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ABSTRACT This paper studies energy storage sharing in a grid-connected residential microgrid, where
a group of households with controllable loads and renewable generations cooperatively shares an energy
storage. By exploiting delay tolerance of elastic loads, we develop a joint real time storage sharing and load
management system that takes into consideration the operational constraints of the shared energy storage
coupled with the time-varying load demands and stochastic renewable generations of all households, with
the aim of minimizing the long term time-averaged energy costs of the households without reducing energy
consumption. A Lyapunov-based online battery sharing control algorithm is designed to jointly optimize
energy consumption, load scheduling and energy charging/discharging actions of individual households only
based on current system states. The proposed online sharing algorithm enables the households to optimally
utilize the shared battery and reschedule their delay tolerant loads in a distributed but coordinated fashion,
while satisfying the time-varying energy consumption preference of each household. Numerical simulation
results demonstrate that the low-complexity joint storage sharing and load scheduling algorithm serves the
load demands of each household with a lower delay at a relatively low cost while facilitating a fair utilization
of the shared energy among the households in terms of their energy contributions.

INDEX TERMS Energy management, energy storage sharing, load management, Lyapunov optimization,
smart grids.

I. INTRODUCTION
The fast-growing electricity demand coupled with environ-
mental concerns about traditional fossil-fuel based electric-
ity generation has motivated the integration of renewable
energy systems, e.g., solar photovoltaics (PVs). However,
incorporation of such inherently intermittent and stochastic
renewable energy resources poses significant challenges in
managing a stable and efficient energy supply. Energy storage
is seen as an effective solution [1] to increasing dynamics
in power systems due to growing electricity demand and
renewable integration. Energy storage, as an energy buffer,
offers great flexibility in managing and optimally utilizing
the intermittent renewable energy by decoupling the time of
renewable generation and consumption. Integration of energy
storage hasmulti-faceted benefits for different players. On the
power grid operator side, energy storage improves stability,
sustainability, and reliability of renewable energy sources [2]
and power systems [3]. On the user side, reduced electricity
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cost and lessened interruptions can be achieved by storing
excess renewable energy and cheaper energy for later use in
times of renewable generation shortage and higher electricity
price.

An extensive effort has been made towards the under-
standing of the potential of energy storage for residential
energy management [4] in reducing the impact of intermit-
tent renewable generation and lowering the electricity cost.
Storagemanagement combinedwith loadmanagementwould
improve energy utilization efficiency. Residential load man-
agement usually aims to balance electric power supply and
reduce electricity expenditures through reducing consump-
tion and/or shifting consumption. In contrast the former, the
latter takes advantage of the variation of electricity prices
to schedule flexible loads across time without causing any
load curtailment. From the user’s perspective, energy stor-
age enables load shifting to optimizes energy costs with-
out compromising customers’ comfort. Energy management
in microgrids with renewable integration has been studied
from the perspective of load shifting combined with energy
storage. Various demand response approaches have been
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proposed to schedule the electricity loads in response to the
variation of renewable energy generations and/or electricity
prices [5]–[10]. Most studies assume that one entity owns an
energy storage system (ESS) and uses it solely.

The concept of sharing an ESS among users has received
increasing attention recently. In such an energy storage shar-
ing system, users with non-overlapping power consumption
patterns benefit from pooling their excess renewable energy
and/or cheaper energy together. Nevertheless, given the com-
plicated dynamics of the sharing system, sharing an ESS
creates challenges in demand response and energy storage
control. There have been previous works developing various
mechanisms and approaches to provide cost savings through
an ESS shared among multiple customers in a community or
between customers and a system operator [11]–[27]. Assum-
ing that the load demands and renewable energy generations
are known ahead of time, most of these studies focus on
the day-ahead energy storage allocation to accommodate the
energy loads and renewable generations without considering
load management or only considering energy consumption
reduction. In practice, with random and arbitrary changes in
load demands and renewable energy generations, adaptive
response to the unknown dynamics of the system inputs in
real-time is required for such a time-varying system.

Lyapunov optimization theory [28] has been recently
adopted to develop online energy management algorithms
involving demand side management mechanisms for micro-
grids with renewable energy resources combined with ESSs,
without requiring any a priori statistical knowledge of the
underlying stochastic processes [29]–[33]. Most of the stud-
ies primarily consider the scenario where an ESS is owned
and controlled solely by one entity, and focus on power
balancing of a power grid through coordinating a group
of distributed ESSs, or electricity cost minimizing through
charging/discharging as well as energy trading between the
users and a power grid or among users.

In our previous work [34], a Lyapunov-based real-time
battery sharing control algorithm was proposed to optimally
coordinate the utilization of a shared battery among mul-
tiple households to reduce their energy consumption costs.
Small portions of elastic loads are shed in response to energy
supply conditions to save costs taking into consideration the
user conform levels. The proposed optimal control algorithm
allows households to balance cost saving with the discomfort
caused by load shedding. In this paper, we extend the previous
work to incorporate load rescheduling by exploiting time
flexibility or delay tolerance of elastic loads. Elastic loads
are delay-tolerant in the sense that they can be postponed
and severed with some delay. The delayable loads com-
bined with energy storage give more opportunities to reduce
the energy cost. Nevertheless, developing an effective joint
energy storage sharing, energy consumptionmanagement and
load rescheduling solution faces challenges. First, storage
control decisions are coupled over time due to the finite
capacity of the battery. Second, load rescheduling decisions
affect the energy consumption and storage decisions and

vice versa. Given that load management and storage control
decisions from multiple households are correlated over time
and with each other, dynamically coordinating energy storage
combined with load rescheduling among a group of house-
holds is especially challenging.

There have been attempts, such as [5]–[7], employing the
Lyapunov optimization techniques in studying joint opti-
mization of storage control and load shifting, where all load
demands or all elastic load demands are considered to be
scheduled. Different from these works, in this paper, consid-
ering discomfort caused by energy consumption deviation,
only a portion of elastic loads is rescheduled and the amount
of the rescheduled loads, which varies over time depending
on energy consumption preferences of the households and
dynamics of the system, is to be determined along with
charging/discharging and energy consumption decisions on
a real time basis. This makes the joint storage sharing and
load scheduling optimization problem more complicated.

In this paper, we study the specific problem of multiple
households with delay-tolerate loads sharing an ESS and
design an online control algorithm for such an ESS sharing
system. Based on an extension of the battery sharing frame-
work presented in our previous work [34], the design of such
an energy management system aims to save energy cost by
managing and rescheduling energy consumption, instead of
reducing energy consumption. The main contributions of this
paper are as follows:

• An online control strategy is developed for the ESS
sharing system in the presence of delay-tolerate loads
to tackle the unknown dynamics of the system inputs.
Based on an extension of the battery sharing framework
presented in our previous work [34], a Lyapunov-based
ESS sharing management system is designed to save
energy cost by integrating energy consumption man-
agement, load scheduling and energy storage sharing,
without requiring any statistical knowledge of the load
demands and renewable generations of individual house-
holds.

• Taking into consideration the charging/discharging
requests and energy contributions to the shared ESS
from individual households, a distributed implementa-
tion of the proposed online sharing control strategy,
in which each household determines its optimal energy
charging/discharging and load management decisions
locally, is proposed to coordinate the utilization of the
ESS among the households in a distributed and fair
manner.

The rest of the paper is organized as follows: The related
works are briefly discussed in Section II. A joint load man-
agement and ESS sharing system model is presented in
Section III. The joint load management and energy storage
optimization problem in this ESS sharing system is formu-
lated in Section IV. In Section V, based on the Lyapunov
optimization theory, a distributed online sharing control algo-
rithm is designed to approximately solve the optimization
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problem and its performance is analyzed. Section VI presents
simulation evaluations. Finally, concluding remarks are pro-
vided in Section VII.

II. LITERATURE REVIEW AND BACKGROUND
Energy storage sharingmechanisms and approaches that have
been proposed for residential energy management mainly
consider two scenarios: (a) distributed ESSs scenario, where
multiple users own individual ESSs and share their stored
energy with each other; (b) a shared ESS scenario, where a
group of users operate a common ESS together. Existing stud-
ies with distributed ESSs generally focus on optimal coor-
dination among distributed storage resources belonging to
individual users. For instance, a decentralized control scheme
was proposed in [35] to allow households with solar systems
in an off-grid community to pool power together to fulfill
communal load demands. The proposed modified I-V droop
method controls power contributions from individual house-
holds such that each household contributes according to the
capacity and the state of charge of its battery. To effectively
coordinate distributed storage resources, many recent studies
have adopted the concept of peer-to-peer (P2P) trading to
develop optimization models to determine optimal schedules
of ESSs and trading decisions, such as [36]–[38]. The authors
in [38] investigated the optimal ESS operation and sizing
problem in a P2P energy trading network under two different
ESS ownership structures: user owned structure and a third
party energy sharing provider (ESP) owned structure. The
comparison of economic benefit between the two structures
shows that the ESP owned model achieves a smaller energy
cost saving owing to the fact that the benefits are split between
the users and the ESP, but requires less investment on a
smaller ESS, compared to the user owned ESS structure.

Relevant to this paper, studies with a shared ESS mainly
focus on optimal allocation of the shared ESS amongmultiple
users. Many studies model the interactions among multi-
ple users sharing an ESS as a non-cooperative game and
develop pricing-based decision-making strategies to deter-
mine day-ahead optimal ESS capacity allocation and charg-
ing/discharging schedule. The authors proposed an ESS
sharing control strategy combining ESS capacity trading and
decentralized ESS controlling for multiple users in [23].
ESS capacity trading and operation is modeled as a non-
cooperative static game, where each user decides its capacity
trading and charging/discharging scheduling a day ahead to
minimize energy operation cost, based on its own energy
demand, the total energy demand of others and the total
ESS capacity used by other. The authors in [24] studied an
energy sharing problem, where consumers within an apart-
ment building share a distributed energy resource (DER) con-
sisting of a renewable generator and an ESS, and developed
a Stackelberg game-based discriminatory auction model for
energy pricing and allocation. In the bi-level auction based
allocationmethod, the DER owner first determines the energy
prices based on consumers demand curves, the consumers
then decide accordingly their energy consumption. An energy

trading based ESS sharing approach for load management
of a Neighborhood Area Network (NAN) was proposed in
[25], where energy users with PV panels trade their surplus
PV energy with a community storage system (CES) and the
main grid. Adopting a dynamic non-cooperative repeated
game, the decentralized ESS sharing approach allows energy
users individually decide their optimal energy trading bids
along with storage schedules for the next day based on their
load demand and PV power generation forecasts. The authors
in [26] studied an energy-sharing network and introduced
an energy-sharing provider (ESP) with an ESS to facilitate
energy sharing among PV prosumers. A centralized day-head
energy sharing approach was proposed, where the ESP first
decides the schedule of the shared ESS for the next day
via stochastic programming based on individual prosumers’
load demand and PV generation forecasts, then sets real-time
prices for the prosumers to decide their energy consumption
accordingly via a Stackelberg game-based model. A storage
virtualization concept is introduced in [22], where a central
storage unit owned by an aggregator is virtualized into sepa-
rable virtual capacities which are sold to users. The authors
proposed a virtual storage sharing framework, in which the
aggregator determines the storage size and virtual capacity
pricing decision for the whole investment period, and each
user decides its virtual capacity and storage schedule based on
the day-head prediction of its load and renewable generation
in each operational period.

There have been several studies developing ESS sharing
control strategies to allocate the shared storage resource
taking energy contributions from individual users into
consideration. In [21], the authors proposed a centralized
reputation-based energymanagement system (EMS) that runs
a day-ahead optimization problem, to schedule appliance
power consumption of individual households and allocate the
available energy in the shared battery based on the renewable
energy that individual households have shared. The day-
ahead optimization problem requires the EMS to know all
the households’ energy information including information
about appliances to be scheduled and PV generation. In [27],
assuming load demands and renewable energy generations of
individual consumers are known, a credit-based energy man-
agement strategy was proposed to schedule an shared ESS in
a NAN, where multiple consumers share an ESS owned by a
load service entity (LSE) through energy trading in a dynamic
pricing system. In the proposed method, energy credits are
provided to each consumer for the excess renewable energy
it provides to the NAN and the grid. A credit limit for each
customer is predefined based on its distributed generation
capacity. These credits are then used during predefined peak
periods with higher energy prices, which is equivalent to a
virtual shift of the excess renewable energy to the predefined
peak periods.

The primary assumptions in most of these prior studies
is that load demands and renewable energy generations are
perfectly predicted or known ahead of time. Different from
the prior works, this study investigates the real-time ESS
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sharing problem and proposes an online ESS sharing control
strategy that is able to adaptively respond to dynamic changes
of the system. Moreover, storage sharing management and
load scheduling are jointly considered to further explore the
potential of the shared ESS in cost saving.

III. SYSTEM MODEL
In this study, we consider a smart community of a group
of households I = {1, 2, . . . , I } sharing an energy stor-
age battery via an online energy storage sharing manage-
ment (OESSM) system, which operates in slotted time
t ∈ {0, 1, . . . ,T − 1}. As in our previous study [34], the
households operate the shared battery via a central coordina-
tor, whichmanages the shared battery to ensure its operational
constraints are satisfied. Each household has an on-site solar
PV generator and can store energy harvested from its solar
generator or purchased from the main grid (MG) into the
shared battery. The time-varying load demands of the house-
holds can be supplied by their individual solar generators, the
MG and/or the shared battery.

A. HOUSEHOLD ENERGY SUPPLY AND DEMAND
The loads of each household consist of the following two
categories: 1. inelastic loads, which cannot be shed or shifted
over time; 2. elastic loads, which are flexible in a sense
that they can be flexibly scheduled or curtailed over time,
since the operation times and the amounts of energy usage of
such elastic loads can be adjusted. There is great potential to
exploit the inherent flexibility of elastic loads in cost saving.
In this work, we consider a load management mechanism,
where elastic loads that tolerate delay can be rescheduled and
served later in response to supply conditions so as to reduce
electricity costs while maintaining customer comfort. Note
that, all power quantities are in the unit of energy per time
slot in this paper.

For household i, denote the amount of energy used to serve
the current load in time slot t by d1,i(t), which is bounded by:

Di(t) ≥ d1,i(t) ≥ Di(t) ∀i ∈ I (1)

where Di(t) is the most preferred load demand of household
i in time slot t , including inelastic and elastic load demand
requests, and Di(t) is the inelastic load demand in time slot
t that must be satisfied. Note that both Di(t) and Di(t) are
decided by household i based on its physical constraints
and willingness to control its elastic loads in time slot t .
If household i refuses load rescheduling in time slot t , Di(t)
is equal to Di(t).
To control the quality-of-service (QoS) [32], [39], the long-

term time-averaged load rescheduling ratio, for the house-
holds, as in [31], the ratio of the rescheduled or delayed elastic
loads to the elastic loads is upper bounded, which is expressed
by

lim
T→∞

1
T

T−1∑
t=0

[
Di(t)− d1,i(t)

Di(t)− Di(t)

]
≤ βi ∀i ∈ I, (2)

where Di(t) − d1,i(t) is the rescheduled load demand,
Di(t)−Di(t) is the elastic load demand that can be potentially
rescheduled in time slot t , and βi ∈ (0, 1] is a QoS control
threshold reflecting the tolerance of household i to the energy
consumption rescheduling: the smaller the value of βi, the
tighter the QoS control.

Load rescheduling used for cost saving may cause dis-
comfort to the households. In time slot t , when the energy
consumption d1,i(t) deviates from the preferred load demand
Di(t), the discomfort experienced by household i is repre-
sented by the following discomfort cost function:

CCOM ,i(t) = αi(t)[Di(t)− d1,i(t)]2 ∀i ∈ I, (3)

where the weighted coefficient αi(t) indicates the sensitivity
of household i towards the energy consumption deviation
Di(t) − d1,i(t) in time slot t: a smaller αi(t) indicates that
household i is more sensitive towards the energy consumption
deviation. Hence, αi(t) could vary over time in a stochastic
manner. Note that both βi and αi(t) are decided by household
i based on its energy consumption preference.

As in [5], the load request that is not satisfied in time slot
t , Di(t)− d1,i(t), is buffered in a queue Qf ,i and served later.
Let d2,i(t) denote the amount of energy used to serve the
delayed elastic loads in time slot t . Then the queue backlog
Qf ,i evolves as follows:

Qf ,i(t)=Qf ,i(t − 1)−d2,i(t)+Di(t)−d1,i(t), ∀i ∈ I. (4)

The service of the rescheduled loads cannot be delayed for an
arbitrarily long time. In other words, the average delay of the
rescheduled loads in the queue should be finite. This can be
expressed as follows:

lim sup
T→∞

1
T

T−1∑
t=0

E
{
Qf ,i(t)

}
<∞, ∀i ∈ I. (5)

For the convenience of expression, we let Di(t) denote
the serving energy of household i in time slot t and
Di(t) , d1,i(t)+ d2,i(t).
In each time slot, the households can purchase energy from

the MG at the unit price p(t), pmin ≤ p(t) ≤ pmax , which is
time-varying, to supply its load or/and store into the shared
battery to take advantage of price variations. Let gl,i(t) denote
the amount of energy purchased by household i in time slot
t to supply Di(t) and gs,i(t) denote the amount of energy
purchased by household i in time slot t to store into the shared
battery, respectively. Thus, the energy cost incurred in time
slot t is given by

CMG,i(t) = [gl,i(t)+ gs,i(t)]p(t) ∀i ∈ I. (6)

Denote the amount of energy charged and discharged by
household i in time slot t by gch,i(t) and gdis,i(t), respectively,
and the time-varying PV energy generation of household i
in time slot t by gpv,i(t). We assume a priority of using the
PV energy generation gpv,i(t) to directly supply Di(t). Then
the excess PV energy, if any, will be stored into the shared
battery.WhenDi(t) ≤ gpv,i(t), i.e., energy surplus, the energy

VOLUME 9, 2021 46629



H. Zhu et al.: Real Time Energy Storage Sharing With Load Scheduling: A Lyapunov-Based Approach

that household i stores into the shared battery in time slot t is
given by

gch,i(t) ≤ gpv,i(t)− Di(t) ∀i ∈ I. (7)

Note that, due to the finite storage capacity, a portion of the
excess PV energy will be curtailed if there is not enough
storage space.

When Di(t) > gpv,i(t), i.e., energy deficit, the residual,
Di(t)−gpv,i(t), can be served with the energy purchased from
the MG, gl,i(t) and/or the energy discharged from the shared
battery, gdis,i(t). A balance between purchasing energy from
the MG and discharging energy from the battery must be
struck under the following feasibility condition:

gl,i(t)+ gdis,i(t) = Di(t)− gpv,i(t) ∀i ∈ I. (8)

Note that, gdis,i(t) = 0 in case of energy surplus while
gch,i(t) = 0 in case of energy deficit.

B. SHARED ENERGY STORAGE
In practice, energy conversion losses occur during the charg-
ing and discharging processes. Denote s(t) as the energy state
of the battery, i.e., state of charge (SOC), at the beginning of
time slot t , which evolves as follows:

s(t) = s(t − 1)+ ηch
∑
i∈I

[gch,i(t)+ gs,i(t)]

−ηdis
∑
i∈I

gdis,i(t),s(t−1)+
∑
i∈I

bi(t) ∀i ∈ I, (9)

where ηch ∈ (0, 1] and ηdis ∈ [1,∞) are the charging and
discharging efficiency coefficient, respectively, and bi(t) is
the effective charging and discharging amount in time slot t .
Due to limitation imposed by the charging and discharging

circuits, the amount of energy that can be charged/discharged
into/from the shred battery is upper bounded. The maximum
charging and discharging rate of the battery are denoted by
Rch and Rdis, respectively. We have

0 ≤
∑
i∈I

[gch,i(t)+ gs,i(t)] ≤ Rch

0 ≤
∑
i∈I

gdis,i(t) ≤ Rdis ∀i ∈ I. (10)

Charging a battery near its capacity or discharging it close
to zero will significantly reduce battery lifetime [40]. Thus,
the SOC of the shared battery in time slot t is bounded by

Smin ≤ s(t) ≤ Smax , (11)

where Smin and Smax are the preferred energy lower and upper
bounds respectively.

IV. ONLINE BATTERY SHARING ALGORITHM
A. PROBLEM STATEMENT AND FORMULATION
The objective of the OESSM system is to minimize the long-
term time-averaged energy consumption costs of all house-
holds while maintaining the discomfort experienced by each
household within an acceptable level in real-time, subject to

the time varying PV energy generations and load demand
requests of the households along with the operational con-
straints of the shared battery, by jointly managing energy con-
sumption, load rescheduling, energy purchasing and energy
charging/discharging actions of all households.

For the sake of ease of reading, the system state X(t) and
the control vectorY(t) in time slot t are defined, respectively,
by:

X(t) , [gpv(t), D̂(t), p(t), s(t)], (12)

where D̂(t) , [Di(t),Di(t)] ∀i is the load demand request
vector and gpv(t) , [gpv,i(t)] ∀i is the PV generation vector;
and

Y(t) , [gs(t), gl(t), gch(t), gdis(t),d1(t),d2(t)], (13)

where gs(t) , [gs,i(t)] ∀i and gl(t) , [gl,i(t)] ∀i are
the energy purchasing vectors for battery charging and load
serving respectively, gch(t) , [gch,i(t)] ∀i and gdis(t) ,
[gdis,i(t)] ∀i are the battery charging and discharging vectors
respectively, d1(t) , [d1,i(t)] and d2(t) , [d2,i(t)] ∀i are
the serving energy vectors for current loads and rescheduled
loads respectively.

In each time slot, given the current system state X(t), Y(t)
is chosen to minimize the energy costs of the households,
which are comprised of the costs of energy purchases and the
discomfort costs of load rescheduling, over a long-term T -
slot period, while guaranteeing the QoS demanded by each
household and finite average delays for the delay tolerant
loads. Therefore, the energy management problem can be
formulated as the following stochastic control optimization
problem, called P1,

P1 : min
Y(t)

lim
T→∞

1
T

T−1∑
t=0

E {CToT (t)} ,

s.t. (1)(2)(5)(7)(8)(11)(10), (14)

where CToT (t) =
∑

i∈I CMG,i(t)+
∑

i∈I CCOM ,i(t) and E{·}
is taken with respect to X(t). Taking into account the system
dynamics, the stochastic optimization problem P1 seeks con-
trol decisions for the whole process. However, control actions
Y(t) that are correlated over time make P1 a particularly
challenging problem to solve.

B. PROBLEM REFORMULATION BASED ON LYAPUNOV
OPTIMIZATION
The time-coupling optimization problem P1 can be solved
using approaches based on Dynamic Programming [41], pro-
vided that the statistical information of the random vari-
ables of X(t) are known for forecasting future information,
which might be complex in practice. In this study, we take
an alternate approach based on the Lyapunov optimization
theory [28], which employs the concept of one-slot look-
ahead queue stability to handle the time-coupling constraints
through successive problem relaxation and transformation
and determine the control vector Y(t) in each time slot based
only on the current system state X(t), without requiring any
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statistical knowledge of the PV energy generations and load
demand requests.

In general, for complex dynamic systems, time-averaged
constraints are transformed into queue stability constraints
and simple real-time algorithms can be constructed based
on the virtual queues to achieve system optimization using
the Lyapunov optimization theory. However, the standard
Lyapunov optimization techniques cannot be applied to solve
P1 directly due to the hard constraint on the per time slot
charging and discharging decisions imposed by the time-
coupling dynamics of s(t) over time in (9) combined with
the battery capacity constraint in (11). To avoid such time-
coupling, the constraint (11) can be relaxed to the following
soft constraint:

lim
T→∞

1
T

T−1∑
t=0

E

{∑
i∈I

bi(t)

}
= 0, (15)

Instead of bounding the energy state, s(t), in each time slot,
(15) maintains the stability of the mean rate of the effec-
tive charging and discharging amounts, bi(t), in the whole
process. The derivation of (15) follows the framework of
Lyapunov optimization [28] and is given in our previous
work [34].

Accordingly, P1 is relaxed to the following problem:

P2 : min
Y(t)

lim
T→∞

1
T

T−1∑
t=0

E {CToT (t)} ,

s.t. (1)(2)(5)(7)(8)(10)(15). (16)

The relaxation transformation removes the dependency of per
time slot charging/discharging decisions on the battery state,
so that the standard Lyapunov optimization techniques can
be applied to tackle the relaxed problem P2. This relaxation
technique was first introduced in [6] and then widely adopted
in recent studies on energy storage management to accom-
modate time-coupling constraints. However, since the time-
coupling constraint (11) is replaced with the time-average
constraint (15), the solution to P2might not be feasible to P1.
In the next section, we present an online control algorithm to
solveP2while guaranteeing all constraints ofP1 are satisfied.
It will be shown in Section IV-D that, under the proposed
online algorithm, the solution to P2meets the constraint (11).
Thus, the optimal solution to P2 is also feasible to P1.

C. LYAPUNOV-BASED ONLINE BATTERY SHARING
CONTROL ALGORITHM
In this section, virtual queues are defined to transform the
time-averaged constraints in P2 into constraints with queue
stability. A Lyapunov-based online battery sharing control
algorithm (LOBSC) is then presented to approximately solve
P2 and a real-time solution is provided only based on the
current system state for each time slot.

1) VIRTUAL QUEUE DESIGN
• Battery Queue Kb(t) = s(t)− θ accumulates the charg-
ing and discharging amounts, where θ is a perturbation

parameter that can be designed to ensure the energy state
constraint in (11) is satisfied. The dynamics of Kb(t) is
given by

Kb(t) = Kb(t − 1)+
∑
i∈I

bi(t − 1). (17)

In a decision making algorithm minimizing a quadratic
Lyapunov function of Kb(t), keeping the quadratic Lya-
punov function small pushes the value of s(t) towards θ .
Hence, carefully choosing the value of the perturbation
parameter will ensure the battery queue always lies in
the feasible region. It will be shown in Section IV-D that,
the boundedness of s(t) will be guaranteed through the
design of θ and Vmax in (27) and (28).

• Delay-Aware Queue Rf ,i(t) provides the worst-case
delay guarantee on the rescheduled delay tolerant loads
in Qf ,i(t), using the technique of ε persistent queue [5],
[6]. The dynamics of Rf ,i(t) is given by

Rf ,i(t)=max{Rf ,i(t−1)−d2,i(t)+εi1{Qf ,i(t−1)>0}, 0},

(18)

where εi is a positive control parameter, and
1{Qf ,i(t−1)>0} is an indicator variable, which is 1 if
Qf ,i(t − 1) > 0 or 0 otherwise. According to (18), while
the service process of the delay-aware queue Rf ,i(t) is
the same as that of the backlog queueQf ,i(t), εi is added
whenever the backlog queue is nonempty in the arrival
process. In other words, Rf ,i(t) continuously grows
when there are delayed loads in Qf ,i(t) that have not
been served. In a decision making algorithmminimizing
a quadratic Lyapunov function of Qf ,i(t) and Rf ,i(t), the
size of Qf ,i(t) is pushed small when Rf ,i(t) grows due to
the nonempty Qf ,i(t). It can be ensured that all delayed
energy loads are served with a worst-case delay, which
will be specified later in Section IV-D.

• QoS-Aware Queue Hl,i(t) accumulates the ratio of
rescheduled loads and evolves as follows:

Hl,i(t + 1) = max
{
Hl,i(t)− βi, 0

}
+
Di(t)− d1,i(t)

Di(t)− Di(t)
.

(19)

According to (19), where the arrival rate is the load
rescheduling ratio while the departure rate is βi in each
time slot, to make sure the queue Hl,i(t) is stable, the
time-averaged load rescheduling ratio must be less than
or equal to βi. Thus, maintaining the stability of Hl,i(t)
ensures that the constraint (2) is satisfied [28].

Replacing the time-coupling constraint (11), the time-
averaged inequality constraints (2) and (5) in P2 with the
mean rate stability constraints (17), (18) and (19), respec-
tively, P2 is transformed to P3, which is suitable for the
Lyapunov optimization framework, as follows:

P3 : min
Y(t)

lim
T→∞

1
T

T−1∑
t=0

E {CToT (t)} ,

s.t. (1)(7)(8)(10)(17)(18)(19). (20)
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2) LYAPUNOV-BASED ONLINE BATTERY SHARING CONTROL
ALGORITHM DESIGN
Define the concatenated vector of the virtual queues by
2(t) , [Kb(t),Hl,i(t),Qf ,i(t),Rf ,i(t)] ∀i ∈ I.We then define
the following Lyapunov function as a scalar measure of the
queueing delays of all virtual queues:

L(2(t)) ,
1
2
[Kb(t)2 +

∑
i∈I

Hl,i(t)2 +
∑
i∈I

Qf ,i(t)2

+

∑
i∈I

Rf ,i(t)2]. (21)

Note that the Lyapunov function only relies on the current
system inputs [gpv(t), D̂(t), s(t)]. Define the conditional one-
slot Lyapunov drift as follows:

1(t) , E {L(t + 1)− L(t)|2(t)} , (22)

where the expectation is taken over all the random processes
associated with the system inputs, given the current virtual
queue states of Kb(t), Hl,i(t), Qf ,i(t) and Rf ,i(t).
To incorporate the time-averaged energy consumption

cost, we include a weighted version of the time-averaged
energy consumption cost into the Lyapunov drift, and obtain
the following drift-plus-penalty expression:

1(t)+ V E{CToT (t)}, (23)

where the Lyapunov drift in the first term represents the
stability of the queues, and V in the second item serves as a
weight controlling the performance tradeoff between queue-
ing delay and energy consumption cost, i.e., how much one
emphasizes on the energy consumption cost minimization.
Adjusting the parameterV allows a trade-off between the cost
of energy consumption and the sizes of the queue backlogs.
Based on the drift-plus-penalty minimization method [28],
the online battery sharing algorithm is designed to minimize
the upper bound on the drift-plus-penalty expression, which
is given in Proposition 1, to jointly stabilize the virtual queues
and minimize the time-averaged energy consumption cost.
Proposition 1: For any possible control decision, the drift-

plus-penalty expression for all t is upper bounded by:

1(t)+ V E{CToT (t)}

≤ B+ Kb(t)E

{∑
i∈I

bi(t)|2(t)

}

+

∑
i∈I

Hl,i(t)E

{
Di(t)− d1,i(t)

Di(t)− Di(t)
− βi|2(t)

}
+

∑
i∈I

Qf ,i(t)E
{
Di(t)− d1,i(t)− d2,i(t)|2(t)

}
+

∑
i∈I

Rf ,i(t)E
{
εi−d2,i(t)|2(t)

}
+V E

{∑
i∈I

CToT ,i(t)

}
,

(24)

where B is given by

B ,
1
2
max{R2dis,R

2
ch}

+

∑
i∈I

{
1
2
(1+ β2i )+

1
2
((f maxi )2 + (dmax2,i )2)

+
1
2
max{ε2i , (d

max
2,i )2}

}
, (25)

where f maxi , maxt∈{0,1,..T−1} {Di(t)− Di(t)} and d
max
2,i ,

maxt∈{0,1,..T−1} {d2,i(t)}.
Proof: See Appendix A �

Hence, the LOBSC algorithm can be described as follows:
in each time slot t , observing the current virtual queue states
2(t) and system stateX(t), the LOBSC algorithm determines
the control decision Y(t) by solving the following optimiza-
tion problem P4:

P4 : min
Y(t)

Kb(t)
∑
i∈I

bi(t)+
∑
i∈I

Hl,i(t)
Di(t)− d1,i(t)

Di(t)− Di(t)

−

∑
i∈I

Qf ,i(t)[d1,i(t)+ d2,i(t)]−
∑
i∈I

Rf ,i(t)d2,i(t)

+V
∑
i∈I

CToT ,i(t)

s.t. (1)(7)(8)(10)(17)(18)(19). (26)

Transforming the stochastic control optimization problem P1
into a linear programming problem P4, in which the time-
averaged constraints and energy consumption cost minimiza-
tion are jointly considered in the new objective function,
significantly reduces the calculation complexity. Although
no knowledge of the statistics of the system state X(t) is
required to solve the real time optimization problem P4, the
queue states 2(t) carries sufficient statistical information to
determine the control decision Y(t) in each time slot [28].
It will be shown that, an appropriate design of the perturbation
parameter θ and the control parameter V in the real-time
optimization problem P4 will ensure the boundedness of the
SOC in (11) is guaranteed, which in turn ensures that the
control decisions Y(t) derived from P4 are feasible to P1.

D. PERFORMANCE ANALYSIS
In this section, the performance of the LOBSC algorithm P4
is analyzed with respect to the original problem P1.
Proposition 2: Setting the perturbation parameter θ as

θ , Smin + ηdisRdis + Vpmax , (27)

where

0 < V ≤
ηch(Smax − Smin − ηchRch − ηdisRdis)

pmax − pmin
. (28)

then, under the LOBSC algorithm, we have

1) The worst-case delay of any rescheduled load is
bounded by⌊
Vpmin − Rminf ,i

f maxi + εi

⌋
< δWCi <

⌈
Vpmax − Rminf ,i

f mini + εi
+ 1

⌉
,

(29)
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where

Rminf ,i , min
t∈{0,1,..T−1}

{Rf ,i(t)},

f maxi , max
t∈{0,1,..T−1}

{Di(t)− Di(t)},

f mini , min
t∈{0,1,..T−1}

{Di(t)− Di(t)}.

2) In each time slot t,

Smin ≤ s(t) ≤ Smax , ∀t, (30)

i.e., the control decision Y(t) derived from P4 is feasi-
ble to P1.

3) The resulting time-averaged cost under the LOBSC
algorithm by solving P4, C∗P4, is within bound B/V of
the optimal cost of P1, C∗P1, i.e.,

C∗P4 − C
∗

P1 ≤
B
V
, (31)

where B is given in (25).
Proof: The proof of Proposition 2 is an extension of the

results in our previous work [34] to the case where portions of
the delay-tolerant loads are rescheduled. For brevity, a sketch
of the proof is provided in Appendix B. �
Proposition 2.1 characterizes the boundaries on the worst-

case delay of the rescheduled energy loads while indicating
that the worst-case delay is affected by the delay-aware queue
Rf ,i(t), whose evolution depends on the control parameter εi
and the initial state of delay-aware queue Rf ,i(t).
Furthermore, while Proposition 2.2 indicates that the con-

trol decisions Y(t) derived under the LOBSC algorithm are
a feasible set of P1, Proposition 2.3 characterizes the gap
between the expected time-averaged cost achieved by P4
and the optimal cost of P1, which implies that, setting the
control parameter V as Vmax ,

ηch(Smax−Smin−ηchRch−ηdisRdis)
pmax−pmin

minimizes this performance gap.
In summary, by transforming the original problem P1

into the linear programming problem P4, which is rela-
tively simple to be implemented and significantly reduces
the calculation complexity, the LOBSC algorithm provides
a low-complexity alternative, which achieves sub-optimal
performance, without requiring any statistical information
of the system. It can easily cope with arbitrary number of
households with different levels of demand.

V. DISTRIBUTED IMPLEMENTATION
The optimization problem P4 can be solved in a central-
ized way, provided that the detailed information on the load
demands and solar generations of all households are known
to a central agent. This means each household has to report
its demand preference and renewable generation, which are
private information, to the central agent in each time slot.
In this section, with the consideration of privacy preservation,
we propose a distributed approach to implement the LOBSC
algorithm in a distributed manner.

In each time slot, the households can be divided
into two groups: energy surplus group, Ia, where

ggv,i(t) ≥ Di(t) ∀i ∈ Ia, and energy deficit group, Ib, where
ggv,i(t) < Di(t) ∀i ∈ Ib. Since Kb(t) in P4 is determined by
the charging and discharging amounts in the previous time
slot t−1, we assume it is known to all households in each time
slot. Therefore, P4 can be further split into I sub-problems
for individual households, which are given by

P4− a for i ∈ Ia :

min
Yi(t)

Kb(t)bi(t)+ Hl,i(t)
Di(t)− d1,i(t)

Di(t)− Di(t)
+ VCi(t)

−Qf ,i(t)[d1,i(t)+ d2,i(t)]− Rf ,i(t)d2,i(t)

s.t. (1)(7)(18)(19),

0 ≤ gch,i(t)+ gs,i(t) ≤ ξch,i(t)Rch, (32)

and

P4− b for i ∈ Ib :

min
Yi(t)

Kb(t)bi(t)+ Hl,i(t)
Di(t)− d1,i(t)

Di(t)− Di(t)
+ VCi(t)

−Qf ,i(t)[d1,i(t)+ d2,i(t)]− Rf ,i(t)d2,i(t)

s.t. (1)(8)(18)(19),

0 ≤ gdis,i(t) ≤ ξdis,i(t)Rdis, (33)

where Ci(t) = CMG,i(t) + CCOM ,i(t), ξch,i(t) and ξdis,i(t)
denote the percentages of the maximum charging rate and
discharging rate, Rch and Rdis, taken by household i, respec-
tively. It is noticed that, in each time slot, providing that∑

i∈Ia ξch,i(t) ≤ 1 and
∑

i∈Ib ξdis,i(t) ≤ 1, the constraint
(10) in P4 is satisfied. In other words, once Rch and Rdis are
appropriately divided among households, the solutions to the
sub-problems of P4-a and P4-b are feasible to P4.

We now present a division scheme in which Rch and
Rdis are divided among the energy surplus and energy
deficit group, respectively, in a way that avoids the house-
holds who contribute less energy free ride on the energy
contribution of others who contribute more while encour-
aging cooperation among the households. At the begin-
ning of each time slot t , assuming ξch,i(t) = 1 and
ξdis,i(t) = 1 ∀i ∈ I, each household with energy
surplus/deficit independently determines its optimal con-
trol vector, [d1,i(t), d2,i(t), gl,i(t), gs,i(t), gch,i(t), gdis,i(t)], by
solving P4-a/P4-b based only on its load demand request
di(t) and solar energy generation gpv,i(t).
When the sum of charging requests obtained,∑
i∈Ia gch,i(t)+gs,i(t), exceedsRch,Rch is divided proportion-

ally within the energy surplus group based on the charging
requests of the households, i.e., ξch,i(t) =

gch,i(t)+gs,i(t)∑
i∈Ia gch,i(t)+gs,i(t)

.
Similarly, when the sum of discharging requests obtained,∑

i∈Ib gdis,i(t), exceeds Rdis, Rdis is proportionally divided
within the energy deficit group based on the energy contribu-
tions of the households, i.e., ξdis,i(t) =

ECi(t−1)∑
i∈Ib ECi(t−1)

, where

ECi(t) is the energy contribution of household i, which is
defined as the accumulated amount of energy that household
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TABLE 1. Time-of-use tariff of Johannesburg.

i has charged and discharged:

ECi(t) =
t∑

τ=1

gch,i(τ )+ gs,i(τ )− gdis,i(τ ). (34)

Then, each household in the energy surplus/deficit group
redetermines its optimal control vector using the adjusted
value of ξch,i(t)/ξdis,i(t), which in turn ensures that∑

i∈Ia ξch,i(t) ≤ 1 and
∑

i∈Ib ξdis,i(t) ≤ 1. If household i
discharges more than its energy contribution in time slot t ,
which results in ECi(t) < 0, it can only charge energy into
the shared battery until it has a positive contribution.

With all information that can be obtained locally or through
simple communication, each household independently solve
the sub-problems P4-a/P4-b avoiding disclosure of private
information, which is more implementable in practice. Fur-
thermore, the distributed implementing approach considers
a fair battery utilization by jointly considering the charg-
ing/discharging requests and energy contributions of individ-
ual households.

VI. NUMERICAL SIMULATION
A. SIMULATION SETUP
In order to evaluate the effectiveness of the proposed LOBSC
algorithm, a residential microgrid consisting of 10 house-
holds, each equipped with a solar system, is simulated. The
households share a battery with charging and discharging
efficiencies of ηch = 0.8 and ηdis = 1.25, respectively.
For simplicity’s sake, we assume that Smin = 0.1Smax and
Rch = Rch = 0.15Smax , and set the initial battery energy level
as Smin. The simulation is performed for a duration of 90 days
with T = 2160 and the Time-of-Use tariff of Johannesburg
city power, as listed in Table 1, is used in the simulation.
The households are classified into 3 types: Type I with

low electricity consumption, Type II with medium electricity
consumption and Type III with high electricity consumption.
The solar systems of the households in the same type generate
a similar amount of renewable energy every day, which is
selected from a uniform distribution with the mean value of
5kWh, 8kWh and 15kWh and a slight variance of 0.05kWh
for Type I, Type II and Type III households, respectively.
The daily solar energy generation of each household is then
converted into hourly solar energy generations using a beta
distribution with the mean value of 0.6kWh and the standard
deviation of 0.03kWh, as shown in Fig.1(a).

Different types of households have very different load
demand profiles resulting from the operation of various
household appliances, as shown in Fig.1(b). In order to

FIGURE 1. An illustrative example of solar generation and load profiles of
the three types of households.

synthesize a real-time load profile reflecting variations in load
demand at different times of day, the time-varying energy
consumption of household appliances is simulated using
the appliance demand profile generator (ADPG) developed
in [34]. For each household, the total load demand generated
by the ADPG in each time slot is used as the most preferred
load request Di(t), while the inelastic load Di(t) is randomly
set from [0.3Di(t), 0.9Di(t)]. The QoS related parameters βi
and αi(t) are randomly selected from [0.3, 0.8] and [1.5, 3.5],
respectively. Note that the values of the parameters αi(t) are
chosen to ensure the weighted discomfort cost is comparable
to the energy cost in the objective function of the optimization
(14), so that both energy and discomfort cost are active factors
in the optimization.

We randomly generate 10 households: 4 Type I households
with 29.39kWh of average household load demand per day
and 4.75kWh of average household solar generation per day,
3 Type II households with 35.55kWh of average household
load demand per day and 8.21kWh of average household
solar generation per day, and 3 Type III households with
43.50kWh of average household load demand per day and
16.36kWh of average household solar generation per day. For
the sake of easy comparison, the average monthly solar gen-
erations and load demands of individual households are listed
in Table 2. In addition, the corresponding average monthly
costs without an ESS and a demandmanagement (DM)mech-
anism are listed Table 2 as lower benchmarks. The real-time
optimization problems P4-a and P4-b are solved using the
CVX toolbox [42] for Matlab.

B. SIMULATION RESULTS AND ANALYSIS
Note that the performance of the proposed LOBSC algorithm
depends on the battery capacity, the control parameter εi and
the initial state of the delay-aware queue Rf ,i(0). We will
study the impact of these factors on the performance of the
battery sharing system in terms of cost saving and delay.

Besides surplus solar energy generations, the LOBSC
algorithm allows the households to actively charge cheaper
energy into the shared battery for later use. By vary-
ing the battery capacity while fixing other parameters
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TABLE 2. Comparison of energy consumption costs and load rescheduling delays of the whole microgrid and individual households.

(let εi = E{Di(t)− Di(t)} and Rf ,i(0) = 0), we investigate
the impact of the battery capacity on cost saving under the
LOBSC algorithm. As can be observed in Fig.2(a), the aver-
age cost per kWh decreases as Smax increases from 40kWh
to 70kWh. This is because that, with more storage capacity
available for excess solar energy, the solar generation curtail-
ment rate drops with an increase in Smax , as shown in Fig.2(b).
However, once the solar generation curtailment rate reaches
zero, a larger Smax that allows the households to store more
cheaper electricity from the MG results in a higher energy
cost as shown in Fig.2(a).

We now investigate the impact of the parameters of the
delay-aware queue Rf ,i(t) on the delay performance of the
LOBSC algorithm in a battery sharing system with the 10
households sharing a 70kWh battery. We first evaluate the

impact of the parameter εi with Rf ,i(0) = 0. As expected,
a larger εi pushes the delay-aware queue to grow faster, which
results in a smaller delay since the buffered energy loads
are more likely to be served quickly as shown in Fig.3(a)
and Fig.3(b). However, the reduced delay comes with an
increase in the energy cost as illustrated in Fig.3(c). It is
also noticed that when εi > 0.25, only a slight reduction
in delay is obtained when increasing εi. This is explained
as follows: Since E{d2,i(t)} < E{βi(Di(t) − Di(t))}, when
εi > E{βi(Di(t) − Di(t))}, the delay-aware queue Rf ,i(t)
will keep growing and quickly reaches the point Qf ,i(t) +
Rf ,i(t) > Vpmax , where new buffered energy loads will be
served immediately.

We then evaluate the impact of the initial state of the delay-
aware queue Rf ,i(0) with εi = 0.25. As can be observed,
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FIGURE 2. Average energy cost per kWh and solar generation curtailment
rate under various Smax .

FIGURE 3. Mean Delay, maximum delay and average cost per kWh under
various εi .

setting Rf ,i(0) as zero results in the worst delay performance
with a mean delay of 2.67 hours (in Fig.4(a)) and a maxi-
mum delay of 54 hour (in Fig.4(b)). A smaller delay can be
achieved with a larger Rf ,i(0), since the buffered energy loads
will be served as long asQf ,i(t)+Rf ,i(t) > Vp(t). Especially,
when Rf ,i(0) > Vpmin, all delays are maintained under 7
hours. However, reducing delay means the buffered energy
loads are less likely to be served during periods of lower
electricity prices, which in turn increases the energy cost as
shown in Fig.4(c). Obviously, a proper mechanism that trades
off delay and energy cost optimally is needed in setting the
parameters of the delay-aware queue. Nevertheless, in this
work, we primarily focus on how to optimally share the
battery among the households to save energy consumption
costs of the households, given the dynamic behavior of the
system, and the problem of optimal parameter selection is not
considered in this paper.

In what follows, we further evaluate the performance
improvement of the LOBSC algorithm with εi = 0.25
and Rf ,i(0) = 45. Firstly, to evaluate the performance of
the LOBSC algorithm in terms of cost saving, the LOBSC
algorithm is compared with a distributed load-shedding bat-
tery sharing algorithm, where a portion of load demands in
each time slot is shed while satisfying the comfort levels of
the households. For a fair comparison, under the distributed
load-shedding battery sharing algorithm, the shared battery

FIGURE 4. Mean Delay, maximum delay and average cost per kWh under
various Rf ,i (0).

FIGURE 5. Comparison of (a) accumulated energy consumption costs and
(b) served loads between the LOBSC algorithm and the distributed
load-shedding algorithm.

is operated with a similar Lyapunov-based battery sharing
control schemewhere a portion of elastic loads is shed instead
of being shifted. We assume that households take the same
βi and αi(t) as those of the LOBSC algorithm, even though
households could be more sensitive towards the load shed-
ding, which in turn leads to higher energy costs.

Fig.5 provides a comparison of the accumulated served
load and corresponding cost over time between the two algo-
rithms. It is illustrated that, the load shedding algorithm (with
the shed demand rate being 12.27%) serves less loads with a
lower energy cost. As shown in Table 2, compared with the
lower benchmark case, the LOBSC algorithm with 13.09%
load demand being rescheduled reduces the system average
monthly cost by 13.74% with an average cost of 0.93R/kWh,
while the load shedding algorithmwith 12.27% load demands
being shed achieves 26.90% cost reduction with a similar
average cost (0.90R/kWh).

Secondly, to evaluate the performance improvement in
terms of fairness, the LOBSC algorithm that takes into
account the energy contribution of each individual household
is compared with a centralized battery sharing algorithm,
in which the real-time optimization problem P4 is solved
by CVX directly. As shown in Table 2, the centralized bat-
tery sharing algorithm allocates the available energy/space
of the shared battery among households mainly based on
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the amounts of their charging/discharging requests. Unfor-
tunately, this leads to a situation in which Type I and Type
II households, who contribute less energy, free ride on the
energy contributed by Type III households, even though the
centralized battery sharing algorithm reduces the average
monthly cost of the whole system by 13.32%.

In contrast, the LOBSC algorithm limits the shared energy
utilization of each household by its energy contribution while
encouraging households to share their surplus energy. As can
be observed in Table 2, under the LOBSC algorithm, while
each household contributes slightly less energy compared to
those of the centralized battery sharing algorithm, the shared
energy that each household consumes is limited by what it
shared. According to Table 2, under the LOBSC algorithm,
Type I, II and III households achieve 7.57%, 11.28% and
21.48% lower average monthly costs, respectively, which
coincide with their average ratios of solar generation to load
demand (16.16%, 23.21% and 37.61%). Similarly, compared
to the centralized algorithm, Type III households under the
LOBSC algorithm achieve a lower mean delay since their
shifted loads are more likely to be severed with the shared
energy. Both algorithms maintain the maximum delay under
11 hours.

VII. CONCLUSION
This work studies the real time energy management problem
for a residential energy storage sharing system and presents
an OESSM system that integrates energy consumption man-
agement, load scheduling and energy storage sharing, aiming
to minimize the long-term time-averaged costs of all house-
holds while maintaining customer comfort. Based on the Lya-
punov theory, we propose an online battery sharing control
algorithm, under which the households are coordinated to
jointly optimize their energy charging and discharging deci-
sions along with energy consumption and load scheduling
decisions in a distributedmanner without requiring any statis-
tical knowledge of their load demands and renewable gener-
ations. The performance gap of the proposed low-complexity
LOBSC algorithm and load scheduling delay boundaries are
characterized. Numerical evaluations provide a better under-
standing on the influence of some contral parameters in the
performance of the LOBSC algorithm in terms of cost saving
and load scheduling delay. It is shown that, under the LOBSC
algorithm, the load demands of each household are served
with lower delays at a cost per kWh similar to that of the
Lyapunov-based load shedding algorithm and the households
utilize the shared energy in a fair manner.

APPENDIX A
Proof of Proposition 1:
According to the definition of L(2(t)), we have

L(2(t + 1))− L(2(t))

=
1
2
[Kb(t + 1)2 − Kb(t)2]+

∑
i∈I

1
2
[Hl,i(t + 1)2 − Hl,i(t)2]

+

∑
i∈I

1
2
[Rf ,i(t + 1)2 − Rf ,i(t)2]

+

∑
i∈I

1
2
[Qf ,i(t + 1)2 − Qf ,i(t)2]. (35)

Based on the queue update rules in (17), (19), (18) and (4),
the terms in (35) are upper bounded respectively, by

Kb(t + 1)2 − Kb(t)2

≤ 2Kb(t)
∑
i∈I

bi(t)+max{R2dis,R
2
ch}, (36)

Hl,i(t + 1)2 − Hl,i(t)2

≤ 2Hl,i(t)

[
Di(t)− d1,i(t)

Di(t)− Di(t)
− βi

]
+ 1+ β2i , (37)

Rf ,i(t + 1)2 − Rf ,i(t)2

≤ 2Rf ,i(t)
[
εi − d2,i(t)

]
+
[
εi − d2,i(t)

]2
≤ 2Rf ,i(t)

[
εi − d2,i(t)

]
+max{ε2i , (d

max
2,i )2}, (38)

and

Qf ,i(t + 1)2 − Qf ,i(t)2

≤ 2Qf ,i(t)
[
Di(t)− d1,i(t)− d2,i(t)

]
+
[
(Di(t)− d1,i(t))− d2,i(t)

]2
≤ 2Qf ,i(t)

[
Di(t)−d1,i(t)−d2,i(t)

]
+max{(f maxi )2, (dmax2,i )2},

(39)

where f maxi , maxt∈{0,1,..T−1} {Di(t)− Di(t)} and d
max
2,i ,

maxt∈{0,1,..T−1} {d2,i(t)}.
Applying inequalities (36)-(39) to (35), summing over

all households, taking the conditional expectation over
L(2(t+1))−L(2(t)) given2(t) and adding the penalty term
V E{CToT (t)} yield the upper bound in (24).

APPENDIX B
Proof of Proposition 2:

We first rearrange the optimization problem P4 to

P5 : min
Y(t)

[Vp(t)+ Kb(t)ηch]
∑
i∈I

gs,i(t)

+Kb(t)ηch
∑
i∈I

gch,i(t)

+Vp(t)
∑
i∈I

gl,i(t)− Kb(t)ηdis
∑
i∈I

gdis,i(t)

+V
∑
i∈I

αi[Di(t)− d1,i(t)]2

+

∑
i∈I

Hl,i(t)
Di(t)− d1,i(t)

Di(t)− Di(t)

−

∑
i∈I

Qf ,i(t)[d1,i(t)+d2,i(t)]−
∑
i∈I

Rf ,i(t)d2,i(t),

s.t. (1)(7)(8)(10)(17)(18)(19). (40)
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Let D∗(t) , [D∗i (t)], gch∗(t) , [g∗ch,i(t)], gdis∗(t) ,
[g∗dis,i(t)], gl

∗(t) , [g∗l,i(t)] and gs∗(t) , [g∗s,i(t)] ∀i ∈ I
be the optimal solution to (40). Since D∗(t) does not directly
affect the battery queue Kb(t), it is treated as a given load.
We further split P5 into two sub-problems for the energy
surplus and energy deficit group, respectively, as follows:

• Energy Surplus: when ggv,i(t) ≥ D∗i (t), we have
g∗l,i(t) = 0. Then, the optimization problem for the
energy surplus group can be written as follows:

P5− a :

min
Y(t)

[Vp(t)+ Kb(t)ηch]
∑
i∈Ia

gs,i(t)

+Kb(t)ηch
∑
i∈Ia

gch,i(t)− Kb(t)ηdis
∑
i∈Ia

gdis,i(t)

−

∑
i∈Ia

Qf ,i(t)[d1,i(t)+d2,i(t)]−
∑
i∈Ia

Rf ,i(t)d2,i(t)

+

∑
i∈Ia

Hl,i(t)
Di(t)− d1,i(t)

Di(t)− Di(t)

+V
∑
i∈Ia

αi[Di(t)− d1,i(t)]2,

s.t. (1)(10)(17)(18)(19). (41)

• Energy Deficit:when ggv,i(t) < D∗i (t), according to (8),
we have g∗ch,i(t) = 0 and g∗l,i(t) = d∗1,i(t) + d∗2,i(t) −
g∗dis,i(t) − gpv,i(t). Then, the optimization problem for
the energy deficit group can be written as follows:

P5− b :

min
Y(t)

[Vp(t)+ Kb(t)ηch]
∑
i∈Ib

gs,i(t)

− Kb(t)ηdis
∑
i∈Ib

gdis,i(t)

+ Vp(t)
∑
i∈Ib

[d1,i(t)+d2,i(t)−gdis,i(t)−gpv,i(t)]

−

∑
i∈Ib

Qf ,i(t)[d1,i(t)+d2,i(t)]−
∑
i∈Ib

Rf ,i(t)d2,i(t)

+

∑
i∈Ib

Hl,i(t)
Di(t)−d1,i(t)

Di(t)−Di(t)

+ V
∑
i∈Ib

αi[Di(t)− d1,i(t)]2

= [Vp(t)+Kb(t)ηch]
∑
i∈Ib

gs,i(t)−Vp(t)
∑
i∈Ib

gpv,i(t)

− [Vp(t)+ Kb(t)ηdis]
∑
i∈Ib

gdis,i(t)

+ Vp(t)
∑
i∈Ib

(d1,i(t)+ d2,i(t))

−

∑
i∈Ib

Qf ,i(t)[d1,i(t)+d2,i(t)]−
∑
i∈Ib

Rf ,i(t)d2,i(t)

+

∑
i∈Ib

Hl,i(t)
Di(t)− d1,i(t)

Di(t)− Di(t)

+ V
∑
i∈Ib

αi[Di(t)− d1,i(t)]2

s.t. (1)(10)(17)(18)(19). (42)

Proof of Proposition 2.1:
The optimal solution to P5 has the following properties:

• In the case of energy surplus, since the partial derivative
of the objective function in (41) with respect to d2,i(t)
is negative, the maximum possible value for d2,i(t) is
Qf ,i(t − 1), i.e., d∗2,i(t) ≤ Qf ,i(t − 1);

• In the case of energy deficit, the optimal decision on
d2,i(t) is given by

d∗2,i(t) ≤ Qf ,i(t − 1) if Qf ,i(t)+ Rf ,i(t) > Vp(t)

d∗2,i(t) = 0 otherwise. (43)

Suppose a flexible load Di(t) − d1,i(t) at any time slot t
is served on time t + δWCi , which means the load is not
served by t + δWCi − 1. Then, according to the properties
mentioned above, it only happens in the case of energy deficit.
Specifically, it must be case thatQf ,i(τ )+Rf ,i(τ ) < Vp(τ ) for
all time slots τ ∈ {t+1, t+2, · · · , t+δWCi −1}. This implies
that d2,i(τ ) = 0 and 1{Qf ,i(τ−1)>0} = 1. Thus, we have

Qf ,i(t + δWCi − 1) = Qf ,i(t)+
t+δWCi −1∑
τ=t+1

[Di(τ )− d1,i(τ )],

Rf ,i(t + δWCi − 1) = Rf ,i(t)+ (δWCi − 1)εi.

Accordingly,

Qf ,i(t + δWCi − 1)+ Rf ,i(t + δWCi − 1)

= Qf ,i(t)+ Rf ,i(t)+
t+δWCi −1∑
τ=t+1

[Di(τ )−d1,i(τ )]+(δWCi − 1)εi

< Vp(t + δWCi − 1),

which can be rearranged as follows:

(δWCi − 1)εi
< Vp(t + δWCi − 1)− Qf ,i(t)− Rf ,i(t)

−

t+δWCi −1∑
τ=t+1

[Di(τ )− d1,i(τ )]

< Vp(t + δWCi − 1)− Qf ,i(t)− Rf ,i(t)− (δWCi − 1)f mini

< Vp(t + δWCi − 1)− Rminf ,i − (δWCi − 1)f mini

where f mini , mint∈{0,1,..T } {Di(t)− Di(t)} and Rminf ,i ,
mint∈{0,1,..T } {Rf ,i(t)}. Hence, we get

δWCi <
Vp(t + δWCi − 1)− Rminf ,i

f mini + εi
+ 1 ≤

Vpmax − Rminf ,i

f mini + εi
+ 1
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Furthermore, since the flexible load Di(t) − d1,i(t) is served
on time t + δWCi , we have Qf ,i(t + δWCi ) + Rf ,i(t + δWCi ) >
Vp(t + δWCi ), i.e.,

Qf ,i(t + δWCi )+ Rf ,i(t + δWCi )

= Qf ,i(t)+ Rf ,i(t)+
t+δWCi∑
τ=t+1

[Di(τ )− d1,i(τ )]+ δWCi εi

> Vp(t + δWCi ),

which can be rearranged as follows:

Qf ,i(t)+ Rf ,i(t)

> Vp(t + δWCi )−
t+δWCi∑
τ=t+1

[Di(τ )− d1,i(τ )]− δWCi εi

> Vp(t + δWCi )− δWCi (f maxi + εi), (44)

where f maxi , maxt∈{0,1,..T } {Di(t)− Di(t)}. Hence, we get

δWCi >
Vp(t + δWCi )− Rf ,i(t)

f maxi + εi
≥
Vpmin − Rminf ,i

f maxi + εi
.

Now we look at a special case where t = 1 and Qf ,i(0) = 0.
In the worst-case scenario, according to (44), the worst-case
delay for the delayed load Di(1) − d1,i(1) is lower-bounded
by δWCi (1) > Vpmin−Rf ,i(0)

f maxi +εi
. Especially, when Rf ,i(0) = 0,

we have δWCi (1) >
Vpmin
f maxi +εi

. This indicates that, given a
certain εi, a smaller Rf ,i(0) leads to a larger worst-case delay
for the delayed loadDi(1)−d1,i(1), which could in turn affect
the following evolution of the delay-aware queue Rf ,i(t) and
the delays of the following buffered loads.
Proof of Proposition 2.2:
The real time optimization problem P4 includes all con-

straints of the original problem P1 except for the energy state
constraint. Therefore, the optimal solution of P4 is feasible
to P1, provided that the energy state s(t) is bounded within
[Smin, Smax]. The boundary of s(t) can be proved using induc-
tion. The proof is similar to that of our previous work and
hence omitted for brevity. Interested readers may refer to [34]
for details.
Proof of Proposition 2.3:
The proof of the performance boundary follows the perfor-

mance result derivation in the Lyapunov optimization frame-
work and is similar to that of our previous work. Interested
readers may refer to [34] for details.
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