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Abstract— Photovoltaic (PV) cell modeling is an important study 
done to improve solar cell performance before fabrication. 
Different techniques have been implemented for the extraction of 
solar cell parameters to generate a high PV power. However, most 
of these techniques are considered less accurate and suffer some 
limitations that reduce their effectiveness. In this paper, five 
different techniques were compared under different cell 
temperature levels to determine the technique that yields the best 
results. Findings show that firefly algorithm exhibited the best 
performance and can be recommended for the extraction of solar 
cell parameters in PV cells.  
 
Keywords—Cultural algorithm, Fminsearch, Firefly algorithm, 
Genetic algorithm, PSO, PV cells and swarm intelligence.  

 
I. INTRODUCTION  

Over the last few decades, the demand for renewable 
energy such as solar energy has been growing due to the 
economy-friendly and the environmentally-friendly attributes 
with photovoltaic cells. Photovoltaic cells are often used to 
convert solar energy into electrical energy. Determining the 
parameters of PV cells at different working conditions is of high 
significance, as these parameters are used to generate the 
current-to-voltage (I-V) output curve, P-V (power-to-voltage) 
output curve and the maximum power point (MPP) of the 
photovoltaic cells. A PV cell is developed using either 1-diode 
or 2-diodes or more than two diodes. Examples of 1-diode cells 
are the four-parameter model comprising of four unknown 
parameters (Iph, Is, Rs, and A), the five-parameter model (Iph, Is, 
Rs, Rp and A), and the modified five-parameter model with two 
additional parameters (m and n) referred to as the seven-
parameter model. Iph represents the photon current, Is is the 
diode saturation current, Rs is the series resistance, Rp is the 
parallel resistance, A is the ideality factor, (m and n) are the 
exponential constant for Iph and A respectively. Example of a 
two-diode cell is the 8-parameter model comprising of eight 
unknown parameters.  Both 4-parameter models and the 5-
parameter models are considered simple but less accurate 
compared to the eight-parameter models that consider the 
current losses in PV cells due to recombination [1, 2].  

Equation (1) presents the mathematical equation for an 
8-parameter model with the assumption that the saturated 
current  at the second diode  is negligible.  

  (1) 

             This mathemeatical equation above is used to compute 
the amount of current (I) and voltage (V)  produced in a PV cell, 
where photon current Iph, saturated current at diode D1 as Is1,  
 

 
series resistance Rs, parallel resistance Rp and the quality factor 

are the first five-unknown cell parameters. The other three-
unknown parameters (TIPH1, EG, and TXIS1) known as the 
temperature dependence characteristics are computed using 
equations (2)-(5),  

  (2) 

  (3) 

   (4) 

   (5) 

where TIPH1 is the first-order temperature coefficient for Iph 
and TXIS1 is the exponential temperature for Is1.  TRS1 and 
TRP1 represent the exponential temperature for Rs and Rp 
respectively.  are the series and parallel 
resistance at the solar cell temperature (T) respectively and 

 represents the measured cell temperature. 
The three popular methods used to extract solar cell 

parameters include analytical methods, fitting-algorithm 
methods and the optimization methods [3]. Analytical methods 
comprise of approximate analytical methods defined using 
simple functions and the exact analytical methods expressed 
using complex functions like Lambert . The 
analytical methods use the I-V output curve properties. That is, 
axis intercepts and the gradient at specific points are used to 
evaluate some of the unknown cell parameters. Despite the 
simplicity, precision with analytical methods still depend on the 
accuracy with the measured I-V data, inaccuracies initiated by 
numerical variation and the basic principles introduced for 
parameter extraction. The fitting-algorithm methods depend on 
the type of fitting algorithm used, the stated error function and 
the initial values of the parameters to be fitted. Optimization 
methods are the most recent approach introduced to extract and 
optimize the solar cells parameters with improved performances 
[4].  

Optimization methods can be categorized into two: 
heuristic and metaheuristic optimization techniques [5]. 
Heuristic technique are the local search techniques commonly 
used to solve problems that require approximate solutions while 
metaheuristic techniques are used to solve problems with global 
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solutions [6]. A good example of a heuristic technique is the 
Nelder-Mead technique that applies fminsearch method for 
optimization. Examples of metaheuristics are the genetic 
algorithm (GA), particle swarm optimization (PSO) and the 
cultural algorithm (CA).  

Despite the robustness with metaheuristic techniques 
in solving optimization problems, these techniques are often 
designed for specific problems and show flaws when used for 
non-compliant optimization tasks. Some known flaws with 
optimization techniques include slow convergence, getting 
trapped at local optimum, poor exploitation and weak 
exploration [7]. In this paper, work will be done using five 
different optimization techniques to optimize and extract the 8-
unknown parameters in a 2-diode cell model and their results 
compared to determine the most effective optimization 
technique that can be suggested for the extraction of solar cell 
parameters. 

The layout of this paper is described as follows. 
Section II introduces the considered optimization techniques in 
the form of literature review. Section III and IV gives the 
experimental setup and results respectively while section V will 
be the summary. 

 
II. OPTIMIZATION TECHNIQUES 

The techniques considered in this work are discussed 
below. 

 
1. Nelder-Mead Algorithm (Fminsearch): This is an example 
of heuristic-search technique commonly used to search for the 
local minima (acceptable solution) in an unconstrained 
multifunction using derivative-free approach. Basically, 
heuristic algorithms tend to solve optimization problems faster 
and more efficient than tradition methods such as golden-search 
method and quadratic-approximation method. However, 
heuristic algorithms often exhibit a lower accuracy, low 
precision, and low optimality. Heuristic-search methods are 
most often employed when approximate solutions are 
satisfactory and accurate (global) solutions are computationally 
expensive [8].  
 
2. Genetic Algorithm (GA): GA is a direct random-
search type of metaheuristic technique modelled using natural 
(Darwinian) evolution or selection process to search for the 
global solution in an optimization problem. Conventional GA 
works by creating a set of random initial population, then 
sequence of new population is introduced using individuals 
from the present population [9, 2]. To generate this new 
population, GA performs the follow steps: 
§ Determining the raw fitness scores in every member of the 

present population by evaluating its fitness value. 
§ Converting the raw fitness scores to a more suitable form 

through scaling as expectation values. 
§ Selection of members (parents) from their expectation 

value results. 
§ Selection of members with lower fitness values as elite 

individuals for the new population. 

§ Reproduction of offspring from parents using random 
changes in parents (mutation) or using crossover operators. 

§ Substituting the present population with the offspring to 
produce subsequent generation. 

§ The algorithm halts when the stopping condition is met.  
 
3. Particle Swarm Optimization (PSO): PSO is another 
example of metaheuristic optimization technique proposed by 
J. Kennedy and R. Eberhart in 1995. PSO is inspired by the 
swarm behaviour of insects or bird flocks. PSO looks similar to 
genetic algorithm as both techniques are classified as 
population-based optimization techniques [10, 6]. In PSO, 
collection of individuals (particles) migrate in steps to a region 

with an initial velocity . At each step, the algorithm evaluates 
the objective function for each particle using equations (6) and 
(7) respectively, 
   (6) 

   (7) 

where  is the swarm size,  is the particle 

velocity,  is the current position of a particle,  is the 

local best position,  represents the global best position, 
coefficients are random numbers between 0 and 1.  
is the inertia and coefficients  represent the learning 
factors. PSO procedure is given below: 
 
§ Creation of initial population (swarms) with an initial 

velocity. 
§ Objective function computation at each particle location in 

order to determine the best fitness value and the best 
location. 

§ Updating the velocity to obtain the particles’ individual 
best location and the best location of their neighbours. 

§ Stop the iteration process when the stopping criterion 
condition is met. 

 
4. Cultural Algorithm (CA): CA is an evolutionary 
algorithm proposed by R. G. Reynolds in 1991, inspired by the 
human-culture evolution development [11]. CA is a 
development to the traditional genetic algorithm and comprises 
of two fundamental mechanisms (population space and belief 
space). The population space incorporates the use of 
evolutionary operators likes mutation and crossover for its 
evaluation and reproduction. The belief space extracts collected 
information (knowledge) from nominated individuals in the 
population using five different knowledges (normative, 
situational, historical, domain and topographic) [12].  

The normative knowledge ensures that selected individuals 
are maintained within a suitable variable-range to improve the 
evolutionary process. Situational knowledge provides number 
of cases as examples for the analysis of individuals. 
Topographic knowledge keeps track of the best individual cell 
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in the search space region. Domain knowledge uses information 
about the problem dominion to monitor the search space. 
Historical or temporal knowledge supervises the search activity 
and captures vital incidents in the search. The collected 
information is then used to monitor the evolution process and to 
prevent the algorithm from getting trapped at local optimal 
solutions (premature convergence) [13]. The procedure for CA 
is illustrated below: 
§ Evaluation of individuals in the population space using 

performance function obj (). 
§ Determining individuals permitted to update the belief 

space using an acceptance function accept (). 
§ Knowledge from the selected individuals is used to modify 

the belief using function update (). 
§ Selection of individuals for the next generation by 

employing the influence () function on individuals in the 
belief space.  

§ Repeat step 1 to step 4 until a termination criterion is met. 
 
5. Firefly Optimization: This is another swarm-
intelligence algorithm suggested by X. Yang in 2008 based on 
the communal behavior of fireflies and their flashing-light 
patterns [14]. Fireflies use their flashing-light beams for 
attraction, security and prey hunting. To model a working 
firefly algorithm, three assumptions are considered [15, 16].  
i. Fireflies are unisex and attract regardless of their sex  
ii.  The rate of attraction with fireflies depends on their 

brightness level. That is, brighter fireflies are attracted by 
the less bright fireflies and the level of brightness is 
inversely proportional to the firefly’s distances apart. 

iii. The intensity of firefly is computed from the cost 
(objective) function.   
The expression of light intensity and the change in 

attraction with fireflies plays a major role in developing the 
firefly algorithm. The light attractive coefficient  in firefly 
is computed using equation (8), 

   (8) 

where b0 is the light attractive coefficient when the distance 
apart rab between two fireflies is zero, bmin is the attractiveness 
when rab = µ. g is the light absorption coefficient. rab is the 
cartesian (Euclidean) distance between two fireflies ( Xa and 
Xb) and is mathematically expressed as 

   (9) 

where ,  is the problem element, variables 

are the  dimension for fireflies  and 
respectively.  

III. SIMULATION MODEL 
To validate the high performance with the proposed 

firefly algorithm, a comparison experiment was conducted 

using five different optimization techniques comprising of 
fminsearch (FM), genetic algorithm (GA), particle swarm 
optimization (PSO), cultural algorithm (CA) and the proposed 
firefly (FF) algorithm. The experiment aims at extracting some 
optimized variables (parameters) that can successfully  
minimize the objective function value  

, where  is the initial 
least square error set at zero, data_diff is the data difference 
(error) between the predicted current-to-voltage  samples 
and the actual  samples. These samples contain 2 ´ m 
dataset dimension, where m denotes 30 samples of I-V data 
separately collected at 0 °C, 25 °C, 70 °C, and 85°C 
respectively, while data_diff’ is the error using m ´ 2 
dimension. 

The cell characteristics comprising of five-unknown 
parameters  as variables were searched 
within a search space comprising of two boundaries referred to 
as the lower boundary  and the upper 

boundary  constraints. Similarly, the 
same minimization function (lse) was introduced to determine 
the temperature-dependenc characteristics cmprising of the 
remaining three-unknown parameters within 

the search space  and  
respectively. Due to the random-search solution patterns with 
metaheuristic techniques, the considered optimization 
techniques were run four different times for each generation 
(iteration) number, and the best fitness results were recorded as 
case studies. The iteration numbers used as stopping criteria 
were 5, 10, 20 and 50 generations. The recorded optimized-
parameters using least square error (lse) fitness functions for the 
five cell parameters and the three temperature-dependence 
parameters for each algorithm were then used to fit the predicted 
I-V output curves to the measured I-V output curves at different 
temperature levels (0 °C, 25 °C, 70 °C, and 85°C). 

Table 1 presents the genetic algorithm parameters that 
were introduced to optimize the cell characteristics and the 
temperature-dependence characteristics. 
 

Table 1. GA parameters 
parameters For 5-param evaluation For 3-param evaluation 
Population size 50 50 
Scaling function Rank Rank 
Selection function  Stochastic Stochastic 
Elite count 0.25 0.25 
Crossover fraction 0.80 0.80 
Mutation rate Constraint dependent Constraint dependent 
Function tolerance 1e-6 1e-6 
Constraint tolerance 1e-3 1e-3 

 
Table 2 presents the used PSO parameters for the optimization 
problems. nPop is the population size, w is the inertia weight, 
wdamp is the damping ratio, while C1 and C2 represent the 
personal learning co-efficient and the global learning 
coefficient respectively. 
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Table 2. PSO parameters 
Parameters 5-param 3-param 
nPop 100 100 
w 1 1 
wdamp 0.99 0.99 
C1 1.50 1.50 
C2 2.0 2.0 

 
Table 3 displays the cultural algorithm parameters that were 
used to extract the unknown cell characteristics and the 
unknown temperature-dependence characteristics. From the 
table, the acceptance ratio is represented as pAccept while the 
number of accepted individuals as nAccept. 
 

Table 3. Cultural algorithm parameters 
Parameters 5-param 3-param 
Population size (npop) 50 50 
pAccept 0.35 0.35 
nAccept 18 18 
alpha 0.30 0.30 
Beta 0.50 0.50 

 
Table 4 displays the firefly algorithm (FA) parameters used to 
extract the unknown cell characteristics and the temperature-
dependence characteristics. From the table, the light absorption 
coefficient is represented as g, the attraction coefficient base 
value as b, mutation coefficient as a, and mutation coefficient 
damping ratio as adamp. 
 

Table 4. Firefly algorithm parameters 
Parameters 5-param 3-param 
Population size (npop) 25 25 
g 1 1 
b 2 2 
a 0.2 0.2 
adamp 0.98 0.98 

 
Table 5 presents the Nelder-Mead (fminsearch) parameters. 
 

Table 5.Nelder-Mead Fminsearch parameters 
Parameters 5-param 3-param 
Max. function evaluations 1000 600 
Maximum_tolerance 1e-4 1e-4 
Function_tolerance 1e-4 1e-4 

 
IV. EXPERIMENTAL RESULTS 

Figures 1 - 3 present the graphical best-cost results 
using the considered optimization techniques (fminsearch (FF), 
genetic algorithm (GA), particle swarm optimization (PSO), 
cultural algorithm (CA), and the proposed firefly (FF) 
algorithm) to extract the 8-unknown parameters in solar cells 
using 5 iteration, 20 iteration and 50 iteration stopping criterion  
respectively. Each Figure comprises of two subplot Figures, 
where the left hand side (LHS) subplot Figure represents the 
cell characteristic optimization results while the right hand side 
(RHS) subplot Figure represents the temperature-dependence 
best-cost results for five different optimization techniques under 
different temperature levels.  

For Figure 1, using 5 iteration number, the fast 
convergence, improved exploration and exploitation using 
firefly algorithm for the optimization of cell parameters and 
temperature-dependence parameters can be easily seen from the 
LHS and RHS subplot Figures. 

 
Figure 1. Optimization results using 5 iteration 

 
Similarly for Figures 2 and 3, using 20 iteration and 50 

iteration respectively, the improved performance with firefly 
(FF) algorithm can be seen. FF achieved the best results while 
fminsearch exhibited the worst performance results. 

 

 
Figure 2. optimization results using 20 iteration 

 
Figure 3. optimization results using 50 iteration 

 
Figures 4 display the  output curves (measured 

and predicted) using optimization techniques at different 
temperature levels (0 °C, 25 °C, 70 °C, and 85°C). Each Figure 
comprises of four subplot Figures for 5 iteration, 10 iteration, 
20 iteration, and 50 iteration stopping criterion respectively.  

From Figure 4, the poor convergence with fminsearch 
algorithm can be seen in all the four subplot Figure cases. That 
is, the measured  output curves were not close to the 
fminsearch-predicted output curves in all the cases. 

 
Figure 4. Fminsearch convergence 

 
For Figures 5 - 8, the convergence performance improved as the 
generation number was increased from 5 iter to 50 iter. That is, 
better results were obtained using GA technique. 
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Figure 5. Genetic algorithm convergence 

 
Figure 6 presents the output curve results using PSO 
technique. From the graphs, PSO exhibited a better 
performance than fminsearch as the measured output 
curves and the predicted  output were more fitting than that 
of fminsearch algorithm.  

 
Figure 6. PSO convergence 

 
Figure 7 presents the output curve results using cultural 
algorithm. From the graphical results, CA exhibited a better 
performance than fminsearch technique but lower than that of 
GA and PSO techniques. 

 
Figure 7. Cultural algorithm convergence 

 
Figure 8 presents the output curve results using firefly 
algorithm. The fast convergence, improved exploration and 
exploitation can be observed with firefly (FF) algorithm as the 
measured output curves best-fit with the firefly-predicted 

output curves in all cases. 

 
Figure 8. Firefly convergence 

 
Table 6 presents the tabulated results recorded when 
temperature level T is 70 °C and using 5 iteration stopping 
criterion, where V represents the actual voltage in volts, I is the 
actual current in amps. From the tabulated results, firefly 
exhibited the best performance with a root mean square error 
(RMSE) value of 0.044 while fminsearch exhibited the worst 
performance with a RMSE value of 1.976. 
 

Table 6. I-V output results at T = 70 °C and iter = 5 generation 
Meas. V I  FM  GA PSO CA FF 
1 0 3.930 1.082 3.805 3.775 3.899 3.914 
2 0.1 3.920 1.061 3.799 3.767 3.890 3.903 
3 0.2 3.910 1.040 3.786 3.755 3.876 3.886 
4 0.3 3.850 1.019 3.711 3.698 3.809 3.813 
5 0.317 3.820 1.016 3.675 3.670 3.777 3.778 
6 0.33 3.790 1.013 3.636 3.639 3.743 3.742 
7 0.342 3.750 1.010 3.589 3.602 3.701 3.698 
8 0.355 3.690 1.008 3.523 3.549 3.643 3.636 
9 0.368 3.620 1.005 3.436 3.478 3.564 3.555 
10 0.38 3.520 1.002 3.331 3.391 3.470 3.456 
11 0.392 3.390 1.000 3.197 3.277 3.346 3.330 
12 0.401 3.270 0.998 3.074 3.170 3.230 3.213 
13 0.409 3.150 0.996 2.944 3.056 3.107 3.089 
14 0.416 3.030 0.995 2.813 2.939 2.979 2.963 
15 0.422 2.910 0.993 2.687 2.825 2.855 2.841 
16 0.427 2.790 0.992 2.570 2.719 2.738 2.727 
17 0.431 2.670 0.991 2.469 2.625 2.635 2.628 
18 0.436 2.550 0.990 2.333 2.498 2.494 2.494 
19 0.44 2.420 0.989 2.215 2.387 2.371 2.378 
20 0.444 2.300 0.988 2.090 2.267 2.237 2.252 
21 0.447 2.180 0.987 1.990 2.172 2.129 2.152 
22 0.45 2.060 0.987 1.885 2.070 2.015 2.047 
23 0.455 1.900 0.985 1.700 1.889 1.809 1.859 
24 0.46 1.660 0.984 1.500 1.691 1.582 1.655 
25 0.465 1.450 0.983 1.285 1.476 1.332 1.434 
26 0.47 1.210 0.981 1.054 1.242 1.057 1.194 
27 0.475 0.909 0.980 0.808 0.989 0.756 0.935 
28 0.48 0.666 0.978 0.545 0.716 0.427 0.657 
29 0.485 0.364 0.977 0.265 0.422 0.067 0.358 
30 0.49 0.000 0.975 0.032 0.106 0.325 0.038 
RMSE - - 1.976 0.172 0.101 0.112 0.044 

 
Table 7 presents the tabulated results when temperature T is 70 
°C and using 20 iteration. From the tabulated results, firefly 
exhibited the best performance with a RMSE value of 0.014 
while fminsearch exhibited the worst performance with a 
RMSE value of 1.651. 
 

Table 7. I-V output results at T = 70 °C and iter = 20 generation 
Meas. V I FM  GA PSO CA FF 
1 0 3.930 1.522 3.902 3.959 3.926 3.923 
2 0.1 3.920 1.494 3.896 3.949 3.917 3.915 
3 0.2 3.910 1.465 3.886 3.934 3.904 3.902 
4 0.3 3.850 1.437 3.825 3.870 3.842 3.840 
5 0.317 3.820 1.432 3.792 3.838 3.811 3.809 
6 0.33 3.790 1.428 3.757 3.805 3.778 3.776 
7 0.342 3.750 1.425 3.713 3.764 3.737 3.736 
8 0.355 3.690 1.421 3.650 3.706 3.678 3.678 
9 0.368 3.620 1.418 3.565 3.628 3.598 3.600 
10 0.38 3.520 1.414 3.462 3.533 3.500 3.505 
11 0.392 3.390 1.411 3.328 3.410 3.373 3.381 
12 0.401 3.270 1.408 3.202 3.295 3.252 3.264 
13 0.409 3.150 1.406 3.070 3.173 3.125 3.140 
14 0.416 3.030 1.404 2.937 3.048 2.994 3.014 
15 0.422 2.910 1.402 2.807 2.926 2.866 2.890 
16 0.427 2.790 1.401 2.688 2.813 2.747 2.775 
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17 0.431 2.670 1.400 2.584 2.715 2.643 2.674 
18 0.436 2.550 1.398 2.445 2.580 2.502 2.538 
19 0.44 2.420 1.397 2.324 2.463 2.379 2.418 
20 0.444 2.300 1.396 2.196 2.338 2.247 2.290 
21 0.447 2.180 1.395 2.094 2.237 2.141 2.188 
22 0.45 2.060 1.394 1.987 2.131 2.030 2.080 
23 0.455 1.900 1.393 1.799 1.942 1.831 1.887 
24 0.46 1.660 1.391 1.596 1.737 1.616 1.678 
25 0.465 1.450 1.390 1.380 1.514 1.382 1.451 
26 0.47 1.210 1.389 1.148 1.273 1.130 1.205 
27 0.475 0.909 1.387 0.902 1.013 0.859 0.940 
28 0.48 0.666 1.386 0.641 0.733 0.567 0.655 
29 0.485 0.364 1.384 0.365 0.433 0.256 0.350 
30 0.49 0.000 1.383 0.074 0.112 0.077 0.024 
RMSE - - 1.651 0.068 0.048 0.047 0.014 

 
Table 8 presents the tabulated results recorded when 
temperature T is 70 °C and using 50 iteration. From the table, 
firefly exhibited the best performance with a RMSE value of 
0.012 while fminsearch exhibited the worst performance with a 
RMSE value of 1.146. 
 

Table 8. I-V output results at T = 70 °C and iter = 50 generation 
Meas. V I FM  GA PSO CA FF 
1 0 3.930 2.506 3.933 3.948 3.577 3.935 
2 0.1 3.920 2.480 3.928 3.939 3.567 3.925 
3 0.2 3.910 2.454 3.920 3.925 3.552 3.911 
4 0.3 3.850 2.428 3.874 3.863 3.495 3.849 
5 0.317 3.820 2.423 3.848 3.832 3.466 3.818 
6 0.33 3.790 2.420 3.818 3.800 3.436 3.785 
7 0.342 3.750 2.417 3.781 3.759 3.399 3.745 
8 0.355 3.690 2.413 3.726 3.701 3.345 3.687 
9 0.368 3.620 2.410 3.650 3.623 3.273 3.609 
10 0.38 3.520 2.407 3.554 3.527 3.185 3.514 
11 0.392 3.390 2.403 3.427 3.402 3.070 3.389 
12 0.401 3.270 2.401 3.305 3.285 2.962 3.272 
13 0.409 3.150 2.399 3.175 3.160 2.846 3.147 
14 0.416 3.030 2.397 3.041 3.032 2.727 3.019 
15 0.422 2.910 2.396 2.909 2.907 2.611 2.895 
16 0.427 2.790 2.394 2.787 2.791 2.503 2.778 
17 0.431 2.670 2.393 2.681 2.690 2.408 2.677 
18 0.436 2.550 2.392 2.537 2.552 2.279 2.539 
19 0.44 2.420 2.391 2.411 2.432 2.166 2.419 
20 0.444 2.300 2.390 2.277 2.303 2.045 2.289 
21 0.447 2.180 2.389 2.170 2.200 1.948 2.186 
22 0.45 2.060 2.388 2.058 2.091 1.846 2.077 
23 0.455 1.900 2.387 1.859 1.897 1.663 1.883 
24 0.46 1.660 2.386 1.645 1.687 1.464 1.671 
25 0.465 1.450 2.384 1.415 1.459 1.248 1.442 
26 0.47 1.210 2.383 1.169 1.212 1.013 1.194 
27 0.475 0.909 2.382 0.906 0.946 0.760 0.927 
28 0.48 0.666 2.380 0.627 0.661 0.488 0.641 
29 0.485 0.364 2.379 0.332 0.356 0.196 0.333 
30 0.49 0.000 2.378 0.021 0.030 0.117 0.005 
RMSE - - 1.146 0.025 0.015 0.284 0.012 

 
V. CONCLUSIONS 

This paper presents the novelty using firefly algorithm 
for the optimization and extraction of unknown cell parameters 
and unknown temperature-dependence parameters in solar cells 
under different cell temperatures. Five different techniques 
comprising of fminsearch, genetic algorithm, particle swarm 
optimization, cultural algorithm and the proposed firefly 
algorithm were compared using 5 iteration, 20 iteration, and 50 
iteration stopping criterion respectively. Obtained results 
confirm the improved performance and the fast convergence 
with firefly algorithm. Findings suggest that firefly algorithm 

can be recommended for solar cell parameter modelling as the 
predicted I-V output curves using firefly optimization technique 
best-fit with the measured I-V output curves in all the cases 
considered in this work.  
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