University of Massachusetts Amherst

ScholarWorks@UMass Amherst

Introduction to Geographic Information Science (GIS) course materials

Open Access GIS Instructional Materials

2019

Unit 3

Forrest J. Bowlick University of Massachusetts Amherst, fbowlick@umass.edu

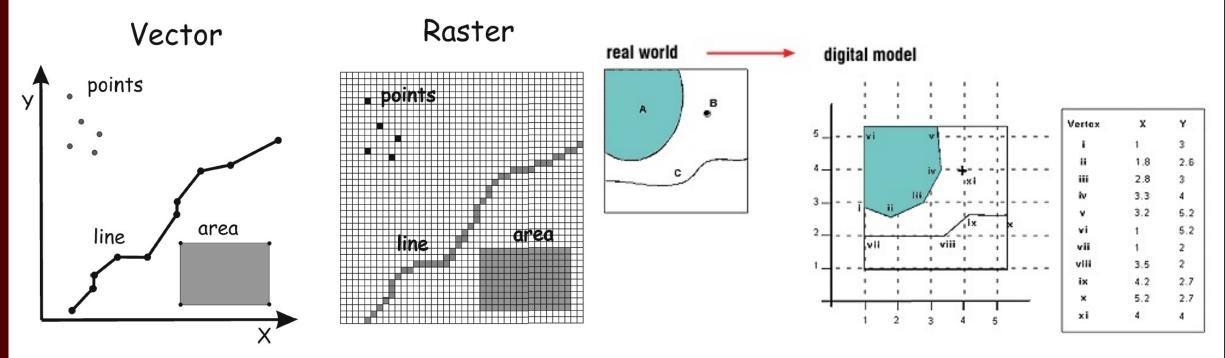
Follow this and additional works at: https://scholarworks.umass.edu/intro_GIS

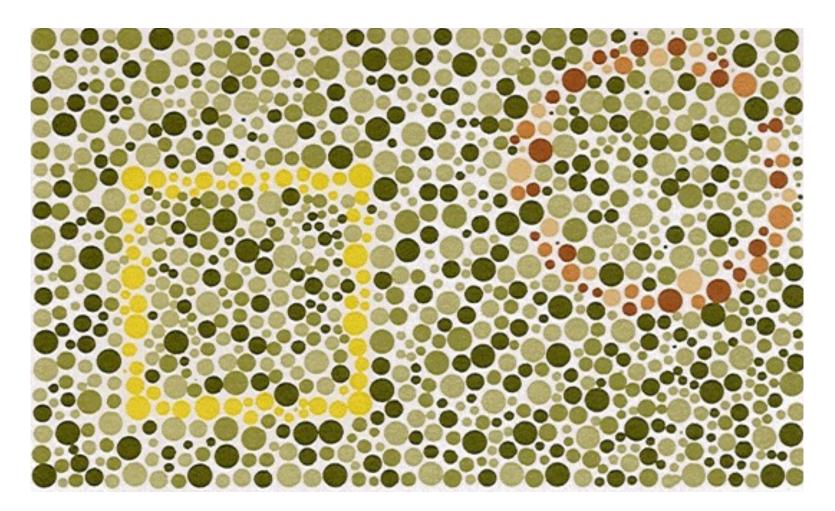
Recommended Citation

Bowlick, Forrest J., "Unit 3" (2019). *Introduction to Geographic Information Science (GIS) course materials*. 3. https://scholarworks.umass.edu/intro_GIS/3

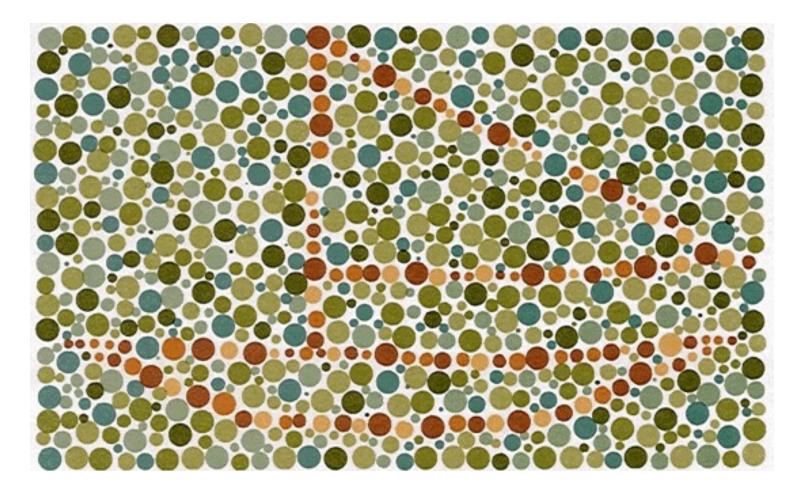
This Book is brought to you for free and open access by the Open Access GIS Instructional Materials at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Introduction to Geographic Information Science (GIS) course materials by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

UMassAmherst Data Type Exploration: Vector

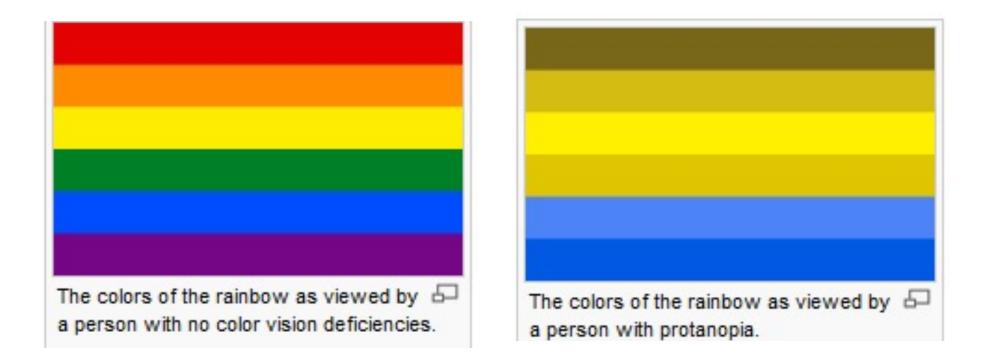


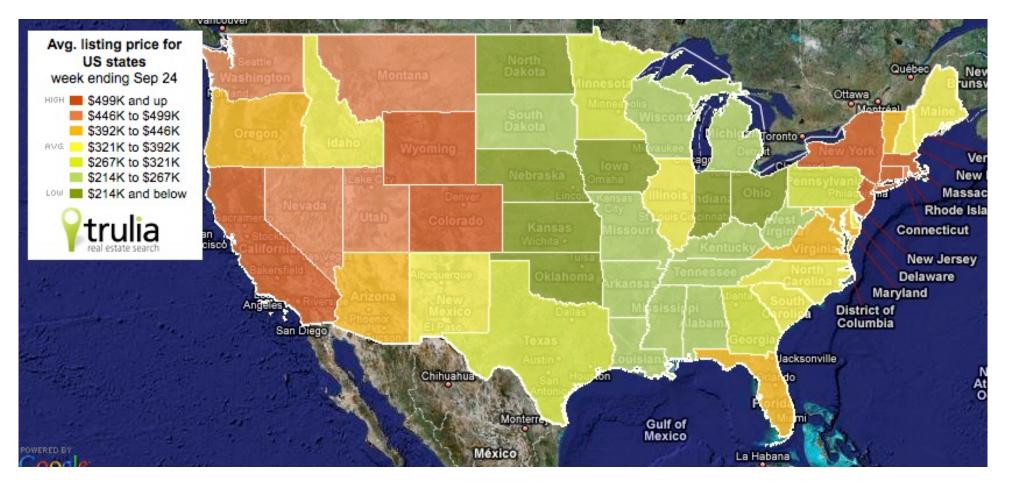

Figure 2-8: Vector and raster data models.

Forrest J. Bowlick, Intro GIS UMass Amherst, Fall 2019


On the Agenda

- Colorblindness & Cartography
- Data Types (broadly)
- Databases
- Data Formats (broadly)
- Vector Data
- GIS Concept Practice


What shapes do you see?


What shapes do you see? (Part II)

Red-green color blindness

Cartography revisited

Data 'Types'

- When we reference data 'type', we could be referring to a few things:
 - The classification of the information stored in the file for use by a program
 - The nature of the data's nature or distribution (better: data level or scale)
 - The file format for the data we want to use
- So data typology can be pretty complex.

Back to the Attribute Table

Add Field

ArcGIS field data types

ArcMap 10.6 | Other versions *

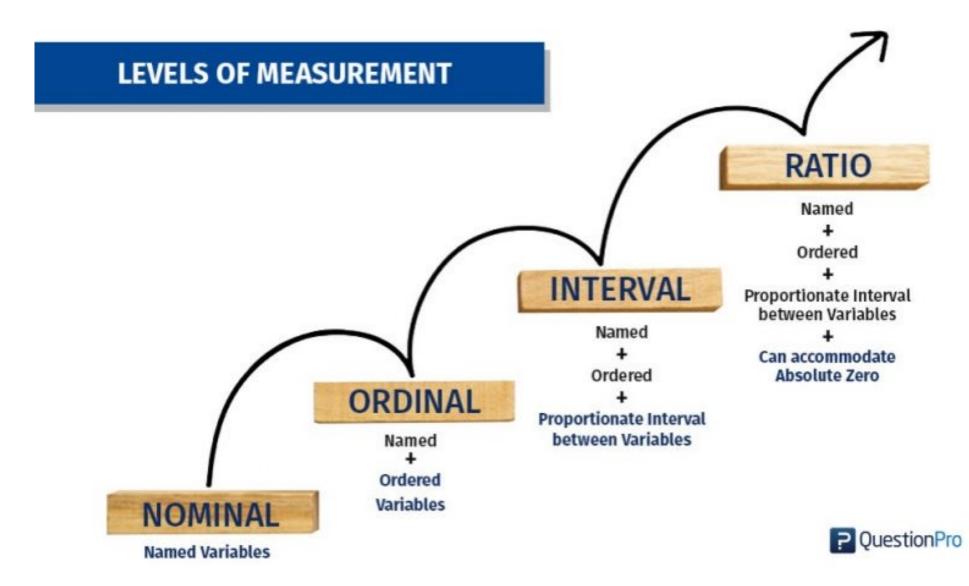
Numbers

- Text
- Dates
- BLOBs
- Object identifiers
- Global identifiers
- Fields of type raster
- Geometry

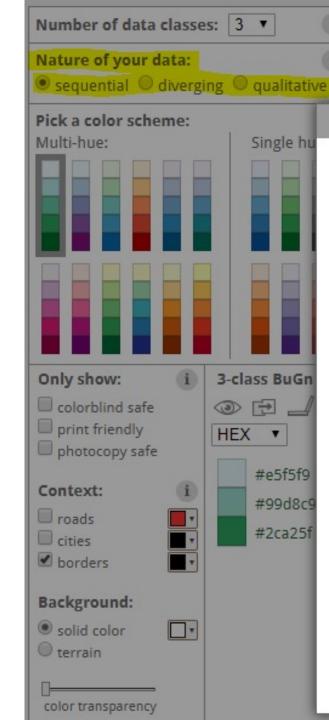
Field Propert Long Integer Float Double Text
Double
D .
Date

×

http://desktop.arcgis.com/en/arcmap/latest/manage-data/geodatabases/arcgis-fielddata-types.htm


SQL is a Bit More... Complex

MySQL DATA TYPES


DATE TYPE	SPEC	DATA TYPE	SPEC
CHAR	String (0 - 255)	INT	Integer (-2147483648 to 214748- 3647)
VARCHAR	String (0 - 255)	BIGINT	Integer (-9223372036854775808 to 9223372036854775807)
TINYTEXT	String (0 - 255)	FLOAT	Decimal (precise to 23 digits)
TEXT	String (0 - 65535)	DOUBLE	Decimal (24 to 53 digits)
BLOB	String (0 - 65535)	DECIMAL	"DOUBLE" stored as string
MEDIUMTEXT	String (0 - 16777215)	DATE	YYYY-MM-DD
MEDIUMBLOB	String (0 - 16777215)	DATETIME	YYYY-MM-DD HH:MM:SS
LONGTEXT	String (0 - 4294967295)	TIMESTAMP	YYYYMMDDHHMMSS
LONGBLOB	String (0 - 4294967295)	TIME	HH:MM:SS
TINYINT	Integer (-128 to 127)	ENUM	One of preset options
SMALLINT	Integer (-32768 to 32767)	SET	Selection of preset options
MEDIUMINT	Integer (-8388608 to 8388607)	BOOLEAN	TINYINT(1)

Copyright © mysqltutorial.org. All rights reserved.

Data Levels to Consider

The Nature Your Data

TYPES OF COLOR SCHEMES

 Sequential schemes are suited to ordered data that progress from low to high. Lightness steps dominate the look of these schemes, with light colors for low data values to dark colors for high data values.

how to use updates downloads credits

2. Diverging schemes put equal emphasis on mid-range critical values and extremes at both ends of the data range. The critical class or break in the middle of the legend is emphasized with light colors and low and high extremes are emphasized with dark colors that have contrasting hues. Learn more »

3. Qualitative schemes do not imply magnitude differences between legend classes, and hues are used to create the primary visual differences between classes. Qualitative schemes are best suited to representing nominal or categorical data.

Learn more »

Further reading

Brewer, Cynthia A. 1994. Color use guidelines for mapping and visualization. Chapter 7 (pp. 123-147) in Visualization in Modern Cartography

COLC

People per sq. mile

300.00 to 9316.0

79.6 to 299.9

7.0 to 79.5

1.1 to 6.9

Percent of population

28.0 to 32.2

25.7 to 27.9

Critical Value - Nat'1 Avg.

24.0 to 25.6

20.1 to 23.9

Race or ethnicity

White

Black

Asian

Hispanic

under 18 by state

Other cartography publications by Cynthia Brewer

Let's Try it Out!

Kahot.it

https://play.kahoot.it/#/k/afe73d76-5e0a-4322-a22bac03a469c803

Database Manipulation

 We've worked on a small scale with databases recently, without going into much depth about the technical 'how' of data.

• Think of the 'join' operation.

'Join'

• The join operation links two tables in a relational database by linking a key value common to each.

• 'Relational' means the databases can be linked.

- 'Key' means the values are shared and can be connected between the tables.
 - Note that the key value might not be the unique identifier!

customer_id	first_name	last_name	email	address	city	state	zip
1	George	Washington	gwashington@usa.gov	3200 Mt Vernon Hwy	Mount Vernon	VA	22121
2	John	Adams	jadams@usa.gov	1250 Hancock St	Quincy	MA	02169
3	Thomas	Jefferson	tjefferson@usa.gov	931 Thomas Jefferson Pkwy	Charlottesville	VA	22902
4	James	Madison	jmadison@usa.gov	11350 Constitution Hwy	Orange	VA	22960
5	James	Monroe	jmonroe@usa.gov	2050 James Monroe Parkway	Charlottesville	VA	22902

on 6	PASSENGER tab	le V	Join on F	LIGHT#	¥	FLIGHT t	able
NAME	SSN	FLIGHT	¥		FLIGHT#	START	END
Alice	555-55-5555	F101			F101	DCA	JFK
Bob	222-22-2222	F313			F313	JFK	DCA
Carol	123-45-6789	F123			F123	JFK	LAX
Bob	444 44 4444	F313					
	NAME	SSN	FLIGHT#	START	END		
	Alice	555-55-5555	F101	DCA	JFK		
	Bob	222-22-2222	F313	JFK	DCA		
	Carol	123-45-6789	F123	JFK	LAX		
	Bob	441 41 414	F313	JFK	DCA		

RESULT of join

ZON	NE_NAME	COUNT
Sell	kirk Mountains	515
Cab	inet-Yaak	1125
Nor	thern Continental Divide	2450
Priv	ate Inholdings-Yaak	0
Bitt	erroot Mountains	250
Gre	ater Yellowstone	360
ZONE_NAME	Which colur be used to these tables	relate

0	Polygon	Selkirk Mountains	
1	Polygon	Cabinet-Yaak	_
2	Polygon	Northern Continental Divide	
3	Polygon	Private Inholdings-Yaak	
4	Polygon	Bitterroot Mountains	_
5	Polygon	Greater Yellowstone	
			1

Shape *

FID

Which value is the 'key' value?

Student Name	Class	ID
Bob	Junior	1110
Jim	Junior	1120
Sally	Freshman	1130
Greta	Senior	1140

Which columns can be used to relate these two tables?

Which value is the 'key' value?

Student #	Major	Advisor
1110	Science	Dr. Who
1120	Art	Dr. No
1130	Math	Dr. Oz
1140	Geography	Dr. Phil

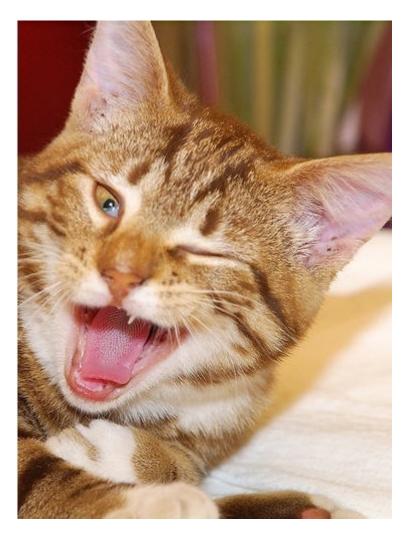
The JOIN operation

	game					
id	mdate	stadium	team1	team2		
1001	8 June 2012	National Stadium, Warsaw	POL	GRE		
1002	8 June 2012	Stadion Miejski (Wroclaw)	RUS	CZE		
1003	12 June 2012	Stadion Miejski (Wroclaw)	GRE	CZE		
1004	12 June 2012	National Stadium, Warsaw	POL	RUS		

goal

matchid	teamid	player	gtime
1001	POL	Robert Lewandowski	17
1001	GRE	Dimitris Salpingidis	51
1002	RUS	Alan Dzagoev	15
1002	RUS	Roman Pavlyuchenko	82

eteam


id	teamname	coach		
POL	Poland	Franciszek Smuda		
RUS	Russia	Dick Advocaat		
CZE	Czech Republic	Michal Bilek		
GRE	Greece	Fernando Santos		

Which columns can be used to relate these three tables?

Which value is the 'key' value?

http://sqlzoo.net/wiki/SQL_Tutorial

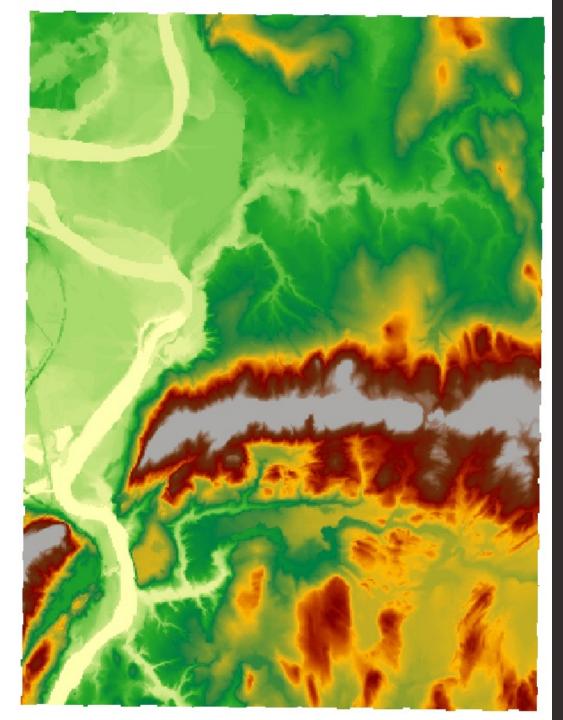
p.s. we're doing all of this spatially too

Data data data

- Three data types (formats) you will work with (and already have!) in GIS:
 - Raster (yes)
 - Vector (yes)
 - TIN (not yet)

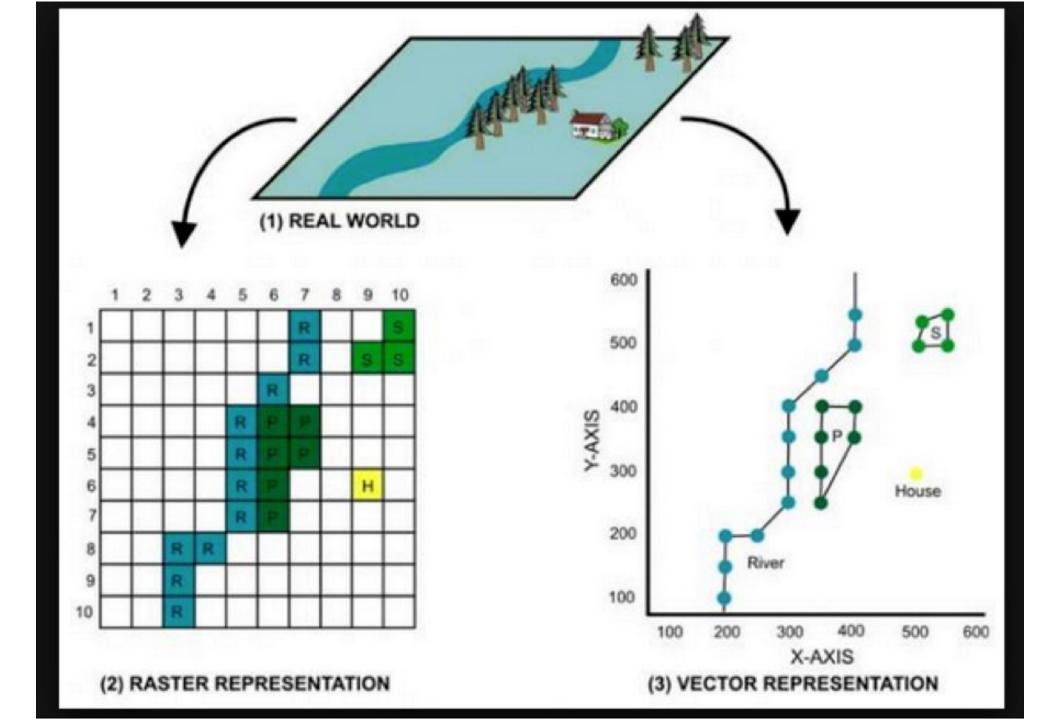
• Important differences.

Raster vs. Vector vs. TIN


• Raster: Made up of cells (pixels).

Vector: Made up of points, lines, and polygons.

• TIN: Triangular Irregular Network.


Table 2-2: A comparison of raster and vector	data models.
--	--------------

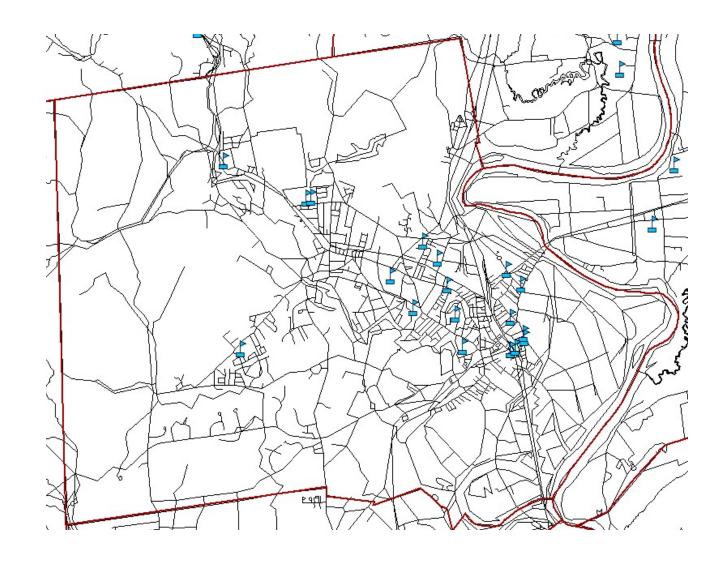
Characteris- tic	Raster	Vector
data structure	usually simple	usually complex
storage	large for most data sets	small for most
requirements	without compression	data sets
coordinate	may be slow due to data	simple
conversion	volumes, and require resampling	
analysis	easy for continuous	preferred for net-
	data, simple for many	work analyses,
	layer combinations	many other spa-
		tial operations
		more complex
positional pre-	floor set by cell size	limited only by
cision		positional mea-
		surements
accessibility	easy to modify or pro-	often complex
	gram, due to simple data	
	structure	
display and	good for images, but	map-like, with con-
output	discrete features may	tinuous curves,
	show "stairstep" edges	poor for images

Source: Paul Bolstad. 2012. GIS Fundamentals – A first text on Geographic Information Systems. 4th ed.

Raster or Vector?

Tx.ag/GIS3

Vector data represents features as points, lines, and polygons and is best applied to discrete objects with defined shapes and boundaries.

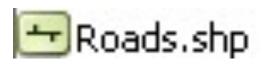


Features have a precise shape and position, attributes and metadata, and useful behavior.

Source: Zeiler, M. 1999. Modeling Our World: The ESRI® Guide to Geodatabase Design. Redlands, CA: ESRI Press. 199 pp.

Vector (Feature) Data I

- Point
- Line
- Polygon


Vector (Feature) Data II

- Point
 - A specific geographic location
 - Each point may have a specific value depending on the attribute table
- Line
- Polygon

Vector (Feature) Data III

- Point
- Line
 - A segment or arc with a specific geographic location
 - Each line may have a specific value depending on the attribute table
 - Lines have direction and length
- Polygon

Vector (Feature) Data IV

- Point
- Line
- Polygon
 - An enclosed areas with a specific geographic location
 - Has a geographically defined shape
 - Edges are straight lines with vertices

How Do You Choose?

• Kahoot (kahoot.it)

 <u>https://play.kahoot.it/#/k/e9e2d380-4b8c-</u> <u>4485-afb7-272ba7a7e48f</u>

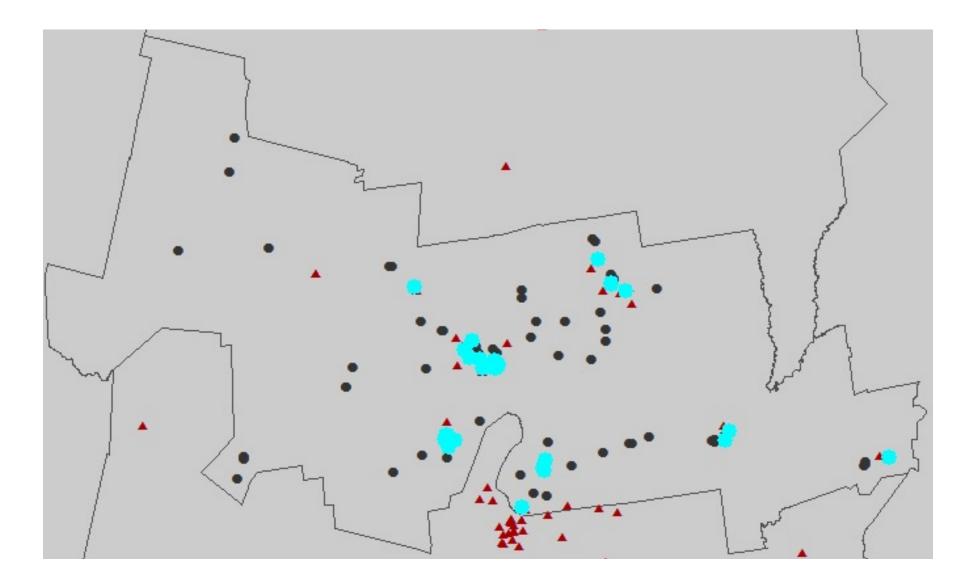
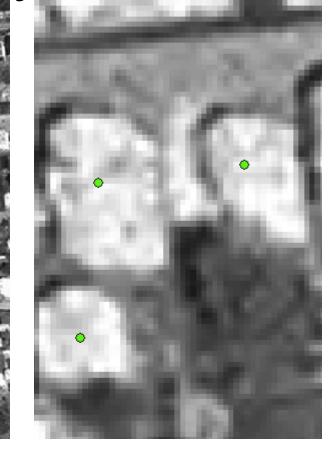
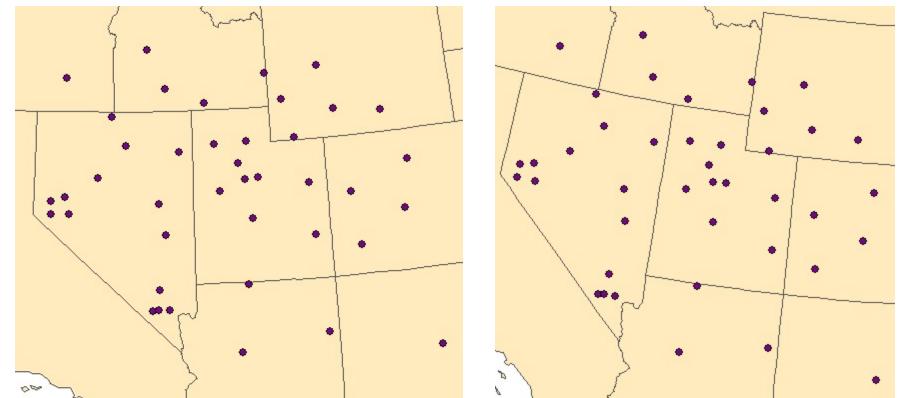

All Vector Files Have Attributes

Table									
0	📰 📲 📲 🏪 🎦 🖓 🗶 🗶								
ST,									
	FID	Shape *	AREA	STATE_NAME	STATE_FIPS	SUB_REGION	STATE_ABBR	POP1990	
F	0	Polygon	174204.644	Washington	53	Pacific	WA	4866692	
	1	Polygon	381307.987	Montana	30	Mtn	MT	799065	
	2	Polygon	83279.978	Maine	23	N Eng	ME	1227928	
	3	Polygon	183403.506	North Dakota	38	W N Cen	ND	638800	
	4	Polygon	199912.249	South Dakota	46	W N Cen	SD	696004	
	5	Polygon	253293.646	Wyoming	56	Mtn	WY	453588	
	6	Polygon	145261.903	Wisconsin	55	E N Cen	WI	4891769	
	7	Polygon	215877.666	Idaho	16	Mtn	ID	1006749	
	8	Polygon	24869.345	Vermont	50	N Eng	VT	562758	
	9	Polygon	218899.803	Minnesota	27	W N Cen	MN	4375099	
	10	Polygon	251441.073	Oregon	41	Pacific	OR	2842321	
	11	Polygon	23982.233	New Hampshire	33	N Eng	NH	1109252	
	12	Polygon	145703.864	lowa	19	W N Cen	IA	2776755	
	13	Polygon	21165.05	Massachusetts	25	N Eng	MA	6016425	
	14	Polygon	200277.163	Nebraska	31	W N Cen	NE	1578385	
	15	Polygon	125776.995	New York	36	Mid Atl	NY	17990455	
	16	Polygon	117474.64	Pennsylvania	42	Mid Atl	PA	11881643	

We know that we can select features based on attributes

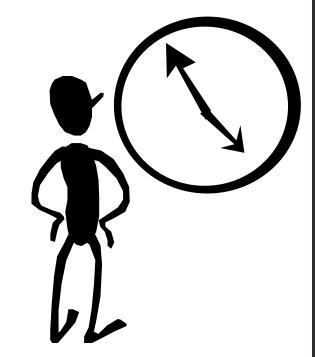

Table										
0 0	🗄 - 🖶 - 🏪 🌄 🖸 🚭 💥									
STA	STATES									
	FID	Shape *	AREA	STATE_NAME	STATE_FIPS	SUB_REGION	STATE_ABBR	POP1990		
	41	Polygon	133945.485	Alabama	01	E S Cen	AL	4040587		
	50	Polygon	1493212.904	Alaska	02	Pacific	AK	550043		
	35	Polygon	294635.701	Arizona	04	Mtn	AZ	3665228		
	45	Polygon	137046.401	Arkansas	05	W S Cen	AR	2350725		
	23	Polygon	408555.123	California	06	Pacific	CA	29760021		
	30	Polygon	269626.919	Colorado	08	Mtn	CO	3294394		
	17	Polygon	12890.202	Connecticut	09	N Eng	СТ	3287116		
	27	Polygon	5321.616	Delaware	10	S Atl	DE	666168		
	26	Polygon	171.127	District of Columbia	11	S Atl	DC	606900		
	47	Polygon	144555.37	Florida	12	S Atl	FL	12937926		
	43	Polygon	151852.428	Georgia	13	S Atl	GA	6478216		
	49	Polygon	16527.639	Hawaii	15	Pacific	HI	1108229		
	7	Polygon	215877.666	Idaho	16	Mtn	ID	1006749		
	25	Polygon	145811.733	Illinois	17	E N Cen	IL	11430602		
	20	Polygon	94274.766	Indiana	18	E N Cen	IN	5544159		
	12	Polygon	145703.864	lowa	19	W N Cen	IA	2776755		
	32	Polygon	212888.548	Kansas	20	W N Cen	KS	2477574		
	31	Polygon	104432.786	Kentucky	21	E S Cen	KY	3685296		
	10		110711070		00	waa	1.4	1010070		

You can also select by location

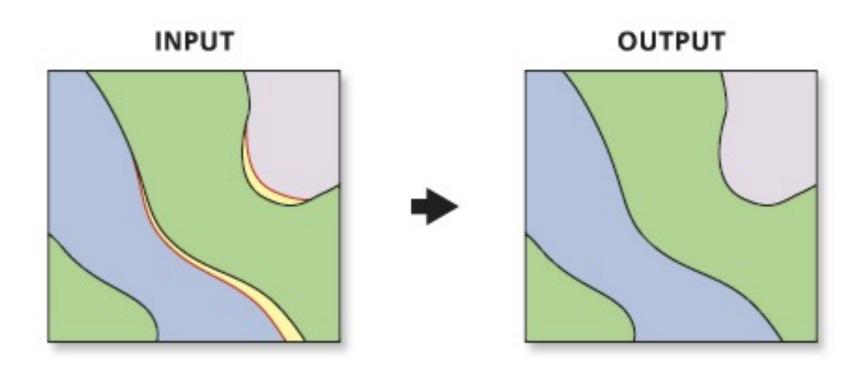

Advantages of Vector Data Looks the same at any scale

Advantages of Vector Data I

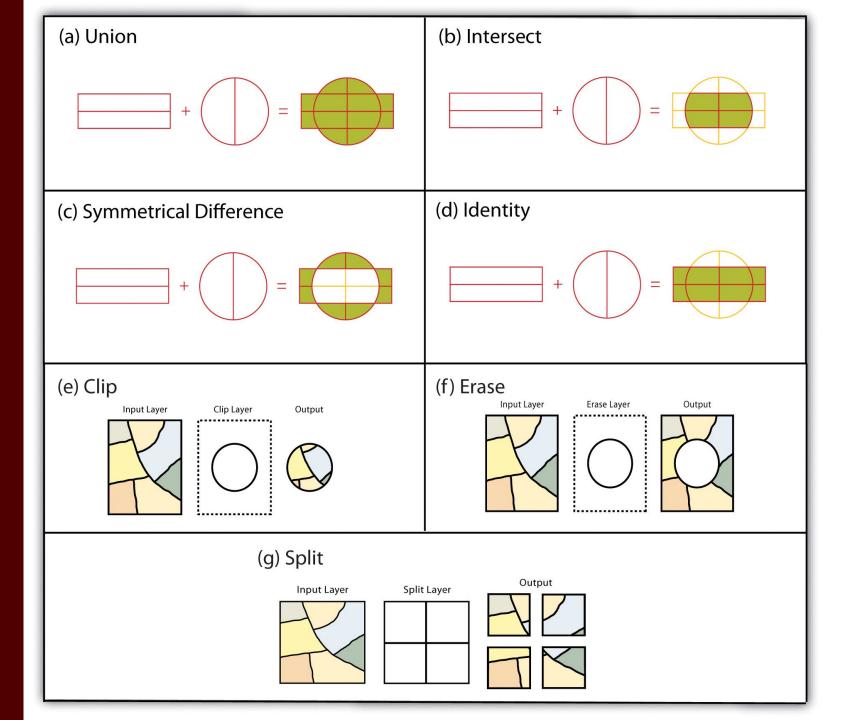
- Looks the same at any scale
- Easy to re-project (change coordinate system)


Advantages of Vector Data II

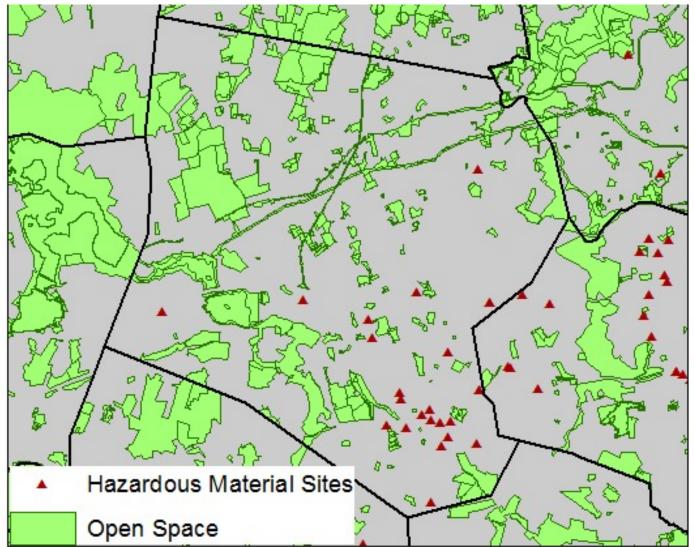
- Looks the same at any scale
- Easy to reproject (change coordinate system)
- Looks good on a map (easy to read/interpret output with nice smooth lines or points)

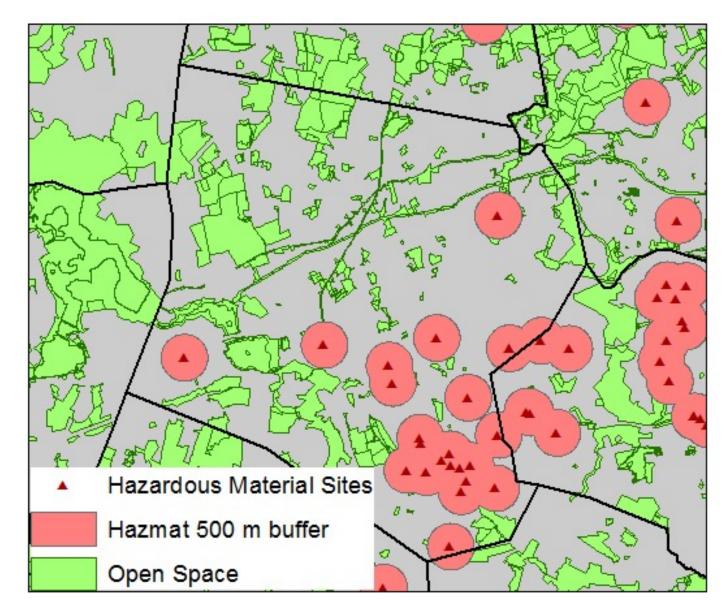

Disadvantages of Vector Data I

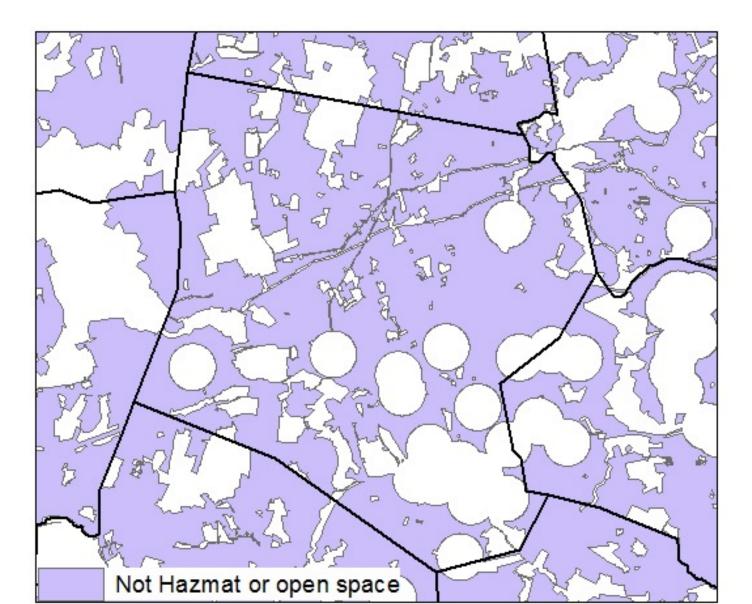
 It can be a memory hog! (Detailed shapefiles will take a long time to load and manipulate)



Disadvantages of Vector Data II


- It can be a memory hog! (Detailed shapefiles will take a long time to load and manipulate)
- Data may not be continuous spatially


BORDERS TO BE ELIMINATED
SLIVER POLYGONS

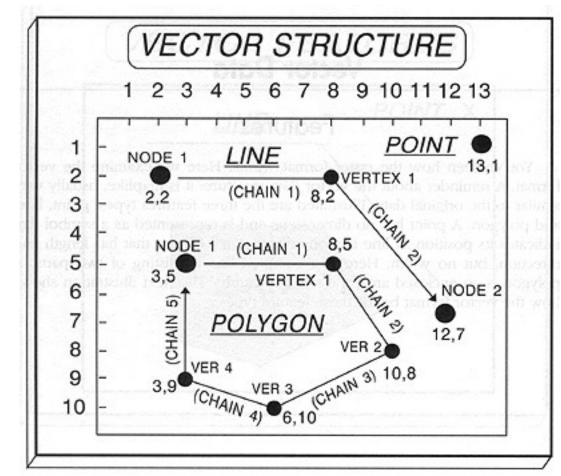

Vector data analysis: Build a school in Framingham

Far from Hazmat sites (buffer tool)

Not in open space or Hazmat buffer

Advantages of Vectors

- Intuitively represent features from analog (hardcopy) maps
- Good at representing linear features


 roads, rivers, boundaries
- Accurate: can follow features very closely
 - we can store with high precision the X,Y locations of points so we know their geographic location very precisely.

Early Vector Formats

• The first generation of vector files were simply lines, with arbitrary starting and ending points - just like a cartographer would draw a map.

- No explicit relationship between features simply direct translation of a graphical image.
- Digitized 'map' files were not explicitly spatial or connected to a broader database.

http://ces.iisc.ernet.in/hpg/envis/Remote/section156.htm

Topology

Explicit information describing adjacency, connectivity, and relative spatial relationships of features

Why Topology is important...

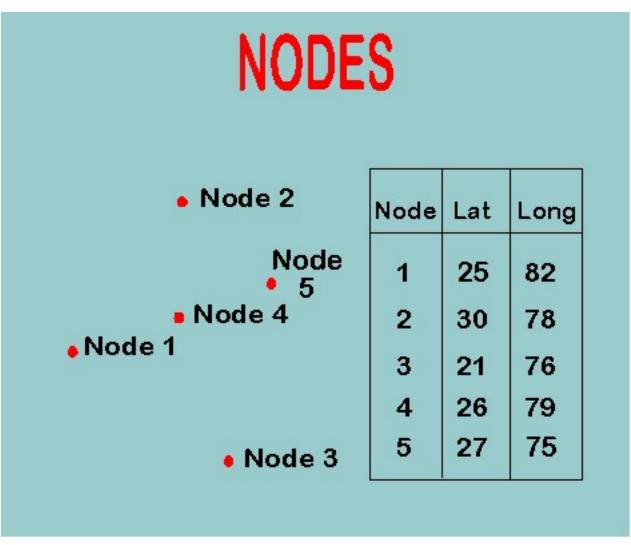
- enables relationships to be established between features
- allows error detection to be done in a GIS
 - are all polygons completely closed
 - to the ends of arcs match up ("snapped together")

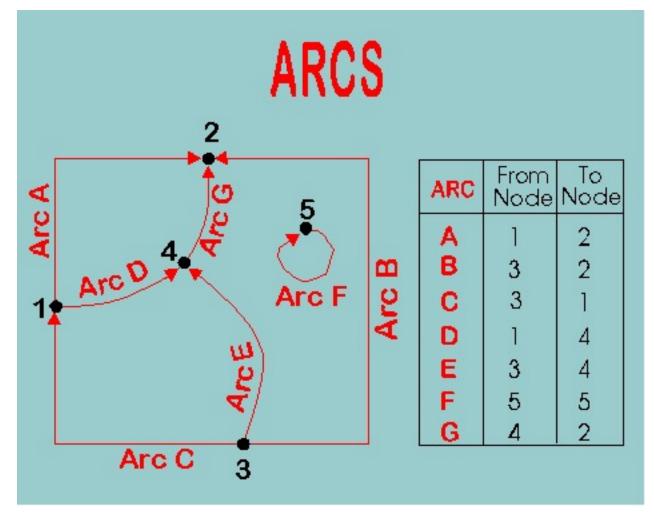
Hierarchical Structures for Spatial Data

Started in the 1960s and became the arc/node model.

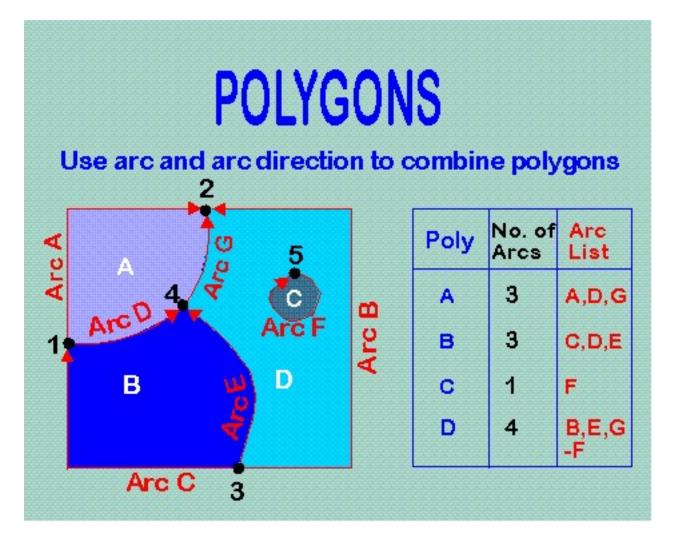
• Based on the fact that each feature type is composed of features with one fewer dimensions.

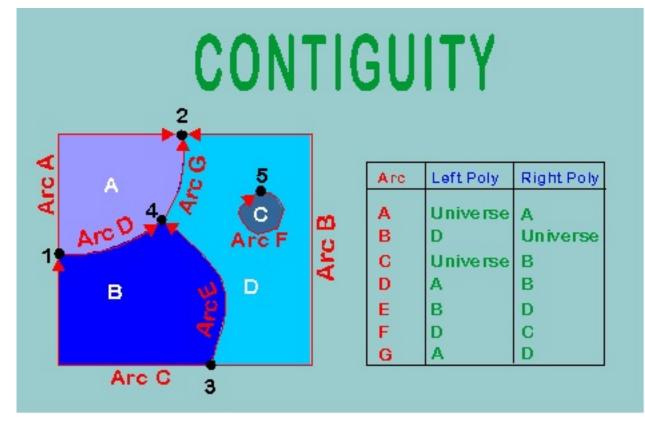
 The problem is that it is necessary to keep track of the links between features in an arbitrary and sometimes cumbersome way.


Illustrated Hierarchical Model


Improved Arc/Node Model

• Created after the First International Advanced Symposium on Topological Data Structures for Geographic Information Systems in 1979.


 The arc was selected as the fundamental data storage unit and polygons were reconstructed as necessary.


http://www.colorado.edu/geography/g

http://www.colorado.edu/geography/g

http://www.colorado.edu/geography/g

http://www.colorado.edu/geography/gcraft/notes/datacon/datacon.html