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Artificial intelligence and industrial internet of things (IIoT) have been rejuvenating the fault diagnosis 
systems in Industry 4.0 for avoiding major financial losses caused by faults in rotating machines. 
Meanwhile, the diagnostic systems are provided with a number of sensory inputs that introduce 
variations in input space which causes difficulty for the algorithms in edge devices. This issue is generally 
dealt with bi-view cross-domain learning approach. We propose a soft real-time fault diagnosis system 
for edge devices using domain adaptation training strategy. The investigation is carried out using deep 
learning models that can learn representations irrespective of input dimensions. A comparative analysis 
is performed on a publicly available dataset to evaluate the efficacy of the proposed approach which 
achieved accuracy of 88.08%. The experimental results show that our method using long short-term 
memory network achieves the best results for the bearing fault detection in an IIoT environmental setting.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

Deep learning (DL) and Industrial Internet of Things (IIoT) have 
been playing a pivotal role in modern industry. Various industrial 
systems have been effectively monitored through these technolo-
gies. IIoT with DL has setup new horizons like edge devices but 
this development brings up new challenges such as purpose-built 
hardware systems and secure IoT platforms. Meanwhile, industrial 
motors in the IIoT setting are also being monitored to avoid halt in 
operations caused by the degradation of various components. Bear-
ings are the critical components of a motor that allow them to op-
erate smoothly. They start degrading owing to various causes such 
as oil-contaminations, corrosion, misalignment, temperature, dis-
torted components, poor fitting, fatigue, excessive loads, and man-
ufacturing defects. Continuous degradation leads to major faults 
and subsequently to permanent failure. Therefore, it is crucial to 
monitor and detect faults earlier which will assist in avoiding mo-
tor failure [5,23,3,34]. The fault detection in industrial scenarios is 
generally carried out through vibration analysis [35,36,24] which 
detects the faults in motors at their inception. For effective vibra-
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tion analysis, it is highly essential to select a proper sensor on the 
basis of properties such as size, weight, cost, power consumption, 
range, reliability, and tolerance [13].

Various studies related to condition monitoring of bearing have 
been carried out since the last half-century, using different tools 
and techniques. Researchers have performed studies mainly using 
model-based techniques. These techniques have shown effective 
results in terms of detection or prediction of faults in industrial 
motors under various conditions. However, there are certain limi-
tations of these techniques like noise sensitivity and system com-
plexity in a real environment [8]. Moreover, these techniques are 
difficult to implement owing to complex mathematical equations 
[9]. To overcome these limitations of model-based approaches, re-
cent developments in AI such as machine learning (ML) and DL 
have opened new horizons for industrial diagnosis and progno-
sis. These methods can analyze the raw data directly, therefore, 
they are also referred to as data-driven methods. These methods 
are extensively applied in IIoT environments to develop effective 
methods that can analyze huge amount of data. Data-driven meth-
ods can extract hidden representations from historical raw data 
of a system owing to their multilayer architecture and non-linear 
mapping [41,44] and these methods are easy to implement. On 
the other hand, the development of mathematical models requires 
prior knowledge and a lot of endeavors [29]. Thus, the advantages 
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of data-driven methods like better performance and smooth im-
plementation make them a promising tool for the diagnosis and 
prognosis of different industrial systems.

Various DL and ML based methods have been increasingly used 
in fault detection of machines and mainly employed methods in-
clude support vector machines (SVM) [10,14], random forest (RF) 
[17], decision trees (DT) [30], and multi-layer perceptron (MLP) 
[49]. Although, conventional ML models were used for fault classi-
fication and prediction they require manually engineered features 
as input to the models [39,20]. Contrary to these models, DL as a 
subdomain of AI has been in the limelight and applied in various 
applications owing to its better generalization capabilities and easy 
end-to-end implementation. Meanwhile, DL models also have been 
applied for motor fault detection including MLP, auto-encoders 
(AE), deep belief networks (DBN), deep Boltzmann machine (DBM), 
and recurrent neural networks (RNN). Among these models, LSTM 
as an advanced version of RNN is capable of learning complex rep-
resentations from raw spatial or temporal data. LSTM network has 
become hotspot among researchers owing to its advantages such as 
hierarchical feature learning, higher generalization accuracy, long-
term independency, and selective memory mechanism [38,47,48]. 
Thus, LSTM and its variants have been widely employed for analy-
sis in different domains.

Recently, DL algorithms have been employed in studies to de-
tect various faults in motors. R.G. Vieira et al. [42] have employed 
MLP to classify the stator winding faults. The model was using fre-
quency features of the current data and reported results to show 
the effectiveness of the model in terms of fault detection. It was 
observed that the accuracy of the model increases with the in-
crease in the fault severity. The method achieved maximum accu-
racy of 92.68% and 76.94% at no-load and full-load conditions, re-
spectively. In [31], authors have used MLP to classify the induction 
motor faults in which input was current and voltage as time do-
main signals. The MLP model yielded better results with maximum 
accuracy of 91.85% compared to the other ML models such SVM 
and K-Nearest Neighbors (KNN) which achieved 87.5% and 89.4% 
accuracy with 300 input units, respectively. G.H. Bazan et al. [4]
have employed the MLP model to detect bearing faults using cur-
rent data of a 3-Phase induction motor. The classifier detects the 
faults using mutual information between two phases. The results 
demonstrated the MLP as the most suitable model in comparison 
to the existed models such as SVM and KNN in terms of accuracy 
and robust performance. Both the MLP and SVM achieved 100% 
accuracy, while KNN demonstrated 90.7% accuracy. Further, the au-
thors have suggested real-time implementation of the model.

Although, various studies conducted in the area of fault diag-
nosis using DL models and have demonstrated high accuracies. 
However, still there is a need for betterment and effectiveness. 
More specifically, when a DL classifier is trained on one type of 
data and achieves high accuracy on that dataset while demon-
strates poor performance on another data. The possible cause of it 
may the features extracted from raw data. Thus, researchers have 
been striving for DL models which can effectively perform on raw 
input data [50,51]. Another problem is that the model trained on 
a type of dataset with defined dimensions cannot perform well on 
the dataset with different dimensions. To resolve the first problem, 
there have been various studies conducted by introducing cross-
domain adaptation (CDA) in different domains [25,33]. Thus, CDA 
approach is employed which addresses the domain variance prob-
lem through feature sharing between source and target domain. To 
resolve the second problem, we propose a new CDA model which 
can be trained on a dataset with one dimension and can perform 
on a dataset with different dimensions.

In this study, an early fault detection device is developed based 
on the Raspberry-Pi board and a tri-axial accelerometer. Com-
pared to previous studies, this work utilizes the DL algorithms on 
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Raspberry-Pi microcomputer for real-time bearing fault detection 
using vibration data. We have used LSTM that is one of the most 
applied DL models in various condition monitoring systems owing 
to its hierarchical architecture and generalization power. A com-
parative analysis with the other ML algorithms is performed to 
confirm the effectiveness of the method. Additionally, the system 
is remotely monitored on a secure IoT platform. The performance 
of the methods is also verified using the bearing dataset of the 
University of Ottawa (U_Ottawa) [18]. This bearing data were ac-
quired under time varying speed conditions of the motor with a 
sampling of 200 kHz and sampling duration of 10 s. The dataset 
includes three conditions of bearing such as healthy, inner-race 
fault, and outer-race fault under varying speed condition. In this 
research, only two datasets are used including healthy and a faulty 
condition of bearing to perform binary classification. Moreover, in 
this investigation only the vibration data is used from the selected 
datasets. The contribution of this research can be summarized as 
under:

(i). Real-time motor fault detection using the raw tri-axial vibra-
tion data.

(ii). Benchmarking of the established dataset through validation 
the DL models on an open-access vibration dataset.

(iii). Implementation of the CDA model which can diagnose bear-
ing conditions on the datasets with varying input dimensions.

(iv). The motor can be remotely monitored through a secure IoT 
platform.

The remainder of this paper is organized as follows: Section 2
reports the material used in this system, Section 3 reports the data 
acquisition process and the AI models employed in this research, 
Section 4 presents the implementation of the approach and its ap-
plication in fault detection of induction motor. Section 5 presents 
and discusses the results obtained in this research. In the end, Sec-
tion 6 concludes the study and discusses future work.

2. System components

In the first stage, a vibration data acquisition system is de-
veloped using a Raspberry-Pi microcomputer, a tri-axial vibration 
sensor, and some connecting wires.

2.1. Raspberry Pi microcomputer

Raspberry-Pi Model 3B+ is employed for the development of 
this system. Raspberry-Pi has been a point of attention for the re-
searchers and hobbyists owing to its advantages like it provides 
multiple hardware interface capability, built-in Wi-Fi, Bluetooth, 
and much more. It has got additional features like general pur-
pose inputs and outputs (GPIOs), inter-integrated circuit (I2C), and 
serial port interface (SPI) communication protocols which makes 
it suitable for data acquisition. Considering the facts such as af-
fordability, small-size, low-power consumption, reasonable perfor-
mance, and support availability; researchers are employing it in 
prototyping and in developing various real-world applications. It 
has been used for different purposes like data acquisition, data 
storage, data transmission, and in various IoT applications. It is 
a fully-functioned microcomputer that runs on a Linux operating 
system (OS) better known as the Raspbian. It can perform various 
tasks in real-time just like a computer. The specifications of this 
microcomputer are given in Table 1 [1,28].

2.2. Accelerometer

Currently, MEMS based vibration sensor are getting popular and 
widely used in various applications owing to their advantages like 
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Table 1
Specifications of the Raspberry-Pi 3B+.

Metrics Specifications

CPU Cortex-A53 (ARMv8)
Memory 1 GB
Size 82 × 56 × 19.5 mm
Onboard Network WiFi, LAN, and Bluetooth
Power Ratings 5V/2.5A DC power input

Table 2
Specifications of the accelerometer.

Metrics Values

Working Voltage 2 to 3.6 V
Size 3×5×1 mm
Weight 20 mg
Output Resolution 10 to 13 bit
Bandwidth 0.1 to 3200 Hz

Table 3
Specification of the induction motor.

Metrics Specifications

Bearing Type NU-204
Phase 3
HP 0.5
Operating Frequency 50 Hz
Working Voltage 400

inexpensiveness, low power requirement, digital interfacing, and 
light weight. These accelerometers function on principle of a mass 
on a spring. Their mass tries to remain in original state owing 
to inertia, in response to acceleration produced by the system on 
which they are attached. While, the spring continues to stretch and 
compressed and allows to detect the generated force correspond-
ing to the applied acceleration. Meanwhile, these sensors have 
been widely used to develop reliable and inexpensive vibration 
monitoring systems for various applications such as wind plant 
monitoring, structural monitoring, and engine condition monitor-
ing. The ADXL345 accelerometer is used in this research. It has a 
resolution of 13 bits and can measure vibration up to ±16 g. It can 
measure both static and dynamic acceleration of gravity with the 
support of I2C and SPI serial interfaces [7]. It has been employed 
in various vibration monitoring applications [15,19]. The specifica-
tions of the accelerometer are given in Table 2 [11]. The sensor 
was attached on top of the 3-Phase induction motor.

2.3. Induction motor

The developed system includes a 3-Phase induction motor of 
0.5 HP. Its parameters are given in Table 3.

3. Data collection and classifiers

This section reports the developed data acquisition system and 
the classifiers used in this investigation. Each of these is discussed 
as follows.

3.1. Data acquisition

Data is acquired using an accelerometer and a Raspberry-Pi 
board. Fig. 1 shows the connection diagram of these components. 
In the beginning, data of the healthy bearing is acquired, then a 
fault of 1 mm diameter and 1 mm depth is introduced in the 
roller bearing as shown in Fig. 2. Subsequently, the data of the 
faulty bearing is acquired using the developed system. Consider-
ing, supervised learning approach, healthy data is labeled as ‘0’ and 
faulty data is labeled as ‘1’. The data is collected and stored in a 
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Fig. 1. Raspberry-Pi connections with ADXL345 accelerometer.

Fig. 2. Bearing with the inner race fault of 1 mm.

comma-separated file (CSV) for model training purposes. The com-
plete dataset comprises 60000 samples of tri-axial vibration. In the 
next step, it is split into three sets as testing, training, and valida-
tion data with the percentages of 70, 20, and 10, respectively. The 
dimensions of the data are 1×3 as the accelerometer generates as 
tri-axial vibration data.

To visually, interpret the difference in the acquired vibration 
data of the healthy and faulty bearing conditions, the data of the 
classes are plotted against each other, as shown in Fig. 3. It can be 
observed along the main diagonal of the figure that a comparison 
of data on similar axes shows the difference in feature magnitude 
spread of the two bearing data classes. While, the scatter plots of 
the one axis against another axis show the difference in the data 
samples. It can also be observed there is variance among vibration 
data points on the different axes of the two different data classes.

3.2. Long short-term memory model (LSTM)

LSTM is one of the most frequently used DL models with time-
series or sequential data. Generally, its architecture includes an 
input layer, one or more hidden layers, and an output layer as 
shown in Fig. 4. It can learn representations from raw input data 
utilizing inherent temporal or spatial data without manual feature 
designing. It also addresses the long-term dependency problem of 
recurrent neural networks (RNN) through selective memory mech-
anisms. It has been applied in various engineering applications 
[24,43] and trained using back-propagation method which recur-
rently reduces error on entire training data. To get effective results 
from this algorithm, it is necessary to select optimal model pa-
rameters. Here, parameters correspond to the hidden layers and 
the number of nodes in each layer, optimizer, learning rate, and 
batch size. It has been in researchers’ attention owing to its ro-
bust performance on time-series or sequential data. It has been 
successfully applied to various subdomains of industry. In this in-
vestigation, LSTM is used with 4 hidden layers and each layer 
consists of 128, 64, 32, and 16 neurons, respectively. The output 
layer is added with a sigmoid function that predicts the particular 
classes. The model uses the root means square proportion (RM-
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Fig. 3. Comparison of the healthy and faulty conditions with respect to the x, y, z-axis vibration data.
Fig. 4. The hierarchical structure of the LSTM network.

Sprop) optimizer and binary cross-entropy as the loss function. The 
model is trained with a batch size of 64, dropout rate of 2%, and 
learning rate is selected as 0.002.

3.3. Random forest (RF)

It is an ensemble of DT model and can be applied to a wide 
range of problems due to its robust learning power. It can deal 
with the high variance problem. Compared to DT, it yields bet-
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ter performance with the lesser susceptibility to overfitting. It de-
creases the correlation between individual classifiers and captures 
a random subset of features for each class. The class division op-
eration is performed by the bagging function and generates an 
output based on majority voting [17]. The RF model provides bet-
ter accuracy by selecting an appropriate number of trees ‘n’ and 
that’s found through the grid search method. The method yielded 
optimal results with the value of ‘n’ as 9.

3.4. Support vector machines (SVM)

It is also one of the powerful and popular ML algorithm. It per-
forms well on complex and high-dimensional data and yields com-
petitive performance on a smaller dataset. Hence, it minimizes the 
computational load. Fundamentally, SVM functions depending on 
two parameters hyperplane and margin. The classification task is 
performed by hyperplane and support vectors are identified from 
the dataset through the margin. The SVM classifies the data by 
detecting optimum hyperplane and widening the margin between 
the classes. Its performance depends on the appropriate selection 
of hyper-parameters [22,45]. The parameters that mainly influence 
the accuracy of the SVM model are kernel function, threshold func-
tion, and cost function.

In this study, one of the most widely used kernel, radial basis 
function (RBF) or Gaussian Kernel is selected. It is given by Eq. (1).

K
(

xi, x j
)

= exp(−γ
∥∥∥xi − x j

∥∥∥
2
) (1)

where, xi and x j are the feature vectors and γ is the gamma pa-
rameter.

The parameters are obtained through the grid search method 
which iteratively selects the parameters. Table 4 shows the SVM 
model specification used in this investigation.
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Fig. 5. Overview of the proposed system.
Table 4
SVM Specifications.

SVM parameters Values

Gamma 16
Cost function 10
Number of classes 2

3.5. Domain adaptation network based on LSTM (DA_LSTM)

The LSTM based domain adaptation model (DA_LSTM) is devel-
oped to learn the representations between two different datasets. 
The model includes two encoding networks which comprise of 
dense layers within them as shown in Fig. 4. These parallel encod-
ing networks learn representations and produce a unified feature 
space from the two different datasets including tri-axial vibration 
data (our dataset) and a single axial vibration dataset (U_Ottawa 
dataset). The unified feature space is saved as the learned weights 
in the h5py file. The h5py is a python package interface for the 
binary data format called HDF5. It allows easy storage and manip-
ulation of huge data using Numpy library.

Furthermore, weights are loaded and two LSTM layers are 
added on top of the encoding networks the models are retrained 
and tested. For training purpose, an Adamax optimizer is used that 
is a generalized form of the Adam optimizer. The reason behind 
using this optimizer is that it resulted in better performance than 
other optimizers. The Adamax optimizer corresponds to the recur-
sive formula as given in Eq. (2) [21]:

ut = max(β2.ut−1, |gt |) (2)

where, β denotes decay rate and gt represents gradient distribu-
tion.

4. System implementation

The LSTM model is used to classify the healthy and faulty con-
ditions of the bearing using the vibration data. The system is pro-
grammed using python and its API namely Keras. In addition, some 
python libraries such as Numpy, Matplotlib, Sklearn, Seaborn, and 
Pandas are used for data processing and plotting the results. The 
input vibration data is obtained from the MEMs accelerometer that 
is attached to the 3-Phase induction motor. The developed LSTM 
algorithm is trained on the stored data and then it is tested on the 
real-time vibration data of the motor. Initially, the LSTM classifier 
is developed with two layers. Then, hidden layers are increased 
to improve the performance until the model generates effective 
results. The model parameters such as neurons, learning rate, op-
timizer, and batch size, are varied until the model yields optimal 
results.
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Subsequently, two ML models namely SVM and RF are also 
trained and tested to verify the performance of the LSTM model. 
At the end of the training process, the model is saved in hp5y for-
mat with the best-learned parameters. Later on, the saved model is 
loaded for real-time fault classification. Fig. 5 depicts the operation 
flow diagram of this investigation.

The performance of the system is evaluated in terms of the 
standard performance metrics such as accuracy, precision, recall, 
and F-1 score. The formulas are given in Eq. (3), (4), (5), and (6)
[39].

Accuracy = T P + T N

m
× 100 (3)

Precision = T P

T P + F P
(4)

Recall = T P

T P + F N
(5)

F 1 − Score = 2(Precision × Recall)

Precision + Recall
(6)

where, T P is true positives, T N is true negatives, F P is false posi-
tives, FN is false negatives, and m is the number of examples.

In addition to the fault classification, the developed system is 
also monitored using ThingSpeak, which is an open-source IoT 
platform. The major advantages of this IoT platform are free host-
ing for data channels, data visualization, and the security feature. 
It allows secure transmission of the data by assigning the unique 
application programming interface (API) key for each client. The 
data can be sent through a ‘write API key’ and can be retrieved us-
ing a ‘read API key’. Furthermore, it creates a sense of community 
through the option of public channels, besides the private chan-
nels option [37]. It can easily be connected with the boards such 
as Raspberry-Pi and Arduino through an internet connection [16]. 
The platform allows secure monitoring throughout the world us-
ing any electronic gadget such as mobile, laptop, or tablet. It also 
can send the data to an email address or a Twitter account at a 
scheduled time.

The wireless transmission of the vibration data is achieved 
by creating an account on ThingSpeak IoT platform and obtain-
ing the API key. In the next step, three fields are created for the 
each axis of vibration data. Subsequently, the acquired data using 
Raspberry-Pi and the accelerometer is monitored on ThingSpeak 
with real-time visualization. Fig. 5 shows the process of the devel-
oped system. The system does not require any network extension 
owing to the built-in Wi-Fi feature in the Raspberry-Pi model 3B+. 
It allows real-time monitoring of the tri-axial vibration of the in-
duction motor with a latency of 10-15 s over the network.

In this research, the data is acquired in terms of acceleration 
as g-values. Thus, according to vibration severity charts, if there 
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Fig. 6. Experimental setup.

Table 5
Accuracy comparison of the algorithms.

Bearing dataset Accuracy rate (%)

SVM RF LSTM DA_LSTM

U_Ottawa
(48000 Samples)

63.94 75.17 77.00 75.33

Our Dataset
(48000 Samples)

87.67 88.26 89.10 88.08

is a change of 1 g in axial vibration of a rotating machine having 
a speed of less than 2000 RPM, then the machine is not consid-
ered in good condition. Generally, accepted limits of the vibration 
are found through the vibration severity level charts [12]. Without 
loss of generality, this wireless monitoring system can allow users 
to monitor the severity level of the machine vibration, and using 
vibration severity charts for the comparison. It will surely assist in 
avoiding major damages to the system. Fig. 6 shows the experi-
mental setup on which this investigation is carried out.

5. Results and discussion

The results obtained in this research are reported in this sec-
tion. It can be observed from Table 5 that the LSTM model has 
classified the bearing conditions with a maximum accuracy of 
89.10%. Comparatively, SVM and RF models have classified the 
bearing conditions with the accuracy of 87.67% and 88.26%, respec-
tively. Thus, it can be concluded that LSTM has proved to be the 
best model among the employed models in this research. It can 
also accurately detect bearing faults in real-time.

To verify the performance of the employed models 48000 sam-
ples of this dataset were fed to the models which are equivalent to 
the dataset size of this research. The comparative results show that 
the models perform better on the dataset acquired in this research 
than the bearing dataset of the University of Ottawa. Thus, it con-
firms the high quality of the dataset acquired in this research.

Table 6 shows the F1-Score comparison of the models on both 
the dataset. It can be observed that the models have achieved 
maximum F1-Score on the dataset obtained in this research. The 
obtained results confirm the effectiveness of our dataset and LSTM 
model.

In addition to benchmarking this data, the results obtained in 
this research are compared with the recent studies performed on 
U-Ottawa bearing dataset. The accuracy obtained in various re-
searches using the U_Ottawa bearing dataset is summarized in 
Table 7. The results obtained in this research highlighted in bold 
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Table 6
F1-Score of the (a) LSTM (b) SVM (c) RF.

Bearing dataset Fault class F1-Score

SVM RF LSTM DA_LSTM

U_Ottawa
(48000 Samples)

Healthy (0) 0.74 0.78 0.78 0.79
Faulty (1) 0.46 0.72 0.72 0.70

Our_Dataset
(48000 Samples)

Healthy (0) 0.88 0.89 0.90 0.88
Faulty (1) 0.87 0.88 0.89 0.88

letters. The comparative analysis demonstrates that the method 
and the dataset used in this research have produced effective re-
sults without any extensive feature processing.

Fig. 7 shows the confusion matrices of the LSTM, SVM, RF, 
DA_LSTM on the U_Ottawa dataset, and DA_LSTM on our dataset 
models.

Fig. 8(a), (b), and (c) show the vibration data of the induction 
motor on the ThingSpeak IoT platform along the three axes x, y, 
and z, respectively. The vibration along with the x-axis change be-
tween 0.01 g and 0.021 g and along with y-axis vibration data 
changes between 0.06 g and 0.073 g. While, along with z-axis vi-
bration data changes between 0.905 g and 0.916 g. None of these 
axes vibrations show a severe level of vibration in the induction 
motor.

This research allowed the development of an effective fault 
detection system using affordable components such as Raspberry-
Pi and MEMs based accelerometers. The research is carried out 
through different steps which included data extraction and labeling
of healthy and faulty bearing conditions. Considering the super-
vised learning approach, it is an important task to introduce faults 
and then labeling them properly. The model tuning is also a chal-
lenging and time-consuming process as it requires a continuous 
change in the parameters until it yields the maximum performance 
in classifying the conditions. During the experimental evaluation 
process, the models are also trained and tested on the U_Ottawa 
bearing dataset in order to confirm the quality of the dataset ob-
tained in this research. The comparative study has demonstrated 
higher generalization rate using the dataset of this research com-
pared to the analysis performed on the U_Ottawa bearing dataset. 
It was observed from the results that the ML models demonstrated 
poorer performance compared to the LSTM. The LSTM which has 
achieved maximum accuracy of 89.10% and can further be im-
proved with an increase in the amount of data.

In addition to real-time fault detection, the IoT-based monitor-
ing of the system could allow to securely monitor and avoid the 
major faults through assessing the vibration severity limits of the 
data. Overall, the system has demonstrated efficacious performance 
in detecting faults and real-time monitoring of the data.

6. Conclusion

This investigation presented an affordable and effective bear-
ing fault detection system that is developed using Raspberry-Pi, 
ADXL345 accelerometer, and a 3-Phase induction motor. The sys-
tem used the LSTM algorithm for real-time bearing fault classifi-
cation. The model was inputted with tri-axial vibration data and 
the benchmarking of the dataset done using the U_Ottawa bear-
ing dataset which confirmed the quality of the vibration dataset 
acquired in this research. The performance of LSTM was compared 
with the performance of conventional ML algorithms such as SVM 
and RF. It was confirmed through the results that the LSTM yielded 
better accuracy compared to the ML models. Besides, the system 
was wirelessly monitored on the ThingSpeak IoT platform that 
allowed secure monitoring of the data with the real-time visual-
izations. The remote monitoring feature of the developed system 
allowed to monitor vibration severity levels in real-time, which 
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Table 7
Performance summary of recent studies.

Bearing fault diagnosis method Results Remarks

Deep Domain Generalization Network for Fault 
Diagnosis (DDGFD) [51]

60.13% diagnosis 
accuracy

The DDGFD method was able to perform cross-domain diagnosis of bearing owing to 
the prior diagnosis knowledge and deep architecture.

Refined Composite Multivariate Multiscale Symbolic 
Dynamic Entropy (RCmvMSDE) [46]

99.83% 
classification 
accuracy

The RCmvMSDE method effectively classified the faults by diagnosing the complex-
ity level in multivariate time-series data through multivariate multilevel composite 
analysis. Also, the method attained stability through refined composite analysis.

Frequency Temporal Logic (FTL) [6] Minimum fault 
diagnosis error 
rate 0.020%

The method effectively classified the bearing fault by mapping vibration signals with 
the formula logic. Moreover, the method is considered interpretable classifiers as it is 
written in formal language.

Bayesian Augmented Lagrangian (BAL) Algorithm [27] 99.77% diagnosis 
accuracy

The method improved computational speed by transforming the optimization prob-
lems into the various sub-optimization problems under the Bayesian network. It also 
improved accuracy and eliminated spectrum smearing through denoising and resam-
pling the signals according to the varying speed of the shaft.

Gaussian Mixture Model (GMM) Based Classification 
[32]

The standard 
deviation of 1.21%

The GMM based classification methods effectively classified the bearing faults. How-
ever, these methods pose the problem of slow convergence.

Feature-based Early Time Series Classification [2] 88.89% diagnosis 
accuracy and 
90.50% earliness

Authors were able to detect data sufficiency for the bearing fault classification with 
an indication of earliness in fault diagnosis. The limitation of this research is that it 
can only be used with the classifier designed in this research.

Squeezing Extracting Transform (SSET) [26] 15.43 mean Renyi
entropy

The method effectively detected the bearing conditions using the vibration data. The 
SSET as a post-processing method poses problems in practical applications owing to 
its dependency on the synchro-squeezing transform.

Fractional Frequency Band Entropy (FrFBE) [40] Recognition error 
with 1%

The method effectively diagnosed the bearing fault through full multiple fractional 
frequency filters and full use of entropy sensitivity.

LSTM on U_Ottawa dataset 77% diagnosis 
accuracy

The model was able to classify the bearing faults owing to the deep hierarchical 
architecture.

LSTM on our dataset 89.10% diagnosis 
accuracy

The model effectively detected various conditions of the bearing in real-time owing 
to the quality of the dataset and the depth of the architecture.

DA_LSTM on U_Ottawa dataset 75.33% diagnosis 
accuracy The model demonstrated classification accuracy similar to the LSTM 

model accuracy on both datasets with domain adaptation capabilities.
DA_LSTM on our dataset 88.08% diagnosis 

accuracy

Fig. 7. Confusion matrices of (a) LSTM (b) SVM (c) RF (d) DA_LSTM on the U_Ottawa dataset, and (e) DA_LSTM on our dataset.
could assist in avoiding major damages to rotating machines. The 
novelty of the developed system consists in the integration of the 
two topics: DL-based bearing fault detection and IoT-based se-
cure monitoring and a CDA model which can perform on input 
data with varying dimensions. The proposed approach was able to 
achieve 88.08% accuracy in bearing condition diagnosis. It can be 
concluded from the results that the developed system could be 
96
used for the effective monitoring of rotating machines in various 
applications.
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