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In this paper, energy storage sharing among a group of cooperative households with integrated renew-
able generations in a grid-connected microgrid in the presence of dynamic electricity pricing is studied.
In such a microgrid, a group of households, who are willing to cooperatively operate a shared energy stor-
age system (ESS) via a central coordinator, aims to minimize their long term time-averaged costs, by
jointly taking into account the operational constraints of the shared energy storage, the stochastic solar
energy generations and time-varying load requests from all households, as well as the fluctuating elec-
tricity prices. We formulate this energy management problem, which comprises storage management
and load control, as a constrained stochastic programming problem. Based on the Lyapunov theory, a dis-
tributed real-time sharing control algorithm is proposed to provide a suboptimal solution for the con-
strained stochastic programming problem without requiring any system statistics. The proposed
distributed real-time sharing control algorithm, in which each household independently solves a simple
convex optimization problem in each time slot, can quickly adapt to the system dynamics. The perfor-
mance of the proposed low-complexity sharing control algorithm is evaluated via both theoretical anal-
ysis and numerical simulations. By comparing with a greedy sharing algorithm and the distributed ESSs
case, it is shown that the proposed distributed sharing control algorithm outperforms in terms of both
cost saving and renewable energy generation utilization.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

The fast-growing electric demand coupled with the concern of
the carbon dioxide emission of traditional fossil-fuel based elec-
tricity generation has motivated a green power system with users
deploying distributed renewable energy generators, e.g., wind tur-
bines and solar photovoltaics (PVs). In South Africa, where annual
solar radiation ranges from 2400 to 2800kWh/m2 [1], a strong solar
radiation resource makes solar energy a particularly attractive
option. Associated with global solar PV price reductions and
spurred on by high annual grid power price increases, solar PV gen-
erator installation in South Africa has also been accelerating.

However, the inherently intermittent and stochastic nature of
renewable energy production owing to weather variability poses
significant challenges to efficient utilization of renewable energy.
To address this issue, various techniques have been proposed. For
instance, demand response approaches reschedule the electricity
loads of users in response to the variation of renewable energy
generations and/or electricity prices [2,3]. Nevertheless, demand
response alone may not be sufficient to alleviate the issue, since
users have loads that they do not want to be deferred in general.

Increasing dynamics in power systems due to renewable inte-
gration and electricity demands have resulted in the exploration
of energy storage systems (ESSs) for potential solutions [4] to
decouple the time of renewable generation and consumption. From
the perspective of power grid operation, the benefits of ESSs
including generation backup, transmission support and voltage
control have been well-recognized [5]. On the other hand, from
the user’s perspective, ESSs can be integrated with distributed
renewable generations as a more practical solution to improve
the energy efficiency and reliability by storing surplus energy gen-
erated from renewable resources and cheaper energy at times of
lower electricity prices for later use at times of renewable energy
generation shortages and/or higher electricity prices.

This work mainly focuses on the interplay between energy sup-
ply and energy storage at the user side. There have been many
studies on energy management in the context of renewable inte-
gration and energy storage from the perspective of demand side
management. Most of the previous studies considering energy
stroage-based demand management assume that each user has
its own ESS and analyze the energy storage management problem
from a single user point of view. For instance, in recent studies
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Nomenclature

gpv ;i tð Þ energy harvested from household i’s solar PV generator
in time slot t

gl;i tð Þ energy purchased from the main grid by household i in
time slot t that directly supplies the household i’s load

gs;i tð Þ energy purchased from the main grid by household i in
time slot t that is stored into the shared battery

gch;i tð Þ energy charged by household i in time slot t
gdis;i tð Þ energy discharged by household i in time slot t
Di tð Þ household i’s serving load in time slot t
Di tð Þ maximum energy demanded by household i in time slot

t
Di tð Þ minimum energy demanded by household i in time slot

t that cannot be shed
ai tð Þ indicator of the sensitivity of household i towards its

energy consumption deviation Di tð Þ � Di tð Þ in time slot t
bi upper bound of household i on the long-term time-

averaged load shedding ratio

p tð Þ unit energy price from the main grid
pmax maximum unit energy price from the main grid
pmin minimum unit energy price from the main grid
s tð Þ state of charge (SoC) in time slot t
Smax maximum energy level required in the battery
Smin minimum energy level required in the battery
bi tð Þ household i’s effective charging and discharging amount

in time slot t
Rch maximum charging rate of the battery
Rdis maximum discharging rate of the battery
nch;i tð Þ percentage of the maximum charging rate, Rch, taken by

household i
ndis;i tð Þ percentage of the maximum discharging rate, Rdis, taken

by household i
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[6,7], the authors investigated single user optimal charging and
discharging policies that balance cost savings with user conve-
nience, such as activity delay, by exploiting the price variations
without having to shift user demand to the low-price periods.

In recent years, the concept of ESS sharing, where the surplus
renewable energy or cheaper energy of some users can be charged
into a shared (common) ESS and then can be discharged by other
users, has received increasing attention [8–14]. An ESS shared
across a group of users, who can be energy consumers in an indus-
trial park or neighboring households in a community, can benefit
users not only through sharing the installation and maintenance
costs of the ESS but also by exploiting the non-overlapping power
consumption patterns of users. Nevertheless, ESS sharing also
brings increasing challenges in energy storage management and
load management.

In this paper, we consider a microgrid of a group of households
with their individual renewable energy generators, who are willing
to share an ESS (in the form of a battery) in a cooperative manner,
aiming to minimize their long term energy consumption costs. In
this energy storage sharing system, the main challenge of energy
management is how to dynamically coordinate the households to
optimally utilize the shared ESS, i.e., how to optimally charge/dis-
charge energy to/from the shared ESS, so as to minimize their indi-
vidual energy consumption costs while satisfying their individual
preferences. This energy management problem can be viewed as
an energy storage management problem combined with a demand
side management problem.

Due to its finite capacity, the shared ESS introduces correlation
across time. Specifically, current charging/discharging actions
impacted by the previous charging/discharging actions will impact
the future charging/discharging actions. Given the inherent time-
coupling feature of the ESS, the uncertainties in the multiple
renewable generations and power demand requests from different
households, as well as the electricity price variations, dynamically
coordinating energy storage among a group of households is chal-
lenging when integrating energy storage management with
demand side management.

Different mechanisms and approaches have been proposed to
provide cost savings through a shared ESS. The authors in [8] dis-
cussed the energy storage managing method in a distribution net-
work based on evenly dividing energy storage between customers
and system operator, but does not optimize the division of energy
storage. In [14], the authors proposed a reputation-based central-
2

ized energy management system (EMS) to jointly schedule house-
holds’ appliances power consumption and allocate the available
energy in the shared battery by considering households’ reputa-
tions, which depend on the amounts of renewable power they have
shared. The proposed EMS runs a day-ahead optimization problem
which is formulated as a Mixed Integer Linear Programming. In
[15], the authors addressed the cost saving trade-off problem of
sharing an ESS among multiple users using a Markovian model
and proposed a centralized control policy to dynamically allocate
battery capacity among users. The policies for energy storage shar-
ing using a predetermined time-of-use pricing scheme was studied
in [16], in which, with a finite horizon formulation, an optimal cen-
tralized policy was proposed. In [17], a game theoretic approach
was presented with a distributed algorithm to determine each
user’s energy production and storage a day-ahead. In [18], the
authors studied a scenario where an aggregator owns a central
storage unit and virtualizes the physical storage into separable vir-
tual storage capacities that can be sold to users to store the energy
purchased from the main grid, and modeled the interaction
between the aggregator and users in each time slot as a two-
stage problem. Assuming that users can perfectly predict their
renewable generations and loads, a pricing-based virtual storage
sharing scheme among a group of users was proposed and the
solutions were characterized based on parametric linear program-
ming under a day-ahead prediction on users’ renewable genera-
tions and loads.

Most of these existing studies on ESS sharing assume that the
users’ renewable energy generations and loads are known ahead
of time to a central agent, who optimizes the charging/discharging
energy of each user, or assume perfect forecasting of the renewable
generations, the energy demands and the energy prices, which is
practically unachievable. In practice, with unpredictable changes
in renewable energy generations and demands, adaptive response
to the dynamics of the power system by utilizing the shared ESSs is
an important requirement in the time-varying environment of the
ESS sharing system.

Due to the time coupling constraints brought by the ESS, the
optimization problem for energy management in this ESS sharing
system turns out to be a time-coupling problem. Previously, such
problems are usually solved using approaches based on Dynamic
Programming [19], which not only require full statistical informa-
tion of the random variables in the problem but also suffer from
the ‘‘‘curse of dimensionality’” problem [20].



Fig. 1. System Model.
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Recently, the Lyapunov optimization theory [21], an effective
method to deal with stochastic optimization and stability prob-
lems, has been widely adopted in the literature, such as [22–26],
to develop online algorithms that require no a priori statistical
knowledge of the underlying stochastic processes for real-time
energy management in microgrids with renewable energy
resources combined with ESSs. Using the Lyapunov optimization
theory for event-driven queueing systems, an optimization prob-
lem with time-coupling constraints can be reformulated to a
relaxed problem, which can be solved in each time slot based on
the current system state and provides a suboptimal solution for
the optimization problem. No information about the future or past
system states is required. For instance, in Ref. [22], the optimal cost
saving policies using the Lyapunov theory for a single storage sys-
tem were studied and a real-time control algorithm was proposed
to minimize a user’s long term expected energy cost considering a
renewable energy generator and a battery. The authors in Ref. [24]
proposed a real-time distributed algorithm based on the Lyapunov
optimization theory to coordinate a group of distributed storage
units to provide power balancing service to a power grid through
charging or discharging. The proposed algorithm accommodates
a wide spectrum of vital system characteristics, including time-
varying power imbalance amount and electricity price, finite bat-
tery size constraints, cost of using external energy sources, and
battery degradation. However, most of the existing studies primar-
ily consider a single user single ESS scenario or a distributed ESSs
scenario.

In this paper, we focus on developing a real-time control algo-
rithm for a battery sharing system. The energy management prob-
lem for the ESS sharing system under consideration is first
formulated as a constrained stochastic programming problem.
The Lyapunov optimization technique is then applied to design a
real-time sharing control strategy for storage control and load
management for multiple households, which requires no statistical
knowledge of the stochastic renewable energy generations, the
uncertain power loads and the time-varying electricity prices, so
as to minimize the long term energy consumption costs of all
households. Then, a distributed battery sharing control algorithm
with low computational complexity, in which each household’s
energy management optimization problem is solved locally with
almost all information obtained locally, is proposed to implement
the Lyapunov-based real-time sharing control strategy. Based only
on the current system state, the proposed sharing control algo-
rithm coordinates the utilization of the shared battery among the
group of households in a distributed manner, by jointly optimizing
energy charging/discharging and load management for all house-
holds while satisfying each household’s time-varying preference
on energy use, and imposes load shedding and renewable energy
curtailment if necessary.

The rest of the paper is structured as follows. The system model
of a microgrid with a group of households sharing a common ESS is
described in Section 2. In Section 3, we formulate the optimization
problem for energy management in this sharing system. In Sec-
tion 4, a distributed real-time sharing control algorithm is pro-
posed based on the Lyapunov theory to solve the optimization
problem and its performance is analyzed. Numerical results
obtained through simulation evaluations are presented in Section 5.
Finally, concluding remarks are provided in Section 6.

Notations: The main symbols used in this paper are summarized
in List of Main Symbols.
3

2. System model

We consider a smart community that consists of an energy stor-
age sharing management (ESSM) system for a group of households
I ¼ 1; . . . ; If g whose load profiles are different and each of whom
has an on-site renewable generator (RG). As shown in Fig. 1, the
ESSM system contains an energy storage battery with a finite
capacity shared among all households who can charge energy har-
vested from their RG or purchased from the main grid (MG) into
the battery. The households’ load demands can be supplied by their
individual RGs, the shared energy storage and the MG. In this shar-
ing system, the households cooperatively operate the shared bat-
tery via a central coordinator, who manages the shared battery
to make sure its operational constraints are satisfied, so as to
jointly minimize their electricity consumption costs by utilizing
their renewable energy together with the MG combined with the
finite-capacity energy storage. We assume that the ESSM system
operates in slotted time t 2 0;1; . . . ; T � 1f g.

1) Renewable generator
Each household has a solar PV generator with different
capacity and the amount of harvested energy in a time slot
varies over time. Let gpv ;i tð Þ denote the energy harvested
from household i’s solar PV generator in time slot t. Since
gpv ;i tð Þ is random due to the randomness of the solar source,
we assume no prior knowledge of gpv ;i tð Þ or its statistics.

2) Main grid power
Each household can purchase energy from the MG in time
slot t at the unit price p tð Þ; pmin 6 p tð Þ 6 pmax, which is
time-varying and only known in time slot t. Let gl;i tð Þ denote
the amount of energy purchased from the MG by household i
in time slot t that directly supplies the household i’s load,
and gs;i tð Þ denote the amount of energy purchased from
the MG by household i in time slot t that is stored into the
shared battery to take advantage of price variations. Then
the energy cost of household i in time slot t is
CMG;i tð Þ ¼ gl;i tð Þ þ gs;i tð Þ� �
p tð Þ 8i 2 I: ð1Þ

3) Local power demand
In every time slot, each household decides how much
load to consume. The loads of each household can be
classified into two categories:
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� inelastic loads (in unit of kWh) represent the critical
demands such as refrigerator and lights, which should
not be shed or shifted over time.

� elastic loads (in unit of kWh) represent the controllable
energy requests such as air conditioners and other smart
appliances, which can be flexibly curtailed or scheduled
over time to minimize costs.
There is great potential to exploit the inherent flexibility of such
elastic loads. We consider a demand side management in the
microgrid, where flexible loads can be shed in response to supply
conditions. For household i, its demand Di tð Þ in time slot t is
bounded by:
D
�

i tð Þ P Di tð Þ P Di tð Þ 8i 2 I; ð2Þ

where Di tð Þ is the maximum energy demanded by household i in
time slot t, i.e., the most preferred energy consumption of house-
hold i, and Di tð Þ is the minimum energy demanded by household
i in time slot t that cannot be shed, i.e., the inelastic loads. Note
that Di tð Þ and Di tð Þ are the demand requests decided by house-
holds based on the physical constraints and their willingness
to shed their elastic loads. If a household refuses load shedding,
the requested maximum and minimum energy will be the same.
The demand requests of each household in each time slot are
assumed to be stochastic and private information.
However, load shedding used for cost saving may cause discom-
fort to the households. When the shed energy consumption Di tð Þ
deviates from the preferred energy consumption Di tð Þ, discom-
fort experienced by household i can be represented by a discom-
fort cost function

CCOM;i tð Þ ¼ ai tð Þ D
�

i tð Þ � Di tð Þ
� �2

8i 2 I; ð3Þ

where the weighted coefficient ai tð Þ is a positive constant used
to indicate the sensitivity of household i towards the energy con-
sumption deviation Di tð Þ � Di tð Þ: the higher the value of ai tð Þ,
the more sensitive the household i towards the energy consump-
tion deviation.
Meanwhile, in order to control the quality-of-service (QoS) [25]
for the households, an upper bound is imposed on the portion of
the unsatisfied flexible load, which can be formally expressed by
[27]

lim
T!1

1
T

XT�1

t¼0

D
�

i tð Þ � Di tð Þ
D
�

i tð Þ � Di tð Þ

2
664

3
775 6 bi 8i 2 I; ð4Þ

where Di tð Þ � Di tð Þ is the shed demand, Di tð Þ � Di tð Þ is the total
demand that can be shed in time slot t, and bi 2 0;1ð � is a pre-
designed threshold used to control the QoS, i.e., the long-term
time-averaged load shedding ratio. It reflects the tolerance of
household i to the energy consumption deviation. A smaller bi

indicates a tighter QoS control. Note that both ai tð Þ and bi are
decided by household i based on its energy consumption prefer-
ence and ai tð Þ could vary over time in a stochastic manner. In
addition, both ai tð Þ and bi are assumed to be private information
to household i.
Let gch;i tð Þ and gdis;i tð Þ denote the amount of energy charged and
discharged by household i in time slot t, respectively. We assume
a priority of using energy harvested from solar PV generator
4

gpv;i tð Þ to directly supply Di tð Þ and the excessive portion, if any,
will be charged into the shared battery. When Di tð Þ 6 gpv;i tð Þ,
which results in energy surplus, we denote the energy that
household i charges into the shared battery in time slot t by

gch;i tð Þ 6 gpv;i tð Þ � Di tð Þ 8i 2 I: ð5Þ
Note that, since the storage space of the shared battery is lim-
ited, not all the excessive portion can be charged into the battery
if there is not enough storage space in the shared battery.
When Di tð Þ > gpv;i tð Þ, which results in energy deficit, the residual
Di tð Þ � gpv;i tð Þ can be served with the energy purchased from the
MG gl;i tð Þ or the energy drawn from the shared battery gdis;i tð Þ. A
balance between purchasing the energy from the MG and draw-
ing the energy from the battery must be struck under the follow-
ing feasibility condition:

gl;i tð Þ þ gdis;i tð Þ ¼ Di tð Þ � gpv;i tð Þ 8i 2 I: ð6Þ
It is noticed that, gdis;i tð Þ ¼ 0 in case of energy deficit and
gch;i tð Þ ¼ 0 in case of energy surplus. Since energy surplus and
energy deficit can not happen at the same time, we have

gch;i tð Þgdis;i tð Þ ¼ 0 8i 2 I: ð7Þ
4) Shared Energy Storage

The shared battery has a finite storage capacity Scap. In
practice, batteries are not ideal. There are energy conver-
sion losses during the charging and discharging pro-
cesses. Let gch 2 0;1ð � and gdis 2 1;1½ Þ be the charging
and discharging efficiency coefficient, respectively.

a) Denote s tð Þ as the energy state of the battery at the
beginning of time slot t. The energy state s tð Þ, known
as state of charge (SoC), in kWh, fluctuates over time
and evolves as follows:

s tð Þ ¼ s t � 1ð Þ þ gch

X
i2I

gch;i tð Þ þ gs;i tð Þ� �� gdis

X
i2I

gdis;i tð Þ

¼D s t � 1ð Þ þ
X
i2I

bi tð Þ 8i 2 I; ð8Þ

where bi tð Þ is defined as the effective charging and discharging
amount in time slot t. We assume that there is no self-
discharging.

b) Because of limitation imposed by the charging and dis-
charging circuits, the amounts of energy charged into
and discharged from the battery are upper bounded.
Denote the maximum charging and discharging rate of
the battery by Rch and Rdis, respectively, so that

0 6
X
i2I

gch;i tð Þ þ gs;i tð Þ� �
6 Rch

0 6
X
i2I

gdis;i tð Þ 6 Rdis 8i 2 I:
ð9Þ

c) To reduce the impact of degradation, the operation of
energy storage system should be controlled to increase
its benefit at least cost. Charging a battery near its capac-
ity or discharging it close to the zero energy state can
significantly reduce battery lifetime [28]. Hence, lower
and upper bounds on the battery energy state are usually
imposed by its manufacturer or owner. Denote Smin; Smax½ �
as the preferred energy range with 0 < Smin < Smax < Scap.
Then the level of the shared battery in time slot t is
bounded by
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Smin 6 s tð Þ 6 Smax: ð10Þ
d) Combining (8)–(10), the boundaries of charging and dis-

charging energy in time slot t can be compactly repre-
sented as

0 6
X
i2I

gch;i tð Þ þ gs;i tð Þ� �
6 min Rch;

Smax�s t�1ð Þ
gch

n o

0 6
X
i2I

gdis;i tð Þ 6 min Rdis;
s t�1ð Þ�Smin

gdis

n o
8i 2 I:

ð11Þ

The space-availability constraint and the energy-availability
constraint in (11) must be satisfied at all time for the charging
and discharging decisions to be feasible. In other words, the
energy charged/discharged into/from the shared battery must
not exceed the storage space/energy available for charging/
discharging.

3. Problem statement and formulation

3.1. Problem statement

Solar energy generations of multiple households bring more
uncertainties to the energy management problem, making it chal-
lenging to balance supply and demand in real-time. In this paper,
we study the problem of real-time energy storage and manage-
ment in this microgrid aiming at achieving the long-term energy
consumption objectives of the households while ensuring an
acceptable level of the discomfort experienced by each household
in real-time, taking into consideration the dynamics of the energy
demands, renewable sources and energy prices as well as the oper-
ational constraints of the shared battery. In other words, the objec-
tive of the ESSM system is to jointly determine energy
consumption, energy purchasing and energy charging/discharging
actions of all households so as to minimize the long-term time-
averaged costs of all households, subject to the operational con-
straints of the shared battery as well as time-varying solar energy
generations from households, in the presence of dynamic electric-
ity prices. Therefore, the control problem can be stated as follows:
given the current random renewable supplies, the battery energy
level, the energy demand preferences of households and the elec-
tricity price, design a control strategy that chooses the energy pur-
chasing vectors, the battery charging and discharging vectors, as
well as serving load vectors for all households such that the
long-term time-averaged energy consumption costs of all house-
holds are minimized.

For the sake of clarity and ease of reading, we define the system
state X tð Þ in time slot t using the renewable generations and
demand preferences of households, the energy price from the MG
and the energy state of the shared battery

X tð Þ¼D gpv tð Þ;d tð Þ; p tð Þ; s tð Þ� �
; ð12Þ

where d tð Þ¼D Di tð Þ;Di tð Þ� � 8i is the demand preference vector and

gpv tð Þ¼D gpv;i tð Þ� � 8i is the renewable generation vector. We assume
that X tð Þ is stochastic.

The control vector in time slot t is defined by

Y tð Þ¼D gl tð Þ;gs tð Þ;gch tð Þ; gdis tð Þ;D tð Þ½ �; ð13Þ

where gl tð Þ¼D gl;i tð Þ� � 8i and gs tð Þ¼D gs;i tð Þ� � 8i are the energy purchas-
ing vectors for load serving and battery charging respectively,

gch tð Þ¼D gch;i tð Þ� � 8i and gdis tð Þ¼D gdis;i tð Þ� � 8i are the battery charging
5

and discharging vectors, respectively, and D tð Þ¼D Di tð Þ½ � 8i is the serv-
ing load vector.

With the known information, i.e., the current system state X tð Þ,
the objective of the ESSM system is to make control decision to
choose Y tð Þ in reaction to the current system state X tð Þ in each
time slot in order to minimize the households’ energy consump-
tion costs, comprising the discomfort costs of load shedding and
the costs of energy purchased from the MG, over a long-term T-
slot period, while guaranteeing the QoS for each household, by
jointly managing energy consumption, supply and storage given
the finite battery capacity. We define the instantaneous cost of
all households by

CToT tð Þ ¼
X
i2I

CMG;i tð Þ þ
X
i2I

CCOM;i tð Þ ¼
X
i2I

gl;i tð Þ þ gs;i tð Þ� �
p tð Þ

þ
X
i2I

ai tð Þ Di

�

tð Þ � Di tð Þ
� �2

: ð14Þ

Thus, the stochastic control optimization problem of the real-time
energy management, called P1, can be formulated by

P1 : min
Y tð Þ

lim
T!1

1
T

PT�1

t¼0
E CToT tð Þf g;

s:t: 2ð Þ 4ð Þ 5ð Þ 6ð Þ 7ð Þ 9ð Þ 10ð Þ;
ð15Þ

where E �f g is taken with respect to X tð Þ. Taking the randomness of
the system state X tð Þ and the random control decision Y tð Þ in each
time slot into account in the expectations of the objective function
and constraints, P1 seeks control decisions for the entire time hori-
zon up till infinity taking the system dynamics into consideration.
However, due to the time-coupling dynamics of (8), the current
control action impacted by the previous control actions will impact
the future control actions. Therefore, it is challenging to solve the
stochastic optimization problem P1 with the correlated control
actions Y tð Þ over time.

The optimization problem P1 can be solved using approaches
based on Dynamic Programming [20], provided that the system
statistics, e.g., the distributions of the components of X tð Þ, are
known, which might be practically infeasible. In this study, given
the stochastic system state X tð Þ, we are interested in real-time
energy management that requires no system statistics while
quickly adapting to the system dynamics. Motivated by the recent
studies, a real-time algorithm is developed to determine real-time
control vector Y tð Þ over time, applying the general framework of
Lyapunov optimization [21] to reformulate the optimization prob-
lem P1 to handle the time-coupling constraint (10).

3.2. Problem Modification

Time-averaged constraints can be transformed into queue sta-
bility constraints and simple real-time algorithms can be provided
for complex dynamic systems using the Lyapunov optimization
theory. Unfortunately, the time-coupling dynamics of s tð Þ over
time in (8) and the battery capacity constraint in (10), which
require that no energy underflow and overflow happen for all time,
impose a hard constraint on the charging and discharging decisions
in each time slot. As a result, the charging and discharging deci-
sions are correlated with each other over time. Therefore, P1 can-
not be directly solved using the standard Lyapunov optimization
techniques. To avoid such coupling, the hard constraint (10) in
P1 is relaxed to a softer constraint, which reflects the long-term
time-averaged relationship among the charging and discharging
decisions, given by
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lim
T!1

1
T

XT�1

t¼0

E
X
i2I

bi tð Þ
( )

¼ 0: ð16Þ

The derivation of (16) is as follows: summing both sides of the
energy state Eq. (8) over t ¼ 0;1; . . . ; T � 1f g and dividing them by
T yields

1
T

XT�1

t¼0

X
i2I

bi tð Þ ¼ s T � 1ð Þ
T

� s 0ð Þ
T

; ð17Þ

where
P

i2Ibi tð Þ is defined as the effective charging and discharging
amount in time slot t in (8). Taking expectations on both sides of
(17) and taking limits over T to infinity gives

lim
T!1

1
T

XT�1

t¼0

E
X
i2I

bi tð Þ
( )

¼ lim
T!1

s T � 1ð Þ
T

� lim
T!1

s 0ð Þ
T

: ð18Þ

Since both s T � 1ð Þ and s 0ð Þ are finite due to (8), the right hand side
of (18) is equal to zero.

The softer constraint in (16) requires that the mean rate of the
effective charging and discharging amounts in the whole process is
kept stable, instead of bounding the energy state in each time slot
in (10). Replacing the time-coupling constraint (10) with the time
average queuing constraint (16), we relax P1 to the following
problem:

P2 : min
Y tð Þ

lim
T!1

1
T

XT�1

t¼0

E CToT tð Þf g;

s:t: 2ð Þ 4ð Þ 5ð Þ 6ð Þ 7ð Þ 9ð Þ 16ð Þ:
ð19Þ

Through the relaxation transformation, the dependency of per time
slot charging/discharging amount on the battery state s tð Þ in con-
straints (10) is removed. Now the standard Lyapunov optimization
techniques can be applied to obtain the optimal solution of the
relaxed problem P2 in a way that is independent of battery SoC
level. This relaxation technique used to accommodate the type of
time-coupling constraints such as (10) was first introduced in [29]
for energy management in a data center equipped with an ideal bat-
tery, and then was widely adopted in the literature regarding
energy storage management. However, with the relaxed constraint
(16), the solution to P2may not be feasible to P1. Hence, in the next
section, we present a real-time control algorithm that can guaran-
tee all constraints of P1 are satisfied. We will show later in Sec-
tion 4.3 that the solution to P2 obtained by the proposed real-
time algorithm in fact also satisfies (10), so it is feasible for P1.
4. Lyapunov-based distributed real-time sharing control
algorithm

In this section, we present a real-time sharing control algorithm
using the Lyapunov optimization techniques to solve P2 and pro-
vide simple online solutions based on the current information of
the system state.
4.1. Virtual queue design

According to the concept of virtual queues from the Lyapunov
optimization [21], we first introduce virtual queues to transform
the time-averaged inequality and equality constraints (4) and
(16) in P2 into queue stability constraints.
6

� Battery Queue: a virtual queue Kb tð Þ ¼ s tð Þ � h that accumulates
the charging and discharging amounts, where h is a perturba-
tion parameter designed to ensure the constraint of the energy
state in (10) is satisfied. The dynamic of Kb tð Þ is given by
Kb tð Þ ¼ Kb t � 1ð Þ þ
X
i2I

bi t � 1ð Þ: ð20Þ

The intuition behind the battery queue Kb tð Þ is to construct the
decision making algorithm based on a quadratic Lyapunov func-
tion, then by keeping the quadratic Lyapunov function value
small to push the value of s tð Þ towards h. Thus, it can be ensured
that the battery queue always has enough energy by carefully
choosing the value of h. Note that Kb tð Þ is a shifted version of
the energy state s tð Þ by a constant parameter h and can be neg-
ative. We will show in Section 4.3 the boundedness of s tð Þ can be
guaranteed through the design of the perturbation parameter h
and Vmax in (27) and (28).

� QoS-Aware Load Queue: a virtual queue Hl;i tð Þ that is associated
with the long-term constraint in (4). It evolves as follows:
Hl;i t þ 1ð Þ ¼ max Hl;i tð Þ � bi;0
� �þ Di tð Þ � Di tð Þ

Di tð Þ � Di tð Þ : ð21Þ

Initialize Hl;i tð Þ as Hl;i 0ð Þ ¼ 0. The QoS-aware load queue Hl;i tð Þ
accumulates the portion of unsatisfied flexible load. With the
arrival rate being the shedding ratio and the departure rate
being bi in time slot t, the time averaged load shedding ratio
must be less than or equal to bi to ensure the queue Hl;i tð Þ to
be stable. Hence, maintaining the stability of Hl;i tð Þ is equivalent
to keeping the constraint (4) satisfied [21].

By introducing the virtual queues, the time-averaged con-
straints (4) and (16) are transformed into the mean rate stability
constraints of the virtual queues. In the queuing theory, a queue
Q tð Þ is mean rate stable if limt!1

E Q tð Þf g
t ¼ 0, which means the queue

does not grow faster than linearly with time. Hence, an optimiza-
tion problem which minimizes the cost CToT tð Þ over time while
ensuring that the mean rates of the two virtual queues are kept
stable is feasible to P2.

We now relax P2 to P3, which is suitable for the Lyapunov opti-
mization framework, as follows:

P3 : min
Y tð Þ

lim
T!1

1
T

PT�1

t¼0
E CToT tð Þf g;

s:t: 2ð Þ 5ð Þ 6ð Þ 7ð Þ 9ð Þ 20ð Þ 21ð Þ:
ð22Þ

Note that, in P3, the time-coupled constraint (10) and time-
averaged inequality constraint (4) are replaced by mean rate stabil-
ity constraints (20) and (21), respectively.

4.2. Lyapunov-based Real-time Sharing Control Algorithm Design

In this section, we apply the Lyapunov optimization techniques

to solve P3. Define H tð Þ¼D Kb tð Þ;Hl;i tð Þ� �8i 2 I as the concatenated
vector of the virtual queues. Then a perturbed Lyapunov function
is defined as follows:

L H tð Þð Þ¼D 1
2

Kb tð Þ2 þ
X
i2I

Hl;i tð Þ2
" #

: ð23Þ

The Lyapunov function L H tð Þð Þ is a scalar measure of queue sta-
bilization. Intuitively, if L H tð Þð Þ is small then all queues are small;
and if L H tð Þð Þ is large then at least one queue is large. Thus, by min-
imizing a drift in the Lyapunov function, i.e., by minimizing a dif-
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ference in the Lyapunov function from one slot to the next, queues
Kb tð Þ and Hl;i tð Þ can be stabilized. The conditional one-slot Lya-
punov drift, which represents the expected change in the Lyapunov
function from one time slot to the next, is defined as follows:

D tð Þ¼D E L t þ 1ð Þ � L tð ÞjH tð Þf g; ð24Þ
where the expectation is taken over the random processes associ-
ated with the system, given the current queue states Kb tð Þ and
Hl;i tð Þ.

We now use the drift-plus-penalty minimization method intro-
duced in the theory of Lyapunov optimization [21] to solve P3. In
this method, the time-averaged constraints and the objective func-
tion are jointly considered. Adding the function of the expected
cost in the current time slot, i.e., the penalty function, to (24), we
obtain the drift-plus-penalty term D tð Þ þ VE CToT tð Þf g, where V, a
positive parameter, serves as a weight controlling the performance
tradeoff between cost and queueing delay, i.e., howmuch one cares
about the cost compared with the queueing delay. Instead of min-
imizing the energy consumption cost objective in P3, in the Lya-
punov optimization, the objective is to minimize the short term
drift-plus-penalty function by controlling Y tð Þ in each time slot t.

Note that P3 is a problem of minimizing the time-averaged cost
of energy consumption while maintaining the stability of the vir-
tual energy queue and load queue. In the drift-plus-penalty mini-
mization method, minimizing the Lyapunov drift term D tð Þ of the
drift-plus-penalty term alone pushes the queue length of the vir-
tual queues to lower values, while the second term of the drift-
plus-penalty term can be viewed as a penalty term with the
parameter V controlling the trade-off between minimizing the
queue length drift and minimizing the cost function. A larger value
of V indicates a greater priority to minimizing the cost function at
the cost of a greater size of the virtual queue and vice versa. Thus,
by varying the parameter V, one can obtain a desired trade-off
between the size of the queue backlogs and the cost of energy con-
sumption. In our case, the maximum feasible V results in the min-
imized time-averaged cost of energy consumption.

Using the drift-plus-penalty minimization method, a control
policy that solves problem P3 is obtained by minimizing the
drift-plus-penalty expression D tð Þ þ VE CToT tð Þf g. We first examine
the drift-plus-penalty term and obtain an upper bound on it in
the following proposition.

Proposition 1. In each time slot t, for all possible decisions and all
possible values of D tð Þ, the drift-plus-penalty term is upper bounded as
follows:

D tð Þ þ VE CToT tð Þf g 6 Bþ Kb tð ÞE P
i2I

bi tð ÞjH tð Þ
� 	

þP
i2I

Hl;i tð ÞE D
�

i tð Þ�Di tð Þ
D
�

i tð Þ�Di tð Þ
� bijH tð Þ

8<
:

9=
;þ VE

P
i2I

CMG;i tð Þ þ P
i2I

CCOM;i tð Þ
� 	

;

ð25Þ

where B¼D 1
2 max R2

dis;R
2
ch

n o
þ 1

2 1þ b2
max


 �
and

bmax ¼D max bi : 8i 2 If g.
Proof. See Appendix A j

With the drift-plus-penalty minimization method, the control
decisions are chosen to minimize the upper bound on the Lya-
punov drift-plus-penalty obtained in (25) instead of minimizing
the drift-plus-penalty expression directly. It will be shown in Sec-
tion 4.3 that greedily minimizing the upper bound on the Lya-
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punov drift-plus-penalty obtained in (25) provides a bounded
sub-optimal solution to P3. Hence, the real-time sharing control
algorithm can be described as follows: in each time slot t, given
the system state X tð Þ and the queue statesH tð Þ, the real-time shar-
ing control algorithm determines the control decision Y tð Þ by solv-
ing the following linear programming problem P4:

P4 : min
Y tð Þ

Kb tð ÞP
i2I

bi tð Þ þ P
i2I

Hl;i tð Þ D
�

i tð Þ�Di tð Þ
D
�

i tð Þ�Di tð Þ

þV
P
i2I

CMG;i tð Þ þ V
P
i2I

CCOM;i tð Þ

s:t: 2ð Þ 5ð Þ 6ð Þ 7ð Þ 9ð Þ 20ð Þ 21ð Þ:

ð26Þ

Although no statistical knowledge associated with the system state
X tð Þ is required, the queue states H tð Þ carry sufficient statistical
information needed to determine the control decision Y tð Þ. We will
show in Section 4.3 that the design of the real-time problem P4 can
lead to some analytical performance guarantee.

4.3. Algorithm performance analysis

In this section, we analyze the performance of the real-time
sharing control algorithm P4 with respect to the original problem
P1.

In the following proposition, we prove that the boundedness of
the energy states (10) in P1 can be satisfied by appropriately
designing the perturbation parameter h and the control parameter
V. Therefore, the control decisions Y tð Þ derived from P4 are a feasi-
ble set of P1.

Proposition 2. In each time slot t, set the perturbation parameter h as

h¼D Smin þ gdisRdis þ Vpmax; ð27Þ
where

0 < V 6 gch Smax � Smin � gchRch � gdisRdisð Þ
pmax � pmin

: ð28Þ

Then, under the real-time sharing control algorithm, given that the sys-
tem state X tð Þ is i.i.d over time, we have

1) All the control decisions Y tð Þ derived from P4 are feasible to P1,
i.e.,
Smin 6 s tð Þ 6 Smax; 8t: ð29Þ
2) The gap between the optimal cost of P1 and the expected time-

averaged cost under the proposed algorithm by solving P4 is
within bound B=V, i.e.,
C�
P4 � C�

P1 6 B
V

ð30Þ

where C�
P4 is the expected time-averaged cost achieved by P4, C�

P1 is

the optimal cost of P1, and B¼D 1
2 max R2

dis;R
2
ch

n o
þ 1

2 1þ b2
max


 �
.

Proof. See Appendix B j

While Proposition 2.1 indicates that, under the real-time shar-
ing control algorithm, the feasibility of the solutions is maintained,
Proposition 2.2 characterizes the gap between the resulting time-
averaged cost and the optimal cost of P1, which is in the order of
O 1=Vð Þ. To minimize this gap, the control parameter V should be

set as Vmax ¼D gch Smax�Smin�gchRch�gdisRdisð Þ
pmax�pmin

. In other words, under the

real-time sharing control algorithm, the time-averaged cost is min-
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imized when V ¼ Vmax. Since Vmax increases with Smax, which
depends on the shared battery capacity, the real-time sharing con-
trol algorithm is asymptotically equivalent to P1 as the shared bat-
tery capacity increases.

In summary, the Lyapunov-based real-time sharing control
algorithm provides a low-complexity alternative to achieve a sim-
ilar performance to the original optimization problem P1. How-
ever, according to the definition of Vmax, the proposed algorithm
performs better for the shared battery with a larger capacity com-
pared to the one with a smaller capacity.

4.4. Distributed Sharing Control Algorithm

In the previous section, we presented a Lyapunov-based real-
time sharing control algorithm to coordinate all households’
energy consumption and battery utilization. The real-time problem
P4 can be solved in a centralized way, provided that the solar
energy generations and load demand preferences of all the house-
holds are all known to a central agent, i.e., all households have to
report their renewable generations and demand preferences
including the preferred power demands and the QoS control fac-
tors, to the central agent. However, this leads to privacy concerns,
since the households may not be willing to disclose their private
information. In this section, we propose a distributed sharing con-
trol algorithm, which is more implementable in practice, to solve
the real-time energy management problem P4 in a distributed
manner.

Naturally, in each time slot, based on their solar energy gener-
ations and loads, the group of households I can be divided into
two groups: energy surplus group A, Ia, in which ggv ;i P Di

8i 2 Ia, and energy deficit group B, Ib, in which ggv ;i < Di

8i 2 Ib. Hence, the optimization problem P4 can be split into
two sub-problems for group A and B, respectively:

P4-a : min
Y tð Þ

Kb tð Þ P
i2Ia

bi tð Þ þ P
i2Ia

Hl;i tð Þ D
�

i tð Þ�Di tð Þ
D
�

i tð Þ�Di tð Þ

þV
P
i2Ia

CMG;i tð Þ þ V
P
i2Ia

CCOM;i tð Þ

s:t: 2ð Þ 5ð Þ 7ð Þ 9ð Þ 20ð Þ 21ð Þ;

ð31Þ

and

P4-b : min
Y tð Þ

Kb tð Þ P
i2Ib

bi tð Þ þ P
i2Ib

Hl;i tð Þ D
�

i tð Þ�Di tð Þ
D
�

i tð Þ�Di tð Þ

þV
P
i2Ib

CMG;i tð Þ þ V
P
i2Ib

CCOM;i tð Þ

s:t: 2ð Þ 6ð Þ 7ð Þ 9ð Þ 20ð Þ 21ð Þ:

ð32Þ

It is noticed that the virtual queue state Kb tð Þ, which is deter-
mined by the battery charging and discharging amounts in the pre-
vious time slot t � 1, can be calculated at the central coordinator
side. Thus, in time slot t, assuming Kb tð Þ is known to all households,
the optimization problems in P4-a and P4-b can be split into sub-
problems for each household. Specifically, the sub-problem for
each household is

P4-a’ for i 2 Ia :

min
Yi tð Þ

Kb tð Þbi tð Þ þ Hl;i tð Þ Di tð Þ�Di tð Þ
Di tð Þ�Di tð Þ þ VCi tð Þ

s:t: 2ð Þ 5ð Þ 7ð Þ 21ð Þ;
0 6 gch;i tð Þ þ gs;i tð Þ 6 nch;i tð ÞRch;

0 6 gdis;i tð Þ 6 ndis;i tð ÞRdis;

ð33Þ
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and
P4-b’ for i 2 Ib :

min
Yi tð Þ

Kb tð Þbi tð Þ þ Hl;i tð Þ Di tð Þ�Di tð Þ
Di tð Þ�Di tð Þ þ VCi tð Þ

s:t: 2ð Þ 6ð Þ 7ð Þ 21ð Þ;
0 6 gch;i tð Þ þ gs;i tð Þ 6 nch;i tð ÞRch;

0 6 gdis;i tð Þ 6 ndis;i tð ÞRdis;

ð34Þ
where Ci tð Þ ¼ CMG;i tð Þ þ CCOM;i tð Þ; nch;i tð Þ and ndis;i tð Þ represent the
percentages of the maximum charging rate and discharging rate,
Rch and Rdis, taken by household i, respectively. Apparently, in
each time slot, as long as

P
i2Inch;i tð Þ 6 1 and

P
i2Indis;i tð Þ 6 1,

the constraint (9) is satisfied and the solutions to the sub-
problems of individual households, P4-a’ and P4-b’, are feasible
to P4.

We now present a division scheme to divide Rch and Rdis among
households who request to charge or discharge in a way that
allows for not only the requests of households but also their energy
contributions to the shared battery. At the beginning of each time
slot t, each household first presumes that Rch/Rdis is all taken by
itself, i.e., nch;i tð Þ ¼ 1 and ndis;i tð Þ ¼ 1 8i 2 I. Based on this presump-
tion in addition to its solar energy generation gpv ;i tð Þ and load
demand di tð Þ, each household with energy surplus/deficit calcu-
lates its optimal control vector, i.e., the optimal load Di tð Þ, optimal
energy purchasing request for load serving gl;i tð Þ, optimal energy
purchasing request for battery charging gs;i tð Þ, optimal battery
charging/discharging requests gch;i tð Þ/gdis;i tð Þ by solving the real-
time problem P4-a’/P4-b’.

For the energy surplus group, if the sum of charging requests
obtained exceeds the maximum charging rate, the central coordi-
nator proportionally divides the maximum charging rate among
households based on the amount of their charging requests, i.e.,

nch;i tð Þ ¼ gch;i tð ÞP
i2Ib

gch;i tð Þ.

For the energy deficit group, if the sum of discharging requests
obtained exceeds the maximum discharging rate, the central
coordinator divides the maximum discharging rate among house-
holds based on their energy contributions (the accumulated
amount of energy it charged and discharged previously), i.e.,
ndis;i tð Þ ¼ Coni tð ÞP

i2Ib
Coni tð Þ, where Coni tð Þ is the energy contribution of

household i in time slot t, which is given by

Coni tð Þ ¼ Pt�1
s¼1gch gch;i sð Þ þ gs;i sð Þ
 �� gdisgdis;i sð Þ. Once household i

discharges more than its contribution, i.e., Coni tð Þ < 0, it is only
allowed to charge until it has a positive contribution to make sure
it restores the discharging amount that exceeds its energy contri-
bution. The central coordinator records the energy contribution of
each household. Accordingly, each household redetermines its
optimal control vector based on the adjusted value of
nch;i tð Þ/ndis;i tð Þ.

The real-time distributed sharing control algorithm is summa-
rized in Algorithm1. With all information obtained locally or
through simple communication, under the real-time distributed
sharing control algorithm, the optimization problem is solved
locally without requiring any statistical information of the system.
Thus, the real-time distributed control algorithm not only avoids
disclosure of private information but also can be implemented
more easily.
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Algorithm 1. Real-time Distributed Sharing Control Algorithm
Fig. 2. An example of solar generation profiles and load profiles of individual
households as well as real-time prices from the main grid.
5. Performance evaluation

A performance evaluation of the proposed real-time sharing
control algorithm via numerical simulations is provided in this
section.
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5.1. Simulation setup

We consider a microgrid with I households in the same neigh-
borhood sharing one battery with capacity of Scap, charging and dis-
charging efficiencies of gch ¼ 0:8 and gdis ¼ 1:25, respectively. For
the sake of simplicity, we assume that Smax ¼ Scap and
Smin ¼ 0:1Smax, respectively. In addition, the maximum charging
and discharging rates are assumed to be of the same quantity,
Rch ¼ Rch ¼ 0:15Smax. The initial battery energy level is set as Smin.

Due to various living habits and some social factors such as the
age and type of residence, the load demand of each household in
the considered microgrid varies. We simply classify the households
into three types: Type I low power consumption, Type II medium
power consumption and Type III high power consumption. Each
household has a solar PV system with different capacity that gen-
erates a different amount of renewable energy everyday from 6 am
to 7 pm. We assume households in each type have solar PV sys-
tems generating a similar amount of renewable energy everyday,
which is selected from a uniform distribution with the mean value
of 5 kWh, 8 kWh and 15 kWh and a slight variance of 0.05 kWh for
Type I, Type II and Type III, respectively. As shown in the illustra-
tive example in Fig. 2(a), the renewable energy of each household
in each time slot is generated using a beta distribution with the
mean value of 0.6 kW and the standard deviation of 0.03 kW.

The simulations are run over households with different appli-
ance demand profiles of different types of households. An appli-
ance demand profile generator is developed to simulate the
time-varying energy consumption of household appliances for
each household in each time slot as shown in Fig. 2(b). With this
appliance demand profile generator, each appliance operates in a
random time slot during a certain period per day and consumes
a certain amount of power selected from a uniform distribution
with a different mean for each household type to differentiate
power consumption among different types of households, and a
variance of 0.2–1 kWh to differentiate power consumption among
households in the same type. Note that the main objective of the
appliance demand profile generator and the solar energy genera-
tion simulator is to simulate the differentiation in load demands
and solar energy generations of different households in each time
slot to randomly construct the scenario, where some households
have surplus solar energy to compete for the free storage space
of the battery while others with energy deficit compete for the
energy stored in the battery.

The total load demand generated by the appliance demand pro-
file generator for each household in each time slot is used as its
maximum energy request Di tð Þ, while the minimum energy
demands Di tð Þ that can not be shed is set randomly from



Table 1
Comparison of costs and solar generation curtailment rates of the whole microgrid and individual households.

System Average H1 H2 H3 H4 H5 H6 H7 H8 H9 H10

Household Profile
Average Monthly Load Demand (kWh)

1072.14 1062.03 1304.61 880.353 1305.55 1312.58 878.48 882.93 1302.85 1070.14
Average Monthly Solar Generation (kWh)

247.50 246.67 486.18 142.36 486.82 485.13 142.39 142.37 489.22 247.01
Battery Capacity in Distributed ESSs (kWh)

19.37 19.18 23.57 15.90 23.58 23.71 15.87 15.95 23.53 19.33

Average Monthly Cost (R)
Without ESS and DM

1478.39 1456.24 1445.45 1682.92 1233.19 1681.39 1693.78 1228.90 1234.11 1672.51 1455.39
Distributed Sharing Alg

1067.79 1053.63 1056.13 1161.26 944.34 1172.38 1168.13 946.70 953.61 1161.19 1060.48
Greedy Alg 1 TP = 1R/kWh

1352.27 1349.25 1340.88 1498.77 1164.83 1497.89 1502.28 1160.34 1166.56 1490.10 1351.76
Greedy Alg 2 TP = 0.8R/kWh

1389.38 1386.95 1377.71 1551.32 1180.77 1551.22 1559.95 1174.11 1183.76 1540.49 1387.50
Greedy Alg 3 TP = 1.2R/kWh

1385.75 1392.72 1382.64 1510.44 1215.78 1513.28 1517.21 1211.17 1217.48 1505.74 1391.04
Distributed ESSs

1154.73 1154.46 1155.27 1239.62 1033.95 1235.85 1262.53 1035.19 1037.35 1234.6 1158.45

Average Cost per kWh (R/kWh)
Without ESS and DM

1.3353 1.3583 1.3610 1.2900 1.4008 1.2879 1.2904 1.3989 1.3977 1.2837 1.3600
Distributed Sharing Alg

1.0757 1.0982 1.1151 0.9843 1.2166 0.9914 0.9817 1.2230 1.2224 0.9839 1.1077
Greedy Alg 1 TP = 1R/kWh

1.2220 1.2591 1.2632 1.1494 1.3238 1.1479 1.1451 1.3215 1.3219 1.1443 1.2638
Greedy Alg 2 TP = 0.8R/kWh

1.2563 1.2944 1.2980 1.1915 1.3416 1.1898 1.1916 1.3369 1.3411 1.1842 1.2969
Greedy Alg 3 TP = 1.2R/kWh

1.2529 1.2997 1.3025 1.1600 1.3813 1.1607 1.1589 1.3789 1.3791 1.1575 1.3001
Distributed ESSs

1.1432 1.1563 1.1676 1.0363 1.2498 1.0298 1.0428 1.2505 1.2450 1.0285 1.1612

Solar Generation Curtailment Rate
Distributed Sharing Alg

5.35% 5.29% 5.28% 5.39% 4.97% 5.42% 5.47% 5.03% 5.03% 5.51 % 5.34%
Greedy Alg 1 TP = 1R/kWh

25.25% 24.50% 24.47% 25.90% 23.23% 26.07% 25.91% 23.23% 23.24% 26.09% 24.41%
Greedy Alg 2 TP = 0.8R/kWh

29.26% 28.35% 28.28% 30.04% 26.67% 30.27% 30.12% 26.66% 26.66% 30.39% 28.25%
Greedy Alg 3 TP = 1.2R/kWh

20.86% 20.19% 20.13% 21.39% 19.11% 21.63% 21.41% 19.11% 19.19% 21.62% 20.10%
Distributed ESSs

9.03% 1.16% 2.72% 13.36% 0 14.02% 13.74% 0 0 13.44% 2.49%

TP stands for threshold price.

Fig. 3. Average cost per kWh and solar generation curtailment rate under various
battery capacities.
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0:3Di tð Þ;0:7Di tð Þ� �
. The QoS related parameters ai tð Þ for each

household in each time slot and bi for each household are chosen
randomly from [1.5, 3.5] and [0.5, 0.7], respectively. In addition,
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as shown in Fig. 2(c), the time-varying energy price from the main
grid p tð Þ is uniformly distributed between 0.8 and 2.2R/kWh with
the mean of 1.5R/kWh.

5.2. Simulation results

This section presents simulation results of the proposed dis-
tributed sharing control algorithm.We consider a period of 90 days,
where T ¼ 2160 with each time slot representing 1 h, and ran-
domly generate 10 households consisting of 3 Type I households
with an average daily load demand of 29.35 kWh, 3 Type II house-
holds with an average daily load demand of 35.60 kWh and 4 Type
III households with an average daily load demand of 58.06 kWh. In
total, the 10 households have a daily average of 427.09 kWh of load
demand and a daily average of 103.85 kWh of solar generation. The
average monthly load demands and solar generations of individual
households are listed in Table 1 for the sake of easy comparison.
The real-time optimization problem in P4 is solved using the
CVX toolbox [30] for Matlab.

By varying the battery capacity, we investigate the effectiveness
of the shared battery in cost saving in this battery sharing system.
As can be observed in Fig. 3(b), the solar generation curtailment



Fig. 4. Real-time system states X tð Þ and control decisions Y tð Þ of the proposed
distributed sharing control algorithm.
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rate drops with an increase in the battery capacity since there is
more storage capacity to accommodate surplus solar generations
and cheaper electricity from the MG. Accordingly, the average cost
per kWh decreases with the increase in the battery capacity as
shown in Fig. 3(a). Obviously, considering the relatively high initial
investment cost of batteries, which is expressed on a per kWh of
energy capacity basis, a trade-off between battery capacity, solar
generation curtailment, electricity consumption cost along with
other factors should be made in sizing the shared battery, so that
the battery sharing system achieves optimal cost-benefit ratio.
However, in this work, we mainly concentrate on how to utilize
the shared storage given the dynamic behavior of the system to
reduce electricity consumption cost and do not consider the opti-
mal sizing of the shared battery. In the following, we further inves-
tigate the performance of the proposed sharing control algorithm
using a battery sharing system with the 10 households sharing a
200 kWh battery, which is enough to accommodate the load
demands with a relatively low cost and near zero solar generation
curtailment (shown in Fig. 3), as an example. The average monthly
load demands and corresponding average monthly cost without a
battery storage and a demand management mechanism are listed
Table 1 as lower bounds.

In order to evaluate the performance of the proposed dis-
tributed sharing control algorithm, a greedy sharing algorithm,
where each household is myopic and only aims to minimize its
current cost without taking the future and other households into
account, is used for comparison. Specifically, under this myopic
greedy sharing algorithm, assuming that all storage space and
energy available in the shared battery can be used by itself, each
household independently solves a simple cost minimization prob-
lem in (35) to derive its optimal charging (energy generated by its
solar energy generation and purchased from the MG) and discharg-
ing requests as well as the optimal energy consumption of its con-
trollable loads. To ensure that the space-availability constraint and
the energy-availability constraint in (11) are satisfied, if the sum of
the amounts of charge and/or discharge from all households
exceeds the storage space and/or energy available in the shared
battery, the storage space and/or energy available for charging/dis-
charging is proportionally divided among the households based on
the amounts of their charging requests and/or their energy
contributions.

min
Y tð Þ

gl;i tð Þ þ gs;i tð Þ� �
p tð Þ þ ai tð Þ Di

�

tð Þ � Di tð Þ
� �2

; 8i 2 I;

s:t: 2ð Þ 5ð Þ 6ð Þ 7ð Þ 8ð Þ 11ð Þ D
�

i tð Þ�Di tð Þ
D
�

i tð Þ�Di tð Þ
6 bi; 8i 2 I:

ð35Þ
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Note that, since there is no load management mechanism in the

greedy algorithm, the constraint Di tð Þ�Di tð Þ
Di tð Þ�Di tð Þ 6 bi is added to make sure

that the QoS of each household is satisfied. Moreover, to allow the
greedy sharing algorithm to take advantage of the time-varying
pricing, if there is storage space for charging, each household pur-
chases energy from the MG as long as the price is lower than a cer-
tain price, which is called threshold price. Note that, under the
greedy sharing algorithm, since purchasing energy to charge into
the battery mostly depends on the threshold price, there could be
unnecessary energy purchases, which in turn leads to increases in
the average cost per kWh and solar generation curtailment. In the
comparison, the threshold price is first set as 1R/kWh. The thresh-
old price will be varied later on to provide a more complete
comparison.

It can be observed that, in Fig. 5, under the greedy sharing algo-
rithm, as long as there is storage space, energy is purchased to
charge into the battery when the price is lower than the threshold
price, which results in a situation where there is less storage space
for the generated solar energy. In contrast, as shown in Fig. 4, with
the systematic optimization mechanism in the proposed sharing
control algorithm, energy is purchased to charge into the shared
battery with lower prices when necessary, and the solar energy
generation takes precedence when making charging decision. As
can be observed in Fig. 6, which compares the real-time prices
from the MG and the real-time costs of individual households
incurred under the proposed sharing control algorithm, the spikes
of the real-time costs of each household coincide with the drops in
the prices. It can be explained as follows: with the Lyapunov opti-
mization based sharing control algorithm, purchasing energy to
charge to the shared battery if necessary only occurs when the
price from the MG is lower. In general, as shown in Fig. 7, the
SoC of the shared battery under the greedy sharing algorithm (with
the average SoC level being 38.41 kW).

Fig. 8 provides a comparison of the accumulated served load
and corresponding cost over time. The accumulated original
demand and corresponding cost (with an average monthly cost
of R1478.39 as listed in Table 1) without a battery storage and a
demand management mechanism are shown as lower bounds. It
is illustrated that the proposed sharing control algorithm with an
average monthly cost of R1067.79 outperforms the myopic greedy
algorithm with an average monthly cost of R1351.75. In addition,
as shown in both Figs. 5 and 8, without a proper load management
mechanism, the greedy sharing algorithm has to serve more energy
consumption (with the average shed demand rate being 0.05%)
with a higher average cost per kWh (1.22R/kWh) compared to that
of the proposed algorithm (1.08R/kWh) with an average shed
demand rate of 10.34%, as listed in Table 1. Table 1 also shows that,
Fig. 5. Real-time inputs and outputs of the greedy sharing algorithm.



Fig. 6. Real-time prices from the main grid and real-time costs.

Fig. 7. State of Charge.

Fig. 8. Comparison of accumulated costs and loads between the proposed
algorithm and the greedy algorithm.
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compared to the greedy algorithm, the proposed sharing control
algorithm reduces the average monthly cost and solar generation
curtailment of each individual household by 19.11%–22.25% and
79.20%–79.21%, respectively.

As mentioned above, under the greedy sharing algorithm, the
choice of the threshold price has an impact on the average cost
per kWh and solar generation curtailment. To show the influence
of the threshold price, the total 30-day costs, the average costs
per kWh and the solar generation curtailment rates under the
greedy sharing algorithm with varying threshold prices are com-
12
pared in Table 1. Note that, when the threshold price is set as
the lowest price 0.8R/kWh, there is no purchased energy to charge
into the shared battery. It is shown that, the greedy sharing algo-
rithm with the threshold price being 1R/kWh achieves the lowest
costs but wastes more solar generation compared to the case with
the threshold price being 1.2R/kWh, as the energy purchased to
charge into the battery leads to less storage space for the generated
solar energy. In general, under the greedy sharing algorithm, less
generated solar energy can be accommodated. Thus, the proposed
sharing control algorithm significantly reduces the energy costs of
individual households while avoiding solar generation curtailment
more effectively.

In addition, to investigate the effectiveness of the proposed
sharing algorithm that is able to take advantage of the non-
overlapping power consumption patterns of users, the proposed
distributed sharing system is compared with a distributed ESSs
case, where each household individually owns an ESS. The battery
capacity of individual household is set in proportion to its net load
demand (the load demand minus the renewable generation that
can be used to serve the load directly) while the overall capacity
of all households is equivalent to the capacity of the shared battery
in the sharing system. Specifically, the battery capacity of house-

hold i is equal to qiEmax, where qi ¼
PT�1

t¼0
Di tð Þ�gpv ;i tð ÞPI

i¼1

PT�1

t¼0
Di tð Þ�gpv ;i tð Þ

and Emax is

the capacity of the shared battery in the sharing system. For a fair
comparison, in the distributed ESSs case, each household operates
its ESS with a similar control scheme using the Lyapunov optimiza-
tion technique. As shown in Table 1, compared to the distributed
ESSs case, households with a shared battery achieve 5.14%–8.73%
lower average monthly costs while reducing 40.75% solar genera-
tion curtailment in total. This indicates that, by coordinating the
utilization of the shared battery among households, the solar gen-
eration curtailment can be avoided more effectively, which in turn
leads to energy cost reduction.
6. Conclusions

In this work, a smart community that is comprised of a group of
households with renewable energy sources and controllable loads
sharing a common battery is considered. An ESSM system, in which
households cooperatively utilize the shared battery, is presented,
aiming to minimize the long term time-averaged cost of the whole
system, i.e., the long-term time-averaged costs of all households,
subject to the operational constraints of the shared battery as well
as the arbitrary dynamics of renewable generations, load demands,
and electricity pricing. We study the energy management problem
for such an energy storage sharing system and propose a dis-
tributed real-time sharing control algorithm based on the Lya-
punov theory to coordinate households to optimally utilize the
shared battery by jointly optimizing charging and discharging of
the shared ESS as well as the energy consumption of all households
in a distributed manner without requiring any system statistics.
The proposed distributed sharing control algorithm is easy to
implement practically while preserving privacy. It is shown that,
the proposed sharing control algorithm leverages the price varia-
tions while taking the surplus PV generations into consideration
to reduce the electricity consumption costs by selecting proper
time slots to purchase cheaper electricity from the MG if necessary.
Compared to the greedy sharing algorithm and the distributed ESSs
case, the proposed sharing control algorithm can save power con-
sumption cost while improving the utilization of renewable energy
generation.

There are several possible directions to extend the work in the
future. First, a compelling extension of the proposed sharing
scheme would be the incorporation of battery degradation and life-
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cycle effects into the battery storage management. Secondly, as
forecasts of the system states (e.g., solar generations and loads)
can be available within a certain time interval, it would be interest-
ing to study how to incorporate these forecasts into the battery
sharing management system.
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Appendix A. Proof of Proposition 1

According to the definition of L H tð Þð Þ, the difference

L H tþ1ð Þð Þ�L H tð Þð Þ¼1
2

Kb tþ1ð Þ2�Kb tð Þ2
h i

þ
X
i2I

1
2

Hl;i tþ1ð Þ2�Hl;i tð Þ2
h i

ð36Þ

Based on the queue update of Kb tð Þ in (20), the term

Kb t þ 1ð Þ2 � Kb tð Þ2 in (36) can be upper bounded by

Kb t þ 1ð Þ2 � Kb tð Þ2 6 2Kb tð Þ
X
i2I

bi tð Þ þmax R2
dis;R

2
ch

n o
: ð37Þ

Similarly, based on the queue update of Hl;i tð Þ in (21), the term

Hl;i t þ 1ð Þ2 � Hl;i tð Þ2 in (36) can be upper bounded by

Hl;i t þ 1ð Þ2 � Hl;i tð Þ2 6 2Hl;i tð Þ Di tð Þ � Di tð Þ
Di tð Þ � Di tð Þ � bi

" #
þ 1þ b2

i : ð38Þ

Applying inequalities (37) and (38) to (36), taking the conditional
expectation over L H t þ 1ð Þð Þ � L H tð Þð Þ given H tð Þ and adding the
term VE CToT tð Þf g yield the upper bound in (25).

Appendix B. Proof of Proposition 2

Proof ofProposition 2:
The per-slot problem P4 includes all constraints of the original

problem P1 except for the energy state constraint. Hence, to prove
the solution derived from P4 are feasible to P1 is to show the
energy state s tð Þ is bounded within Smin; Smax½ �. The optimization
problem P4 can be rearranged to P5

P5 : min
Y tð Þ

Vp tð Þ þ Kb tð Þgch½ �
X
i2I

gs;i tð Þ þ Kb tð Þgch

X
i2I

gch;i tð Þ

þVp tð Þ
X
i2I

gl;i tð Þ � Kb tð Þgdis

X
i2I

gdis;i tð Þ

þV
X
i2I

ai Di tð Þ � Di tð Þ� �2 þX
i2I

Hl;i tð Þ Di tð Þ�Di tð Þ
Di tð Þ�Di tð Þ ;

s:t: 5ð Þ 6ð Þ 7ð Þ 2ð Þ 9ð Þ 20ð Þ 21ð Þ:

ð39Þ

Let D� tð Þ¼D D�
i tð Þ� �

;g�
ch tð Þ¼D g�

ch;i tð Þ
h i

;g�
dis tð Þ¼D g�

dis;i tð Þ
h i

;g�
l tð Þ¼D g�

l;i tð Þ
h i

and g�
s tð Þ¼D g�

s;i tð Þ
h i

8i 2 I be the optimal solution to (39). It is

noticed that D� tð Þ will not directly affect the battery queue Kb tð Þ.
Hence, D� tð Þ can be treated as a given load. As mentioned previ-
ously, we consider two cases in determining how to utilize the solar
energy generation: Case 1: energy surplus where ggv;i tð Þ P D�

i tð Þ
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and Case 2: energy deficit where ggv;i tð Þ < D�
i tð Þ. Thus, the user

group I can be naturally divided into two groups: group A, Ia,
where ggv;i tð Þ P D�

i tð Þ 8i 2 Ia, and group B, Ib, where
ggv;i tð Þ < D�

i tð Þ 8i 2 Ib. Correspondingly, the optimization problem
P5 can be split into two per-slot sub-problems for group A and B,
respectively, as follows:

� Case 1: when ggv ;i tð Þ P D�
i tð Þ, we have g�

l;i tð Þ ¼ 0. Then, the opti-
mization problem for group A P5-a is written as:
P5-a : Energy Surplus
min
Y tð Þ

Vp tð Þ þ Kb tð Þgch½ �
X
i2Ia

gs;i tð Þ þ Kb tð Þgch

X
i2Ia

gch;i tð Þ

�Kb tð Þgdis

X
i2Ia

gdis;i tð Þ þ V
X
i2Ia

ai Di tð Þ � Di tð Þ� �2
þ
X
i2Ia

Hl;i tð Þ Di tð Þ�Di tð Þ
Di tð Þ�Di tð Þ

s:t: 2ð Þ 9ð Þ 20ð Þ 21ð Þ:
ð40Þ

� Case 2: when ggv ;i tð Þ < D�
i tð Þ, according to (6), we have

g�
ch;i tð Þ ¼ 0 and gl;i tð Þ ¼ D�

i tð Þ � g�
dis;i tð Þ � gpv ;i tð Þ. Then, the

optimization problem for group B P5-b is written as:

P5-b : Energy Deficit
min
Y tð Þ

Vp tð Þ þ Kb tð Þgch½ �
X
i2Ib

gs;i tð Þ � Kb tð Þgdis

X
i2Ib

gdis;i tð Þ

þVp tð Þ
X
i2Ib

Di tð Þ � gdis;i tð Þ � gpv;i tð Þ� �
þV

X
i2Ib

ai Di tð Þ � Di tð Þ� �2 þX
i2Ib

Hl;i tð Þ Di tð Þ�Di tð Þ
Di tð Þ�Di tð Þ

¼ Vp tð Þ þ Kb tð Þgch½ �
X
i2Ib

gs;i tð Þ � Vp tð Þ
X
i2Ib

gpv;i tð Þ

� Vp tð Þ þ Kb tð Þgdis½ �
X
i2Ib

gdis;i tð Þ þ Vp tð Þ
X
i2Ib

Di tð Þ

þV
X
i2Ib

ai Di tð Þ � Di tð Þ� �2 þX
i2Ib

Hl;i tð Þ Di tð Þ�Di tð Þ
Di tð Þ�Di tð Þ

s:t: 2ð Þ 9ð Þ 20ð Þ 21ð Þ:
ð41Þ

By combining P5-a and P5-b together, the optimization prob-
lem P5 is transformed into the following optimization problem:

P6 : min
Y tð Þ

Vp tð Þ þ Kb tð Þgch½ �
X
i2I

gs;i tð Þ þ Kb tð Þgch

X
i2Ia

gch;i tð Þ

� Vp tð Þ þ Kb tð Þgdis½ �
X
i2Ib

gdis;i tð Þ � Kb tð Þgdis

X
i2Ia

gdis;i tð Þ

þVp tð Þ
X
i2Ib

Di tð Þ þ V
X
i2I

ai Di tð Þ � Di tð Þ� �2
þ
X
i2I

Hl;i tð Þ Di tð Þ�Di tð Þ
Di tð Þ�Di tð Þ

s:t: 2ð Þ 9ð Þ 20ð Þ 21ð Þ:

ð42Þ

Note that the optimal solution to P6 has the following properties:

� If Kb tð Þ > �Vpmin=gch;
P

i2Ig
�
s;i ¼ 0;

� If Kb tð Þ < �Vpmax=gch;
P

i2Ig
�
s;i þ g�

ch;i ¼ Rch.

We now prove the boundary of s tð Þ in (29) using induction. First
it is obvious that the lower and upper bounds hold for t ¼ 0. Now
suppose that the boundary holds for time slot t, i.e.,
Smin 6 s tð Þ 6 Smax. This in turn indicates Smin � h 6 Kb tð Þ 6 Smax � h,
i.e., �Vpmax=gch � gdisRdis 6 Kb tð Þ 6 Smax � Smin � Vpmax=gch � gdisRdis.
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Hence, to prove the boundary of s tð Þ in (29) also holds for time slot
t þ 1, we need to prove the boundary of Kb tð Þ, i.e.,
�Vpmax=gch � gdisRdis; Smax � Smin � Vpmax=gch � gdisRdis½ �, holds for
time slot t þ 1. We consider the following cases:

1) First suppose �Vpmax=gch � gdisRdis 6 Kb tð Þ < �Vpmaxgch, we

have
P

i2I g�
s;i þ g�

ch;i

� 
¼ Rch;

P
i2Ib

g�
dis;i ¼ 0 andP

i2Ia
g�
dis;i ¼ 0. Then, based on (20), the battery queue Kb tð Þ

updates as follows:
Kb t þ 1ð Þ ¼ Kb tð Þ þ gch

P
i2I

g�
s;i þ g�

ch;i

� 
� gdis

P
i2I

g�
dis;i

¼ Kb tð Þ þ gchRch > Kb tð Þ P �Vpmax=gch � gdisRdis:

In addition, as Kb tð Þ < �Vpmaxgch, we have

Kb tþ1ð Þ<�Vpmax=gchþgchRch 6 Smax�Smin�Vpmax=gch�gdisRdis;

as long as Smax � Smin � gdisRdis � gchRch P 0 holds.
2) Secondly, suppose �Vpmax=gch 6 Kb tð Þ 6 �Vpmin=gch,P
a) if Kb tð Þ P �Vp tð Þ=gch, we have i2Ig
�
s;i ¼ 0. There are

two possibilities to study:

i) when �Vp tð Þ=gch 6 Kb tð Þ < �Vp tð Þ=gdis, we haveP

i2Ig
�
ch;i ¼ min Rch;

P
i2Ia

gpv ;i � D�
i


 �� �
andP

i2Ig
�
dis;i ¼ 0. Thus,
Kb t þ 1ð Þ ¼ Kb tð Þ þ gch min Rch;
X
i2Ia

gpv;i � D�
i


 �( )

> Kb tð Þ P �Vpmax=gch � gdisRdis:

In addition, as Kb tð Þ < �Vpmin=gch, we have

Kb t þ 1ð Þ < �Vpmin=gch þ gchRch

6 Smax � Smin � Vpmax=gch � gdisRdis;

based on the definition V 6 gch Smax�Smin�gchRch�gdisRdisð Þ
pmax�pmin

in (28).
ii) when �Vp tð Þ=gdis 6 Kb tð Þ 6 �Vpmin=gch, we have
P
i2Ig

�
ch;i ¼ min Rch;

P
i2Ia

gpv ;i � D�
i


 �� �
andP

i2Ig
�
dis;i ¼ min Rdis;

P
i2Ib

D�
i � gpv ;i


 �n o
. In other words, the

maximum possible increase is gchRch and the maximum possi-
ble decrease is gdisRdis. Thus, using the upper bound of V as the
case above, we have

Kb t þ 1ð Þ < Kb tð Þ þ gchRch 6 �Vpmin=gch þ gchRch

6 Smax � Smin � Vpmax=gch � gdisRdis;

while

Kb t þ 1ð Þ > Kb tð Þ � gdisRdis P �Vpmax=gch � gdisRdis:

b) if Kb tð Þ < �Vp tð Þ=gch, we have
P

i2Ig
�
s;i þ

P
i2Ia

g�
ch;i ¼ Rch

and
P

i2Ig
�
dis;i ¼ 0. Thus, using the upper bound of V as

the case above, we have

Kb t þ 1ð Þ ¼ Kb tð Þ þ gchRch 6 �Vpmin=gch þ gchRch

6 Smax � Smin � Vpmax=gch � gdisRdis;

while

Kb t þ 1ð Þ ¼ Kb tð Þ þ gchRch P �Vpmax=gch þ gchRch

> �Vpmax=gch � gdisRdis;

3) Thirdly, suppose �Vpmin=gch < Kb tð Þ 6 0, we haveP
i2Ig

�
s;i ¼ 0. As the case 2.a above, we consider two possibil-

ities as follows:
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a) when �Vpmin=gch < Kb tð Þ 6 �Vpmin=gdis, we haveP
i2Ig

�
ch;i ¼ min Rch;

P
i2Ia

gpv ;i � D�
i

� �
and

P
i2Ig

�
dis;i ¼ 0.

Thus,

Kb t þ 1ð Þ ¼ Kb tð Þ þ gch min Rch;
P
i2Ia

gpv;i � D�
i

( )
> Kb tð Þ

> �Vpmin=gch > �Vpmax=gch � gdisRdis:

In addition, as Kb tð Þ > �Vpmin=gdis, we have

Kb t þ 1ð Þ < �Vpmin=gdis þ gchRch

6 Smax � Smin � Vpmax=gch � gdisRdis;

b) when Kb tð Þ P �Vpmingdis, we haveP
i2Ig

�
ch;i ¼ min Rch;

P
i2Ia

gpv ;i � D�
i


 �� �
andP

i2Ig
�
dis;i ¼ min Rdis;

P
i2Ib

D�
i � gpv ;i


 �n o
. In other words,

the maximum possible increase is Rch and the maximum
possible decrease is Rdis. Thus, using the upper bound of
V as the case above, we have

Kb t þ 1ð Þ < Kb tð Þ þ gchRch 6 �Vpmin=gdis þ gchRch

6 Smax � Smin � Vpmax=gch � gdisRdis;

while

Kb t þ 1ð Þ > Kb tð Þ � gdisRdis P �gdisRdis > �Vpmax=gch � gdisRdis:

4) Finally, suppose 0 < Kb tð Þ 6 Smax � Smin � Vpmax=gch � gdisRdis,
we have
 P

i2I
g�
s;i ¼ 0;

P
i2I

g�
ch;i ¼ 0

and
P
i2I

g�
dis;i ¼ min Rdis;

P
i2I

D�
i � gpv;i


 �� 	
:

Hence,

Kb t þ 1ð Þ ¼ Kb tð Þ � gdis min Rdis;
P
i2I

D�
i � gpv;i

� 	
< Kb tð Þ 6 Smax � Smin � Vpmax=gch � gdisRdis:

In addition, as Kb tð Þ > 0, we have

Kb tþ1ð Þ ¼Kb tð Þ�gdismin Rdis;
P
i2I

D�
i �gpv ;i

� 	

>�gdismin Rdis;
P
i2I

D�
i �gpv ;i

� 	
>�gdisRdis >�Vpmax=gch�gdisRdis:

From the induction, the boundary of s tð Þ in (29) holds for any
time slot with any control decisions derived from P4, which
indicates that all constraints of P1 are satisfied. Hence, all con-
trol decisions derived from P4 are feasible to P1.

Proof ofProposition 2.2:
To prove Proposition 2.2, we first give the following lemma,

which can be derived from Theorem 4.5 in [21].

Lemma 1. There exists a stationary and randomized control policy P
that achieves the following:

E CP tð Þ
n o

¼ C�
P1; ð43Þ

E
X
i2I

bPi tð Þ
( )

¼ 0; ð44Þ

E
Di tð Þ � DP

i tð Þ
Di tð Þ � Di tð Þ

( )
6 bi; ð45Þ
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where all expectations are taken over the randomness of the system
state and the possible randomness of the energy charging/discharging
and purchasing decisions.

Since the proposed algorithm is to minimize the RHS of (25), the
value of the RHS should be smaller than that under the policy P,
which yield:

D tð Þ þ VE C�
P4 tð Þ� �

6 Bþ Kb tð ÞE P
i2I

bPi tð ÞjH tð Þ
� 	

þP
i2I

Hl;i tð ÞE D
�

i tð Þ�DP
i tð Þ

D
�

i tð Þ�Di tð Þ
� bijH tð Þ

8<
:

9=
;þ VE

P
i2I

CP tð Þ
� 	

6 Bþ VC�
P1;

ð46Þ

where (44) and (45) in Lemma 1 have been used. Taking an expec-
tation over H tð Þ on both sides and summing over
t 2 0;1;2; � � � ; T � 1f g, we obtain

V
XT�1

t¼0

E C�
P4 tð Þ� �

6 TBþ TVC�
P1 � E L H T � 1ð Þð Þ � L H 0ð Þð Þf g: ð47Þ

Dividing both sides by TV yields:

1
T

XT�1

t¼0

E C�
P4 tð Þ� �

6 B
V
þ C�

P1 �
E L H T � 1ð Þð Þ � L H 0ð Þð Þf g

VT
: ð48Þ

Since E L H T � 1ð Þð Þf g and E L H 0ð Þð Þf g are finite, taking limits over T
to infinity gives:

lim
T!1

1
T

XT�1

t¼0

E C�
P4 tð Þ� �

6 B
V
þ C�

P1: ð49Þ
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