costs 

of the different technical solutions proposed should be evaluated in monetary 
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units referring to a certain moment in time. To this end, the annual costs and 

capital invested in the distribution system are calculated at the present moment 

 

3.4 Static or single-stage and dynamic or multistage planning 

 

It is necessary to define, in the planning process of the distribution networks, what the 

planning horizons are in order to obtain the network that minimizes the total costs under 

certain constraints. When considering a single period, the distribution system should be 

determined considering that the present value of the total cost of investment and 

operation is the minimum for the considered period of time, usually one year. 

Static model: A single stage, single-stage, is considered, and in this model, the demand of 

each consumer does not change during the period (or in a single stage) or dynamic (of 

several stages) study. Dynamic model: Several stages are considered, multi-stage, and the 

aim is to obtain the optimal design for each of the different stages in which the study 

period has been divided. 

In the single-stage planning it is assumed that all investments are made in the same 

instant of time. The problem of multi-stage planning of the DG is composite than the one-

step planning because the electricity networks evolve with time with an uncertain growth 

of the demand of electrical energy. The planning period, which corresponds to the 

economic life cycle of the equipment, can be divided into several sub periods. Note that 

two sub periods have been designated as the decision-making period and the estimation 

period. The duration of the sub periods can be variable. In the initial phase of the 

distribution network planning process, the current capacity of the system is analyzed with 

short-term demand requirements. The aim is to ensure that 

Consumers receive the energy demanded with the requirements of normalized voltage 

drops, radiality and energy balance. The result of short-term planning is a set of decisions 

such as location and capacity of substations, capacity and section of the drivers. 

The planning period and the decision-making period have a commonality in the 

beginning. The time interval after the decision-making period until the end of the 
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planning period is the so-called estimation period or the medium- and long-term period. 

The objective of this stage is to ensure that the decisions made during the decision-

making period are adjusted within the long-term requirements and therefore satisfy all 

constraints and contribute to minimum and minimum planning Energy not supplied (as it 

has been considered in this Doctoral Thesis). In this period the dimensional aspects of the 

network are defined. 

Note that the changes made to the electricity distribution system in the short-term period 

are part of the long-term solution. This results in a multi-stage approach, where in 

addition to the short-term period, there may be additional periods. To apply this 

approach, this thesis proposes novel methods appropriate for this purpose as optimization 

techniques. 

 

3.5 Basic Methodology Algorithms   

 

In the last decade, there have been profound changes in the electricity sector. Within 

these changes participations increased of generation distribution (DG) on distribution 

networks is highlighted. This phenomenon has been driven by several factors including: 

new technological advances in the production of electricity on a small scale, preference 

for the use of renewable resources, difficulties in network expansion and a growing 

interest in incorporating demand and active agent in the electricity markets [18]. DG 

(defined as production of electricity close to consumption centers) can contribute to 

reducing losses, improving voltage profile, improved reliability and postponing 

investments and transmission distribution [78]. However, as noted in [51], harnessing the 

benefits of DG depends largely on its location, sizing and network features. That is why 

in the last decade have explored different methodologies for proper location and sizing. 

In [6] a literature review of the techniques used for the location and optimal sizing of DG 

in distribution networks is presented. The authors classified the techniques in analytical 

methods, metaheuristics, and mathematical programming. It should be noted that for the 
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problem under study metaheuristics techniques have significant advantages over classical 

mathematical programming because of the nonlinear nature and not convex on the DG. 

On the other hand, the main weakness is that metaheuristics do not guarantee obtaining a 

global optimum. However, possible to find a solution or set of high quality solutions. 

Another advantage lies metaheuristics techniques is that they allow the use of more 

detailed models of network operation as the AC model. In contrast, to apply 

mathematical programming techniques to the problem of optimal location and sizing of 

DG you need to use linearization or approximations to the equations in the balance of 

power. 

Metaheuristic optimization techniques have been widely used in the location and design 

of the DG. Among these are genetic algorithms, tabu search and colonies of particles. In 

[1] a model of multi-objective optimization is presented to determine the location and 

optimal sizing of DG using the technique of simulated annealing. The objectives are 

modeled power losses, the number of generators, the voltage profile and power injected 

by the DG. In this sense, it seeks to find a solution that would increase the voltage and 

reduce losses to the minimum DG units in the system.  

In [13] the authors present a population-based metaheuristic parasitic reproductive 

behavior of some species of cuckoos (Cuckoo Search Algorithm) for the location and 

optimal sizing of DG. The advantage of this algorithm is that it requires a few parameters 

to calibrate. The aim of the study is the reduction of active power losses. Hybrid methods 

combine two or more search techniques in order to exploit the potential of these and 

compensate for their deficiencies. The most common methods combine population hybrid 

techniques with methods that enhance some kind of local search or alternatively, heuristic 

methods with classical mathematical programming.  

In [36] a combination of simulated annealing and genetic algorithms for optimal location 

of DG. The proposed objective is to minimize losses. The authors show that the 

combination of GA with simulated annealing proves more effective using only GA. In 

[61] The proposed model simultaneously optimizes two objectives: the benefits of the 

Distribution Company and owner of the DG. It also considers the uncertainty of demand 

and energy prices. In [43] a hybrid algorithm that combines particles gravitational colony 
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search to determine the proper location and sizing of the TG that minimizes loss occurs, 

improves stress profiles and reduce emissions.  

The aim of this doctorial thesis is to contribute the discussion on the effectiveness of 

heuristic and metaheuristic methods for optimal dimensioning and location of DG. To 

this end, we have implemented and compared four different techniques i) Simulated 

Annealing ii) Variable Search Environment iii) Genetic Algorithm and iv) a hybrid 

method that combines Variable Search Environment with a Genetic Algorithm also 

Given the multi-modal nonlinear intrinsic nature (multiple local optima) and non convex 

problem of optimal location of DG, metaheuristics based methods have proven to be the 

most appropriate methods to address such a problem, especially when considered 

approaches like linear equations in the flow of network load. Also it provides a 

methodology for the optimal location of DG based on a genetic algorithm (GA) 

combined with Artificial Neural Network (ANN).  

The objective sought is to minimize losses in the network. The GA is used to determine 

possible locations to DG units, while ANN is used to calculate active power losses, thus 

avoiding the use of software to calculate the load flow. Additionally, the GA has a Local 

Search subroutine  (LS) running in each iteration to ensure best generations.. To test the 

efficiency of these methods, they have been made various tests in a distribution system 

(34 bars), that is widely used in the technical literature 

 

3.6 Mathematical Formulation 

 

The objective function of the proposed problem is to improve the voltage profile and 

reduce system losses. To this end the indexes defined in (Chiradeja and Ramakumar 

2004) described below were taken. The rate of voltage profile, denoted as IPT, is defined 

by equation (3.2). This index takes into account not only the voltage, but also the bars 

thereof as load factor. This makes it more important to maintain proper tension in bars 

higher demand. 
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𝐼𝑃𝑇 = ∑ = 𝑉𝑖 𝐿𝑖                                                                                      (3.2)

𝑁

𝑖=1

 

Variables: 𝑉𝑖: Tension in the bar i (p.u); 𝐿𝑖 : Load bar i (p.u); and N: Total number of 

bars. The rate of improvement of voltage profile, denoted as IMPT is given by the 

equation (3.3). 

𝐼𝑀𝑃𝑇 =  
{𝐼𝑃𝑇{𝑤𝐷𝐺} − 𝐼𝑃𝑇{𝑤𝑜𝐷𝐺}}

{𝐼𝑃𝑇{𝑤𝑜𝐷𝐺}}
× 100                                                         (3.3) 

Variables: 𝐼𝑃𝑇{𝑤𝐷𝐺}   is the index of the system voltage profile with DG (pu) and $ 

𝐼𝑃𝑇{𝑤𝑜𝐷𝐺}  is the profile index stress the system without DG (p.u.). Note that the IMPT 

denotes the percentage of improvement with IPT without DG. The second objective is to 

reduce active losses for those losses are compared with the system with and without DG, 

given by the expressions (3.3). 

𝐼𝑃𝑇{𝑤𝐷𝐺} = ∑ 𝐼{𝐾,𝑤𝐷𝐺}
2  𝑅𝐾𝐷𝑘  

𝑁

𝐾=1

                                                                     (3.4) 

Variables: 

  𝐼𝑃𝑇{𝑤𝐷𝐺} : Index line losses considering in DG. 

 𝑅𝑘: Resistance in line K (p.u / km). 

 𝐷𝑘 : Length in line K (km).  

            𝐼{𝐾,𝑤𝐷𝐺}
2 : Current line k with DG (p.u).  

 𝐿𝐿{𝑤𝑜𝐷𝐺}: Index line losses without DG. 

 𝐼{𝐾,𝑤𝑜𝐷𝐺}
2 : Online K stream without DG (p.u).  

The rate of reduction of losses in the income tax line is given by equation (5): 

𝐼𝑅𝑃𝐿 =  
{𝐼𝑃𝐿{𝑤𝐷𝐺} − 𝐼𝑃𝐿{𝑤𝑜𝐷𝐺}}

{𝐼𝑃𝐿{𝑤𝑜𝐷𝐺}}
× 100                                                   (3.5) 
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The objective function is to minimize the reduction rates of losses and improving the 

voltage profile. In this case you should be using weighting factors W1 and W2 

dimensions for each rate in order to assess their importance. The optimization problem to 

solve is described by equations (3.6) to (3.19). 

𝑓(𝑥) = 𝑤1𝐼𝑅𝑃𝐿 + 𝑤2𝐼𝑀𝑃𝑇                                                                      (3.6) 

Subject to the equation number 7: 

0 ≤  𝑤1 ≤ 1;  𝑚 = 1, 2                                                                                                 (3.7) 

∑ 𝑤𝑚 = 1

2

𝑚=1

                                                                                                         (3.8) 

𝑢𝑖  𝑃{𝐺𝑖} − 𝑃{𝐷𝑖}  −  𝑉𝑖  ∑ [𝑉𝑘 (𝑔{𝑖𝑘}𝑐𝑜𝑠(𝜃{𝑖𝑘}) + 𝑏{𝑖𝑘} 𝑠𝑖𝑛(𝜃{𝑖𝑘}))] = 0

𝑛𝑏

𝑘=1

                 (3.9) 

𝑢𝑖  Q{Gi} −  Q{Di} −  𝑉𝑖  ∑ [𝑉𝑘 (𝑔{𝑖𝑘}𝑠𝑖𝑛(𝜃{𝑖𝑘}) + 𝑏{𝑖𝑘} 𝑐𝑜𝑠(𝜃{𝑖𝑘}))] = 0

𝑛𝑏

𝑘=1

                (3.10) 

𝑃{𝑖𝑘} = 𝑉𝑖𝑔
2

{𝑖𝑘}
− 𝑉𝑖𝑉𝑘𝑔{𝑖𝑘}

𝑐𝑜𝑠(𝜃{𝑖𝑘}) − 𝑉𝑖𝑉𝑘𝑏{𝑖𝑘} 𝑠𝑖𝑛(𝜃{𝑖𝑘})                     (3.11) 

𝑄{𝑖𝑘} = 𝑉𝑖𝑏
2

{𝑖𝑘}
− 𝑉𝑖𝑉𝑘𝑏{𝑖𝑘}𝑐𝑜𝑠(𝜃{𝑖𝑘}) − 𝑉𝑖𝑉𝑘𝑏{𝑖𝑘}𝑠𝑖𝑛(𝜃{𝑖𝑘})                    (3.12) 

𝑆{𝑖𝑘}
2 = 𝑃{𝑖𝑘}

2 + 𝑄{𝑖𝑘}
2                                                                     (3.13) 

𝑃{𝐺𝑗}
{𝑚𝑖𝑛}

≤  𝑉𝑖 ≤  𝑃{𝐺𝑗}
{𝑚𝑎𝑥}

                                                               (3.14) 

𝑉𝑖
{𝑚𝑖𝑛}

≤  𝑉𝑖 ≤  𝑉𝑖
{𝑚𝑎𝑥}

                                                              (3.15) 

𝑆{𝑖𝑘} ≤  𝑆{𝑖𝑘}
{𝑚𝑎𝑥}

                                                                            (3. 16) 

𝑁{𝐷𝐺} ≤  𝑁{𝐷𝐺}
{𝑚𝑎𝑥}

                                                                           (3.17) 

𝑢𝑖  ∈ {0,1}                                                                                  (3.18)  

And as the minimization of losses and is given as the following: 
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𝑀𝑖𝑛 ∑ 𝐼𝑟
2𝑅𝑟

{𝑁𝑅}

{𝑟=1}

                                                                              (3.19) 

𝑃{𝐺𝑖}   And  𝑄{𝐺𝑖} are the active and reactive power respectively, delivered by a unit of 

DG if it is located in the bar i. Note that not all bars have DG. DG for each unit must be 

assigned to a binary variable called𝑢𝑖. For simplicity, it is not considered that the DG 

injects or takes reactive power from the network, 𝑠𝑜 𝑄{𝑔𝑖}  =  0. 𝑃{𝐷𝐼} and 𝑄{𝐷𝐼} 

corresponds to power demands active and reactive bar i, respectively. nb is the number of 

bars, 𝜃{𝑖𝑘} is the angular opening between the bars and k; 𝑔{𝑖𝑘}, and 𝑏{𝑖𝑘} are the real and 

imaginary, respectively, of the nodal admittance matrix parts. Constraints (3.9) and (3.10) 

represent the balance equations and reactive power, respectively. Restrictions (3.11), 

(3.12) and (3.13) represent the equations of active power flow, reactive and apparent 

power, respectively. The restrictions (3.14), (3.15) and (3.16), consider the power limits 

injected by the DG, limits voltage network and load flow limits, respectively.  

The Constraint (3.17) indicates the maximum number of units DG to consider and 

restriction (3.18) indicates the binary nature of the variables 𝑢𝑖 1 if DG and 0 if no DG. 

The model described by equations (3.6) - (3.19) corresponds to a problem mixed integer 

nonlinear programming, highly dimensional and non-convex having multiple local 

optima, which justified its solution using the search methods illustrated in this thesis. 

On the other hand in (3.19) Where NR is the number of branches of the network, 𝐼𝑟 is the 

current through the branch r and 𝑅𝑟 is the resistance of the branch r. When installing DG 

network demand is reduced and this can be reflected in a reduction in branch currents and 

therefore, in system losses. However, over sizing of DG may have the opposite effect. 

The equality constraints are given by the equations of balance of active and reactive 

power, represented by equations (3.20) and (3.21) respectively. 

 

𝑃{𝐺𝑖} − 𝑃{𝐷𝑖} − 𝑃𝑖(𝑉, 𝜃) = 0                                                          (3.20) 

𝑄{𝐺𝑖} − 𝑄{𝐷𝑖} − 𝑄𝑖(𝑉, 𝜃) = 0                                                          (3.21) 



 

40 
 

 

𝑃{𝐺𝑖} and 𝑄{𝐺𝑖} are the active and reactive power, respectively, delivered by a unit of DG 

if it was located in the bar i. In this case the bars are all DG, so that for each DG unit of a 

binary variable that takes a value of 1 is assigned if the unit is located on the bar. 

Corresponding y=0 otherwise. For simplicity, it is not considered that the DG inject or 

take reactive power from the network, so 𝑄{𝐺𝑖} = 0. 𝑃{𝐷𝑖} and 𝑄{𝐷𝑖} correspond to the 

demands of active and reactive power at the bar i, respectively. Finally, 𝑃𝑖(𝑉, 𝜃)and 

𝑄𝑖(𝑉, 𝜃)correspond to net injections of active and reactive power at the bar i, 

respectively, calculated by the equations (3.22) and (3.23) respectively. 

𝑃𝑖𝑉, 𝜃 = 𝑉𝑖 ∑[𝑉𝑘 (𝑔𝑖𝑘𝑐𝑜𝑠( 𝜃𝑖𝑘 ) + 𝑏𝑖𝑘𝑠𝑖𝑛(𝜃𝑖𝑘)]

𝑛𝑏

𝑘=1

                                (3.22) 

𝑄𝑖𝑉, 𝜃 = 𝑉𝑖 ∑[𝑉𝑘 (𝑔𝑖𝑘𝑖𝑠𝑛( 𝜃𝑖𝑘  ) + 𝑏𝑖𝑘𝑐𝑜𝑠(𝜃𝑖𝑘)]

𝑛𝑏

𝑘=1

                               (3.23) 

Where nb is the number of bars, 𝜃𝑖𝑘 is the angular opening between the bars and k; 𝑔𝑖𝑘, 

and 𝑏𝑖𝑘are the real and imaginary, respectively, of the nodal admittance matrix parts. In 

the equality constraints they have also included the expressions describing the flow of 

active and reactive power on the lines, as shown in equations (3.24) and (3.25) 

respectively: 

𝑃{𝑖𝑘} = 𝑉2𝑖𝑔{𝑖𝑘}
− 𝑉𝑖𝑉𝑘𝑔{𝑖𝑘}

𝑐𝑜𝑠(𝜃{𝑖𝑘}) − 𝑉𝑖𝑉𝑘𝑏{𝑖𝑘}𝑠𝑖𝑛(𝜃{𝑖𝑘})                       (3.24) 

𝑄{𝑖𝑘} = −𝑉2𝑖𝑏{𝑖𝑘} − 𝑉𝑖𝑉𝑘𝑏{𝑖𝑘}𝑐𝑜𝑠(𝜃{𝑖𝑘}) − 𝑉𝑖𝑉𝑘𝑔{𝑖𝑘}
𝑠𝑖𝑛(𝜃{𝑖𝑘})                     (3.25) 

Finally, the magnitude of the power apparent can be expressed in terms of active and 

reactive power as shown in equation (3.26). 

𝑆{𝑖𝑘}
2 = 𝑃{𝑖𝑘}

2 + 𝑄{𝑖𝑘}
2                                                                (3.26) 
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The inequality constraints should consider the power limits injected by DG, limits of 

voltage on the network and load flow limits as shown in equations (3.27), (3.28) and 

(3.29) respectively. In this case superscripts min and max indicate the minimum and 

maximum, respectively. 

𝑃{𝐺𝑖}
{𝑚𝑖𝑛}

≤ 𝑃{𝐺𝑖} ≤ 𝑃{𝐺𝑖}
{𝑚𝑎𝑥}

                                                                  (3.27) 

𝑉𝑖
{𝑚𝑖𝑛}

≤ 𝑉𝑖 <= 𝑉𝑖
{𝑚𝑎𝑥}

                                                                 (3.28) 

∣ 𝑆{𝑖𝑘} ∣≤ 𝑆{𝑖𝑘}
{𝑚𝑎𝑥}

                                                                           (3.29) 

 

3.7 Methodology Structure  
 

To address the problem of optimal location and sizing of DG described in the previous 

section four techniques were used combinatorial optimization: Simulated Annealing, 

Variable Descending Search Environment, Genetic Algorithm and Hybrid Genetic 

Algorithm. A brief description of the technical solution adopted in this thesis is 

presented. Also this strategy implemented for optimal location of DG is a hybrid GA 

involving an ANN and Local Search. The following describes in detail the implemented 

methodology. 

 

3.8 Heuristic methods 

 
Since the early 1990's, development systems are based on current search techniques that 

have been developed. These heuristic methods simulate physical spectacles, creature's 

evolution, and creature's behavior. Many applications of these heuristic techniques to the 

distribution system optimization have been tried in the last 15 years. An essential idea of 

heuristic search is that of neighborhood search [3]. In the setting of distribution system 

problem, agreement assumes that a possible solution is specified by z, where the usual of 

all possible solutions is indicated by X, and the rate of solution x is indicated by c(z). For 
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each solution z has an connected set of neighbors, N(z) c z, called the neighborhood of z. 

Each solution z ' E N(z) can be extended directly from z by an action called "move", and z 

is supposed to move to z ' when such an act is performed.  

 

3.8.1 Simulated annealing (SA) 

 

 The SA or simulated annealing is based on emulation annealing steel and ceramics, a 

technique that involves heating and then slowly cooling the material to vary their 

physical properties. This procedure was introduced in [9]. In each iteration of the SA 

some neighbors of the current status is evaluated and probabilistically decide between 

making the transition to a new state or remain in the current state. If the neighbor solution 

enhances the value of the objective function is accepted with probability 1, otherwise the 

probability of accepting by the Metropolis criterion given by equation (3.30) where the 

parameter c corresponds to the temperature. 

𝑃𝑟𝑜𝑏(𝑎𝑐𝑐𝑒𝑝𝑡 �́�) = {

1                                      , 𝑓(�́�) < 𝑓(𝑥)

exp (−
𝑓(�́�) − 𝑓(𝑥)

𝑐
) , 𝑓(�́�) ≥ 𝑓(𝑥)

                                   (3.30)        

               

SA assesses unattractive solutions in the early stages, then as the temperature parameter 

is reduced, the search becomes more selective, lowering of declines in the objective 

function. The best solution will be accessed by the algorithm that gives the heuristic 

solution. 

3.8.2 Variable Search Environment Descending (VSED) 

 

Environment Variable Search (EVS) is a metaheuristic that changing neighborhood (also 

known as environment structure) in a local search is based. The EVS has different 

variations, receiving the name down, reduced, basic or general EVS. In this paper an 

extension of EVS calls as Variable Search Environment Descending (VSED), in which 

the current solution obtained from the change in a local search was implemented; as long 

as this one has found a better solution. The algorithm for VSED illustrated below [4]: 
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Initialization: Select the set of environments, structures 𝑁𝑘, 𝑘 =  1, … , 𝑘{𝑚𝑎𝑥} to be used 

in the descent. Find an initial solution x; 

Iterations: Repeat until no improvement is obtained, the following sequence: (1) 

Make𝑘 ← 1; and (2) Repeat until  =  𝑘𝑚𝑎𝑥 , the following: (a) Exploration of the 

environment: Find the best solution 𝑥′ 𝑜𝑓 𝑡ℎ𝑒 𝑘{𝑡ℎ} neighborhood of x(x^\prime \in N_k 

(x)); and (b) Move or not: If the obtained solution $x^\prime$ is better than x, do 

𝑥 ←  𝑥′ 𝑘 ← 1 ; otherwise do 𝑘 ←  𝑘 + 1 

In the study presented in this thesis, environments or neighborhoods they were defined as 

the size (increase or decrease the capacity of the DG) and location (DG move to a 

neighboring node). 

 

3.8.3 Genetic Algorithm (GA) 

 

Genetic algorithms are part of the evolutionary techniques can be used to solve 

optimization problems. This method is based on the concept of natural selection and 

survival of the fittest individual [10]. The general routine of a GA is to generate an initial 

population of random or pseudo-random. Each individual in the population is defined by 

a string of bits. In this case, the objective function to evaluate power flow it runs 

considering the location and sizing of the DG. With the results of flow rates and levels of 

voltage losses are calculated. For selecting a given tournament number of individuals 

made. The number of tournaments is equal to the size of the population. Recombination 

is made in one randomly selected point. The mutation is changing a bit (zero to one) 

randomly with a probability of occurrence given. Individuals generated in the process of 

recombination and mutation replace existing individuals if they are better than their 

predecessors. The maximum number of iterations or the maximum number of iterations 

without improvement of the objective function, two stopping criteria are considered. 

For the coding of the problem we chose a string bit of ones and zeros (chromosome that 

will be represented as gene in the genes set). The algorithm is coded to locate at most 5 

bars generators in the system. In the coding 6 binary numbers used to locate each unit in 
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bars in the DG system. This structure would allow encoding from 0-63; consequently, the 

numbers do not exist in the system as bars they corrected when evaluating the objective 

function. Table 3.2 illustrates the coding. In this case it indicates DG at nodes 1, 13, 9, 4 

and 2. 

Table  3.2: Coding Example 

 DG1 DG2 DG3 DG4 DG5 

BUS 1 13 9 4 2 

BINARY 

STRING  

000001 001101 001001 000100 000010 

 

To run the GA an initial population of n individuals are initially generated randomly, 

each with a similar to that presented in Table 2.3 For each structure of individuals of the 

initial population should be evaluated by the adaptation function in this case, the system 

losses. For this an ANN which will be explained in the next section it is used. From the 

initial population, and based on its adaptive function, it must select individuals who 

inherit their characteristics to the next generation. For the selection of these individuals a 

binary tournament was implemented. For the generation of new individuals recombines 

with the information from parents. Recombination is used in one randomly selected point 

in this case, as illustrated in Figure 3.3. After the recombination process, individuals pass 

local search stage. 
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Figure 3. 3: Recombination example 

 

3.8.4 Hybrid Genetic Algorithm (HGA) 

Hybrid methods seek to combine the advantages of two or more metaheuristics for high 

quality solutions. The most common hybrid methods combine the population methods 

(Genetic Algorithms, algorithms based on ant colony, algorithms based on bee colony) 

with local search methods (Simulated Annealing, Variable Search Environment) or exact 

methods (linear programming, nonlinear) with heuristic methods. This paper presents a 

method population listed in (GA) combined with a local search method (VSED) was 

implemented. The flowchart of the implemented algorithm is illustrated in Fig.3.4. HGA 

structure retains essentially the same GA described in the previous section; however, 

after mutation and before replacing the individuals of the next generation one is 

performed in order to find better quality individuals in each generation. As already 

described in the GA, only included in the new generation, those subjects exhibiting 

improvement in the objective function. 
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Figure 3. 4: Diagram of HGA Algorithm 

 

3.8.5 Local Search 

 

Local Search evaluates possible solutions within a predefined neighborhood and choose 

the best solution of the neighborhood. For the selected system, for each iteration of a GA 

neighborhood it was generated by changing a bit of the solution in each of the positions 

of the chromosome. The main advantage of the local search is to find solutions of high 

quality in the first iteration of the algorithm, which favors its convergence. In order to 

calculate active power losses in the system which this paper aims to locate distributed 

generation. Hence, ANN is trained, validated and tested. Through the ANN target 

function that is to minimize system. In this case the neural network allows the system to 

estimate losses for each of the individuals in the population, avoiding the load flow 

calculation by conventional methods. 
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Chapter Four: The Adopted Methods Extracted Results 

Behavior and Analysis 

4.1 Evaluate the Performance 

The AG two SD was tested with different topologies: a distribution network with 33 kV 

of 12.66 bars (33-B system))and a section SD company Pacific Gas and Electric in San 

Francisco, United States of 12.66 kV to 69 bar (System 69-B). The first network consists 

of a source, 31 nodes or load bars, sections 31 and feeder lines 5 binding lines. The 

second test comprises a source 68 load nodes, 68 sections of feeder lines, and lines 5 

binding node. 

In the network, each line segment is associated with a switch. On each of these 

optimization method was used to reconfigure the system with minimal Losses,  

Maintaining the following conditions: 

 The network configuration must be radial to the protections operate properly. 

 All sections of the feeders must be energized and their distribution transformers 

connected. 

 There should be overhead in any part of the installation. 
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Figure 4. 1: Nodes Network 

As a power flow traditional methods for solving power flow study the problem of 

reconfiguration of applying simplified calculations networks. Such approaches despise 

terms while not excessively affect the final results regarding calculations employing 

complete formulas, become important in the case of large networks. Therefore, the 

computational time involved in applying an accurate method is excessive for use in real 

time. 

From the background studied, different methodologies for the calculation of power flow 

is analyzed and found that the most appropriate, since they take into account all the 

powers involved in each line, in the loads and their corresponding power losses. The 

power flow equations adopted are: 
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𝑃𝑖+1 = 𝑃𝑖 − 𝑟𝑖
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2 + 𝑄𝑖

2

𝑉𝑖
2 − 𝑃𝑙𝑖+1                                                              (4.1)  

𝑄𝑖+1 = 𝑄𝑖 − 𝑟𝑖

𝑃𝑖
2 + 𝑄𝑖

2

𝑉𝑖
2 − 𝑄𝑙𝑖+1                                                               (4.2) 
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2 + 𝑥𝑖

2) = 𝑄𝑖 − 𝑟𝑖

𝑃𝑖
2 + 𝑄𝑖

2

𝑉𝑖
2                             (4.3) 

 

The procedure for the calculation is: 

1- Voltage values are set in all nodes only for the first run in 1 pu.  

2- The powers of all branches that make up the SD are calculated.  

3- Voltage values are updated on all nodes.  

4- Returns to Step 2 until the tolerance criterion is reached. 

 

Once you reached the last point SD losses are calculated by adding the power losses that 

occur in each branch, according to the expression: 

∑ 𝑅{𝑖𝑗+1}

(𝑃𝑖
2 + 𝑄𝑖

2)

∣ 𝑉𝑖 ∣2

𝑛−1

𝑖=0

                                                                           (4.4) 

 

After this process the output deliver the value of fitness (loss) of the individual under 

evaluation. This value is unique for each configuration, and identifies others, is a measure 

of how good this setting to optimize the problem. 

For modeling and coding Each SD is modeled with conductor sections (branches or lines) 

and constant power load on the nodes or bars. Each branch in turn is modeled with 

positive sequence impedance, while charges are the models with active and reactive 
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demands constant. The balanced three-phase system is assumed, so is modeled by phase 

and power network must be configured radially. 

An alternative encoding of SD as offered in Hong trees and HO (2003), with the Prufer 

number. This method generates solutions that are not feasible to meet as restricting radial 

nature, so it is necessary to develop an extra algorithm to ensure that each solution 

provided meets the above restriction. Other shortcomings of this coding is little similarity 

between the edges of two trees with similar encodings Prufer and the difficulty of 

adapting the method when the graph of origin is not full. Furthermore, the offspring of 

these are not necessarily the check, so it is again necessary to apply this extra verification 

algorithm to the product of crossbreeding and / or mutation offspring. In other words, the 

extra verification algorithm is applied radiality solutions both "parent" solutions as 

"daughters" so that the computational time increases proportionally to the number of 

individuals of each population components or generation. 

Implementing this method for SD under study, the extra verification algorithm radiality 

can be expressed as an equivalent matrix that includes all possible combinations of 

connectivity between nodes that make up the SD under study. Said matrix is introduced 

into the evaluation function, which is responsible for returning the loss value 

corresponding to a particular channel power. This matrix effectively saves the elaboration 

of this algorithm since when applied once, ensures that any combination of switches to 

open entering the evaluation function responds to a radial SD. For making the algorithm 

guidelines provided by Goswami and Basu (1992) and Li et al were followed. (2002). 

With respect to the topology of the network and the procedure for defining the meshes 

are generated in each SD, the most successful methods as regards simplicity, is provided 

by Ah King et al. (2003). This is the process with some modifications applied in this 

work. Thus, for the system 33-B arise 5 open switches. If these switches are closed loops 

or meshes 5, each composed of branches that are numbered starting from the origin or 

source node are formed. The node receiving the current flow indicates the number of the 

branch, so that it is always contemplated that the original configuration is an 

option. Mesh thus defined considers the initiation of a switch and only one mesh. 
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Thus it is formed a chain where each element represents a position in the expression of 

the corresponding mesh, which indicates the number of the switch to open. Thus, any 

combination that yields responds to a radial configuration. 

CHAIN: {[Mesh 1] [Mesh 2] [Mesh 3] [Mesh 4] [Mesh 5]} 

For example, if the GA indicates the result of the chain {3 5 1 2 4} means that the mesh 

opening switch 1 is one that identification is in position 3; the mesh 2 is that switch 

whose identification is in position number 5; and so on. 

The mesh thus defined is its length (the number of branches that make up) is not the same 

for each. This length determines the upper limit of each variable (gene) is input data for 

use of GA (the lower limit is 0). 

From chain yielding the algorithm, the switches are determined to open and subjected to 

calculation of power flow. The goal then is to obtain a configuration such that the 

reduced value of losses is between 6% and 15%, relative to the initial configuration. 

Optimal parameters simulation Defined parameters inherent topology and coding 

variables (chain length, upper and lower limits of each variable and power flow), proceed 

to determine own GA: population, number of generations, variable type input types and 

ranges of selection, crossover and mutation. For the purpose of finding those who give 

the best performance of the algorithm development, the behavior of these parameters was 

analyzed. 

For the right choice of selection method (Roulette, Tournament, Stochastic Uniform, 

Uniform, Remaider) Several runs were made for each option and the time taken to reach 

the optimum. The results are shown in table3 . Analysis it appears that the uniform 

selection is discarded for having a 10% chance of finding the optimal solution of total 

runs performed. 

It was found that the choice of the selection method does not affect too much on the total 

calculation time as they differ on average from each other in a negligible 

value. Therefore, for 33-B system selection for the tournament it was used because the 
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variables are scarce and therefore the search space is reduced. In addition the time 

obtained can be further reduced by changing the number of individuals participating in 

the tournament. 

For the most appropriate choice of mating, several runs (performed  table4.1), being both 

spread type, a point and two cutting points present in times better performance, but show 

greater efficiency facing each other . For this work we chose to use a cross at two points, 

as in the case of not finding the nearest optimal solution to it you'll find at 10.625 

sec. compared to 20.015 sec. disseminated type. As for the fraction of crossover, we 

started from individuals not reproduced to generate new populations (0% of the 

population) to new sets generated with the entire board (100% of the population). That is 

from 0 to 1, steps of 0.05 

Table  4.1: Time to reach the optimum [sec.]. Type Selection (indicated with an asterisk values * 

"belong to different optimal configurations 

 

 Types Selection 

 

No.  Roulette Tournament Stochastic 

uniform 

Remainder Uniform 

1 10,407 13,156 

 

9,797 18,078 * 14,078 

2 11,078 8,172 

 

16,516 11,047 10,703 

3 16,422 10,016 

 

* 7,547 19172 * 8,406 

4 17,469 10,922 

 

9,938 15,328 * 10,765 

5 11,484 8,312 

 

10,344 16156 * 11,891 

6 8,031 7,813 16,469 12,954 * 13,984 
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) 

 

 

 

 

 

 

 

 

 

 Table  4.2: Time to reach the optimum [sec.]. Crossover Type (The values indicated with an asterisk 

"*" belong to different optimal configurations) 

 

7 11,437 14,546 

 

8,375 10,234 * 12,765 

8 9,187 * 10,625 

 

13,797 10,687 * 11,875 

9 14,735 11,406 

 

10,969 9,531 * 19,515 

10 12,281 8,719 

 

11,156 12,235 * 12,656 

 

Average [sec.] 

 

 

12,253 

 

* 10,625 

 10,340 

 

7,547 11,929 * 

 

13,542 

 

* 12,881 10,703 

                Crossover types  
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No.  Disseminated A point Two 

points 

Intermediary heuristics 

1 * 20,015 8,672 

 

13,156 9,302 * 9,891 

2 9,672 * 11,422 

 

8,172 * 9,176 9,609 

3 9,406 * 7,906 

 

10,016 12,156 18,340 

4 15719 8,188 

 

10,922 10,671 12,336 

5 8,547 9,422 

 

8,312 * 9,141 13,708 

6 11,078 14,532 

 

7,813 * 9,883 15,746 

7 14,281 8,578 

 

14,546 * 9,401 10,151 

8 9,109 9,500 

 

* 10,625 * 10,226 11,352 

9 9,969 9,531 

 

11,406 12,259 10,433 

10 9,422 7,812 

 

8,719 * 8,346 * 10,123 

 

Average 

 

* 20,015 10,800 

 

9,529 * 

 

* 10,625 

10,340 

 

11,097 

 

12,709 
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The results are dumped, which are represented three loss values: a) for the optimal 

solution is 134.7321 kW; b) the following value losses for setting opening closer to the 

optimal solution, which is 134.9930 kW switches; c) the value of a configuration that 

is not near the optimum and possibly a local optimum, 137.5293 kW. The ordinate 

represents the number of times it is achieved that value losses in 5 runs and the abscissa 

represent the fraction of crossbreeding. 

From the graph it can be deduced that for fractions less than 0.7 is crossing (for five runs) 

always optimal, and above 0.9 values, the number of times that the optimal solution is 

reached decays to the once they appear close to optimal solutions. It is clear that to a 

fraction of less than or equal to 0.7 crossbreeding computing time involved for such a 

solution is very important, while for values greater than 0.7, the time it takes to obtain an 

optimal solution GA, or very close to the optimum, it is significantly lower. Moreover, 

for the fraction of crossover value equal to 1, the solution is found very quickly, but none 

of the runs the optimal solution is reached. It can also be noted that the values determined 

by the range between 0.8 and 0.95, the optimal solution search time is acceptable. 

This analysis concludes that there must be a compromise in the choice of the appropriate 

fraction crossing both to obtain a very good solution to reduce the computational time to 

an acceptable value. Therefore, the range found [0.7; 0.9] to the taken to the operation of 

the GA, a value of crosstalk fraction equal to 0.85 was taken. 

Also it is taken into account the type of Seedling ( crossover ), where again several runs 

varying type (spread, one point, two points, intermediate, Heuristic) were performed. The 

time employed was determined to achieve optimal ( table 4.2). 

The analysis shows that the best performance of the show times the spread type, one 

point and two point. Of the three, there is a method that stands out above the other with 

[Sec.] 9,664 

 

* 9,362 * 10,007 
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respect to saving computation time, even though the method for point is that, on average, 

has more advantage, and shows a 90% probability find the best results. Both options 

(spread and colon) bring saddled the same results, but for the purposes of this paper type 

two points will be used, as in the case of not being the, the closest to this optimal solution 

it will be in half time (10.625 sec.) if the spread is chosen method (20.015 sec.). 

As for the type and range Mutation available options are two: Uniform and Gaussian. In 

this case, the choice fell on the uniform, since the Gaussian mutation rate decreases as 

they move generations, so that some regions of the search space cease to be explored, 

eliminating potential solutions to solve the problem. On the other hand, the Uniform 

constant mutation. With respect to the mutation rate is noteworthy that this should be 

high enough to promote a sufficient amount of diversity in the population without 

destroying individuals. 

The configuration obtained in the first run of the algorithm indicated the following 

switches open: 7, 9, 14, 32 and 37 Fig3.6, being the optimum. Therefore, there is no other 

configuration that can decrease the value of the power loss below 134.7321 kW. 

Furthermore, stress profiles were analyzed and found to be the lowest value was 0.9424 

pu (31 bar), which implies a voltage drop across the bar 6%, which is less than the 

maximum value allowed by national law: 8% in medium voltage. In other countries, this 

value decreases to 5%. A new run was made taking into account this restriction, finding 

that there is no configuration having a bar with a drop level less than or equal to this 

voltage value. The configuration that approaches the performance of this restriction 

corresponds to the opening of the switches 7, 9, 14, 28 and 32 with a value of 134.9930 

kW losses since the bar with less tension accuses a voltage drop 5.76% (31 bar). 

Similarly, the same analysis for the system bus 34 was performed, yielding the result 

shown in table 4.3. In this case, the network topology determined by the opening of 

switches 58-61-72-14-74, satisfies the condition of optimal configuration and also with 

the voltage drop (-ΔV) maximum 5% and 8% imposed as restrictions. The hypothesis of 
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reduction of losses has been satisfied favorably as 51.3% reached exceeds the range of 

6% to 15% proposed aim. 

 

Figure 4. 2:Network with open Nodes 

 

Table 4.3: Resultant Configuration for 34-Bus 

configurations Loss [kW] Reduction 

losses% Initial 70-71-72-73-74 188.2002 

optimal 58-61-72-14-74 91.6489 51.3 

Restriction -ΔV = 8% 58-61-72-14-74 91.6489 51.3 

Restriction -ΔV = 5% 58-61-72-14-74 91.6489 51.3 

Another nodes structure in order to validate the proposed methodology is a 34 bar system 

illustrated in Figure 4.3. This system is similar in topology to IEEE system 34 bar, but a 
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single-phase version. The load distribution on the nodes shown in Figure 4.4. It can be 

seen that much of the demand is located far from the substation. For simplicity we 

assume that all nodes are eligible for DG, but the  number of units in DG has been limited 

to 5. For the problem under study was defined as a maximum number restriction of DG 

units by bar with a capacity of 1 MW. Table 6 presented the summarizes of the 

parameters used in the GA. 

 

Figure 4. 3: 34 bar testing system 

 

 

Figure 4. 4:  Distribution of demand in the tested network 
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Table 4.4: GA parameters 

 

To assess the loss a neural network feedforward that structured by two layers with a layer 

of hidden sigmoid function and an output layer with a linear function. The hidden layer 

consists of 20 neurons and the output layer with just one neuron. The network was trained 

with the Backpropagation strategy, a Learning probability of 0.01.  

To train ANN consolidates a database of 2280 cases. It was found that once trained, the 

ANN delivery lost values with similar amount to those obtained with conventional flow 

program load [10] network. To control infeasible solutions, ANN solutions penalizes 

high losses looking to discard the GA naturally to the individual, preventing appears on 

subsequent iterations. Fig 4.5 shows a sample database template used to train the ANN . 

70% of the samples were selected for use it in training, 15% for validation and the rest for 

the ANN test. This allows the network do not just memorize the proposed values, but also 

to sense and deliver securities under the inference of intermediate values. Training results 

with the selected network shown, in Table 4.5. Mean square error (MSE) is the difference 

average of the square in the results and the objectives of the ANN, lower values are better 

and a zero means no error. The R (Regression R) is the correlation between the results 

and objectives. A value of R = 1 indicates a close relationship, the relationship 0 means 

random. 

Parameter Value 

Population Size 20 

Max generation 40 

Number of Cutting Points  1 

Crossover Probability  0.95 
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Figure 4. 5: Sample template for evaluation of cases 

 

 

Table 4.5: objective function 

 Samples MSE R 

Training  1596 2.32981E-05 9.90097E-01 

Validation  342 2.62768E-05 9.90233E-01 

Proof 342 1.98193E-05 9.92804E-01 

 

Once the ANN train to calculate the objective function, tests were performed to compare 

the results, calculating the losses through a conventional power flow. Table 4.6 

summarizes the computation times for each evaluation is presented. For this simulation 

used a Computer Intel Core i3, 2.53 GHz with 4 GB of RAM. In this case FO 

corresponds to the objective function using a conventional load flow and FO-ANN 

corresponds to the objective function calculated using ANN. 

Table 4.6: GA computation time and system 
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losses 

 Time(s) Losses  (KW) Decrease % 

FO 1.381,92 656,25 20,68 

FO-ANN 3.26,51 666,86 19,5 

 

It can be seen that the ANN provides a fairly good solution to the real solution, with a 

deviation of 1.18%; with the additional advantage that once trained, you can be estimated 

system losses in less time than conventional load flow. In this system the losses for the 

base case without DG amounted to 827.41 kW. By incorporating DG losses decreased by 

approximately 20% (see Table 4.6). The best solution obtained with the GA is illustrated 

in Figure 4.6. In Figure 4.7 the voltage profile illustrated network with and without DG. 

It can be seen that the DG and contribute to reducing losses, substantially improves the 

voltage profile in the network. 

 

Figure 4. 6: Best configuration found with the proposed methodology 
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Figure 4. 7: Stresses profile with and without DG. 

Another distribution for the demands represented in Fig 4.8 in the aim to measure the 

algorithms stability. 

 

Figure 4. 8: 2nd Demand Distribution 
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With another test as the following information with encoding a chain of 4 binary bits 

representing each used generator. The first bit symbolizes the formal of the generator 

(there generator 1, the generator does not exist 0); the remaining 4 bits represent the 

power level of the generator. For example, 1000 means a string generator minimum 

capacity (0.25 MW), while the chain 1111 represents a generator with maximum capacity 

(2.0 MW).. Table 4.7 illustrated encoding solution candidates. Equal to 4  nb, where nb is 

the number of binary string bar system is used. According to the adopted coding 

candidate solution shown in Table 4.8 no DG in the bars 1, 2, 4 and nb-1; while the bar 

has nb 3 and generators with a capacity of 1.0 and 2.0 MW, respectively. 

 

 

 

 

 

 

Table 4.7: Codification of DG size 

Code Size(MW) Code Size(MW) 

1000 0.25 1100 1.25 

1001 0.50 1101 1.50 

1010 0.75 1110 1.75 
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1011 1.00 1111 2.00 

 

Table 4.8: Solution candidates encoding 

Bus1 Bus2 Bus3 Bus4 …. Bus nb-1 Bus nb 

0100 0011 1011 0111 …… 0011 1111 

 

Before starting the optimization process must assign weighting factors to the two 

objectives under study (IRPL and IMPT) in order to give greater or lesser importance in 

the search for solutions. This requires a diagnosis without DG base case. This diagnosis is 

made by a load flow calculation with and without DG. The load flow is performed by 

software Mathpower [15] DG modeling as bars where you can inject active power. In 

Fig. 4.9 and Fig. 4.10, the voltage profile and line losses, respectively, with and without 

DG illustrated.  

To illustrate the case with 4 units of DG, each 1 MW located in the bars 5, 10, 15 and 20. 

In Fig. 4.11 are assumed to be noted that even adjusting the tension in the substation at 

1.1 pu, when DG are not tensions the last bars are below 0.9 pu featuring voltage 

regulation (percentage difference between the maximum and minimum system voltages) 

exceeds 20%. However, when DG is introduced to the system stresses increase, 

especially in remote substation bus bar, causing the voltage regulation in these rods is 

17.5%.  
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Figure 4. 9: Voltage profile system of 34 bars without DG 

 

Figure 4. 10: Line losses of 34 bar system with and without DG 
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On the other hand, total losses without DG amounted to 959.5 kW systems and DG are 

555.8 kW. When calculating indices Income tax and IP by the expressions (2) and (5) 

respectively is obtained IRPL = 41.8848 and IMPT = 1.5135.  

These indices are calculated for different solution candidates (location and DG sizing) 

randomly generated resulting in the data given in Table 4.9. It can be seen that IRPL is 

much higher than IMPT in all simulations. This is because the percentage of loss 

reduction is more significant than the improvement in voltage profile. On average, IRPL 

is about 20 times greater than IMPT as seen in the fourth column of Table 11. If the 

indexes are optimized without using weighting factors that favor solutions would have to 

reducing losses on improving tensions. In this case, weighting factors w1 =  0.05 and w2 

= 0.95 in order to match the orders of magnitude of the indices IMPT and IRPL give 

similar importance to both objectives in the optimization process are selected. However, 

the manager of the planning system can select other values to give more importance to a 

particular target. 

 

 

Table 4.9: Values of IRPL and IMPT for candidates with randomly generated solutions 

Simulation Trial  IRPL IMPT IRPL/IMPT 

1 41,884 1,513 27,682 

2 50,127 2,806 17,864 

3 43,297 2,124 20,385 

4 57,487 2,478 23,199 

5 34,329 1,878 18,280 
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6 30,287 1,079 26,070 

7 44,238 2,567 17,233 

8 30,234 1,969 15,355 

 

To start the SA a base solution that meets the criterion of maximum number of generators 

is generated. From this solution neighboring solutions that will be accepted according to 

the criteria stated in equation 19 are explored. This means that as early in the process 

worsening of the objective function is possible, but as the process evolves the probability 

of accepting worse quality solutions is restricted. Thus, the principle of seeking diversity 

is privileged and at the end of it intensifies the search for better solutions. After 

performing several runs SA algorithm parameters, initial and final temperature was 

calibrated in 3.0 and 0.5, respectively, and at each iteration the temperature is reduced by 

0.01. In Tab 4.10 the best solution found (after 190 iterations) shown in Fig.4.11  and the 

convergence of the algorithm illustrated SA. In this case the time calculation was 1.2 

minutes. 

Table 4.10: Best result using SA 
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Figure 4. 11: Convergence process in SA 

 

While the results using VSED to make the environment VSED structures we defined: the 

size and location of DG. Given a base solution structures of individuals seeking to better 

environment, where explored by following the instructions as described in the 

Methodology section. The search continues until it passes a certain number of iterations 

or until no improvement is meets a number of iterations previously established. In Table 
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V, the best found with VSED illustrated. Here 22 iterations were performed by evaluating 

structure 8 environment, individuals with a computation time of 2.1 minutes. 

Table 4. 11: Best result using VSED 

 

Another results for GA is extracted for this experiment as this solution used as coding 

chromosome structure illustrated in Table 4.11. Initially an initial population of possible 

solutions are generated from which are new solutions of better quality by implementing 

selection, recombination and mutation described in the methodology section. To calibrate 

the parameters of the various tests were performed GA is modifying the initial population 

size and mutation rates and recombination.  

It was noted that few individual initial populations of poor quality responses were 

obtained. By increasing the number of individuals in the initial population quality 

improvement solutions, but the computing time increases. The best solution was found 

with a population of 100 individuals and mutation and recombination rates of 10\% each. 

The computation time to find the best solution was 2.9 minutes after 90 iterations. In 

Table 4.14, the best result is shown. In Fig. 4.12, the process of convergence of GA 

illustrated for different tests. It can be seen that even though the initial populations are of 

different quality, the GA solutions are similar quality.  

 

 

Table 4. 12: Best result using GA 



 

70 
 

 

 

 

Figure 4. 12: Process of convergence for 3 different GA tests 

 

 

 

As mentioned above the HGA implemented combines GA described in the previous 

section with VSED. In this case, after applying the traditional operators GA and prior to 

the population replacement is performed to increase the quality of VSED individuals in 
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each iteration. HGA for the same parameters that were calibrated with traditional GA 

were used. In Table VII the best solution found is presented. It was observed for all tests 

that the computational time is considerably greater than that required by the other 

algorithms implemented; however, the quality of response is better. The best answer is 

found after only 6 iterations a computation time of 12.6 minutes. 

Table 4. 13: Best result using HGA 

 

 

4.2 Results Comparison 

 

It was observed that the best result was obtained by the HGA; however, this is the 

method that it takes longer time to find a high quality solution. Furthermore, the faster the 

algorithm in converges was the Simulated Annealing. Although, this methodology is 

faster, the solutions obtained with the other methodologies were of better quality. The 

VSED require fewer iterations to converge more than SA, but the computing time per 

iteration is greater, and to be evaluated by iteration, two structures of the neighborhood. 

Regarding GA it was found that the HGA is to find high quality solutions must be used 

(100 individuals) large initial populations. In Fig. 4.13 compares the computation time 

for each of the methods used, where the HGA stands. The best solution found (see table 

3.13) it was observed a reduction in losses of 80.2% compared to the base case without 

DG. 
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Figure 4. 13: Search time comparison. 
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Chapter Five:  Conclusions and Future Works 

 

5.1 Conclusions 
 

This chapter summarizes the most relevant results achieved in this Doctoral thesis, 

indicating the contributions made in the design and planning of distribution networks. 

The advantage of the hybrid algorithms lies in the fact that they are able to offer a 

potential increase in performance compared to multistart methodsthrough identifying and 

exploiting global features the user is not aware of beforehand, but if such features are not 

available, they still offer superior performance to pure EA methods through the more 

efficient local search. 

In addition, it indicates the future research work to be carried out, in which will take as a 

starting point those that have been expressed in this document. 

The following are the results and contributions of this Doctoral Thesis: 

 The optimal design of electric power distribution systems through the application 

of optimization Algorithms. For this purpose two objectives have been 

considered:  Overall economic costs of the distribution and reliability system, 

subject to the technical restrictions. The location and size have been occupied into 

the optimization of lines and substations, as well as technical aspects related to the 

calculation of stresses. 

 

 For the optimal design of the distribution systems has studied with the Influence 

of the parameters of the number of solutions that forms the external population in 

the optimal design solutions obtained in the optimization process. 

 

 Multiple numbers of optimization techniques have been applied in order to reach 

optimum design in distribution systems (HGA, GA, VSED, LS, ANN). 
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 The results has been shown that the using of optimization methods enhance the 

behavior of designing DG. 

In this thesis, various algorithms were compared to obtain the optimum location and 

sizing of DG in distribution systems: SA, VSED, GA and HGA. The implemented 

methodologies based on these optimization algorithms were all successful in finding high 

quality solutions. In the trialled application tests the best results were obtained using 

HGA, which combines genetic algorithm and VSED. It was observed that the optimum 

percentage of DG penetration of the test system varied between 6 and 7 MW installed at 

the start bar and the end bar for substantial improvement using DG units of 1-2 MW. In 

addition, the optimum location and sizing for DG allowed a substantial improvement of 

the voltage profile of the network and reduced losses of 80.2 per cent in the test system. 

Regarding computation times, the fastest method was SA; however VSED and the HGA 

showed better results. 

 

Therefore, in this research, it was developed a planning method based on evolutionary 

algorithms that is able to resolve single-objective and multi-objective distribution system 

expansion planning problems. 

 

5.2 Future works 

 
The future research works that are proposed to develop are: 

 Apply new techniques of evolutionary computation, such as strategies which are 

being considered for future investigation due to the good results that have been 

obtained in by applying it in various fields of industrial design. 

 

 Consider the optimal design of integrated electrical networks, i.e. including 

several voltage levels, primary networks and secondary networks, this being an 

extremely complex problem which needs to be tackled by modifying the 

developed tools. 
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 The application of a Coefficient-evolutionary algorithm. These Coefficient-

evolutionary algorithms allow us to concentrate the search for solutions in sub-

regions and use a sub-population in each of them, allowing that the method of 

finding solutions is more efficient from a point of view Computational view. 

 Distributed generation. Historically, growth in electric load demand has been 

served by adding new large central station generating units, building transmission 

lines and extending traditional distribution systems. An alternative approach 

under consideration by utilities is to satisfy demand by investing in distributed 

generation (DO). DO can relieve capacity constraints on the generation, 

transmission and distribution systems and obviate the need to build new facilities. 

One way to evaluate a DO option is by determining the reduction in variable costs 

in the system and the value of deferring capacity investments. The application of 

multi-objective evolutionary algorithms in this case could prove to be fruitful. 
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Generation DG units. The possibility and effectiveness of the proposed algorithm for optimal 
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variable neighbourhood search. The HGA algorithm was found to produce the best solution at a cost 

of longer processing time. 
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1. Introduction 

In the past decade increased distributed generation (DG) has led to profound changes in 

electricity distribution networks. Several factors have driven DG (defined as production of electricity 

close to consumption centers) including new technological advances in the production of electricity 

on a small scale, a preference for the use of renewable resources, difficulties in network expansion 

and a growing interest in incorporating demand and active agents in the electricity markets [8]. DG 

can contribute to reducing losses, improving voltage profile, improving reliability and postponing 

investments [7]. However, as noted in [5], harnessing the benefits of DG depends largely on its 

location, sizing and network features. That is why in the past decade's alternative methodologies for 

proper location and sizing have been explored. 

In [6] a literature review of techniques used for the location and optimal sizing of DG in 

distribution networks is presented. The authors classify the techniques according to analytical 

methods, metaheuristics and mathematical programming. It should be noted that for the problem 

under study metaheuristics techniques have significant advantages over classical mathematical 

programming because of the nonlinear and non-convex relationships in the location and sizing of DG. 

On the other hand, the main weakness of metaheuristics is that they do not guarantee obtaining a 

global optimum. However, metaheuristics may provide a solution or set of high quality solutions. 

Another advantage that lies with metaheuristics techniques is that they allow the use of more detailed 

models of network operation than the analytical model. To apply mathematical programming 

techniques to the problem of optimal location and sizing of DG, it is necessary to use linearization or 

approximations to the equations in the balance of power. 
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Metaheuristic optimization techniques have been widely used in the location and design of the 

DG. These techniques include genetic algorithms, tabu search and colonies of particles. In [1] a model 

of multi-objective optimization was presented to determine the location and optimal sizing of DG 

using the technique of simulated annealing. The elements were modelled power losses, the number of 

generators, the voltage profile and power injected by the DG. The method sought a solution that 

would improve the voltage profile and reduce losses to the minimum DG units in the system. In [13] 

the authors presented a population-based metaheuristic based on the parasitic reproductive 

behaviour of some species of cuckoos (cuckoo search algorithm) for the location and optimal sizing of 

DG. The advantage of this algorithm was that it required a few parameters to calibrate. The aim of the 

study was the reduction of active power losses. 

Hybrid methods combine two or more search techniques in order to exploit their potential and 

compensate for their deficiencies. The most common methods combine population hybrid techniques 

with methods that enhance some kind of local search or alternatively, heuristic methods with classical 

mathematical programming. In [3] a combination of simulated annealing and genetic algorithms for 

optimal location of DG comes with network distribution. The objective was to minimize losses. This 

shows that the combination of GA with simulated annealing was more effective than using only GA. 

In [11]  a method to  maximize the benefit to network operators and owners of distributed generation 

in a deregulated electricity market hybrid algorithm was presented. As well as simultaneously 

optimizing the benefits to the distribution company and to the owner of the DG their method also 

considered the uncertainty of demand and energy prices [20]. 

In [13] a hybrid algorithm was presented that improved stress profiles and reduced emissions 

using a particles’ gravitational colony search to determine the proper location and sizing of the DG 

that minimized loss. The aim of this article is to contribute to the discussion on the effectiveness of 

heuristic and metaheuristic methods for optimal dimensioning and location of DG. Four different 

techniques were implemented and compared, namely  i) simulated annealing, ii) variable search 

environment, iii) genetic algorithm and iv) a hybrid method that combines variable search 

environment with a genetic algorithm. To test the efficiency of these methods, they were applied to 

various tests in a distribution system (34 bars) that is widely used in the technical literature. 

2. Background Mathematical Formulation 

The objective function of the proposed problem is to improve the voltage profile and reduce 

system losses. To this end the indexes defined in [2] described below are taken. The rate of voltage 

profile, denoted as IPT, is defined by equation (1). This index takes into account the voltage and the 

bars and load expressed as Power of the system as a load factor. This makes it more important to 

maintain proper high-voltage  in bars under higher demand. 

𝐼𝑃𝑇 = ∑ = 𝑉𝑖𝐿𝑖

𝑁

{𝑖=1}

 
 

(1) 

Variables: 𝑉𝑖: High-voltage in the bar i (p.u); 𝐿𝑖: Load in bar i (p.u); and N: Total number of bars. 

The rate of improvement of voltage profile, denoted as IMPT is given by the equation (2). 

𝐼𝑀𝑃𝑇 =
𝐼𝑃𝑇{𝑤𝐷𝐺} − 𝐼𝑃𝑇{𝑤𝑜𝐷𝐺}

𝐼𝑃𝑇{𝑤𝑜𝐷𝐺}
 𝑥 100   (2) 

Variables: 𝐼𝑃𝑇{𝑤𝐷𝐺} is the index of the system voltage profile with DG (p.u.) and 𝐼𝑃𝑇{𝑤𝑜𝐷𝐺} is the 

profile index stress the system without DG (p.u.). Note that the IMPT denotes the percentage 

improvement in IPT with DG. The second objective is to reduce active losses and compare losses with 

the system with and without DG, given by the equation in (3). 
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𝐼𝑃𝐿{𝑤𝐷𝐺} = ∑ 𝐼{𝐾,𝑤𝐷𝐺} 
2

𝑁

{𝐾=1}

𝑅𝑘 ∗ 𝐷𝑘 +  𝐿𝐿{𝑤𝐷𝐺}               (3) 

 

A similar expression can reflect woDG conditions. The equation variables are described as follows: 

𝐼𝑃𝑇{𝑤𝐷𝐺}: Index line losses with DG. 

𝑅𝑘: Resistance in line K (p.u / km) 

𝐷𝑘: Length in line K (km).  

𝐼{K,𝑤𝐷𝐺}
2 : Current line K with DG (p.u). 

𝐿𝐿{𝑤𝐷𝐺}: Index line losses with DG. 

𝐿𝐿{𝑤𝑜𝐷𝐺}: Index line losses without DG. 

𝐼{𝐾,𝑤𝑜𝐷𝐺}
2 : Online K stream without DG (p.u). 

 

While the percentage reduction in losses in the line is income tax is given by equation (4): 

𝐼𝑅𝑃𝐿 =
𝐼𝑃𝐿{𝑤𝐷𝐺} − 𝐼𝑃𝐿{𝑤𝑜𝐷𝐺}

𝐼𝑃𝐿{𝑤𝑜𝐷𝐺}
 𝑥 100  (4) 

The objective function is to minimize the reduction rates of losses and to improve the voltage 

profile. In this case you should be using weighting factors 𝑊1 and 𝑊2 dimensions for each rate in 

order to assess their importance in the optimization process. To be noted, for maximizing  the voltage 

profile can be achieved by equation (2) and set by the objective function from an equation (1). For 

minimizing the voltage profile can be readily available from the equation (4) and it can be by the 

objective function from an equation (3). Both the voltage profile cases the objective function can be 

determined from equation (1) for equation (3). 

The optimization problem to solve is described by expressions form (5) to (17). 

𝑓(𝑥) = 𝑊1𝐼𝑅𝑃𝐿 + 𝑊2𝐼𝑀𝑃𝑇   (5) 

Where the subject of the previous equation is: 
0 ≤ 𝑊𝑚 ≤ 1;  𝑚 = 1,2  (6) 

∑ 𝑊𝑚

2

{𝑚=1}

 = 1     (7) 

𝑢𝑖𝑃𝐺𝑖 − 𝑃𝐷𝑖 − 𝑉𝑖  ∑[𝑉𝑘(𝑔𝑖𝑘 cos 𝜃𝑖𝑘 + 𝑏𝑖𝑘 sin(𝜃𝑖𝑘))]

𝑛𝑏

𝑘=1

= 0            (8) 

𝑢𝑖𝑄𝐺𝑖 − 𝑄𝐷𝑖 − 𝑉𝑖  ∑[𝑉𝑘(𝑔𝑖𝑘 sin 𝜃𝑖𝑘 + 𝑏𝑖𝑘 cos(𝜃𝑖𝑘))]

𝑛𝑏

𝑘=1

= 0           (9) 

𝑃𝑖𝑘 = 𝑉𝑖𝑔𝑖𝑘 
2 − 𝑉𝑖𝑉𝑘𝑔𝑖𝑘

cos(𝜃𝑖𝑘) −  𝑉𝑖𝑉𝑘𝐵𝑖𝑘
sin(𝜃𝑖𝑘)   (10) 

𝑄𝑖𝑘 = 𝑉𝑖𝑏𝑖𝑘 
2 − 𝑉𝑖𝑉𝑘𝑔𝑖𝑘

cos(𝜃𝑖𝑘) −  𝑉𝑖𝑉𝑘𝐵𝑖𝑘
sin(𝜃𝑖𝑘) (11) 

𝑆𝑖𝑘
2 = 𝑃𝑖𝑘

2 + 𝑄𝑖𝑘
2   (12) 

𝑃𝐺𝑖
min ≤  𝑉𝑖 ≤  𝑃𝐺𝑗

max   (13) 

𝑉𝑖
𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖

𝑚𝑎𝑥 (14) 

𝑆𝑖𝑘 ≤ 𝑆𝑖𝑘
𝑚𝑎𝑥 (15) 

𝑁𝐷𝐺 ≤  𝑁𝐷𝐺
𝑚𝑎𝑥 (16) 

𝑢𝑖 ∈ {0,1} (17) 

Where 𝑃{𝐺𝑖}  and  𝑄{𝐺𝑖}  are the active and reactive power respectively, delivered by a unit of DG if it is 

located in the bar i. Note that not all bars have DG. DG for each unit must be assigned to a binary 

variable (called 𝑢𝑖). For simplicity, it is not considered that the DG inject or take reactive power from 
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the network, so 𝑄{𝑔𝑖} =  0. 𝑃{𝐷𝐼} and 𝑄{𝐷𝐼} correspond to power demands active and reactive bar i, 

respectively. Also nb is the number of bars, θ{ik} is the angular opening between the bars and k; 𝑔{ik}, 

and 𝐵{ik} are the real and imaginary, respectively, of the nodal admittance matrix parts. Constraints 

(8) and (9) represent the balance equations and reactive power, respectively. Restrictions (10), (11) and 

(12) represent the equations of active power flow, reactive and apparent power, respectively. The 

restrictions (13), (14) and (15), consider the power limits injected by the DG, limits voltage network 

and load flow limits, respectively. The constraint (16) indicates the maximum number of units DG 

needs to consider and restriction (17) indicates the binary nature of the variables 𝑢𝑖 (1 if with DG and 

0 if without DG).The model described by equations (5) - (17) corresponds to a problem in mixed 

integer nonlinear programming which is highly dimensional and non-convex having multiple local 

optima, which justified its solution using the search methods illustrated in this article. 

3. Methodology on Hybrid Optimization Algorithm  

To address the problem of optimal location and the sizing of DG described in the previous 

section four techniques were used as combinatorial optimization: Simulated Annealing, Variable 

Descending Search Environment, Genetic Algorithm and Hybrid Genetic Algorithm. A brief 

description of each technical solution as adopted in this study is presented. 

3.1. Simulated Annealing  

Simulated Annealing (SA) emulates the annealing process in steel and ceramics, which involves 

heating and then slowly cooling the material to vary its physical properties. This procedure was 

introduced in [9]. In each iteration of the SA some neighbours of the current status are evaluated and 

probabilistic decision made between making the transition to a new state or remaining in the current 

state. If the neighbour solution enhances the value of the objective function is accepted with 

probability 1, otherwise the probability of accepting by the Metropolis criterion given by equation (18) 

where the parameter c corresponds to the temperature. 

 

𝑃𝑟𝑜𝑏(𝑎𝑐𝑐𝑒𝑝𝑡 �́�) = {

1                                      , 𝑓(�́�) < 𝑓(𝑥)

exp (−
𝑓(�́�) − 𝑓(𝑥)

𝑐
) , 𝑓(�́�) ≥ 𝑓(𝑥)

  

(18) 

SA assesses unattractive solutions in the early stages, then as the temperature parameter is reduced, 

the search becomes more selective, lessening the declines in the objective function.  

 

3.2. Variable Search Environment Descending  

Environment Variable Search (EVS) is a metaheuristic based on a local search in a changing 

neighbourhood (also known as environment structure) [17]. Variations in EVS are given the names 

down, reduced, basic or general EVS. This paper considered an extension of EVS known as Variable 

Search Environment Descending (VSED) in which the current solution obtained from the change in a 

local search is implemented; as long as this one has found a better solution. VSED is illustrated below 

[4] as the following:  

 Initialization: Select the set of environments, structures 𝑁𝑘 , 𝑘 =  1, . . , kmax  to be used in 

the descent. Find an initial solution x; 

 Iterations: Repeat until no improvement is obtained (until there is no more optimization 

that we can get). 

In the following sequence:  

 

(1) Make 𝑘 → 1.  
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(2) Repeat until 𝑘 =  𝑘𝑚𝑎𝑥  the following:  

(a) Exploration of the environment: Find the best solution 𝑥′ of the 𝑘𝑡ℎ neighborhood of 
 𝑥(𝑥′ ∈  𝑁𝑘(𝑥) 

(b) Move or not: If the obtained solution 𝑥′ is better than x, do   𝑥 → 𝑥′,  𝑘 → 1; otherwise do 

→ 𝑘 + 1 . 

 

In the study presented in this article, environments or neighbourhoods were defined as the size 

(increase or decrease the capacity of the DG) and location (DG move to a neighbouring node). 

 

3.3. Genetic Algorithm  

 

Genetic Algorithms (GA) solve optimization problems by simulating natural selection or 

“survival of the fittest” [10]. The general routine of a GA is to generate an initial population of 

random or pseudo-random solutions. Each individual in the population is defined by a string of bits. 

In this case, the objective function is to evaluate the power flow as a consequence of the location and 

sizing of the DG [18]. For a given tournament a number of individuals are selected. The number of 

tournaments is equal to the size of the population. Recombination is made at one randomly selected 

point. The mutation is created by changing a bit (zero to one) randomly with a given probability of 

occurrence. Individuals generated in the process of recombination and mutation replaces existing 

individuals if they are better than their predecessors. Two stopping criteria are considered; the 

maximum number of iterations or the maximum number of iterations without improvement of the 

objective functions. 

 

 

 

.3.4. Hybrid Genetic Algorithm  

Hybrid methods (HGA) seek to combine the advantages of two or more metaheuristics for high 

quality solutions. The most common hybrid methods combine population methods (e.g. Genetic 

Algorithms) with local search methods (Simulated Annealing, Variable Search Environment) or exact 

methods (linear programming, nonlinear) [16]. In this paper a method population (GA) combined 

with a local search method (VSED) was implemented. The flowchart of the implemented algorithm is 

illustrated in Fig.1 below. The HGA structure retains essentially the GA structure described in the 

previous section; however, after mutation and before replacing the individuals of the next generation 

it performs a local search in order to find better quality individuals in the current generation [19]. As 

already described in the GA, only individuals exhibiting improvement in the objective function are 

included in the new generation. 



 

96 
 

 
Figure 1: Diagram of HGA Algorithm. 

4. Numerical Simulation Test and Investigation Results 

In Fig. 2 a distribution system of IEEE standard 34 bars is illustrated. The maximum network 

demand is 15,8 MW with a power factor of 0.95 lag. It may include up to 4 DG units, each one 

represented with a maximum power of 2.0 MW. Candidate solutions with DG units are penalized in 

the objective function (to minimize the loss in power) in order to make them less attractive. Note that 

according to the formulation (equation (17)) the algorithm may select other number DG units up to 

the maximum. 

 

 
Figure 2: Distribution System of 34 bars. 

The distribution of demand in each of the network nodes is shown in Fig. 3. It can be seen that a 

significant part of the demand is in the first bars.  
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Figure 3: Distribution of demand in the system of 34 bars. 

 

.4.1. Coding Solutions 

Table 1: Codification of DG size. 

 
A chain of 4 binary bits was used to represent each used generator. The first bit represented the 

state of the generator (generator 1, the generator does not exist 0); the remaining 3 bits represented the 

power level of the generator. Thus, 1000 denoted minimum capacity (0.25 MW), while the chain 1111 

represented a generator with maximum capacity (2.0 MW). Table 1 illustrates the equivalence. Table 2 

illustrates the code of a particular candidate solution comprising 4*nb bits, where nb was the number 

of bars in the system.  Bars 1, 2, 4 and nb-1 have no generator; while bars 3 and nb have generating 

capacities of 1.0 and 2.0 MW, respectively. 

 

Table 2: Solution candidates encoding. 

 
 

.4.2. Weighted Factors Calibration 

Before starting the optimization process weighting factors must be assigned to the two objectives 

under study (IRPL and IMPT) in order to assess the relative fitness of particular solutions. This 

requires a diagnosis without DG base case. This diagnosis was made by a load flow calculation with 

and without DG. The load flow analysis was performed by software Matpower [15] with DG 

modelled as bars where active power could be injected. In Fig. 4 and Fig. 5, the voltage profile and 

line losses, respectively, with and without DG are illustrated.   
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Figure 4: Voltage profile system of 34 bars with and without DG. 

 
Figure 5: Line losses of 34 bar system with and without DG. 

Table 3: Values of IRPL and IMPT for candidates with randomly generated solutions. 

 
 

A case with 4 units of DG is illustrated; each with 1 MW located in the bars 5, 10, 15 and 20. In Fig. 4 it 

may be noted that even adjusting the tension in the substation at 1.1 p.u., when DG were not tensions, 
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the last bars were below 0.9 p.u. featuring voltage regulation (percentage difference between the 

maximum and minimum system voltages) exceeding 20%. However, when DG was introduced to the 

system stresses increased, especially in remote substation busbars, causing the voltage regulation in 

these rods to fall to 17.5%. On the other hand, total losses without DG amounted to 959.5 kW systems 

and with DG were 555.8 kW. When calculating indices IMPT and IRPL by the expressions (2) and (4) 

respectively values obtained were IMPT = 1.5135 and IRPL = 41.8848. These indices were calculated 

for different solution candidates (location and DG sizing) randomly generated resulting in the data 

given in Table 3. It can be seen that IRPL was much higher than IMPT in all simulations. This was 

because the percentage of loss reduction was more significant than the improvement in voltage 

profile. On average, IRPL was about 20 times greater than IMPT as seen in the fourth column of Table 

3. If the indexes were optimized without using weighting factors that would favour solutions that 

reduced losses in order to improve tensions. Weighting factors w1 =  0.05 and w2 = 0.95 were assigned 

in order to give similar importance to IMPT and IRPL objectives in the optimization process. 

However, the manager of the planning system can select other values to give more importance to a 

particular target. 

 

.4.3. Results using Simulated Annealing 

 

To start the SA, a base solution that meets the criterion of maximum number of generators is 

generated. From there neighbouring solutions are explored according to the criteria stated in equation 

(18). This means that early in the process the probability of accepting poorer quality solutions is high, 

but as the process evolves that probability is restricted. Thus, the principle of seeking diversity is 

privileged and at the end of the simulation it intensifies the search for better solutions. After 

performing several trial runs with different SA algorithm parameters, initial and final temperature 

was calibrated at 3.0 and 0.5, respectively, and at each iteration the temperature was reduced by 0.01. 

In Table 4 and Fig 6 the best solution found (after 190 iterations) and the convergence of the algorithm 

illustrated by the SA. In this case the time for calculation was 1.2 minutes. A computer Intel Core i3 

2.4 GHz with 4 GB of RAM was used in all simulations. 

 

Table 4: Best result using SA. 
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Figure 6: Convergence process in SA. 

4.4. Results using Variable Search Environment Descending 

The size and location of the DG defined the VSED environment. A base solution of individuals was 

explored to better the environment by following the instructions as described in the methodology 

section. The search continues until it either passes a certain number of iterations or until no 

improvement is achieved over previous iterations. In Table 5 the best found VSED is illustrated. Here 

22 iterations were performed by evaluating the structure of 8 individuals with a computation time of 

2.1 minutes. 

 

 

 

 

Table 5: Best result using VSED. 

 

4.5. Results using the Genetic Algorithm 

The implemented GA solution used a coding chromosome structure as illustrated in Table 2. An 

initial population of possible solutions was generated pseudo-randomly which led to new solutions 

of better quality achieved by implementing a sequence of selection, recombination and mutation as 

described in the methodology section. The GA parameters of initial population size, mutation rates 

and recombination were calibrated through repeated runs. It was noted that with small initial 

populations, poor quality responses were obtained. By increasing the number of individuals in the 

initial population the quality of solutions improved, but the computing time increased. The best 

solution was found with a population of 100 individuals and mutation and recombination rates of 

10% each. The computation time to find the best solution was 2.9 minutes after 90 iterations. The best 

result is shown in Table 6 while Fig. 7 shows the process of convergence for different tests. It can be 
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seen that even though the initial populations were of different quality, the tests converged to 

solutions of similar quality. 

 

Table 6: Best result using GA. 

 
 

 
Figure 7: Process of convergence for 3 different GA tests. 

.4.6. Results using the Hybrid Genetic Algorithm 

Table 7: Best result using HGA. 

 
As mentioned above the HGA implemented combined the GA described in the previous section 

with VSED. That is, after applying the traditional operators of GA and prior to the population 

replacement in each iteration, the fitness of individuals was increased using VSED. The same 

parameters were calibrated as for with traditional GA. Table 7 presents the best solution found. It was 

observed for all tests that the computational time was considerably greater than that required by the 

other algorithms implemented; however, the quality of the response was better. The best answer was 

found after only 6 iterations in a computation time of 12.6 minutes. 
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5. Compartative Performacne Index of Algorithms 

The best result was obtained using HGA; however, this is the method that took longer to find a 

high quality solution. The fastest converging test algorithm was the simulated annealing, but 

solutions obtained with the other methodologies were of better quality. The VSED required less 

iteration to converge compared to the SA, but it’s computing time per iteration was greater and to be 

evaluated in terms of iteration, two structures of the neighbourhood were needed. HGA generated 

the highest quality solutions when using large initial populations of 100 individuals. Fig. 8 compares 

the computation time for the methods used, where the HGA stands out as relatively slow. The best 

solution found (see Table 7) showed an 80.2% reduction in losses compared to the base case without 

DG. 

 

 
Figure 8: Search time comparison. 

6. Conclusion 

In this study, four algorithms were compared to obtain the optimum location and sizing of DG in 

distribution systems: SA, VSED, GA and HGA. The implemented methodologies based on these 

optimization algorithms were all successful in finding high quality solutions. In the trialled 

application tests the best results were obtained using HGA, which combines genetic algorithm and 

VSED. It was observed that the optimum percentage of DG penetration of the test system varied 

between 6 and 7 MW installed at the start bar and the end bar for substantial improvement using DG 

units of 1-2 MW. In addition, the optimum location and sizing for DG allowed a substantial 

improvement of the voltage profile of the network and reduced losses of 80.2 per cent in the test 

system. Regarding computation times, the fastest method was SA; however VSED and the HGA 

showed better results. 
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